Science.gov

Sample records for 2d laterally dispersive

  1. Relative dispersion in 2D stochastic flows

    NASA Astrophysics Data System (ADS)

    Piterbarg, L. I.

    We investigate the relative dispersion for two types of stochastic flows—Brownian flow (Kraichnan model) and a flow with memory (inertial particles). In the first case well-known asymptotics are rigorously derived for a self-similar spectrum of the velocity field by using a half-century-old Feller's theorem. Exact limits of the asymptotics and exact values for dimensionless constants are obtained. The second part of the paper addresses a relatively new object: the first-order Markov stochastic flow modelling inertial particle motion. Both local and non-local dynamics are investigated. In the first case an exact exponential asymptotic is obtained for the relative dispersion. In turn, two regimes are considered in the case of non-smooth forcing: weak and strong turbulence. For weak turbulence the obtained asymptotic of relative dispersion is similar to that of the Brownian flow. As for strong turbulence, an upper bound is obtained for the scaling of relative dispersion.

  2. Construction of 2D lateral pseudoheterostructures by strain engineering

    NASA Astrophysics Data System (ADS)

    Feng, Haifeng; Zhuang, Jincheng; Slattery, Ashley D.; Wang, Liang; Xu, Zhongfei; Xu, Xun; Mitchell, David; Zheng, Tian; Li, Songlin; Higgins, Michael; Ren, Long; Sun, Ziqi; Xue Dou, Shi; Du, Yi; Hao, Weichang

    2017-06-01

    Two-dimensional (2D) lateral heterostructures host unconventional physical properties due to their controllable band-offset tuning and interfacial sensitive characteristic. The lattice mismatch results in the difficulties to construct the perfect atomic interface in such 2D lateral heterostructures, which in turn limits their desirable properties and performances in applications. In this work, strain-modulated 2D lateral pseudoheterogeneous structures are designed and realized in the single-component 2D BiOBr nanosheets by taking advantage of their strain-sensitive crystal and electronic structures. The pseudoheterogeneous interface without atomic mismatch can be feasibly modulated by local strain distribution, which exhibits similar local electronic band structure of corresponding heterostructures. Significant enhancement in charge separation at the pseudoheterostructure was demonstrated under visible light irradiation, which is given rise to the controllable electronic band alignment across the interface. The construction of the lateral pseudoheterostructure offers a feasible and promising way to build unprecedented 2D systems with exciting properties.

  3. 2D ERT imaging of tracer dispersion in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Lekmine, G.; Pessel, M.; Auradou, H.

    2009-12-01

    Electrical resistivity tomography applied in cross-borehole is a method often used to follow the invasion process of pollutants. The aim of this work is to test experimentally the electrode arrays and inversion processes used to obtain a spatial representation of tracer propagation in porous media. Experiments were conducted in a plexiglass container with glass beads of 166 microns in diameter. The height of the container is 275 mm, its width 85 mm and its thickness 10 mm. 21 electrodes, equally spaced, are placed along each of the lateral sides of the porous medium : these electrodes are used to perform the electrical measurements. The device is lightened from behind and a video camera records the fluid propagation. The tracer (i.e the pollutant) is a water solution containing a known amount of dye together with NaCl (0.5g/l up to 1.5g/l). The medium is first saturated by a water solution containing a slight concentration of NaCl so that its density is smaller than the tracer’s. An upward flow is first established, the denser fluid is injected at the bottom and over the full width of the medium. In this way, the flow is stabilized by gravity avoiding the development of unstable fingers. Still, the fluids are miscible and a mixing front develops during the flow: in the present study, the interest is to estimate the 2D tracer front dispersion by both optical and electrical imaging. The comparison of the two techniques allows to study the ability of the inversion process to quantify the solute transport. A sensitivity analysis is led in order to determine the best measurement sequence to monitor the tracer’s front evolution through the entire volume of the medium. Hence, each time step is constituted by the same 190 transverse dipole-dipole set of lasting 5 minutes between the first and the last measurement. At the laboratory scale, the experimental design affects the measurements through edges effects: most of these artefacts can be partially suppressed by using

  4. Interpreting lateral 2-D bank hyporheic flux based on GA-VS2DH

    NASA Astrophysics Data System (ADS)

    Su, Xiaoru; Shu, Longcang; Wen, Zhonghui; Lu, Chengpeng; Eshete, Abunu

    2015-04-01

    Hyporheic flux is of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer was widely used in recognizing the hyporheic flux with high precision, low cost and great convenience. The hyporheic flux in bank cross-section occurs in vertical and lateral directions. In order to depict the hyporheic flow path and its spatial distribution in bank area, a GA-VS2DH nested loop method was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model 2-D bank hyporheic flow and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures of sediments in bank area. A hypothetic model was developed to assess the reliability of GA-VS2DH in simulating hyporheic flux and parameters estimation in river bank system. Some numerical experiments were conducted to recognize the capability of GA-VS2DH. Then the GA-VS2DH was applied in two field sites with river bank sediments made by sand and clay, respectively, to verify the reliability of the method. The results indicated that the simulated hyporheic flux and parameters of GA-VS2DH were reliable. GA-VS2DH could be applied in interpreting lateral 2-D bank hyporheic flux. Hydraulic conductivity (K) and dispersivity (D) are the two most sensitive parameters and the estimates of these two parameters have more reliability than the others. The estimates of hydraulic conductivity at Dawen River site and Qinhuai River site are 1.293 and 0.019 m/d, respectively, which corresponded to sand and clay sediment in the two sites.

  5. Lateral critical Casimir force in 2D Ising strip with inhomogeneous walls.

    PubMed

    Nowakowski, Piotr; Napiórkowski, Marek

    2014-08-14

    We analyze the lateral critical Casimir force acting between two planar, chemically inhomogeneous walls confining an infinite 2D Ising strip of width M. The inhomogeneity of each of the walls has size N1; they are shifted by the distance L along the strip. Using the exact diagonalization of the transfer matrix, we calculate the lateral critical Casimir force and discuss its properties, in particular its scaling close to the 2D bulk critical point, as a function of temperature, surface magnetic field, and the geometric parameters M, N1, L. We determine the magnetization profiles which display the formation of the bridge joining the inhomogeneities on the walls and establish the relation between the characteristic properties of the lateral Casimir force and magnetization morphologies. We check numerically that breaking of the bridge is related to the inflection point of the lateral force.

  6. High-Concentration Aqueous Dispersions of Nanoscale 2D Materials Using Nonionic, Biocompatible Block Copolymers.

    PubMed

    Mansukhani, Nikhita D; Guiney, Linda M; Kim, Peter J; Zhao, Yichao; Alducin, Diego; Ponce, Arturo; Larios, Eduardo; Yacaman, Miguel Jose; Hersam, Mark C

    2016-01-20

    Conditions for the dispersion of molybdenum disulfide (MoS2) in aqueous solution at concentrations up to 0.12 mg mL(-1) using a range of nonionic, biocompatible block copolymers (i.e., Pluronics and Tetronics) are identified. Furthermore, the optimal Pluronic dispersant for MoS2 is found to be effective for a range of other 2D materials such as molybdenum diselenide, tungsten diselenide, tungsten disulfide, tin selenide, and boron nitride.

  7. Global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations

    NASA Astrophysics Data System (ADS)

    Wan, Renhui; Chen, Jiecheng

    2016-08-01

    In this paper, we obtain global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations. Our works are consistent with the corresponding works by Elgindi-Widmayer (SIAM J Math Anal 47:4672-4684, 2015) in the special case {A=κ=1}. In addition, our result concerning the SQG equation can be regarded as the borderline case of the work by Cannone et al. (Proc Lond Math Soc 106:650-674, 2013).

  8. 2D ultra-fast MRI of granular dispersion by a liquid jet

    NASA Astrophysics Data System (ADS)

    Peng, Yunan; Sederman, Andrew J.; Ramaioli, Marco; Hughes, Eric; Gladden, Lynn F.; Mantle, Mick D.

    2017-06-01

    This paper illustrates the application of ultra-fast magnetic resonance imaging (MRI) as a noninvasive tool to study the dispersion of a dry, static granular bed by the injection of a liquid. Spatial distributions of undispersed grains (poppy seeds) and injected water were independently imaged at sub-millimetre resolution in 2D with ultra-fast MRI techniques. A liquid jet was observed above the bottom injection orifice, complementing optical imaging. Co-registration of the grains and water images enables the interaction of the static grains and of the liquid jet to be observed for the first time in situ. This visualization of the dispersion process can be used to identify optimal process parameters for a fast and uniform dispersion and to validate quantitatively numerical granular-fluid simulations [1].

  9. Is digit ratio (2D:4D) a reliable pointer to speech laterality?

    PubMed

    Hudson, John M; Hodgson, Jessica C

    2016-03-15

    The relative length of the second and fourth digits (2D:4D ratio) is sexually dimorphic and a retrospective biomarker of prenatal hormonal exposure. Low ratios indicate higher prenatal testosterone (pT) and lower estrogen exposure, whereas the reverse pattern is associated with high ratios. Elevated levels of pT exposure have long been thought to modulate hemispheric specialisation; subsequently many studies use the 2D:4D ratio as a proxy index for pT to examine the effects of prenatal hormonal exposure on lateralised cognitive abilities. Here we used Transcranial Doppler ultrasonography and digit ratio to investigate whether pT has an influence on speech laterality. We tested 34 right and 14 left handed adults. Our results indicate that speech representation is unrelated to digit characteristics and therefore purportedly pT. We discuss these findings in relation to androgen theories of lateralisation.

  10. Visualizing dispersive features in 2D image via minimum gradient method

    DOE PAGES

    He, Yu; Wang, Yan; Shen, Zhi -Xun

    2017-07-24

    Here, we developed a minimum gradient based method to track ridge features in a 2D image plot, which is a typical data representation in many momentum resolved spectroscopy experiments. Through both analytic formulation and numerical simulation, we compare this new method with existing DC (distribution curve) based and higher order derivative based analyses. We find that the new method has good noise resilience and enhanced contrast especially for weak intensity features and meanwhile preserves the quantitative local maxima information from the raw image. An algorithm is proposed to extract 1D ridge dispersion from the 2D image plot, whose quantitative applicationmore » to angle-resolved photoemission spectroscopy measurements on high temperature superconductors is demonstrated.« less

  11. Visualizing dispersive features in 2D image via minimum gradient method

    NASA Astrophysics Data System (ADS)

    He, Yu; Wang, Yan; Shen, Zhi-Xun

    2017-07-01

    We developed a minimum gradient based method to track ridge features in a 2D image plot, which is a typical data representation in many momentum resolved spectroscopy experiments. Through both analytic formulation and numerical simulation, we compare this new method with existing DC (distribution curve) based and higher order derivative based analyses. We find that the new method has good noise resilience and enhanced contrast especially for weak intensity features and meanwhile preserves the quantitative local maxima information from the raw image. An algorithm is proposed to extract 1D ridge dispersion from the 2D image plot, whose quantitative application to angle-resolved photoemission spectroscopy measurements on high temperature superconductors is demonstrated.

  12. Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures

    DOE PAGES

    Lee, Jaekwang; Huang, Jingsong; Sumpter, Bobby G.; ...

    2017-02-17

    Compared with their bulk counterparts, 2D materials can sustain much higher elastic strain at which optical quantities such as bandgaps and absorption spectra governing optoelectronic device performance can be modified with relative ease. Using first-principles density functional theory and quasiparticle GW calculations, we demonstrate how uniaxial tensile strain can be utilized to optimize the electronic and optical properties of transition metal dichalcogenide lateral (in-plane) heterostructures such as MoX2/WX2 (X = S, Se, Te). We find that these lateral-type heterostructures may facilitate efficient electron–hole separation for light detection/harvesting and preserve their type II characteristic up to 12% of uniaxial strain. Basedmore » on the strain-dependent bandgap and band offset, we show that uniaxial tensile strain can significantly increase the power conversion efficiency of these lateral heterostructures. Our results suggest that these strain-engineered lateral heterostructures are promising for optimizing optoelectronic device performance by selectively tuning the energetics of the bandgap.« less

  13. Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures

    NASA Astrophysics Data System (ADS)

    Lee, Jaekwang; Huang, Jingsong; Sumpter, Bobby G.; Yoon, Mina

    2017-06-01

    Compared with their bulk counterparts, 2D materials can sustain much higher elastic strain at which optical quantities such as bandgaps and absorption spectra governing optoelectronic device performance can be modified with relative ease. Using first-principles density functional theory and quasiparticle GW calculations, we demonstrate how uniaxial tensile strain can be utilized to optimize the electronic and optical properties of transition metal dichalcogenide lateral (in-plane) heterostructures such as MoX2/WX2 (X  =  S, Se, Te). We find that these lateral-type heterostructures may facilitate efficient electron-hole separation for light detection/harvesting and preserve their type II characteristic up to 12% of uniaxial strain. Based on the strain-dependent bandgap and band offset, we show that uniaxial tensile strain can significantly increase the power conversion efficiency of these lateral heterostructures. Our results suggest that these strain-engineered lateral heterostructures are promising for optimizing optoelectronic device performance by selectively tuning the energetics of the bandgap.

  14. Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times

    NASA Astrophysics Data System (ADS)

    Bai, Chao-ying; Wang, Tao; Yang, Shang-bei; Li, Xing-wang; Huang, Guo-jiao

    2016-04-01

    Traditional traveltime inversion for anisotropic medium is, in general, based on a "weak" assumption in the anisotropic property, which simplifies both the forward part (ray tracing is performed once only) and the inversion part (a linear inversion solver is possible). But for some real applications, a general (both "weak" and "strong") anisotropic medium should be considered. In such cases, one has to develop a ray tracing algorithm to handle with the general (including "strong") anisotropic medium and also to design a non-linear inversion solver for later tomography. Meanwhile, it is constructive to investigate how much the tomographic resolution can be improved by introducing the later arrivals. For this motivation, we incorporated our newly developed ray tracing algorithm (multistage irregular shortest-path method) for general anisotropic media with a non-linear inversion solver (a damped minimum norm, constrained least squares problem with a conjugate gradient approach) to formulate a non-linear inversion solver for anisotropic medium. This anisotropic traveltime inversion procedure is able to combine the later (reflected) arrival times. Both 2-D/3-D synthetic inversion experiments and comparison tests show that (1) the proposed anisotropic traveltime inversion scheme is able to recover the high contrast anomalies and (2) it is possible to improve the tomographic resolution by introducing the later (reflected) arrivals, but not as expected in the isotropic medium, because the different velocity (qP, qSV and qSH) sensitivities (or derivatives) respective to the different elastic parameters are not the same but are also dependent on the inclination angle.

  15. Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers

    PubMed Central

    Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian

    2016-01-01

    Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers. PMID:27403589

  16. Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers.

    PubMed

    Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian

    2016-07-12

    Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers.

  17. Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers

    NASA Astrophysics Data System (ADS)

    Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian

    2016-07-01

    Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers.

  18. Analysis of 2D hyperbolic metamaterial dispersion by elementary excitation coupling

    NASA Astrophysics Data System (ADS)

    Vaianella, Fabio; Maes, Bjorn

    2016-04-01

    Hyperbolic metamaterials are examined for many applications thanks to the large density of states and extreme confinement of light they provide. For classical hyperbolic metal/dielectric multilayer structures, it was demon- strated that the properties originate from a specific coupling of the surface plasmon polaritons between the metal/dielectric interfaces. We show a similar analysis for 2D hyperbolic arrays of square (or rectangular) silver nanorods in a TiO2 host. In this case the properties derive from a specific coupling of the plasmons carried by the corners of the nanorods. The dispersion can be seen as the coupling of single rods for a through-metal connection of the corners, as the coupling of structures made of four semi-infinite metallic blocks separated by dielectric for a through-dielectric connection, or as the coupling of two semi-infinite rods for a through-metal and through-dielectric situation. For arrays of small square nanorods the elementary structure that explains the dispersion of the array is the single rod, and for arrays of large square nanorods it is four metallic corners. The medium size square nanorod case is more complicated, because the elementary structure can be one of the three basic designs, depending on the frequency and symmetry of the modes. Finally, we show that for arrays of rectangular nanorods the dispersion is explained by coupling of the two coupled rod structure. This work opens the way for a better understanding of a wide class of metamaterials via their elementary excitations.

  19. Drag measurements in laterally confined 2D canopies: Reconfiguration and sheltering effect

    NASA Astrophysics Data System (ADS)

    Barsu, Sylvie; Doppler, Delphine; Jerome, J. John Soundar; Rivière, Nicolas; Lance, Michel

    2016-10-01

    Plants in aquatic canopies deform when subjected to a water flow and so, unlike a rigid bluff body, the resulting drag force FD grows sub-quadratically with the flow velocity U ¯ . In this article, the effect of density on the canopy reconfiguration and the corresponding drag reduction is experimentally investigated for simple 2D synthetic canopies in an inclinable, narrow water channel. The drag acting on the canopy, and also on individual sheets, is systematically measured via two independent techniques. Simultaneous drag and reconfiguration measurements demonstrate that data for different Reynolds numbers (400-2200), irrespective of sheet width (w) and canopy spacing (ℓ), collapse on a unique curve given by a bending beam model which relates the reconfiguration number and a properly rescaled Cauchy number. Strikingly, the measured Vogel exponent V and hence the drag reduction via reconfiguration is found to be independent of the spacing between sheets and the lateral confinement; only the drag coefficient decreases linearly with the sheet spacing since a strong sheltering effect exists as long as the spacing is smaller than a critical value depending on the sheet width.

  20. Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip

    NASA Astrophysics Data System (ADS)

    Hogan, Benjamin T.; Dyakov, Sergey A.; Brennan, Lorcan J.; Younesy, Salma; Perova, Tatiana S.; Gun’Ko, Yurii K.; Craciun, Monica F.; Baldycheva, Anna

    2017-02-01

    In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS photonic chip utilising methods of synthetic chemistry and microfluidics technology. We have successfully demonstrated that this approach can be used for integration of any fluid-dispersed 2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time that the design of an optofluidic waveguide system can be optimised to enable simultaneous in-situ Raman spectroscopy monitoring of 2D dispersed flakes during the device operation. Moreover, for the first time, we have successfully demonstrated the possibility of label-free 2D flake detection via selective enhancement of the Stokes Raman signal at specific wavelengths. We discovered an ultra-high signal sensitivity to the xyz alignment of 2D flakes within the optofluidic waveguide. This in turn enables precise in-situ alignment detection, for the first practicable realisation of 3D photonic microstructure shaping based on 2D-fluid composites and CMOS photonics platform, while also representing a useful technological tool for the control of liquid phase deposition of 2D materials.

  1. Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip.

    PubMed

    Hogan, Benjamin T; Dyakov, Sergey A; Brennan, Lorcan J; Younesy, Salma; Perova, Tatiana S; Gun'ko, Yurii K; Craciun, Monica F; Baldycheva, Anna

    2017-02-10

    In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS photonic chip utilising methods of synthetic chemistry and microfluidics technology. We have successfully demonstrated that this approach can be used for integration of any fluid-dispersed 2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time that the design of an optofluidic waveguide system can be optimised to enable simultaneous in-situ Raman spectroscopy monitoring of 2D dispersed flakes during the device operation. Moreover, for the first time, we have successfully demonstrated the possibility of label-free 2D flake detection via selective enhancement of the Stokes Raman signal at specific wavelengths. We discovered an ultra-high signal sensitivity to the xyz alignment of 2D flakes within the optofluidic waveguide. This in turn enables precise in-situ alignment detection, for the first practicable realisation of 3D photonic microstructure shaping based on 2D-fluid composites and CMOS photonics platform, while also representing a useful technological tool for the control of liquid phase deposition of 2D materials.

  2. Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip

    PubMed Central

    Hogan, Benjamin T.; Dyakov, Sergey A.; Brennan, Lorcan J.; Younesy, Salma; Perova, Tatiana S.; Gun’ko, Yurii K.; Craciun, Monica F.; Baldycheva, Anna

    2017-01-01

    In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS photonic chip utilising methods of synthetic chemistry and microfluidics technology. We have successfully demonstrated that this approach can be used for integration of any fluid-dispersed 2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time that the design of an optofluidic waveguide system can be optimised to enable simultaneous in-situ Raman spectroscopy monitoring of 2D dispersed flakes during the device operation. Moreover, for the first time, we have successfully demonstrated the possibility of label-free 2D flake detection via selective enhancement of the Stokes Raman signal at specific wavelengths. We discovered an ultra-high signal sensitivity to the xyz alignment of 2D flakes within the optofluidic waveguide. This in turn enables precise in-situ alignment detection, for the first practicable realisation of 3D photonic microstructure shaping based on 2D-fluid composites and CMOS photonics platform, while also representing a useful technological tool for the control of liquid phase deposition of 2D materials. PMID:28186118

  3. Digit ratio (2D:4D), lateral preferences, and performance in fencing.

    PubMed

    Voracek, Martin; Reimer, Barbara; Ertl, Clara; Dressler, Stefan G

    2006-10-01

    The second to fourth digit ratio (2D:4D) is a sexually dimorphic trait (men tend to have lower values than women) and a likely biomarker for the organizational (permanent) effects of prenatal androgens on the human brain and body. Prenatal testosterone, as reflected by 2D:4D, has many extragenital effects, including its relevance for the formation of an efficient cardiovascular system. Previous research, reviewed here, has therefore investigated possible associations of 2D:4D with sport performance. Several studies found more masculinized digit ratio patterns (low 2D:4D values or a negative right-minus-left difference in 2D:4D) to be related to high performance in running, soccer, and skiing. The present research tested this hypothesis in a sample of 54 tournament fencers, predominantly from Austria. For men, negative right-left differences in 2D:4D corresponded significantly to better current as well as highest national fencing rankings, independent of training intensity and fencing experience. The mean 2D:4D values of these fencers were significantly lower and the proportion of left-handers was elevated relative to the local general population. For the right hand, the ratio was somewhat lower in male sabre fencers than in male epée and foil fencers combined and significantly lower in left-handed compared to right-handed fencers. Although nonsignificant due to low statistical power, effect sizes suggested that crossed versus congruent hand-eye and hand-foot preferences might also be related to fencing performance. The present findings add to the evidence that 2D:4D might be a performance indicator for men across a variety of sports.

  4. Numerical upscaling in 2-D heterogeneous poroelastic rocks: Anisotropic attenuation and dispersion of seismic waves

    NASA Astrophysics Data System (ADS)

    Rubino, J. Germán.; Caspari, Eva; Müller, Tobias M.; Milani, Marco; Barbosa, Nicolás. D.; Holliger, Klaus

    2016-09-01

    The presence of stiffness contrasts at scales larger than the typical pore sizes but smaller than the predominant seismic wavelengths can produce seismic attenuation and velocity dispersion in fluid-saturated porous rocks. This energy dissipation mechanism is caused by wave-induced fluid pressure diffusion among the different components of the probed geological formations. In many cases, heterogeneities have elongated shapes and preferential orientations, which implies that the overall response of the medium is anisotropic. In this work, we propose a numerical upscaling procedure that permits to quantify seismic attenuation and phase velocity considering fluid pressure diffusion effects as well as generic anisotropy at the sample's scale. The methodology is based on a set of three relaxation tests performed on a 2-D synthetic rock sample representative of the medium of interest. It provides a complex-valued frequency-dependent equivalent stiffness matrix through a least squares procedure. We also derive an approach for computing various poroelastic fields associated with the considered sample in response to the propagation of a seismic wave with arbitrary incidence angle. Using this approach, we provide an energy-based estimation of seismic attenuation. A comprehensive numerical analysis indicates that the methodology is suitable for handling complex media and different levels of overall anisotropy. Comparisons with the energy-based estimations demonstrate that the dynamic-equivalent viscoelastic medium assumption made by the numerical upscaling procedure is reasonable even in the presence of high levels of overall anisotropy. This work also highlights the usefulness of poroelastic fields for the physical interpretation of seismic wave phenomena in strongly heterogeneous and complex media.

  5. Binocular Perception of 2D Lateral Motion and Guidance of Coordinated Motor Behavior.

    PubMed

    Fath, Aaron J; Snapp-Childs, Winona; Kountouriotis, Georgios K; Bingham, Geoffrey P

    2016-04-01

    Zannoli, Cass, Alais, and Mamassian (2012) found greater audiovisual lag between a tone and disparity-defined stimuli moving laterally (90-170 ms) than for disparity-defined stimuli moving in depth or luminance-defined stimuli moving laterally or in depth (50-60 ms). We tested if this increased lag presents an impediment to visually guided coordination with laterally moving objects. Participants used a joystick to move a virtual object in several constant relative phases with a laterally oscillating stimulus. Both the participant-controlled object and the target object were presented using a disparity-defined display that yielded information through changes in disparity over time (CDOT) or using a luminance-defined display that additionally provided information through monocular motion and interocular velocity differences (IOVD). Performance was comparable for both disparity-defined and luminance-defined displays in all relative phases. This suggests that, despite lag, perception of lateral motion through CDOT is generally sufficient to guide coordinated motor behavior.

  6. Understanding the colloidal dispersion stability of 1D and 2D materials: Perspectives from molecular simulations and theoretical modeling.

    PubMed

    Lin, Shangchao; Shih, Chih-Jen; Sresht, Vishnu; Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel

    2017-06-01

    The colloidal dispersion stability of 1D and 2D materials in the liquid phase is critical for scalable nano-manufacturing, chemical modification, composites production, and deployment as conductive inks or nanofluids. Here, we review recent computational and theoretical studies carried out by our group to model the dispersion stability of 1D and 2D materials, including single-walled carbon nanotubes, graphene, and graphene oxide in aqueous surfactant solutions or organic solvents. All-atomistic (AA) molecular dynamics (MD) simulations can probe the molecular level details of the adsorption morphology of surfactants and solvents around these materials, as well as quantify the interaction energy between the nanomaterials mediated by surfactants or solvents. Utilizing concepts from reaction kinetics and diffusion, one can directly predict the rate constants for the aggregation kinetics and dispersion life times using MD outputs. Furthermore, the use of coarse-grained (CG) MD simulations allows quantitative prediction of surfactant adsorption isotherms. Combined with the Poisson-Boltzmann equation, the Langmuir isotherm, and the DLVO theory, one can directly use CGMD outputs to: (i) predict electrostatic potentials around the nanomaterial, (ii) correlate surfactant surface coverages with surfactant concentrations in the bulk dispersion medium, and (iii) determine energy barriers against coagulation. Finally, we discuss challenges associated with studying emerging 2D materials, such as, hexagonal boron nitride (h-BN), phosphorene, and transition metal dichalcogenides (TMDCs), including molybdenum disulfide (MoS2). An outlook is provided to address these challenges with plans to develop force-field parameters for MD simulations to enable predictive modeling of emerging 2D materials in the liquid phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.

    PubMed

    Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G

    2010-10-04

    Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach.

  8. Lateral thinking: 2-D interpretation of thermochronology in convergent orogenic settings

    NASA Astrophysics Data System (ADS)

    Batt, Geoffrey E.; Brandon, Mark T.

    2002-05-01

    Lateral motion of material relative to the regional thermal and kinematic frameworks is important in the interpretation of thermochronology in convergent orogens. Although cooling ages in denuded settings are commonly linked to exhumation, such data are not related to instantaneous behavior but rather to an integration of the exhumation rates experienced between the thermochronological 'closure' at depth and subsequent exposure at the surface. The short spatial wavelength variation of thermal structure and denudation rate typical of orogenic regions thus renders thermochronometers sensitive to lateral motion during exhumation. The significance of this lateral motion varies in proportion with closure temperature, which controls the depth at which isotopic closure occurs, and hence, the range of time and length scales over which such data integrate sample histories. Different chronometers thus vary in the fundamental aspects of the orogenic character to which they are sensitive. Isotopic systems with high closure temperature are more sensitive to exhumation paths and the variation in denudation and thermal structure across a region, while those of lower closure temperature constrain shorter-term behaviour and more local conditions. Discounting lateral motion through an orogenic region and interpreting cooling ages purely in terms of vertical exhumation can produce ambiguous results because variation in the cooling rate can result from either change in kinematics over time or the translation of samples through spatially varying conditions. Resolving this ambiguity requires explicit consideration of the physical and thermal framework experienced by samples during their exhumation. This can be best achieved through numerical simulations coupling kinematic deformation to thermal evolution. Such an approach allows the thermochronological implications of different kinematic scenarios to be tested, and thus provides an important means of assessing the contribution of

  9. Comparison of 2D and 3D wavelet features for TLE lateralization

    NASA Astrophysics Data System (ADS)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost; Patel, Suresh

    2004-04-01

    Intensity and volume features of the hippocampus from MR images of the brain are known to be useful in detecting the abnormality and consequently candidacy of the hippocampus for temporal lobe epilepsy surgery. However, currently, intracranial EEG exams are required to determine the abnormal hippocampus. These exams are lengthy, painful and costly. The aim of this study is to evaluate texture characteristics of the hippocampi from MR images to help physicians determine the candidate hippocampus for surgery. We studied the MR images of 20 epileptic patients. Intracranial EEG results as well as surgery outcome were used as gold standard. The hippocampi were manually segmented by an expert from T1-weighted MR images. Then the segmented regions were mapped on the corresponding FLAIR images for texture analysis. We calculate the average energy features from 2D wavelet transform of each slice of hippocampus as well as the energy features produced by 3D wavelet transform of the whole hippocampus volume. The 2D wavelet transform is calculated both from the original slices as well as from the slices perpendicular to the principal axis of the hippocampus. In order to calculate the 3D wavelet transform we first rotate each hippocampus to fit it in a rectangular prism and then fill the empty area by extrapolating the intensity values. We combine the resulting features with volume feature and compare their ability to distinguish between normal and abnormal hippocampi using linear classifier and fuzzy c-means clustering algorithm. Experimental results show that the texture features can correctly classify the hippocampi.

  10. Electromagnetic induction by finite wavenumber source fields in 2-D lateral heterogeneities - The transverse electric mode

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1984-01-01

    Electromagnetic induction in a laterally homogeneous earth is analyzed in terms of a source field with finite dimensions. Attention is focused on a time-varying two-dimensional current source directed parallel to the strike of a two-dimensional anomalous structure within the earth, i.e., the E-parallel mode. The spatially harmonic source field is expressed as discontinuities in the magnetic (or electric) field of the current in the source. The model is applied to describing the magnetic gradients across megatectonic features, and may be used to predict the magnetic fields encountered by a satellite orbiting above the ionosphere.

  11. Colloidal 2D-0D Lateral Nanoheterostructures: A Case Study of Site-Selective Growth of CdS Nanodots onto Bi₂Se₃ Nanosheets.

    PubMed

    Xu, Biao; Li, Haoyi; Yang, Hao; Xiang, Wentian; Zhou, Gang; Wu, Yue; Wang, Xun

    2015-06-10

    Two-dimensional (2D) nanoheterostructure (2D NHS) with nanoparticles grown on 2D nanomaterial substrates could potentially enable many novel functionalities. Controlled site-selective growth of nanoparticles on either the lateral or the basal directions of 2D nanomaterial substrates is desirable but extremely challenging. Herein, we demonstrate the rational control of lateral- and basal-selective attachment of CdS nanoparticles onto 2D Bi2Se3 nanosheets through solution phase reactions. The combination of experimental and theoretical efforts elucidate that site-relevant interfacial bonding and kinetic control of molecular precursors play vital roles for site selectivity. Furthermore, the electronic structures revealed from density functional theory calculations explain the superior performance of the lateral 2D NHSs compared to their basal counterpart in prototype photoelectrochemical cells. The present study will inspire the construction of other site-selective 2D NHSs with well-defined structure and unique properties.

  12. Validity of 2D lateral cephalometry in orthodontics: a systematic review

    PubMed Central

    2013-01-01

    Lateral cephalometric radiography is commonly used as a standard tool in orthodontic assessment and treatment planning. The aim of this study was to evaluate the available scientific literature and existing evidence for the validation of using lateral cephalometric imaging for orthodontic treatment planning. The secondary objective was to determine the accuracy and reliability of this technique. We did not attempt to evaluate the value of this radiographic technique for other purposes. A literature search was performed using specific keywords on electronic databases: Ovid MEDLINE, Scopus and Web of Science. Two reviewers selected relevant articles, corresponding to predetermined inclusion criteria. The electronic search was followed by a hand search of the reference lists of relevant papers. Two reviewers assessed the level of evidence of relevant publications as high, moderate or low. Based on this, the evidence grade for diagnostic efficacy was rated as strong, moderately strong, limited or insufficient. The initial search revealed 784 articles listed in MEDLINE (Ovid), 1,034 in Scopus and 264 articles in the Web of Science. Only 17 articles met the inclusion criteria and were selected for qualitative synthesis. Results showed seven studies on the role of cephalometry in orthodontic treatment planning, eight concerning cephalometric measurements and landmark identification and two on cephalometric analysis. It is surprising that, notwithstanding the 968 articles published in peer-reviewed journals, scientific evidence on the usefulness of this radiographic technique in orthodontics is still lacking, with contradictory results. More rigorous research on a larger study population should be performed to achieve full evidence on this topic. PMID:24325757

  13. Validity of 2D lateral cephalometry in orthodontics: a systematic review.

    PubMed

    Durão, Ana R; Pittayapat, Pisha; Rockenbach, Maria Ivete B; Olszewski, Raphael; Ng, Suk; Ferreira, Afonso P; Jacobs, Reinhilde

    2013-09-20

    Lateral cephalometric radiography is commonly used as a standard tool in orthodontic assessment and treatment planning. The aim of this study was to evaluate the available scientific literature and existing evidence for the validation of using lateral cephalometric imaging for orthodontic treatment planning. The secondary objective was to determine the accuracy and reliability of this technique. We did not attempt to evaluate the value of this radiographic technique for other purposes. A literature search was performed using specific keywords on electronic databases: Ovid MEDLINE, Scopus and Web of Science. Two reviewers selected relevant articles, corresponding to predetermined inclusion criteria. The electronic search was followed by a hand search of the reference lists of relevant papers. Two reviewers assessed the level of evidence of relevant publications as high, moderate or low. Based on this, the evidence grade for diagnostic efficacy was rated as strong, moderately strong, limited or insufficient. The initial search revealed 784 articles listed in MEDLINE (Ovid), 1,034 in Scopus and 264 articles in the Web of Science. Only 17 articles met the inclusion criteria and were selected for qualitative synthesis. Results showed seven studies on the role of cephalometry in orthodontic treatment planning, eight concerning cephalometric measurements and landmark identification and two on cephalometric analysis. It is surprising that, notwithstanding the 968 articles published in peer-reviewed journals, scientific evidence on the usefulness of this radiographic technique in orthodontics is still lacking, with contradictory results. More rigorous research on a larger study population should be performed to achieve full evidence on this topic.

  14. Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system

    NASA Astrophysics Data System (ADS)

    Anfossi, D.; Alessandrini, S.; Trini Castelli, S.; Ferrero, E.; Oettl, D.; Degrazia, G.

    The simulation of atmospheric dispersion in low wind speed conditions (LW) is still recognised as a challenge for modellers. Recently, a new system of two coupled Langevin equations that explicitly accounts for meandering has been proposed. It is based on the study of turbulence and dispersion properties in LW. The new system was implemented in the Lagrangian stochastic particle models LAMBDA and GRAL. In this paper we present simulations with this new approach applying it to the tracer experiments carried out in LW by Idaho National Engineering Laboratory (INEL, USA) in 1974 and by the Graz University of Technology and CNR-Torino near Graz in 2003. To assess the improvement obtained with the present model with respect to previous models not taking into account the meandering effect, the simulations for the INEL experiments were also performed with the old version of LAMBDA. The results of the comparisons clearly indicate that the new approach improves the simulation results.

  15. Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements.

    PubMed

    Ye, Xingwei; Zhang, Fangzheng; Pan, Shilong

    2016-09-01

    A hardware-compressive optical true time delay architecture for 2D beam steering in a planar phased array antenna is proposed using fiber-Bragg-grating-based tunable dispersive elements (TDEs). For an M×N array, the proposed system utilizes N TDEs and M wavelength-fixed optical carriers to control the time delays. Both azimuth and elevation beam steering are realized by programming the settings of the TDEs. An experiment is carried out to demonstrate the delay controlling in a 2×2 array, which is fed by a wideband pulsed signal. Radiation patterns calculated from the experimentally measured waveforms at the four antennas match well with the theoretical results.

  16. A 2-D numerical simulation study on longitudinal solute transport and longitudinal dispersion coefficient

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    2011-07-01

    The longitudinal dispersion coefficient, DL, is a fundamental parameter of longitudinal solute transport models: the advection-dispersion (AD) model and various deadzone models. Since DL cannot be measured directly, and since its calibration using tracer test data is quite expensive and not always available, researchers have developed various methods, theoretical or empirical, for estimating DL by easier available cross-sectional hydraulic measurements (i.e., the transverse velocity profile, etc.). However, for known and unknown reasons, DL cannot be satisfactorily predicted using these theoretical/empirical formulae. Either there is very large prediction error for theoretical methods, or there is a lack of generality for the empirical formulae. Here, numerical experiments using Mike21, a software package that implements one of the most rigorous two-dimensional hydrodynamic and solute transport equations, for longitudinal solute transport in hypothetical streams, are presented. An analysis of the evolution of simulated solute clouds indicates that the two fundamental assumptions in Fischer's longitudinal transport analysis may be not reasonable. The transverse solute concentration distribution, and hence the longitudinal transport appears to be controlled by a dimensionless number ?, where Q is the average volumetric flowrate, Dt is a cross-sectional average transverse dispersion coefficient, and W is channel flow width. A simple empirical ? relationship may be established. Analysis and a revision of Fischer's theoretical formula suggest that ɛ influences the efficiency of transverse mixing and hence has restraining effect on longitudinal spreading. The findings presented here would improve and expand our understanding of longitudinal solute transport in open channel flow.

  17. Micropolar dissipative models for the analysis of 2D dispersive waves in periodic lattices

    NASA Astrophysics Data System (ADS)

    Reda, H.; Ganghoffer, J. F.; Lakiss, H.

    2017-03-01

    The computation of the dispersion relations for dissipative periodic lattices having the attributes of metamaterials is an actual research topic raising the interest of researchers in the field of acoustics and wave propagation phenomena. We analyze in this contribution the impact of wave damping on the dispersion features of periodic lattices, which are modeled as beam-lattices. The band diagram structure and damping ratio are computed for different repetitive lattices, based on the homogenized continuum response of the initially discrete lattice architecture, modeled as Kelvin-Voigt viscoelastic beams. Three of these lattices (reentrant hexagonal, chiral diamond, hexachiral lattice) are auxetic metamaterials, since they show negative Poisson's ratio. The effective viscoelastic anisotropic continuum behavior of the lattices is first computed in terms of the homogenized stiffness and viscosity matrices, based on the discrete homogenization technique. The dynamical equations of motion are obtained for an equivalent homogenized micropolar continuum evaluated based on the homogenized properties, and the dispersion relation and damping ratio are obtained by inserting an harmonic plane waves Ansatz into these equations. The comparison of the acoustic properties obtained in the low frequency range for the four considered lattices shows that auxetic lattices attenuate waves at lower frequencies compared to the classical hexagonal lattice. The diamond chiral lattice shows the best attenuation properties of harmonic waves over the entire Brillouin zone, and the hexachiral lattice presents better acoustic properties than the reentrant hexagonal lattice. The range of validity of the effective continuum obtained by the discrete homogenization has been assessed by comparing the frequency band structure of this continuum with that obtained by a Floquet-Bloch analysis.

  18. Dispersive 2D Cherenkov radiation on a dielectric nano-film.

    PubMed

    Liu, Weihao

    2017-07-19

    We report a modified two-dimensional Cherenkov radiation, which occurs on a high-index dielectric nano-film driven by uniformly moving electron-beam. It is essentially different from the ordinary Cherenkov radiation in that, in the nondispersive medium, it shows unique dispersion characteristics-the waves with higher frequencies radiate at larger Cherenkov angles. Its radiation frequency and direction are essentially determined by structure parameters as well as the beam-velocity. By means of fully electromagnetic simulations and theoretical analyses, we explored the mechanism and requirements of this radiation. This new Cherenkov radiation may lead to promising applications in a broad range of fields.

  19. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that

  20. On the validity of 2D critical taper theory in 3D wedges: defining a lateral deformation length scale

    NASA Astrophysics Data System (ADS)

    Leever, Karen; Oncken, Onno; Thorden Haug, Øystein

    2015-04-01

    For 2D critical taper theory to be applicable to 3D natural cases, cylindric deformation is a requirement. The assumption of cylindricity is violated in case of localized perturbations (subducting seamount, localized sedimentation) or due to a lateral change in decollement strength or depth. In natural accretionary wedges and fold-and-thrust belts, along strike changes may occur in a variety of ways: geometrical (due to a protruding indenter or a change in decollement depth), through a lateral change in basal friction (leading to laterally different tapers), or through a change in surface slope (by strongly localized fan sedimentation on accretionary wedges). Recent numerical modelling results (Ruh et al., 2013) have shown that lateral coupling preferentially occurs for relatively small perturbations, i.e. the horizontal shear stress caused by the perturbation is supported by the system. Lateral linking of the wedge in front of a protruding indenter to the wedge in front of the trailing edge of the back stop leads to curved thrust fronts and importantly it has been noted that even outside the curved zone, where the wedge front is again parallel to the direction of tectonic transport, the lateral effect is still evident: both tapers are different from the analytical prediction. We present results from a 3D analogue modelling parameter study to investigate this behavior more quantitatively, with the objective of empirically finding a lateral length scale of deformation in brittle contractional wedges. For a given wedge strength (angle of internal friction), we infer this to be a function of the size (width) of the perturbation and its magnitude (difference in basal friction). To this end we run different series of models in which we systematically vary the width and/or magnitude of a local perturbation. In the first series, the width of a zone of high basal friction is varied, in the second series we vary the width of an indenter and in the third series

  1. LES Modeling of Lateral Dispersion in the Ocean on Scales of 10 m to 10 km

    DTIC Science & Technology

    2015-10-20

    Report 3. DATES COVERED (From - To) 01/07/2010 – 06/06/2015 4. TITLE AND SUBTITLE LES Modeling of Lateral Dispersion in the Ocean on Scales of 10...Distribution approved for public release; distribution is unlimited. Final Report LES Modeling of Lateral Dispersion on Scales of 10 m to 10 km M.-Pascale...understanding the relationship between internal waves, internal-wave breaking, episodic diapycnal mixing and lateral dispersion on scales of 0.1-10km. The

  2. A low-dispersive method using the high-order stereo-modelling operator for solving 2-D wave equations

    NASA Astrophysics Data System (ADS)

    Li, Jingshuang; Yang, Dinghui; Wu, Hao; Ma, Xiao

    2017-09-01

    In this paper, we propose a 12th-order stereo-modelling operator to approximate the high-order spatial derivatives using both wavefield displacements and their gradients. On base of this compact operator (seven grids in one spatial direction) and a two-step time marching scheme, we get a new finite-difference method for solving 2-D seismic wave equations, which is 12th-order in space and fourth order in time (12-STEM). Theoretical properties of the 12-STEM including stability and errors are analysed and the numerical dispersion relationship of the 12-STEM for 1-D and 2-D cases are investigated. The computational efficiency is compared among the 12-STEM, the fourth-order stereo-modelling method and other high-order Lax-Wendroff correction (LWC) methods. Among those methods, the 12-STEM has the least computational time and memory requirement to achieve the same accuracy because large spatial and time increments can be used by the 12-STEM. What's more, for different acoustic and elastic cases, numerical simulations computed by the 12-STEM and the 12th-order LWC are presented and compared. Numerical results show that the 12-STEM can effectively suppress numerical dispersion in seismic modelling from acoustic/elastic homogeneous to heterogeneous and even complex heterogeneous models when coarse grid sizes are used or the medium has strong velocity contrast. Thus, the 12-STEM can be potentially used to solve large-scale wave-propagation problems and seismic inversion such as reverse-time migration, tomography and full waveform inversion, and so on.

