A mathematical model for a didactic device able to simulate a 2D Newtonian gravitational field
NASA Astrophysics Data System (ADS)
De Marchi, Fabrizio
2015-01-01
In this paper we propose a mathematical model to describe a theoretical device able to simulate an inverse-square force on a test mass moving on a horizontal plane. We use two pulleys, a counterweight, a wire and a smooth rail, in addition to the test mass. The tension of the wire (i.e. the attractive force on the test mass) is determined by the position of a counterweight free to move on a rail placed under the plane. The profile of the rail is calculated in order to obtain the required Newtonian force. Details of this calculation are reported in the paper, and numerical simulations are provided in order to investigate the stability of the orbits under the effect of the main friction forces and other perturbative effects. This work points out that there are some criticalities intrinsic to the apparatus and gives some suggestions about how to minimize their impact.
Not Available
1980-07-31
The Department of Energy (DOE), Morgantown Energy Technology Center (METC) has been supporting the development of flow models for Devonian shale gas reservoirs. The broad objectives of this modeling program are to: (1) develop and validate a mathematical model which describes gas flow through Devonian shales; (2) determine the sensitive parameters that affect deliverability and recovery of gas from Devonian shales; (3) recommend laboratory and field measurements for determination of those parameters critical to the productivity and timely recovery of gas from the Devonian shales; (4) analyze pressure and rate transient data from observation and production gas wells to determine reservoir parameters and well performance; and (5) study and determine the overall performance of Devonian shale reservoirs in terms of well stimulation, well spacing, and resource recovery as a function of gross reservoir properties such as anisotropy, porosity and thickness variations, and boundary effects. During the previous annual period, a mathematical model describing gas flow through Devonian shales and the software for a radial one-dimensional numerical model for single well performance were completed and placed into operation. Although the radial flow model is a powerful tool for studying single well behavior, it is inadequate for determining the effects of well spacing, stimulation treatments, and variation in reservoir properties. Hence, it has been necessary to extend the model to two-dimensions, maintaining full capability regarding Klinkerberg effects, desorption, and shale matrix parameters. During the current annual period, the radial flow model has been successfully extended to provide the two-dimensional capability necessary for the attainment of overall program objectives, as described above.
NASA Astrophysics Data System (ADS)
Sharapov, V. N.; Cherepanov, A. N.; Popov, V. N.; Bykova, V. G.
2012-11-01
A model describing two-dimensional (2D) dynamics of heat transfer in the fluid systems with a localized sink of a magmatic fluid into local fractured zones above the roof of crystallizing crustal intrusions is suggested. Numerical modeling of the migration of the phase boundaries in 2D intrusive chambers under retrograde boiling of magma with relatively high initial water content in the melt shows that, depending on the character of heat dissipation from a magmatic fluid into the host rock, two types of fluid magmatic systems can arise. (1) At high heat losses, the zoning of fluidogenic ore formation is determined by the changes in temperature of the rocks within the contact aureole of the intrusive bodies. These temperature variations are controlled by the migration of the phase boundaries in the cooling melt towards the center of the magmatic bodies from their contacts. (2) In the case of a localized sink of the magmatic fluid in different parts of the top of the intrusive chambers, a specific characteristic scenario of cooling of the magmatic bodies is probably implemented. In 2D systems with a heat transfer coefficient α k < 5 × 104 W/m2 K, an area with quasi-stationary phase boundaries develops close to the region of fluid drainage through the fractured zone in the intrusion. Therefore, as the phase boundaries contract to the sink zone of a fluid, specific thermal tubes arise, whose characteristics depend on the width of the fluid-conductive zone and the heat losses into the side rocks. (3) The time required for the intrusion to solidify varies depending on the particular position of the fluid conductor above the top of the magmatic body.
Brittle damage models in DYNA2D
Faux, D.R.
1997-09-01
DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Mathematical Modeling and Pure Mathematics
ERIC Educational Resources Information Center
Usiskin, Zalman
2015-01-01
Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
Mathematical Modelling Approach in Mathematics Education
ERIC Educational Resources Information Center
Arseven, Ayla
2015-01-01
The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…
Teaching Mathematical Modeling in Mathematics Education
ERIC Educational Resources Information Center
Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant
2016-01-01
Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…
Homogenization models for 2-D grid structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Cioranescu, D.; Rebnord, D. A.
1992-01-01
In the past several years, we have pursued efforts related to the development of accurate models for the dynamics of flexible structures made of composite materials. Rather than viewing periodicity and sparseness as obstacles to be overcome, we exploit them to our advantage. We consider a variational problem on a domain that has large, periodically distributed holes. Using homogenization techniques we show that the solution to this problem is in some topology 'close' to the solution of a similar problem that holds on a much simpler domain. We study the behavior of the solution of the variational problem as the holes increase in number, but decrease in size in such a way that the total amount of material remains constant. The result is an equation that is in general more complex, but with a domain that is simply connected rather than perforated. We study the limit of the solution as the amount of material goes to zero. This second limit will, in most cases, retrieve much of the simplicity that was lost in the first limit without sacrificing the simplicity of the domain. Finally, we show that these results can be applied to the case of a vibrating Love-Kirchhoff plate with Kelvin-Voigt damping. We rely heavily on earlier results of (Du), (CS) for the static, undamped Love-Kirchhoff equation. Our efforts here result in a modification of those results to include both time dependence and Kelvin-Voigt damping.
NASA Astrophysics Data System (ADS)
Lach, Theodore M.
2003-10-01
The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an "up" quark of mass 237.31 MeV/c2 and a "dn" quark of mass 42.392 MeV/c2. These two new predicted quarks helped to determine that the masses of the quarks and leptons are all related by a geometric progression relationship. The mass of each quark or lepton is just the "geometric mean" of two related elementary particles, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.74 (predicted), 117.3, 1778.4 (tau), 26950.1 MeV. The geometric ratio of this progression is 15.154 (e to the power e). The mass of the tau in this theory agrees very well with accepted values. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237.31 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these new quarks, and lepton. Ref. Masses of the Sub-Nuclear Particles, nucl-th/ 0008026, @ http://xxx.lanl.gov. Infinite Energy, Vol 5, issue 30.
Technical Review of the UNET2D Hydraulic Model
Perkins, William A.; Richmond, Marshall C.
2009-05-18
The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.
An Intercomparison of 2-D Models Within a Common Framework
NASA Technical Reports Server (NTRS)
Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)
2002-01-01
A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
2 1/2 -D compressible reconnection model
NASA Astrophysics Data System (ADS)
Skender, M.; Vršnak, B.
The exact solution of the jump conditions on the RD/SMS discontinuity system in a two-and-half-dimensional (2 1/2 -D) symmetrical reconnection model enables one to analyse the outflowing jet characteristics in dependence on the inflow velocity, and to follow changes in transition to the two-dimensional model. Implications arising from the exact solution and its relevance for solar flares are discussed.
Mathematical Modelling: A New Approach to Teaching Applied Mathematics.
ERIC Educational Resources Information Center
Burghes, D. N.; Borrie, M. S.
1979-01-01
Describes the advantages of mathematical modeling approach in teaching applied mathematics and gives many suggestions for suitable material which illustrates the links between real problems and mathematics. (GA)
Mathematical Modeling: A Structured Process
ERIC Educational Resources Information Center
Anhalt, Cynthia Oropesa; Cortez, Ricardo
2015-01-01
Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…
Mathematical models of hysteresis
1998-08-01
The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.
Extension and application of the Preissmann slot model to 2D transient mixed flows
NASA Astrophysics Data System (ADS)
Maranzoni, Andrea; Dazzi, Susanna; Aureli, Francesca; Mignosa, Paolo
2015-08-01
This paper presents an extension of the Preissmann slot concept for the modeling of highly transient two-dimensional (2D) mixed flows. The classic conservative formulation of the 2D shallow water equations for free surface flows is adapted by assuming that two fictitious vertical slots, aligned along the two Cartesian plane directions and normally intersecting, are added on the ceiling of each integration element. Accordingly, transitions between free surface and pressurized flow can be handled in a natural and straightforward way by using the same set of governing equations. The opportunity of coupling free surface and pressurized flows is actually useful not only in one-dimensional (1D) problems concerning sewer systems but also for modeling 2D flooding phenomena in which the pressurization of bridges, culverts, or other crossing hydraulic structures can be expected. Numerical simulations are performed by using a shock-capturing MUSCL-Hancock finite volume scheme combined with the FORCE (First-Order Centred) solver for the evaluation of the numerical fluxes. The validation of the mathematical model is accomplished on the basis of both exact solutions of 1D discontinuous initial value problems and reference radial solutions of idealized test cases with cylindrical symmetry. Furthermore, the capability of the model to deal with practical field-scale applications is assessed by simulating the transit of a bore under an arch bridge. Numerical results show that the proposed model is suitable for the prediction of highly transient 2D mixed flows.
[Mathematical models of hysteresis
Mayergoyz, I.D.
1991-01-01
The research described in this proposal is currently being supported by the US Department of Energy under the contract Mathematical Models of Hysteresis''. Thus, before discussing the proposed research in detail, it is worthwhile to describe and summarize the main results achieved in the course of our work under the above contract. Our ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories''. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. Our research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. Our study has by and large been centered around the following topics: various generalizations and extensions of the classical Preisach model, finding of necessary and sufficient conditions for the representation of actual hysteretic nonlinearities by various Preisach type models, solution of identification problems for these models, numerical implementation and experimental testing of Preisach type models. Although the study of Preisach type models has constituted the main direction of the research, some effort has also been made to establish some interesting connections between these models and such topics as: the critical state model for superconducting hysteresis, the classical Stoner-Wohlfarth model of vector magnetic hysteresis, thermal activation type models for viscosity, magnetostrictive hysteresis and neural networks.
Modelling RF sources using 2-D PIC codes
Eppley, K.R.
1993-03-01
In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.
Modelling RF sources using 2-D PIC codes
Eppley, K.R.
1993-03-01
In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field ( port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.
Unitary matrix models and 2D quantum gravity
Dalley, S. . Joseph Henry Labs.); Johnson, C.V.; Morris, T.R. . Dept. of Physics); Watterstam, A. )
1992-09-21
In this paper the KdV and modified KdV integrable hierarchies are shown to be different descriptions of the same 2D gravitational system - open-closed string theory. Non-perturbative solutions of the multicritical unitary matrix models map to non-singular solutions of the renormalization group equation for the string susceptibility, [P, Q] = Q. The authors also demonstrate that the large-N solutions of unitary matrix integrals in external fields, studied by Gross and Newman, equal the non-singular pure closed-string solutions of [[bar P], Q] = Q.
2D numerical modelling of meandering channel formation
NASA Astrophysics Data System (ADS)
XIAO, Y.; ZHOU, G.; YANG, F. S.
2016-03-01
A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-load transport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numerical predictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under different scenarios and improve understanding of patterning processes.
Brane brick models and 2 d (0 , 2) triality
NASA Astrophysics Data System (ADS)
Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong
2016-05-01
We provide a brane realization of 2 d (0 , 2) Gadde-Gukov-Putrov triality in terms of brane brick models. These are Type IIA brane configurations that are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. Triality translates into a local transformation of brane brick models, whose simplest representative is a cube move. We present explicit examples and construct their triality networks. We also argue that the classical mesonic moduli space of brane brick model theories, which corresponds to the probed Calabi-Yau 4-fold, is invariant under triality. Finally, we discuss triality in terms of phase boundaries, which play a central role in connecting Calabi-Yau 4-folds to brane brick models.
Authenticity of Mathematical Modeling
ERIC Educational Resources Information Center
Tran, Dung; Dougherty, Barbara J.
2014-01-01
Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…
Experimental validation of 2D profile photoresist shrinkage model
NASA Astrophysics Data System (ADS)
Bunday, Benjamin; Cordes, Aaron; Self, Andy; Ferry, Lorena; Danilevsky, Alex
2011-03-01
For many years, lithographic resolution has been the main obstacle in allowing the pace of transistor densification to meet Moore's Law. For the 32 nm node and beyond, new lithography techniques will be used, including immersion ArF (iArF) lithography and extreme ultraviolet lithography (EUVL). As in the past, these techniques will use new types of photoresists with the capability to print smaller feature widths and pitches. These smaller feature sizes will also require the use of thinner layers of photoresists, such as under 100 nm. In previous papers, we focused on ArF and iArF photoresist shrinkage. We evaluated the magnitude of shrinkage for both R&D and mature resists as a function of chemical formulation, lithographic sensitivity, scanning electron microscope (SEM) beam condition, and feature size. Shrinkage results were determined by the well accepted methodology described in SEMATECH's CD-SEM Unified Specification. In other associated works, we first developed a 1-D model for resist shrinkage for the bottom linewidth and then a 2-D profile model that accounted for shrinkage of all aspects of a trapezoidal profile along a given linescan. A fundamental understanding of the phenomenology of the shrinkage trends was achieved, including how the shrinkage behaves differently for different sized and shaped features. In the 1-D case, calibration of the parameters to describe the photoresist material and the electron beam was all that was required to fit the models to real shrinkage data, as long as the photoresist was thick enough that the beam could not penetrate the entire layer of resist. The later 2-D model included improvements for solving the CD shrinkage in thin photoresists, which is now of great interest for upcoming realistic lithographic processing to explore the change in resist profile with electron dose and to predict the influence of initial resist profile on shrinkage characteristics. The 2-D model also included shrinkage due to both the primary
A 2D channel-clogging biofilm model.
Winstanley, H F; Chapwanya, M; Fowler, A C; O'Brien, S B G
2015-09-01
We present a model of biofilm growth in a long channel where the biomass is assumed to have the rheology of a viscous polymer solution. We examine the competition between growth and erosion-like surface detachment due to the flow. A particular focus of our investigation is the effect of the biofilm growth on the fluid flow in the pores, and the issue of whether biomass can grow sufficiently to shut off fluid flow through the pores, thus clogging the pore space. Net biofilm growth is coupled along the pore length via flow rate and nutrient transport in the pore flow. Our 2D model extends existing results on stability of 1D steady state biofilm thicknesses to show that, in the case of flows driven by a fixed pressure drop, full clogging of the pore can indeed happen in certain cases dependent on the functional form of the detachment term. PMID:25240390
Mass loss in 2D rotating stellar models
Lovekin, Caterine; Deupree, Bob
2010-10-05
Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.
2D Quantum Transport Modeling in Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
Mathematical Modeling: Convoying Merchant Ships
ERIC Educational Resources Information Center
Mathews, Susann M.