  3. Additional field verification of convective scaling for the lateral dispersion parameter

    SciTech Connect

    Sakiyama, S.K.; Davis, P.A.

    1988-07-01

    The results of a series of diffusion trials over the heterogeneous surface of the Canadian Precambrian Shield provide additional support for the convective scaling of the lateral dispersion parameter. The data indicate that under convective conditions, the lateral dispersion parameter can be scaled with the convective velocity scale and the mixing depth. 10 references.

  4. Numerical Monte Carlo analysis of the influence of pore-scale dispersion on macrodispersion in 2-D heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Beaudoin, Anthony; de Dreuzy, Jean-Raynald; Erhel, Jocelyne

    2010-12-01

    We investigate the influences of pore-scale dispersion and of larger-scale permeability heterogeneities on the macrodispersion without the molecular diffusion. Permeability follows a lognormal exponentially correlated distribution characterized by its correlation length λ and its lognormal variance σ2. Macrodispersion is evaluated numerically by using parallel simulations on grids of characteristic size ranging from 200λ to 1600λ. We note αL and αT the pore-scale longitudinal and transversal dispersivities. For αL/λ < 10-2 and αT/λ < 10-3, the influence of pore-scale dispersion on the macrodispersion is smaller than 5% of the macrodispersion due only to permeability heterogeneities. Larger dispersivities (αL/λ ≥ 10-2 or αT/λ ≥ 10-3) induce larger effects than those obtained by the semianalytical expression of Salandin and Fiorotto (1998) for σ2 > 1. The effects of local dispersion on the longitudinal macrodispersion remain limited to 25% at most of the macrodispersion due only to permeability heterogeneities. For σ2 > 1, isotropic local dispersion induces a reduction of the longitudinal macrodispersion, whereas anisotropic local dispersion lets it increase. The longitudinal and transverse local dispersions induce opposite effects on the longitudinal macrodispersion, which are respectively an increase and a reduction. The transverse macrodispersion null without local dispersion or molecular diffusion becomes strictly positive with local dispersion. Because of the velocity field heterogeneities, it is amplified by a factor of 2 to 50 from the grid scale to the macro scale. The transverse dispersion is triggered by both longitudinal and transverse local dispersions. A reduction of a factor of 2 of the transverse local dispersion at fixed longitudinal local dispersion yields only a reduction of a factor of 4 at most of the transverse macrodispersion for σ2 ≥ 2.25.

  5. LIDAR and Numerical Modeling Studies of Small-Scale Lateral Dispersion in the Ocean

    DTIC Science & Technology

    2013-09-30

    processes in the ocean on scales of 10 m to 10 km, i.e., the “ submesoscale ”. We aim to understand the underlying mechanisms and forcing, as well as the...attributable to shear dispersion. We also share the overall objectives of the Lateral Mixing DRI to try to determine the extent to which submesoscale ...tool for studying submesoscale lateral dispersion. This annual report marks the end of year 5 of a 5 year study as part of the “Scalable Lateral

  6. Does the index-to-ring finger length ratio (2D:4D) differ in amyotrophic lateral sclerosis (ALS)? Results from an international online case-control study.

    PubMed

    Parkin Kullmann, Jane Alana; Pamphlett, Roger

    2017-08-07

    The ratio of the length of the index finger (2D) to the ring finger (4D) (2D:4D) has been reported to be lower (ie, 2D<4D) in people with amyotrophic lateral sclerosis (ALS) than non-ALS controls. This has led to suggestions that exposure to increased prenatal testosterone, which also lowers this ratio, could be a risk factor for ALS. In an attempt to test this hypothesis, we examined 2D:4Ds from large numbers of patients with ALS and controls. An online multilingual questionnaire enabling respondents to measure their own index and ring finger lengths. Of the initial 949 respondents, 572 remained for analysis after elimination for inability to straighten fingers, not answering the question, statistical outliers and aged <40 years. Respondents remaining for analysis were 202 patients with ALS (125 males, 77 females) and 370 non-ALS controls (112 males, 258 females). Unpaired t-tests with 95% CIs were used to assess differences in mean 2D:4Ds. Males had significantly lower mean 2D:4Ds than females, in both ALS and control groups, for both left and right hands. No significant differences were found in 2D:4Ds between ALS and control groups, in either males or females, for either left or right hands. Receiver operating characteristic curves showed no power for 2D:4Ds to predict ALS status in either males or females. 2D:4Ds did not differ between patients with ALS and controls in this study. This was despite the dataset being large enough to confirm the established finding of lower 2D:4Ds in males compared with females. These findings do not support the hypothesis that exposure to increased prenatal testosterone is a risk factor for ALS. A putative lower 2D:4D has been proposed to explain the link between ALS and exercise, but our results indicate that other exercise-related factors are more likely to explain this association. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is

  7. Triphasic 2D Materials by Vertically Stacking Laterally Heterostructured 2H-/1T'-MoS2 on Graphene for Enhanced Photoresponse

    DOE PAGES

    Cui, Weili; Xu, Shanshan S.; Yan, Bo; ...

    2017-05-11

    Recently the applications of two-dimensional (2D) materials have been broadened by engineering their mechanical, electronic, and optical properties through either lateral or vertical hybridization. Along with this line, we report the successful design and fabrication of a novel triphasic 2D material by vertically stacking lateral 2H-/1T'-molybdenum disulfide (MoS2) heterostructures on graphene with the assistance of supercritical carbon dioxide. This triphasic structure is experimentally shown to significantly enhance the photocurrent densities for hydrogen evolution reactions. First-principles theoretical analyses reveal that the improved photoresponse should be ascribed to the beneficial band alignments of the triphasic heterostructure. More specifically, electrons can efficiently hopmore » to the 1T'-MoS2 phase via the highly conductive graphene layer as a result of their strong vertical interfacial electronic coupling. Subsequently, the electrons acquired on the 1T'-MoS2 phase are exploited to fill the photoholes on the photo-excited 2H-MoS2 phase through the lateral heterojunction structure, thereby suppressing the recombination process of the photo-induced charge carriers on the 2H-MoS2 phase. This novel triphasic concept promises to open a new avenue to widen the molecular design of 2D hybrid materials for photonics-based energy conversion applications.« less

  8. Cerebral laterality for language is related to adult salivary testosterone levels but not digit ratio (2D:4D) in men: A functional transcranial Doppler ultrasound study.

    PubMed

    Papadatou-Pastou, Marietta; Martin, Maryanne

    2017-03-01

    The adequacy of three competing theories of hormonal effects on cerebral laterality are compared using functional transcranial Doppler sonography (fTCD). Thirty-three adult males participated in the study (21 left-handers). Cerebral lateralization was measured by fTCD using an extensively validated word generation task. Adult salivary testosterone (T) and cortisol (C) concentrations were measured by luminescence immunoassay and prenatal T exposure was indirectly estimated by the somatic marker of 2nd to 4th digit length ratio (2D:4D). A significant quadratic relationship between degree of cerebral laterality for language and adult T concentrations was observed, with enhanced T levels for strong left hemisphere dominance and strong right hemisphere dominance. No systematic effects on laterality were found for cortisol or 2D:4D. Findings suggest that higher levels of T are associated with a relatively attenuated degree of interhemispheric sharing of linguistic information, providing support for the callosal and the sexual differentiation hypotheses rather than the Geschwind, Behan and Galaburda (GBG) hypothesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Ultrafine and well dispersed silver nanocrystals on 2D nanosheets: synthesis and application as a multifunctional material for electrochemical catalysis and biosensing.

    PubMed

    Gao, Tao; Yang, Dawei; Ning, Limin; Lei, Lin; Ye, Zonghuang; Li, Genxi

    2014-12-21

    The strong coupling of inorganic nanocrystals with 2D nanosheets to produce function-enhanced nano-materials with uniform size, dispersion, and high coverage density has long been of interest to scientists from various research fields. Here, a simple and effective method has been described to fabricate ultrafine and well dispersed silver nanocrystals (AgNCs) on graphene oxide (GO), based on a facial-induced co-reduction strategy. The synthesized nanohybrid has shown uniform and well dispersed AgNCs (2.9 ± 1.4 nm), individually separated GO sheets, as well as highly covered surface (5250 nanocrystals per square micrometer), indicating the formation of a high-quality GO-based nanohybrid. Moreover, this material shows excellent catalytic activity for oxygen reduction reactions (ORRs) and exhibits enhanced signal readout for molecular sensing, demonstrating the potential application of this newly synthesized inorganic hybrid with strong synergistic coupling effects on advanced functional systems.

  10. Ultrafine and well dispersed silver nanocrystals on 2D nanosheets: synthesis and application as a multifunctional material for electrochemical catalysis and biosensing

    NASA Astrophysics Data System (ADS)

    Gao, Tao; Yang, Dawei; Ning, Limin; Lei, Lin; Ye, Zonghuang; Li, Genxi

    2014-11-01

    The strong coupling of inorganic nanocrystals with 2D nanosheets to produce function-enhanced nano-materials with uniform size, dispersion, and high coverage density has long been of interest to scientists from various research fields. Here, a simple and effective method has been described to fabricate ultrafine and well dispersed silver nanocrystals (AgNCs) on graphene oxide (GO), based on a facial-induced co-reduction strategy. The synthesized nanohybrid has shown uniform and well dispersed AgNCs (2.9 +/- 1.4 nm), individually separated GO sheets, as well as highly covered surface (5250 nanocrystals per square micrometer), indicating the formation of a high-quality GO-based nanohybrid. Moreover, this material shows excellent catalytic activity for oxygen reduction reactions (ORRs) and exhibits enhanced signal readout for molecular sensing, demonstrating the potential application of this newly synthesized inorganic hybrid with strong synergistic coupling effects on advanced functional systems.The strong coupling of inorganic nanocrystals with 2D nanosheets to produce function-enhanced nano-materials with uniform size, dispersion, and high coverage density has long been of interest to scientists from various research fields. Here, a simple and effective method has been described to fabricate ultrafine and well dispersed silver nanocrystals (AgNCs) on graphene oxide (GO), based on a facial-induced co-reduction strategy. The synthesized nanohybrid has shown uniform and well dispersed AgNCs (2.9 +/- 1.4 nm), individually separated GO sheets, as well as highly covered surface (5250 nanocrystals per square micrometer), indicating the formation of a high-quality GO-based nanohybrid. Moreover, this material shows excellent catalytic activity for oxygen reduction reactions (ORRs) and exhibits enhanced signal readout for molecular sensing, demonstrating the potential application of this newly synthesized inorganic hybrid with strong synergistic coupling effects on advanced

  11. LIDAR Studies of Small-Scale Lateral Dispersion in the Ocean

    DTIC Science & Technology

    2013-09-30

    microstructure and fine structure measurements of other LatMix PIs, particularly L. Goodman, T. Sanford and R.-C. Lien, and with the dye-based estimate from...explained by shear dispersion. Specifically, an analytical model that incorporates time dependent lateral strain, vertical shear measured with hull- mounted

  12. Facile one-pot exfoliation and integration of 2D layered materials by dispersion in a photocurable polymer precursor.

    PubMed

    Gallardo, Alberto; Pereyra, Yanina; Martínez-Campos, Enrique; García, Carolina; Acitores, David; Casado-Losada, Isabel; Gómez-Fatou, Marián A; Reinecke, Helmut; Ellis, Gary; Acevedo, Diego; Rodríguez-Hernández, Juan; Salavagione, Horacio J

    2017-08-03

    Efficient exfoliation of graphene and related materials (GRM) and fast and inexpensive integration/assembly are crucial to fulfil their full potential. A high degree of exfoliation in organic media can be achieved with high boiling point liquids that usually leave residues after drying, which is a handicap for many applications. Here, the effective exfoliation and dispersion of GRM in a vinyl monomer, which is subsequently converted to a functional polymer by photopolymerization, is reported. Nanocomposite membranes and three-dimensional objects are produced by the photo-curing process and stereolithography 3D printing, respectively.

  13. Chondroitinase ABC Combined with Neurotrophin NT-3 Secretion and NR2D Expression Promotes Axonal Plasticity and Functional Recovery in Rats with Lateral Hemisection of the Spinal Cord

    PubMed Central

    García-Alías, Guillermo; Petrosyan, Hayk A.; Schnell, Lisa; Horner, Philip J.; Bowers, William J.; Mendell, Lorne M.; Fawcett, James W.

    2011-01-01

    Elevating spinal levels of neurotrophin NT-3 (NT3) while increasing expression of the NR2D subunit of the NMDA receptor using a HSV viral construct promotes formation of novel multisynaptic projections from lateral white matter (LWM) axons to motoneurons in neonates. However, this treatment is ineffective after postnatal day 10. Because chondroitinase ABC (ChABC) treatment restores plasticity in the adult CNS, we have added ChABC to this treatment and applied the combination to adult rats receiving a left lateral hemisection (Hx) at T8. All hemisected animals initially dragged the ipsilateral hindpaw and displayed abnormal gait. Rats treated with ChABC or NT3/HSV-NR2D recovered partial hindlimb locomotor function, but animals receiving combined therapy displayed the most improved body stability and interlimb coordination [Basso-Beattie-Bresnahan (BBB) locomotor scale and gait analysis]. Electrical stimulation of the left LWM at T6 did not evoke any synaptic response in ipsilateral L5 motoneurons of control hemisected animals, indicating interruption of the white matter. Only animals with the full combination treatment recovered consistent multisynaptic responses in these motoneurons indicating formation of a detour pathway around the Hx. These physiological findings were supported by the observation of increased branching of both cut and intact LWM axons into the gray matter near the injury. ChABC-treated animals displayed more sprouting than control animals and those receiving NT3/HSV-NR2D; animals receiving the combination of all three treatments showed the most sprouting. Our results indicate that therapies aimed at increasing plasticity, promoting axon growth and modulating synaptic function have synergistic effects and promote better functional recovery than if applied individually. PMID:22159095

  14. Chondroitinase ABC combined with neurotrophin NT-3 secretion and NR2D expression promotes axonal plasticity and functional recovery in rats with lateral hemisection of the spinal cord.

    PubMed

    García-Alías, Guillermo; Petrosyan, Hayk A; Schnell, Lisa; Horner, Philip J; Bowers, William J; Mendell, Lorne M; Fawcett, James W; Arvanian, Victor L

    2011-12-07

    Elevating spinal levels of neurotrophin NT-3 (NT3) while increasing expression of the NR2D subunit of the NMDA receptor using a HSV viral construct promotes formation of novel multisynaptic projections from lateral white matter (LWM) axons to motoneurons in neonates. However, this treatment is ineffective after postnatal day 10. Because chondroitinase ABC (ChABC) treatment restores plasticity in the adult CNS, we have added ChABC to this treatment and applied the combination to adult rats receiving a left lateral hemisection (Hx) at T8. All hemisected animals initially dragged the ipsilateral hindpaw and displayed abnormal gait. Rats treated with ChABC or NT3/HSV-NR2D recovered partial hindlimb locomotor function, but animals receiving combined therapy displayed the most improved body stability and interlimb coordination [Basso-Beattie-Bresnahan (BBB) locomotor scale and gait analysis]. Electrical stimulation of the left LWM at T6 did not evoke any synaptic response in ipsilateral L5 motoneurons of control hemisected animals, indicating interruption of the white matter. Only animals with the full combination treatment recovered consistent multisynaptic responses in these motoneurons indicating formation of a detour pathway around the Hx. These physiological findings were supported by the observation of increased branching of both cut and intact LWM axons into the gray matter near the injury. ChABC-treated animals displayed more sprouting than control animals and those receiving NT3/HSV-NR2D; animals receiving the combination of all three treatments showed the most sprouting. Our results indicate that therapies aimed at increasing plasticity, promoting axon growth and modulating synaptic function have synergistic effects and promote better functional recovery than if applied individually.

  15. Exchange effects in Coulomb quantum plasmas: Dispersion of waves in 2D and 3D quantum plasmas

    SciTech Connect

    Andreev, Pavel A.

    2014-11-15

    We describe quantum hydrodynamic equations with the Coulomb exchange interaction for three and two dimensional plasmas. Explicit form of the force densities are derived. We present non-linear Schrödinger equations (NLSEs) for the Coulomb quantum plasmas with the exchange interaction. We show contribution of the exchange interaction in the dispersion of the Langmuir, and ion-acoustic waves. We consider influence of the spin polarization ratio on strength of the Coulomb exchange interaction. This is important since exchange interaction between particles with same spin direction and particles with opposite spin directions are different. At small particle concentrations n{sub 0}≪10{sup 25}cm{sup −3} and small polarization the exchange interaction gives small decrease of the Fermi pressure. With increase of polarization role the exchange interaction becomes more important, so that it can overcome the Fermi pressure. The exchange interaction also decreases contribution of the Langmuir frequency. Ion-acoustic waves do not exist in limit of large polarization since the exchange interaction changes the sign of pressure. At large particle concentrations n{sub 0}≫10{sup 25}cm{sup −3} the Fermi pressure prevails over the exchange interaction for all polarizations. We obtain a similar picture for two dimensional quantum plasmas.

  16. Integrated assessment of lateral flow, density effects and dispersion in aquifer storage and recovery

    NASA Astrophysics Data System (ADS)

    Ward, James D.; Simmons, Craig T.; Dillon, Peter J.; Pavelic, Paul

    2009-05-01

    SummaryAquifer storage and recovery (ASR) involves the injection of freshwater into an aquifer for later recovery and use. This paper investigates three major factors leading to reduction in performance of ASR systems in brackish or saline aquifers: lateral flow, density-driven flow and dispersive mixing. Previous analyses of aquifer storage and recovery (ASR) have considered at most two of the above processes, but never all three together, and none have considered lateral flow and density effects together. In this analysis, four dimensionless parameters are defined to give an approximate characterisation of lateral flow, dispersive mixing, mixed convection (density effects during pumping) and free convection (density effects during storage). An extensive set of numerical models spanning a wide parameter range is then used to develop a predictive framework using the dimensionless numbers. If the sum of the four dimensionless numbers (denoted RASR) exceeds 10, the ASR operation is likely to fail with no recoverable freshwater, while if RASR < 0.1, the ASR operation is likely to provide at least some recovery of freshwater. The predictive framework is tested using limited data available from ASR field sites, broadly lending support to the framework. This study has several important implications. Firstly, the lack of completeness of field data sets in the literature must be rectified if we are to properly characterise mixed-convective flow processes in ASR operations. Once data are available, the dimensionless numbers can be used to identify suitable ASR sites and the desirable operational conditions that maximise recovery efficiencies.

  17. A more robust and flexible approach to laterally chromatically dispersed, spectrally encoded interferometry (LCSI)

    NASA Astrophysics Data System (ADS)

    Boettcher, Tobias; Gronle, Marc; Mauch, Florian; Osten, Wolfgang

    2014-05-01

    Derived from Spectral Interferometry, a line sensor named Laterally Chromatically Dispersed, Spectrally Encoded Interferometer has been developed lately. The basic setup features a single SLD in the near infra-red range, whose light is laterally spread over a measurement line of about 1mm by a diffraction grating. The signal encodes the lateral position as well as the respective optical path difference for every pixel on the spectrometer. Thus, an elaborated evaluation strategy is needed for precise measurement, including the need for a priori knowledge of the surface or multiple related measurements. To overcome this limitation and provide a real single-shot measurement, the setup can be extended by a second light source. However, the sources have to meet some strong requirements, such as sufficient spectral separation. Sensor simulations for different classes of objects show, that an accurate reconstruction of many surfaces can be achieved with the extended setup in a real single-shot line measurement without the need for a priori information.

  18. Quantitative Determination of Lateral Mode Dispersion in Film Bulk Acoustic Resonators through Laser Acoustic Imaging

    SciTech Connect

    Ken Telschow; John D. Larson III

    2006-10-01

    Film Bulk Acoustic Resonators are useful for many signal processing applications. Detailed knowledge of their operation properties are needed to optimize their design for specific applications. The finite size of these resonators precludes their use in single acoustic modes; rather, multiple wave modes, such as, lateral wave modes are always excited concurrently. In order to determine the contributions of these modes, we have been using a newly developed full-field laser acoustic imaging approach to directly measure their amplitude and phase throughout the resonator. This paper describes new results comparing modeling of both elastic and piezoelectric effects in the active material with imaging measurement of all excited modes. Fourier transformation of the acoustic amplitude and phase displacement images provides a quantitative determination of excited mode amplitude and wavenumber at any frequency. Images combined at several frequencies form a direct visualization of lateral mode excitation and dispersion for the device under test allowing mode identification and comparison with predicted operational properties. Discussion and analysis are presented for modes near the first longitudinal thickness resonance (~900 MHz) in an AlN thin film resonator. Plate wave modeling, taking account of material crystalline orientation, elastic and piezoelectric properties and overlayer metallic films, will be discussed in relation to direct image measurements.

  19. Normal and lateral Casimir interactions between semi-infinite conductors in the presence of a dispersive medium

    SciTech Connect

    Soltani, Morteza; Sarabadani, Jalal; Kheirandish, Fardin; Rabbani, Hasan

    2010-10-15

    Path-integral formalism is employed to study normal and lateral Casimir interactions in a system composed of a dispersive medium surrounded by two semi-infinite ideal conductors. The dispersive medium is modeled by a continuum of harmonic oscillators, and it is shown that for smooth conductors, the normal force at small distances in the presence of a dispersive medium coincides with the original Casimir force, while at large distances, it tends to the original form with a renormalized coefficient. The correction to the normal force because of the roughness on one of the conductors is calculated. When the inner surfaces of both conductors have roughness, the lateral Casimir interaction occurs because of translational symmetry breaking, which is studied. It is shown that both normal and lateral Casimir forces in the presence of a dispersive medium are weaker in comparison with the original one and are proportional to the roughness amplitude squared. The dependence of the normal and lateral interactions on the memory and strength of the dispersive medium is considered.

  20. Dual-Port 2D and 3D Endoscopy: Expanding the Limits of the Endonasal Approaches to Midline Skull Base Lesions with Lateral Extension

    PubMed Central

    Beer-Furlan, Andre; Evins, Alexander I.; Rigante, Luigi; Anichini, Giulio; Stieg, Philip E.; Bernardo, Antonio

    2014-01-01

    Objective To investigate a novel dual-port endonasal and subtemporal endoscopic approach targeting midline lesions with lateral extension beyond the intracavernous carotid artery anteriorly and the Dorello canal posteriorly. Methods Ten dual-port approaches were performed on five cadaveric heads. All specimens underwent an endoscopic endonasal approach from the sella to middle clivus. The endonasal port was combined with an anterior or posterior endoscopic extradural subtemporal approach. The anterior subtemporal port was placed directly above the middle third of the zygomatic arch, and the posterior port was placed at its posterior root. The extradural space was explored using two-dimensional and three-dimensional endoscopes. Results The anterior subtemporal port complemented the endonasal port with direct access to the Meckel cave, lateral sphenoid sinus, superior orbital fissure, and lateral and posterosuperior compartments of the cavernous sinus; the posterior subtemporal port enhanced access to the petrous apex. Endoscopic dissection and instrument maneuverability were feasible and performed without difficulty in both the anterior and posterior subtemporal ports. Conclusion The anterior and posterior subtemporal ports enhanced exposure and control of the region lateral to the carotid artery and Dorello canal. Dual-port neuroendoscopy is still minimally invasive yet dramatically increases surgical maneuverability while enhancing visualization and control of anatomical structures. PMID:25072012

  1. In-situ database toolbox for short-term dispersion model validation in macro-tidal seas, application for 2D-model

    NASA Astrophysics Data System (ADS)

    Bailly du Bois, P.; Dumas, F.; Solier, L.; Voiseux, C.

    2012-03-01

    Appropriate field data are required to check the reliability of hydrodynamic models simulating the dispersion of soluble substances in the marine environment. This study deals with the collection of physical measurements and soluble tracer data intended specifically for this kind of validation. The intensity of currents as well as the complexity of topography and tides around the Cap de La Hague in the centre of the English Channel make it one of the most difficult areas to represent in terms of hydrodynamics and dispersion. Controlled releases of tritium—in the form of HTO—are carried out in this area by the AREVA-NC plant, providing an excellent soluble tracer. A total of 14,493 measurements were acquired to track dispersion in the hours and days following a release. These data, supplementing previously gathered data and physical measurements (bathymetry, water-surface levels, Eulerian and Lagrangian current studies) allow us to test dispersion models from the hour following release to periods of several years which are not accessible with dye experiments. The dispersion characteristics are described and methods are proposed for comparing models against measurements. An application is proposed for a 2 dimensions high-resolution numerical model. It shows how an extensive dataset can be used to build, calibrate and validate several aspects of the model in a highly dynamic and macrotidal area: tidal cycle timing, tidal amplitude, fixed-point current data, hodographs. This study presents results concerning the model's ability to reproduce residual Lagrangian currents, along with a comparison between simulation and high-frequency measurements of tracer dispersion. All physical and tracer data are available at . This tool for validation of models in macro-tidal seas is intended to be an open and evolving resource, which could provide a benchmark for dispersion-model validation.

  2. An analysis of error propagation in AERMOD lateral dispersion using Round Hill II and Uttenweiller experiments in reduced averaging times.

    PubMed

    Hoinaski, Leonardo; Franco, Davide; de Melo Lisboa, Henrique

    2017-03-01

    Dispersion modelling was proved by researchers that most part of the models, including the regulatory models recommended by the Environmental Protection Agency of the United States (AERMOD and CALPUFF), do not have the ability to predict under complex situations. This article presents a novel evaluation of the propagation of errors in lateral dispersion coefficient of AERMOD with emphasis on estimate of average times under 10 min. The sources of uncertainty evaluated were parameterizations of lateral dispersion ([Formula: see text]), standard deviation of lateral wind speed ([Formula: see text]) and processing of obstacle effect. The model's performance was tested in two field tracer experiments: Round Hill II and Uttenweiller. The results show that error propagation from the estimate of [Formula: see text] directly affects the determination of [Formula: see text], especially in Round Hill II experiment conditions. After average times are reduced, errors arise in the parameterization of [Formula: see text], even after observation assimilations of [Formula: see text], exposing errors on Lagrangian Time Scale parameterization. The assessment of the model in the presence of obstacles shows that the implementation of a plume rise model enhancement algorithm can improve the performance of the AERMOD model. However, these improvements are small when the obstacles have a complex geometry, such as Uttenweiller.

  3. On the influence of viaduct and ground heating on pollutant dispersion in 2D street canyons and toward single-sided ventilated buildings

    EPA Science Inventory

    This paper employs Computational Fluid Dynamic (CFD) simulations to investigate the influence of ground heating intensities and viaduct configurations on gaseous and particle dispersion within two-dimensional idealized street canyons (typical aspect ratio H/W=1) and their transpo...

  4. Human 2D (index) and 4D (ring) finger lengths and ratios: cross-sectional data on linear growth patterns, sexual dimorphism and lateral asymmetry from 4 to 60 years of age

    PubMed Central

    Gillam, L; McDonald, R; Ebling, F J P; Mayhew, T M

    2008-01-01

    Human 2D:4D ratios (measures of the relative lengths of index and ring fingers) attract considerable research interest because they exhibit sexual dimorphism and are associated with various morphological, physiological and behavioural traits as well as sporting abilities and medical conditions. In an attempt to identify potential confounding factors in such studies, we have examined how relative and absolute digit lengths vary with gender and tested whether they are influenced by age, right–left asymmetry and hand preference. Participants between 4 and 60years of age were recruited from local educational sites. Hand photocopies and calliper measurement were used to obtain digit lengths. We employed linear regression analysis to examine the growth trajectories of individual digits, analyses of variance to isolate main and interaction effects of age, gender and hand preference, and paired t-tests to identify lateral asymmetries. Both digits exhibited biphasic growth with an early growth phase followed by a stable length phase. Digits in females attained their maximum length about 2.2years (dextral subjects) or 5.1years (sinistral subjects) earlier than those in males. Sexual dimorphism in 2D:4D ratios was apparent by 4years of age and age changes in ratios depended on gender, side and hand preference. Relative and absolute lengths displayed age, gender, hand-preference and age×gender interaction effects. Lengths tended to be greater in females in younger subjects and greater in males in older subjects. Ratios tended to be greater in sinistral subjects. In dextral subjects, significant lateral asymmetries in 2D lengths were seen at all ages but asymmetries in males and 4D lengths seemed to be age-dependent. We conclude that age, lateral asymmetry and hand preference are potential confounding factors and that future study designs should take account of these as well as other known confounders such as ethnicity, birth order, menstrual cycle phase and sexual

  5. Dispersal

    USGS Publications Warehouse

    Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  6. Polarity characterization by anomalous x-ray dispersion of ZnO films and GaN lateral polar structures

    SciTech Connect

    Shelton, Christopher T.; Sachet, Edward; Paisley, Elizabeth A.; Hoffmann, Marc P.; Rajan, Joseph; Collazo, Ramón; Sitar, Zlatko; Maria, Jon-Paul

    2014-01-28

    We demonstrate the use of anomalous x-ray scattering of constituent cations at their absorption edge, in a conventional Bragg-Brentano diffractometer, to measure absolutely and quantitatively the polar orientation and polarity fraction of unipolar and mixed polar wurtzitic crystals. In one set of experiments, the gradual transition between c+ and c− polarity of epitaxial ZnO films on sapphire as a function of MgO buffer layer thickness is monitored quantitatively, while in a second experiment, we map the polarity of a lateral polar homojunction in GaN. The dispersion measurements are compared with piezoforce microscopy images, and we demonstrate how x-ray dispersion and scanning probe methods can provide complementary information that can discriminate between polarity fractions at a material surface and polarity fractions averaged over the film bulk.

  7. Device convolution effects on the collective scattering signal of the E Multiplication-Sign B mode from Hall thruster experiments: 2D dispersion relation

    SciTech Connect

    Cavalier, J.; Lemoine, N.; Bonhomme, G.; Tsikata, S.; Honore, C.; Gresillon, D.

    2012-08-15

    The effect of the collective light scattering diagnostic transfer function is considered in the context of the dispersion relation of the unstable E Multiplication-Sign B mode previously reported. This transfer function is found to have a contribution to the measured frequencies and mode amplitudes which is more or less significant depending on the measurement wavenumbers and angles. After deconvolution, the experimental data are found to be possibly compatible with the idea that the mode frequency in the jet frame (after subtraction of the Doppler effect due to the plasma motion along the thruster axis) is independent of the orientation of the wave vector in the plane orthogonal to the local magnetic field.

  8. Lateral Dispersal and Foraging Behavior of Entomopathogenic Nematodes in the Absence and Presence of Mobile and Non-Mobile Hosts

    PubMed Central

    Bal, Harit K.; Grewal, Parwinder S.

    2015-01-01

    Entomopathogenic nematodes have been classified into cruisers (active searchers) and ambushers (sit and wait foragers). However, little is known about their dispersal and foraging behavior at population level in soil. We studied lateral dispersal of the ambush foraging Steinernema carpocapsae (ALL strain) and cruise foraging Heterorhabditis bacteriophora (GPS11 strain) from infected host cadavers in microcosms (0.05 m2) containing Wooster silt-loam soil (Oxyaquic fragiudalf) and vegetation in the presence or absence of non-mobile and mobile hosts. Results showed that the presence of a non-mobile host (Galleria mellonella larva in a wire mesh cage) enhanced H. bacteriophora dispersal for up to 24 hr compared with no-host treatment, but had no impact on S. carpocapsae dispersal. In contrast, presence of a mobile host (G. mellonella larvae) increased dispersal of S. carpocapsae compared with no host treatment, but had no effect on H. bacteriophora dispersal. Also H. bacteriophora was better at infecting non-mobile than mobile hosts released into the microcosms and S. carpocapsae was better at infecting mobile than non-mobile hosts, thus affirming the established cruiser-ambusher theory. However, results also revealed that a large proportion of infective juveniles (IJs) of both species stayed near (≤ 3.8 cm) the source cadaver (88-96% S. carpocapsae; 67–79% H. bacteriophora), and the proportion of IJs reaching the farthest distance (11.4 cm) was significantly higher for S. carpocapsae (1.4%) than H. bacteriophora (0.4%) in the presence of mobile hosts. S. carpocapsae also had higher average population displacement than H. bacteriophora in the presence of both the non-mobile (5.07 vs. 3.6 cm/day) and mobile (8.06 vs. 5.3 cm/day) hosts. We conclude that the two species differ in their dispersal and foraging behavior at the population level and this behavior is affected by both the presence and absence of hosts and by their mobility. PMID:26079715

  9. Bedrock Denudation on Titan: Estimates of Vertical Extent and Lateral Debris Dispersion

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey; Howard, A. D.; Schenk, Paul Michael

    2013-01-01

    Methane rainfall and runoff, along with aeolian activity, have dominated the sculpting of Titan s landscape. A knowledge of the vertical extent of bedrock erosion and the lateral extent of the resulting sediment is useful for several purposes [1]. For instance, what is the magnitude and expression of modification of constructional landforms (e.g., mountains)? Does highland denudation and the filling of basins with sediment cause adjustments (uplift and subsidence) in the crustal ice shell? Here we report preliminary findings of putative eroded craters and the results of landform evolution modeling (Fig. 1) that suggest that approx. 250 m of net bedrock erosion has at least locally taken place and approx.1 km of maximum local erosion.

  10. Axial-bundle phases--new modes of 2D, 3D, and helical columnar self-assembly in liquid crystalline phases of bolaamphiphiles with swallow tail lateral chains.

    PubMed

    Prehm, Marko; Liu, Feng; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2011-04-06

    Two series of polyphilic molecules composed of a rigid and linear p-terphenyl core, terminated at both ends with polar glycerol groups capable of hydrogen bonding, and two branched swallow tail-type lateral chains, composed of a fluorinated and a nonfluorinated branch or two fluorinated branches, were synthesized and investigated by differential scanning calorimetry, polarizing microscopy, and X-ray diffraction (XRD) with respect to their self-assembly in thermotropic liquid crystalline (LC) phases. Hexagonal columnar phases were formed by all molecules, at least at the highest temperature. In these phases the columns are composed of a core of aromatic rods and an aliphatic shell. The aromatic rods form bundles which are rotationally averaged and lie parallel to the column long axis. This unique organization is proven by different optical and XRD methods. The aromatic and glycerol groups inside the rod bundles are segregated into alternating segments. Depending on temperature and molecular structure, long-range intercolumnar correlation of this periodicity could take place, leading to a 3D-ordered LC phase with rhombohedral R ̄3m symmetry. The bundles are embedded in the matrix of the lateral chains, which is divided into fluoroalkyl- and aliphatic-rich regions. In the 2D columnar phase the fluorinated regions take the form of either straight columns running along the edges of the hexagonal Voronoi cells or, for compounds with a higher degree of fluorination, fuse to a hexagonal honeycomb enclosing the aromatic cores. In the R ̄3m phase the fluorine-rich chains are preferentially found along right- and left-handed helices wound around the 3(1) screw axes between the main aromatic columns.

  11. Irreversibility-inversions in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  12. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  13. 2D quasiperiodic plasmonic crystals.

    PubMed

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model.

  14. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  15. Energy dispersion of the electrosubbands in parabolic confining quantum wires: interplay of Rashba, Dresselhaus, lateral spin-orbit interaction and the Zeeman effect.

    PubMed

    Zhang, Tong-Yi; Zhao, Wei; Liu, Xue-Ming

    2009-08-19

    We have made a thorough theoretical investigation of the interplay of spin-orbit interactions (SOIs) resulting from Rashba, Dresselhaus and the lateral parabolic confining potential on the energy dispersion relation of the spin subbands in a parabolic quantum wire. The influence of an applied external magnetic field is also discussed. We show the interplay of different types of SOI, as well as the Zeeman effect, leads to rather complex and intriguing electrosubbands for different spin branches. The effect of different coupling strengths and different magnetic field strengths is also investigated.

  16. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  17. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  18. Parallel stitching of 2D materials

    SciTech Connect

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L.; Bie, Yaqing; Lee, Yi -Hsien; Zhu, Yimei; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomas; Kong, Jing

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  19. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  20. An Investigation of Lateral Modes in FBAR Resonators.

    PubMed

    Jamneala, Tiberiu; Bradley, Paul; Shirakawa, Alexandre; Thalhammer, Robert; Ruby, Richard

    2016-02-24

    Using first principles and the constitutive equations for a piezoelectric, we solve the 2D acoustic wave inside a single, infinite, piezoelectric membrane in order to study the dispersion of Thin Film Bulk Acoustic Resonator (FBAR) lateral modes, with and without infinitely-thin electrodes. The acoustic eigenfunction is a dual wave, composed of longitudinal and shear components, able to satisfy the 2D acoustic boundary conditions at the vacuum interfaces. For the single piezoelectric slab we obtain analytical expressions of the dispersion for frequencies near the longitudinal resonant frequency (Fs) of the resonator. These expressions are more useful for the understanding of dispersion in FBARs and more elegant than numerical methods like Finite Element Modeling (FEM) and various matrix methods. We additionally find that the interaction between the resonator's electrodes and the acoustic wave modifies the lateral mode dispersion when compared to the case with no electrodes. When correctly accounting for these interactions the dispersion zero is placed clearly at Fs, unlike what is calculated from a 2D model without electrodes where the dispersion zero is placed at Fp. This is important since all experimental evidence of measures FBAR resonators shows that the dispersion zero is at Fs. Furthermore, we introduce an electrical current flow model for the propagating acoustic wave inside the electroded piezoelectric and based on this model we can discuss an electrode-loss mechanism for FBAR lateral modes which depends on dispersion. From our model it results that lateral modes with real kx have higher electrode dissipation if they are closer to the resonant frequency. This is consistent with the typical behavior of measured FBAR filters where the maximum lateral mode damage on the insertion loss takes place for frequencies immediately below Fs.

  1. Enhanced light out-coupling of OLEDs with low haze by inserting randomly dispersed nanopillar arrays formed by lateral phase separation of polymer blends.

    PubMed

    Lee, Cholho; Kim, Jang-Joo

    2013-11-25

    A simple and efficient method to fabricate light extraction layers is demonstrated by utilizing the phase separation of two polymer blends to enhance the light out-coupling efficiency of OLEDs with low haze. Polystyrene and poly(methyl methacrylate) dissolved in tetrahydrofuran are mixed and spin-coated over ITO-coated glass substrates. Nanopores and nanopillar arrays are formed through lateral phase separation of the polymer blend. The shape, size, and distribution of the patterns can be controlled through changes in the composition and thickness of the coated polymer blends. Phosphorescent OLEDs are fabricated using randomly dispersed nanopillar arrays as light extraction layers and they show a 24% enhancement in external quantum efficiency with a Lambertian emission pattern, no spectrum dependence on viewing angles, and only a small increment in the haze. With these advantages, this newly developed method can be adapted to be used for large-area, flexible substrates for lighting and display applications.

  2. Wave-equation dispersion inversion

    NASA Astrophysics Data System (ADS)

    Li, Jing; Feng, Zongcai; Schuster, Gerard

    2017-03-01

    We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.