2004-01-01
This article describes a mathematical model that connects mathematics with social studies. Students use mathematics to model independent versus convoyed ship deployments and sinkings to determine if the British should have convoyed their merchant ships during World War I. During the war, the British admiralty opposed sending merchant ships grouped…
A Primer for Mathematical Modeling
ERIC Educational Resources Information Center
Sole, Marla
2013-01-01
With the implementation of the National Council of Teachers of Mathematics recommendations and the adoption of the Common Core State Standards for Mathematics, modeling has moved to the forefront of K-12 education. Modeling activities not only reinforce purposeful problem-solving skills, they also connect the mathematics students learn in school…
Cascading rainfall uncertainties into 2D inundation impact models
NASA Astrophysics Data System (ADS)
Souvignet, Maxime; de Almeida, Gustavo; Champion, Adrian; Garcia Pintado, Javier; Neal, Jeff; Freer, Jim; Cloke, Hannah; Odoni, Nick; Coxon, Gemma; Bates, Paul; Mason, David
2013-04-01
Existing precipitation products show differences in their spatial and temporal distribution and several studies have presented how these differences influence the ability to predict hydrological responses. However, an atmospheric-hydrologic-hydraulic uncertainty cascade is seldom explored and how, importantly, input uncertainties propagate through this cascade is still poorly understood. Such a project requires a combination of modelling capabilities, runoff generation predictions based on those rainfall forecasts, and hydraulic flood wave propagation based on the runoff predictions. Accounting for uncertainty in each component is important in decision making for issuing flood warnings, monitoring or planning. We suggest a better understanding of uncertainties in inundation impact modelling must consider these differences in rainfall products. This will improve our understanding of the input uncertainties on our predictive capability. In this paper, we propose to address this issue by i) exploring the effects of errors in rainfall on inundation predictive capacity within an uncertainty framework, i.e. testing inundation uncertainty against different comparable meteorological conditions (i.e. using different rainfall products). Our method cascades rainfall uncertainties into a lumped hydrologic model (FUSE) within the GLUE uncertainty framework. The resultant prediction uncertainties in discharge provide uncertain boundary conditions, which are cascaded into a simplified shallow water 2D hydraulic model (LISFLOOD-FP). Rainfall data captured by three different measurement techniques - rain gauges, gridded data and numerical weather predictions (NWP) models are used to assess the combined input data and model parameter uncertainty. The study is performed in the Severn catchment over the period between June and July 2007, where a series of rainfall events causing record floods in the study area). Changes in flood area extent are compared and the uncertainty envelope is
Duality Between Spin Networks and the 2D Ising Model
NASA Astrophysics Data System (ADS)
Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.
2016-06-01
The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.
Effects of Agent's Repulsion in 2d Flocking Models
NASA Astrophysics Data System (ADS)
Moussa, Najem; Tarras, Iliass; Mazroui, M'hammed; Boughaleb, Yahya
In nature many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex behavior of these systems, many models have been proposed and tested so far. This paper deals with an extension of the Vicsek model, by including a second zone of repulsion, where each agent attempts to maintain a minimum distance from the others. The consideration of this zone in our study seems to play an important role during the travel of agents in the two-dimensional (2D) flocking models. Our numerical investigations show that depending on the basic ingredients such as repulsion radius (R1), effect of density of agents (ρ) and noise (η), our nonequilibrium system can undergo a kinetic phase transition from no transport to finite net transport. For different values of ρ, kinetic phase diagrams in the plane (η ,R1) are found. Implications of these findings are discussed.
2-D Model for Normal and Sickle Cell Blood Microcirculation
NASA Astrophysics Data System (ADS)
Tekleab, Yonatan; Harris, Wesley
2011-11-01
Sickle cell disease (SCD) is a genetic disorder that alters the red blood cell (RBC) structure and function such that hemoglobin (Hb) cannot effectively bind and release oxygen. Previous computational models have been designed to study the microcirculation for insight into blood disorders such as SCD. Our novel 2-D computational model represents a fast, time efficient method developed to analyze flow dynamics, O2 diffusion, and cell deformation in the microcirculation. The model uses a finite difference, Crank-Nicholson scheme to compute the flow and O2 concentration, and the level set computational method to advect the RBC membrane on a staggered grid. Several sets of initial and boundary conditions were tested. Simulation data indicate a few parameters to be significant in the perturbation of the blood flow and O2 concentration profiles. Specifically, the Hill coefficient, arterial O2 partial pressure, O2 partial pressure at 50% Hb saturation, and cell membrane stiffness are significant factors. Results were found to be consistent with those of Le Floch [2010] and Secomb [2006].
Ab initio modeling of 2D layered organohalide lead perovskites.
Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio
2016-04-28
A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place. PMID:27131557
2-D Inhomogeneous Modeling of the Solar CO Bands
NASA Astrophysics Data System (ADS)
Ayres, T. R.
1996-05-01
The recent discovery of off-limb emissions in the mid-IR ( ~ 5 mu m) vibration-rotation bands of solar carbon monoxide (CO) has sparked new interest in the formation of the molecular lines, and their ability to diagnose thermal conditions at high altitudes. The off-limb extensions of the strong CO lines indicate the penetration of cool material (T ~ 3500 K) several hundred kilometers into the otherwise hot (T ~ 6000 K) chromosphere. The origin of the cool gas, and its role in the thermal energy balance, remain controversial. The interpretation of the CO observations must rely heavily upon numerical modeling, in particular highly-inhomogeneous thermal structures arrayed in a 2-D scheme that can properly treat the geometry of the grazing rays at the solar limb. The radiation transport, itself, is especially simple for the CO off-limb emissions, because the fundamental bands form quite close to LTE (high collision rates; low spontaneous decay rates) and the background continuum is purely thermal as well (f--f transitions in H(-) and H). Thus, the geometrical aspects of the problem can be treated in considerably more detail than would be practical for typical NLTE scattering lines. I describe the recent modeling efforts, and the diagnostic potential of the CO bands for future observational studies of inhomogeneous surface structure on the Sun, and on other stars of late spectral type. This work was supported by NSF grant AST-9218063 to the University of Colorado.
Ab initio modeling of 2D layered organohalide lead perovskites
NASA Astrophysics Data System (ADS)
Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio
2016-04-01
A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.
Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches
ERIC Educational Resources Information Center
Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem
2014-01-01
Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…
A 2D electrohydrodynamic model for electrorotation of fluid drops.
Feng, James Q
2002-02-01
A theoretical analysis of spontaneous electrorotation of deformable fluid drops in a DC electric field is presented with a 2D electrohydrodynamic model. The fluids in the system are assumed to be leaky dielectric and Newtonian. If the rotating flow is dominant over the cellular convection type of electrohydrodynamic flow, closed-form solutions for drops of small deformations can be obtained. Because the governing equations are in general nonlinear even when drop deformations are ignored, the general solution for even undeformed drop takes a form of infinite series and can only be evaluated by numerical means. Both closed-form solutions for special cases and numerical solutions for more general cases are obtained here to describe steady-state field variables and first-order drop deformations. In a DC electric field of strength beyond the threshold value, spontaneous electrorotation of a drop is shown to occur when charge relaxation in the surrounding fluid is faster than the fluid inside the drop. With increasing the strength of the applied electric field from the threshold for onset of electrorotation, the axis of drop contraction deviates from from that of the applied electric field in the direction of the rotating flow with an angle increasing with the field strength. PMID:16290391
2D modeling of electromagnetic waves in cold plasmas
Crombé, K.; Van Eester, D.; Koch, R.; Kyrytsya, V.
2014-02-12
The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.
Numerical modeling of seismogram envelopes in 2-D random media
NASA Astrophysics Data System (ADS)
Fehler, Michael
2002-11-01
Several portions of seismograms recorded from regional earthquakes cannot be easily explained as resulting from waves propagating along deterministic paths within the Earth. For example, seismic coda, which is the tail portion of the seismogram of an earthquake recorded at distances of less than 100 km, is considered as resulting from waves that are multiply scattered from random heterogeneities in the Earth's lithosphere. At greater distances, observations that the duration of the initial arriving wave packet is much longer than the source-time duration is explained as being due to multiple forward scattering along the path between the source and the receiver. To investigate these phenomena, we use a finite difference method to numerically simulate 2-D scalar-waves that propagate through random media characterized by a von Karman autocorrelation function. Such media are considered to be appropriate models for the random component of the structure of the Earth's lithosphere. We investigate the characteristics of the resulting wavefields and compare them with those of observed seismograms.
VAM2D: Variably saturated analysis model in two dimensions
Huyakorn, P.S.; Kool, J.B.; Wu, Y.S. )
1991-10-01
This report documents a two-dimensional finite element model, VAM2D, developed to simulate water flow and solute transport in variably saturated porous media. Both flow and transport simulation can be handled concurrently or sequentially. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. Nonlinear soil moisture characteristics and atmospheric boundary conditions (e.g., infiltration, evaporation and seepage face), are treated using Picard and Newton-Raphson iterations. Hysteresis effects and anisotropy in the unsaturated hydraulic conductivity can be taken into account if needed. The contaminant transport simulation can account for advection, hydrodynamic dispersion, linear equilibrium sorption, and first-order degradation. Transport of a single component or a multi-component decay chain can be handled. The transport equation is approximated using an upstream weighted residual method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. This document has been produced as a user's manual. It contains detailed information on the code structure along with instructions for input data preparation and sample input and printed output for selected test problems. Also included are instructions for job set up and restarting procedures. 44 refs., 54 figs., 24 tabs.
Well-posedness and generalized plane waves simulations of a 2D mode conversion model
NASA Astrophysics Data System (ADS)
Imbert-Gérard, Lise-Marie
2015-12-01
Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.
Predicting Fracture Using 2D Finite Element Modeling
MacNeil, J.A.M.; Adachi, J.D; Goltzman, D; Josse, R.G; Kovacs, C.S; Prior, J.C; Olszynski, W; Davison, K.S.; Kaiser, S.M
2013-01-01
A decrease in bone density at the hip or spine has been shown to increase the risk of fracture. A limitation of the bone mineral density (BMD) measurement is that it provides only a measure of a bone samples average density when projected onto a 2D surface. Effectively, what determines bone fracture is whether an applied load exceeds ultimate strength, with both bone tissue material properties (can be approximated through bone density), and geometry playing a role. The goal of this project was to use bone geometry and BMD obtained from radiographs and DXA measurements respectively to estimate fracture risk, using a two-dimensional finite element model (FEM) of the sagittal plane of lumbar vertebrae. The Canadian Multicenter Osteoporosis Study (CaMos) data was used for this study. There were 4194 men and women over the age of 50 years, with 786 having fractures. Each subject had BMD testing and radiographs of their lumbar vertebrae. A single two dimensional FEM of the first to fourth lumbar vertebra was automatically generated for each subject. Bone tissue stiffness was assigned based on the BMD of the individual vertebrae, and adjusted for patient age. Axial compression boundary conditions were applied with a force proportional to body mass. The resulting overall strain from the applied force was found. Men and women were analyzed separately. At baseline, the sensitivity of BMD to predict fragility fractures in women and men was 3.77 % and 0.86 %, while the sensitivity of FEM to predict fragility fractures for women and men was 10.8 % and 11.3 %. The FEM ROC curve demonstrated better performance compared to BMD. The relative risk of being considered at high fracture risk using FEM at baseline, was a better predictor of 5 year incident fragility fracture risk compared to BMD. PMID:21959170
A 2-D modeling contribution to river training design
NASA Astrophysics Data System (ADS)
Anselmo, V.; Coccato, M.; Frank, E.; Guiot, E.
2003-04-01
In the last ten years, two major floods (1994 and 2000) occurred in North-western Italy and a few questions arose about the hydraulic behavior of the streams as well about the choice and design of protection works. The River Po Authority is oriented to assign "design flows" in selected cross sections of the main rivers, as a design constraint to land management and river training in the upstream areas. Since the region has been fully developed in the last century and somewhere it is overcrowded, space for spreading flood flows is strongly reduced, while large partially developed areas are prone to flooding and residents ask for being protected. A first question regards the contribution to flood peak reduction of the still existing flood prone undeveloped areas beside the main channels, and a second question is about the best way to improve such a behavior. A 2-D unsteady model (Sobek, originated by Delft Hydraulics) was applied to a 25 km reach of the upper River Po. The effects of major floods was investigated, proving that the reduction of the peak flow is minor mainly because of the rather high slope (0.0015) and of the flood volume (500·106 m3). Aiming to enhance the role of the flooded areas, a few types of river training schemes were checked, with particular attention to the so called "Po system". Depth and extension of compartments are the main variables. Results are interesting, but must be evaluated in front of the cost-benefit analysis. The investigation is being extended to more steep stream reaches (up to 0.01), which are representative of the main upper Po tributaries.
A 2D simulation model for urban flood management
NASA Astrophysics Data System (ADS)
Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo
2014-05-01
The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and
Explorations in Elementary Mathematical Modeling
ERIC Educational Resources Information Center
Shahin, Mazen
2010-01-01
In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and…
Parameterising root system growth models using 2D neutron radiography images
NASA Astrophysics Data System (ADS)
Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel
2013-04-01
Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary
Evaluation of Hydrus-2D model for solute distribution in subsurface drip
NASA Astrophysics Data System (ADS)
Souza, Claudinei; Bizari, Douglas; Grecco, Katarina
2015-04-01
The competition for water use between agriculture, industry and population has become intense over the years, requiring a rational use of this resource for food production. The subsurface drip irrigation can help producers with the optimization of operating parameters such as frequency and duration of irrigation, flow, spacing and depth of the dripper installation. This information can be obtained by numerical simulations using mathematical models, thus the aim of this study was to evaluate the HYDRUS-2D model from experimental data to predict the size of the wet bulbs generated by emitters of different application rates (1.0 and 1.6 L h-1). The results showed that horizontal displacement (bulb diameter) remained the largest in all the bulbs, observed both in experimental trials and estimated by the model and the correlation between them was high, above 0.90 to below 16% error. We conclude that the HYDRUS-2D model can be used to estimate the dimensions of the wet bulb getting new information on the sizing of the irrigation system.
A 2D simulation model for urban flood management
NASA Astrophysics Data System (ADS)
Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo
2014-05-01
The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and
Students' Mathematical Modeling of Motion
ERIC Educational Resources Information Center
Marshall, Jill A.; Carrejo, David J.
2008-01-01
We present results of an investigation of university students' development of mathematical models of motion in a physical science course for preservice teachers and graduate students in science and mathematics education. Although some students were familiar with the standard concepts of position, velocity, and acceleration from physics classes,…
Mathematical Modeling of Diverse Phenomena
NASA Technical Reports Server (NTRS)
Howard, J. C.
1979-01-01
Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.
Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.
ERIC Educational Resources Information Center
Suppes, Patrick
This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…
Mathematical Models for Doppler Measurements
NASA Technical Reports Server (NTRS)
Lear, William M.
1987-01-01
Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.
The Implementation of C-ID, R2D2 Model on Learning Reading Comprehension
ERIC Educational Resources Information Center
Rayanto, Yudi Hari; Rusmawan, Putu Ngurah
2016-01-01
The purposes of this research are to find out, (1) whether C-ID, R2D2 model is effective to be implemented on learning Reading comprehension, (2) college students' activity during the implementation of C-ID, R2D2 model on learning Reading comprehension, and 3) college students' learning achievement during the implementation of C-ID, R2D2 model on…
NASA Astrophysics Data System (ADS)
Chae, Dongho; Constantin, Peter; Wu, Jiahong
2014-09-01
We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.
Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics
ERIC Educational Resources Information Center
Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.
2016-01-01
Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…
2-D model of the streamer zone of a leader
NASA Astrophysics Data System (ADS)
Milikh, G. M.; Likhanskii, A. V.; Shneider, M. N.; Raina, A.; George, A.
2016-02-01
Formation of the streamer zone of a leader is an outstanding problem in the physics of electric discharges which is relevant to laboratory leaders, as well as to the leaders formed by lightning. Despite substantial progress in the theoretical understanding of this complicated phenomenon, significant puzzles, such as the low propagation velocity of a leader compared to the fast streamers, remain. The objective of this paper is to present 2-D plasma simulations of the formation and propagation of the streamer zone of a leader. In these simulations we will generate a group of streamers that propagate in a discharge gap while interacting with each other. It is shown that interaction between the streamers significantly reduces their propagation velocity. This explains why the leader, which consists of many streamers, is much slower than a single streamer formed in the same discharge gap. It is shown that the mean velocity suppression of the group of streamers is determined by the inter-streamer distance. The critical value of the packing factor of the streamers at which the interactions between them can be neglected, and thus the discussed process can be treated as caused by a single streamer, is obtained.
Mathematics Teachers' Ideas about Mathematical Models: A Diverse Landscape
ERIC Educational Resources Information Center
Bautista, Alfredo; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.
2014-01-01
This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers' ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers' written responses to three open-ended…
Mathematical Models of Gene Regulation
NASA Astrophysics Data System (ADS)
Mackey, Michael C.
2004-03-01
This talk will focus on examples of mathematical models for the regulation of repressible operons (e.g. the tryptophan operon), inducible operons (e.g. the lactose operon), and the lysis/lysogeny switch in phage λ. These ``simple" gene regulatory elements can display characteristics experimentally of rapid response to perturbations and bistability, and biologically accurate mathematical models capture these aspects of the dynamics. The models, if realistic, are always nonlinear and contain significant time delays due to transcriptional and translational delays that pose substantial problems for the analysis of the possible ranges of dynamics.
2D quantum double models from a 3D perspective
NASA Astrophysics Data System (ADS)
Bernabé Ferreira, Miguel Jorge; Padmanabhan, Pramod; Teotonio-Sobrinho, Paulo
2014-09-01
In this paper we look at three dimensional (3D) lattice models that are generalizations of the state sum model used to define the Kuperberg invariant of 3-manifolds. The partition function is a scalar constructed as a tensor network where the building blocks are tensors given by the structure constants of an involutory Hopf algebra A. These models are very general and are hard to solve in its entire parameter space. One can obtain familiar models, such as ordinary gauge theories, by letting A be the group algebra {C}(G) of a discrete group G and staying on a certain region of the parameter space. We consider the transfer matrix of the model and show that quantum double Hamiltonians are derived from a particular choice of the parameters. Such a construction naturally leads to the star and plaquette operators of the quantum double Hamiltonians, of which the toric code is a special case when A={C}({{{Z}}_{2}}). This formulation is convenient to study ground states of these generalized quantum double models where they can naturally be interpreted as tensor network states. For a surface Σ, the ground state degeneracy is determined by the Kuperberg 3-manifold invariant of \\Sigma \\times {{S}^{1}}. It is also possible to obtain extra models by simply enlarging the allowed parameter space but keeping the solubility of the model. While some of these extra models have appeared before in the literature, our 3D perspective allows for an uniform description of them.
Using Covariation Reasoning to Support Mathematical Modeling
ERIC Educational Resources Information Center
Jacobson, Erik
2014-01-01
For many students, making connections between mathematical ideas and the real world is one of the most intriguing and rewarding aspects of the study of mathematics. In the Common Core State Standards for Mathematics (CCSSI 2010), mathematical modeling is highlighted as a mathematical practice standard for all grades. To engage in mathematical…
A fully coupled 2D model of equiaxed eutectic solidification
Charbon, Ch.; LeSar, R.
1995-12-31
We propose a model of equiaxed eutectic solidification that couples the macroscopic level of heat diffusion with the microscopic level of nucleation and growth of the eutectic grains. The heat equation with the source term corresponding to the latent heat release due to solidification is calculated numerically by means of an implicit finite difference method. In the time stepping scheme, the evolution of solid fraction is deduced from a stochastic model of nucleation and growth which uses the local temperature (interpolated from the FDM mesh) to determine the local grain density and the local growth rate. The solid-liquid interface of each grain is tracked by using a subdivision of each grain perimeter in a large number of sectors. The state of each sector (i.e. whether it is still in contact with the liquid or already captured by an other grain) and the increase of radius of each grain during one time step allows one to compute the increase of solid fraction. As for deterministic models, the results of the model are the evolution of temperature and of solid fraction at any point of the sample. Moreover the model provides a complete picture of the microstructure, thus not limiting the microstructural information to the average grain density but allowing one to compute any stereological value of interest. We apply the model to the solidification of gray cast iron.
Improvement of a 2D numerical model of lava flows
NASA Astrophysics Data System (ADS)
Ishimine, Y.
2013-12-01
I propose an improved procedure that reduces an improper dependence of lava flow directions on the orientation of Digital Elevation Model (DEM) in two-dimensional simulations based on Ishihara et al. (in Lava Flows and Domes, Fink, JH eds., 1990). The numerical model for lava flow simulations proposed by Ishihara et al. (1990) is based on two-dimensional shallow water model combined with a constitutive equation for a Bingham fluid. It is simple but useful because it properly reproduces distributions of actual lava flows. Thus, it has been regarded as one of pioneer work of numerical simulations of lava flows and it is still now widely used in practical hazard prediction map for civil defense officials in Japan. However, the model include an improper dependence of lava flow directions on the orientation of DEM because the model separately assigns the condition for the lava flow to stop due to yield stress for each of two orthogonal axes of rectangular calculating grid based on DEM. This procedure brings a diamond-shaped distribution as shown in Fig. 1 when calculating a lava flow supplied from a point source on a virtual flat plane although the distribution should be circle-shaped. To improve the drawback, I proposed a modified procedure that uses the absolute value of yield stress derived from both components of two orthogonal directions of the slope steepness to assign the condition for lava flows to stop. This brings a better result as shown in Fig. 2. Fig. 1. (a) Contour plots calculated with the original model of Ishihara et al. (1990). (b) Contour plots calculated with a proposed model.
Mathematical circulatory system model
NASA Technical Reports Server (NTRS)
Lakin, William D. (Inventor); Stevens, Scott A. (Inventor)
2010-01-01
A system and method of modeling a circulatory system including a regulatory mechanism parameter. In one embodiment, a regulatory mechanism parameter in a lumped parameter model is represented as a logistic function. In another embodiment, the circulatory system model includes a compliant vessel, the model having a parameter representing a change in pressure due to contraction of smooth muscles of a wall of the vessel.
Stratosphere chemistry in a 2-D model with residual circulation
NASA Technical Reports Server (NTRS)
Guthrie, Paul D.; Jackman, Charles H.
1990-01-01
The objective of this research was to examine the effects of chemical perturbations on the stratosphere using models which can incorporate fully interactive radiative, chemical, and dynamical responses, in the context of a zonally averaged model. Model runs for the unperturbed, chlorine-perturbed and simultaneously chlorine-and CO2-perturbed cases were completed using the JPL-87 chemical kinetics data. The base case was analyzed and submitted for publication. The perturbed cases show substantial sensitivity of the predicted column ozone depletion to the perturbations affecting lower stratosphere temperature, but less to far dynamical perturbations. The column ozone distribution changed substantially when the kinetics data was changed. This implies a greater-than-expected uncertainty in predicted latitude distributions of ozone depletion, due to uncertainty about the accuracy and completeness of the chemical kinetics data set.
Mathematical Modeling: A Bridge to STEM Education
ERIC Educational Resources Information Center
Kertil, Mahmut; Gurel, Cem
2016-01-01
The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…
The 24-Hour Mathematical Modeling Challenge
ERIC Educational Resources Information Center
Galluzzo, Benjamin J.; Wendt, Theodore J.
2015-01-01
Across the mathematics curriculum there is a renewed emphasis on applications of mathematics and on mathematical modeling. Providing students with modeling experiences beyond the ordinary classroom setting remains a challenge, however. In this article, we describe the 24-hour Mathematical Modeling Challenge, an extracurricular event that exposes…
Development of CCHE2D embankment break model
Technology Transfer Automated Retrieval System (TEKTRAN)
Earthen embankment breach often results in detrimental impact on downstream residents and infrastructure, especially those located in the flooding zone. Embankment failures are most commonly caused by overtopping or internal erosion. This study is to develop a practical numerical model for simulat...
On the assimilation of flood extension images into 2D shallow-water models
NASA Astrophysics Data System (ADS)
Monnier, J.; Couderc, F.; Dartus, D.; Madec, R.; Vila, J.
2012-12-01
In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images (e.g. from satellite) is still delicate. In the present talk, we address the richness of satellite information to constraint a 2D shallow-water model, and present also related difficulties. A preliminary study done on Mosel river is presented in [LaMo] [HoLaMoPu]. On selected parts of the image, an 0th order model flow allows to obtain some reliable water levels with quantified uncertainties (C. Puech et al.). Next, variationnal sensitivities (based on a gradient computation and adjoint equations) reveal some difficulties that a model designer have to tackle (e.g. roughness parameters at open boundaries), and allow to better understand both the model and the flow. Next, a variational data assimilation algorithm (4D-var) shows that such data lead to a better calibration of the model (e.g. roughness coefficients) and potentially allows to identify the incoming and/or outgoing flow at open boundaries, [LaMo] [HoLaMoPu]. On the other side, the flood dynamic extension is difficult to represent accurately using a 2D SW model since the wet-dry front dynamics is difficult to compute. We compare some 2nd order finite volume solvers and obtain an accurate and stable scheme at wet-dry front. Then, we present some basic rules of compatibility between data and mesh resolution in order to be reliable enough to constraint the model with flood extension data, [CoMaMoViDa]. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. [CoMaMoViDa] F. Couderc, R. Madec, J. Monnier, J.-P. Vila, D. Dartus. "Sensitivity analysis and variational data assimilation for geophysical shallow water flows". Submitted. [Da] DassFlow - Data Assimilation for Free Surface Flows. Open-source computational software http://www-gmm.insa-toulouse.fr/~monnier/DassFlow/ [HoLaMoPu] R. Hostache, X. Lai, J. Monnier, C. Puech. "Assimilation of spatial
A Model of the Effect of Uncertainty on the C elegans L2/L2d Decision
Avery, Leon
2014-01-01
At the end of the first larval stage, the C elegans larva chooses between two developmental pathways, an L2 committed to reproductive development and an L2d, which has the option of undergoing reproductive development or entering the dauer diapause. I develop a quantitative model of this choice using mathematical tools developed for pricing financial options. The model predicts that the optimal decision must take into account not only the expected potential for reproductive growth, but also the uncertainty in that expected potential. Because the L2d has more flexibility than the L2, it is favored in unpredictable environments. I estimate that the ability to take uncertainty into account may increase reproductive value by as much as 5%, and discuss possible experimental tests for this ability. PMID:25029446
Phase Structure of the Random Zq Models in 2D
NASA Astrophysics Data System (ADS)
Sasamoto, T.; Nishimori, H.
We discuss the phase diagram of the random Zq models in two dimensions. It is argued that, when q is large enough, there exist three phases in the phase diagram with two axes being the temperature and the strength of randomness. Our conlusions are derived based on the application of the duality arguments for random systems, which have been formulated recently by Maillard et al.
Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model
NASA Astrophysics Data System (ADS)
Jung, Joon-Hee; Arakawa, Akio
2016-03-01
By explicitly resolving cloud-scale processes with embedded two-dimensional (2-D) cloud-resolving models (CRMs), superparameterized global atmospheric models have successfully simulated various atmospheric events over a wide range of time scales. Up to now, however, such models have not included the effects of topography on the CRM grid scale. We have used both 3-D and 2-D CRMs to simulate the effects of topography with prescribed "large-scale" winds. The 3-D CRM is used as a benchmark. The results show that the mean precipitation can be simulated reasonably well by using a 2-D representation of topography as long as the statistics of the topography such as the mean and standard deviation are closely represented. It is also shown that the use of a set of two perpendicular 2-D grids can significantly reduce the error due to a 2-D representation of topography.
Analytic Differentiation of Barlat's 2D Criteria for Inverse Modeling
Endelt, Benny; Nielsen, Karl Brian; Danckert, Joachim
2005-08-05
The demand for alternative identification schemes for identification of constitutive parameters is getting more pronounced as the complexity of the constitutive equations increases, i.e. the number of parameters subject to identification. A general framework for inverse identification of constitutive parameters associated with sheet metal forming is proposed in the article. The inverse problem is solved, through minimization of the least square error between an experimental punch force sampled from a deep drawing and a predicted punch force produced from a coherent finite element model.
Google Earth as a tool in 2-D hydrodynamic modeling
NASA Astrophysics Data System (ADS)
Chien, Nguyen Quang; Keat Tan, Soon
2011-01-01
A method for coupling virtual globes with geophysical hydrodynamic models is presented. Virtual globes such as Google TM Earth can be used as a visualization tool to help users create and enter input data. The authors discuss techniques for representing linear and areal geographical objects with KML (Keyhole Markup Language) files generated using computer codes (scripts). Although virtual globes offer very limited tools for data input, some data of categorical or vector type can be entered by users, and then transformed into inputs for the hydrodynamic program by using appropriate scripts. An application with the AnuGA hydrodynamic model was used as an illustration of the method. Firstly, users draw polygons on the Google Earth screen. These features are then saved in a KML file which is read using a script file written in the Lua programming language. After the hydrodynamic simulation has been performed, another script file is used to convert the resulting output text file to a KML file for visualization, where the depths of inundation are represented by the color of discrete point icons. The visualization of a wind speed vector field was also included as a supplementary example.
Conservation laws and LETKF with 2D Shallow Water Model
NASA Astrophysics Data System (ADS)
Zeng, Yuefei; Janjic, Tijana
2016-04-01
Numerous approaches have been proposed to maintain physical conservation laws in the numerical weather prediction models. However, to achieve a reliable prediction, adequate initial conditions are also necessary, which are produced by a data assimilation algorithm. If an ensemble Kalman filters (EnKF) is used for this purpose, it has been shown that it could yield unphysical analysis ensemble that for example violates principles of mass conservation and positivity preservation (e.g. Janjic et al 2014) . In this presentation, we discuss the selection of conservation criteria for the analysis step, and start with testing the conservation of mass, energy and enstrophy. The simple experiments deal with nonlinear shallow water equations and simulated observations that are assimilated with LETKF (Localized Ensemble Transform Kalman Filter, Hunt et al. 2007). The model is discretized in a specific way to conserve mass, angular momentum, energy and enstrophy. The effects of the data assimilation on the conserved quantities (of mass, energy and enstrophy) depend on observation covarage, localization radius, observed variable and observation operator. Having in mind that Arakawa (1966) and Arakawa and Lamb (1977) showed that the conservation of both kinetic energy and enstrophy by momentum advection schemes in the case of nondivergent flow prevents systematic and unrealistic energy cascade towards high wave numbers, a cause of excessive numerical noise and possible eventual nonlinear instability, we test the effects on prediction depending on the type of errors in the initial condition. The performance with respect to nonlinear energy cascade is assessed as well.
Mathematical modelling in nuclear medicine
Kuikka, Jyrki T.; Bassingthwaighte, James B.; Henrich, Michael M.; Feinendegen, Ludwig E.