  3. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  4. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-03

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  5. Radiative heat transfer in 2D Dirac materials

    SciTech Connect

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  6. Radiative heat transfer in 2D Dirac materials

    DOE PAGES

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  7. Codon Constraints on Closed 2D Shapes,

    DTIC Science & Technology

    2014-09-26

    19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure

  8. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  9. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  10. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2017-02-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  11. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  12. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    and Homeland Defense. As a part of the E-2D AHE radar modernization effort, the Navy also invested in integrating a full glass cockpit and full...Communication Navigation Surveillance/Air Traffic Management capability. The glass cockpit will also provide the capability for the pilot or co-pilot to...hours at a station distance of 200nm Flat Turn Service Ceiling =>25,000 feet above MSL at mission profile =>25,000 feet above MSL at mission

  13. Controlling Structural Anisotropy of Anisotropic 2D Layers in Pseudo-1D/2D Material Heterojunctions.

    PubMed

    Chen, Bin; Wu, Kedi; Suslu, Aslihan; Yang, Sijie; Cai, Hui; Yano, Aliya; Soignard, Emmanuel; Aoki, Toshihiro; March, Katia; Shen, Yuxia; Tongay, Sefaattin

    2017-07-10

    Chemical vapor deposition and growth dynamics of highly anisotropic 2D lateral heterojunctions between pseudo-1D ReS2 and isotropic WS2 monolayers are reported for the first time. Constituent ReS2 and WS2 layers have vastly different atomic structure, crystallizing in anisotropic 1T' and isotropic 2H phases, respectively. Through high-resolution scanning transmission electron microscopy, electron energy loss spectroscopy, and angle-resolved Raman spectroscopy, this study is able to provide the very first atomic look at intimate interfaces between these dissimilar 2D materials. Surprisingly, the results reveal that ReS2 lateral heterojunctions to WS2 produce well-oriented (highly anisotropic) Re-chains perpendicular to WS2 edges. When vertically stacked, Re-chains orient themselves along the WS2 zigzag direction, and consequently, Re-chains exhibit six-fold rotation, resulting in loss of macroscopic scale anisotropy. The degree of anisotropy of ReS2 on WS2 largely depends on the domain size, and decreases for increasing domain size due to randomization of Re-chains and formation of ReS2 subdomains. Present work establishes the growth dynamics of atomic junctions between novel anisotropic/isotropic 2D materials, and overall results mark the very first demonstration of control over anisotropy direction, which is a significant leap forward for large-scale nanomanufacturing of anisotropic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electron hopping transport in 2D zinc oxide nanoflakes

    NASA Astrophysics Data System (ADS)

    Jian, Dunliang; Lai, Jian-Jhong; Lin, Yen-Fu; Zhai, Jianpang; Li, Irene Ling; Tian, Feng; Wang, Shulin; Hua, Ping; Ku, Ming-Ming; Jian, Wen-Bin; Ruan, Shuangchen; Tang, Zikang

    2017-06-01

    A sequential hydrothermal process was used to synthesize ZnO nanostructures on Si substrates. The synthesized ZnO nanostructures were inspected and presented a morphology of 2D structures, named nanoflakes. These ZnO nanoflakes had a thickness of tens of nanometers. An energy dispersive x-ray spectrum revealed their composition of only Zn and O elements. In addition, its crystalline structure was investigated by high-resolution transmission electron microscopy. The nanoflakes were then dispersed for another morphology measurement using atomic force microscopy and their average thickness was determined. The dispersed nanoflakes were further contacted with metal electrodes for electron transport measurements. Through the analysis of temperature-dependent resistivity, it was confirmed that the electron transport in such ZnO nanoflakes agrees well with the theory of Mott’s 2D variable range hopping. The nature of the 2D electron system in the ZnO nanoflakes points to potential applications of this 2D semiconductor as a new channel material for electronics.

  15. Using 2-D arrays for sensing multimodal Lamb waves

    NASA Astrophysics Data System (ADS)

    Engholm, Marcus; Stepinski, Tadeusz

    2010-04-01

    Monitoring structural integrity of large planar structures requires normally a relatively dense network of uniformly distributed ultrasonic sensors. A 2-D ultrasonic phased array with all azimuth angle coverage would be extremely useful for the structural health monitoring (SHM) of such structures. Known techniques for estimating direction of arriving (DOA) waves cannot efficiently cope with dispersive and multimodal Lamb waves (LWs). In the paper we propose an adaptive spectral estimation technique capable of handling broadband LWs sensed by 2-D arrays, the modified Capon method. Performance of the technique is evaluated using simulated multiple-mode LWs, and verified using experimental data.

  16. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  17. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  18. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  19. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  20. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  1. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  2. 2D transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Manzeli, Sajedeh; Ovchinnikov, Dmitry; Pasquier, Diego; Yazyev, Oleg V.; Kis, Andras

    2017-08-01

    Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin-orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties.

  3. Probing the 2-D kinematic structure of early-type galaxies out to 3 effective radii

    NASA Astrophysics Data System (ADS)

    Proctor, Robert N.; Forbes, Duncan A.; Romanowsky, Aaron J.; Brodie, Jean P.; Strader, Jay; Spolaor, Max; Mendel, J. Trevor; Spitler, Lee

    2010-11-01

    We detail an innovative new technique for measuring the 2-D velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h3 and h4) using spectra from Keck DEIMOS multi-object spectroscopic observations. The data are used to reconstruct 2-D rotation velocity maps.

  4. Delineating the role of ripples on the thermal expansion of 2D honeycomb materials: graphene, 2D h-BN and monolayer (ML)-MoS2.

    PubMed

    Anees, P; Valsakumar, M C; Panigrahi, B K

    2017-04-19

    We delineated the role of thermally excited ripples on the thermal expansion properties of 2D honeycomb materials (free-standing graphene, 2D h-BN, and ML-MoS2), by explicitly carrying out three-dimensional (3D) and two-dimensional (2D) molecular dynamics simulations. In 3D simulations, the in-plane lattice parameter (a-lattice) of graphene and 2D h-BN shows thermal contraction over a wide range of temperatures and exhibits a strong system size dependence. The 2D simulations of the very same system show a reverse trend, where the a-lattice expands in the whole computed temperature range. In contrast to graphene and 2D h-BN, the a-lattice of ML-MoS2 shows thermal expansion in both 2D and 3D simulations and their system size dependence is marginal. By analyzing the phonon dispersion at 300 K, we found that the discrepancy between 2D and 3D simulations of graphene and 2D h-BN is due to the absence of out-of-plane bending modes (ZA) in 2D simulations, which is responsible for the thermal contraction of the a-lattice at low temperature. Meanwhile, all the phonon modes are present in the 2D phonon dispersion of ML-MoS2, which indicates that the origin of the ZA mode is not purely due to the out-of-plane movement of atoms and also its effect on thermal expansion is not significant as found in graphene and 2D h-BN.

  5. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  6. Liquid-like 2D plasmonic waves (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Baile

    2017-05-01

    We predict some novel 2D plasmonic waves as analogues of corresponding hydrodynamic wave phenomena, including plasmonic splashing and V-shaped ship-wakes excited by a swift electron perpendicularly impacting upon and moving parallel above a graphene monolayer, respectively. 2D plasmons have fueled substantial research efforts in the past few years. Recent studies have identified that 2D plasmons exhibit peculiar dispersion that is formally analogous to hydrodynamic deep-water-waves on a 2D liquid surface. Logically, many intricate and intriguing hydrodynamic wave phenomena, such as the splashing stimulated by a droplet or stone impacting a calm liquid surface and the V-shaped ship-wakes generated behind a ship when it travels over a water surface, should have counterparts in 2D plasmons, but have not been studied. We fill this gap by investigating dynamic excitation of graphene plasmons when a monolayer graphene is perpendicularly impacted by a swift electron, as an analogue of hydrodynamic splashing. A central jet-like rise, called "Rayleigh jet" or "Worthington jet" as a hallmark in hydrodynamic splashing, is demonstrated as an excessive concentration of graphene plasmons, followed by plasmonic ripples dispersing like concentric ripples of deep-water waves. This plasmonic jet, serving as a monopole antenna, can generate radiation as analogue of splashing sound. This is also the first discussion on the space-time limitation on surface plasmon generation. We then demonstrate a V-shaped plasmonic wave pattern when a swift electron moves parallel above a graphene monolayer, as an analogue of hydrodynamic ship-wakes. The plasmonic wake angle is found to be the same with the Kelvin angle and thus insensitive to the electron velocity when the electron velocity is small. However, the wake angle gradually decreases by increasing the electron's velocity when the electron velocity is large, and thus transits into the Mach angle, being similar to recent development in fluid

  7. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  8. Graphene band structure and its 2D Raman mode

    NASA Astrophysics Data System (ADS)

    Narula, Rohit; Reich, Stephanie

    2014-08-01

    High-precision simulations are used to generate the 2D Raman mode of graphene under a range of screening conditions and laser energies EL. We reproduce the decreasing trend of the 2D mode FWHM vs EL and the nearly linearly increasing dispersion ∂ω2D/∂EL seen experimentally in freestanding (unscreened) graphene, and propose relations between these experimentally accessible quantities and the local, two-dimensional gradients |∇ | of the electronic and TO phonon bands. In light of state-of-the-art electronic structure calculations that acutely treat the long-range e-e interactions of isolated graphene and its experimentally observed 2D Raman mode, our calculations determine a 40% greater slope of the TO phonons about K than given by explicit phonon measurements performed in graphite or GW phonon calculations in graphene. We also deduce the variation of the broadening energy γ [EL] for freestanding graphene and find a nominal value γ ˜140 meV, showing a gradually increasing trend for the range of frequencies available experimentally.

  9. Dispersion energy analysis of Rayleigh and Love waves in non-layered earth models

    NASA Astrophysics Data System (ADS)

    Mi, B.; Xia, J.; Shen, C.

    2016-12-01

    Surface-wave analysis methods have been effectively and widely used to determine shear (S) wave velocity. Dispersive curves extracted according to the dispersion energy are the basis for surface-wave analysis. The traditional surface-wave analysis method is a 1D approach because the inverted S-wave velocity profiles from surface waves are based on the assumption of horizontally layered earth model. In 2D environments, it can cause perturbations on the observed phase velocity of surface waves if the wave path is horizontally heterogeneous. In the real world applications of surface waves for the lateral variation reconstruction, it is very important to assess the errors of phase velocities that could be introduced because of the presence of lateral variations. We analyze the dispersion energy of Rayleigh and Love waves in non-layered earth models with a fault or a slope based on finite-difference modeling. Synthetic multichannel records are simulated with a finite-difference method for the non-layered earth models and dispersion images are generated by the high-resolution linear Radon transformation (LRT). We compare the dispersion energy with theoretical dispersion curves calculated by the Knopoff method. Errors of phase velocities with different receiver spread lengths are analyzed quantitatively. Results demonstrate that the extracted dispersion curve is an average result of the subsurface covered by the receiver spread length. To select the optimal receiver spread length is imperative for the investigation of lateral variation with surface-wave methods.

  10. Band-structure engineering in conjugated 2D polymers.

    PubMed

    Gutzler, Rico

    2016-10-26

    Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.

  11. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  12. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  13. Optical diffraction by ordered 2D arrays of silica microspheres

    NASA Astrophysics Data System (ADS)

    Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-03-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.

  14. 2D photonic crystal and its angular reflective azimuthal spectrum

    NASA Astrophysics Data System (ADS)

    Senderakova, Dagmar; Drzik, Milan; Tomekova, Juliana

    2016-12-01

    Contemporary, attention is paid to photonic crystals, which can strongly modify light propagation through them and enable a controllable light manipulation. The contribution is focused on a sub-wavelength 2D structure formed by Al2O3 layer on silicon substrate, patterned with periodic hexagonal lattice of deep air holes. Using various laser sources of light at single wavelength, azimuthal angle dependence of the mirror-like reflected light intensity was recorded photo-electrically. The results obtained can be used to sample the band-structure of leaky modes of the photonic crystal more reliably and help us to map the photonic dispersion diagram.

  15. 2D pair distribution function analysis of anisotropic small-angle scattering patterns from elongated nano-composite hydrogels.

    PubMed

    Nishi, Kengo; Shibayama, Mitsuhiro

    2017-03-01

    Small angle scattering (SAS) on polymer nanocomposites under elongation or shear flow is an important experimental method to investigate the reinforcement effects of the mechanical properties by fillers. However, the anisotropic scattering patterns that appear in SAS are very complicated and difficult to interpret. A representative example is a four-spot scattering pattern observed in the case of polymer materials containing silica nanoparticles, the origin of which is still in debate because of the lack of quantitative analysis. The difficulties in the interpretation of anisotropic scattering patterns mainly arise from the abstract nature of the reciprocal space. Here, we focus on the 2D pair distribution function (PDF) directly evaluated from anisotropic scattering patterns. We applied this method to elongated poly(N,N-dimethylacrylamide) gels containing silica nanoparticles (PDAM-NP gel), which show a four-spot scattering pattern under elongation. From 2D PDFs, we obtained detailed and concrete structural information about the elongated PDAM-NP gel, such as affine and non-affine displacements of directly attached and homogeneously dispersed silica nanoparticles, respectively. We proposed that nanoparticles homogeneously dispersed in the perpendicular direction are not displaced due to the collision of the adsorbed polymer layer during elongation, while those in the parallel direction are displaced in an affine way. We assumed that this suppression of the lateral compression is the origin of the four-spot pattern in this study. These results strongly indicate that our 2D PDF analysis will provide deep insight into the internal structure of polymer nanocomposites hidden in the anisotropic scattering patterns.

  16. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    NASA Astrophysics Data System (ADS)

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  17. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  18. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  19. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  20. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  1. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  2. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  3. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  4. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  5. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  6. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  7. Orthotropic Piezoelectricity in 2D Nanocellulose.

    PubMed

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  8. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  9. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    PubMed

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  10. 2D Distributed Sensing Via TDR

    DTIC Science & Technology

    2007-11-02

    plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC

  11. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  12. Gold-standard performance for 2D hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; MacVicar, B. J.

    2013-12-01

    Two-dimensional, depth-averaged hydrodynamic (2D) models are emerging as an increasingly useful tool for environmental water resources engineering. One of the remaining technical hurdles to the wider adoption and acceptance of 2D modeling is the lack of standards for 2D model performance evaluation when the riverbed undulates, causing lateral flow divergence and convergence. The goal of this study was to establish a gold-standard that quantifies the upper limit of model performance for 2D models of undulating riverbeds when topography is perfectly known and surface roughness is well constrained. A review was conducted of published model performance metrics and the value ranges exhibited by models thus far for each one. Typically predicted velocity differs from observed by 20 to 30 % and the coefficient of determination between the two ranges from 0.5 to 0.8, though there tends to be a bias toward overpredicting low velocity and underpredicting high velocity. To establish a gold standard as to the best performance possible for a 2D model of an undulating bed, two straight, rectangular-walled flume experiments were done with no bed slope and only different bed undulations and water surface slopes. One flume tested model performance in the presence of a porous, homogenous gravel bed with a long flat section, then a linear slope down to a flat pool bottom, and then the same linear slope back up to the flat bed. The other flume had a PVC plastic solid bed with a long flat section followed by a sequence of five identical riffle-pool pairs in close proximity, so it tested model performance given frequent undulations. Detailed water surface elevation and velocity measurements were made for both flumes. Comparing predicted versus observed velocity magnitude for 3 discharges with the gravel-bed flume and 1 discharge for the PVC-bed flume, the coefficient of determination ranged from 0.952 to 0.987 and the slope for the regression line was 0.957 to 1.02. Unsigned velocity

  13. Statistical analysis of quiet stance sway in 2-D.

    PubMed

    Bakshi, Avijit; DiZio, Paul; Lackner, James R

    2014-04-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909-912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model's ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior-posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation.

  14. The basics of 2D DIGE.

    PubMed

    Beckett, Phil

    2012-01-01

    The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).

  15. Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials.

    PubMed

    Shen, Jianfeng; Wu, Jingjie; Wang, Man; Dong, Pei; Xu, Jingxuan; Li, Xiaoguang; Zhang, Xiang; Yuan, Junhua; Wang, Xifan; Ye, Mingxin; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2016-05-01

    A proper design of direct liquid phase exfoliation (LPE) for 2D materials as graphene, MoS2 , WS2 , h-BN, Bi2 Se3 , MoSe2 , SnS2 , and TaS2 with common cosolvents is carried out based on considering the polar and dispersive components of surface tensions of various cosolvents and 2D materials. It has been found that the exfoliation efficiency is enhanced by matching the ratio of surface tension components of cosolvents to that of the targeted 2D materials, based on which common cosolvents composed of IPA/water, THF/water, and acetone/water can be designed for sufficient LPE process. In this context, the library of low-toxic and low-cost solvents with low boiling points for LPE is infinitely enlarged when extending to common cosolvents. Polymer-based composites reinforced with a series of different 2D materials are compared with each other. It is demonstrated that the incorporation of cosolvents-exfoliated 2D materials can substantially improve the mechanical and thermal properties of polymer matrices. Typically, with the addition of 0.5 wt% of such 2D material as MoS2 nanosheets, the tensile strength and Young's modulus increased up to 74.85% and 136.97%, respectively. The different enhancement effect of 2D materials is corresponded to the intrinsic properties and LPE capacity of 2D materials.

  16. Processable 2D materials beyond graphene: MoS2 liquid crystals and fibres.

    PubMed

    Jalili, Rouhollah; Aminorroaya-Yamini, Sima; Benedetti, Tania M; Aboutalebi, Seyed Hamed; Chao, Yunfeng; Wallace, Gordon G; Officer, David L

    2016-09-29

    Herein, we show properly engineered MoS2 crystals can readily form liquid crystalline dispersions in water making them ideal candidates for large-scale manufacturing processes. The guideline provided here can serve as the basis to develop practical protocols to address the long-standing goal of large-scale manufacturing of 2D materials.

  17. 2D:4D in men is related to aggressive dominance but not to sociable dominance.

    PubMed

    van der Meij, Leander; Almela, Mercedes; Buunk, Abraham P; Dubbs, Shelli; Salvador, Alicia

    2012-01-01

    It has been shown that a smaller ratio between the length of the second and fourth digit (2D:4D) is an indicator of the exposure to prenatal testosterone (T). This study measured the 2D:4D of men and assessed dominance as a personality trait to investigate indirectly if the exposure to prenatal T is related to a dominant personality later in life. Results showed that men had a more aggressive dominant personality when having a more masculine (lower) 2D:4D, while there was no relationship between sociable dominance and 2D:4D. Findings from this study indicate that it is important to distinguish different forms of dominance since other studies failed to find relationships between dominance and 2D:4D. © 2012 Wiley Periodicals, Inc.

  18. Lagrangian statistics in laboratory 2D turbulence

    NASA Astrophysics Data System (ADS)

    Xia, Hua; Francois, Nicolas; Punzmann, Horst; Shats, Michael

    2014-05-01

    Turbulent mixing in liquids and gases is ubiquitous in nature and industrial flows. Understanding statistical properties of Lagrangian trajectories in turbulence is crucial for a range of problems such as spreading of plankton in the ocean, transport of pollutants, etc. Oceanic data on trajectories of the free-drifting instruments, indicate that the trajectory statistics can often be described by a Lagrangian integral scale. Turbulence however is a state of a flow dominated by a hierarchy of scales, and it is not clear which of these scales mostly affect particle dispersion. Moreover, coherent structures often coexist with turbulence in laboratory experiments [1]. The effect of coherent structures on particle dispersion in turbulent flows is not well understood. Recent progress in scientific imaging and computational power made it possible to tackle this problem experimentally. In this talk, we report the analysis of the higher order Lagrangian statistics in laboratory two-dimensional turbulence. Our results show that fluid particle dispersion is diffusive and it is determined by a single measurable Lagrangian scale related to the forcing scale [2]. Higher order moments of the particle dispersion show strong self-similarity in fully developed turbulence [3]. Here we introduce a new dispersion law that describes single particle dispersion during the turbulence development [4]. These results offer a new way of predicting dispersion in turbulent flows in which one of the low energy scales are persistent. It may help better understanding of drifter Lagrangian statistics in the regions of the ocean where small scale coherent eddies are present [5]. Reference: 1. H. Xia, H. Punzmann, G. Falkovich and M. Shats, Physical Review Letters, 101, 194504 (2008) 2. H. Xia, N. Francois, H. Punzmann, and M. Shats, Nature Communications, 4, 2013 (2013) 3. R. Ferrari, A.J. Manfroi , W.R. Young, Physica D 154 111 (2001) 4. H. Xia, N. Francois, H. Punzmann and M. Shats, submitted (2014

  19. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  20. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  1. 2D Magnetic Texture Analysis of Co-Cu Films

    NASA Astrophysics Data System (ADS)

    Bayirli, Mehmet; Karaagac, Oznur; Kockar, Hakan; Alper, Mursel

    2017-05-01

    The magnetic textures for the produced magnetic materials are important concepts in accordance with technical applications. Therefore, the aim of this article is to determine 2D magnetic textures of electrodeposited Co-Cu films by the measurement of hysteresis loops at the incremented angles. For that, Co-Cu films were deposited with different Co2+ in the electrolyte. In addition, the easy-axis orientation in the films from the squareness values of the angles, Mp(β) obtained by the hysteresis loops have been numerically studied using the Fourier series analysis. The differences observed in the magnetic easy-axis distributions were attributed to changes of the incorporation of Co in the films with the change of Co2+ in the electrolyte. The coefficients of Fourier series (A0 and A2n ) were also computed for 2D films. It is seen that a systematic and small decrease in A0 and an obvious decrease in A2n (n=1) were observed with increasing incorporated Co in the films. Results imply that interactions cause slightly demagnetization effect accordance with higher incorporation of Co in the films. Furthermore, the crystal structure of the Co-Cu films analysed by X-ray diffraction revealed that the films have dominantly face-centred cubic structure. Film contents analysed by energy-dispersive X-ray spectroscopy and film morphologies observed by scanning electron microscope also support the magnetic texture analysis results found by numerical computation.

  2. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  3. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  4. Schottky diodes from 2D germanane

    SciTech Connect

    Sahoo, Nanda Gopal; Punetha, Vinay Deep; Esteves, Richard J; Arachchige, Indika U.; Pestov, Dmitry; McLeskey, James T.

    2016-07-11

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe{sub 2} framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  5. Compatible embedding for 2D shape animation.

    PubMed

    Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi

    2009-01-01

    We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.

  6. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  7. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  8. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  9. 2D Metals by Repeated Size Reduction.

    PubMed

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  10. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  11. Quasiparticle interference in unconventional 2D systems

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  12. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  13. 2D materials: Graphene and others

    SciTech Connect

    Bansal, Suneev Anil Singh, Amrinder Pal; Kumar, Suresh

    2016-05-06

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  14. 2dF mechanical engineering

    NASA Astrophysics Data System (ADS)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  15. Epitope spreading of the anti-CYP2D6 antibody response in patients with autoimmune hepatitis and in the CYP2D6 mouse model.

    PubMed

    Hintermann, Edith; Holdener, Martin; Bayer, Monika; Loges, Stephanie; Pfeilschifter, Josef M; Granier, Claude; Manns, Michael P; Christen, Urs

    2011-11-01

    Autoimmune hepatitis (AIH) is a serious chronic inflammatory disease of the liver with yet unknown etiology and largely uncertain immunopathology. The hallmark of type 2 AIH is the generation of liver kidney microsomal-1 (LKM-1) autoantibodies, which predominantly react to cytochrome P450 2D6 (CYP2D6). The identification of disease initiating factors has been hampered in the past, since antibody epitope mapping was mostly performed using serum samples collected late during disease resulting in the identification of immunodominant epitopes not necessarily representing those involved in disease initiation. In order to identify possible environmental triggers for AIH, we analyzed for the first time the spreading of the anti-CYP2D6 antibody response over a prolonged period of time in AIH patients and in the CYP2D6 mouse model, in which mice infected with Adenovirus-human CYP2D6 (Ad-h2D6) develop antibodies with a similar specificity than AIH patients. Epitope spreading was analyzed in six AIH-2-patients and in the CYP2D6 mouse model using SPOTs membranes containing peptides covering the entire CYP2D6 protein. Despite of a considerable variation, both mice and AIH patients largely focus their humoral immune response on an immunodominant epitope early after infection (mice) or diagnosis (patients). The CYP2D6 mouse model revealed that epitope spreading is initiated at the immunodominant epitope and later expands to neighboring and remote regions. Sequence homologies to human pathogens have been detected for all identified epitopes. Our study demonstrates that epitope spreading does indeed occur during the pathogenesis of AIH and supports the concept of molecular mimicry as a possible initiating mechanism for AIH.

  16. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  17. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  18. A New Method for Detecting Goaf Area of Coal Mine :2D Microtremor Profiling Technique

    NASA Astrophysics Data System (ADS)

    Xu, P.; Ling, S.; Guo, H.; Shi, W.; Li, S.; Tian, B.

    2012-12-01

    A goaf area is referred to as a cavity where coal has been removed or mined out. These cavities will change the original geostress equilibrium of stratigraphic system and cause local geostress focusing or concentration. Consequently, the surrounding rock of a goaf may be deformed, fractured, displaced and caved resulting from the combined effect of gravity and geostress. In the cases of little or no effective mining control, widespread cracks, fractures and even subsidence of the rock mass above the goaf will not only lead to groundwater depletion, farmland destruction and deterioration of ecological environment, but also present a serious threat to the mining safety, engineering construction, and even people's lives and property. So, it is important to locate the boundary of the goaf and to evaluate its stability in order to provide the basis for comprehensive control in the latter period of mining. This article attempts to explore a new geophysical method - 2D microtremor profiling technique for goaf detection and mapping. 2D microtremor profiling technique is based on the microtremor array theory (Aki, 1957; Ling, 1994; Okada, 2003) utilizing spatial autocorrelation analysis to obtain Rayleigh-wave dispersion curves for apparent S-wave velocity (Vx) calculation (Ling & Miwa, 2006;Xu et al.,2012). A laterally continuous S-wave velocity section can then be obtained through data interpolation. The final result will be used for interpreting lateral changes in lithology and geological structures. Let's take a case study in Henan Province of China as an example. The coal seams in the survey area were about 150 ~ 250m deep. A triple-circular array was adopted for acquiring microtremor data, with the observation radius in 20, 40 and 80m, respectively, and a sampling the interval of 50m. We observed the following characteristics of the goaf area from the microtremor Vx section: (1) obvious low pseudo velocity anomaly corresponding to limestone layer below the goaf; (2

  19. Raman enhancement by graphene-Ga2O3 2D bilayer film

    PubMed Central

    2014-01-01

    2D β-Ga2O3 flakes on a continuous 2D graphene film were prepared by a one-step chemical vapor deposition on liquid gallium surface. The composite was characterized by optical microscopy, scanning electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS). The experimental results indicate that Ga2O3 flakes grew on the surface of graphene film during the cooling process. In particular, tenfold enhancement of graphene Raman scattering signal was detected on Ga2O3 flakes, and XPS indicates the C-O bonding between graphene and Ga2O3. The mechanism of Raman enhancement was discussed. The 2D Ga2O3-2D graphene structure may possess potential applications. PMID:24472433

  20. Raman enhancement by graphene-Ga2O3 2D bilayer film.

    PubMed

    Zhu, Yun; Yu, Qing-Kai; Ding, Gu-Qiao; Xu, Xu-Guang; Wu, Tian-Ru; Gong, Qian; Yuan, Ning-Yi; Ding, Jian-Ning; Wang, Shu-Min; Xie, Xiao-Ming; Jiang, Mian-Heng

    2014-01-28

    2D β-Ga2O3 flakes on a continuous 2D graphene film were prepared by a one-step chemical vapor deposition on liquid gallium surface. The composite was characterized by optical microscopy, scanning electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS). The experimental results indicate that Ga2O3 flakes grew on the surface of graphene film during the cooling process. In particular, tenfold enhancement of graphene Raman scattering signal was detected on Ga2O3 flakes, and XPS indicates the C-O bonding between graphene and Ga2O3. The mechanism of Raman enhancement was discussed. The 2D Ga2O3-2D graphene structure may possess potential applications.

  1. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  2. Ultrafast dynamics of metal plasmons induced by 2D semiconductor excitons in hybrid nanostructure arrays

    DOE PAGES

    Boulesbaa, Abdelaziz; Babicheva, Viktoriia E.; Wang, Kai; ...

    2016-11-17

    With the advanced progress achieved in the field of nanotechnology, localized surface plasmons resonances (LSPRs) are actively considered to improve the efficiency of metal-based photocatalysis, photodetection, and photovoltaics. Here, we report on the exchange of energy and electric charges in a hybrid composed of a two-dimensional tungsten disulfide (2D-WS2) monolayer and an array of aluminum (Al) nanodisks. Femtosecond pump-probe spectroscopy results indicate that within ~830 fs after photoexcitation of the 2D-WS2 semiconductor, energy transfer from the 2D-WS2 excitons excites the plasmons of the Al array. Then, upon the radiative and/or nonradiative damping of these excited plasmons, energy and/or electron transfermore » back to the 2D-WS2 semiconductor takes place as indicated by an increase in the reflected probe at the 2D exciton transition energies at later time-delays. This simultaneous exchange of energy and charges between the metal and the 2D-WS2 semiconductor resulted in an extension of the average lifetime of the 2D-excitons from ~15 to ~58 ps in absence and presence of the Al array, respectively. Furthermore, the indirectly excited plasmons were found to live as long as the 2D-WS2 excitons exist. Furthermore, the demonstrated ability to generate exciton-plasmons coupling in a hybrid nanostructure may open new opportunities for optoelectronic applications such as plasmonic-based photodetection and photocatalysis.« less

  3. Ab initio modeling of 2D layered organohalide lead perovskites

    NASA Astrophysics Data System (ADS)

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio

    2016-04-01

    A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.

  4. Facile Assembly of Large-Area 2D Microgel Colloidal Crystals Using Charge-Reversible Substrates.

    PubMed

    Weng, Junying; Li, Xiaoyun; Guan, Ying; Zhu, X X; Zhang, Yongjun

    2016-12-06

    2D colloidal crystals (CCs) have important applications; however, the fabrication of large-area, high-quality 2D CCs is still far from being trivial, and the fabrication of 2D microgel CCs is even harder. Here, we have demonstrated that they can be facilely fabricated using charge-reversible substrates. The charge-reversible substrates were prepared by modification with amino groups. The amino groups were then protected by amidation with 2,2-dimethylsuccinic anhydride. At acidic pH, the surface charge of the modified substrate will change from negative to positive as a result of the hydrolysis of the amide bonds and the regeneration of the amino groups. 2D microgel CCs can be simply fabricated by applying a concentrated microgel dispersion on the modified substrate. The negatively charged surface of the substrate allows the negatively charged microgel spheres, especially those close to the substrate, to self-assemble into 3D CCs. With the gradual hydrolysis of the amide bonds and the charge reversal of the substrate, the first 111 plane of the 3D assembly is fixed in situ on the substrate. The resulting 2D CC has a high degree of ordering because of the high quality of the parent 3D microgel CC. Because large-area 3D microgel CCs can be facilely fabricated, this method allows for the fabrication of 2D CCs of any size. Nonplanar substrates can also be used. In addition, the interparticle distance of the 2D array can be tuned by the concentration of the microgel dispersion. Besides rigid substrates (such as glass slides, quartz slides, and silicon wafers), flexible polymer films, including polyethylene terephthalate and poly(vinyl chloride) films, were also successfully used as substrates for the fabrication of 2D microgel CCs.

  5. Reduced sleep duration mediates decreases in striatal D2/D3 receptor availability in cocaine abusers

    PubMed Central

    Wiers, C E; Shumay, E; Cabrera, E; Shokri-Kojori, E; Gladwin, T E; Skarda, E; Cunningham, S I; Kim, S W; Wong, T C; Tomasi, D; Wang, G-J; Volkow, N D

    2016-01-01

    Neuroimaging studies have documented reduced striatal dopamine D2/D3 receptor (D2/D3R) availability in cocaine abusers, which has been associated with impaired prefrontal activity and vulnerability for relapse. However, the mechanism(s) underlying the decreases in D2/D3R remain poorly understood. Recent studies have shown that sleep deprivation is associated with a downregulation of striatal D2/D3R in healthy volunteers. As cocaine abusers have disrupted sleep patterns, here we investigated whether reduced sleep duration mediates the relationship between cocaine abuse and low striatal D2/D3R availability. We used positron emission tomography with [11C]raclopride to measure striatal D2/D3R availability in 24 active cocaine abusers and 21 matched healthy controls, and interviewed them about their daily sleep patterns. Compared with controls, cocaine abusers had shorter sleep duration, went to bed later and reported longer periods of sleep disturbances. In addition, cocaine abusers had reduced striatal D2/D3R availability. Sleep duration predicted striatal D2/D3R availability and statistically mediated the relationship between cocaine abuse and striatal D2/D3R availability. These findings suggest that impaired sleep patterns contribute to the low striatal D2/D3R availability in cocaine abusers. As sleep impairments are similarly observed in other types of substance abusers (for example, alcohol and methamphetamine), this mechanism may also underlie reductions in D2/D3R availability in these groups. The current findings have clinical implications suggesting that interventions to improve sleep patterns in cocaine abusers undergoing detoxification might be beneficial in improving their clinical outcomes. PMID:26954979

  6. Squeezing in a 2-D generalized oscillator

    NASA Technical Reports Server (NTRS)

    Castanos, Octavio; Lopez-Pena, Ramon; Manko, Vladimir I.

    1994-01-01

    A two-dimensional generalized oscillator with time-dependent parameters is considered to study the two-mode squeezing phenomena. Specific choices of the parameters are used to determine the dispersion matrix and analytic expressions, in terms of standard hermite polynomials, of the wavefunctions and photon distributions.

  7. 2D non-separable linear canonical transform (2D-NS-LCT) based cryptography

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Muniraj, Inbarasan; Healy, John J.; Malallah, Ra'ed; Cui, Xiao-Guang; Ryle, James P.; Sheridan, John T.

    2017-05-01

    The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.

  8. The effects of aging on haptic 2D shape recognition.

    PubMed

    Overvliet, Krista E; Wagemans, J; Krampe, Ralf T

    2013-12-01

    We use the image-mediation model (Klatzky & Lederman, 1987) as a framework to investigate potential sources of adult age differences in the haptic recognition of two-dimensional (2D) shapes. This model states that the low-resolution, temporally sequential, haptic input is translated into a visual image, which is then reperceived through the visual processors, before it is matched against a long-term memory representation and named. In three experiments we tested groups of 12 older (mean age 73.11) and three groups of 12 young adults (mean age 22.80) each. In Experiment 1 we confirm age-related differences in haptic 2D shape recognition, and we show the typical age × complexity interaction. In Experiment 2 we show that if we facilitate the visual translation process, age differences become smaller, but only with simple shapes and not with the more complex everyday objects. In Experiment 3 we target the last step in the model (matching and naming) for complex stimuli. We found that age differences in exploration time were considerably reduced when this component process was facilitated by providing a category name. We conclude that the image-mediation model can explain adult-age differences in haptic recognition, particularly if the role of working memory in forming the transient visual image is considered. Our findings suggest that sensorimotor skills thought to rely on peripheral processes for the most part are critically constrained by age-related changes in central processing capacity in later adulthood.

  9. Predicting abnormal pressure from 2-D seismic velocity modeling

    SciTech Connect

    Grauls, D.; Dunand, J.P.; Beaufort, D.

    1995-12-01

    Seismic velocities are the only data available, before drilling, on which to base a quantitative, present-day estimate of abnormal pressure. Recent advances in seismic velocity processing have enabled them to obtain, using an in-house approach, an optimized 2-D interval velocity field and consequently to better define the lateral extension of pressure regimes. The methodology, interpretation and quantification of overpressure-related anomalies are supported by case studies, selected in sand-shale dominated Tertiary basins, offshore West Africa. Another advantage of this approach is that it can also account for the presence of reservoir-potential intervals at great depth and thus provide significant insight, from a prospective standpoint, into very poorly explored areas. Although at the outset the 2-D seismic tool legitimately merits being favored, optimization of the final predictive pressure model, prior to drilling, will depend upon the success of its combined use with other concepts and approaches, pertaining to structural geology, sedimentology, rock mechanics and fluid dynamics.

  10. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  11. Production of quasi-2D graphene nanosheets through the solvent exfoliation of pitch-based carbon fiber

    NASA Astrophysics Data System (ADS)

    Yeon, Youngju; Lee, Mi Yeon; Kim, Sang Youl; Lee, Jihoon; Kim, Bongsoo; Park, Byoungnam; In, Insik

    2015-09-01

    Stable dispersion of quasi-2D graphene sheets with a concentration up to 1.27 mg mL-1 was prepared by sonication-assisted solvent exfoliation of pitch-based carbon fiber in N-methyl pyrrolidone with the mass yield of 2.32%. Prepared quasi-2D graphene sheets have multi-layered 2D plate-like morphology with rich inclusions of graphitic carbons, a low number of structural defects, and high dispersion stability in aprotic polar solvents, and facilitate the utilization of quasi-2D graphene sheets prepared from pitch-based carbon fiber for various electronic and structural applications. Thin films of quasi-2D graphene sheets prepared by vacuum filtration of the dispersion of quasi-2D graphene sheets demonstrated electrical conductivity up to 1.14 × 104 Ω/□ even without thermal treatment, which shows that pitch-based carbon fiber might be useful as the source of graphene-related nanomaterials. Because pitch-based carbon fiber could be prepared from petroleum pitch, a very cheap structural material for the pavement of asphalt roads, our approach might be promising for the mass production of quasi-2D graphene nanomaterials.

  12. Production of quasi-2D graphene nanosheets through the solvent exfoliation of pitch-based carbon fiber.

    PubMed

    Yeon, Youngju; Lee, Mi Yeon; Kim, Sang Youl; Lee, Jihoon; Kim, Bongsoo; Park, Byoungnam; In, Insik

    2015-09-18

    Stable dispersion of quasi-2D graphene sheets with a concentration up to 1.27 mg mL(-1) was prepared by sonication-assisted solvent exfoliation of pitch-based carbon fiber in N-methyl pyrrolidone with the mass yield of 2.32%. Prepared quasi-2D graphene sheets have multi-layered 2D plate-like morphology with rich inclusions of graphitic carbons, a low number of structural defects, and high dispersion stability in aprotic polar solvents, and facilitate the utilization of quasi-2D graphene sheets prepared from pitch-based carbon fiber for various electronic and structural applications. Thin films of quasi-2D graphene sheets prepared by vacuum filtration of the dispersion of quasi-2D graphene sheets demonstrated electrical conductivity up to 1.14 × 10(4) Ω/□ even without thermal treatment, which shows that pitch-based carbon fiber might be useful as the source of graphene-related nanomaterials. Because pitch-based carbon fiber could be prepared from petroleum pitch, a very cheap structural material for the pavement of asphalt roads, our approach might be promising for the mass production of quasi-2D graphene nanomaterials.

  13. Remarks on thermalization in 2D CFT

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  14. Gas sensing in 2D materials

    NASA Astrophysics Data System (ADS)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  15. 2D packing using the Myriad framework

    NASA Astrophysics Data System (ADS)

    Chatburn, Luke T.; Batchelor, Bruce G.

    2004-02-01

    Myriad is a framework for building networked and distributed vision systems and is described in a companion paper in this conference. Myriad allows the components of a multi-camera, multi-user vision system (web-cameras, image processing engines, intelligent device controllers, databases and the user interface terminals) to be interconnected and operated together, even if they are physically separated by many hundreds, or thousands, of kilometres. This is achieved by operating them as Internet services. The principal objective in this article is to illustrate the simplicity of harmonising visual control with an existing system using Myriad. However, packing of 2-dimensional blob-like objects is of considerable commercial importance in some industries and involves robotic handling and/or cutting. The shapes to be packed may be cut from sheet metal, glass, cloth, leather, wood, card, paper, composite board, or flat food materials. In addition, many 3D packing applications can realistically be tackled only by regarding them as multi-layer 2D applications. Using Myriad to perform 2D packing, a set of blob-like input objects ("shapes") can be digitised using a standard camera (e.g. a "webcam"). The resulting digital images are then analysed, using a separate processing engine, perhaps located on a different continent. The packing is planned by another processing system, perhaps on a third continent. Finally, the assembly is performed using a robot, usually but not necessarily, located close to the camera.

  16. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  17. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  18. Representativeness of 2D models to simulate 3D unstable variable density flow in porous media

    NASA Astrophysics Data System (ADS)

    Knorr, Bastian; Xie, Yueqing; Stumpp, Christine; Maloszewski, Piotr; Simmons, Craig T.

    2016-11-01

    Variable density flow in porous media has been studied primarily using numerical models because it is a semi-chaotic and transient process. Most of these studies have been 2D, owing to the computational restrictions on 3D simulations, and the ability to observe variable density flow in 2D experimentation. However, it is recognised that variable density flow is a three-dimensional process. A 3D system may cause weaker variable density flow than a 2D system due to stronger dispersion, but may also result in bigger fingers and hence stronger variable density flow because of more space for fingers to coalesce. This study aimed to determine the representativeness of 2D modelling to simulate 3D variable density flow. 3D homogeneous sand column experiments were conducted at three different water flow velocities with three different bromide tracer solutions mixed with methanol resulting in different density ratios. Both 2D axisymmetric and 3D numerical simulations were performed to reproduce experimental data. Experimental results showed that the magnitude of variable density flow increases with decreasing flow rates and decreasing density ratios. The shapes of the observed breakthrough curves differed significantly from those produced by 2D axisymmetric and 3D simulations. Compared to 2D simulations, the onset of instabilities was delayed but the growth was more pronounced in 3D simulations. Despite this difference, both 2D axisymmetric and 3D models successfully simulated mass recovery with high efficiency (between 77% and 99%). This study indicates that 2D simulations are sufficient to understand integrated features of variable density flow in homogeneous sand column experiments.

  19. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  20. Lidar for Lateral Mixing (LATMIX)

    DTIC Science & Technology

    2013-09-30

    km, i.e., the “ submesoscale ”. We aim to understand the underlying mechanisms and forcing, as well as the temporal, spatial, and scale variability of...the overall objectives of the Lateral Mixing DRI to try to determine the extent to which submesoscale stirring is driven by a cascade of energy down...technical goal of our work is to develop the use of airborne LIDAR surveys of evolving dye experiments as a tool for studying submesoscale lateral dispersion

  1. Large-area high-quality 2D ultrathin Mo2C superconducting crystals

    NASA Astrophysics Data System (ADS)

    Xu, Chuan; Wang, Libin; Liu, Zhibo; Chen, Long; Guo, Jingkun; Kang, Ning; Ma, Xiu-Liang; Cheng, Hui-Ming; Ren, Wencai

    2015-11-01

    Transition metal carbides (TMCs) are a large family of materials with many intriguing properties and applications, and high-quality 2D TMCs are essential for investigating new physics and properties in the 2D limit. However, the 2D TMCs obtained so far are chemically functionalized, defective nanosheets having maximum lateral dimensions of ~10 μm. Here we report the fabrication of large-area high-quality 2D ultrathin α-Mo2C crystals by chemical vapour deposition (CVD). The crystals are a few nanometres thick, over 100 μm in size, and very stable under ambient conditions. They show 2D characteristics of superconducting transitions that are consistent with Berezinskii-Kosterlitz-Thouless behaviour and show strong anisotropy with magnetic field orientation; moreover, the superconductivity is also strongly dependent on the crystal thickness. Our versatile CVD process allows the fabrication of other high-quality 2D TMC crystals, such as ultrathin WC and TaC crystals, which further expand the large family of 2D materials.