2010-01-01
Modern imaging techniques can provide sequences of images giving signals proportional to the concentrations of tracers (by emission tomography), of X-ray-absorbing contrast materials (fast CT or perhaps NMR contrast), or of native chemical substances (NMR) in tissue regions at identifiable locations in 3D space. Methods for the analysis of the concentration-time curves with mathematical models describing the physiological processes and the appropriate anatomy are now available to give a quantitative portrayal of both structure and function: such is the approach to metabolic or functional imaging. One formulates a model first by defining what it should represent: this is the hypothesis. When translated into a self-consistent set of differential equations, the model becomes a mathematical model, a quantitative version of the hypothesis. This is what one would like to test against data. However, the next step is to reduce the mathematical model to a computable form; anatomically and physiologically realistic models account of the spatial gradients in concentrations within blood-tissue exchange units, while compartmental models simplify the equations by using the average concentrations. The former are known as distributed models and the latter as lumped compartmental or mixing chamber models. Since both are derived from the same ideas, the parameters are usually the same; their differences are in their ability to represent the hypothesis correctly, quantitatively, and sometimes in their computability. In this essay we review the philosophical and practical aspects of such modelling analysis for translating image sequences into physiological terms. PMID:1936044
A 2D model to design MHD induction pumps
NASA Astrophysics Data System (ADS)
Stieglitz, R.; Zeininger, J.
2006-09-01
Technical liquid metal systems accompanied by a thermal transfer of energy such as reactor systems, metallurgical processes, metal refinement, casting, etc., require a forced convection of the fluid. The increased temperatures and more often the environmental conditions as, e.g., in a nuclear environment, pumping principles are required, in which rotating parts are absent. Additionally, in many applications a controlled atmosphere is indispensable, in order to ensure the structural integrity of the duct walls. An interesting option to overcome the sealing problem of a mechanical pump towards the surrounding is offered by induction systems. Although their efficiency compared to that of turbo machines is quite low, they have several advantages, which are attractive to the specific requirements in liquid metal applications such as: - low maintenance costs due to the absence of sealings, bearings and moving parts; - low degradation rate of the structural material; - simple replacement of the inductor without cut of the piping system; - fine regulation of flow rate by different inductor connections; - change of pump characteristics without change of the mechanical set-up. Within the article, general design requirements of electromagnetic pumps (EMP) are elaborated. The design of two annular linear induction pumps operating with sodium and lead-bismuth are presented and the calculated pump characteristics and experimentally obtained data are compared. In this context, physical effects leading to deviations between the model and the real data are addressed. Finally, the main results are summarized. Tables 4, Figs 4, Refs 12.
Bond Order Correlations in the 2D Hubbard Model
NASA Astrophysics Data System (ADS)
Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark
We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.
Mathematical modeling of piezoresistive elements
NASA Astrophysics Data System (ADS)
Geremias, M.; Moreira, R. C.; Rasia, L. A.; Moi, A.
2015-10-01
This article presents the longitudinal piezoresistive coefficients for thin film amorphous semiconductor type a-C:H. Experimental data and mathematical models have been used in computer simulations. The results show that a reduction of the longitudinal piezoresistive coefficient occurs due to the increased concentration of impurities in the films analyzed.
Teachers' Conceptions of Mathematical Modeling
ERIC Educational Resources Information Center
Gould, Heather
2013-01-01
The release of the "Common Core State Standards for Mathematics" in 2010 resulted in a new focus on mathematical modeling in United States curricula. Mathematical modeling represents a way of doing and understanding mathematics new to most teachers. The purpose of this study was to determine the conceptions and misconceptions held by…
ERIC Educational Resources Information Center
Yilmaz, Suha; Tekin-Dede, Ayse
2016-01-01
Mathematization competency is considered in the field as the focus of modelling process. Considering the various definitions, the components of the mathematization competency are determined as identifying assumptions, identifying variables based on the assumptions and constructing mathematical model/s based on the relations among identified…
Mathematical Models for Somite Formation
Baker, Ruth E.; Schnell, Santiago; Maini, Philip K.
2009-01-01
Somitogenesis is the process of division of the anterior–posterior vertebrate embryonic axis into similar morphological units known as somites. These segments generate the prepattern which guides formation of the vertebrae, ribs and other associated features of the body trunk. In this work, we review and discuss a series of mathematical models which account for different stages of somite formation. We begin by presenting current experimental information and mechanisms explaining somite formation, highlighting features which will be included in the models. For each model we outline the mathematical basis, show results of numerical simulations, discuss their successes and shortcomings and avenues for future exploration. We conclude with a brief discussion of the state of modeling in the field and current challenges which need to be overcome in order to further our understanding in this area. PMID:18023728
Physical and mathematical cochlear models
NASA Astrophysics Data System (ADS)
Lim, Kian-Meng
2000-10-01
The cochlea is an intricate organ in the inner ear responsible for our hearing. Besides acting as a transducer to convert mechanical sound vibrations to electrical neural signals, the cochlea also amplifies and separates the sound signal into its spectral components for further processing in the brain. It operates over a broad-band of frequency and a huge dynamic range of input while maintaining a low power consumption. The present research takes the approach of building cochlear models to study and understand the underlying mechanics involved in the functioning of the cochlea. Both physical and mathematical models of the cochlea are constructed. The physical model is a first attempt to build a life- sized replica of the human cochlea using advanced micro- machining techniques. The model takes a modular design, with a removable silicon-wafer based partition membrane encapsulated in a plastic fluid chamber. Preliminary measurements in the model are obtained and they compare roughly with simulation results. Parametric studies on the design parameters of the model leads to an improved design of the model. The studies also revealed that the width and orthotropy of the basilar membrane in the cochlea have significant effects on the sharply tuned responses observed in the biological cochlea. The mathematical model is a physiologically based model that includes three-dimensional viscous fluid flow and a tapered partition with variable properties along its length. A hybrid asymptotic and numerical method provides a uniformly valid and efficient solution to the short and long wave regions in the model. Both linear and non- linear activity are included in the model to simulate the active cochlea. The mathematical model has successfully reproduced many features of the response in the biological cochlea, as observed in experiment measurements performed on animals. These features include sharply tuned frequency responses, significant amplification with inclusion of activity
GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..
Comparison of 1D and 2D modelling with soil erosion model SMODERP
NASA Astrophysics Data System (ADS)
Kavka, Petr; Weyskrabova, Lenka; Zajicek, Jan
2013-04-01
The contribution presents a comparison of a runoff simulated by profile method (1D) and spatially distributed method (2D). Simulation model SMODERP is used for calculation and prediction of soil erosion and surface runoff from agricultural land. SMODERP is physically based model that includes the processes of infiltration (Phillips equation), surface runoff (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. 1D model was developed in past, new 2D model was developed in last two years. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D model was developed as a tool for widespread GIS software ArcGIS. The physical relations were implemented through Python script. This script uses ArcGIS system tools for raster and vectors treatment of the inputs. Flow direction is calculated by Steepest Descent algorithm in the preliminary version of 2D model. More advanced multiple flow algorithm is planned in the next version. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Surface runoff is described in the model by kinematic wave equation. Equation uses Manning roughness coefficient for surface runoff. Parameters for five different soil textures were calibrated on the set of forty measurements performed on the laboratory rainfall simulator. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Numerical stability of the model is solved by Courant criterion. Spatial scale is fixed. Time step is dynamically changed depending on how flow is generated and developed. SMODERP is meant to be used not only for the research purposes, but mainly for the engineering practice. We also present how the input data can be obtained based on available resources (soil maps and data, land use, terrain models, field research, etc.) and how can
Strategies to Support Students' Mathematical Modeling
ERIC Educational Resources Information Center
Jung, Hyunyi
2015-01-01
An important question for mathematics teachers is this: "How can we help students learn mathematics to solve everyday problems, rather than teaching them only to memorize rules and practice mathematical procedures?" Teaching students using modeling activities can help them learn mathematics in real-world problem-solving situations that…
Opinions of Secondary School Mathematics Teachers on Mathematical Modelling
ERIC Educational Resources Information Center
Tutak, Tayfun; Güder, Yunus
2013-01-01
The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…
Mathematical modeling of genome replication
NASA Astrophysics Data System (ADS)
Retkute, Renata; Nieduszynski, Conrad A.; de Moura, Alessandro
2012-09-01
Eukaryotic DNA replication is initiated from multiple sites on the chromosome, but little is known about the global and local regulation of replication. We present a mathematical model for the spatial dynamics of DNA replication, which offers insight into the kinetics of replication in different types of organisms. Most biological experiments involve average quantities over large cell populations (typically >107 cells) and therefore can mask the cell-to-cell variability present in the system. Although the model is formulated in terms of a population of cells, using mathematical analysis we show that one can obtain signatures of stochasticity in individual cells from averaged quantities. This work generalizes the result by Retkute [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.068103 107, 068103 (2011)] to a broader set of parameter regimes.
Mathematical models of diabetes progression.
De Gaetano, Andrea; Hardy, Thomas; Beck, Benoit; Abu-Raddad, Eyas; Palumbo, Pasquale; Bue-Valleskey, Juliana; Pørksen, Niels
2008-12-01
Few attempts have been made to model mathematically the progression of type 2 diabetes. A realistic representation of the long-term physiological adaptation to developing insulin resistance is necessary for effectively designing clinical trials and evaluating diabetes prevention or disease modification therapies. Writing a good model for diabetes progression is difficult because the long time span of the disease makes experimental verification of modeling hypotheses extremely awkward. In this context, it is of primary importance that the assumptions underlying the model equations properly reflect established physiology and that the mathematical formulation of the model give rise only to physically plausible behavior of the solutions. In the present work, a model of the pancreatic islet compensation is formulated, its physiological assumptions are presented, some fundamental qualitative characteristics of its solutions are established, the numerical values assigned to its parameters are extensively discussed (also with reference to available cross-sectional epidemiologic data), and its performance over the span of a lifetime is simulated under various conditions, including worsening insulin resistance and primary replication defects. The differences with respect to two previously proposed models of diabetes progression are highlighted, and therefore, the model is proposed as a realistic, robust description of the evolution of the compensation of the glucose-insulin system in healthy and diabetic individuals. Model simulations can be run from the authors' web page. PMID:18780774
Mathematical modelling in MHD technology
Scheindlin, A.E.; Medin, S.A. )
1990-01-01
The technological scheme and the general parameters of the commercial scale pilot MHD power plant are described. The characteristics of the flow train components and the electrical equipment are discussed. The basic ideas of the mathematical modelling of the processes and the devices operation in MHD systems are considered. The application of different description levels in computer simulation is analyzed and the examples of typical solutions are presented.
Summer Camp of Mathematical Modeling in China
ERIC Educational Resources Information Center
Tian, Xiaoxi; Xie, Jinxing
2013-01-01
The Summer Camp of Mathematical Modeling in China is a recently created experience designed to further Chinese students' academic pursuits in mathematical modeling. Students are given more than three months to research on a mathematical modeling project. Researchers and teams with outstanding projects are invited to the Summer Camp to present…
On the assimilation of SWOT type data into 2D shallow-water models
NASA Astrophysics Data System (ADS)
Frédéric, Couderc; Denis, Dartus; Pierre-André, Garambois; Ronan, Madec; Jérôme, Monnier; Jean-Paul, Villa
2013-04-01
In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images is still delicate. In the present talk, we address the richness of satellite mapped information to constrain a 2D shallow-water model, but also related difficulties. 2D shallow models may be necessary for small scale modelling in particular for low-water and flood plain flows. Since in both cases, the dynamics of the wet-dry front is essential, one has to elaborate robust and accurate solvers. In this contribution we introduce robust second order, stable finite volume scheme [CoMaMoViDaLa]. Comparisons of real like tests cases with more classical solvers highlight the importance of an accurate flood plain modelling. A preliminary inverse study is presented in a flood plain flow case, [LaMo] [HoLaMoPu]. As a first step, a 0th order data processing model improves observation operator and produces more reliable water level derived from rough measurements [PuRa]. Then, both model and flow behaviours can be better understood thanks to variational sensitivities based on a gradient computation and adjoint equations. It can reveal several difficulties that a model designer has to tackle. Next, a 4D-Var data assimilation algorithm used with spatialized data leads to improved model calibration and potentially leads to identify river discharges. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. All these results and experiments (accurate wet-dry front dynamics, sensitivities analysis, identification of discharges and calibration of model) are currently performed in view to use data from the future SWOT mission. [CoMaMoViDaLa] F. Couderc, R. Madec, J. Monnier, J.-P. Vila, D. Dartus, K. Larnier. "Sensitivity analysis and variational data assimilation for geophysical shallow water flows". Submitted. [Da] DassFlow - Data Assimilation for Free Surface Flows. Computational software http
[Mathematical model of mental time].
Glasko, A V; Sadykhova, L G
2014-01-01
On the basis of Ernst Mach's ideas and developed before the mathematical theory of mental processes, mathematical definition of duration of an interval of mental time, all over again for perception (experience) of separate event, and then--generally, i.e. for perception (experience) of sequence of events is entered. Its dependence on duration of an appropriating interval of physical time is investigated. Communication of mental time with perception of time (for two cases: "greater" and "small" intervals) is investigated. Comparison of theoretical formulas with results of experimental measurements is spent. Is defined process time which can be used, in particular, as a measure of work. The effect of the inverse of the psychological time, described in works of the Mach is analyzed and modelled. PMID:25723024
Combining multitracing and 2D-modelling to identify the dynamic of heavy metals during flooding.
NASA Astrophysics Data System (ADS)
Hissler, C.; Hostache, R.; Matgen, P.; Tosheva, Z.; David, E.; Bates, P.; Stille, P.
2012-04-01
to assess the risk of floodplain contamination in heavy metal due to river sediment deposition and to heavy metal partitioning between particulate and dissolved phases. We focus on a multidisciplinary approach combining environmental geochemistry (multitracing) and hydraulic modelling (using TELEMAC-2D). One important single flood event was selected to illustrate this innovative approach. During the entire flood, the river water was sampled every hour in order to collect the particulate and the dissolved fractions. All the tracers were analyzed in both fractions. An important set of hydrological and sedimentological data are used to reach a more efficient calibration of the TELEMAC modelling system. In addition to standard techniques of hydrochemistry, new approaches of in situ suspended sediment transport monitoring will help getting new insights on the hydraulic system behaviour.
Analysis of vegetation effect on waves using a vertical 2-D RANS model
Technology Transfer Automated Retrieval System (TEKTRAN)
A vertical two-dimensional (2-D) model has been applied in the simulation of wave propagation through vegetated water bodies. The model is based on an existing model SOLA-VOF which solves the Reynolds-Averaged Navier-Stokes (RANS) equations with the finite difference method on a staggered rectangula...
Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model
Balakrishnan, Minimol; Chakravarthy, V. Srinivasa; Guhathakurta, Soma
2015-01-01
Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873
Fast 2D flood modelling using GPU technology - recent applications and new developments
NASA Astrophysics Data System (ADS)
Crossley, Amanda; Lamb, Rob; Waller, Simon; Dunning, Paul
2010-05-01
In recent years there has been considerable interest amongst scientists and engineers in exploiting the potential of commodity graphics hardware for desktop parallel computing. The Graphics Processing Units (GPUs) that are used in PC graphics cards have now evolved into powerful parallel co-processors that can be used to accelerate the numerical codes used for floodplain inundation modelling. We report in this paper on experience over the past two years in developing and applying two dimensional (2D) flood inundation models using GPUs to achieve significant practical performance benefits. Starting with a solution scheme for the 2D diffusion wave approximation to the 2D Shallow Water Equations (SWEs), we have demonstrated the capability to reduce model run times in ‘real-world' applications using GPU hardware and programming techniques. We then present results from a GPU-based 2D finite volume SWE solver. A series of numerical test cases demonstrate that the model produces outputs that are accurate and consistent with reference results published elsewhere. In comparisons conducted for a real world test case, the GPU-based SWE model was over 100 times faster than the CPU version. We conclude with some discussion of practical experience in using the GPU technology for flood mapping applications, and for research projects investigating use of Monte Carlo simulation methods for the analysis of uncertainty in 2D flood modelling.
Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model.
Balakrishnan, Minimol; Chakravarthy, V Srinivasa; Guhathakurta, Soma
2015-01-01
Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873
Mathematical models of bipolar disorder
NASA Astrophysics Data System (ADS)
Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.
2009-07-01
We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.
2D face database diversification based on 3D face modeling
NASA Astrophysics Data System (ADS)
Wang, Qun; Li, Jiang; Asari, Vijayan K.; Karim, Mohammad A.
2011-05-01
Pose and illumination are identified as major problems in 2D face recognition (FR). It has been theoretically proven that the more diversified instances in the training phase, the more accurate and adaptable the FR system appears to be. Based on this common awareness, researchers have developed a large number of photographic face databases to meet the demand for data training purposes. In this paper, we propose a novel scheme for 2D face database diversification based on 3D face modeling and computer graphics techniques, which supplies augmented variances of pose and illumination. Based on the existing samples from identical individuals of the database, a synthesized 3D face model is employed to create composited 2D scenarios with extra light and pose variations. The new model is based on a 3D Morphable Model (3DMM) and genetic type of optimization algorithm. The experimental results show that the complemented instances obviously increase diversification of the existing database.
A multispeed Discrete Boltzmann Model for transcritical 2D shallow water flows
NASA Astrophysics Data System (ADS)
La Rocca, Michele; Montessori, Andrea; Prestininzi, Pietro; Succi, Sauro
2015-03-01
In this work a Discrete Boltzmann Model for the solution of transcritical 2D shallow water flows is presented and validated. In order to provide the model with transcritical capabilities, a particular multispeed velocity set has been employed for the discretization of the Boltzmann equation. It is shown that this particular set naturally yields a simple and closed procedure to determine higher order equilibrium distribution functions needed to simulate transcritical flow. The model is validated through several classical benchmarks and is proven to correctly and accurately simulate both 1D and 2D transitions between the two flow regimes.
A 2-D dynamical model of mesospheric temperature inversions in winter
Hauchecorne, A.; Maillard, A. )
1990-11-01
A 2-D stratospheric and mesospheric dynamical model including drag and diffusion due to gravity wave breaking is used to simulate winter mesospheric temperature inversions similar to those observed by Rayleigh lidar. It is shown that adiabatic heating associated to descending velocities in the mesosphere is the main mechanism involved in the formation of such inversions. Sensitivity tests are performed with the model and confirm this assumption. It is also explained why other previous similar studies with 2-D models did not show mesospheric inversion layers.
Mathematical models in medicine: Diseases and epidemics
Witten, M.
1987-01-01
This volume presents the numerous applications of mathematics in the life sciences and medicine, and demonstrates how mathematics and computers have taken root in these fields. The work covers a variety of techniques and applications including mathematical and modelling methodology, modelling/simulation technology, and philosophical issues in model formulation, leading to speciality medical modelling, artificial intelligence, psychiatric models, medical decision making, and molecular modelling.
Mathematical modeling of glycerol biotransformation
NASA Astrophysics Data System (ADS)
Popova-Krumova, Petya; Yankova, Sofia; Ilieva, Biliana
2013-12-01
A method for mathematical modeling of glycerol biotransformation by Klebsiella oxytoca is presented. Glycerol is a renewable resource for it is formed as a by-product during biodiesel production. Because of its large volume production, it seems to be a good idea to develop a technology that converts this waste into products of high value (1, 3-Propanediol; 2, 3-Butanediol). The kinetic model of this process consists of many equations and parameters. The minimization of the least square function will be used for model parameters identification. In cases of parameters identification in multiparameter models the minimization of the least square function is very difficult because it is multiextremal. This is the main problem in the multiextremal function minimization which will be solved on the base a hierarchical approach, using a polynomial approximation of the experimental data.
Mathematical model for gyroscope effects
NASA Astrophysics Data System (ADS)
Usubamatov, Ryspek
2015-05-01
Gyroscope effects are used in many engineering calculations of rotating parts, and a gyroscope is the basic unit of numerous devices and instruments used in aviation, space, marine and other industries. The primary attribute of a gyroscope is a spinning rotor that persists in maintaining its plane of rotation, creating gyroscope effects. Numerous publications represent the gyroscope theory using mathematical models based on the law of kinetic energy conservation and the rate of change in angular momentum of a spinning rotor. Gyroscope theory still attracts many researchers who continue to discover new properties of gyroscopic devices. In reality, gyroscope effects are more complex and known mathematical models do not accurately reflect the actual motions. Analysis of forces acting on a gyroscope shows that four dynamic components act simultaneously: the centrifugal, inertial and Coriolis forces and the rate of change in angular momentum of the spinning rotor. The spinning rotor generates a rotating plane of centrifugal and Coriols forces that resist the twisting of the spinning rotor with external torque applied. The forced inclination of the spinning rotor generates inertial forces, resulting in precession torque of a gyroscope. The rate of change of the angular momentum creates resisting and precession torques which are not primary one in gyroscope effects. The new mathematical model for the gyroscope motions under the action of the external torque applied can be as base for new gyroscope theory. At the request of the author of the paper, this corrigendum was issued on 24 May 2016 to correct an incomplete Table 1 and errors in Eq. (47) and Eq. (48).
Mathematical modeling of cold cap
Pokorny, Richard; Hrma, Pavel R.
2012-10-13
The ultimate goal of studies of cold cap behavior in glass melters is to increase the rate of glass processing in an energy-efficient manner. Regrettably, mathematical models, which are ideal tools for assessing the responses of melters to process parameters, have not paid adequate attention to the cold cap. In this study, we consider a cold cap resting on a pool of molten glass from which it receives a steady heat flux while temperature, velocity, and extent of conversion are functions of the position along the vertical coordinate. A one-dimensional (1D) mathematical model simulates this process by solving the differential equations for mass and energy balances with appropriate boundary conditions and constitutive relationships for material properties. The sensitivity analyses on the effects of incoming heat fluxes to the cold cap through its lower and upper boundaries show that the cold cap thickness increases as the heat flux from above increases, and decreases as the total heat flux increases. We also discuss the effects of foam, originating from batch reactions and from redox reactions in molten glass and argue that models must represent the foam layer to achieve a reliable prediction of the melting rate as a function of feed properties and melter conditions.
Merging of RVR meander with CONCEPTS: Simplified 2D model for long-term meander evolution
Technology Transfer Automated Retrieval System (TEKTRAN)
RVR Meander is a simplified two-dimensional (2D) hydrodynamic and migration model (Abad and Garcia, 2006) while CONCEPTS (CONservational Channel Evolution and Pollutant Transport System) is a one-dimensional (1D) hydrodynamic and morphodynamic model (Langendoen and Alonso, 2008; Langendoen and Simon...
Introducing the R2D2 Model: Online Learning for the Diverse Learners of This World
ERIC Educational Resources Information Center
Bonk, Curtis J.; Zhang, Ke
2006-01-01
The R2D2 method--read, reflect, display, and do--is a new model for designing and delivering distance education, and in particular, online learning. Such a model is especially important to address the diverse preferences of online learners of varied generations and varied Internet familiarity. Four quadrants can be utilized separately or as part…
Evaluation of 2D shallow-water model for spillway flow with a complex geometry
Technology Transfer Automated Retrieval System (TEKTRAN)
Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...
Analytical formulation of 2-D aeroelastic model in weak ground effect
NASA Astrophysics Data System (ADS)
Dessi, Daniele; Mastroddi, Franco; Mancini, Simone
2013-10-01
This paper deals with the aeroelastic modeling and analysis of a 2-D oscillating airfoil in ground effect, elastically constrained by linear and torsional springs and immersed in an incompressible potential flow (typical section) at a finite distance from the ground. This work aims to extend Theodorsen theory, valid in an unbounded flow domain, to the case of weak ground effect, i.e., for clearances above half the airfoil chord. The key point is the determination of the aerodynamic loads, first in the frequency domain and then in the time domain, accounting for their dependence on the ground distance. The method of images is exploited in order to comply with the impermeability condition on the ground. The new integral equation in the unknown vortex distribution along the chord and the wake is solved using asymptotic expansions in the perturbation parameter defined as the inverse of the non-dimensional ground clearance of the airfoil. The mathematical model describing the aeroelastic system is transformed from the frequency domain into the time domain and then in a pure differential form using a finite-state aerodynamic approximation (augmented states). The typical section, which the developed theory is applied to, is obtained as a reduced model of a wing box finite element representation, thus allowing comparison with the corresponding aeroelastic analysis carried out by a commercial solver based on a 3-D lifting surface aerodynamic model. Stability (flutter margins) and response of the airfoil both in frequency and time domains are then investigated. In particular, within the developed theory, the solution of the Wagner problem can be directly achieved confirming an asymptotic trend of the aerodynamic coefficients toward the steady-state conditions different from that relative to the unbounded domain case. The dependence of flutter speed and the frequency response functions on ground clearance is highlighted, showing the usefulness of this approach in efficiently
Knight shift and spin relaxation in the single band 2D Hubbard model
NASA Astrophysics Data System (ADS)
Leblanc, James; Chen, Xi; Gull, Emanuel
We study in detail the roles of spin and charge fluctuations in the single band 2D Hubbard model. Using dynamical mean field theory and cluster extensions such as the dynamical cluster approximation (DCA), we compute the full two particle susceptibilities in the spin and charge representations. By performing analytic continuations we obtain the temperature and doping dependence of the spin-lattice relaxation (T1- 1) and knight shift in the 2D Hubbard model relevant to NMR results on doped cuprates and connect these to RPA results in weak coupling limits.
NASA Astrophysics Data System (ADS)
Pasternack, Gregory B.; Gilbert, Andrew T.; Wheaton, Joseph M.; Buckland, Evan M.
2006-08-01
SummaryResource managers, scientists, government regulators, and stakeholders are considering sophisticated numerical models for managing complex environmental problems. In this study, observations from a river-rehabilitation experiment involving gravel augmentation and spawning habitat enhancement were used to assess sources and magnitudes of error in depth, velocity, and shear velocity predictions made at the 1-m scale with a commercial two-dimensional (depth-averaged) model. Error in 2D model depth prediction averaged 21%. This error was attributable to topographic survey resolution, which at 1 pt per 1.14 m 2, was inadequate to resolve small humps and depressions influencing point measurements. Error in 2D model velocity prediction averaged 29%. More than half of this error was attributable to depth prediction error. Despite depth and velocity error, 56% of tested 2D model predictions of shear velocity were within the 95% confidence limit of the best field-based estimation method. Ninety percent of the error in shear velocity prediction was explained by velocity prediction error. Multiple field-based estimates of shear velocity differed by up to 160%, so the lower error for the 2D model's predictions suggests such models are at least as accurate as field measurement. 2D models enable detailed, spatially distributed estimates compared to the small number measurable in a field campaign of comparable cost. They also can be used for design evaluation. Although such numerical models are limited to channel types adhering to model assumptions and yield predictions only accurate to ˜20-30%, they can provide a useful tool for river-rehabilitation design and assessment, including spatially diverse habitat heterogeneity as well as for pre- and post-project appraisal.
Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils
NASA Astrophysics Data System (ADS)
González, A.; Gomez-Iradi, S.; Munduate, X.
2014-06-01
From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.
2D-photochemical model for forbidden oxygen line emission for comet 1P/Halley
NASA Astrophysics Data System (ADS)
Cessateur, G.; De Keyser, J.; Maggiolo, R.; Rubin, M.; Gronoff, G.; Gibbons, A.; Jehin, E.; Dhooghe, F.; Gunell, H.; Vaeck, N.; Loreau, J.
2016-08-01
We present here a 2D-model of photochemistry for computing the production and loss mechanisms of the O(1S) and O(1D) states, which are responsible for the emission lines at 577.7 nm, 630 nm, and 636.4 nm, in case of the comet 1P/Halley. The presence of O2 within cometary atmospheres, measured by the in-situ ROSETTA and GIOTTO missions, necessitates a revision of the usual photochemical models. Indeed, the photodissociation of molecular oxygen also leads to a significant production of oxygen in excited electronic states. In order to correctly model the solar UV flux absorption, we consider here a 2D configuration. While the green to red-doublet ratio is not affected by the solar UV flux absorption, estimates of the red-doublet and green lines emissions are, however, overestimated by a factor of two in the 1D model compared to the 2D model. Considering a spherical symmetry, emission maps can be deduced from the 2D model in order to be directly compared to ground and/or in-situ observations.
Oriented Gaussian mixture models for nonrigid 2D/3D coronary artery registration.
Baka, N; Metz, C T; Schultz, C J; van Geuns, R-J; Niessen, W J; van Walsum, T
2014-05-01
2D/3D registration of patient vasculature from preinterventional computed tomography angiography (CTA) to interventional X-ray angiography is of interest to improve guidance in percutaneous coronary interventions. In this paper we present a novel feature based 2D/3D registration framework, that is based on probabilistic point correspondences, and show its usefulness on aligning 3D coronary artery centerlines derived from CTA images with their 2D projection derived from interventional X-ray angiography. The registration framework is an extension of the Gaussian mixture model (GMM) based point-set registration to the 2D/3D setting, with a modified distance metric. We also propose a way to incorporate orientation in the registration, and show its added value for artery registration on patient datasets as well as in simulation experiments. The oriented GMM registration achieved a median accuracy of 1.06 mm, with a convergence rate of 81% for nonrigid vessel centerline registration on 12 patient datasets, using a statistical shape model. The method thereby outperformed the iterative closest point algorithm, the GMM registration without orientation, and two recently published methods on 2D/3D coronary artery registration. PMID:24770908
A Generative Model of Mathematics Learning
ERIC Educational Resources Information Center
Wittrock, M. C.
1974-01-01
The learning of mathematics is presented as a cognitive process rather than as a behavioristic one. A generative model of mathematics learning is described. Learning with understanding can occur with discovery or reception treatments. Relevant empirical research is discussed and implications for teaching mathematics as a generative process are…
On Fences, Forms and Mathematical Modeling
ERIC Educational Resources Information Center
Lege, Jerry
2009-01-01
The white picket fence is an integral component of the iconic American townscape. But, for mathematics students, it can be a mathematical challenge. Picket fences in a variety of styles serve as excellent sources to model constant, step, absolute value, and sinusoidal functions. "Principles and Standards for School Mathematics" (NCTM 2000)…
The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis
Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.
2014-08-15
Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly
Mathematical model for classification of EEG signals
NASA Astrophysics Data System (ADS)
Ortiz, Victor H.; Tapia, Juan J.
2015-09-01
A mathematical model to filter and classify brain signals from a brain machine interface is developed. The mathematical model classifies the signals from the different lobes of the brain to differentiate the signals: alpha, beta, gamma and theta, besides the signals from vision, speech, and orientation. The model to develop further eliminates noise signals that occur in the process of signal acquisition. This mathematical model can be used on different platforms interfaces for rehabilitation of physically handicapped persons.