  2. Large-area high-quality 2D ultrathin Mo2C superconducting crystals.

    PubMed

    Xu, Chuan; Wang, Libin; Liu, Zhibo; Chen, Long; Guo, Jingkun; Kang, Ning; Ma, Xiu-Liang; Cheng, Hui-Ming; Ren, Wencai

    2015-11-01

    Transition metal carbides (TMCs) are a large family of materials with many intriguing properties and applications, and high-quality 2D TMCs are essential for investigating new physics and properties in the 2D limit. However, the 2D TMCs obtained so far are chemically functionalized, defective nanosheets having maximum lateral dimensions of ∼10 μm. Here we report the fabrication of large-area high-quality 2D ultrathin α-Mo2C crystals by chemical vapour deposition (CVD). The crystals are a few nanometres thick, over 100 μm in size, and very stable under ambient conditions. They show 2D characteristics of superconducting transitions that are consistent with Berezinskii-Kosterlitz-Thouless behaviour and show strong anisotropy with magnetic field orientation; moreover, the superconductivity is also strongly dependent on the crystal thickness. Our versatile CVD process allows the fabrication of other high-quality 2D TMC crystals, such as ultrathin WC and TaC crystals, which further expand the large family of 2D materials.

  3. Efficient screening of 2D molecular polymorphs at the solution-solid interface

    NASA Astrophysics Data System (ADS)

    Lee, Shern-Long; Adisoejoso, Jinne; Fang, Yuan; Tahara, Kazukuni; Tobe, Yoshito; Mali, Kunal S.; de Feyter, Steven

    2015-03-01

    Formation of multiple polymorphs during two-dimensional (2D) crystallization of organic molecules is more of a routine occurrence than rarity. Although such diverse crystalline structures provide exciting possibilities for studying crystal engineering in 2D, predicting the occurrence of polymorphs for a given building block is often non-trivial. Moreover, there is scarcity of methods that can experimentally verify the presence of such crystalline polymorphs in a straightforward fashion. Here we demonstrate a relatively simple experimental approach for screening of 2D polymorphs formed at the solution-solid interface. The strategy involves use of solution flow produced by contacting a piece of tissue paper to the sample to generate a lateral density gradient along the substrate surface. In situ generation of such gradient allows rapid discovery and nanoscale separation of multiple 2D polymorphs in a single experiment. The concept is demonstrated using three structurally different building blocks that differ in terms of intermolecular interactions responsible for 2D crystal formation. The method described here represents a powerful tool for efficient screening of 2D polymorphs formed at the solution-solid interface.Formation of multiple polymorphs during two-dimensional (2D) crystallization of organic molecules is more of a routine occurrence than rarity. Although such diverse crystalline structures provide exciting possibilities for studying crystal engineering in 2D, predicting the occurrence of polymorphs for a given building block is often non-trivial. Moreover, there is scarcity of methods that can experimentally verify the presence of such crystalline polymorphs in a straightforward fashion. Here we demonstrate a relatively simple experimental approach for screening of 2D polymorphs formed at the solution-solid interface. The strategy involves use of solution flow produced by contacting a piece of tissue paper to the sample to generate a lateral density

  4. Ocular dispersion

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Noojin, Gary D.; Thomas, Robert J.; Stolarski, David J.; Rockwell, Benjamin A.; Welch, Ashley J.

    1999-06-01

    Spectrally resolved white-light interferometry (SRWLI) was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. The accuracy of the technique was assessed by measurement of fused silica and water, the refractive indices of which have been measured at several different wavelengths. The dispersion of bovine and rabbit aqueous and vitreous humor was measured from 400 to 1100 nm. Also, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humor extracted from goat and rhesus monkey eyes. For the humors, the dispersion did not deviate significantly from water. In an additional experiment, the dispersion of aqueous and vitreous humor that had aged up to a month was compared to freshly harvested material. No difference was found between the fresh and aged media. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. Future refinement may allow measurement of the dispersion of cornea and lens across the entire visible and near-infrared wavelength band. The principles of white- light interferometry including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.

  5. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.

  6. Variational regularized 2-D nonnegative matrix factorization.

    PubMed

    Gao, Bin; Woo, W L; Dlay, S S

    2012-05-01

    A novel approach for adaptive regularization of 2-D nonnegative matrix factorization is presented. The proposed matrix factorization is developed under the framework of maximum a posteriori probability and is adaptively fine-tuned using the variational approach. The method enables: (1) a generalized criterion for variable sparseness to be imposed onto the solution; and (2) prior information to be explicitly incorporated into the basis features. The method is computationally efficient and has been demonstrated on two applications, that is, extracting features from image and separating single channel source mixture. In addition, it is shown that the basis features of an information-bearing matrix can be extracted more efficiently using the proposed regularized priors. Experimental tests have been rigorously conducted to verify the efficacy of the proposed method.

  7. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  8. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  9. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  10. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  11. Transition to turbulence: 2D directed percolation

    NASA Astrophysics Data System (ADS)

    Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight

    2016-11-01

    The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.

  12. Jamming in 2D Prolate Granular Materials

    NASA Astrophysics Data System (ADS)

    Franklin, Scott

    2003-11-01

    We have been looking at how 2D piles of prolate (L/D>1) granular materials respond when disturbed. A test object is pushed slowly through a horizontal network of particles; the packing fraction and particle aspect ratio can be varied independently. Particles are cut from square brass rods; the square cross-section reduces the chances of a particle rolling on top of another and keeps the pile two-dimensinal. The initial condition of the pile is quantified with an orientational order parameter which measures the inter-particle alignment. At a critical packing fraction the pile jams and the force needed to push the test object through the pile increases. The jammed state also corresponds to an increase in the number of particles undergoing large-scale motion. This is revealed both in video analysis, which measures particle rearrangments within the pile, and in the number of particles that are pushed off the end of the table.

  13. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  14. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  15. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  16. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  17. The mouse ruby-eye 2(d) (ru2(d) /Hps5(ru2-d) ) allele inhibits eumelanin but not pheomelanin synthesis.

    PubMed

    Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa

    2013-09-01

    The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Colloids in Flatland: a perspective on 2D phase-separated systems, characterisation methods, and lineactant design.

    PubMed

    Bernardini, C; Stoyanov, S D; Arnaudov, L N; Cohen Stuart, M A

    2013-03-07

    In 1861 Thomas Graham gave birth to a new field of science, today known as colloid science. Nowadays, the notion "colloid" is often used referring to systems consisting of two immiscible phases, one of which is finely dispersed into the other. Research on colloids deals mostly with sols (solids dispersed in a liquid), emulsions (liquids dispersed in liquid), and foams (gas dispersed in a liquid). Because the dispersed particles are small, there is a lot of interface per unit mass. Not surprisingly, therefore, the properties of the interface have often a decisive effect on the behaviour of colloids. Water-air interfaces have a special relevance in this field: many water-insoluble molecules can be spread on water and, given the right spreading conditions and enough available surface area, their spreading proceeds until a monolayer (a one-molecule thick layer) eventually remains. Several 2D phases have been identified for such monolayers, like "gas", "liquid expanded", "liquid condensed", and "solid". The central question of this review is whether these 2D phases can also exist as colloidal systems, and what stabilizes the dispersed state in such systems. We shall present several systems capable of yielding 2D phase separation, from those based on either natural or fluorinated amphiphiles, to polymer-based ones. We shall seek for analogies in 3D and we shall try to clarify if the lines between these 2D objects play a similar role as the interfaces between 3D colloidal systems. In particular, we shall consider the special role of molecules that tend to accumulate at the phase boundaries, that is, at the contact lines, which will therefore be denoted "line-actants" (molecules that adsorb at a 1D interface, separating two 2D colloidal entities), by analogy to the term "surfactant" (which indicates a molecule that adsorbs at a 2D interface separating two 3D colloidal entities).

  19. Differential patterns of 2D location versus depth decoding along the visual hierarchy.

    PubMed

    Finlayson, Nonie J; Zhang, Xiaoli; Golomb, Julie D

    2017-02-15

    Visual information is initially represented as 2D images on the retina, but our brains are able to transform this input to perceive our rich 3D environment. While many studies have explored 2D spatial representations or depth perception in isolation, it remains unknown if or how these processes interact in human visual cortex. Here we used functional MRI and multi-voxel pattern analysis to investigate the relationship between 2D location and position-in-depth information. We stimulated different 3D locations in a blocked design: each location was defined by horizontal, vertical, and depth position. Participants remained fixated at the center of the screen while passively viewing the peripheral stimuli with red/green anaglyph glasses. Our results revealed a widespread, systematic transition throughout visual cortex. As expected, 2D location information (horizontal and vertical) could be strongly decoded in early visual areas, with reduced decoding higher along the visual hierarchy, consistent with known changes in receptive field sizes. Critically, we found that the decoding of position-in-depth information tracked inversely with the 2D location pattern, with the magnitude of depth decoding gradually increasing from intermediate to higher visual and category regions. Representations of 2D location information became increasingly location-tolerant in later areas, where depth information was also tolerant to changes in 2D location. We propose that spatial representations gradually transition from 2D-dominant to balanced 3D (2D and depth) along the visual hierarchy. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Lateral Mixing

    DTIC Science & Technology

    2011-09-30

    ocean as it responds to mesoscale forcing. APPROACH Figure 1: MVP system deployed from stern of R/V Endeavor in Sargasso Sea . My approach for...therefore requires integrative efforts with other sea -going investigators and numerical modelers. The Lateral Mixing Experiment project was an ideal...also participated in the sea -going part of this project, taking my group on the R/V Endeavor in June 2011. Our role was to sample around the center of

  1. Bioinspired 2D-Carbon Flakes and Fe3O4 Nanoparticles Composite for Arsenite Removal.

    PubMed

    Venkateswarlu, Sada; Lee, Daeho; Yoon, Minyoung

    2016-09-14

    Development of carbon-based materials has received tremendous attention owing to their multifunctional properties. Biomaterials often serve as an inspiration for the preparation of new carbon materials. Herein, we present a facile synthesis of a new bioinspired graphene oxide-like 2D-carbon flake (CF) using a natural resource, waste onion sheathing (Allium cepa). The 2D-CF was further decorated with crystalline Fe3O4 nanoparticles for applications. Superparamagnetic Fe3O4 nanoparticles (7 nm) were well-dispersed on the surface of the 2D-CF, which was characterized by X-ray diffractometry, X-ray photoelectron spectroscopy, Raman spectrometry, and transmission electron microscopy. Batch As(III) adsorption experiments showed that aqueous arsenic ions strongly adsorbed to the Fe3O4@2D-CF composite. The adsorption capacity of the Fe3O4@2D-CF composite for As(III) was 57.47 mg g(-1). The synergetic effect of both graphene oxide-like 2D-CF and Fe3O4 nanoparticles aided in excellent As(III) adsorption. An As(III) ion adsorption kinetics study showed that adsorption was very fast at the initial stage, and equilibrium was reached within 60 min following a pseudo-second-order rate model. Owing to the excellent superparamagnetic properties (52.6 emu g(-1)), the Fe3O4@2D-CF composite exhibited superb reusability with the shortest recovery time (28 s) among reported materials. This study indicated that Fe3O4@2D-CF composites can be used for practical applications as a global economic material for future generations.

  2. Landau levels in 2D materials using Wannier Hamiltonians obtained by first principles

    NASA Astrophysics Data System (ADS)

    Lado, J. L.; Fernández-Rossier, J.

    2016-09-01

    We present a method to calculate the Landau levels and the corresponding edge states of two dimensional (2D) crystals using as a starting point their electronic structure as obtained from standard density functional theory (DFT). The DFT Hamiltonian is represented in the basis of maximally localized Wannier functions. This defines a tight-binding Hamiltonian for the bulk that can be used to describe other structures, such as ribbons, provided that atomic scale details of the edges are ignored. The effect of the orbital magnetic field is described using the Peierls substitution in the hopping matrix elements. Implementing this approach in a ribbon geometry, we obtain both the Landau levels and the dispersive edge states for a series of 2D crystals, including graphene, Boron Nitride, MoS2, Black Phosphorous, Indium Selenide and MoO3. Our procedure can readily be used in any other 2D crystal, and provides an alternative to effective mass descriptions.

  3. Probing the 2-D Kinematic Structure of Early-Type Galaxies Out to 3 Effective Radii

    NASA Astrophysics Data System (ADS)

    Proctor, Robert N.; Forbes, Duncan A.; Romanowsky, Aaron J.; Brodie, Jean P.; Strader, Jay; Spolaor, Max; Trevor Mendel, J.; Spitler, Lee

    2010-06-01

    We detail an innovative new technique for measuring the 2-D velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h3 and h4) using spectra from Keck DEIMOS multi-object spectroscopic observations. The data are used to reconstruct 2-D rotation velocity maps. Here we present data for one of five early-type galaxies whose kinematics we have measured out to ~3 effective radii (see [1]). From these data 2D kinematic maps are constructed. We show such analyses can provide significant insights into the global kinematic structure of galaxies, and, in some cases, challenge the accepted morphological classification. Our results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow- rotator classes by the SAURON project.

  4. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17.

    PubMed

    Shen, Hongwu; He, Minxia M; Liu, Houfu; Wrighton, Steven A; Wang, Li; Guo, Bin; Li, Chuan

    2007-08-01

    Polymorphisms in the cytochrome P450 2D6 (CYP2D6) gene are a major cause of pharmacokinetic variability in human. Although the poor metabolizer phenotype is known to be caused by two null alleles leading to absence of functional CYP2D6 protein, the large variability among individuals with functional alleles remains mostly unexplained. Thus, the goal of this study was to examine the intrinsic enzymatic differences that exist among the several active CYP2D6 allelic variants. The relative catalytic activities (enzyme kinetics) of three functionally active human CYP2D6 allelic variants, CYP2D6.1, CYP2D6.10, and CYP2D6.17, were systematically investigated for their ability to metabolize a structurally diverse set of clinically important CYP2D6-metabolized drugs [atomoxetine, bufuralol, codeine, debrisoquine, dextromethorphan, (S)-fluoxetine, nortriptyline, and tramadol] and the effects of various CYP2D6-inhibitors [cocaine, (S)-fluoxetine, (S)-norfluoxetine, imipramine, quinidine, and thioridazine] on these three variants. The most significant difference observed was a consistent but substrate-dependent decease in the catalytic efficiencies of cDNA-expressed CYP2D6.10 and CYP2D6.17 compared with CYP2D6.1, yielding 1.32 to 27.9 and 7.33 to 80.4% of the efficiency of CYP2D6.1, respectively. The most important finding from this study is that there are mixed effects on the functionally reduced allelic variants in enzyme-substrate affinity or enzyme-inhibitor affinity, which is lower, higher, or comparable to that for CYP2D6.1. Considering the rather high frequencies of CYP2D6*10 and CYP2D6*17 alleles for Asians and African Americans, respectively, these data provide further insight into ethnic differences in CYP2D6-mediated drug metabolism. However, as with all in vitro to in vivo extrapolations, caution should be applied to the clinical consequences.

  5. Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey

    2014-05-01

    We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The

  6. Acute myocarditis with normal wall motion detected with 2D speckle tracking echocardiography

    PubMed Central

    Niel, Johannes; Aichinger, Josef; Ebner, Christian

    2016-01-01

    Summary We present the case of a 26-year-old male with acute tonsillitis who was referred for coronary angiography because of chest pain, elevated cardiac biomarkers, and biphasic T waves. The patient had no cardiovascular risk factors. Echocardiography showed no wall motion abnormalities and no pericardial effusion. 2D speckle tracking revealed distinct decreased regional peak longitudinal systolic strain in the lateral and posterior walls. Ischemic disease was extremely unlikely in view of his young age, negative family history regarding coronary artery disease, and lack of regional wall motion abnormalities on the conventional 2D echocardiogram. Coronary angiography was deferred as myocarditis was suspected. To confirm the diagnosis, cardiac magnetic resonance tomography (MRT) was performed, showing subepicardial delayed hyperenhancement in the lateral and posterior walls correlating closely with the strain pattern obtained by 2D speckle tracking echocardiography. With a working diagnosis of acute myocarditis associated with acute tonsillitis, we prescribed antibiotics and nonsteroidal anti-inflammatory drugs. The patient’s clinical signs resolved along with normalization of serum creatine kinase (CK) levels, and the patient was discharged on the third day after admission. Learning points Acute myocarditis can mimic acute coronary syndromes.Conventional 2D echocardiography lacks specific features for detection of subtle regional wall motion abnormalities.2D speckle tracking expands the scope of echocardiography in identifying myocardial dysfunction derived from edema in acute myocarditis. PMID:27249814

  7. Acute myocarditis with normal wall motion detected with 2D speckle tracking echocardiography.

    PubMed

    Sturmberger, Thomas; Niel, Johannes; Aichinger, Josef; Ebner, Christian

    2016-03-01

    SummaryWe present the case of a 26-year-old male with acute tonsillitis who was referred for coronary angiography because of chest pain, elevated cardiac biomarkers, and biphasic T waves. The patient had no cardiovascular risk factors. Echocardiography showed no wall motion abnormalities and no pericardial effusion. 2D speckle tracking revealed distinct decreased regional peak longitudinal systolic strain in the lateral and posterior walls. Ischemic disease was extremely unlikely in view of his young age, negative family history regarding coronary artery disease, and lack of regional wall motion abnormalities on the conventional 2D echocardiogram. Coronary angiography was deferred as myocarditis was suspected. To confirm the diagnosis, cardiac magnetic resonance tomography (MRT) was performed, showing subepicardial delayed hyperenhancement in the lateral and posterior walls correlating closely with the strain pattern obtained by 2D speckle tracking echocardiography. With a working diagnosis of acute myocarditis associated with acute tonsillitis, we prescribed antibiotics and nonsteroidal anti-inflammatory drugs. The patient's clinical signs resolved along with normalization of serum creatine kinase (CK) levels, and the patient was discharged on the third day after admission. Acute myocarditis can mimic acute coronary syndromes.Conventional 2D echocardiography lacks specific features for detection of subtle regional wall motion abnormalities.2D speckle tracking expands the scope of echocardiography in identifying myocardial dysfunction derived from edema in acute myocarditis. © 2016 The authors.

  8. The role of lateral strength variations in collision dynamics: A 2D numerical study

    NASA Astrophysics Data System (ADS)

    Vogt, Katharina; Willingshofer, Ernst; Matenco, Liviu; Sokoutis, Dimitrios; Gerya, Taras; Cloetingh, Sierd

    2017-04-01

    When continents collide mountain ranges with high topographies and complex internal geometries are formed. Yet, the process by which crustal material is transported and redistributed within a mountain belt remains poorly constrained. Here we present a series of two-dimensional thermo-mechanical experiments to discuss the growth and evolution of mountain ranges under different conditions. The results show that continent collision may express itself in a variety of different crustal architectures, topographies, and deformation patterns, depending on the crustal rheology of the upper and lower plate. Upper plate indentation forms a sequence of foreland propagating thrust units on the lower plate and leads to minor back thrusting at the plate contact. The strong deformation of the lower plate stands in stark contrast to the undeformed upper plate. In contrast, subduction of strong lithosphere beneath a weak upper plate forms a complex pattern of deformation. Deformation initiates on the lower plate and forms an antiformal stack made of brittle upper crust. Successive accretion of thrust units forces the thrust system upwards and induces rotation, before it indents the upper plate. The outcome of this study provides important constraints for the rheological state of continents during collision and may improve our understanding of natural collisional systems, in particular the Alps and the Pyrenees.

  9. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  10. SEM signal emulation for 2D patterns

    NASA Astrophysics Data System (ADS)

    Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya

    2016-03-01

    The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.

  11. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  12. Persistence Measures for 2d Soap Froth

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Ruskin, H. J.; Zhu, B.

    Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.

  13. 2D Radiative Processes Near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Varnai, T.

    2012-01-01

    Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.

  14. Ion Transport in 2-D Graphene Nanochannels

    NASA Astrophysics Data System (ADS)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  15. Dispersing Agents

    EPA Pesticide Factsheets

    Also called dispersants, these chemicals used in spill cleanups contain surfactants and/or solvent compounds that act to break petroleum oil into small droplets, which can then break down further in the water.

  16. Effects of Surface Ligand Density on Lipid-Monolayer-mediated 2D Assembly of Proteins

    SciTech Connect

    Fukuto, M.; Wang, S; Lohr, M; Kewalramani, S; Yang, L

    2010-01-01

    The two-dimensional (2D) assembly of the protein streptavidin on a biotin-bearing lipid monolayer was studied as a function of the surface density of biotin, a protein-binding ligand, by means of in situ X-ray scattering and optical Brewster angle microscopy measurements at the liquid-vapor interface. Although this model system has been studied extensively, the relationship between the surface biotin density and the adsorption, 2D phase behavior, and binding state of streptavidin has yet to be determined quantitatively. The observed equilibrium phase behavior provides direct structural evidence that the 2D crystallization of the lipid-bound streptavidin occurs as a density-driven first-order phase transition. The minimum biotin density required for the 2D crystallization of streptavidin is found to be remarkably close to the density of the ligand-binding sites in the protein crystal. Moreover, both above and below this transition, the observed biotin-density dependence of protein adsorption is well described by the binding of biotin-bearing lipids at both of the two available sites per streptavidin molecule. These results imply that even in the low-density noncrystalline phase, the bound proteins share a common, fixed orientation relative to the surface normal, and that the 2D crystallization occurs when the lateral protein density reaches 50-70% of the 2D crystal density. This study demonstrates that in addition to a well-defined molecular orientation, high lateral packing density is essential to the 2D crystallization of proteins.

  17. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  18. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1989-03-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  19. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1988-08-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  20. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  1. 2D discrete Fourier transform on sliding windows.

    PubMed

    Park, Chun-Su

    2015-03-01

    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

  2. NIKE2D96. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Raboin, P.; Engelmann, B.; Halquist, J.O.

    1992-01-24

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  3. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  4. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  5. Ultrafast dynamics of metal plasmons induced by 2D semiconductor excitons in hybrid nanostructure arrays

    SciTech Connect

    Boulesbaa, Abdelaziz; Babicheva, Viktoriia E.; Wang, Kai; Kravchenko, Ivan I.; Lin, Ming -Wei; Mahjouri-Samani, Masoud; Jacobs, Christopher B.; Puretzky, Alexander A.; Xiao, Kai; Ivanov, Ilia N.; Rouleau, Christopher M.; Geohegan, David B.

    2016-11-17

    With the advanced progress achieved in the field of nanotechnology, localized surface plasmons resonances (LSPRs) are actively considered to improve the efficiency of metal-based photocatalysis, photodetection, and photovoltaics. Here, we report on the exchange of energy and electric charges in a hybrid composed of a two-dimensional tungsten disulfide (2D-WS2) monolayer and an array of aluminum (Al) nanodisks. Femtosecond pump-probe spectroscopy results indicate that within ~830 fs after photoexcitation of the 2D-WS2 semiconductor, energy transfer from the 2D-WS2 excitons excites the plasmons of the Al array. Then, upon the radiative and/or nonradiative damping of these excited plasmons, energy and/or electron transfer back to the 2D-WS2 semiconductor takes place as indicated by an increase in the reflected probe at the 2D exciton transition energies at later time-delays. This simultaneous exchange of energy and charges between the metal and the 2D-WS2 semiconductor resulted in an extension of the average lifetime of the 2D-excitons from ~15 to ~58 ps in absence and presence of the Al array, respectively. Furthermore, the indirectly excited plasmons were found to live as long as the 2D-WS2 excitons exist. Furthermore, the demonstrated ability to generate exciton-plasmons coupling in a hybrid nanostructure may open new opportunities for optoelectronic applications such as plasmonic-based photodetection and photocatalysis.

  6. Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide.

    PubMed

    Susi, Toma; Skákalová, Viera; Mittelberger, Andreas; Kotrusz, Peter; Hulman, Martin; Pennycook, Timothy J; Mangler, Clemens; Kotakoski, Jani; Meyer, Jannik C

    2017-06-30

    While an increasing number of two-dimensional (2D) materials, including graphene and silicene, have already been realized, others have only been predicted. An interesting example is the two-dimensional form of silicon carbide (2D-SiC). Here, we present an observation of atomically thin and hexagonally bonded nanosized grains of SiC assembling temporarily in graphene oxide pores during an atomic resolution scanning transmission electron microscopy experiment. Even though these small grains do not fully represent the bulk crystal, simulations indicate that their electronic structure already approaches that of 2D-SiC. This is predicted to be flat, but some doubts have remained regarding the preference of Si for sp (3) hybridization. Exploring a number of corrugated morphologies, we find completely flat 2D-SiC to have the lowest energy. We further compute its phonon dispersion, with a Raman-active transverse optical mode, and estimate the core level binding energies. Finally, we study the chemical reactivity of 2D-SiC, suggesting it is like silicene unstable against molecular absorption or interlayer linking. Nonetheless, it can form stable van der Waals-bonded bilayers with either graphene or hexagonal boron nitride, promising to further enrich the family of two-dimensional materials once bulk synthesis is achieved.

  7. The Role of the Impedivity in the Magnetotelluric Response of 1D and 2D Structures

    NASA Astrophysics Data System (ADS)

    Esposito, Roberta; Giulia Di Giuseppe, Maria; Troiano, Antonio; Patella, Domenico; Mariano Castelo Branco, Raimundo

    2014-05-01

    ambiguous. Successively, a 2D case is considered, consisting in a magma chamber at a depth of 1 km, buried into a soil. The synthetic responses were performed considering both the non-dispersive and the dispersive case and the differences of the modelled MT curves are compared. As for the 1D case, the dispersion alters the resistivity values, particularly at the boundary of the buried body, leading to an ambiguous interpretation. MT data alone are not sufficient to distinguish polarization effects or can induce to see dispersion where is not present. An approach to solve this problem consists of the combined interpretation of DC geoelectrical and MT data collected at the same site. Review of real cases is also shown.

  8. Dispersed catalysts for co-processing and coal liquefaction

    SciTech Connect

    Bockrath, B.; Parfitt, D.; Miller, R.

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  9. Sheep laterality.

    PubMed

    Anderson, Dean M; Murray, Leigh W

    2013-01-01

    Turning preferences among 309 white-faced ewes were individually evaluated in an enclosed, artificially lit T-maze, followed by each ewe choosing either a right or left return alley to return to peers. Data recorded included time in the start box, time in the T-maze, exit arm chosen to leave the T-maze, and return alley. Right and left arms of the T-maze were chosen 65.7% and 34.3% of the time, respectively, while right and left return alleys were chosen 32.4% and 67.6%, respectively. Exit arm and return alley were not independently chosen (p <.0001), with observed counts being higher than expected under independence when ewes made the same choice for exit and alley (RR or LL turn patterns) and being lower than expected for alternating choices (RL or LR). Out of the 309 ewes, 28.2% and 30.1% chose RR and LL turn patterns, respectively, while 37.5% chose the RL turn pattern, but only 13 (4.2%) chose the LR turning pattern. Overall, ewes that initially turned right when presented a second turning opportunity had a slight preference to alternate their turning direction, while ewes that initially turned left tended to continue turning left when given another chance to turn. Exit arm and return alley laterality was not related (α =.05) to time of day the test was administered, ewe's age or genetics, most recent liveweight, or most recent shorn fleece weight. The mean time spent in the start box (21 s) was not related to exit arm (p =.947) or return alley (p =.779). Mean time (15 s) spent in the T-maze was not related to exit arm (p =.086) or return alley (p =.952). More research will be required to understand sheep turning laterality and how it can impact working facilities and research equipment.

  10. Nonlinear standing waves in 2-D acoustic resonators.

    PubMed

    Cervenka, Milan; Bednarik, Michal

    2006-12-22

    This paper deals with 2-D simulation of finite-amplitude standing waves behavior in rectangular acoustic resonators. Set of three partial differential equations in third approximation formulated in conservative form is derived from fundamental equations of gas dynamics. These equations form a closed set for two components of acoustic velocity vector and density, the equations account for external driving force, gas dynamic nonlinearities and thermoviscous dissipation. Pressure is obtained from solution of the set by means of an analytical formula. The equations are formulated in the Cartesian coordinate system. The model equations set is solved numerically in time domain using a central semi-discrete difference scheme developed for integration of sets of convection-diffusion equations with two or more spatial coordinates. Numerical results show various patterns of acoustic field in resonators driven using vibrating piston with spatial distribution of velocity. Excitation of lateral shock-wave mode is observed when resonant conditions are fulfilled for longitudinal as well as for transversal direction along the resonator cavity.

  11. 2D:4D finger length ratio and reproductive indices in a Chuvashian population.

    PubMed

    Kalichman, Leonid; Batsevich, Valery; Kobyliansky, Eugene

    2013-01-01

    to evaluate the association between 2D:4D finger length ratios (representing the prenatal environment, i.e., early androgen exposure) and reproductive indices, such as age at menarche, menopausal age, and length of reproductive period. Retrospective data on age at menarche and menopausal age as well as x-rays of both hands were obtained from 674 Chuvashian women aged 18-70 years (mean 46.32 ± 15.42). Finger and metacarpal length ratios as well as visual classification of finger ratio types, were estimated from the x-rays. We found that a low 2D:4D ratio (radiologically evaluated), a masculine 2D:4D ratio type (visually evaluated), and a putative bioassay for prenatal androgen exposure, were associated with a later menarche and a shorter reproductive period. No association was found with menopausal age. Copyright © 2013 Wiley Periodicals, Inc.

  12. Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials

    NASA Astrophysics Data System (ADS)

    Frisenda, Riccardo; Niu, Yue; Gant, Patricia; Molina-Mendoza, Aday J.; Schmidt, Robert; Bratschitsch, Rudolf; Liu, Jinxin; Fu, Lei; Dumcenco, Dumitru; Kis, Andras; Perez De Lara, David; Castellanos-Gomez, Andres

    2017-02-01

    Optical spectroscopy techniques such as differential reflectance and transmittance have proven to be very powerful techniques for studying 2D materials. However, a thorough description of the experimental setups needed to carry out these measurements is lacking in the literature. We describe a versatile optical microscope setup for carrying out differential reflectance and transmittance spectroscopy in 2D materials with a lateral resolution of ~1 µm in the visible and near-infrared part of the spectrum. We demonstrate the potential of the presented setup to determine the number of layers of 2D materials and characterize their fundamental optical properties, such as excitonic resonances. We illustrate its performance by studying mechanically exfoliated and chemical vapor-deposited transition metal dichalcogenide samples.

  13. Piezoelectricity of 2D nanomaterials: characterization, properties, and applications

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Meguid, S. A.

    2017-04-01

    The discovery of piezoelectricity in 2D nanomaterials represents a milestone towards embedding low-dimensional materials into future technologies. This article reviews recent progress in the characterization, properties evaluation, and applications of piezoelectricity of 2D piezoelectric nanomaterials (PNs). To begin, an introduction to the existing 2D PNs, which exhibit a wide range of atomic structures and configurations, is presented. The nanoscale measurements and associated experimental techniques as well as the atomic simulations of the piezoelectric properties of 2D PNs are then summarized. Some of the pertinent parameters, which govern the piezoelectric properties of 2D PNs, are discussed. Furthermore, our article concludes with some potential applications including piezotronics, piezophototronics, and energy harvesting of 2D PNs, which can open the doors to the innovative design of next-generation nanoelectronics and nanodevices. Finally, we highlight perspectives and challenges for the future development of 2D PNs.

  14. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  15. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  16. Dispersion Modeling.

    ERIC Educational Resources Information Center

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  17. Dispersion Modeling.

    ERIC Educational Resources Information Center

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  18. Compelling experimental evidence of a Dirac cone in the electronic structure of a 2D Silicon layer

    PubMed Central

    Sadeddine, Sana; Enriquez, Hanna; Bendounan, Azzedine; Kumar Das, Pranab; Vobornik, Ivana; Kara, Abdelkader; Mayne, Andrew J.; Sirotti, Fausto; Dujardin, Gérald; Oughaddou, Hamid

    2017-01-01

    The remarkable properties of graphene stem from its two-dimensional (2D) structure, with a linear dispersion of the electronic states at the corners of the Brillouin zone (BZ) forming a Dirac cone. Since then, other 2D materials have been suggested based on boron, silicon, germanium, phosphorus, tin, and metal di-chalcogenides. Here, we present an experimental investigation of a single silicon layer on Au(111) using low energy electron diffraction (LEED), high resolution angle-resolved photoemission spectroscopy (HR-ARPES), and scanning tunneling microscopy (STM). The HR-ARPES data show compelling evidence that the silicon based 2D overlayer is responsible for the observed linear dispersed feature in the valence band, with a Fermi velocity of comparable to that of graphene. The STM images show extended and homogeneous domains, offering a viable route to the fabrication of silicene-based opto-electronic devices. PMID:28281666

  19. Compelling experimental evidence of a Dirac cone in the electronic structure of a 2D Silicon layer

    NASA Astrophysics Data System (ADS)

    Sadeddine, Sana; Enriquez, Hanna; Bendounan, Azzedine; Kumar Das, Pranab; Vobornik, Ivana; Kara, Abdelkader; Mayne, Andrew J.; Sirotti, Fausto; Dujardin, Gérald; Oughaddou, Hamid

    2017-03-01

    The remarkable properties of graphene stem from its two-dimensional (2D) structure, with a linear dispersion of the electronic states at the corners of the Brillouin zone (BZ) forming a Dirac cone. Since then, other 2D materials have been suggested based on boron, silicon, germanium, phosphorus, tin, and metal di-chalcogenides. Here, we present an experimental investigation of a single silicon layer on Au(111) using low energy electron diffraction (LEED), high resolution angle-resolved photoemission spectroscopy (HR-ARPES), and scanning tunneling microscopy (STM). The HR-ARPES data show compelling evidence that the silicon based 2D overlayer is responsible for the observed linear dispersed feature in the valence band, with a Fermi velocity of comparable to that of graphene. The STM images show extended and homogeneous domains, offering a viable route to the fabrication of silicene-based opto-electronic devices.

  20. The coupling between idealized 2D eddies and 3D small-scale turbulence in the upper ocean and its implications for oil transport simulations using ENDLESS

    NASA Astrophysics Data System (ADS)

    Chen, B.; Yang, D.; Meneveau, C. V.; Chamecki, M.

    2016-12-01

    As oil plumes from deep-water blowouts reach the ocean mixed layer (OML), they experience considerable horizontal and vertical dilution due to the action of Langmuir turbulence, submesoscale eddies and Ekman transport. Previous studies using large-eddy simulation (LES) have shown that Langmuir turbulence can impact the transport direction, lateral diffusion and geometry of surface oil plume, depending on the size of oil droplets. However, the large range of relevant length scales, from submesoscale eddies down to small-scale 3D Langmuir turbulence, makes it challenging to accurately reproduce the long-term evolution of oil plumes in the upper ocean using conventional large-eddy simulation strategies. The extended nonperiodic domain large-eddy simulation for scalars (ENDLESS) is a new technique developed as a multi-scale approach to simulate long-term oil plume dispersion at a reasonable computational cost. The basic idea is to simulate Langmuir turbulence on a LES domain with a small but sufficient horizontal domain size to capture the essential physics of the flow field, while simulating the oil plume evolution over an effectively horizontally extended large domain. Moreover, this ENDLESS method permits the superposition of large-scale quasi-2D ocean eddies on the oil advection, allowing for coupling with regional ocean circulation models. Using this new numerical tool, the effects of the interactions between 3D turbulence and 2D eddies on the flow field and on oil dispersion are elucidated by comparing the results from ENDLESS with those from conventional LES. This research was made possible by a grant from The Gulf of Mexico Research Initiative.

  1. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    NASA Astrophysics Data System (ADS)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  2. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  3. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics.

    PubMed

    Potter, Brittney M J; Xie, Lisa H; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T; Bandara Herath, H M T; Dhammika Nanayakkara, N P; Tekwani, Babu L; Walker, Larry A; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Marcsisin, Sean R

    2015-04-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.

  4. Synthesis, properties and applications of 2D non-graphene materials.

    PubMed

    Wang, Feng; Wang, Zhenxing; Wang, Qisheng; Wang, Fengmei; Yin, Lei; Xu, Kai; Huang, Yun; He, Jun

    2015-07-24

    As an emerging class of new materials, two-dimensional (2D) non-graphene materials, including layered and non-layered, and their heterostructures are currently attracting increasing interest due to their promising applications in electronics, optoelectronics and clean energy. In contrast to traditional semiconductors, such as Si, Ge and III-V group materials, 2D materials show significant merits of ultrathin thickness, very high surface-to-volume ratio, and high compatibility with flexible devices. Owing to these unique properties, while scaling down to ultrathin thickness, devices based on these materials as well as artificially synthetic heterostructures exhibit novel and surprising functions and performances. In this review, we aim to provide a summary on the state-of-the-art research activities on 2D non-graphene materials. The scope of the review will cover the preparation of layered and non-layered 2D materials, construction of 2D vertical van der Waals and lateral ultrathin heterostructures, and especially focus on the applications in electronics, optoelectronics and clean energy. Moreover, the review is concluded with some perspectives on the future developments in this field.

  5. Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications

    NASA Astrophysics Data System (ADS)

    Shahil, Khan Mohammad Farhan

    Quasi two-dimensional (2D) materials obtained by the "graphene-like" exfoliation attracted tremendous attention. Such materials revealed unique electronic, thermal and optical properties, which can be potentially used in electronics, thermal management and energy conversion. This dissertation research addresses two separate but synergetic problems: (i) preparation and optical characterization of quasi-2D films of the bismuth-telluride (Bi 2Te3) family of materials, which demonstrate both thermoelectric and topological insulator properties; and (ii) investigation of thermal properties of composite materials prepared with graphene and few-layer graphene (FLG). The first part of dissertation reports properties of the exfoliated few-quintuple layers of Bi2Te3, Bi2Se3 and Sb 2Te3. Both non-resonant and resonant Raman scattering spectra have been investigated. It was found that the crystal symmetry breaking in few-quintuple films results in appearance of A1u-symmetry Raman peaks, which are not active in the bulk crystals. The scattering spectra measured under the 633-nm wavelength excitation reveals a number of resonant features, which could be used for analysis of the electronic and phonon processes in these materials. The obtained results help to understand the physical mechanisms of Raman scattering in the few-quintuple-thick films and can be used for nanometrology of topological insulator films on various substrates. The second part of the dissertation is dedicated to investigation of properties of composite materials prepared with graphene and FLG. It was found that the optimized mixture of graphene and multilayer graphene---produced by the high-yield inexpensive liquid-phase-exfoliation technique---can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was

  6. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  7. Fog dispersion

    NASA Technical Reports Server (NTRS)

    Frost, W.; Christensen, L. S.; Collins, F. G.; Camp, D. W.

    1980-01-01

    A study of economically viable techniques for dispersing warm fog at commercial airports is presented. Five fog dispersion techniques are examined: evaporation suppression, downwash, mixing, seeding with hygroscopic material, thermal techniques, and charged particle techniques. Thermal techniques, although effective, were found to be too expensive for routine airport operations, and detrimental to the environment. Seeding or helicopter downwash are practical for small-scale or temporary fog clearing, but are probably not useful for airport operations on a routine basis. Considerable disagreement exists on the capability of charged particle techniques, which stems from the fact that different assumptions and parameter values are used in the analytical models. Recommendations resulting from the review of this technique are listed, and include: experimental measurements of the parameters in question; a study to ascertain possible safety hazards, such as increased electrical activity or fuel ignition during refueling operations which could render charged particle techniques impractical; and a study of a single charged particle generator.

  8. Fog dispersion

    NASA Technical Reports Server (NTRS)

    Frost, W.; Christensen, L. S.; Collins, F. G.; Camp, D. W.

    1980-01-01

    A study of economically viable techniques for dispersing warm fog at commercial airports is presented. Five fog dispersion techniques are examined: evaporation suppression, downwash, mixing, seeding with hygroscopic material, thermal techniques, and charged particle techniques. Thermal techniques, although effective, were found to be too expensive for routine airport operations, and detrimental to the environment. Seeding or helicopter downwash are practical for small-scale or temporary fog clearing, but are probably not useful for airport operations on a routine basis. Considerable disagreement exists on the capability of charged particle techniques, which stems from the fact that different assumptions and parameter values are used in the analytical models. Recommendations resulting from the review of this technique are listed, and include: experimental measurements of the parameters in question; a study to ascertain possible safety hazards, such as increased electrical activity or fuel ignition during refueling operations which could render charged particle techniques impractical; and a study of a single charged particle generator.

  9. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  10. Differential cytochrome P450 2D metabolism alters tafenoquine pharmacokinetics.

    PubMed

    Vuong, Chau; Xie, Lisa H; Potter, Brittney M J; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Nanayakkara, N P Dhammika; Tekwani, Babu L; Walker, Larry A; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Smith, Bryan; Marcsisin, Sean R

    2015-07-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics

    PubMed Central

    Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan

    2015-01-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069

  12. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-07

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs.

  13. Probing the 2D kinematic structure of early-type galaxies out to three effective radii

    NASA Astrophysics Data System (ADS)

    Proctor, Robert N.; Forbes, Duncan A.; Romanowsky, Aaron J.; Brodie, Jean P.; Strader, Jay; Spolaor, Max; Mendel, J. Trevor; Spitler, Lee

    2009-09-01

    We detail an innovative new technique for measuring the two-dimensional (2D) velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h3 and h4) of the stellar populations of galaxy haloes using spectra from Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) multi-object spectroscopic observations. The data are used to reconstruct 2D rotation velocity maps. Here we present data for five nearby early-type galaxies to ~three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line.

  14. The 2nd to 4th digit ratio (2D:4D) and eating disorder diagnosis in women

    PubMed Central

    Smith, April Rose; Joiner, Thomas

    2010-01-01

    Eating disorders are more common in females than in males and are believed to be caused, in part, by biological and hormonal factors. Digit ratio or 2D:4D (the ratio of the 2nd to the 4th digit) is considered to be a proxy for prenatal testosterone (PT) and prenatal oestrogen (PE) exposure. However, how 2D:4D may be related to type of eating pathology is unknown. The relationship between 2D:4D and eating disorder diagnosis was investigated in recovered and currently eating disordered (n=31) and control (n=99) women. Mean 2D:4D ratio was significantly lower (indicating higher levels of PT and lower levels of PE) in anorexic (AN) compared to bulimic (BN) women, with controls intermediary. In eating disordered women, 2D:4D was positively and significantly related to current weight, lowest weight and current BMI, with strongest associations for right 2D:4D. Among women, low 2D:4D is related to AN and high 2D:4D to BN, suggesting a differential causal influence of prenatal sex hormones on later eating pathology. PMID:21765573

  15. Assessment of prosthesis alignment after revision total knee arthroplasty using EOS 2D and 3D imaging: a reliability study.

    PubMed

    Meijer, Marrigje F; Boerboom, Alexander L; Stevens, Martin; Bulstra, Sjoerd K; Reininga, Inge H F

    2014-01-01

    A new low-dose X-ray device, called EOS, has been introduced for determining lower-limb alignment in 2D and 3D. Reliability has not yet been assessed when using EOS on lower limbs containing a knee prosthesis. Therefore purpose of this study was to determine intraobserver and interobserver reliability of EOS 2D and 3D knee prosthesis alignment measurements after revision total knee arthroplasty (rTKA). Forty anteroposterior and lateral images of 37 rTKA patients were included. Two observers independently performed measurements on these images twice. Varus/valgus angles were measured in 2D (VV2D) and 3D (VV3D). Intraclass correlation coefficients and the Bland and Altman method were used to determine reliability. T-tests were used to test potential differences. Intraobserver and interobserver reliability were excellent for VV2D and VV3D. No significant difference or bias between the first and second measurements or the two observers was found. A significant mean and absolute difference of respectively 1.00° and 1.61° existed between 2D and 3D measurements. EOS provides reliable varus/valgus measurements in 2D and 3D for the alignment of the knee joint with a knee prosthesis. However, significant differences exist between varus/valgus measurements in 2D and 3D.

  16. Investigating digit ratio (2D:4D) in a highly male-dominated occupation: the case of firefighters.

    PubMed

    Voracek, Martin; Pum, Ulrike; Dressler, Stefan G

    2010-04-01

    Second-to-fourth digit ratio (2D:4D), a widely studied putative marker for masculinization through prenatal androgen exposure, is lower (more masculinized) in athletes than in general population controls, and athletes with lower 2D:4D have higher sporting success. Occupations differ markedly in perceived masculinity and actual maleness (sex ratios), but these givens have not yet been picked up and utilized in 2D:4D research. Accordingly, this study extended existing accounts on 2D:4D in athletes to a novel approach: 2D:4D and possible relationships to a variety of candidate variables (demographic, fertility-related, psychological, and other) were investigated in firefighters, a highly male-dominated occupation. Contrary to expectation, 2D:4D in firefighters (N = 134) was not lower than in local male population controls. Lower 2D:4D corresponded to lower service ranks. Replicating previous findings either unequivocally or partly, lower 2D:4D was associated with larger family size, later sibling position, left-handedness, and higher scores in the disinhibition component of sensation seeking. Not replicating prior evidence, 2D:4D was unrelated to body-mass index, offspring sex ratio, and sporting performance level. Novel findings included low 2D:4D in those with low relationship satisfaction and in cigarette smokers, especially among heavy smokers. Absolute finger length, a positive correlate of pubertal-adolescent androgen levels, was also considered. This marker showed negative associations with relationship consensus and satisfaction and positive ones with perceived quality of relationship alternatives and the experience seeking component of sensation seeking. The merits of this additional marker, relative to 2D:4D, for supplementing studies of possible sex-hormonal effects on personality and directions for future inquiry along these lines are discussed.

  17. Responsive ionic liquid-polymer 2D photonic crystal gas sensors.

    PubMed

    Smith, Natasha L; Hong, Zhenmin; Asher, Sanford A

    2014-12-21

    We developed novel air-stable 2D polymerized photonic crystal (2DPC) sensing materials for visual detection of gas phase analytes such as water and ammonia by utilizing a new ionic liquid, ethylguanidine perchlorate (EGP) as the mobile phase. Because of the negligible ionic liquid vapor pressure these 2DPC sensors are indefinitely air stable and, therefore, can be used to sense atmospheric analytes. 2D arrays of ~640 nm polystyrene nanospheres were attached to the surface of crosslinked poly(hydroxyethyl methacrylate) (pHEMA)-based polymer networks dispersed in EGP. The wavelength of the bright 2D photonic crystal diffraction depends sensitively on the 2D array particle spacing. The volume phase transition response of the EGP-pHEMA system to water vapor or gaseous ammonia changes the 2DPC particle spacing, enabling the visual determination of the analyte concentration. Water absorbed by EGP increases the Flory-Huggins interaction parameter, which shrinks the polymer network and causes a blue shift in the diffracted light. Ammonia absorbed by the EGP deprotonates the pHEMA-co-acrylic acid carboxyl groups, swelling the polymer which red shifts the diffracted light.

  18. Crab Chitin-Based 2D Soft Nanomaterials for Fully Biobased Electric Devices.

    PubMed

    You, Jun; Li, Mingjie; Ding, Beibei; Wu, Xiaochen; Li, Chaoxu

    2017-03-17

    2D nanomaterials have various size/morphology-dependent properties applicable in electronics, optics, sensing, and actuating. However, intensively studied inorganic 2D nanomaterials are frequently hindered to apply in some particular and industrial fields, owing to harsh synthesis, high-cost, cytotoxicity, and nondegradability. Endeavor has been made to search for biobased 2D nanomaterials with biocompatibility, sustainability, and biodegradability. A method of hydrophobization-induced interfacial-assembly is reported to produce an unprecedented type of nanosheets from marine chitin. During this process, two layers of chitin aggregations assemble into nanosheets with high aspect ratio. With super stability and amphiphilicity, these nanosheets have super ability in creating highly stable Pickering emulsions with internal phase up to 83.4% and droplet size up to 140 μm, in analogue to graphene oxide. Combining emulsifying and carbonization can further convert these 2D precursors to carbon nanosheets with thickness as low as ≈3.8 nm. Having biologic origin, conductivity, and dispersibility in various solvents, resultant carbon nanosheets start a new scenario of exploiting marine resources for fully biobased electric devices with sustainability and biodegradability, e.g., supercapacitor, flexible circuits, and electronic sensors. Hybrid films of chitin and carbon nanosheets also offer low-cost and environment-friendly alternative of conductive components desirable in green electronics, wearable electronics, biodegradable circuits, and biologic devices.

  19. 2-D model of ice in the lunar polar regolith

    NASA Astrophysics Data System (ADS)

    Crider, Dana

    If volatiles are present in permanently shadowed craters on the Moon, they appear to be patchy, buried, and/or not very pure. Although some radar data may be indicative of ice deposits on the Moon from Clementine, they are inconclusive regarding the contents of the cold traps because similar signals are found in locations where ice is not expected and may be due to blocky regolith. Neutron measurements indicate that if any lunar ice exists in the topmost meter, it is buried beneath about 10 cm dry regolith and has a concentration of around 0.5 wt.%. These observations differ from those of permanently shadowed regions of Mercury, where radar data are consistent with relatively pure, thick ice buried by 20-30 cm of dry regolith. A lot can be learned about the important processes in delivery and retention of volatiles in permanently shadowed regions by modeling the Moon and Mercury to see which factors reproduce the observed differences. With this goal in mind, we perform 2-D Monte Carlo modeling of the evolution of ice layers on the Moon over time due to impact gardening to examine the relationship between the coherence length and time. The model traces the water content as a function of depth in the lunar regolith in several columns of regolith at set spacing intervals. An initial column ice profile is assumed, for example reflecting ice layer(s) deposited by comets, for each regolith column. The program then simulates a series of impacts onto the region based on the crater frequency function. Each column is modified appropriately for each impact. We examine the ice profiles of the different regolith columns as a function of time, correlating ice thickness, peak concentration, depth, and total ice content over the lateral spacings of the columns. This provides an appropriate view of how well ice layers in lunar permanently shadowed regions remain coherent as a function of time, initial thickness, initial concentration, and lateral distance. This information will aid

  20. Experimental comparison of 2D arrays topologies for SHM of planar structures

    NASA Astrophysics Data System (ADS)

    Ambrozinski, Lukasz; Packo, Pawel; Stepinski, Tadeusz; Uhl, Tadeusz

    2012-04-01

    In this paper we present a new methodology for theoretical, numerical and experimental investigations of various 2D arrays' topologies. The theoretical evaluation is performed using frequency-dependent structure transfer function that affects propagation of Lamb waves (LWs) through the dispersive medium and enables investigation of the arrays' performance for a defined excitation signal. The numerical simulations are conducted using local interaction simulation approach (LISA) implemented on the NVIDIA R CUDA R graphical processing unit (GPU), which considerably accelerates 3D simulations of LWs propagation in a short time period. Finally, scanning laser vibrometer is used to sense the LWs excited by PZT transducers, in multiple points corresponding to the locations of the 2D array elements. In this way performance of various array architectures in the reception mode can be evaluated experimentally without the need of physical prototype - a change of topology requires only straightforward modification of the measurement points' distribution at the tested plate.

  1. Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing.

    PubMed

    Campbell, Michael G; Sheberla, Dennis; Liu, Sophie F; Swager, Timothy M; Dincă, Mircea

    2015-03-27

    The utility of metal-organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11-hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm(-1) (pellet, two-point-probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub-ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs.

  2. A Deformed Shape Monitoring Model for Building Structures Based on a 2D Laser Scanner

    PubMed Central

    Choi, Se Woon; Kim, Bub Ryur; Lee, Hong Min; Kim, Yousok; Park, Hyo Seon

    2013-01-01

    High-rise buildings subjected to lateral loads such as wind and earthquake loads must be checked not to exceed the limits on the maximum lateral displacement or the maximum inter-story drift ratios. In this paper, a sensing model for deformed shapes of a building structure in motion is presented. The deformed shape sensing model based on a 2D scanner consists of five modules: (1) module for acquiring coordinate information of a point in a building; (2) module for coordinate transformation and data arrangement for generation of time history of the point; (3) module for smoothing by adjacent averaging technique; (4) module for generation of the displacement history for each story and deformed shape of a building, and (5) module for evaluation of the serviceability of a building. The feasibility of the sensing model based on a 2D laser scanner is tested through free vibration tests of a three-story steel frame structure with a relatively high slenderness ratio of 5.0. Free vibration responses measured from both laser displacement sensors and a 2D laser scanner are compared. In the experimentation, the deformed shapes were obtained from three different methods: the model based on the 2D laser scanner, the direct measurement based on laser displacement sensors, and the numerical method using acceleration data and the displacements from GPS. As a result, it is confirmed that the deformed shape measurement model based on a 2D laser scanner can be a promising alternative for high-rise buildings where installation of laser displacement sensors is impossible. PMID:23698269

  3. Functional characterization of CYP2D6 enhancer polymorphisms.

    PubMed

    Wang, Danxin; Papp, Audrey C; Sun, Xiaochun

    2015-03-15

    CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Circular photogalvanic effect caused by the transitions between edge and 2D states in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Magarill, L. I.; Entin, M. V.

    2016-12-01

    The electron absorption and the edge photocurrent of a 2D topological insulator are studied for transitions between edge states to 2D states. The circular polarized light is found to produce the edge photocurrent, the direction of which is determined by light polarization and edge orientation. It is shown that the edge-state current is found to exceed the 2D current owing to the topological protection of the edge states.

  5. Energy Efficiency of D2D Multi-User Cooperation.

    PubMed

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-03-28

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  6. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  7. Two-Dimensional Gel Electrophoresis and 2D-DIGE.

    PubMed

    Meleady, Paula

    2018-01-01

    Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system. In particular, a modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual proteins species including protein isoforms and post-translational modifications. This review will discuss the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research (particularly on recombinant Chinese hamster ovary cells), which will also be discussed in the review chapter.

  8. Simulation of Rio Grande floodplain inundation Using FLO-2D

    Treesearch

    J. S. O' Brien; W. T. Fullerton

    1999-01-01

    Spring floodplain inundation is important to the natural functions of the Rio Grande bosque biological community including cottonwood tree germination and recruitment. To predict floodplain inundation, a two-dimensional flood routing model FLO-2D will be applied to various reaches of the Rio Grande. FLO-2D will assess overbank flooding in terms of the area of...

  9. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  10. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  11. Energy Efficiency of D2D Multi-User Cooperation

    PubMed Central

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-01-01

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency. PMID:28350374

  12. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  13. Designing 2D arrays for SHM of planar structures: a review

    NASA Astrophysics Data System (ADS)

    Stepinski, Tadeusz; Ambrozinski, Lukasz; Uhl, Tadeusz

    2013-04-01

    Monitoring structural integrity of large planar structures that aims at detecting and localizing impact or damage at any point of the structure requires normally a relatively dense network of uniformly distributed ultrasonic sensors. 2-D ultrasonic phased arrays, due to their beam-steering capability and all azimuth angle coverage are a very promising tool for structural health monitoring (SHM) of plate-like structures using Lamb waves (LW). Linear phased arrays that have been proposed for that purpose, produce mirrored image characterized by azimuth dependent resolution, which prevents unequivocal damage localization. 2D arrays do not have this drawback and they are even capable of mode selectivity when generating and receiving LWs. Performance of 2D arrays depends on their topology as well as the number of elements (transducers) used and their spacing in terms of wavelength. In this paper we propose a consistent methodology for three-step: theoretical, numerical and experimental investigation of a diversity of 2D array topologies in SHM applications. In the first step, the theoretical evaluation is performed using frequency-dependent structure transfer function (STF). STF that defines linear propagation of different LWs modes through the dispersive medium enables theoretical investigation of the particular array performance for a predefined tone-burst excitation signal. A dedicated software tool has been developed for the numerical evaluation of 2D array directional characteristics (beampattern) in a specific structure. The simulations are performed using local interaction simulation approach (LISA), implemented using NVIDIA CUDA graphical computation unit (GPU), which enables time-efficient 3D simulations of LWs propagation. Beampatterns of a 2D array can be to some extend evaluated analytically and using numerical simulations; in most cases, however, they require experimental verification. Using scanning laser vibrometer is proposed for that purpose, in a setup

  14. Plasmonics of 2D Nanomaterials: Properties and Applications

    PubMed Central

    Li, Yu; Li, Ziwei; Chi, Cheng; Shan, Hangyong; Zheng, Liheng

    2017-01-01

    Plasmonics has developed for decades in the field of condensed matter physics and optics. Based on the classical Maxwell theory, collective excitations exhibit profound light‐matter interaction properties beyond classical physics in lots of material systems. With the development of nanofabrication and characterization technology, ultra‐thin two‐dimensional (2D) nanomaterials attract tremendous interest and show exceptional plasmonic properties. Here, we elaborate the advanced optical properties of 2D materials especially graphene and monolayer molybdenum disulfide (MoS2), review the plasmonic properties of graphene, and discuss the coupling effect in hybrid 2D nanomaterials. Then, the plasmonic tuning methods of 2D nanomaterials are presented from theoretical models to experimental investigations. Furthermore, we reveal the potential applications in photocatalysis, photovoltaics and photodetections, based on the development of 2D nanomaterials, we make a prospect for the future theoretical physics and practical applications. PMID:28852608

  15. New generation transistor technologies enabled by 2D crystals

    NASA Astrophysics Data System (ADS)

    Jena, D.

    2013-05-01

    The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.

  16. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  17. Plasmonics of 2D Nanomaterials: Properties and Applications.

    PubMed

    Li, Yu; Li, Ziwei; Chi, Cheng; Shan, Hangyong; Zheng, Liheng; Fang, Zheyu

    2017-08-01

    Plasmonics has developed for decades in the field of condensed matter physics and optics. Based on the classical Maxwell theory, collective excitations exhibit profound light-matter interaction properties beyond classical physics in lots of material systems. With the development of nanofabrication and characterization technology, ultra-thin two-dimensional (2D) nanomaterials attract tremendous interest and show exceptional plasmonic properties. Here, we elaborate the advanced optical properties of 2D materials especially graphene and monolayer molybdenum disulfide (MoS2), review the plasmonic properties of graphene, and discuss the coupling effect in hybrid 2D nanomaterials. Then, the plasmonic tuning methods of 2D nanomaterials are presented from theoretical models to experimental investigations. Furthermore, we reveal the potential applications in photocatalysis, photovoltaics and photodetections, based on the development of 2D nanomaterials, we make a prospect for the future theoretical physics and practical applications.

  18. Regulation of ligands for the NKG2D activating receptor

    PubMed Central

    Raulet, David H.; Gasser, Stephan; Gowen, Benjamin G.; Deng, Weiwen; Jung, Heiyoun

    2014-01-01

    NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection. PMID:23298206

  19. Women with more feminine digit ratio (2D:4D) have higher reproductive success.

    PubMed

    Klimek, Magdalena; Galbarczyk, Andrzej; Nenko, Ilona; Jasienska, Grazyna

    2016-07-01

    Prenatal development has a long-lasting influence on biological condition and health. Second-to-fourth digit ratio (2D:4D) is suggested as an indicator of sex hormone exposure during fetal development, and it is likely that women with a more feminine digit ratio were exposed to higher prenatal estrogen levels. Therefore, we tested if 2D:4D was related to a woman's reproductive characteristics. We studied 319 women aged 46-92, who went through a natural menopause and whose husbands were alive at least until their menopause were studied. Women were recruited at the Mogielica Human Ecology Study Site located in rural Poland. Women with more feminine 2D:4D had a higher number of children (P = 0.002), gave birth to their last child at a later age (P = 0.02), and had a longer reproductive lifespan (P = 0.04) than women with more masculine 2D:4D. Age and number of years of education were included as potential confounders in the analyses. The results indicated that women with more feminine 2D:4D had higher reproductive success. While the exact mechanisms were not known, and the relationship between 2D:4D and adult sex hormone levels was questioned by previous studies, there might be other biological pathways explaining the observed results, that is, via behaviors that were indirectly related to fertility. Am J Phys Anthropol 160:549-553, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. 2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation

    NASA Astrophysics Data System (ADS)

    Guo, Yaguang; Saidi, Wissam A.; Wang, Qian

    2017-09-01

    Halide perovskites and van der Waals (vdW) heterostructures are both of current interest owing to their novel properties and potential applications in nano-devices. Here, we show the great potential of 2D halide perovskite sheets (C4H9NH3)2PbX4 (X  =  Cl, Br and I) that were synthesized recently (Dou et al 2015 Science 349 1518-21) as the channel materials contacting with graphene and other 2D metallic sheets to form van der Waals heterostructures for field effect transistor (FET). Based on state-of-the-art theoretical simulations, we show that the intrinsic properties of the 2D halide perovskites are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The 2D halide perovskites form a p-type Schottky barrier (Φh) contact with graphene, where tunneling barrier exists, and a negative band bending occurs at the lateral interface. We demonstrate that the Schottky barrier can be turned from p-type to n-type by doping graphene with nitrogen atoms, and a low-Φh or an Ohmic contact can be realized by doping graphene with boron atoms or replacing graphene with other high-work-function 2D metallic sheets such as ZT-MoS2, ZT-MoSe2 and H-NbS2. This study not only predicts a 2D halide perovskite-based FETs, but also enhances the understanding of tuning Schottky barrier height in device applications.

  1. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice.

    PubMed

    Pan, Xian; Jeong, Hyunyoung

    2015-07-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼ 50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter.

  2. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice

    PubMed Central

    Pan, Xian

    2015-01-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter. PMID:25943116

  3. Digit ratio (2D:4D) in Klinefelter's syndrome.

    PubMed

    Manning, J T; Kilduff, L P; Trivers, R

    2013-01-01

    The ratio of second to fourth digit length (2D:4D) is a correlate of prenatal testosterone. High 2D:4D is associated with low prenatal testosterone, and reduced sensitivity to testosterone. Klinefelter's syndrome (KS; 47 XXY) affects the endocrine system, such that low testosterone levels are found in KS foetuses, new-borns and adults. To date, there are no published data regarding the pattern of 2D:4D in KS males. Here we consider 2D:4D in KS individuals (n = 51), their relatives (16 fathers and 15 mothers) and an unaffected control sample of 153 men and 153 women. Adult KS individuals were taller than their fathers and had shorter fingers than fathers and male controls. Compared with fathers, male controls and mothers, KS males had shorter fingers relative to height. With regard to 2D:4D, KS individuals had higher 2D:4D than fathers (right and left hands), male controls (right and left hands) and mothers (left hands). Among KS males older than 13 years there were 34 individuals currently prescribed testosterone and nine not prescribed. In comparison to the former, the latter individuals had higher right 2D:4D and higher right-left 2D:4D. We conclude that KS males have mean 2D:4D values similar to those found in female population norms. In addition, testosterone supplementation in KS males may be most common for individuals with low right 2D:4D. © 2012 American Society of Andrology and European Academy of Andrology.

  4. Infrared and Ultraviolet Spectra of Diborane(6): B2H6 and B2D6.

    PubMed

    Peng, Yu-Chain; Chou, Sheng-Lung; Lo, Jen-Iu; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming; Ogilvie, J F

    2016-07-21

    We recorded absorption spectra of diborane(6), B2H6 and B2D6, dispersed in solid neon near 4 K in both mid-infrared and ultraviolet regions. For gaseous B2H6 from 105 to 300 nm, we report quantitative absolute cross sections; for solid B2H6 and for B2H6 dispersed in solid neon, we measured ultraviolet absorbance with relative intensities over a wide range. To assign the mid-infrared spectra to specific isotopic variants, we applied the abundance of (11)B and (10)B in natural proportions; we undertook quantum-chemical calculations of wavenumbers associated with anharmonic vibrational modes and the intensities of the harmonic vibrational modes. To aid an interpretation of the ultraviolet spectra, we calculated the energies of electronically excited singlet and triplet states and oscillator strengths for electronic transitions from the electronic ground state.

  5. Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer

    NASA Astrophysics Data System (ADS)

    Liu, W.; Zagzebski, J. A.; Hall, T. J.; Madsen, E. L.; Varghese, T.; Kliewer, M. A.; Panda, S.; Lowery, C.; Barnes, S.

    2008-08-01

    Compared to conventional piezoelectric transducers, new capacitive microfabricated ultrasonic transducer (CMUT) technology is expected to offer a broader bandwidth, higher resolution and advanced 3D/4D imaging inherent in a 2D array. For ultrasound scatterer size imaging, a broader frequency range provides more information on frequency-dependent backscatter, and therefore, generally more accurate size estimates. Elevational compounding, which can significantly reduce the large statistical fluctuations associated with parametric imaging, becomes readily available with a 2D array. In this work, we show phantom and in vivo breast tumor scatterer size image results using a prototype 2D CMUT transducer (9 MHz center frequency) attached to a clinical scanner. A uniform phantom with two 1 cm diameter spherical inclusions of slightly smaller scatterer size was submerged in oil and scanned by both the 2D CMUT and a conventional piezoelectric linear array transducer. The attenuation and scatterer sizes of the sample were estimated using a reference phantom method. RF correlation analysis was performed using the data acquired by both transducers. The 2D CMUT results indicate that at a 2 cm depth (near the transmit focus for both transducers) the correlation coefficient reduced to less than 1/e for 0.2 mm lateral or 0.25 mm elevational separation between acoustic scanlines. For the conventional array this level of decorrelation requires a 0.3 mm lateral or 0.75 mm elevational translation. Angular and/or elevational compounding is used to reduce the variance of scatterer size estimates. The 2D array transducer acquired RF signals from 140 planes over a 2.8 cm elevational direction. If no elevational compounding is used, the fractional standard deviation of the size estimates is about 12% of the mean size estimate for both the spherical inclusion and the background. Elevational compounding of 11 adjacent planes reduces it to 7% for both media. Using an experimentally estimated

  6. Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer

    PubMed Central

    Liu, W; Zagzebski, J A; Hall, T J; Madsen, E L; Varghese, T; Kliewer, M A; Panda, S; Lowery, C; Barnes, S

    2009-01-01

    Compared to conventional piezoelectric transducers, new capacitive microfabricated ultrasonic transducer (CMUT) technology is expected to offer a broader bandwidth, higher resolution and advanced 3D/4D imaging inherent in a 2D array. For ultrasound scatterer size imaging, a broader frequency range provides more information on frequency-dependent backscatter, and therefore, generally more accurate size estimates. Elevational compounding, which can significantly reduce the large statistical fluctuations associated with parametric imaging, becomes readily available with a 2D array. In this work, we show phantom and in vivo breast tumor scatterer size image results using a prototype 2D CMUT transducer (9 MHz center frequency) attached to a clinical scanner. A uniform phantom with two 1 cm diameter spherical inclusions of slightly smaller scatterer size was submerged in oil and scanned by both the 2D CMUT and a conventional piezoelectric linear array transducer. The attenuation and scatterer sizes of the sample were estimated using a reference phantom method. RF correlation analysis was performed using the data acquired by both transducers. The 2D CMUT results indicate that at a 2 cm depth (near the transmit focus for both transducers) the correlation coefficient reduced to less than 1/e for 0.2 mm lateral or 0.25 mm elevational separation between acoustic scanlines. For the conventional array this level of decorrelation requires a 0.3 mm lateral or 0.75 mm elevational translation. Angular and/or elevational compounding is used to reduce the variance of scatterer size estimates. The 2D array transducer acquired RF signals from 140 planes over a 2.8 cm elevational direction. If no elevational compounding is used, the fractional standard deviation of the size estimates is about 12% of the mean size estimate for both the spherical inclusion and the background. Elevational compounding of 11 adjacent planes reduces it to 7% for both media. Using an experimentally estimated

  7. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-04

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  8. 2D TEM Modeling and Inversion by Adaptive Born Forward Mapping

    NASA Astrophysics Data System (ADS)

    Lee, T.; Seo, M.; Cho, I. K.; Ko, K. B.; You, Y. J.

    2014-12-01

    In the airborne electromagnetic survey, vast data are acquired with the development of precise measuring equipment and the automation of data acquisition. In this study we developed fast and accurate two-dimensional (2D) modeling and inversion algorithm based on the adaptive born forward mapping (ABFM) method, which is recently emerging for fast time-domain electromagnetic (TEM) modeling. The ABFM method is an approximation method that takes into consideration the true electrical conductivity distribution of subsurface media and is different from the conventional Born approximation that uses the constant electric conductivity. One of the most important points of the ABFM method is how to set a suitable sensitivity function. In this study, the known 1D sensitivity function was expanded into 2D sensitivity function to effectively approximate the dispersive behavior of electromagnetic field. By comparing the analytic solution and approximate ABFM solution for layered earth models, we found that the two solutions correspond to each other well. This implies that the 2D sensitivity function suggested in this study is suitable and that the ABFM method has very excellent accuracy in 2D TEM modeling even though it is an approximation method. Furthermore, a 2D inversion algorithm was developed with respect to the apparent conductivity data of TEM based on ABFM. To enhance the resolution and stability, the smoothness-constrained least-squares method with ACB constraint was employed. The inversion of calculated data for various models produced a reasonable model close to the true model. It is expected that the method will be extensively applicable to TEM modeling and inversion without difficulty in the future.

  9. The 2dF Galaxy Redshift Survey: spectral types and luminosity functions

    NASA Astrophysics Data System (ADS)

    Folkes, Simon; Ronen, Shai; Price, Ian; Lahav, Ofer; Colless, Matthew; Maddox, Steve; Deeley, Kathryn; Glazebrook, Karl; Bland-Hawthorn, Joss; Cannon, Russell; Cole, Shaun; Collins, Chris; Couch, Warrick; Driver, Simon P.; Dalton, Gavin; Efstathiou, George; Ellis, Richard S.; Frenk, Carlos S.; Kaiser, Nick; Lewis, Ian; Lumsden, Stuart; Peacock, John; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    1999-09-01

    We describe the 2dF Galaxy Redshift Survey (2dFGRS) and the current status of the observations. In this exploratory paper, we apply a principal component analysis to a preliminary sample of 5869 galaxy spectra and use the two most significant components to split the sample into five spectral classes. These classes are defined by considering visual classifications of a subset of the 2dF spectra, and also by comparison with high-quality spectra of local galaxies. We calculate a luminosity function for each of the different classes and find that later-type galaxies have a fainter characteristic magnitude, and a steeper faint-end slope. For the whole sample we find M*=-19.7 (for Ω=1, H_0=100kms^-1Mpc^-1), α=-1.3, φ*=0.017. For class 1 (`early-type') we find M*=-19.6, α=-0.7, while for class 5 (`late-type') we find M*=-19.0, α=-1.7. The derived 2dF luminosity functions agree well with other recent luminosity function estimates.

  10. Self-Assembly of 2D TMV Arrays on Substrate-Supported and Langmuir Lipid Monolayers

    NASA Astrophysics Data System (ADS)

    Wang, Suntao; Checco, Antonio; Niu, Zhongwei; Wang, Qian; Fukuto, Masafumi; Yang, Lin

    2008-03-01

    Bionanoparticles (large proteins, viruses) are ideal building blocks for creating ordered two-dimensional (2D) arrays. These 2D protein crystals or ordered arrays are of great scientific and technological interest. Here, we demonstrate the use of in-situ x-ray scattering and Brewster angle microscopy (BAM) to monitor the formation of self-assembled, 2D ordered arrays by tobacco mosaic viruses (TMVs) on a lipid layer that was either supported by a solid substrate or formed at the liquid-vapor interface. The lipid monolayer not only confined the viral particles within a plane, but also provided the lateral mobility that is crucial for developing structural order. In-situ X-ray scattering was used to provide real time information on the structure of the virus array and guide optimizations of the surrounding chemical environment to improve in-plane structural order. The presence of Ca^2+ ions is also essential to the formation of well ordered, closely packed 2D arrays of TMV. Atomic Force Microscopy was also used to directly image the final structure to provide real space confirmation of developed structural order.

  11. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  12. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  13. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    PubMed

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd.

  14. CYP2D6 Polymorphisms in Patients with Porphyrias

    PubMed Central

    Lavandera, Jimena V.; Parera, Victoria E.; Batlle, Alcira; Buzaleh, Ana María

    2006-01-01

    The cytochrome P-450 (CYP) isoenzymes, a superfamily of heme proteins which are the terminal oxidases of the mixed function oxidases system, metabolize more than 70% of all clinically approved drugs. The highly polymorphic CYP2D6 isoform metabolizes more than 25% of most common drugs, and the phenotypes of the 70-plus allelic variants range from compromised to excessive enzymatic activity. Porphyrias are a group of inherited or acquired metabolic disorders of heme biosynthesis, due to a specific decrease in the activity of one of the enzymes of the heme pathway. Clinical signs and symptoms of porphyrias are frequently associated with exposure to precipitating agents, including clinically approved drugs. CYP enzymes, including CYP2D6, participate in the metabolism of some porphyrinogenic drugs, leading to the deregulation of heme biosynthesis. Considering that some of the drugs not recommended for use in porphyric patients are metabolized by CYP2D6, the presence of CYP2D6 polymorphisms in porphyric patients would influence the triggering of the disease when these individuals receive a precipitating agent that is metabolized by CYP2D6. To investigate CYP2D6 polymorphisms in porphyric patients, healthy Argentinean volunteers, porphyric patients, and a group of individuals with high levels of iron were studied. Results indicated that the CYP2D6*3 and CYP2D6*4 alleles, in particular, would be linked to the onset of disease. Predictive genotyping for CYP2D6 in porphyric patients holds promise as a method to improve the clinical efficacy of drug therapy and to personalize drug administration for these patients. PMID:17225875

  15. 2-D Versus 3-D Magnetotelluric Data Interpretation

    NASA Astrophysics Data System (ADS)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  16. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  17. NKG2D Receptor and Its Ligands in Host Defense.

    PubMed

    Lanier, Lewis L

    2015-06-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.

  18. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-07

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  19. Theory of 2D crystals: graphene and beyond.

    PubMed

    Roldán, Rafael; Chirolli, Luca; Prada, Elsa; Silva-Guillén, Jose Angel; San-Jose, Pablo; Guinea, Francisco

    2017-07-31

    This tutorial review presents an overview of the basic theoretical aspects of two-dimensional (2D) crystals. We revise essential aspects of graphene and the new families of semiconducting 2D materials, like transition metal dichalcogenides or black phosphorus. Minimal theoretical models for various materials are presented. Some of the exciting new possibilities offered by 2D crystals are discussed, such as manipulation and control of quantum degrees of freedom (spin and pseudospin), confinement of excitons, control of the electronic and optical properties with strain engineering, or unconventional superconducting phases.

  20. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  1. Formation of Periodic Structures (2D-PhCs) by Scanning Electron Lithography

    NASA Astrophysics Data System (ADS)

    Utkin, Dmitriy; Shklyev, Alexander; Tsarev, Andrey; Latyshev, Alexander; Nasimov, Dmitriy

    The formation of the periodic structures based on Si-materials by electron beam lithography technique has been studied. We have investigated lithography processes such as designing, exposition, development, etching end others. The developed technique allows forming close-packed arrays of elements and holes in the nanometre range. This can be used to produce two-dimensional photonic crystals (2D PhCs) with emitting micro cavities (missing holes) with lateral size parameters within an accuracy of about 2% in the Si (100) substrate and in silicon-on-insulator structures. Such accuracy is expected to be sufficient for obtaining the cavities-coupling radiation interference from large areas of 2D PhCs.

  2. Fluidic behaviours in a 2D folded-graphene aerogel monolith

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Zhang, Qiangqiang; Yu, Yikang; Yang, Kaichun; He, Qiuyu; Chen, Weizhe; Li, Hui; Qiao, Yu

    2015-10-01

    Conduction of pressurized water through two-dimensional (2D) layers in monolithic folded-graphene aerogels (FGA) is investigated experimentally. The synthesized FGA has a regular layered structure with a uniform d-spacing around 20 nm. Compared with one-dimensional nanofluidics in carbon nanotube arrays that have a similar characteristic length scale, the conduction pressure of FGA is much lower by nearly 2/3. The reduction in pressure may be attributed to the more energetically favourable molecular configurations in the 2D nanoenvironment, associated with the relaxation of lateral constraints of water molecules. The water conduction pressure through FGA rises exponentially with the sample thickness, due to the interlayer resistance. This finding may find wide applications in nanotransportation, nanofiltration, and nanofluidic energy management.

  3. Reconstruction-based 3D/2D image registration.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).

  4. Orbifold reduction and 2d (0,2) gauge theories

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong

    2017-03-01

    We introduce Orbifold Reduction, a new method for generating 2 d (0 , 2) gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds starting from 4 d N=1 gauge theories on D3-branes probing toric Calabi-Yau 3-folds. The new procedure generalizes dimensional reduction and orbifolding. In terms of T-dual configurations, it generates brane brick models starting from brane tilings. Orbifold reduction provides an agile approach for generating 2 d (0 , 2) theories with a brane realization. We present three practical applications of the new algorithm: the connection between 4 d Seiberg duality and 2 d triality, a combinatorial method for generating theories related by triality and a 2 d (0 , 2) generalization of the Klebanov-Witten mass deformation.

  5. Studying Zeolite Catalysts with a 2D Model System

    SciTech Connect

    Boscoboinik, Anibal

    2016-12-07

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  6. Materials science: Screen printing of 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Kim, Young Duck; Hone, James

    2017-04-01

    Atomically thin semiconductors have been made by transferring the oxide 'skin' of a liquid metal to substrates. This opens the way to the low-cost mass production of 2D semiconductors at the sizes needed for electronics applications.

  7. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  8. Exact Solution of Ising Model in 2d Shortcut Network

    NASA Astrophysics Data System (ADS)

    Shanker, O.

    We give the exact solution to the Ising model in the shortcut network in the 2D limit. The solution is found by mapping the model to the square lattice model with Brascamp and Kunz boundary conditions.

  9. Recovering 3D particle size distributions from 2D sections

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Olson, Daniel M.

    2017-03-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.

  10. Negative Terahertz Photoconductivity in 2D Layered Materials.

    PubMed

    Lu, Junpeng; Liu, Hongwei; Sun, Jing

    2017-09-13

    The remarkable specialties of 2D layered materials like the wide spectral coverage, high strength and great flexibility endow ultrathin 2D layered materials the potential to meet the criteria of next generation optoelectronic devices. Photoconductivity is one of the critical parameters of materials applied to optoelectronics. Different to the traditional semiconductors, specific ultrathin 2D layers present anomalous negative photoconductivity. This opens a new avenue for designing novel optoelectronic devices. Deep understanding of the fundamentals in this anomalous response is important for design and optimization of devices. In this review, we provide an overview into the observation of negative photoconductivity in 2D layered materials including graphene, topological insulators and transitional mental dichalcogenides. We also summarize the recent reports about the investigations of the fundamental mechanism using ultrafast terahertz spectroscopies. Finally, we conclude the review by discussing the existing challenges and proposing the possible prospects of this research direction. © 2017 IOP Publishing Ltd.

  11. Phonon thermal conduction in novel 2D materials.

    PubMed

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-07

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  12. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-09

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  13. Phonon thermal conduction in novel 2D materials

    NASA Astrophysics Data System (ADS)

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-01

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  14. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  15. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  16. From weakly to strongly interacting 2D Fermi gases

    NASA Astrophysics Data System (ADS)

    Dyke, Paul; Fenech, Kristian; Lingham, Marcus; Peppler, Tyson; Hoinka, Sascha; Vale, Chris

    2014-05-01

    We study ultracold 2D Fermi gases of 6Li formed in a highly oblate trapping potential. The potential is generated by a cylindrically focused, blue detuned TEM01 mode laser beam. Weak magnetic field curvature provides highly harmonic confinement in the radial direction and we can readily produce single clouds with an aspect ratio of 230. Our experiments investigate the dimensional crossover from 3D to 2D for a two component Fermi gas in the Bose-Einstein Condensate to Bardeen Cooper Schrieffer crossover. Observation of an elbow in measurements of the cloud width vs. atom number is consistent with populating only the lowest transverse harmonic oscillator state for weak attractive interactions. This measurement is extended to the strongly interacting region using the broad Feshbach resonance at 832 G. We also report our progress towards measurement of the 2D equation of state for an interacting 2D Fermi gas via in-situ absorption imaging.

  17. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  18. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  19. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  20. Dispersion in alluvial convergent estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2016-04-01

    The Van der Burgh's equation for longitudinal effective dispersion is a purely empirical method with practical implications. Its application to the effective tidal average dispersion under equilibrium conditions appears to have excellent performance in a wide range of alluvial estuaries. In this research, we try to find out the physical meaning of Van der Burgh's coefficient. Researchers like MacCready, Fischer, Kuijper, Hansen and Rattray have tried to split up dispersion into its constituents which did not do much to explain overall behaviour. In addition, traditional literature on dispersion is mostly related to flumes with constant cross-section. This research is about understanding the Van der Burgh's coefficient facing the fact that natural estuaries have exponentially varying cross-section. The objective is to derive a simple 1-D model considering both longitudinal and lateral mixing processes based on field observations (theoretical derivation). To that effect, we connect dispersion with salinity using the salt balance equation. Then we calculate the salinity along the longitudinal direction and compare it to the observed salinity. Calibrated dispersion coefficients in a range of estuaries are then compared with new expressions for the Van der Burgh's coefficient K and it is analysed if K varies from estuary to estuary. The set of reliable data used will be from estuaries: Kurau, Perak, Bernam, Selangor, Muar, Endau, Maputo, Thames, Corantijn, Sinnamary, Mae Klong, Lalang, Limpopo, Tha Chin, Chao Phraya, Edisto and Elbe.

  1. Displacement Vector Measurement Using 2D Modulation by Virtual Hyperbolic Beam Forming

    NASA Astrophysics Data System (ADS)

    Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    For the purpose of diagnosing ischemic heart disease by detection of malfunction area and cancer tumor by detection of hard area, 3-D tissue motion must be correctly evaluated. So far various methods of measuring multidimensional displacement have been developed. Most of present techniques are restricted to one-dimensional measurement of tissue displacement such as myocardial stain-rate imaging. Although lateral modulation method enables us to attain high-accuracy measurement of lateral displacement as well as axial direction by generating lateral oscillating RF signals, the method causes distorted RF far from center of aperture. As a result, the method is not suited to sector scan which is used for myocardial examination. We propose a method to solve the problem by using 2-D modulation with the virtual hyperbolic beam forming and detection of 2-D displacement vector. The feasibilities of the proposed method were evaluated by numerically simulating the left ventricle short-axis imaging of cylindrical myocardial model. The volume strain image obtained by the proposed method clearly depicted the hard infarction area where conventional multi-beam Doppler imaging could not.

  2. Enhanced durability of polymer electrolyte membrane fuel cells by functionalized 2D boron nitride nanoflakes.

    PubMed

    Oh, Keun-Hwan; Lee, Dongju; Choo, Min-Ju; Park, Kwang Hyun; Jeon, Seokwoo; Hong, Soon Hyung; Park, Jung-Ki; Choi, Jang Wook

    2014-05-28

    We report boron nitride nanoflakes (BNNFs), for the first time, as a nanofiller for polymer electrolyte membranes in fuel cells. Utilizing the intrinsic mechanical strength of two-dimensional (2D) BN, addition of BNNFs even at a marginal content (0.3 wt %) significantly improves mechanical stability of the most representative hydrocarbon-type (HC-type) polymer electrolyte membrane, namely sulfonated poly(ether ether ketone) (sPEEK), during substantial water uptake through repeated wet/dry cycles. For facile processing with BNNFs that frequently suffer from poor dispersion in most organic solvents, we non-covalently functionalized BNNFs with 1-pyrenesulfonic acid (PSA). Besides good dispersion, PSA supports efficient proton transport through its sulfonic functional groups. Compared to bare sPEEK, the composite membrane containing BNNF nanofiller exhibited far improved long-term durability originating from enhanced dimensional stability and diminished chronic edge failure. This study suggests that introduction of properly functionalized 2D BNNFs is an effective strategy in making various HC-type membranes sustainable without sacrificing their original adventurous properties in polymer electrolyte membrane fuel cells.

  3. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  4. phase_space_cosmo_fisher: Fisher matrix 2D contours

    NASA Astrophysics Data System (ADS)

    Stark, Alejo

    2016-11-01

    phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.