Impact of high speed civil transports on stratospheric ozone: A 2-D model investigation
Kinnison, D.E.; Connell, P.S.
1996-12-01
This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored.
Mathematical model for alopecia areata.
Dobreva, Atanaska; Paus, Ralf; Cogan, N G
2015-09-01
Alopecia areata (AA) is an autoimmune disease, and its clinical phenotype is characterized by the formation of distinct hairless patterns on the scalp or other parts of the body. In most cases hair falls out in round patches. A well-established hypothesis for the pathogenesis of AA states that collapse of hair follicle immune privilege is one of the essential elements in disease development. To investigate the dynamics of alopecia areata, we develop a mathematical model that incorporates immune system components and hair follicle immune privilege agents whose involvement in AA has been confirmed in clinical studies and experimentally. We perform parameter sensitivity analysis in order to determine which inputs have the greatest effect on outcome variables. Our findings suggest that, among all processes reflected in the model, immune privilege guardians and the pro-inflammatory cytokine interferon-γ govern disease dynamics. These results agree with the immune privilege collapse hypothesis for the development of AA. PMID:26047853
Comparison of 3-D finite element model of ashlar masonry with 2-D numerical models of ashlar masonry
NASA Astrophysics Data System (ADS)
Beran, Pavel
2016-06-01
3-D state of stress in heterogeneous ashlar masonry can be also computed by several suitable chosen 2-D numerical models of ashlar masonry. The results obtained from 2-D numerical models well correspond to the results obtained from 3-D numerical model. The character of thermal stress is the same. While using 2-D models the computational time is reduced more than hundredfold and therefore this method could be used for computation of thermal stresses during long time periods with 10 000 of steps.
2D-Raman-THz spectroscopy: A sensitive test of polarizable water models
NASA Astrophysics Data System (ADS)
Hamm, Peter
2014-11-01
In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.
Parallelized CCHE2D flow model with CUDA Fortran on Graphics Process Units
Technology Transfer Automated Retrieval System (TEKTRAN)
This paper presents the CCHE2D implicit flow model parallelized using CUDA Fortran programming technique on Graphics Processing Units (GPUs). A parallelized implicit Alternating Direction Implicit (ADI) solver using Parallel Cyclic Reduction (PCR) algorithm on GPU is developed and tested. This solve...
ERIC Educational Resources Information Center
Park, Elisa L.
2009-01-01
The purpose of this study is to understand the dynamics of Korean students' international mobility to study abroad by using the 2-D Model. The first D, "the driving force factor," explains how and what components of the dissatisfaction with domestic higher education perceived by Korean students drives students' outward mobility to seek foreign…
2D-Raman-THz spectroscopy: A sensitive test of polarizable water models
Hamm, Peter
2014-11-14
In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.
Mathematical modeling of endovenous laser treatment (ELT)
Mordon, Serge R; Wassmer, Benjamin; Zemmouri, Jaouad
2006-01-01
Background and objectives Endovenous laser treatment (ELT) has been recently proposed as an alternative in the treatment of reflux of the Great Saphenous Vein (GSV) and Small Saphenous Vein (SSV). Successful ELT depends on the selection of optimal parameters required to achieve an optimal vein damage while avoiding side effects. Mathematical modeling of ELT could provide a better understanding of the ELT process and could determine the optimal dosage as a function of vein diameter. Study design/materials and methods The model is based on calculations describing the light distribution using the diffusion approximation of the transport theory, the temperature rise using the bioheat equation and the laser-induced injury using the Arrhenius damage model. The geometry to simulate ELT was based on a 2D model consisting of a cylindrically symmetric blood vessel including a vessel wall and surrounded by an infinite homogenous tissue. The mathematical model was implemented using the Macsyma-Pdease2D software (Macsyma Inc., Arlington, MA, USA). Damage to the vein wall for CW and single shot energy was calculated for 3 and 5 mm vein diameters. In pulsed mode, the pullback distance (3, 5 and 7 mm) was considered. For CW mode simulation, the pullback speed (1, 2, 3 mm/s) was the variable. The total dose was expressed as joules per centimeter in order to perform comparison to results already reported in clinical studies. Results In pulsed mode, for a 3 mm vein diameter, irrespective of the pullback distance (2, 5 or 7 mm), a minimum fluence of 15 J/cm is required to obtain a permanent damage of the intima. For a 5 mm vein diameter, 50 J/cm (15W-2s) is required. In continuous mode, for a 3 mm and 5 mm vein diameter, respectively 65 J/cm and 100 J/cm are required to obtain a permanent damage of the vessel wall. Finally, the use of different wavelengths (810 nm or 980 nm) played only a minor influence on these results. Discussion and conclusion The parameters determined by
Mathematical model for bone mineralization
Komarova, Svetlana V.; Safranek, Lee; Gopalakrishnan, Jay; Ou, Miao-jung Yvonne; McKee, Marc D.; Murshed, Monzur; Rauch, Frank; Zuhr, Erica
2015-01-01
Defective bone mineralization has serious clinical manifestations, including deformities and fractures, but the regulation of this extracellular process is not fully understood. We have developed a mathematical model consisting of ordinary differential equations that describe collagen maturation, production and degradation of inhibitors, and mineral nucleation and growth. We examined the roles of individual processes in generating normal and abnormal mineralization patterns characterized using two outcome measures: mineralization lag time and degree of mineralization. Model parameters describing the formation of hydroxyapatite mineral on the nucleating centers most potently affected the degree of mineralization, while the parameters describing inhibitor homeostasis most effectively changed the mineralization lag time. Of interest, a parameter describing the rate of matrix maturation emerged as being capable of counter-intuitively increasing both the mineralization lag time and the degree of mineralization. We validated the accuracy of model predictions using known diseases of bone mineralization such as osteogenesis imperfecta and X-linked hypophosphatemia. The model successfully describes the highly nonlinear mineralization dynamics, which includes an initial lag phase when osteoid is present but no mineralization is evident, then fast primary mineralization, followed by secondary mineralization characterized by a continuous slow increase in bone mineral content. The developed model can potentially predict the function for a mutated protein based on the histology of pathologic bone samples from mineralization disorders of unknown etiology. PMID:26347868
Justification for a 2D versus 3D fingertip finite element model during static contact simulations.
Harih, Gregor; Tada, Mitsunori; Dolšak, Bojan
2016-10-01
The biomechanical response of a human hand during contact with various products has not been investigated in details yet. It has been shown that excessive contact pressure on the soft tissue can result in discomfort, pain and also cumulative traumatic disorders. This manuscript explores the benefits and limitations of a simplified two-dimensional vs. an anatomically correct three-dimensional finite element model of a human fingertip. Most authors still use 2D FE fingertip models due to their simplicity and reduced computational costs. However we show that an anatomically correct 3D FE fingertip model can provide additional insight into the biomechanical behaviour. The use of 2D fingertip FE models is justified when observing peak contact pressure values as well as displacement during the contact for the given studied cross-section. On the other hand, an anatomically correct 3D FE fingertip model provides a contact pressure distribution, which reflects the fingertip's anatomy. PMID:26856769
Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model
NASA Astrophysics Data System (ADS)
Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry
2015-05-01
Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.
MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 2-D SICF/SIC COMPOSITES MADE WITH WOVEN FABRIC
Youngblood, Gerald E; Senor, David J; Jones, Russell H
2004-06-01
The hierarchical two-layer (H2L) model describes the effective transverse thermal conductivity (Keff) of a 2D-SiCf/SiC composite plate made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the effects of fiber-matrix interfacial conductance, high fiber packing fractions within individual tows and the non-uniform nature of 2D fabric/matrix layers that usually include a significant amount of interlayer porosity. Previously, H2L model Keff-predictions were compared to measured values for two versions of 2D Hi-Nicalon/PyC/ICVI-SiC composite, one with a “thin” (0.11m) and the other with a “thick” (1.04m) pyrocarbon (PyC) fiber coating, and for a 2D Tyranno SA/”thin” PyC/FCVI-SIC composite. In this study, H2L model Keff-predictions were compared to measured values for a 2D-SiCf/SiC composite made using the ICVI-process with Hi-Nicalon type S fabric and a “thin” PyC fiber coating. The values of Keff determined for the latter composite were significantly greater than the Keff-values determined for the composites made with either the Hi-Nicalon or the Tyranno SA fabrics. Differences in Keff-values were expected for the different fiber types, but major differences also were due to observed microstructural and architectural variations between the composite systems, and as predicted by the H2L model.
The 2dF Galaxy Redshift Survey: voids and hierarchical scaling models
NASA Astrophysics Data System (ADS)
Croton, Darren J.; Colless, Matthew; Gaztañaga, Enrique; Baugh, Carlton M.; Norberg, Peder; Baldry, I. K.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Cole, S.; Collins, C.; Couch, W.; Dalton, G.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Maddox, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Sutherland, W.; Taylor, K.
2004-08-01
We measure the redshift-space reduced void probability function (VPF) for 2dFGRS volume-limited galaxy samples covering the absolute magnitude range MbJ-5log10h=-18 to -22. Theoretically, the VPF connects the distribution of voids to the moments of galaxy clustering of all orders, and can be used to discriminate clustering models in the weakly non-linear regime. The reduced VPF measured from the 2dFGRS is in excellent agreement with the paradigm of hierarchical scaling of the galaxy clustering moments. The accuracy of our measurement is such that we can rule out, at a very high significance, popular models for galaxy clustering, including the lognormal distribution. We demonstrate that the negative binomial model gives a very good approximation to the 2dFGRS data over a wide range of scales, out to at least 20 h-1 Mpc. Conversely, the reduced VPF for dark matter in a Λ cold dark matter (ΛCDM) universe does appear to be lognormal on small scales but deviates significantly beyond ~4 h-1 Mpc. We find little dependence of the 2dFGRS reduced VPF on galaxy luminosity. Our results hold independently in both the North and South Galactic Pole survey regions.
Analysis of Physiological Systems via Mathematical Models.
ERIC Educational Resources Information Center
Hazelrig, Jane B.
1983-01-01
Discusses steps to be executed when studying physiological systems with theoretical mathematical models. Steps considered include: (1) definition of goals; (2) model formulation; (3) mathematical description; (4) qualitative evaluation; (5) parameter estimation; (6) model fitting; (7) evaluation; and (8) design of new experiments based on the…
Simplified 2D Bidomain Model of Whole Heart Electrical Activity and ECG Generation
NASA Astrophysics Data System (ADS)
Sovilj, Siniša; Magjarević, Ratko; Abed, Amr Al; Lovell, Nigel H.; Dokos, Socrates
2014-06-01
The aim of this study was the development of a geometrically simple and highly computationally-efficient two dimensional (2D) biophysical model of whole heart electrical activity, incorporating spontaneous activation of the sinoatrial node (SAN), the specialized conduction system, and realistic surface ECG morphology computed on the torso. The FitzHugh-Nagumo (FHN) equations were incorporated into a bidomain finite element model of cardiac electrical activity, which was comprised of a simplified geometry of the whole heart with the blood cavities, the lungs and the torso as an extracellular volume conductor. To model the ECG, we placed four electrodes on the surface of the torso to simulate three Einthoven leads VI, VII and VIII from the standard 12-lead system. The 2D model was able to reconstruct ECG morphology on the torso from action potentials generated at various regions of the heart, including the sinoatrial node, atria, atrioventricular node, His bundle, bundle branches, Purkinje fibers, and ventricles. Our 2D cardiac model offers a good compromise between computational load and model complexity, and can be used as a first step towards three dimensional (3D) ECG models with more complex, precise and accurate geometry of anatomical structures, to investigate the effect of various cardiac electrophysiological parameters on ECG morphology.
Mathematical models for exotic wakes
NASA Astrophysics Data System (ADS)
Basu, Saikat; Stremler, Mark
2014-11-01
Vortex wakes are a common occurrence in the environment around us; the most famous example being the von Kármán vortex street with two vortices being shed by the bluff body in each cycle. However, frequently there can be many other more exotic wake configurations with different vortex arrangements, based on the flow parameters and the bluff body dimensions and/or its oscillation characteristics. Some examples include wakes with periodic shedding of three vortices (`P+S' mode) and four vortices (symmetric `2P' mode, staggered `2P' mode, `2C' mode). We present mathematical models for such wakes assuming two-dimensional potential flows with embedded point vortices. The spatial alignment of the vortices is inspired by the experimentally observed wakes. The idealized system follows a Hamiltonian formalism. Model-based analysis reveals a rich dynamics pertaining to the relative vortex motion in the mid-wake region. Downstream evolution of the vortices, as predicted from the model results, also show good correspondence with wake-shedding experiments performed on flowing soap films.
Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models
NASA Astrophysics Data System (ADS)
Luther, K.; Haitjema, H. M.
2000-04-01
We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.
2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge
NASA Astrophysics Data System (ADS)
Hasenclever, Jörg; Morgan, Jason Phipps; Hort, Matthias; Rüpke, Lars H.
2011-11-01
We present 2D and 3D numerical model calculations that focus on the physics of compositionally buoyant diapirs rising within a mantle wedge corner flow. Compositional buoyancy is assumed to arise from slab dehydration during which water-rich volatiles enter the mantle wedge and form a wet, less dense boundary layer on top of the slab. Slab dehydration is prescribed to occur in the 80-180 km deep slab interval, and the water transport is treated as a diffusion-like process. In this study, the mantle's rheology is modeled as being isoviscous for the benefit of easier-to-interpret feedbacks between water migration and buoyant viscous flow of the mantle. We use a simple subduction geometry that does not change during the numerical calculation. In a large set of 2D calculations we have identified that five different flow regimes can form, in which the position, number, and formation time of the diapirs vary as a function of four parameters: subduction angle, subduction rate, water diffusivity (mobility), and mantle viscosity. Using the same numerical method and numerical resolution we also conducted a suite of 3D calculations for 16 selected parameter combinations. Comparing the 2D and 3D results for the same model parameters reveals that the 2D models can only give limited insights into the inherently 3D problem of mantle wedge diapirism. While often correctly predicting the position and onset time of the first diapir(s), the 2D models fail to capture the dynamics of diapir ascent as well as the formation of secondary diapirs that result from boundary layer perturbations caused by previous diapirs. Of greatest importance for physically correct results is the numerical resolution in the region where diapirs nucleate, which must be high enough to accurately capture the growth of the thin wet boundary layer on top of the slab and, subsequently, the formation, morphology, and ascent of diapirs. Here 2D models can be very useful to quantify the required resolution, which we
TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment
NASA Astrophysics Data System (ADS)
Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano
2016-04-01
Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an
Mathematical Modeling of Cellular Metabolism.
Berndt, Nikolaus; Holzhütter, Hermann-Georg
2016-01-01
Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research. PMID:27557541
NASA Technical Reports Server (NTRS)
Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo
2004-01-01
Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.
Constructing a Model of Mathematical Literacy.
ERIC Educational Resources Information Center
Pugalee, David K.