  5. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  6. Supported and Free-Standing 2D Semimetals

    DTIC Science & Technology

    2015-01-15

    of this effort on focusing on rare- earth arsenides (RE-A), although not a van der Waals 2D solid, nonetheless, exhibits substantial 2D quantum size...this effort on focusing on rare- earth arsenides (RE- A), although not a van der Waals 20 solid, nonetheless, exhibits substantial 20 quantum size...Brongersma and S.R. Bank, "Rare- earth monopnictide alloys for tunable, epitaxial metals" in preparation. iii. S. Rahimi, E. M. Krivoy, J. Lee, M. E

  7. RNA folding pathways and kinetics using 2D energy landscapes.

    PubMed

    Senter, Evan; Dotu, Ivan; Clote, Peter

    2015-01-01

    RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.

  8. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  9. Application of 2-D graphical representation of DNA sequence

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Tan, Mingshu; Ding, Kequan

    2005-10-01

    Recently, we proposed a 2-D graphical representation of DNA sequence [Bo Liao, A 2-D graphical representation of DNA sequence, Chem. Phys. Lett. 401 (2005) 196-199]. Based on this representation, we consider properties of mutations and compute the similarities among 11 mitochondrial sequences belonging to different species. The elements of the similarity matrix are used to construct phylogenic tree. Unlike most existing phylogeny construction methods, the proposed method does not require multiple alignment.

  10. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  11. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  12. Regulation of NKG2D ligand gene expression.

    PubMed

    Eagle, Robert A; Traherne, James A; Ashiru, Omodele; Wills, Mark R; Trowsdale, John

    2006-03-01

    The activating immunoreceptor NKG2D has seven known host ligands encoded by the MHC class I chain-related MIC and ULBP/RAET genes. Why there is such diversity of NKG2D ligands is not known but one hypothesis is that they are differentially expressed in different tissues in response to different stresses. To explore this, we compared expression patterns and promoters of NKG2D ligand genes. ULBP/RAET genes were transcribed independent of each other in a panel of cell lines. ULBP/RAET gene expression was upregulated on infection with human cytomegalovirus; however, a clinical strain, Toledo, induced expression more slowly than did a laboratory strain, AD169. ULBP4/RAET1E was not induced by infection with either strain. To investigate the mechanisms behind the similarities and differences in NKG2D ligand gene expression a comparative sequence analysis of NKG2D ligand gene putative promoter regions was conducted. Sequence alignments demonstrated that there was significant sequence diversity; however, one region of high similarity between most of the genes is evident. This region contains a number of potential transcription factor binding sites, including those involved in shock responses and sites for retinoic acid-induced factors. Promoters of some NKG2D ligand genes are polymorphic and several sequence alterations in these alleles abolished putative transcription factor binding.

  13. CYP2D6 variability in populations from Venezuela.

    PubMed

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  14. Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets.

    PubMed

    Owerre, S A

    2017-07-31

    In this report, we propose a new concept of one-dimensional (1D) closed lines of Dirac magnon nodes in two-dimensional (2D) momentum space of quasi-2D quantum magnetic systems. They are termed "2D Dirac magnon nodal-line loops". We utilize the bilayer honeycomb ferromagnets with intralayer coupling J and interlayer coupling J L , which is realizable in the honeycomb chromium compounds CrX3 (X ≡ Br, Cl, and I). However, our results can also exist in other layered quasi-2D quantum magnetic systems. Here, we show that the magnon bands of the bilayer honeycomb ferromagnets overlap for J L  ≠ 0 and form 1D closed lines of Dirac magnon nodes in 2D momentum space. The 2D Dirac magnon nodal-line loops are topologically protected by inversion and time-reversal symmetry. Furthermore, we show that they are robust against weak Dzyaloshinskii-Moriya interaction Δ DM  < J L and possess chiral magnon edge modes.

  15. [2D:4D finger ratio and language development].

    PubMed

    Albores-Gallo, L; Fernández-Guasti, A; Hernández-Guzmán, L; List-Hilton, C

    A possible hormonal influence in language development has been suggested in the recent years. The 2D:4D finger ratio is an indirect measure for prenatal androgen exposure. It is negatively related to prenatal testosterone and positively related to prenatal estrogen, resulting in a lower ratio for men and a larger ratio for women. It can be explored in children as young as 2 years old. To study if an association exists between the 2D:4D finger ratio and language development (vocabulary) and/or language problems. The lengths of the second digit (index finger) (2D) and the fourth digit (ring finger) (4D) were measured in 97 preschoolers and the Language Development Survey was administered to the parents. A weak negative correlation between language development (vocabulary) and right 2D:4D ratio was found in both sexes for children aged 4 or less years, significant only in boys. A strong negative correlation between language articulation problems and right 2D:4D ratio in both sexes for children aged 3 or less years, and a lower negative correlation between articulation problems and right 2D:4D ratio were found for boys aged 4 or less years. Findings suggest an important role for testosterone in language development (vocabulary) and a possible influence on articulation problems, probably through higher testosterone levels.

  16. 2D microscopic model of graphene fracture properties

    NASA Astrophysics Data System (ADS)

    Hess, Peter

    2015-05-01

    An analytical two-dimensional (2D) microscopic fracture model based on Morse-type interaction is derived containing no adjustable parameter. From the 2D Young’s moduli and 2D intrinsic strengths of graphene measured by nanoindentation based on biaxial tension and calculated by density functional theory for uniaxial tension the widely unknown breaking force, line or edge energy, surface energy, fracture toughness, and strain energy release rate were determined. The simulated line energy agrees well with ab initio calculations and the fracture toughness of perfect graphene sheets is in good agreement with molecular dynamics simulations and the fracture toughness evaluated for defective graphene using the Griffith relation. Similarly, the estimated critical strain energy release rate agrees well with result of various theoretical approaches based on the J-integral and surface energy. The 2D microscopic model, connecting 2D and three-dimensional mechanical properties in a consistent way, provides a versatile relationship to easily access all relevant fracture properties of pristine 2D solids.

  17. CHEM2D: a two-dimensional, three-phase, nine-component chemical flood simulator. Volume I. CHEM2D technical description and FORTRAN code

    SciTech Connect

    Fanchi, J.R.

    1985-04-01

    Under the sponsorship of the US Department of Energy, a publicly available chemical simulator has been evaluated and substantially enhanced to serve as a useful tool for projecting polymer or chemical flood performance. The program, CHEM2D, is a two-dimensional, three-phase, nine-component finite-difference numerical simulator. It can model primary depletion, waterfloods, polymer floods, and micellar/polymer floods using heterogeneous linear, areal, or cross-sectional reservoir descriptions. The user may specify well performance as either pressure or rate constrained. Both a constant time step size and a variable time step size based on extrapolation of concentration changes are available as options. A solution technique which is implicit in pressure and explicit in saturations and concentrations is used. The major physical mechanisms that are modeled include adsorption, capillary trapping, cation exchange, dilution, dispersion, interfacial tension, binary or ternary phase behavior, non-Newtonian polymer rheology, and two-phase or three-phase relative permeability. Typical components include water, oil, surfactant, polymer, and three ions (chloride, calcium, and sodium). Components may partition amongst the aqueous, oleic, and microemulsion phases. Volume I of this report provides a discussion of the formulation and algorithms used within CHEM2D. Included in Volume I are a number of validation and illustrative examples, as well as the FORTRAN code. The CHEM2D user's manual, Volume II, contains both the input data sets for the examples presented in Volume I and an example output. All appendices and a phase behavior calculation program are collected in Volume III. 20 references.

  18. Wage and Test Score Dispersion: Some International Evidence.

    ERIC Educational Resources Information Center

    Bedard, Kelly; Ferrall, Christopher

    2003-01-01

    Compares the distribution of test scores at age 13 in 1964 and 1982 and wages later in life across 11 countries. Finds that wage dispersion later in life is never greater than test-score dispersion. For three countries (U.S., UK, and Japan), finds evidence of skill-biased changes in wage dispersion between the early 1970s and the late 1980s.…

  19. Wage and Test Score Dispersion: Some International Evidence.

    ERIC Educational Resources Information Center

    Bedard, Kelly; Ferrall, Christopher

    2003-01-01

    Compares the distribution of test scores at age 13 in 1964 and 1982 and wages later in life across 11 countries. Finds that wage dispersion later in life is never greater than test-score dispersion. For three countries (U.S., UK, and Japan), finds evidence of skill-biased changes in wage dispersion between the early 1970s and the late 1980s.…

  20. Fundamental performance assessment of 2-D myocardial elastography in a phased-array configuration.

    PubMed

    Luo, Jianwen; Lee, Wei-Ning; Konofagou, Elisa E

    2009-10-01

    Two-dimensional myocardial elastography, an RF-based, speckle-tracking technique, uses 1-D cross-correlation and recorrelation methods in a 2-D search, and can estimate and image the 2-D transmural motion and deformation of the myocardium so as to characterize the cardiac function. Based on a 3-D finite-element (FE) canine left-ventricular model, a theoretical framework was previously developed by our group to evaluate the estimation quality of 2-D myocardial elastography using a linear array. In this paper, an ultrasound simulation program, Field II, was used to generate the RF signals of a model of the heart in a phased-array configuration and under 3-D motion conditions; thus simulating a standard echocardiography exam. The estimation method of 2-D myocardial elastography was adapted for use with such a configuration. All elastographic displacements and strains were found to be in good agreement with the FE solutions, as indicated by the mean absolute error (MAE) between the two. The classified first and second principal strains approximated the radial and circumferential strains, respectively, in the phased-array configuration. The results at different sonographic signal-to-noise ratios (SNR(s)) showed that the MAEs of the axial, lateral, radial, and circumferential strains remained relatively constant when the SNR(s) was equal to or higher than 20 dB. The MAEs of the strain estimation were not significantly affected when the acoustic attenuation was included in the simulations. A significantly reduced number of scatterers could be used to speed up the simulation, without sacrificing the estimation quality.The proposed framework can further be used to assess the estimation quality, explore the theoretical limitation and investigate the effects of various parameters in 2-D myocardial elastography under more realistic conditions.

  1. Momentum Transport: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2001-01-01

    The major objective of this study is to investigate the momentum budgets associated with several convective systems that developed during the TOGA COARE IOP (west Pacific warm pool region) and GATE (east Atlantic region). The tool for this study is the improved Goddard Cumulas Ensemble (GCE) model which includes a 3-class ice-phase microphysical scheme, explicit cloud radiative interactive processes and air-sea interactive surface processes. The model domain contains 256 x 256 grid points (with 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km) in the vertical. The 2D domain has 1024 grid points. The simulations were performed over a 7-day time period (December 19-26, 1992, for TOGA COARE and September 1-7, 1994 for GATE). Cyclic literal boundary conditions are required for this type of long-term integration. Two well organized squall systems (TOGA, COARE February 22, 1993, and GATE September 12, 1994) were also simulated using the 3D GCE model. Only 9 h simulations were required to cover the life time of the squall systems. the lateral boundary conditions were open for these two squall systems simulations. the following will be examined: (1) the momentum budgets in the convective and stratiform regions, (2) the relationship between momentum transport and cloud organization (i.e., well organized squall lines versus less organized convective), (3) the differences and similarities in momentum transport between 2D and 3D simulated convective systems, and (4) the differences and similarities in momentum budgets between cloud systems simulated with open and cyclic lateral boundary conditions. Preliminary results indicate that there are only small differences between 2D and 3D simulated momentum budgets. Major differences occur, however, between momentum budgets associated with squall systems simulated using different lateral boundary conditions.

  2. Function Lateralization via Measuring Coherence Laterality

    PubMed Central

    Wang, Ze; Mechanic-Hamilton, Dawn; Pluta, John; Glynn, Simon; Detre, John A.

    2009-01-01

    A data-driven approach for lateralization of brain function based on the spatial coherence difference of functional MRI (fMRI) data in homologous regions-of-interest (ROI) in each hemisphere is proposed. The utility of using coherence laterality (CL) to determine function laterality was assessed first by examining motor laterality using normal subjects’ data acquired both at rest and with a simple unilateral motor task and subsequently by examining mesial temporal lobe memory laterality in normal subjects and patients with temporal lobe epilepsy. The motor task was used to demonstrate that CL within motor ROI correctly lateralized functional stimulation. In patients with unilateral epilepsy studied during a scene-encoding task, CL in a hippocampus-parahippocampus-fusiform (HPF) ROI was concordant with lateralization based on task activation, and the CL index (CLI) significantly differentiated the right side group to the left side group. By contrast, normal controls showed a symmetric HPF CLI distribution. Additionally, similar memory laterality prediction results were still observed using CL in epilepsy patients with unilateral seizures after the memory encoding effect was removed from the data, suggesting the potential for lateralization of pathological brain function based on resting fMRI data. A better lateralization was further achieved via a combination of the proposed approach and the standard activation based approach, demonstrating that assessment of spatial coherence changes provides a complementary approach to quantifying task-correlated activity for lateralizing brain function. PMID:19345736

  3. 2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine.

    PubMed

    Khan, Aamar F; Brownson, Dale A C; Randviir, Edward P; Smith, Graham C; Banks, Craig E

    2016-10-04

    Crystalline 2D hexagonal boron nitride (2D-hBN) nanosheets are explored as a potential electrocatalyst toward the electroanalytical sensing of dopamine (DA). The 2D-hBN nanosheets are electrically wired via a drop-casting modification process onto a range of commercially available carbon supporting electrodes, including glassy carbon (GC), boron-doped diamond (BDD), and screen-printed graphitic electrodes (SPEs). 2D-hBN has not previously been explored toward the electrochemical detection/electrochemical sensing of DA. We critically evaluate the potential electrocatalytic performance of 2D-hBN modified electrodes, the effect of supporting carbon electrode platforms, and the effect of "mass coverage" (which is commonly neglected in the 2D material literature) toward the detection of DA. The response of 2D-hBN modified electrodes is found to be largely dependent upon the interaction between 2D-hBN and the underlying supporting electrode material. For example, in the case of SPEs, modification with 2D-hBN (324 ng) improves the electrochemical response, decreasing the electrochemical oxidation potential of DA by ∼90 mV compared to an unmodified SPE. Conversely, modification of a GC electrode with 2D-hBN (324 ng) resulted in an increased oxidation potential of DA by ∼80 mV when compared to the unmodified electrode. We explore the underlying mechanisms of the aforementioned examples and infer that electrode surface interactions and roughness factors are critical considerations. 2D-hBN is utilized toward the sensing of DA in the presence of the common interferents ascorbic acid (AA) and uric acid (UA). 2D-hBN is found to be an effective electrocatalyst in the simultaneous detection of DA and UA at both pH 5.0 and 7.4. The peak separations/resolution between DA and UA increases by ∼70 and 50 mV (at pH 5.0 and 7.4, respectively, when utilizing 108 ng of 2D-hBN) compared to unmodified SPEs, with a particularly favorable response evident in pH 5.0, giving rise to a

  4. Capabilities using 2-D DIGE in proteomics research : the new gold standard for 2-D gel electrophoresis.

    PubMed

    Rozanas, Christine R; Loyland, Stacey M

    2008-01-01

    The use of two-dimensional gel electrophoresis for differential analysis in proteomics was revolutionized by the introduction of 2-D fluorescence difference gel electrophoresis (2-D DIGE). This fluorescence-based technique allows the use of multiplexed samples and an internal standard that virtually eliminates gel-to-gel variability, resulting in increased confidence that differences found between samples are due to real induced changes, rather than inherent biological variation or experimental variability. 2-D DIGE has quickly become the "gold standard" for gel-based proteomics for studying tissues, as well as cell culture and bodily fluids such as serum or plasma. This chapter will describe the basic 2-D DIGE technique using minimal labeling, image acquisition using high-quality fluorescence scanners, and software capable of analyzing the multiplexed images and normalizing the data using the internal standard.

  5. Penetration of tungsten-alloy rods into composite ceramic targets: Experiments and 2-D simulations

    NASA Astrophysics Data System (ADS)

    Rosenberg, Z.; Dekel, E.; Hohler, V.; Stilp, A. J.; Weber, K.

    1998-07-01

    A series of terminal ballistics experiments, with scaled tungsten-alloy penetrators, was performed on composite targets consisting of ceramic tiles glued to thick steel backing plates. Tiles of silicon-carbide, aluminum nitride, titanium-dibroide and boron-carbide were 20-80 mm thick, and impact velocity was 1.7 km/s. 2-D numerical simulations, using the PISCES code, were performed in order to simulate these shots. It is shown that a simplified version of the Johnson-Holmquist failure model can account for the penetration depths of the rods but is not enough to capture the effect of lateral release waves on these penetrations.

  6. Correlation between a 2D simple image analysis method and 3D bony motion during the pivot shift test.

    PubMed

    Arilla, Fabio V; Rahnemai-Azar, Amir Ata; Yacuzzi, Carlos; Guenther, Daniel; Engel, Benjamin S; Fu, Freddie H; Musahl, Volker; Debski, Richard E

    2016-12-01

    The pivot shift test is the most specific clinical test to detect anterior cruciate ligament injury. The purpose of this study was to determine the correlation between the 2D simple image analysis method and the 3D bony motion of the knee during the pivot shift test and assess the intra- and inter-examiner agreements. Three orthopedic surgeons performed three trials of the standardized pivot shift test in seven knees. Two devices were used to measure motion of the lateral knee compartment simultaneously: 1) 2D simple image analysis method: translation was determined using a tablet computer with custom motion tracking software that quantified movement of three markers attached to skin over bony landmarks; 2) 3D bony motion: electromagnetic tracking system was used to measure movement of the same bony landmarks. The 2D simple image analysis method demonstrated a good correlation with the 3D bony motion (Pearson correlation: 0.75, 0.76 and 0.79). The 3D bony translation increased by 2.7 to 3.5 times for every unit increase measured by the 2D simple image analysis method. The mean intra-class correlation coefficients for the three examiners were 0.6 and 0.75, respectively for 3D bony motion and 2D image analyses, while the inter-examiner agreement was 0.65 and 0.73, respectively. The 2D simple image analysis method results are related to 3D bony motion of the lateral knee compartment, even with skin artifact present. This technique is a non-invasive and repeatable tool to quantify the motion of the lateral knee compartment during the pivot shift test. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Digit ratio (2D:4D) and postoperative pain perception.

    PubMed

    Kasielska-Trojan, Anna; Stabryła, Piotr; Antoszewski, Bogusław

    2017-07-01

    It has not been established whether sex differences in pain perception are influenced by prenatal sex hormones. Digit ratio as an indicator of prenatal hormone exposure can be used as a simple measure of the influence of prenatal hormones on pain sensitivity or perception in adulthood. The aim of this study was to determine a correlation between the 2D:4D ratio and pain perception in the postoperative period after rhinoplasty. A prospective cohort study of 100 patients (50 women of the mean age of 30.74±8.09years and 50 men of the mean age of 30.98±10.86years) who underwent posttraumatic rhinoplasty due to the nose trauma in Plastic, Reconstructive and Aesthetic Surgery Clinic. The following measurements were taken the day before a surgery: body height, waist and hip circumference, II and IV digits' lengths and body weight. All subjects filled in a questionnaire including 0-10-point VAS scales to assess postoperative pain 1h after an operation (AO), 6h AO, 12h AO, 24h AO and 48h AO. Women with low 2D:4D reported significantly more pain 1h after an operation than women with high 2D:4D. Similar correlation was observed for low 2D:4D in women 48h AO. In men, low 2D:4D was associated with lower postoperative pain 12h AO (p=0.029). In conclusion, we showed that low 2D:4D in women was associated with high postoperative pain, and low right 2D:4D in men was associated with low postoperative pain. This may suggest that intrauterine estrogen exposure makes women more resistant to pain. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. An automated pipeline to screen membrane protein 2D crystallization

    PubMed Central

    Kim, Changki; Vink, Martin; Hu, Minghui; Love, James; Stokes, David L.; Ubarretxena-Belandia, Iban

    2011-01-01

    Electron crystallography relies on electron cryomicroscopy of two-dimensional (2D) crystals and is particularly well suited for studying the structure of membrane proteins in their native lipid bilayer environment. To obtain 2D crystals from purified membrane proteins, the detergent in a protein-lipid-detergent ternary mixture must be removed, generally by dialysis, under conditions favoring reconstitution into proteoliposomes and formation of well-ordered lattices. To identify these conditions a wide range of parameters such as pH, lipid composition, lipid-to-protein ratio, ionic strength and ligands must be screened in a procedure involving four steps: crystallization, specimen preparation for electron microscopy, image acquisition, and evaluation. Traditionally, these steps have been carried out manually and, as a result, the scope of 2D crystallization trials has been limited. We have therefore developed an automated pipeline to screen the formation of 2D crystals. We employed a 96-well dialysis block for reconstitution of the target protein over a wide range of conditions designed to promote crystallization. A 96-position magnetic platform and a liquid handling robot were used to prepare negatively stained specimens in parallel. Robotic grid insertion into the electron microscope and computerized image acquisition ensures rapid evaluation of the crystallization screen. To date, 38 2D crystallization screens have been conducted for 15 different membrane proteins, totaling over 3000 individual crystallization experiments. Three of these proteins have yielded diffracting 2D crystals. Our automated pipeline outperforms traditional 2D crystallization methods in terms of throughput and reproducibility. PMID:20349145

  9. Hybrid Dispersion Laser Scanner

    PubMed Central

    Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627

  10. Hybrid dispersion laser scanner.

    PubMed

    Goda, K; Mahjoubfar, A; Wang, C; Fard, A; Adam, J; Gossett, D R; Ayazi, A; Sollier, E; Malik, O; Chen, E; Liu, Y; Brown, R; Sarkhosh, N; Di Carlo, D; Jalali, B

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points.

  11. Upgraded immersive input display device (I2D2)

    NASA Astrophysics Data System (ADS)

    Tremper, David; Brosky, Andy

    2007-04-01

    In an effort to reduce the effects of ambient light on the read-ability of military displays, the Naval Research Lab began investigating and developing advanced hand-held displays. Analysis and research of display technologies with consideration for vulnerability to environmental conditions resulted in the complete design and fabrication of the handheld Immersive Input Display Device (I2D2) monocular. The I2D2 combines an OLED SVGA micro-display with an optics configuration and a rubber pressure-eyecup which allows view-ability only when the eyecup is depressed. This feature allows the I2D2 to be used during the day, while not allowing ambient light to affect the readability. It simultaneously controls light leakage, effectively eliminating the illumination, and thus preserving the tactical position, of the user in the dark. This paper will focus on the upgraded I2D2 system as it compares to the I2D2 presented at SPIE 2006.

  12. Mermin-Wagner fluctuations in 2D amorphous solids

    NASA Astrophysics Data System (ADS)

    Illing, Bernd; Fritschi, Sebastian; Kaiser, Herbert; Klix, Christian L.; Maret, Georg; Keim, Peter

    2017-02-01

    In a recent commentary, J. M. Kosterlitz described how D. Thouless and he got motivated to investigate melting and suprafluidity in two dimensions [Kosterlitz JM (2016) J Phys Condens Matter 28:481001]. It was due to the lack of broken translational symmetry in two dimensions—doubting the existence of 2D crystals—and the first computer simulations foretelling 2D crystals (at least in tiny systems). The lack of broken symmetries proposed by D. Mermin and H. Wagner is caused by long wavelength density fluctuations. Those fluctuations do not only have structural impact, but additionally a dynamical one: They cause the Lindemann criterion to fail in 2D in the sense that the mean squared displacement of atoms is not limited. Comparing experimental data from 3D and 2D amorphous solids with 2D crystals, we disentangle Mermin-Wagner fluctuations from glassy structural relaxations. Furthermore, we demonstrate with computer simulations the logarithmic increase of displacements with system size: Periodicity is not a requirement for Mermin-Wagner fluctuations, which conserve the homogeneity of space on long scales.

  13. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  14. 2D Materials for Optical Modulation: Challenges and Opportunities.

    PubMed

    Yu, Shaoliang; Wu, Xiaoqin; Wang, Yipei; Guo, Xin; Tong, Limin

    2017-02-21

    Owing to their atomic layer thickness, strong light-material interaction, high nonlinearity, broadband optical response, fast relaxation, controllable optoelectronic properties, and high compatibility with other photonic structures, 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, have been attracting increasing attention for photonic applications. By tuning the carrier density via electrical or optical means that modifies their physical properties (e.g., Fermi level or nonlinear absorption), optical response of the 2D materials can be instantly changed, making them versatile nanostructures for optical modulation. Here, up-to-date 2D material-based optical modulation in three categories is reviewed: free-space, fiber-based, and on-chip configurations. By analysing cons and pros of different modulation approaches from material and mechanism aspects, the challenges faced by using these materials for device applications are presented. In addition, thermal effects (e.g., laser induced damage) in 2D materials, which are critical to practical applications, are also discussed. Finally, the outlook for future opportunities of these 2D materials for optical modulation is given.

  15. Rotation invariance principles in 2D/3D registration

    NASA Astrophysics Data System (ADS)

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels C.; Jacob, Augustinus L.; Regazzoni, Pietro; Messmer, Peter

    2003-05-01

    2D/3D patient-to-computed tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 2D/3D registration is the fast that finding a registration includes sovling a minimization problem in six degrees-of-freedom in motion. This results in considerable time expenses since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations aroudn a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of its original value. The method was implemented and extensively tested on simulated x-ray images of a pelvis. We conclude that this hardware-indepenent optimization of 2D/3D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  16. Regulation of ligands for the activating receptor NKG2D

    PubMed Central

    Mistry, Anita R; O'Callaghan, Chris A

    2007-01-01

    The outcome of an encounter between a cytotoxic cell and a potential target cell depends on the balance of signals from inhibitory and activating receptors. Natural Killer group 2D (NKG2D) has recently emerged as a major activating receptor on T lymphocytes and natural killer cells. In both humans and mice, multiple different genes encode ligands for NKG2D, and these ligands are non-classical major histocompatibility complex class I molecules. The NKG2D–ligand interaction triggers an activating signal in the cell expressing NKG2D and this promotes cytotoxic lysis of the cell expressing the ligand. Most normal tissues do not express ligands for NKG2D, but ligand expression has been documented in tumour and virus-infected cells, leading to lysis of these cells. Tight regulation of ligand expression is important. If there is inappropriate expression in normal tissues, this will favour autoimmune processes, whilst failure to up-regulate the ligands in pathological conditions would favour cancer development or dissemination of intracellular infection. PMID:17614877

  17. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  18. Mermin-Wagner fluctuations in 2D amorphous solids.

    PubMed

    Illing, Bernd; Fritschi, Sebastian; Kaiser, Herbert; Klix, Christian L; Maret, Georg; Keim, Peter

    2017-02-21

    In a recent commentary, J. M. Kosterlitz described how D. Thouless and he got motivated to investigate melting and suprafluidity in two dimensions [Kosterlitz JM (2016) J Phys Condens Matter 28:481001]. It was due to the lack of broken translational symmetry in two dimensions-doubting the existence of 2D crystals-and the first computer simulations foretelling 2D crystals (at least in tiny systems). The lack of broken symmetries proposed by D. Mermin and H. Wagner is caused by long wavelength density fluctuations. Those fluctuations do not only have structural impact, but additionally a dynamical one: They cause the Lindemann criterion to fail in 2D in the sense that the mean squared displacement of atoms is not limited. Comparing experimental data from 3D and 2D amorphous solids with 2D crystals, we disentangle Mermin-Wagner fluctuations from glassy structural relaxations. Furthermore, we demonstrate with computer simulations the logarithmic increase of displacements with system size: Periodicity is not a requirement for Mermin-Wagner fluctuations, which conserve the homogeneity of space on long scales.

  19. Mermin–Wagner fluctuations in 2D amorphous solids

    PubMed Central

    Illing, Bernd; Fritschi, Sebastian; Kaiser, Herbert; Klix, Christian L.; Maret, Georg; Keim, Peter

    2017-01-01

    In a recent commentary, J. M. Kosterlitz described how D. Thouless and he got motivated to investigate melting and suprafluidity in two dimensions [Kosterlitz JM (2016) J Phys Condens Matter 28:481001]. It was due to the lack of broken translational symmetry in two dimensions—doubting the existence of 2D crystals—and the first computer simulations foretelling 2D crystals (at least in tiny systems). The lack of broken symmetries proposed by D. Mermin and H. Wagner is caused by long wavelength density fluctuations. Those fluctuations do not only have structural impact, but additionally a dynamical one: They cause the Lindemann criterion to fail in 2D in the sense that the mean squared displacement of atoms is not limited. Comparing experimental data from 3D and 2D amorphous solids with 2D crystals, we disentangle Mermin–Wagner fluctuations from glassy structural relaxations. Furthermore, we demonstrate with computer simulations the logarithmic increase of displacements with system size: Periodicity is not a requirement for Mermin–Wagner fluctuations, which conserve the homogeneity of space on long scales. PMID:28137872

  20. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  1. 2D DIGE saturation labeling for minute sample amounts.

    PubMed

    Arnold, Georg J; Fröhlich, Thomas

    2012-01-01

    The 2D DIGE technique, based on fluorophores covalently linked to amino acid side chain residues and the concept of an internal standard, has significantly improved reproducibility, sensitivity, and the dynamic range of protein quantification. In saturation DIGE, sulfhydryl groups of cysteines are labeled with cyanine dyes to completion, providing a so far unraveled sensitivity for protein detection and quantification in 2D gel-based proteomic experiments. Only a few micrograms of protein per 2D gel facilitate the analysis of about 2,000 analytes from complex mammalian cell or tissue samples. As a consequence, 2D saturation DIGE is the method of choice when only minute sample amounts are available for quantitative proteome analysis at the level of proteins rather than peptides. Since very low amounts of samples have to be handled in a reproducible manner, saturation DIGE-based proteomic experiments are technically demanding. Moreover, successful saturation DIGE approaches require a strict adherence to adequate reaction conditions at each step. This chapter is dedicated to colleagues already experienced in 2D PAGE protein separation and intends to support the establishment of this ultrasensitive technique in proteomic workgroups. We provide basic guidelines for the experimental design and discuss crucial aspects concerning labeling chemistry, sample preparation, and pitfalls caused by labeling artifacts. A detailed step-by-step protocol comprises all aspects from initial sample preparation to image analysis and statistical evaluation. Furthermore, we describe the generation of preparative saturation DIGE gels necessary for mass spectrometry-based spot identification.

  2. 2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Xugang; Krause, Lars; Görög, Mark; Schüler, Oliver; Hauslage, Jens; Hemmersbach, Ruth; Kircher, Stefan; Lasok, Hanna; Haser, Thomas; Rapp, Katja; Schmidt, Jürgen; Yu, Xin; Pasternak, Taras; Aubry-Hivet, Dorothée; Tietz, Olaf; Dovzhenko, Alexander; Palme, Klaus; Ditengou, Franck Anicet

    2016-04-01

    Ground-based simulators of microgravity such as fast rotating 2-D clinostats are valuable tools to study gravity related processes. We describe here a versatile g-value-adjustable 2-D clinostat that is suitable for plant analysis. To avoid seedling adaptation to 1 g after clinorotation, we designed chambers that allow rapid fixation. A detailed protocol for fixation, RNA isolation and the analysis of selected genes is described. Using this clinostat we show that mRNA levels of LONG HYPOCOTYL 5 (HY5), MIZU-KUSSEI 1 (MIZ1) and microRNA MIR163 are down-regulated in 5-day-old Arabidopsis thaliana roots after 3 min and 6 min of clinorotation using a maximal reduced g-force of 0.02 g, hence demonstrating that this 2-D clinostat enables the characterization of early transcriptomic events during root response to microgravity. We further show that this 2-D clinostat is able to compensate the action of gravitational force as both gravitropic-dependent statolith sedimentation and subsequent auxin redistribution (monitoring D R5 r e v :: G F P reporter) are abolished when plants are clinorotated. Our results demonstrate that 2-D clinostats equipped with interchangeable growth chambers and tunable rotation velocity are suitable for studying how plants perceive and respond to simulated microgravity.

  3. Perspective: Echoes in 2D-Raman-THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Hamm, Peter; Shalit, Andrey

    2017-04-01

    Recently, various spectroscopic techniques have been developed, which can measure the 2D response of the inter-molecular degrees of freedom of liquids in the THz regime. By employing hybrid Raman-THz pulse sequences, the inherent experimental problems of 2D-Raman spectroscopy are circumvented completely, culminating in the recent measurement of the 2D-Raman-THz responses of water and aqueous salt solutions. This review article focuses on the possibility to observe echoes in such experiments, which would directly reveal the inhomogeneity of the typically extremely blurred THz bands of liquids, and hence the heterogeneity of local structures that are transiently formed, in particular, in a hydrogen-bonding liquid such as water. The generation mechanisms of echoes in 2D-Raman-THz spectroscopy are explained, which differ from those in "conventional" 2D-IR spectroscopy in a subtle but important manner. Subsequently, the circumstances are discussed, under which echoes are expected, revealing a physical picture of the information content of an echo. That is, the echo decay reflects the lifetime of local structures in the liquid on a length scale that equals the delocalization length of the intermolecular modes. Finally, recent experimental results are reviewed from an echo perspective.

  4. Chemical vapour deposition: Transition metal carbides go 2D

    DOE PAGES

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a highmore » crystallinity and very low defect concentration.« less

  5. Optoelectronics based on 2D TMDs and heterostructures

    NASA Astrophysics Data System (ADS)

    Huo, Nengjie; Yang, Yujue; Li, Jingbo

    2017-03-01

    2D materials including graphene and TMDs have proven interesting physical properties and promising optoelectronic applications. We reviewed the growth, characterization and optoelectronics based on 2D TMDs and their heterostructures, and demonstrated their unique and high quality of performances. For example, we observed the large mobility, fast response and high photo-responsivity in MoS2, WS2 and WSe2 phototransistors, as well as the novel performances in vdW heterostructures such as the strong interlayer coupling, am-bipolar and rectifying behaviour, and the obvious photovoltaic effect. It is being possible that 2D family materials could play an increasingly important role in the future nano- and opto-electronics, more even than traditional semiconductors such as silicon.

  6. Splashing transients of 2D plasmons launched by swift electrons

    PubMed Central

    Lin, Xiao; Kaminer, Ido; Shi, Xihang; Gao, Fei; Yang, Zhaoju; Gao, Zhen; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Zhang, Baile

    2017-01-01

    Launching of plasmons by swift electrons has long been used in electron energy–loss spectroscopy (EELS) to investigate the plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, the question of how a swift electron generates plasmons in space and time has never been answered. We address this issue by calculating and demonstrating the spatial-temporal dynamics of 2D plasmon generation in graphene. We predict a jet-like rise of excessive charge concentration that delays the generation of 2D plasmons in EELS, exhibiting an analog to the hydrodynamic Rayleigh jet in a splashing phenomenon before the launching of ripples. The photon radiation, analogous to the splashing sound, accompanies the plasmon emission and can be understood as being shaken off by the Rayleigh jet–like charge concentration. Considering this newly revealed process, we argue that previous estimates on the yields of graphene plasmons in EELS need to be reevaluated. PMID:28138546

  7. IUPAP Award: Ion transport in 2D materials

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    Intercalation in 2D materials drastically influences both physical and chemical properties, which leads to a new degree of freedom for fundamental studies and expands the potential applications of 2D materials. In this talk, I will discuss our work in the past two years related to ion intercalation of 2D materials, including insertion of Li and Na ions in graphene and MoS2. We focused on both fundamental mechanism and potential application, e.g. we measured in-situ optical transmittance spectra and electrical transport properties of few-layer graphene (FLG) nanostructures upon electrochemical lithiation/delithiation. By observing a simultaneous increase of both optical transmittance and DC conductivity, strikingly different from other materials, we proposed its application as a next generation transparent electrode.

  8. Available information in 2D motional Stark effect imaging.

    PubMed

    Creese, Mathew; Howard, John

    2010-10-01

    Recent advances in imaging techniques have allowed the extension of the standard polarimetric 1D motional Stark effect (MSE) diagnostic to 2D imaging of the internal magnetic field of fusion devices [J. Howard, Plasma Phys. Controlled Fusion 50, 125003 (2008)]. This development is met with the challenge of identifying and extracting the new information, which can then be used to increase the accuracy of plasma equilibrium and current density profile determinations. This paper develops a 2D analysis of the projected MSE polarization orientation and Doppler phase shift. It is found that, for a standard viewing position, the 2D MSE imaging system captures sufficient information to allow imaging of the internal vertical magnetic field component B(Z)(r,z) in a tokamak.

  9. Secretory pathways generating immunosuppressive NKG2D ligands

    PubMed Central

    Baragaño Raneros, Aroa; Suarez-Álvarez, Beatriz; López-Larrea, Carlos

    2014-01-01

    Natural Killer Group 2 member D (NKG2D) activating receptor, present on the surface of various immune cells, plays an important role in activating the anticancer immune response by their interaction with stress-inducible NKG2D ligands (NKG2DL) on transformed cells. However, cancer cells have developed numerous mechanisms to evade the immune system via the downregulation of NKG2DL from the cell surface, including the release of NKG2DL from the cell surface in a soluble form. Here, we review the mechanisms involved in the production of soluble NKG2DL (sNKG2DL) and the potential therapeutic strategies aiming to block the release of these immunosuppressive ligands. Therapeutically enabling the NKG2D-NKG2DL interaction would promote immunorecognition of malignant cells, thus abrogating disease progression. PMID:25050215

  10. Rapid-scan coherent 2D fluorescence spectroscopy.

    PubMed

    Draeger, Simon; Roeding, Sebastian; Brixner, Tobias

    2017-02-20

    We developed pulse-shaper-assisted coherent two-dimensional (2D) electronic spectroscopy in liquids using fluorescence detection. A customized pulse shaper facilitates shot-to-shot modulation at 1 kHz and is employed for rapid scanning over all time delays. A full 2D spectrum with 15 × 15 pixels is obtained in approximately 6 s of measurement time (plus further averaging if needed). Coherent information is extracted from the incoherent fluorescence signal via 27-step phase cycling. We exemplify the technique on cresyl violet in ethanol and recover literature-known oscillations as a function of population time. Signal-to-noise behavior is analyzed as a function of the amount of averaging. Rapid scanning provides a 2D spectrum with a root-mean-square error of < 0.05 after 1 min of measurement time.

  11. 2d-retrieval For Mipas-envisat

    NASA Astrophysics Data System (ADS)

    Steck, T.; von Clarmann, T.; Grabowski, U.; Höpfner, M.

    Limb sounding of the Earth's atmosphere provides vertically high resolved profiles of geophysical parameters. The long ray path through the atmosphere makes limb sounders sensitive to even little abundant species. On the other hand, horizontal in- homogeneities, if not taken into account properly, can cause systematic errors within the retrieval process. Especially for limb emission measurements in the mid IR, at- mopheric temperature gradients result in considerable vmr retrieval errors if they are neglected. We present a dedicated method of taking full 2D fields of state parameters (indepen- dent of tangent points) into account in the forward model and in the retrieval. The basic idea is that the 2D state vector is updated sequentially for each limb scan. This method is applied to the 2D retrieval of temperature and vmr for simulated radiances as expected from MIPAS-ENVISAT.

  12. 2D materials for photon conversion and nanophotonics

    NASA Astrophysics Data System (ADS)

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  13. The Wigner distribution and 2D classical maps

    NASA Astrophysics Data System (ADS)

    Sakhr, Jamal

    2017-07-01

    The Wigner spacing distribution has a long and illustrious history in nuclear physics and in the quantum mechanics of classically chaotic systems. In this paper, a novel connection between the Wigner distribution and 2D classical mechanics is introduced. Based on a well-known correspondence between the Wigner distribution and the 2D Poisson point process, the hypothesis that typical pseudo-trajectories of a 2D ergodic map have a Wignerian nearest-neighbor spacing distribution (NNSD) is put forward and numerically tested. The standard Euclidean metric is used to compute the interpoint spacings. In all test cases, the hypothesis is upheld, and the range of validity of the hypothesis appears to be robust in the sense that it is not affected by the presence or absence of: (i) mixing; (ii) time-reversal symmetry; and/or (iii) dissipation.

  14. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  15. 2D-3D transition of gold cluster anions resolved

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael P.; Lechtken, Anne; Schooss, Detlef; Kappes, Manfred M.; Furche, Filipp

    2008-05-01

    Small gold cluster anions Aun- are known for their unusual two-dimensional (2D) structures, giving rise to properties very different from those of bulk gold. Previous experiments and calculations disagree about the number of gold atoms nc where the transition to 3D structures occurs. We combine trapped ion electron diffraction and state of the art electronic structure calculations to resolve this puzzle and establish nc=12 . It is shown that theoretical studies using traditional generalized gradient functionals are heavily biased towards 2D structures. For a correct prediction of the 2D-3D crossover point it is crucial to use density functionals yielding accurate jellium surface energies, such as the Tao-Perdew-Staroverov-Scuseria (TPSS) functional or the Perdew-Burke-Ernzerhof functional modified for solids (PBEsol). Further, spin-orbit effects have to be included, and large, flexible basis sets employed. This combined theoretical-experimental approach is promising for larger gold and other metal clusters.

  16. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  17. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  18. Applications of Doppler Tomography in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.

    2010-12-01

    Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.

  19. Chemical vapour deposition: Transition metal carbides go 2D

    SciTech Connect

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a high crystallinity and very low defect concentration.

  20. 2D:4D Ratio and its Implications in Medicine.

    PubMed

    Jeevanandam, Saravanakumar; Muthu, Prathibha K

    2016-12-01

    Digit ratios, especially 2D:4D ratio, a potential proxy marker for prenatal androgen exposure shows sexual dimorphism. Existing literature and recent research show accumulating evidence on 2D:4D ratio showing correlations with various phenotypic traits in humans. Ratio of 2D:4D is found to correlate negatively to testosterone and positively to oestrogen in the foetus. Interestingly, it is constant since birth and not influenced by the adult hormone levels. Usually, males have lower ratios when compared to females. Prenatal androgen exposure and therefore, digit ratios have been reported to be associated with numerical competencies, spatial skills, handedness, cognitive abilities, academic performance, sperm counts, personalities and prevalence of obesity, migraine, eating disorders, depression, myopia, autism etc. The authors have attempted to write a brief account on the digit ratios and the dimorphism observed in various physiological, psychological and behavioural traits. Also, the authors have discussed the relevant molecular basics and the methods of measurement of digit ratios.