1999-01-01
Discusses briefly the call for mathematical literacy and the need for a model that articulates the fluid and dynamic nature of this form of literacy. Presents such a model which uses two concentric circles, one depicting the four processes of mathematical literacy (representing, manipulating, reasoning, and problem solving) and enablers that…
Scaffolding Mathematical Modelling with a Solution Plan
ERIC Educational Resources Information Center
Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner
2015-01-01
In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…
Modelling and Optimizing Mathematics Learning in Children
ERIC Educational Resources Information Center
Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus
2013-01-01
This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…
Mathematical Modelling and New Theories of Learning.
ERIC Educational Resources Information Center
Boaler, Jo
2001-01-01
Demonstrates the importance of expanding notions of learning beyond knowledge to the practices in mathematics classrooms. Considers a three-year study of students who learned through mathematical modeling. Shows that a modeling approach encouraged the development of a range of important practices in addition to knowledge that were useful in real…
Mathematical Modelling as a Professional Task
ERIC Educational Resources Information Center
Frejd, Peter; Bergsten, Christer
2016-01-01
Educational research literature on mathematical modelling is extensive. However, not much attention has been paid to empirical investigations of its scholarly knowledge from the perspective of didactic transposition processes. This paper reports from an interview study of mathematical modelling activities involving nine professional model…
Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction
NASA Astrophysics Data System (ADS)
Ye, Jianhong; Jeng, Dongsheng; Wang, Ren; Zhu, Changqi
2013-10-01
A 2-D semi-coupled model PORO-WSSI 2D (also be referred as FSSI-CAS 2D) for the Fluid-Structure-Seabed Interaction (FSSI) has been developed by employing RANS equations for wave motion in fluid domain, VARANS equations for porous flow in porous structures; and taking the dynamic Biot's equations (known as "u - p" approximation) for soil as the governing equations. The finite difference two-step projection method and the forward time difference method are adopted to solve the RANS, VARANS equations; and the finite element method is adopted to solve the "u - p" approximation. A data exchange port is developed to couple the RANS, VARANS equations and the dynamic Biot's equations together. The analytical solution proposed by Hsu and Jeng (1994) and some experiments conducted in wave flume or geotechnical centrifuge in which various waves involved are used to validate the developed semi-coupled numerical model. The sandy bed involved in these experiments is poro-elastic or poro-elastoplastic. The inclusion of the interaction between fluid, marine structures and poro-elastoplastic seabed foundation is a special point and highlight in this paper, which is essentially different with other previous coupled models The excellent agreement between the numerical results and the experiment data indicates that the developed coupled model is highly reliablefor the FSSI problem.
2D density model of the Chinese continental lithosphere along a NW-SE transect
NASA Astrophysics Data System (ADS)
Šimonová, Barbora; Bielik, Miroslav; Dérerová, Jana
2015-06-01
This paper presents a 2D density model along a transect from NW to SE China. The model was first constructed by the transformation of seismic velocity to density, revealed by previous deep seismic soundings (DSS) investigations in China. Then, the 2D density model was updated using the GM-SYS software by fitting the computed to the observed gravity data. Based on the density distribution of anomalous layers we divided the Chinese continental crust along the transect into three regions: north-western, central and south-eastern. The first one includes the Junggar Basin, Tianshan and Tarim Basin. The second part consists of the Qilian Orogen, the Qaidam Basin and the Songpan Ganzi Basin. The third region is represented by the Yangtze and the Cathaysia blocks. The low velocity body (vp =5.2 - 6.2 km/s) at the junction of the North-western and Central parts at a depth between 21 - 31 km, which was discovered out by DSS, was also confirmed by our 2D density modelling.
Hard Copy to Digital Transfer: 3D Models that Match 2D Maps
ERIC Educational Resources Information Center
Kellie, Andrew C.
2011-01-01
This research describes technical drawing techniques applied in a project involving digitizing of existing hard copy subsurface mapping for the preparation of three dimensional graphic and mathematical models. The intent of this research was to identify work flows that would support the project, ensure the accuracy of the digital data obtained,…
A Neural-FEM tool for the 2-D magnetic hysteresis modeling
NASA Astrophysics Data System (ADS)
Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.
2016-04-01
The aim of this work is to present a new tool for the analysis of magnetic field problems considering 2-D magnetic hysteresis. In particular, this tool makes use of the Finite Element Method to solve the magnetic field problem in real device, and fruitfully exploits a neural network (NN) for the modeling of 2-D magnetic hysteresis of materials. The NS has as input the magnetic inductions components B at the k-th simulation step and returns as output the corresponding values of the magnetic field H corresponding to the input pattern. It is trained by vector measurements performed on the magnetic material to be modeled. This input/output scheme is directly implemented in a FEM code employing the magnetic potential vector A formulation. Validations through measurements on a real device have been performed.
Mathematical modeling in soil science
NASA Astrophysics Data System (ADS)
Tarquis, Ana M.; Gasco, Gabriel; Saa-Requejo, Antonio; Méndez, Ana; Andina, Diego; Sánchez, M. Elena; Moratiel, Rubén; Antón, Jose Manuel
2015-04-01
Teaching in context can be defined as teaching a mathematical idea or process by using a problem, situation, or data to enhance the teaching and learning process. The same problem or situation may be used many times, at different mathematical levels to teach different objectives. A common misconception exists that assigning/teaching applications is teaching in context. While both use problems, the difference is in timing, in purpose, and in student outcome. In this work, one problem situation is explored thoroughly at different levels of understanding and other ideas are suggested for classroom explorations. Some teachers, aware of the difficulties some students have with mathematical concepts, try to teach quantitative sciences without using mathematical tools. Such attempts are not usually successful. The answer is not in discarding the mathematics, but in finding ways to teach mathematically-based concepts to students who need them but who find them difficult. The computer is an ideal tool for this purpose. To this end, teachers of the Soil Science and Mathematics Departments of the UPM designed a common practice to teach to the students the role of soil on the carbon sequestration. The objective of this work is to explain the followed steps to the design of the practice. Acknowledgement Universidad Politécnica de Madrid (UPM) for the Projects in Education Innovation IE12_13-02009 and IE12_13-02012 is gratefully acknowledge.
Rival approaches to mathematical modelling in immunology
NASA Astrophysics Data System (ADS)
Andrew, Sarah M.; Baker, Christopher T. H.; Bocharov, Gennady A.
2007-08-01
In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of model considered as candidate models. The authors adopt a multidisciplinary perspective.
TMRPres2D: high quality visual representation of transmembrane protein models.
Spyropoulos, Ioannis C; Liakopoulos, Theodore D; Bagos, Pantelis G; Hamodrakas, Stavros J
2004-11-22
The 'TransMembrane protein Re-Presentation in 2-Dimensions' (TMRPres2D) tool, automates the creation of uniform, two-dimensional, high analysis graphical images/models of alpha-helical or beta-barrel transmembrane proteins. Protein sequence data and structural information may be acquired from public protein knowledge bases, emanate from prediction algorithms, or even be defined by the user. Several important biological and physical sequence attributes can be embedded in the graphical representation. PMID:15201184
ERIC Educational Resources Information Center
Horton, Robert M.; Leonard, William H.
2005-01-01
In science, inquiry is used as students explore important and interesting questions concerning the world around them. In mathematics, one contemporary inquiry approach is to create models that describe real phenomena. Creating mathematical models using spreadsheets can help students learn at deep levels in both science and mathematics, and give…
A Seminar in Mathematical Model-Building.
ERIC Educational Resources Information Center
Smith, David A.
1979-01-01
A course in mathematical model-building is described. Suggested modeling projects include: urban problems, biology and ecology, economics, psychology, games and gaming, cosmology, medicine, history, computer science, energy, and music. (MK)
A simple 2-D inundation model for incorporating flood damage in urban drainage planning
NASA Astrophysics Data System (ADS)
Pathirana, A.; Tsegaye, S.; Gersonius, B.; Vairavamoorthy, K.
2008-11-01
In this paper a new inundation model code is developed and coupled with Storm Water Management Model, SWMM, to relate spatial information associated with urban drainage systems as criteria for planning of storm water drainage networks. The prime objective is to achive a model code that is simple and fast enough to be consistently be used in planning stages of urban drainage projects. The formulation for the two-dimensional (2-D) surface flow model algorithms is based on the Navier Stokes equation in two dimensions. An Alternating Direction Implicit (ADI) finite difference numerical scheme is applied to solve the governing equations. This numerical scheme is used to express the partial differential equations with time steps split into two halves. The model algorithm is written using C++ computer programming language. This 2-D surface flow model is then coupled with SWMM for simulation of both pipe flow component and surcharge induced inundation in urban areas. In addition, a damage calculation block is integrated within the inundation model code. The coupled model is shown to be capable of dealing with various flow conditions, as well as being able to simulate wetting and drying processes that will occur as the flood flows over an urban area. It has been applied under idealized and semi-hypothetical cases to determine detailed inundation zones, depths and velocities due to surcharged water on overland surface.
Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test
Croin, M.; Ghiotti, A.; Bruschi, S.
2007-04-07
The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.
The mathematics of cancer: integrating quantitative models.
Altrock, Philipp M; Liu, Lin L; Michor, Franziska
2015-12-01
Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology. PMID:26597528
Nested 1D-2D approach for urban surface flood modeling
NASA Astrophysics Data System (ADS)
Murla, Damian; Willems, Patrick
2015-04-01
Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of
Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches
NASA Astrophysics Data System (ADS)
Baran, Ismet; Hattel, Jesper H.; Akkerman, Remko; Tutum, Cem C.
2015-02-01
The process induced variations such as residual stresses and distortions are a critical issue in pultrusion, since they affect the structural behavior as well as the mechanical properties and geometrical precision of the final product. In order to capture and investigate these variations, a mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo-chemical-mechanical analysis is carried out using 3D quadratic elements which is a novel application for the numerical modelling of the pultrusion process. It is found that the 2D mechanical models give relatively reasonable and accurate stress and displacement evolutions in the transverse direction as compared to the 3D model. Moreover, the generalized plane strain model predicts the longitudinal process induced stresses more similar to the ones calculated in the 3D model as compared with the plane strain model.
Mathematical Models for Library Systems Analysis.
ERIC Educational Resources Information Center
Leimkuhler, F. F.
1967-01-01
The paper reviews the research on design and operation of research libraries sponsored by the Purdue University Libraries and the Purdue School of Industrial Engineering. The use of mathematical models in library operations research is discussed. Among the mathematical methods discussed are marginal analysis or cost minimization, computer…
Mathematical Modelling in the Early School Years
ERIC Educational Resources Information Center
English, Lyn D.; Watters, James J.
2005-01-01
In this article we explore young children's development of mathematical knowledge and reasoning processes as they worked two modelling problems (the "Butter Beans Problem" and the "Airplane Problem"). The problems involve authentic situations that need to be interpreted and described in mathematical ways. Both problems include tables of data,…
Canonical vs. micro-canonical sampling methods in a 2D Ising model
Kepner, J.
1990-12-01
Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs.
Complex zeros of the 2 d Ising model on dynamical random lattices
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.
1998-04-01
We study the zeros in the complex plane of the partition function for the Ising model coupled to 2 d quantum gravity for complex magnetic field and for complex temperature. We compute the zeros by using the exact solution coming from a two matrix model and by Monte Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional patterns in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of singularities near the critical point.
Brane brick models, toric Calabi-Yau 4-folds and 2d (0,2) quivers
NASA Astrophysics Data System (ADS)
Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong
2016-02-01
We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2 d (generically) {N}=(0,2) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau associated to a given gauge theory and vice versa.
Mathematical modeling of ligaments and tendons.
Woo, S L; Johnson, G A; Smith, B A
1993-11-01
Ligaments and tendons serve a variety of important functions in maintaining the structure of the human body. Although abundant literature exists describing experimental investigations of these tissues, mathematical modeling of ligaments and tendons also contributes significantly to understanding their behavior. This paper presents a survey of developments in mathematical modeling of ligaments and tendons over the past 20 years. Mathematical descriptions of ligaments and tendons are identified as either elastic or viscoelastic, and are discussed in chronological order. Elastic models assume that ligaments and tendons do not display time dependent behavior and thus, they focus on describing the nonlinear aspects of their mechanical response. On the other hand, viscoelastic models incorporate time dependent effects into their mathematical description. In particular, two viscoelastic models are discussed in detail; quasi-linear viscoelasticity (QLV), which has been widely used in the past 20 years, and the recently proposed single integral finite strain (SIFS) model. PMID:8302027
2D-3D Registration of CT Vertebra Volume to Fluoroscopy Projection: A Calibration Model Assessment
NASA Astrophysics Data System (ADS)
Bifulco, P.; Cesarelli, M.; Allen, R.; Romano, M.; Fratini, A.; Pasquariello, G.
2009-12-01
This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1 mm for displacements parallel to the fluoroscopic plane, and of order of 10 mm for the orthogonal displacement.
A unified approach to the power law and the critical state modeling of superconductors in 2D
NASA Astrophysics Data System (ADS)
Morandi, Antonio; Fabbri, Massimo
2015-02-01
Two main options exist for modeling the non-linearity of the superconductor: the power law and the critical state model. A vanishing electric field is predicted by the critical state model, which does not take into account relaxation phenomena. The power law model is to be used if flux creep is to be taken into account. However, detectable flux creep may not occur in many operating conditions. In these cases the critical state represents a more accurate modeling option. The existing numerical tools usually incorporate either the power law with a finite n-exponent or the critical state model, not both. A numerical model which incorporates both the power law and the critical state modeling of superconductors in 2D is developed in this paper. The same mathematical formulation and discretization method are used in both of the cases, and the same matrix equation is obtained. The difference between the two models only arises when the solution of the matrix equation is dealt with. The model is implemented by means of one unique computer code. The discretization can be made by means of both triangular and rectangular meshes. A circuit interpretation of the model is also introduced. The equivalence of the proposed method with the variational approach reported in the literature for dealing with the critical state is also discussed in the paper. The numerical results for some cases of practical interest are presented. The difference between the results obtained by means of the two models in terms of current distribution and ac loss is pointed out.
A 2-D semi-analytical model of double-gate tunnel field-effect transistor
NASA Astrophysics Data System (ADS)
Huifang, Xu; Yuehua, Dai; Ning, Li; Jianbin, Xu
2015-05-01
A 2-D semi-analytical model of double gate (DG) tunneling field-effect transistor (TFET) is proposed. By aid of introducing two rectangular sources located in the gate dielectric layer and the channel, the 2-D Poisson equation is solved by using a semi-analytical method combined with an eigenfunction expansion method. The expression of the surface potential is obtained, which is a special function for the infinite series expressions. The influence of the mobile charges on the potential profile is taken into account in the proposed model. On the basis of the potential profile, the shortest tunneling length and the average electrical field can be derived, and the drain current is then constructed by using Kane's model. In particular, the changes of the tunneling parameters Ak and Bk influenced by the drain—source voltage are also incorporated in the predicted model. The proposed model shows a good agreement with TCAD simulation results under different drain—source voltages, silicon film thicknesses, gate dielectric layer thicknesses, and gate dielectric layer constants. Therefore, it is useful to optimize the DG TFET and this provides a physical insight for circuit level design. Project supported by the National Natural Science Foundation of China (No. 61376106) and the Graduate Innovation Fund of Anhui University.