  1. Determination of slope failure using 2-D resistivity method

    NASA Astrophysics Data System (ADS)

    Muztaza, Nordiana Mohd; Saad, Rosli; Ismail, Nur Azwin; Bery, Andy Anderson

    2017-07-01

    Landslides and slope failure may give negative economic effects including the cost to repair structures, loss of property value and medical costs in the event of injury. To avoid landslide, slope failure and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. The study on landslide and slope failure was conducted at Site A and Site B, Selangor using 2-D resistivity method. The implications of the anticipated ground conditions as well as the field observation of the actual conditions are discussed. Nine 2-D resistivity survey lines were conducted in Site A and six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed in Site B. The data were processed using Res2Dinv and Surfer10 software to evaluate the subsurface characteristics. 2-D resistivity results from both locations show that the study areas consist of two main zones. The first zone is alluvium or highly weathered with the resistivity of 100-1000 Ωm at 20-70 m depth. This zone consists of saturated area (1-100 Ωm) and boulders with resistivity value of 1200-3000 Ωm. The second zone with resistivity values of > 3000 Ωm was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. Based on the results obtained from the study findings, it can be concluded that 2-D resistivity method is useful method in determination of slope failure.

  2. Substrate effects and dielectric integration in 2D electronics

    NASA Astrophysics Data System (ADS)

    Chamlagain, Bhim Prasad

    The ultra-thin body of monolayer (and few-layer) two dimensional (2D) semiconducting materials such as transitional metal dichalconiges (TMDs), black phosphorous (BP) has demonstrated tremendous beneficial physical, transport, and optical properties for a wide range of applications. Because of their ultrathin bodies, the properties of 2D materials are highly sensitive to environmental effects. Particularly, the performance of 2D semiconductor electronic devices is strongly dependent on the substrate/dielectric properties, extrinsic impurities and absorbates. In this work, we systematically studied the transport properties of mechanically exfoliated few layer TMD field-effect transistors (FETs) consistently fabricated on various substrates including SiO2,Parylene -C, Al2O3, SiO2 modified by octadecyltrimethoxysilane (OTMS) self-assembled monolayer (SAMs), and hexagonal boron nitride (h-BN). We performed variable temperature transport measurements to understand the effects of various scattering mechanisms such as remote surface phonon scattering, coulomb scattering, surface roughness scattering on the mobility of these devices. To reveal the intrinsic channel properties, we also investigated TMD devices encapsulated by h-BN. To further optimize the dielectric interface and electrostatic control of the TMD channels, we developed a novel thermal-oxidation method to turn few-layer 2D metals into ultrathin and atomically flat high -kappa dielectrics. In order to optimize the performance of TMD electronic devices, it is also critical to fabricate low resistance ohmic contacts required for effectively injecting charge carriers into the TMD channel. Along this direction, we developed a new contact strategy to minimize the contact resistance for a variety of TMDs by van der Waals assembly of doped TMDs as contacts and undoped TMDs as channel materials. The developed unique method for low-resistance ohmic contacts achieved using the 2D/2D contact strategy and novel technique

  3. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy.

  4. Towards functional assembly of 3D and 2D nanomaterials

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher B.; Wang, Kai; Ievlev, Anton V.; Muckley, Eric S.; Ivanov, Ilia N.

    2016-09-01

    Functional assemblies of materials can be realized by tuning the work function and band gap of nanomaterials by rational material selection and design. Here we demonstrate the structural assembly of 2D and 3D nanomaterials and show that layering a 2D material monolayer on a 3D metal oxide leads to substantial alteration of both the surface potential and optical properties of the 3D material. A 40 nm thick film of polycrystalline NiO was produced by room temperature rf-sputtering, resulting in a 3D nanoparticle assembly. Chemical vapor deposition (CVD) grown 10-30 μm WS2 flakes (2D material) were placed on the NiO surface using a PDMS stamp transfer technique. The 2D/3D WS2/NiO assembly was characterized using confocal micro Raman spectroscopy to evaluate the vibrational properties and using Kelvin probe force microscopy (KPFM) to evaluate the surface potential. Raman maps of the 2D/3D assembly show spatial non-uniformity of the A1g mode ( 418 cm-1) and the disorder-enhanced longitudinal acoustic mode, 2LA(M) ( 350 cm-1), suggesting that the WS2 exists in a strained condition on when transferred onto 3D polycrystalline NiO. KPFM measurements show that single layer WS2 on SiO2 has a surface potential 75 mV lower than that of SiO2, whereas the surface potential of WS2 on NiO is 15 mV higher than NiO, indicating that WS2 could act as electron donor or acceptor depending on the 3D material it is interfaced with. Thus 2D and 3D materials can be organized into functional assemblies with electron flow controlled by the WS2 either as the electron donor or acceptor.

  5. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    SciTech Connect

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; McGuire, Michael A.; Srijanto, Bernadeta R.; Xiao, Kai; Eres, Gyula; Duscher, Gerd; Geohegan, David B.

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.

  6. Development of the Borehole 2-D Seismic Tomography Software Using MATLAB

    NASA Astrophysics Data System (ADS)

    Nugraha, A. D.; Syahputra, A.; Fatkhan, F.; Sule, R.; Hendriyana, A.

    2011-12-01

    We developed 2-D borehole seismic tomography software that we called "EARTHMAX-2D TOMOGRAPHY" to image subsurface physical properties including P-wave and S-wave velocities between two boreholes. We used Graphic User Interface (GUI) facilities of MATLAB programming language to create the software. In this software, we used travel time of seismic waves from source to receiver by using pseudo bending ray tracing method as input for tomography inversion. We can also set up a model parameterization, initial velocity model, ray tracing processes, conduct borehole seismic tomography inversion, and finally visualize the inversion results. The LSQR method was applied to solve of tomography inversion solution. We provided the Checkerboard Test Resolution (CTR) to evaluate the model resolution of the tomography inversion. As validation of this developed software, we tested it for geotechnical purposes. We then conducted data acquisition in the "ITB X-field" that is located on ITB campus. We used two boreholes that have a depth of 39 meters. Seismic wave sources were generated by impulse generator and sparker and then they were recorded by borehole hydrophone string type 3. Later on, we analyzed and picked seismic arrival time as input for tomography inversion. As results, we can image the estimated weathering layer, sediment layer, and basement rock in the field depicted by seismic wave structures. More detailed information about the developed software will be presented. Keywords: borehole, tomography, earthmax-2D, inversion

  7. On Classical Solutions to 2D Shallow Water Equations with Degenerate Viscosities

    NASA Astrophysics Data System (ADS)

    Li, Yachun; Pan, Ronghua; Zhu, Shengguo

    2017-03-01

    2D shallow water equations have degenerate viscosities proportional to surface height, which vanishes in many physical considerations, say, when the initial total mass, or energy are finite. Such a degeneracy is a highly challenging obstacle for development of well-posedness theory, even local-in-time theory remains open for a long time. In this paper, we will address this open problem with some new perspectives, independent of the celebrated BD-entropy (Bresch et al in Commun Math Phys 238:211-223, 2003, Commun Part Differ Eqs 28:843-868, 2003, Analysis and Simulation of Fluid Dynamics, 2007). After exploring some interesting structures of most models of 2D shallow water equations, we introduced a proper notion of solution class, called regular solutions, and identified a class of initial data with finite total mass and energy, and established the local-in-time well-posedness of this class of smooth solutions. The theory is applicable to most relatively physical shallow water models, broader than those with BD-entropy structures. We remark that our theory is on the local strong solutions, while the BD entropy is an essential tool for the global weak solutions. Later, a Beale-Kato-Majda type blow-up criterion is also established. This paper is mainly based on our early preprint (Li et al. in 2D compressible Navier-Stokes equations with degenerate viscosities and far field vacuum, preprint. arXiv:1407.8471, 2014).

  8. 2D Mesoscale Simulations of Quasielastic Reloading and Unloading in Shock Compressed Aluminum

    NASA Astrophysics Data System (ADS)

    Dwivedi, S. K.

    2007-06-01

    2D mesoscale simulations of planar shock compression, followed by either reloading or unloading, are presented that predict quasi-elastic (QE) response observed experimentally in shocked polycrystalline aluminum. The representative volume element (RVE) of the plate impact experiments included a realistic representation of a grain ensemble with apparent heterogeneities in the polycrystalline sample. Simulations were carried out using a 2D updated Lagrangian finite element code ISP-TROTP incorporating elastic-plastic deformation in grain interior and contact/cohesive methodology to analyze finite strength grain boundaries. Local heterogeneous response was quantified by calculating appropriate material variables along in-situ Lagrangian tracer lines and comparing the temporal variation of their mean values with results from 2D continuum simulations. Simulations were carried out by varying a large number of individual heterogeneities to predict QE response on reloading and unloading from shock state. The heterogeneities important for simulating the QE response identified from these simulations were: hardened grain boundaries, hard inclusions, and micro-porosity. It is shown that the shock-deformed state of polycrystalline aluminum in the presence of these effects is strongly heterogeneous with considerable variations in lateral stresses. This distributed stress state unloads the shear stress from flow stress causing QE response on reloading as well as unloading. The simulated velocity profiles and calculated shear strength and shear stresses for a representative reloading and unloading experimental configuration were found to agree well with the reported experimental data. Work supported by DOE.

  9. Systematic Approach to Electrostatically Induced 2D Crystallization of Nanoparticles at Liquid Interfaces

    SciTech Connect

    Fukuto, M.; Kewalramani, S.; Wang, S.; Lin, Y.; Nguyen, G.; Wang, Q.; Yang, L.

    2011-02-07

    We report an experimental demonstration of a strategy for inducing two-dimensional (2D) crystallization of charged nanoparticles on oppositely charged fluid interfaces. This strategy aims to maximize the interfacial adsorption of nanoparticles, and hence their lateral packing density, by utilizing a combination of weakly charged particles and a high surface charge density on the planar interface. In order to test this approach, we investigated the assembly of cowpea mosaic virus (CPMV) on positively charged lipid monolayers at the aqueous solution surface, by means of in situ X-ray scattering measurements at the liquid-vapor interface. The assembly was studied as a function of the solution pH, which was used to vary the charge on CPMV, and of the mole fraction of the cationic lipid in the binary lipid monolayer, which set the interface charge density. The 2D crystallization of CPMV occurred in a narrow pH range just above the particle's isoelectric point, where the particle charge was weakly negative, and only when the cationic-lipid fraction in the monolayer exceeded a threshold. The observed 2D crystals exhibited nearly the same packing density as the densest lattice plane within the known 3D crystals of CPMV. The above electrostatic approach of maximizing interfacial adsorption may provide an efficient route to the crystallization of nanoparticles at aqueous interfaces.

  10. Criminality and the 2D:4D ratio: testing the prenatal androgen hypothesis.

    PubMed

    Ellis, Lee; Hoskin, Anthony W

    2015-03-01

    A decade old theory hypothesizes that brain exposure to androgens promotes involvement in criminal behavior. General support for this hypothesis has been provided by studies of postpubertal circulating levels of testosterone, at least among males. However, the theory also predicts that for both genders, prenatal androgens will be positively correlated with persistent offending, an idea for which no evidence currently exists. The present study used an indirect measure of prenatal androgen exposure-the relative length of the second and fourth fingers of the right hand (r2D:4D)-to test the hypothesis that elevated prenatal androgens promote criminal tendencies later in life for males and females. Questionnaires were administered to 2,059 college students in Malaysia and 1,291 college students in the United States. Respondents reported their r2D:4D relative finger lengths along with involvement in 13 categories of delinquent and criminal acts. Statistically significant correlations between the commission of most types of offenses and r2D:4D ratios were found for males and females even after controlling for age. It is concluded that high exposure to androgens during prenatal development contributes to most forms of offending following the onset of puberty.

  11. Digit ratios (2D:4D), postnatal testosterone and eye contact in toddlers.

    PubMed

    Saenz, Janet; Alexander, Gerianne M

    2013-09-01

    Previous research has shown an association between eye contact and prenatal testosterone measured in amniocenteses samples. The purpose of this study was to test the association between eye contact and prenatal androgen action measured via second to fourth digit ratios (2D:4D ratios), and to explore the relationship between eye contact and postnatal testosterone levels. Participants included 72 children, between the ages of 18 and 24 months, and their parents. Salivary testosterone levels were obtained when children were 3-months old. At 18-months, 2D:4D ratios were measured and parent-child dyads participated in an 8-min play session that was recorded and later coded for duration and frequency of eye contact. Results indicated that larger 2D:4D ratios (indicative of lower androgen levels) significantly predicted longer duration and more frequency of eye contact, while postnatal testosterone levels were unrelated to eye contact. These novel findings suggest prenatal androgens may influence the emergence of social development. Published by Elsevier B.V.

  12. A Self-Limiting Electro-Ablation Technique for the Top-Down Synthesis of Large-Area Monolayer Flakes of 2D Materials

    PubMed Central

    Das, Saptarshi; Bera, Mrinal K.; Tong, Sheng; Narayanan, Badri; Kamath, Ganesh; Mane, Anil; Paulikas, Arvydas P.; Antonio, Mark R.; Sankaranarayanan, Subramanian K. R. S.; Roelofs, Andreas K.

    2016-01-01

    We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayer MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well. PMID:27323877

  13. A Self-Limiting Electro-Ablation Technique for the Top-Down Synthesis of Large-Area Monolayer Flakes of 2D Materials

    NASA Astrophysics Data System (ADS)

    Das, Saptarshi; Bera, Mrinal K.; Tong, Sheng; Narayanan, Badri; Kamath, Ganesh; Mane, Anil; Paulikas, Arvydas P.; Antonio, Mark R.; Sankaranarayanan, Subramanian K. R. S.; Roelofs, Andreas K.

    2016-06-01

    We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayer MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well.

  14. A Self-Limiting Electro-Ablation Technique for the Top-Down Synthesis of Large-Area Monolayer Flakes of 2D Materials.

    PubMed

    Das, Saptarshi; Bera, Mrinal K; Tong, Sheng; Narayanan, Badri; Kamath, Ganesh; Mane, Anil; Paulikas, Arvydas P; Antonio, Mark R; Sankaranarayanan, Subramanian K R S; Roelofs, Andreas K

    2016-06-21

    We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayer MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well.

  15. A Self-Limiting Electro-Ablation Technique for the Top-Down Synthesis of Large-Area Monolayer Flakes of 2D Materials

    SciTech Connect

    Das, Saptarshi; Bera, Mrinal K.; Tong, Sheng; Narayanan, Badri; Kamath, Ganesh; Mane, Anil; Paulikas, Arvydas P.; Antonio, Mark R.; Sankaranarayanan, Subramanian K. R. S.; Roelofs, Andreas K.

    2016-06-21

    We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayer MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well.

  16. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  17. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  18. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  19. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  20. Scale Invariance in 2D BCS-BEC Crossover

    NASA Astrophysics Data System (ADS)

    Sensarma, Rajdeep; Taylor, Edward; Randeria, Mohit

    2013-03-01

    In 2D BCS-BEC crossover, the frequency of the breathing mode in a harmonic trap, as well as the lower edge of the radio frequency spectroscopy response, show remarkable scale-invariance throughout the crossover regime, i.e. they are independent of the coupling constant. Using functional integral methods, we study the behaviour of these quantities in the 2D BCS-BEC crossover and comment on the possible reasons for this scale independence. RS was supported by DAE, Govt. of India. MR was supported by NSF Grant No. DMR-1006532. ET was supported by NSERC and the Canadian Institute for Advanced Research.

  1. Closed-shell and open-shell 2D nanographenes.

    PubMed

    Sun, Zhe; Wu, Jishan

    2014-01-01

    This chapter describes a series of two-dimensional (2D) expanded arene networks, also known as nanographenes, with either closed-shell or open-shell electronic structure in the ground state. These systems are further categorized into three classes on a basis of different edge structures: those with zigzag edges only, those with armchair edges only, and those possessing both. Distinctive physical properties of these 2D aromatic systems are closely related to their structural characteristics and provide great potential for them as materials for different applications.

  2. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  3. Spreading dynamics of 2D dipolar Langmuir monolayer phases.

    PubMed

    Heinig, P; Wurlitzer, S; Fischer, Th M

    2004-07-01

    We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory.

  4. Recording 2-D Nutation NQR Spectra by Random Sampling Method

    PubMed Central

    Sinyavsky, Nikolaj; Jadzyn, Maciej; Ostafin, Michal; Nogaj, Boleslaw

    2010-01-01

    The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an asymmetry parameter η was determined. Our results show that the method of random sampling of a nutation interferogram allows significant reduction of time required to perform a 2-D nutation experiment and does not worsen the spectral resolution. PMID:20949121

  5. Recording 2-D Nutation NQR Spectra by Random Sampling Method.

    PubMed

    Glotova, Olga; Sinyavsky, Nikolaj; Jadzyn, Maciej; Ostafin, Michal; Nogaj, Boleslaw

    2010-10-01

    The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an asymmetry parameter η was determined. Our results show that the method of random sampling of a nutation interferogram allows significant reduction of time required to perform a 2-D nutation experiment and does not worsen the spectral resolution.

  6. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  7. 2D Log-Gabor Wavelet Based Action Recognition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xu, De

    The frequency response of log-Gabor function matches well the frequency response of primate visual neurons. In this letter, motion-salient regions are extracted based on the 2D log-Gabor wavelet transform of the spatio-temporal form of actions. A supervised classification technique is then used to classify the actions. The proposed method is robust to the irregular segmentation of actors. Moreover, the 2D log-Gabor wavelet permits more compact representation of actions than the recent neurobiological models using Gabor wavelet.

  8. Time efficiency and diagnostic agreement of 2-D versus 3-D ultrasound acquisition of the neonatal brain.

    PubMed

    Romero, Javier M; Madan, Neil; Betancur, Ilda; Ciobanu, Adrian; Murphy, Erin; McCullough, Danielle; Grant, P Ellen

    2014-08-01

    The purpose of this study was to compare acquisition time efficiency and diagnostic agreement of neonatal brain ultrasound (US) scans obtained with a 3-D volume US acquisition protocol and the conventional 2-D acquisition protocol. Ninety-one consecutive premature neonatal brain ultrasound scans were prospectively performed on 59 neonates with the conventional 2-D acquisition protocol. Immediately after the 2-D study, a coronal 3-D ultrasound volume was acquired and later reconstructed into axial and sagittal planes. All 59 neonates were imaged in the neonatal intensive care unit to rule out intracranial hemorrhage. Total time for 2-D and 3-D acquisition protocols was recorded, and a two-tailed t-test was used to determine if study durations differed significantly. One pediatric neuroradiologist reviewed the reformatted 3-D images, tomographic ultrasound images. Results were compared with the clinical interpretation of the 2-D conventional study. The mean scanning time for the 2-D US acquisition protocol was 10.56 min (standard deviation [SD] = 7.11), and that for the 3-D volume US acquisition protocol was 1.48 min (SD = 0.59) (p ≤ 0.001). Inter-observer agreement revealed k values of 0.84 for hydrocephalus, 0.80 for germinal matrix hemorrhage/intraventricular hemorrhage, 0.74 for periventricular leukomalacia and 0.91 for subdural collection, hence near-perfect to substantial agreement between imaging protocols. There was a significant decrease in acquisition time for the 3-D volume ultrasound acquisition protocol compared with the conventional 2-D US protocol (p = <0.001), without compromising the diagnostic quality compared with a conventional 2-D US imaging protocol.

  9. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.

  10. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  11. A Post-Beamforming 2-D Pseudoinverse Filter for Coarsely Sampled Ultrasound Arrays

    PubMed Central

    Wan, Yayun; Ebbini, Emad S.

    2011-01-01

    Beamforming artifacts due to coarse discretization of imaging apertures represent a significant barrier against the use of array probes in high-frequency applications. Nyquist sampling of array apertures dictates center-to-center spacing of λ/2 for elimination of grating lobes in the array pattern. However, this requirement is hard to achieve using current transducer technologies, even at the lower end of high-frequency ultrasonic imaging (in the range 25–35 MHz). In this paper, we present a new design approach for 2-D regularized pseudoinverse (PIO) filters suitable for restoring imaging contrast in systems employing coarsely sampled arrays. The approach is based on a discretized 2-D imaging model for linear arrays assuming scattering from a Cartesian grid in the imaging field of view (FOV). We show that the discretized imaging operator can be represented with a block Toeplitz matrix with the blocks themselves being Toeplitz. With sufficiently large grid size in the axial and lateral directions, it is possible to replace this Toeplitz-block block Toeplitz (TBBT) operator with its circulant-block block circulant (CBBC) equivalent. This leads to a computationally efficient implementation of the regularized pseudoinverse filtering approach using the 2-D fast Fourier transform (FFT). The derivation of the filtering equation is shown in detail and the regularization procedure is fully described. Using FIELD, we present simulation data to show the 2-D point-spread functions (PSFs) for imaging systems employing linear arrays with fine and coarse sampling of the imaging aperture. PSFs are also computed for a coarsely sampled array with different levels of regularization to demonstrate the tradeoff between contrast and spatial resolution. These results demonstrate the well-behaved nature of the PSF with the variation in a single regularization parameter. Specifically, the 6 dB axial and lateral dimensions of the PSF increase gradually with increasing value of the

  12. A post-beamforming 2-D pseudoinverse filter for coarsely sampled ultrasound arrays.

    PubMed

    Wan, Yayun; Ebbini, Emad S

    2009-09-01

    Beamforming artifacts due to coarse discretization of imaging apertures represent a significant barrier against the use of array probes in high-frequency applications. Nyquist sampling of array apertures dictates center-to-center spacing of lambda/2 for elimination of grating lobes in the array pattern. However, this requirement is hard to achieve using current transducer technologies, even at the lower end of high-frequency ultrasonic imaging (in the range 25-35 MHz). In this paper, we present a new design approach for 2-D regularized pseudoinverse (PIO) filters suitable for restoring imaging contrast in systems employing coarsely sampled arrays. The approach is based on a discretized 2-D imaging model for linear arrays assuming scattering from a Cartesian grid in the imaging field of view (FOV). We show that the discretized imaging operator can be represented with a block Toeplitz matrix with the blocks themselves being Toeplitz. With sufficiently large grid size in the axial and lateral directions, it is possible to replace this Toeplitz-block block Toeplitz (TBBT) operator with its circulant-block block circulant (CBBC) equivalent. This leads to a computationally efficient implementation of the regularized pseudoinverse filtering approach using the 2-D fast Fourier transform (FFT). The derivation of the filtering equation is shown in detail and the regularization procedure is fully described. Using FIELD, we present simulation data to show the 2-D point-spread functions (PSFs) for imaging systems employing linear arrays with fine and coarse sampling of the imaging aperture. PSFs are also computed for a coarsely sampled array with different levels of regularization to demonstrate the tradeoff between contrast and spatial resolution. These results demonstrate the well-behaved nature of the PSF with the variation in a single regularization parameter. Specifically, the 6 dB axial and lateral dimensions of the PSF increase gradually with increasing value of the

  13. 2D Free-breathing Dual Navigator-gated Cardiac Function Validated against the 2D Breath-hold Acquisition

    PubMed Central

    Peters, Dana C.; Nezafat, Reza; Eggers, Holger; Stehning, Christian; Manning, Warren J.

    2008-01-01

    Purpose To develop and validate a free-breathing cardiac cine acquisition, with potential to simplify cardiac MR studies, provide registered slices and increase spatial resolution. Materials and Methods A 2D free-breathing (FB) navigator-gated cine radial acquisition for cardiac function was developed which used two navigators (one placed prior to the QRS, and another 500 ms after the QRS complex, after systole) to provide complete motion-compensated assessment of systole, without loss of end-diastole. Eleven subjects were studied. Results The 2D FB method provided results visually and quantitatively similar to the 2D breath-hold (BH) methods. Comparison of volumes measured with the free-breathing to those measured by standard 2D BH cine resulted in mean bias ± 2 standard deviations of 1.0 ml ± 13.7 ml, 1.1 ml ± 7.6 ml, 3.0 g ± 18.8 g, and 0.3 %± 2.5%, for end-diastolic volume, end-systolic volume, and left-ventricular mass, and ejection fraction, respectively. Slice misregistration was identified in 4 (36%) of the BH studies, but none (0%) of the FB studies. In subjects with slice misregistration, there was greater discordance in LV volume measurements (P<0.05 for end-diastolic mass). Conclusion The free-breathing cine acquisition provided results qualitatively and quantitatively similar to 2D breath-hold methods with improved slice registration. PMID:18777547

  14. 2D free-breathing dual navigator-gated cardiac function validated against the 2D breath-hold acquisition.

    PubMed

    Peters, Dana C; Nezafat, Reza; Eggers, Holger; Stehning, Christian; Manning, Warren J

    2008-09-01

    To develop and validate a free-breathing cardiac cine acquisition, with potential to simplify cardiac MR studies, provide registered slices, and increase spatial resolution. A 2D free-breathing (FB) navigator-gated cine radial acquisition for cardiac function was developed that used two navigators (one placed prior to the QRS, and another 500 msec after the QRS complex, after systole) to provide complete motion-compensated assessment of systole, without loss of end-diastole. Eleven subjects were studied. The 2D FB method provided results visually and quantitatively similar to the 2D breath-hold (BH) methods. Comparison of volumes measured with FB to those measured by standard 2D BH cine resulted in mean bias+/-2 standard deviations of 1.0 mL+/-13.7 mL, 1.1 mL+/-7.6 mL, 3.0 g+/-18.8 g, and 0.3%+/-2.5%, for end-diastolic volume, end-systolic volume, left ventricular (LV) mass, and ejection fraction, respectively. Slice misregistration was identified in four (36%) of the BH studies, but none (0%) of the FB studies. In subjects with slice misregistration, there was greater discordance in LV volume measurements (P<0.05 for end-diastolic mass). The FB cine acquisition provided results qualitatively and quantitatively similar to 2D BH methods with improved slice registration. Copyright (c) 2008 Wiley-Liss, Inc.

  15. Early nutrition and later diabetes risk.

    PubMed

    Knip, Mikael; Akerblom, Hans K

    2005-01-01

    Early feeding may modify the risk of both type 1 (T1D) and type 2 diabetes (T2D) later in life. The information generated so far is, however, controversial. When evaluating studies on the impact of early feeding on risk of later diabetes, the data have to be assessed critically and possible confounding factors have to be considered. The study design may induce biases and there are considerable differences in early feeding practices across various countries and cultures. Accordingly it may not be possible to generalise observations based on one population. Long breastfeeding, exclusive breastfeeding in particular, and supplementation with vitamin D in infancy have been reported to confer partial protection against beta-cell autoimmunity and TID. In contrast, early exposure to cow's milk proteins and cereals and heavy weight in infancy have been implicated as risk factors for T1D. Long breastfeeding has also been observed to protect against T2D in aboriginal populations. Poor fetal nutrition resulting in low birth weight has been identified as a factor contributing to later insulin resistance and T2D. Recent data indicate that current overweight and obesity are stronger determinants of insulin resistance than birth weight among preschool children. High-nutrient diet and rapid growth in early infancy have been reported to adversely programme the principal components of the metabolic syndrome including insulin resistance and T2D. It is an important scientific and public-health objective to define protective and predisposing effects of early nutrition on the development of diabetes, since early feeding can potentially be modified to minimise the risk of later chronic diseases.

  16. 2-D Coda and Direct Wave Attenuation Tomography in Northern Italy

    SciTech Connect

    Morasca, P; Mayeda, K; Gok, R; Phillips, W S; Malagnini, L

    2007-10-17

    A 1-D coda method was proposed by Mayeda et al. (2003) in order to obtain stable seismic source moment-rate spectra using narrowband coda envelope measurements. That study took advantage of the averaging nature of coda waves to derive stable amplitude measurements taking into account all propagation, site, and Sto-coda transfer function effects. Recently this methodology was applied to micro earthquake data sets from three sub-regions of northern Italy (i.e., western Alps, northern Apennines and eastern Alps). Since the study regions were small, ranging between local-to-near-regional distances, the simple 1-D path assumptions used in the coda method worked very well. The lateral complexity of this region would suggest, however, that a 2-D path correction might provide even better results if the datasets were combined, especially when paths traverse larger distances and complicated regions. The structural heterogeneity of northern Italy makes the region ideal to test the extent to which coda variance can be reduced further by using a 2-D Q tomography technique. The approach we use has been developed by Phillips et al. (2005) and is an extension of previous amplitude ratio techniques to remove source effects from the inversion. The method requires some assumptions such as isotropic source radiation which is generally true for coda waves. Our results are compared against direct Swave inversions for 1/Q and results from both share very similar attenuation features that coincide with known geologic structures. We compare our results with those derived from direct waves as well as some recent results from northern California obtained by Mayeda et al. (2005) which tested the same tomographic methodology applied in this study to invert for 1/Q. We find that 2-D coda path corrections for this region significantly improve upon the 1-D corrections, in contrast to California where only a marginal improvement was observed. We attribute this difference to stronger lateral

  17. Strong lateral variations of S-wave velocity in the upper mantle across the western Alps

    NASA Astrophysics Data System (ADS)

    Lyu, Chao; Pedersen, Helle; Paul, Anne; Zhao, Liang

    2016-04-01

    Absolute S-wave velocity gives more insight into temperature and mineralogy than relative P-wave velocity variations (ΔV p/ V p) imaged by teleseismic traveltime tomography. Moreover, teleseismic P-wave tomography has poor vertical but good horizontal resolution. By contrast, the inversion of surface waves dispersion data gives absolute S-wave velocity with a good vertical but relatively poor horizontal resolution. However, the horizontal resolution of surface wave imaging can be improved by using closely spaced stations in mini-arrays. In this work, we use Rayleigh wave phase velocity dispersion data to measure absolute S-wave velocities beneath the CIFALPS profile across the French-Italian western Alps. We apply the array processing technique proposed by Pedersen et al. (2003) to derive Rayleigh wave phase dispersion curves between 20 s and 100 s period in 15 mini-arrays along the CIFALPS line. We estimate a 1-D S-wave velocity model at depth 50-150 km beneath each mini-array by inverting the dispersion curves jointly with receiver functions. The joint inversion helps separating the crustal and mantle contributions in the inversion of dispersion curves. Distinct lithospheric structures and marked lateral variations are revealed beneath the study region, correlating well with regional geological and tectonic features. The average S-wave velocity from 50 to 150 km depth beneath the CIFALPS area is ˜4.48km/s, almost the same as in model AK135, indicating a normal upper mantle structure in average. Lateral variations are dominated by relatively low velocities (˜4.4km/s) in the mantle of the European plate, very low velocities (4.0km/s, i.e. approximately 12% lower than AK135) beneath the Dora Maira internal crystalline massif and high velocities (˜ 5.0km/s, i.e. 12% higher than AK135) beneath the Po plain. The lateral variations of S-wave velocity perturbation show the same features as the P wave tomography (Zhao et al., submitted), but with different amplitudes

  18. MEF2D and MEF2C pathways disruption in sporadic and familial ALS patients.

    PubMed

    Arosio, Alessandro; Sala, Gessica; Rodriguez-Menendez, Virginia; Grana, Denise; Gerardi, Francesca; Lunetta, Christian; Ferrarese, Carlo; Tremolizzo, Lucio

    2016-07-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neuro-muscular disease characterized by motor neuron loss. MEF2D and MEF2C are members of the myocyte enhancer factor 2 family (MEF2), a group of transcription factors playing crucial roles both in muscle and in neural development and maintenance; for this reason, a possible involvement of MEF2 in ALS context has been investigated. Since the transcriptional activity of each tissue specific MEF2 isoform is conserved in different cell types, we chose to assess our parameters in an easily accessible and widely used experimental tool such as peripheral blood mononuclear cells (PBMCs) obtained from 30 sporadic ALS patients (sALS), 9 ALS patients with mutations in SOD1 gene (SOD1+) and 30 healthy controls. Gene expression analysis showed a significant up-regulation of MEF2D and MEF2C mRNA levels in both sporadic and SOD1+ ALS patients. Although protein levels were unchanged, a different pattern of distribution for MEF2D and MEF2C proteins was evidenced by immunohistochemistry in patients. A significant down-regulation of MEF2 downstream targets BDNF, KLF6 and RUFY3 was reported in both sALS and SOD1+ ALS patients, consistent with an altered MEF2 transcriptional activity. Furthermore, the potential regulatory effect of histone deacetylase 4 and 5 (HDAC4 and HDAC5) on MEF2D and MEF2C activity was also investigated. We found that MEF2D and HDAC4 colocalize in PBMC nuclei, while HDAC5 was localized in the cytoplasm. However, the unchanged HDACs localization and protein levels between sALS and controls seem to exclude their involvement in MEF2 altered function. In conclusion, our results show a systemic alteration of MEF2D and MEF2C pathways in both sporadic and SOD1+ ALS patients, underlying a possible common feature between the sporadic and the familial form of disease. Although further analyses in other neuromuscular diseases are needed to determine the specificity of changes in these pathways to ALS, measuring MEF2

  19. Correlation of 2D:4D digit ratio and craniofacial shape in prepubertal children.

    PubMed

    Valla, Kalliopy; Halazonetis, Demetrios J

    2014-01-01

    The 2D:4D ratio is sexually dimorphic and is considered a proxy of prenatal androgen levels, or, according to recent evidence, is related to genes involved in ocular and palate development. Our aim was to investigate correlation between the 2D:4D ratio and the shape of the craniofacial skeleton in a population of prepubertal children. We conducted a cross-sectional study in a group of 58 male and 59 female prepubertal children aged 7-12 years. Craniofacial shape was evaluated using 15 skeletal landmarks on lateral cephalometric radiographs and fingers were measured with a computer-assisted procedure that involved tracing the finger outline. Geometric morphometric analysis was applied to the craniofacial landmarks and multivariate regression between digit ratios and craniofacial shape was computed in shape space and form space. The male 2D:4D ratio was smaller than the female ratio (Cohen's d: 0.275 left hand, 0.126 right hand), but the difference was not statistically significant. Craniofacial shape did not show sexual dimorphism, but males were larger than females. No correlation was found between digit ratio and craniofacial shape in prepubertal children, either for the whole sample or for any of the two sex groups. As several factors might be involved in the development and growth of both the craniofacial complex and fingers, the 2D:4D ratio, a putative proxy for fetal sex-hormone levels, is probably unable to impose a measurable effect within the variation of a normal population. Future research needs to examine an adult sample for potential covariation arising after the pubertal growth spurt. Copyright © 2014 Wiley Periodicals, Inc.

  20. Measuring the equation of state for a 2D colloidal membrane: A microfluidic approach to buffer exchange

    NASA Astrophysics Data System (ADS)

    Balchunas, Andrew; Cabanas, Rafael; Fraden, Seth; Dogic, Zvonimir

    Previous work has shown that monodisperse rod-like colloidal particles, such as a filamentous bacteriophage, self assemble into a 2D monolayer smectic in the presence of a non-adsorbing depleting polymer. These structures have the same functional form of bending rigidity and lateral compressibility as conventional lipid bi-layers, so we name the monolayer smectic a colloidal membrane. We have developed a microfluidic device such that the osmotic pressure acting on a colloidal membrane may be controlled via a full in situ buffer exchange. Rod density within individual colloidal membranes was measured as a function of osmotic pressure and a first order phase transition, from 2D fluid to 2D solid, was observed. kon and koff rates of rod to membrane binding were measured by lowering the osmotic pressure until membrane evaporation occurred.

  1. The 2dF Galaxy Redshift Survey: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Maddox, Steve; 2DF Galaxy Redshift Survey Team; Bland-Hawthorn, Joss; Cannon, Russell; Cole, Shaun; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; Driver, Simon; Ellis, Richard; Efstathiou, George; Folkes, Simon; Frenk, Carlos; Glazebrook, Karl; Kaiser, Nick; Lahav, Ofer; Lumsden, Stuart; Peterson, Bruce; Peacock, John; Sutherland, Will; Taylor, Keith

    Spectroscopic observations for a new survey of 250 000 galaxy redshifts are underway, using the 2dF instrument at the AAT. The input galaxy catalogue and commissioning data are described. The first result from the preliminary data is a new estimate of the galaxy luminosity function at = 0.1.

  2. The chemistry of H2D(+) in cold clouds

    NASA Astrophysics Data System (ADS)

    Pagani, L.; Salez, M.; Wannier, P. G.

    1992-05-01

    A simple gas-phase, steady-state chemical model of H2D(+) is presented where the ortho/para ratio is investigated in detail. We show that thermal equilibrium should prevail above 20 K but that it is in cold clouds that the ortho form should be the most abundant contrarily to what is expected from thermal equilibrium alone, its abundance being several orders of magnitude larger than previously thought, in which case, cold clouds with high column densities should be the best places to search for this species. We discuss the upper limits derived from our observations (Pagani et al., 1992) in comparison with our model and also reexamine the relations between H2D(+) measurements, the DCO(+)/HCO(+) ratio and the abundances of H3(+), H2D(+), and of electrons in dark clouds. Recent findings in observational, theoretical and laboratory astrochemistry make it difficult to derive H3 and e(-) abundances from these measurements and thus make it difficult to derive the important H2D(+)/H3(+) ratio.

  3. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  4. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  5. Optimal light harvesting in 2D semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Zhesheng; Biscaras, Johan; Shukla, Abhay

    2017-06-01

    Optoelectronics with two dimensional (2D) heterostructures combining transition metal dichalcogenides (TMDCs) and other semiconductors in hybrid stacks is potentially promising because of the possibility of fabricating devices with high efficiency and new properties. Ultrafast charge transfer across the interface and long lifetime of carriers makes the vertical geometry attractive with respect to traditional bulk heterostructures. In such ultrathin structures, the multiple boundaries and the thickness of each material play a key role in the interaction of light with the device and can strongly influence the device performance. In this article we study light harvesting in 2D InSe/MoS2 semiconductor heterostructures by measuring Raman enhancement or attenuation as a function of layer thicknesses. Measurements are precisely reproduced by the calculation of the light emission, and the field distribution inside the heterostructure. Optimizing layer thickness and material interfaces has a significant effect on the light distribution in such 2D heterostructures with layer thickness in the region of a few tens of nanometers, providing a means to enhance the performance of emerging 2D semiconductor-heterostructure optoelectronics.

  6. Volume Calculation of Venous Thrombosis Using 2D Ultrasound Images.

    PubMed

    Dhibi, M; Puentes, J; Bressollette, L; Guias, B; Solaiman, B

    2005-01-01

    Venous thrombosis screening exams use 2D ultrasound images, from which medical experts obtain a rough idea of the thrombosis aspect and infer an approximate volume. Such estimation is essential to follow up the thrombosis evolution. This paper proposes a method to calculate venous thrombosis volume from non-parallel 2D ultrasound images, taking advantage of a priori knowledge about the thrombosis shape. An interactive ellipse fitting contour segmentation extracts the 2D thrombosis contours. Then, a Delaunay triangulation is applied to the set of 2D segmented contours positioned in 3D, and the area that each contour defines, to obtain a global thrombosis 3D surface reconstruction, with a dense triangulation inside the contours. Volume is calculated from the obtained surface and contours triangulation, using a maximum unit normal component approach. Preliminary results obtained on 3 plastic phantoms and 3 in vitro venous thromboses, as well as one in vivo case are presented and discussed. An error rate of volume estimation inferior to 4,5% for the plastic phantoms, and 3,5% for the in vitro venous thromboses was obtained.

  7. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  8. Discrepant Results in a 2-D Marble Collision

    ERIC Educational Resources Information Center

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  9. Brittle Fracture of 2D MoSe2

    DOE PAGES

    Yang, Yingchao; Li, Xing; Wen, Minru; ...

    2016-11-03

    An in situ quantitative tensile testing platform is developed in this paper to enable the uniform in-plane loading of a freestanding membrane of 2D materials inside a scanning electron microscope. The in situ tensile testing reveals the brittle fracture of large-area MoSe2 crystals and measures their fracture strength for the first time.

  10. Generic Theory for Majorana Zero Modes in 2D Superconductors

    NASA Astrophysics Data System (ADS)

    Chan, Cheung; Zhang, Lin; Poon, Ting Fung Jeffrey; He, Ying-Ping; Wang, Yan-Qi; Liu, Xiong-Jun

    2017-07-01

    It is well known that non-Abelian Majorana zero modes (MZM) are located at vortex cores in a px+𝒾 py topological superconductor, which can be realized in a 2D spin-orbit coupled system with a single Fermi surface and by proximity coupling to an s -wave superconductor. Here we show that the existence of non-Abelian MZMs is unrelated to the bulk topology of a 2D superconductor, and propose that such exotic modes can result in a much broader range of superconductors, being topological or trivial. For a generic 2D system with multiple Fermi surfaces that is gapped out by superconducting pairings, we show that at least a single MZM survives if there are only an odd number of Fermi surfaces of which the corresponding superconducting orders have vortices; such a MZM is protected by an emergent Chern-Simons invariant, irrespective of the bulk topology of the superconductor. This result enriches new experimental schemes for realizing non-Abelian MZMs. In particular, we propose a minimal scheme to realize the MZMs in a 2D superconducting Dirac semimetal with trivial bulk topology, which can be well achieved based on recent cold-atom experiments.

  11. Validation and testing of the VAM2D computer code

    SciTech Connect

    Kool, J.B.; Wu, Y.S. )

    1991-10-01

    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.

  12. Development of a MEMS 2D separations device

    NASA Astrophysics Data System (ADS)

    Bloschock, Kristen P.; Flyer, Jonathan N.; Schneider, Thomas W.; Hussam, Abul; Van Keuren, Edward R.

    2004-12-01

    A polymer based biochip for rapid 2D separations of peptides, proteins, and other biomedically relevant molecules was designed and fabricated. Like traditional 2D polyacrylamide gel electrophoresis (2D-PAGE) methods, the device will allow molecules to separate based on isoelectric point (pI) and molecular weight (MW). Our design, however, integrates both an initial capillary isoelectric focusing (cIEF) step followed by capillary electrophoresis (CE) in multiple parallel channels, all on a single microfluidic chip. Not only is the "lab-on-a-chip" design easier to use and less expensive, but the miniaturization of the device produces very rapid separations. Compared to traditional 2D-PAGE, which can take hours to complete, we estimate separation times on the order of seconds. Fluorescence detection will be used in the preliminary stages of testing, but the device also is equipped with integrated electrodes in the electrophoresis channels to perform multiplexed electrochemical detection for quantitative analysis. We will present preliminary results of the chip development and testing.

  13. Studying Zeolite Catalysts with a 2D Model System

    ScienceCinema

    Boscoboinik, Anibal

    2016-12-14

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  14. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  15. 2-D Finite Element Cable and Box IEMP Analysis

    SciTech Connect

    Scivner, G.J.; Turner, C.D.

    1998-12-17

    A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.

  16. Promising Thermoelectric Bulk Materials with 2D Structures.

    PubMed

    Zhou, Yiming; Zhao, Li-Dong

    2017-07-24

    Given that more than two thirds of all energy is lost, mostly as waste heat, in utilization processes worldwide, thermoelectric materials, which can directly convert waste heat to electricity, provide an alternative option for optimizing energy utilization processes. After the prediction that superlattices may show high thermoelectric performance, various methods based on quantum effects and superlattice theory have been adopted to analyze bulk materials, leading to the rapid development of thermoelectric materials. Bulk materials with two-dimensional (2D) structures show outstanding properties, and their high performance originates from both their low thermal conductivity and high Seebeck coefficient due to their strong anisotropic features. Here, the advantages of superlattices for enhancing the thermoelectric performance, the transport mechanism in bulk materials with 2D structures, and optimization methods are discussed. The phenomenological transport mechanism in these materials indicates that thermal conductivities are reduced in 2D materials with intrinsically short mean free paths. Recent progress in the transport mechanisms of Bi2 Te3 -, SnSe-, and BiCuSeO-based systems is summarized. Finally, possible research directions to enhance the thermoelectric performance of bulk materials with 2D structures are briefly considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. NKG2D ligands mediate immunosurveillance of senescent cells

    PubMed Central

    Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-01-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  18. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    PubMed

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area.

  19. 2D Orthogonal Locality Preserving Projection for Image Denoising.

    PubMed

    Shikkenawis, Gitam; Mitra, Suman K

    2016-01-01

    Sparse representations using transform-domain techniques are widely used for better interpretation of the raw data. Orthogonal locality preserving projection (OLPP) is a linear technique that tries to preserve local structure of data in the transform domain as well. Vectorized nature of OLPP requires high-dimensional data to be converted to vector format, hence may lose spatial neighborhood information of raw data. On the other hand, processing 2D data directly, not only preserves spatial information, but also improves the computational efficiency considerably. The 2D OLPP is expected to learn the transformation from 2D data itself. This paper derives mathematical foundation for 2D OLPP. The proposed technique is used for image denoising task. Recent state-of-the-art approaches for image denoising work on two major hypotheses, i.e., non-local self-similarity and sparse linear approximations of the data. Locality preserving nature of the proposed approach automatically takes care of self-similarity present in the image while inferring sparse basis. A global basis is adequate for the entire image. The proposed approach outperforms several state-of-the-art image denoising approaches for gray-scale, color, and texture images.

  20. Discrepant Results in a 2-D Marble Collision

    ERIC Educational Resources Information Center

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  1. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  2. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  3. The NH2D hyperfine structure revealed by astrophysical observations

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Coudert, L. H.; Punanova, A.; Harju, J.; Faure, A.; Roueff, E.; Sipilä, O.; Caselli, P.; Güsten, R.; Pon, A.; Pineda, J. E.

    2016-02-01

    Context. The 111-101 lines of ortho- and para-NH2D (o/p-NH2D) at 86 and 110 GHz, respectively, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure that is due to the nitrogen (14N) nucleus is resolved. To date, this splitting is the only one that is taken into account in the NH2D column density estimates. Aims: We investigate how including the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH2D. Methods: We present 30 m IRAM observations of the above mentioned lines and APEX o/p-NH2D observations of the 101-000 lines at 333 GHz. The hyperfine patterns of the observed lines were calculated taking into account the splitting induced by the D nucleus. The analysis then relies on line lists that either neglect or include the splitting induced by the D nucleus. Results: The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting that is due to the 14N nucleus. We find inconsistencies between the line widths of the 101-000 and 111-101 lines, the latter being larger by a factor of ~1.6 ± 0.3. Such a large difference is unexpected because the two sets of lines probably originate from the same region. We next employed a newly computed line list for the o/p-NH2D transitions where the hyperfine structure induced by both nitrogen and deuterium nuclei was included. With this new line list, the analysis of the previous spectra leads to compatible line widths. Conclusions: Neglecting the hyperfine structure caused by D leads to overestimating the line widths of the o/p-NH2D lines at 3 mm. The error for a cold molecular core is about 50%. This error propagates directly to the column density estimate. We therefore recommend to take the hyperfine splittings caused by both the 14N and D nuclei into account in any analysis that relies on these lines. Based on observations carried out with the IRAM

  4. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    SciTech Connect

    Giaddui, T; Yu, J; Xiao, Y; Jacobs, P; Manfredi, D; Linnemann, N

    2015-06-15

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  5. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  6. Relaxation-Assisted 2D IR Using Weak Vibrational Modes

    NASA Astrophysics Data System (ADS)

    Kurochkin, Dmitry V.; Naraharisetty, Sri Ram G.; Rubtsov, Igor V.

    Implementation of weak IR modes as structural reporters via dual-frequency 2D IR spectroscopy is demonstrated. Prominent cross peaks originated from interactions of C≡N with C=O and C≡N with C=C modes were measured in 3-cyanocoumarin using heterodyned three-pulse photon-echo technique. In 4-acetylbenzonitrile, where the distance between CN and CO groups is over two times larger than in 3-cyanocoumarin, the direct coupling was just below the level of detectivity. A new method of measuring 2D spectra is proposed that utilizes vibrational relaxation phenomena. Using the new method the cross peaks at (ωCN, ωCO) has easily been detected; over six times increase of the cross-peak amplitude has been observed when the waiting time between the second and third pulses, T, was varied. Calculations show that using this approach vibrational modes separated by over 7-10 Å can be used as structural probes enhancing substantially detectable distances via 2D IR, especially when weak IR modes are used. We have also demonstrated implementation of C-D stretching modes as structural reporters. Although C-D modes have very small transition dipoles, interaction with C≡N mode has been cleanly detected in acetonitrile-D3. As C-H groups are widespread in organic molecules, the deuterium can be placed in the vicinity of virtually any group. Implementation of new labels, reinforced by vibrational-relaxation-assisted 2D IR method, provides universal labeling strategies for structure determination via 2D IR.

  7. Half-metallicity in 2D organometallic honeycomb frameworks

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  8. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  9. 2d-LCA - an alternative to x-wires

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  10. 2D/3D Image Registration using Regression Learning.

    PubMed

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-09-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object's 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region's motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method's application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof.

  11. Preliminary 2D numerical modeling of common granular problems

    NASA Astrophysics Data System (ADS)

    Wyser, Emmanuel; Jaboyedoff, Michel

    2017-04-01

    Granular studies received an increasing interest during the last decade. Many scientific investigations were successfully addressed to acknowledge the ubiquitous behavior of granular matter. We investigate liquid impacts onto granular beds, i.e. the influence of the packing and compaction-dilation transition. However, a physically-based model is still lacking to address complex microscopic features of granular bed response during liquid impacts such as compaction-dilation transition or granular bed uplifts (Wyser et al. in review). We present our preliminary 2D numerical modeling based on the Discrete Element Method (DEM) using nonlinear contact force law (the Hertz-Mindlin model) for disk shape particles. The algorithm is written in C programming language. Our 2D model provides an analytical tool to address granular problems such as i) granular collapses and ii) static granular assembliy problems. This provides a validation framework of our numerical approach by comparing our numerical results with previous laboratory experiments or numerical works. Inspired by the work of Warnett et al. (2014) and Staron & Hinch (2005), we studied i) the axisymetric collapse of granular columns. We addressed the scaling between the initial aspect ratio and the final runout distance. Our numerical results are in good aggreement with the previous studies of Warnett et al. (2014) and Staron & Hinch (2005). ii) Reproducing static problems for regular and randomly stacked particles provides a valid comparison to results of Egholm (2007). Vertical and horizontal stresses within the assembly are quite identical to stresses obtained by Egholm (2007), thus demonstating the consistency of our 2D numerical model. Our 2D numerical model is able to reproduce common granular case studies such as granular collapses or static problems. However, a sufficient small timestep should be used to ensure a good numerical consistency, resulting in higher computational time. The latter becomes critical

  12. Simulation and analysis of solute transport in 2D fracture/pipe networks: The SOLFRAC program

    NASA Astrophysics Data System (ADS)

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-01

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL http://labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm. It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments

  13. Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program.

    PubMed

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-05

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL (labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm). It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments performed

  14. Striatal Dopamine D2/D3 Receptor Availability is Reduced in Methamphetamine Dependence and is Linked to Impulsivity

    PubMed Central

    Lee, Buyean; London, Edythe D.; Poldrack, Russell A.; Farahi, Judah; Nacca, Angelo; Monterosso, John R.; Mumford, Jeanette A.; Bokarius, Andrew V.; Dahlbom, Magnus; Mukherjee, Jogeshwar; Bilder, Robert M.; Brody, Arthur L.; Mandelkern, Mark A.

    2010-01-01

    While methamphetamine addiction has been associated with both impulsivity and striatal dopamine D2/D3 receptor deficits, human studies have not directly linked the latter two entities. We therefore compared methamphetamine-dependent and healthy control subjects using the Barratt Impulsiveness Scale (version 11, BIS-11) and positron emission tomography with [18F]fallypride to measure striatal dopamine D2/D3 receptor availability. The methamphetamine-dependent subjects reported recent use of the drug 3.3 g per week, and a history of using methamphetamine, on average, for 12.5 years. They had higher scores than healthy control subjects on all BIS-11 impulsiveness subscales (p < 0.001). Volume-of-interest analysis found lower striatal D2/D3 receptor availability in methamphetamine-dependent than in healthy control subjects (p < 0.01) and a negative relationship between impulsiveness and striatal D2/D3 receptor availability in the caudate nucleus and nucleus accumbens that reached statistical significance in methamphetamine-dependent subjects. Combining data from both groups, voxelwise analysis indicated that impulsiveness was related to D2/D3 receptor availability in left caudate nucleus and right lateral putamen/claustrum (p < 0.05, determined by threshold-free cluster enhancement). In separate group analyses, correlations involving the head and body of the caudate and the putamen of methamphetamine-dependent subjects, and the lateral putamen/claustrum of control subjects were observed at a weaker threshold (p < 0.12 corrected). The findings suggest that low striatal D2/D3 receptor availability may mediate impulsive temperament and thereby influence addiction. PMID:19940168

  15. Striatal dopamine d2/d3 receptor availability is reduced in methamphetamine dependence and is linked to impulsivity.

    PubMed

    Lee, Buyean; London, Edythe D; Poldrack, Russell A; Farahi, Judah; Nacca, Angelo; Monterosso, John R; Mumford, Jeanette A; Bokarius, Andrew V; Dahlbom, Magnus; Mukherjee, Jogeshwar; Bilder, Robert M; Brody, Arthur L; Mandelkern, Mark A

    2009-11-25

    While methamphetamine addiction has been associated with both impulsivity and striatal dopamine D(2)/D(3) receptor deficits, human studies have not directly linked the latter two entities. We therefore compared methamphetamine-dependent and healthy control subjects using the Barratt Impulsiveness Scale (version 11, BIS-11) and positron emission tomography with [(18)F]fallypride to measure striatal dopamine D(2)/D(3) receptor availability. The methamphetamine-dependent subjects reported recent use of the drug 3.3 g per week, and a history of using methamphetamine, on average, for 12.5 years. They had higher scores than healthy control subjects on all BIS-11 impulsiveness subscales (p < 0.001). Volume-of-interest analysis found lower striatal D(2)/D(3) receptor availability in methamphetamine-dependent than in healthy control subjects (p < 0.01) and a negative relationship between impulsiveness and striatal D(2)/D(3) receptor availability in the caudate nucleus and nucleus accumbens that reached statistical significance in methamphetamine-dependent subjects. Combining data from both groups, voxelwise analysis indicated that impulsiveness was related to D(2)/D(3) receptor availability in left caudate nucleus and right lateral putamen/claustrum (p < 0.05, determined by threshold-free cluster enhancement). In separate group analyses, correlations involving the head and body of the caudate and the putamen of methamphetamine-dependent subjects and the lateral putamen/claustrum of control subjects were observed at a weaker threshold (p < 0.12 corrected). The findings suggest that low striatal D(2)/D(3) receptor availability may mediate impulsive temperament and thereby influence addiction.

  16. Sex differences in digit ratio (2D:4D) are disrupted in adolescents with schizotypal personality disorder: altered prenatal gonadal hormone levels as a risk factor.

    PubMed

    Walder, Deborah J; Andersson, Terese L C; McMillan, Amanda L; Breedlove, S Marc; Walker, Elaine F

    2006-09-01

    The 2nd to 4th finger digit ratio (2D:4D) is a sexually dimorphic feature determined during gestation indexing prenatal androgen/estrogen levels. More 'feminized' 2D:4D phenotype has been demonstrated in schizophrenia versus same-sex controls. This study examined 2D:4D in adolescents with schizotypal personality disorder (SPD). Among normal controls, right 2D:4D was significantly greater (more feminized) in females than males. We replicated laterality effects; significant sex differences only on right. There were no significant sex differences among SPDs. Diagnostic group differences were restricted to White/Caucasian males with greater right 2D:4D in SPDs. Findings suggest disruptions in prenatal gonadal hormones in vulnerability for schizophrenia.

  17. On the dynamics of inviscid relaxation in 2D fluids and nonneutral plasmas

    NASA Astrophysics Data System (ADS)

    Schecter, David Anton

    Two-dimensional (2D) flows in atmospheres, oceans and plasmas can rapidly relax to metastable patterns before viscosity affects the dynamics. This dissertation is on the mechanics of inviscid relaxation. Three topics are covered: vortex motion driven by a background vorticity gradient, the inviscid damping (Landau damping) of asymmetries on a circular vortex, and vortex crystal formation. All topics were motivated by experiments with magnetized electron columns, where the (r, θ) flow of electrons is approximately governed by the 2D Euler equations. These equations also govern 2D inviscid incompressible uniform-density fluids. In one experiment, a turbulent flow relaxed through the migration of vortices to extrema in the background vorticity. In Chapter 2, a theory describing this vortex motion is developed. Generally, the vortex speed is proportional to the background vorticity gradient; however, a vortex that is prograde with respect to the background shear moves slower than a retrograde vortex of equal strength. Separate theories are given for the motion of prograde and retrograde vortices. Both theories compare favorably to simulations and the experiment. In Chapter 3, the rate at which a perturbed vortex relaxes toward an axisymmetric equilibrium is examined using linear perturbation theory. The initial perturbation is created by the brief application of an external flow field, modelling recent experiments. In the core of the vortex, the perturbation typically behaves like an exponentially damped normal mode. An eigenmode analysis shows that this ``quasi-mode'' is actually a wave-packet of neutral continuum modes that decays through interference as the continuum modes disperse. Physically, a quasi-mode decays to conserve total angular momentum as vorticity is mixed in an outer resonance layer. Theoretical decay rates are found to agree with the experiments. In Chapter 4, vortex-in-cell simulations of 2D Euler flow are compared directly to electron plasma

  18. 2D and 3D rockfall simulations of a real-size experiment on weathered volcanic hillslopes in Tahiti, French Polynesia

    NASA Astrophysics Data System (ADS)

    Mathon, Christian; Kobayashi, Hiromi; Sedan, Olivier; Nachbaur, Aude; Dewez, Thomas; Berger, Frédéric; Des Garets, Emmanuel

    2010-05-01

    The Land Planning Authority of French Polynesia contracted BRGM to run a real-size rockfall experiment, called OFAI, in September 2009. The purposes of the experiments are two fold : first observe real-size rock trajectories in a context of variably weathered volcanic rock slopes; and second, use observed rockfall trajectories to calibrate block propagation models. 90 basalt blocks were dropped down a 150-m-long slope made of hard basalt veins, lenses of colluvium and erosion channels covered in blocks of various sizes. Parameters of the experiment concerned the shape (from nearly perfect sphere to elongated cubes) and mass of the blocks (from 300 kg to >5000 kg), and the launching point, in order to bounce the blocks both off stiff basalt veins and colluvium lenses. The data obtained from this real-size experiment were analyzed using two rockfall simulation models: a 2D model developed by the University of British Columbia, the Geological Survey of Canada and BRGM, and a 3D model which was developed from the 2D model, with the purpose of integrating the lateral dispersion of rockfalls. Both models are characterized by a 'hybrid approach' with a lumped mass assumption, taking indirectly the shape and rotational momentum of the block into account. Bouncing is simulated using soil restitution coefficients and plastic impact model (Falcetta, 1985). The input data are defined by probability density functions, thus allowing for both deterministic and probabilistic analysis. Usually calibrated with rare and punctual rockfall events, this recent experiment gave us a complete inventory of real 3D trajectories, associated with precise descriptions of the blocks (mass, shape) and accurate geomorphological characteristics of the impact points, so as to assess the performance of both models. The aims of the simulations were (i) comparing real trajectories to the simulated ones and evaluating their reliabilities (ii) calibrating material parameters for weathered volcanic

  19. Bone and joint modeling from 3D knee MRI: feasibility and comparison with radiographs and 2D MRI.

    PubMed

    Wadhwa, Vibhor; Malhotra, Vidur; Xi, Yin; Nordeck, Shaun; Coyner, Katherine; Chhabra, Avneesh

    2016-01-01

    The purpose was to evaluate feasibility of bone and joint segmentations from three-dimensional magnetic resonance imaging (3D MRI). Segmented joint models from 3D MRI data set were obtained for 42 patients. Blinded angular and joint space measurements were performed on 3D MRI model, two-dimensional (2D) MRI, and radiography (XR). Medial joint space was similar on both XR and 3D MRI (P=.3). The XR measurements were statistically different but closer to 3D MRI for lateral patellar tilt angle, patellar tendon length, and lateral knee joint space, whereas 2D MRI measurements were closer to XR in terms of trochlear depth, sulcal angle, and patellar length. 3D bone and joint segmentations are feasible from isotropic MRI data sets. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Redirecting T Cells to Ewing's Sarcoma Family of Tumors by a Chimeric NKG2D Receptor Expressed by Lentiviral Transduction or mRNA Transfection

    PubMed Central

    Proff, Julia; Schaft, Niels; Dörrie, Jan; Full, Florian; Ensser, Armin; Muller, Yves A.; Cerwenka, Adelheid; Abken, Hinrich; Parolini, Ornella; Ambros, Peter F.; Kovar, Heinrich; Holter, Wolfgang

    2012-01-01

    We explored the possibility to target Ewing's sarcoma family of tumors (ESFT) by redirecting T cells. To this aim, we considered NKG2D-ligands (NKG2D-Ls) as possible target antigens. Detailed analysis of the expression of MICA, MICB, ULBP-1, -2, and -3 in fourteen ESFT cell lines revealed consistent expression of at least one NKG2D-L. Thus, for redirecting T cells, we fused a CD3ζ/CD28-derived signaling domain to the ectodomain of NKG2D, however, opposite transmembrane orientation of this signaling domain and NKG2D required inverse orientation fusion of either of them. We hypothesized that the particularly located C-terminus of the NKG2D ectodomain should allow reengineering of the membrane anchoring from a native N-terminal to an artificial C-terminal linkage. Indeed, the resulting chimeric NKG2D receptor (chNKG2D) was functional and efficiently mediated ESFT cell death triggered by activated T cells. Notably, ESFT cells with even low NKG2D-L expression were killed by CD8pos and also CD4pos cells. Both, mRNA transfection and lentiviral transduction resulted in high level surface expression of chNKG2D. However, upon target-cell recognition receptor surface levels were maintained by tranfected RNA only during the first couple of hours after transfection. Later, target-cell contact resulted in strong and irreversible receptor down-modulation, whereas lentivirally mediated expression of chNKG2D remained constant under these conditions. Together, our study defines NKG2D-Ls as targets for a CAR-mediated T cell based immunotherapy of ESFT. A comparison of two different methods of gene transfer reveals strong differences in the susceptibility to ligand-induced receptor down-modulation with possible implications for the applicability of RNA transfection. PMID:22355347

  1. Symmetry origins of the `caldera' valence band distortion in 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Li, Pengke; Appelbaum, Ian; Physics Department Team

    The electronic structures of many two-dimensional van der Waals semiconductors exhibit various fascinating properties distinct from their three-dimensional bulk counterparts. Through an examination of their lattice symmetries, we identify several universal rules dictating their band dispersion in the monolayer limit, where in-plane mirror symmetry and quantum confinement play critical roles. Taking group-III metal monochalcogenides (such as GaSe) as an example, we reveal the origin of the unusual `caldera' shape of the valence band edge (otherwise inelegantly dubbed an `upside down Mexican hat'), which we show is surprisingly common among other 2D semiconductors (such as in phosphorene for k along its zigzag direction). Reference: arXiv:1508.06963

  2. Nanoscale integration of two-dimensional materials by lateral heteroepitaxy.

    PubMed

    Sutter, Peter; Huang, Yuan; Sutter, Eli

    2014-08-13

    Materials integration in heterostructures with novel properties different from those of the constituents has become one of the most powerful concepts of modern materials science. Two-dimensional (2D) crystals represent a new class of materials from which such engineered structures can be envisioned. Calculations have predicted emergent properties in 2D heterostructures with nanoscale feature sizes, but methods for their controlled fabrication have been lacking. Here, we use sequential graphene and boron nitride growth on Ru(0001) to show that lateral heteroepitaxy, the joining of 2D materials by preferential incorporation of different atomic species into exposed 1D edges during chemical vapor deposition on a metal substrate, can be used for the bottom-up synthesis of 2D heterostructures with characteristic dimensions on the nanoscale. Our results suggest that on a proper substrate, this method lends itself to building nanoheterostructures from a wide range of 2D materials.

  3. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  4. Scanning-mode 2D acoustic radiation force impulse (s2D-ARFI) imaging based on GPU acceleration.

    PubMed

    Wang, Congzhi; Zeng, Bo; Qiu, Weibao; Zheng, Hairong

    2014-01-01

    Acoustic radiation force impulse (ARFI) technique is a quantitative method for tissue stiffness assessment. It has been proved to be less operator dependent than the quasi-static elastography, and has more simple hardware architecture than the supersonic shearwave imaging (SSI) technique, which make it easier to be miniaturized for some special clinical applications. However, unlike the SSI, ARFI cannot provide real-time 2D images of tissue stiffness distribution mainly due to its data-intensive and time-consuming algorithms. In this study, the algorithms of ARFI were modified and improved to fit for the parallel computation on graphics processing unit (GPU), and the quasi-real-time scanning-mode 2D ARFI images (s2D-ARFI) were implemented on a self-developed compact system. High ratio of the time consumptions between the algorithms using CPU and using GPU has been verified, and it was also proved that there was no distinct difference between the stiffness images obtained by these two methods. The s2D-ARFI provides us an additional choice for quantitatively imaging the tissue stiffness, and has a potential to be miniaturized and used in the emergency treatments in field first-aid and the donor evaluation for organ transplantation.

  5. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners.

  6. Dual functions of 2D WS2 and MoS2-WS2 monolayers coupled with a Ag3PO4 photocatalyst

    NASA Astrophysics Data System (ADS)

    Wei, Zeng-Xi; Huang, Wei-Qing; Xu, Liang; Hu, Wangyu; Peng, P.; Huang, Gui-Fang

    2016-09-01

    The photocatalytic performance of semiconductors can be improved by coupling two-dimensional (2D) layered materials. Understanding the underlying mechanism of this phenomenon at the electronic level is important for the development of photocatalysts with a high efficiency. Here, we first present a theoretical elucidation of the dual functions of 2D layered material as a sensitizer and a co-catalyst by performing density functional theory calculations, taking WS2 and a lateral heterogeneous WS2-MoS2 monolayer as examples to couple with a promising photocatalyst Ag3PO4. The band alignment of a staggered type-II is formed between Ag3PO4 and the 2D monolayer with the latter possessing the higher electron affinity, resulting in the robust separation of photoexcited charge carriers between them, and indicating that the 2D monolayer is an effective sensitizer. Interestingly, the W (Mo) atoms, which are catalytically inert in the isolated 2D monolayer, turn into catalytic active sites, making the 2D monolayer a highly active co-catalyst in hybrids. A better photocatalytic performance in the coupled lateral heterogeneous WS2-MoS2 monolayer and Ag3PO4 can be expected. The calculated results can be rationalized by available experiments. These findings provide theoretical evidence supporting the experimental reports and may be used as a foundation for developing highly efficient 2D layered materials-based photocatalysts.

  7. [Lateral retinacular release].

    PubMed

    Verdonk, P; Bonte, F; Verdonk, R

    2008-09-01

    This overview of numerous studies discusses, based on short-term and long-term results, which diagnoses are indications for lateral retinacular release. No significant differences in outcome between arthroscopic and open lateral release could be documented. Isolated lateral release offers a good success rate for treating a stable patella with excessive lateral pressure. In patellar instability, the results are less favorable in long-term follow-up evaluation. Hyperlaxity with hypermobility of the patella is an absolute contraindication. Lateral release provides only temporary benefit for patellofemoral osteoarthritis. Proximal and/or distal realignment of the extensor mechanism gives better results than isolated lateral release.

  8. Flow and Transport of Radionuclides in the Rhizosphere: Imaging and Measurements in a 2D System

    NASA Astrophysics Data System (ADS)

    Pales, Ashley; Darnault, Christophe; Li, Biting; Clifford, Heather; Montgomery, Dawn; Moysey, Stephen; Powell, Brian; DeVol, Tim; Erdmann, Bryan; Edayilam, Nimisha; Tharayil, Nishanth; Dogan, Mine; Martinez, Nicole

    2017-04-01

    This research aims to build upon past 2D tank light transmission methods to quantify real-time flow in unsaturated porous media, understand how exudates effect unstable flow patterns, and understand radionuclide mobility and dispersion in the subsurface. A 2D tank light transmission method was created using a transparent flow through tank coupled with a random rainfall simulator; a commercial LED light and a CMOS DSLR Nikon D5500 camera were used to capture the real-time flow images. The images were broken down from RGB into HVI and analyzed in Matlab to produce quantifiable data about finger formation and water saturation distribution. Radionuclide locations were determined via handheld gamma scanner. Water saturation along the vertical and horizontal profile (Matlab) was used to quantify the finger more objectively than by eye assessment alone. The changes in finger formation and speed of propagation between the control rain water (0.01M NaCl) and the solutions containing plant exudates illustrates that the plant exudates increased the wettability (mobility) of water moving through unsaturated porous media. This understanding of plant exudates effect on unsaturated flow is important for works studying how plants, their roots and exudates, may affect the mobility of radionuclides in unsaturated porous media. As there is an increase in exudate concentration, the mobility of the radionuclides due to changing flow pattern and available water content in porous media may be improved causing more dispersion in the porous media and intake into the plant. Changes in plant root exudation impact the distribution and density of radionuclides in the rhizosphere and vadose zone.

  9. 2-D linear motion system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology

  10. Instantons in 2D U(1) Higgs model and 2D CP(N-1) sigma models

    NASA Astrophysics Data System (ADS)

    Lian, Yaogang

    2007-12-01

    In this thesis I present the results of a study of the topological structures of 2D U(1) Higgs model and 2D CP N-1 sigma models. Both models have been studied using the overlap Dirac operator construction of topological charge density. The overlap operator provides a more incisive probe into the local topological structure of gauge field configurations than the traditional plaquette-based operator. In the 2D U(1) Higgs model, we show that classical instantons with finite sizes violate the negativity of topological charge correlator by giving a positive contribution to the correlator at non-zero separation. We argue that instantons in 2D U(1) Higgs model must be accompanied by large quantum fluctuations in order to solve this contradiction. In 2D CPN-1 sigma models, we observe the anomalous scaling behavior of the topological susceptibility chi t for N ≤ 3. The divergence of chi t in these models is traced to the presence of small instantons with a radius of order a (= lattice spacing), which are directly observed on the lattice. The observation of these small instantons provides detailed confirmation of Luscher's argument that such short-distance excitations, with quantized topological charge, should be the dominant topological fluctuations in CP1 and CP 2, leading to a divergent topological susceptibility in the continuum limit. For the CPN-1 models with N > 3 the topological susceptibility is observed to scale properly with the mass gap. Another topic presented in this thesis is an implementation of the Zolotarev optimal rational approximation for the overlap Dirac operator. This new implementation has reduced the time complexity of the overlap routine from O(N3 ) to O(N), where N is the total number of sites on the lattice. This opens up a door to more accurate lattice measurements in the future.

  11. Response to CYP2D6 substrate antidepressants is predicted by a CYP2D6 composite phenotype based on genotype and comedications with CYP2D6 inhibitors.

    PubMed

    Gressier, F; Verstuyft, C; Hardy, P; Becquemont, L; Corruble, E

    2015-01-01

    The cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of most antidepressants. Comedication with a potent CYP2D6 inhibitor can convert patients with extensive metabolizer (EM) or ultra-rapid metabolizer (UM) genotypes into poor metabolizer (PM) phenotypes. Since comedication is frequent in depressed patients treated with antidepressants, we investigated the effect of the CYP2D6 composite phenotype on antidepressant efficacy, taking into account both the CYP2D6 genotype and comedication with CYP2D6 inhibitors. 87 Caucasian in patients with a major depressive episode were prospectively treated with flexible doses of antidepressant monotherapy as well as comedications and genotyped for the major CYP2D6 alleles (CYP2D6*3 rs35742686, *4 rs3892097, *5 del, *6 rs5030655, and *2xN). They were classified for CYP2D6 composite phenotype and assessed for antidepressant response after 4 weeks. In terms of genotypes (g), 6 subjects were UMg, 6 PMg, and 75 EMg. Ten patients were coprescribed a CYP2D6 inhibitor, resulting in the following composite phenotypes (cp): 5 UMcp, 16 PMcp, and 66 EMcp. Whereas none of the CYP2D6 genotypes were significantly associated with antidepressant response, UMcp had a lower antidepressant response than PMcp or EMcp (respectively: 39.0 ± 17.9, 50.0 ± 26.0, and 61.6 ± 23.4, p = 0.02). Despite small sample size, this study suggests that a CYP2D6 composite phenotype, taking into account both genotype and comedications with CYP2D6 inhibitors, could predict CYP2D6 substrate antidepressants response. Thus, to optimize antidepressant response, CYP2D6 genotype could be performed and comedications with CYP2D6 inhibitors should be avoided, when prescribing CYP2D6 substrate antidepressants.

  12. Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production

    PubMed Central

    Yu, Xiaoyun; Prévot, Mathieu S.; Guijarro, Néstor; Sivula, Kevin

    2015-01-01

    WSe2—a layered semiconductor that can be exfoliated into atomically thin two-dimensional sheets—offers promising characteristics for application in solar energy conversion. However, the lack of controllable, cost-effective methods to scalably fabricate homogeneous thin films currently limits practical application. Here we present a technique to prepare controlled thin films of 2D WSe2 from dispersions of solvent-exfoliated few-layer flakes. Flake self-assembly at a liquid/liquid interface (formed exceptionally from two non-solvents for WSe2) followed by substrate transfer affords large-area thin films with superior 2D flake alignment compared with traditional (liquid/air) self-assembly techniques. We further demonstrate, for the first time, solar-to-hydrogen conversion from solution-processed WSe2 thin films. Bare photoelectrodes with a thickness of ca. 25 nm exhibit sustained p-type photocurrent under simulated solar illumination, and up to 1.0 mA cm–2 at 0 V versus reversible hydrogen electrode with an added water reduction catalyst (Pt). The importance of the self-assembled morphology is established by photoelectrochemical and conductivity measurements. PMID:26126745

  13. Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoyun; Prévot, Mathieu S.; Guijarro, Néstor; Sivula, Kevin

    2015-07-01

    WSe2--a layered semiconductor that can be exfoliated into atomically thin two-dimensional sheets--offers promising characteristics for application in solar energy conversion. However, the lack of controllable, cost-effective methods to scalably fabricate homogeneous thin films currently limits practical application. Here we present a technique to prepare controlled thin films of 2D WSe2 from dispersions of solvent-exfoliated few-layer flakes. Flake self-assembly at a liquid/liquid interface (formed exceptionally from two non-solvents for WSe2) followed by substrate transfer affords large-area thin films with superior 2D flake alignment compared with traditional (liquid/air) self-assembly techniques. We further demonstrate, for the first time, solar-to-hydrogen conversion from solution-processed WSe2 thin films. Bare photoelectrodes with a thickness of ca. 25 nm exhibit sustained p-type photocurrent under simulated solar illumination, and up to 1.0 mA cm-2 at 0 V versus reversible hydrogen electrode with an added water reduction catalyst (Pt). The importance of the self-assembled morphology is established by photoelectrochemical and conductivity measurements.

  14. High-resolution 2D3V simulations of forced hybrid-kinetic turbulence

    NASA Astrophysics Data System (ADS)

    Cerri, Silvio Sergio; Califano, Francesco; Rincon, Francois; Told, Daniel; Jenko, Frank; Pegoraro, Francesco

    2016-10-01

    The understanding of the kinetic processes at play in plasma turbulence is a frontier problem in plasma physics and among the topics currently of most interest in space plasma research. Here we investigate the properties of turbulence from the end of the magnetohydrodynamic (MHD) cascade to scales well below the ion gyroradius (i.e., the so-called ``dissipation'' or ``dispersion'' range) by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in a 2D3V phase-space (two real-space and three velocity-space dimensions). Different values of the plasma beta parameter typical of the solar wind (SW) are investigated. Several aspects of turbulence at small-scales emerging from the simulations are presented and discussed. Even within the limitations of the hybrid approach in 2D3V, a reasonable agreement with SW observations and with theory is found. Finally, we identify possible implications and questions related to SW turbulence which arise from this study. This research has been funded by European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No.277870 and by Euratom research and training programme 2014-2018. Simulations were performed on Fermi (CINECA, IT) and Hydra (MPCDF, DE).

  15. Control of self-assembled 2D nanostructures by methylation of guanine.

    PubMed

    Bald, Ilko; Wang, Yao-guang; Dong, Mingdong; Rosen, Christian B; Ravnsbaek, Jens B; Zhuang, Gui-lin; Gothelf, Kurt V; Wang, Jian-guo; Besenbacher, Flemming

    2011-04-04

    Methylation of DNA nucleobases is an important control mechanism in biology applied, for example, in the regulation of gene expression. The effect of methylation on the intermolecular interactions between guanine molecules is studied through an interplay between scanning tunneling microscopy (STM) and density functional theory with empirical dispersion correction (DFT-D). The present STM and DFT-D results show that methylation of guanine can have subtle effects on the hydrogen-bond strength with a strong dependence on the position of methylation. It is demonstrated that the methylation of DNA nucleobases is a precise means to tune intermolecular interactions and consequently enables very specific recognition of DNA methylation by enzymes. This scheme is used to generate four different types of artificial 2D nanostructures from methylated guanine. For instance, a 2D guanine windmill motif that is stabilized by cooperative hydrogen bonding is revealed. It forms by self-assembly on a graphite surface under ambient conditions at the liquid-solid interface when the hydrogen-bonding donor at the N1 site of guanine is blocked by a methyl group.

  16. Interfacing 2D and 3D Topological Insulators: Bi(111) Bilayer on Bi2Te3

    NASA Astrophysics Data System (ADS)

    Hirahara, Toru; Bihlmayer, Gustav; Sakamoto, Yusuke; Yamada, Manabu; Miyazaki, Hidetoshi; Kimura, Shin-Ichi; Blügel, Stefan; Hasegawa, Shuji

    2012-02-01

    Topological insulators (TI) are insulating materials but have metallic edge states that carry spin currents and are robust against nonmagnetic impurities [1]. While there have been a large number of reports on three-dimensional (3D) TI, only few works have been done in terms of two-dimensional (2D) TI. In the present paper, we report the successful formation of bilayer Bi, which was theoretically predicted to be a 2D TI [2]. We deposited bilayer Bi on a 3D TI Bi2Te3, which the lattice mismatch is very small. From angle-resolved photoemission spectroscopy measurements and ab initio calculations, the electronic structure of the system can be understood as an overlap of the band dispersions of bilayer Bi and Bi2Te3. Our results show that the Dirac cone is actually robust against nonmagnetic perturbations and imply a unique situation where the topologically protected one- and two-dimensional edge states are coexisting at the surface [3]. [0pt] [1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).[0pt] [2] S. Murakami, Phys. Rev. Lett. 97, 236805 (2006).[0pt] [3] T. Hirahara et al., Phys. Rev. Lett. 107, 166801 (2011).

  17. Study of an athermal quasi static plastic deformation in a 2D granular material

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zheng, Jie

    2016-11-01

    In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.

  18. Secondary flow vortices and flow separation of 2-D turning diffuser via particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Nordin, N.; Seri, S. M.; Taib, I.; Mohammed, A. N.; Abdullah, M. K.; Sapit, A.

    2017-08-01

    It is often necessary in fluid flow systems to simultaneously decelerate and turn the flow. This can be achieved by employing turning diffusers in the fluid flow systems. The flow through a turning diffuser is complex, apparently due to the expansion and inflexion introduced along the direction of flow. In the present work, the flow characteristics of 2-D turning diffuser by means of varying inflow Reynolds number are investigated. The flow characteristics within the outlet cross-section and longitudinal section were examined respectively by the 3-D stereoscopic PIV and 2-D PIV. The flow uniformity is affected with the increase of inflow Reynolds number due to the dispersion of the core flow throughout the outlet cross-section. It becomes even worse with the presences of secondary flow of 22% to 28%. The secondary flow vortices occur almost the same scale at both left and right sides of the outlet. The flow separation takes place within the inner wall region early on half of the inner wall length and is gradually resolved with the increase of inflow Reynolds number.

  19. Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.

    PubMed

    Spencer, Austin P; Li, Hebin; Cundiff, Steven T; Jonas, David M

    2015-04-30

    A solution to Maxwell's equations in the three-dimensional frequency domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the sample are simulated in 2DFT spectra calculated for the homogeneous Bloch line shape model. Spectral features that appear at optical densities of up to 3 are investigated. As optical density increases, absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting time and the excited state lifetime through coherent transient effects. Experiment-specific conditions are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo-time domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam overlap reduces the line width along the ωτ axis but also reduces signal intensity. A pseudo-time domain filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation-detection transformation that can eliminate propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279-6287] is quantitatively compared, in line width, in depth of peak splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.

  20. Measurement and interpretation of QT dispersion.

    PubMed

    Batchvarov, V; Malik, M

    2000-01-01

    QT dispersion was proposed as an index of the spatial inhomogeneity of ventricular recovery times. The results of studies that found significant correlation between dispersion of ventricular recovery times measured with monophasic action potentials and QT dispersion were interpreted as proof of the direct link between QT dispersion and the dispersion of ventricular recovery times. Later it was shown that QT dispersion is not a direct reflection of the spatial variation of the recovery times and cannot be used for quantification of this variation. The interlead variability of the QT intervals is a result of different projections of the spatial T-wave loop into the various electrocardiographic leads. The reliability of both manual and automatic measurement of QT dispersion is low and is often of the order of the differences of Qt dispersion between different patient groups. The measurement reliability is influenced by intrinsic factors (e.g., amplitude of the T wave) and extrinsic factors (e.g., noise, paper speed of recording, instruments for manual measurements, and type of algorithm and interalgorithmic settings for automatic measurement). There is very little to choose between the different indices of expression of QT dispersion, as well as between the different lead configurations used for its measurement. QT dispersion is not simply a result of measurement error, but a crude measure of abnormalities during the whole course of repolarization. Only grossly prolonged QT dispersion (e.g., > or =100 ms), must be interpreted simply as a sign of the abnormal course of the repolarization, and inferences about the actual dispersion of the ventricular recovery times should not be made. Newer concepts of assessment of the morphology of the T wave are already emerging and will probably be of higher clinical value.

  1. Enhanced automated platform for 2D characterization of RFID communications

    NASA Astrophysics Data System (ADS)

    Vuza, Dan Tudor; Vlǎdescu, Marian

    2016-12-01

    The characterization of the quality of communication between an RFID reader and a transponder at all expected positions of the latter on the reader antenna is of primal importance for the evaluation of performance of an RFID system. Continuing the line of instruments developed for this purpose by the authors, the present work proposes an enhanced version of a previously introduced automated platform for 2D evaluation. By featuring higher performance in terms of mechanical speed, the new version allows to obtain 2D maps of communication with a higher resolution that would have been prohibitive in terms of test duration with the previous version. The list of measurement procedures that can be executed with the platform is now enlarged with additional ones, such as the determination of the variation of the magnetic coupling between transponder and antenna across the antenna surface and the utilization of transponder simulators for evaluation of the quality of communication.

  2. D2-D1 phase transition of columnar liquid crystals

    NASA Astrophysics Data System (ADS)

    Sun, Y. F.; Swift, J.

    1986-04-01

    The D2-D1 phase transition in columnar liquid crystals of the HAT series [e.g., HAT11 (triphenelene hexa-n-dodecanoate)] is discussed within the framework of Landau theory. The order parameters which describe the transition are abstracted from a tensor density function, and are associated with two irreducible representations of the symmetry group of the high-temperature D2 phase. A mechanism for a first-order transition is then suggested in accordance with both theoretical considerations and the experimental result for the D2-D1 transition. Two possible arrangements of the herringbone structure of the D1 phase are obtained, each of which gives six orientational states in the low-temperature D1 phase.

  3. Calculation of wakefields in 2D rectangular structures

    DOE PAGES

    Zagorodnov, I.; Bane, K. L. F.; Stupakov, G.

    2015-10-19

    We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We limit our study to structures having rectangular cross section, where the height can vary as function of longitudinal coordinate but the width and side walls remain fixed. For such structures, we derive a Fourier representation of the wake potentials through one-dimensional functions. A new numerical approach for calculating the wakes in such structures is proposed and implemented in themore » computer code echo(2d). The computation resource requirements for this approach are moderate and comparable to those for finding the wakes in 2D rotationally symmetric structures. Finally, we present numerical examples obtained with the new numerical code.« less

  4. Controlling avalanche criticality in 2D nano arrays.

    PubMed

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  5. Controlling avalanche criticality in 2D nano arrays

    PubMed Central

    Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Char