ERIC Educational Resources Information Center
Peretz, Dvora
2005-01-01
This article conceptualises a real-like model of a mathematical model as an inverse model. The inverse model draws on the un-complexity of concrete real life operations in order to help students to add concrete meaning to mathematical algorithms. The inverse model is described in the context of a pedagogical perception, which grants students in…
Heo, Jingu; Savvides, Marios
2012-12-01
In this paper, we propose a novel method for generating a realistic 3D human face from a single 2D face image for the purpose of synthesizing new 2D face images at arbitrary poses using gender and ethnicity specific models. We employ the Generic Elastic Model (GEM) approach, which elastically deforms a generic 3D depth-map based on the sparse observations of an input face image in order to estimate the depth of the face image. Particularly, we show that Gender and Ethnicity specific GEMs (GE-GEMs) can approximate the 3D shape of the input face image more accurately, achieving a better generalization of 3D face modeling and reconstruction compared to the original GEM approach. We qualitatively validate our method using publicly available databases by showing each reconstructed 3D shape generated from a single image and new synthesized poses of the same person at arbitrary angles. For quantitative comparisons, we compare our synthesized results against 3D scanned data and also perform face recognition using synthesized images generated from a single enrollment frontal image. We obtain promising results for handling pose and expression changes based on the proposed method. PMID:22201062
Modeling the Elastic Modulus of 2D Woven CVI SiC Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2006-01-01
The use of fiber, interphase, CVI SiC minicomposites as structural elements for 2D-woven SiC fiber reinforced chemically vapor infiltrated (CVI) SiC matrix composites is demonstrated to be a viable approach to model the elastic modulus of these composite systems when tensile loaded in an orthogonal direction. The 0deg (loading direction) and 90deg (perpendicular to loading direction) oriented minicomposites as well as the open porosity and excess SiC associated with CVI SiC composites were all modeled as parallel elements using simple Rule of Mixtures techniques. Excellent agreement for a variety of 2D woven Hi-Nicalon(TradeMark) fiber-reinforced and Sylramic-iBN reinforced CVI SiC matrix composites that differed in numbers of plies, constituent content, thickness, density, and number of woven tows in either direction (i.e, balanced weaves versus unbalanced weaves) was achieved. It was found that elastic modulus was not only dependent on constituent content, but also the degree to which 90deg minicomposites carried load. This depended on the degree of interaction between 90deg and 0deg minicomposites which was quantified to some extent by composite density. The relationships developed here for elastic modulus only necessitated the knowledge of the fractional contents of fiber, interphase and CVI SiC as well as the tow size and shape. It was concluded that such relationships are fairly robust for orthogonally loaded 2D woven CVI SiC composite system and can be implemented by ceramic matrix composite component modelers and designers for modeling the local stiffness in simple or complex parts fabricated with variable constituent contents.
A solidification constitutive model for NIKE2D and NIKE3D
Raboin, P.J.
1994-03-17
This memo updates the current status of a solidification material model development which has been underway for more than a year. Significant modeling goals such as predicting cut-off stresses, thermo-elasto-plasticity, strain rate dependent plasticity and dynamic recovery have been completed. The model is called SOLMAT for solidification material model, and while developed for NIKE2D, it has already been implemented in NIKE3D and NIT03D by B. Maker. This memo details the future development strategy of SOLMAT including liquid and solid constitutive improvements, coupling of deviatoric and dilatational deformation and a plan to switch between constitutive theories. It explains some of the difficulties associated solidification modeling and proposes two experiments to measure properties for using SOLMAT. Due to the sensitive nature of these plans in relation to programmatic and CRADA concerns, this memo should be treated as confidential document.
An Integrative Model of Excitation Driven Fluid Flow in a 2D Uterine Channel
NASA Astrophysics Data System (ADS)
Maggio, Charles; Fauci, Lisa; Chrispell, John
2009-11-01
We present a model of intra-uterine fluid flow in a sagittal cross-section of the uterus by inducing peristalsis in a 2D channel. This is an integrative multiscale computational model that takes as input fluid viscosity, passive tissue properties of the uterine channel and a prescribed wave of membrane depolarization. This voltage pulse is coupled to a model of calcium dynamics inside a uterine smooth muscle cell, which in turn drives a kinetic model of myosin phosphorylation governing contractile muscle forces. Using the immersed boundary method, these muscle forces are communicated to a fluid domain to simulate the contractions which occur in a human uterus. An analysis of the effects of model parameters on the flow properties and emergent geometry of the peristaltic channel will be presented.
Global regularity for the 2D Oldroyd-B model in the corotational case
NASA Astrophysics Data System (ADS)
Ye, Zhuan; Xu, Xiaojing
2016-09-01
This paper is dedicated to the Oldroyd-B model with fractional dissipation $(-\\Delta)^{\\alpha}\\tau$ for any $\\alpha>0$. We establish the global smooth solutions to the Oldroyd-B model in the corotational case with arbitrarily small fractional powers of the Laplacian in two spatial dimensions. The methods described here are quite different from the tedious iterative approach used in recent paper \\cite{XY}. Moreover, in the Appendix we provide some a priori estimates to the Oldroyd-B model in the critical case which may be useful and of interest for future improvement. Finally, the global regularity to to the Oldroyd-B model in the corotational case with $-\\Delta u$ replaced by $(-\\Delta)^{\\gamma}u$ for $\\gamma>1$ are also collected in the Appendix. Therefore our result is more closer to the resolution of the well-known global regularity issue on the critical 2D Oldroyd-B model.
A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom
2008-11-01
Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.
Mathematical Modeling of Chemical Stoichiometry
ERIC Educational Resources Information Center
Croteau, Joshua; Fox, William P.; Varazo, Kristofoland
2007-01-01
In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…
Exact solution of an anisotropic 2D random walk model with strong memory correlations
NASA Astrophysics Data System (ADS)
Cressoni, J. C.; Viswanathan, G. M.; da Silva, M. A. A.
2013-12-01
Over the last decade, there has been progress in understanding one-dimensional non-Markovian processes via analytic, sometimes exact, solutions. The extension of these ideas and methods to two and higher dimensions is challenging. We report the first exactly solvable two-dimensional (2D) non-Markovian random walk model belonging to the family of the elephant random walk model. In contrast to Lévy walks or fractional Brownian motion, such models incorporate memory effects by keeping an explicit history of the random walk trajectory. We study a memory driven 2D random walk with correlated memory and stops, i.e. pauses in motion. The model has an inherent anisotropy with consequences for its diffusive properties, thereby mixing the dominant regime along one dimension with a subdiffusive walk along a perpendicular dimension. The anomalous diffusion regimes are fully characterized by an exact determination of the Hurst exponent. We discuss the remarkably rich phase diagram, as well as several possible combinations of the independent walks in both directions. The relationship between the exponents of the first and second moments is also unveiled.
Molecular-dynamics of a 2D Model of the Shape Memory Effect
NASA Astrophysics Data System (ADS)
Kastner, Oliver
2006-08-01
This work investigates the thermodynamic properties of a qualitative atomistic model for austenite martensite transitions. The model, still in 2D, employs Lennard-Jones potentials for the determination of the atomic interactions. By use of two atom species it is possible to identify three stable lattice structures in 2D, interpreted as austenite and two variants of martensite. The model is described in the first part of the work [6] in detail. The present work studies the thermodynamic properties of the model concerning a small, 2-dimensional test assembly consisting of 41 atoms. The phase stability is investigated by exploitation of the condition of minimal free energy. The free energy is calculated from the thermal equation of state, which is measured in numerical tensile tests. In the second part of this work a chain of eleven 41-atom assemblies is investigated. The chain is interpreted as an idealized larger body, where the individual crystallites represent crystallographic layers allowing for the creation of micro structure. By use of tensile tests at various temperature conditions we sketch how such chain may exhibit quasi-plasticity, pseudo-elasticity and the shape memory effect.
Momentum Transport: 2D and 3D Cloud Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2001-01-01
The major objective of this study is to investigate the momentum budgets associated with several convective systems that developed during the TOGA COARE IOP (west Pacific warm pool region) and GATE (east Atlantic region). The tool for this study is the improved Goddard Cumulas Ensemble (GCE) model which includes a 3-class ice-phase microphysical scheme, explicit cloud radiative interactive processes and air-sea interactive surface processes. The model domain contains 256 x 256 grid points (with 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km) in the vertical. The 2D domain has 1024 grid points. The simulations were performed over a 7-day time period (December 19-26, 1992, for TOGA COARE and September 1-7, 1994 for GATE). Cyclic literal boundary conditions are required for this type of long-term integration. Two well organized squall systems (TOGA, COARE February 22, 1993, and GATE September 12, 1994) were also simulated using the 3D GCE model. Only 9 h simulations were required to cover the life time of the squall systems. the lateral boundary conditions were open for these two squall systems simulations. the following will be examined: (1) the momentum budgets in the convective and stratiform regions, (2) the relationship between momentum transport and cloud organization (i.e., well organized squall lines versus less organized convective), (3) the differences and similarities in momentum transport between 2D and 3D simulated convective systems, and (4) the differences and similarities in momentum budgets between cloud systems simulated with open and cyclic lateral boundary conditions. Preliminary results indicate that there are only small differences between 2D and 3D simulated momentum budgets. Major differences occur, however, between momentum budgets associated with squall systems simulated using different lateral boundary conditions.
Mathematical modelling of cucumber (cucumis sativus) drying
NASA Astrophysics Data System (ADS)
Shahari, N.; Hussein, S. M.; Nursabrina, M.; Hibberd, S.
2014-07-01
This paper investigates the applicability of using an experiment based mathematical model (empirical model) and a single phase mathematical model with shrinkage to describe the drying curve of cucumis sativus (cucumber). Drying experiments were conducted using conventional air drying and data obtained from these experiments were fitted to seven empirical models using non-linear least square regression based on the Levenberg Marquardt algorithm. The empirical models were compared according to their root mean square error (RMSE), sum of square error (SSE) and coefficient of determination (R2). A logarithmic model was found to be the best empirical model to describe the drying curve of cucumber. The numerical result of a single phase mathematical model with shrinkage was also compared with experiment data for cucumber drying. A good agreement was obtained between the model predictions and the experimental data.
Mathematical Modeling and the Presidential Election.
ERIC Educational Resources Information Center
Witkowski, Joseph C.
1992-01-01
Looks at the solution to the mathematical-modeling problem asking students to find the smallest percent of the popular vote needed to elect a President. Provides assumptions from which to work the problem. (MDH)
Mathematical Model Development and Simulation Support
NASA Technical Reports Server (NTRS)
Francis, Ronald C.; Tobbe, Patrick A.
2000-01-01
This report summarizes the work performed in support of the Contact Dynamics 6DOF Facility and the Flight Robotics Lab at NASA/ MSFC in the areas of Mathematical Model Development and Simulation Support.
A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs
NASA Astrophysics Data System (ADS)
Villani, F.; Gnani, E.; Gnudi, A.; Reggiani, S.; Baccarani, G.
2015-11-01
A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs is developed and compared with full-quantum simulation results. It will be shown that the pure analytical solution perfectly matches results at high VDS. However, a coupling with the numerical solution of the 1D Poisson equation in the radial direction is necessary at low VDS, in order to properly account for the charge density in equilibrium with the drain contact. With such an approach we are able to correctly predict the potential profile for both the linear and saturation regimes.
Vector chiral phases in the frustrated 2D XY model and quantum spin chains.
Schenck, H; Pokrovsky, V L; Nattermann, T
2014-04-18
The phase diagram of the frustrated 2D classical and 1D quantum XY models is calculated analytically. Four transitions are found: the vortex unbinding transitions triggered by strong fluctuations occur above and below the chiral transition temperature. Vortex interaction is short range on small and logarithmic on large scales. The chiral transition, though belonging to the Ising universality class by symmetry, has different critical exponents due to nonlocal interaction. In a narrow region close to the Lifshitz point a reentrant phase transition between paramagnetic and quasiferromagnetic phase appears. Applications to antiferromagnetic quantum spin chains and multiferroics are discussed. PMID:24785067
NASA Astrophysics Data System (ADS)
Zou, B.; Li, D. F.; Hu, H. J.; Zhang, H. W.; Lou, L. H.; Chen, M.; Lv, Z. Y.
Based on the verified two dimensional(2D) finite element model for river flow simulation, the effect of estuary training levees on the water flow and sediment movement in the Yellow River estuary is analyzed. For disclosing the effect of setting the two training levees on the flow and sediment motion, the calculation and analysis for the two projects, (one is no levees, the other is setting up two no levees) are given. The results show that when setting up two training levees, water flow is bound by levees and the water flows become more concentrated. As a result, velocity increases in the main channel, sediment carrying capacity of water flow increases correspondingly.
Mathematical Modelling as Problem Solving for Children in the Singapore Mathematics Classrooms
ERIC Educational Resources Information Center
Eric, Chan Chun Ming
2009-01-01
The newly revised mathematics curriculum in Singapore has recently factored Applications and Modelling to be part of the teaching and learning of mathematics. Its implication is that even children should now be involved in works of mathematical modelling. However, to be able to implement modelling activities in the primary mathematics classroom,…
Image restoration using 2D autoregressive texture model and structure curve construction
NASA Astrophysics Data System (ADS)
Voronin, V. V.; Marchuk, V. I.; Petrosov, S. P.; Svirin, I.; Agaian, S.; Egiazarian, K.
2015-05-01
In this paper an image inpainting approach based on the construction of a composite curve for the restoration of the edges of objects in an image using the concepts of parametric and geometric continuity is presented. It is shown that this approach allows to restore the curved edges and provide more flexibility for curve design in damaged image by interpolating the boundaries of objects by cubic splines. After edge restoration stage, a texture restoration using 2D autoregressive texture model is carried out. The image intensity is locally modeled by a first spatial autoregressive model with support in a strongly causal prediction region on the plane. Model parameters are estimated by Yule-Walker method. Several examples considered in this paper show the effectiveness of the proposed approach for large objects removal as well as recovery of small regions on several test images.
Kosaki-Longo index and classification of charges in 2D quantum spin models
NASA Astrophysics Data System (ADS)
Naaijkens, Pieter
2013-08-01
We consider charge superselection sectors of two-dimensional quantum spin models corresponding to cone localisable charges, and prove that the number of equivalence classes of such charges is bounded by the Kosaki-Longo index of an inclusion of certain observable algebras. To demonstrate the power of this result we apply the theory to the toric code on a 2D infinite lattice. For this model we can compute the index of this inclusion, and conclude that there are four distinct irreducible charges in this model, in accordance with the analysis of the toric code model on compact surfaces. We also give a sufficient criterion for the non-degeneracy of the charge sectors, in the sense that Verlinde's matrix S is invertible.
Accelerating numerical modeling of wave propagation through 2-D anisotropic materials using OpenCL.
Molero, Miguel; Iturrarán-Viveros, Ursula
2013-03-01
We present an implementation of the numerical modeling of elastic waves propagation, in 2D anisotropic materials, using the new parallel computing devices (PCDs). Our study is aimed both to model laboratory experiments and explore the capabilities of the emerging PCDs by discussing performance issues. In the experiments a sample plate of an anisotropic material placed inside a water tank is rotated and, for every angle of rotation it is subjected to an ultrasonic wave (produced by a large source transducer) that propagates in the water and through the material producing some reflection and transmission signals that are recording by a "point-like" receiver. This experiment is numerically modeled by running a finite difference code covering a set of angles θ∈[-50°, 50°], and recorded the signals for the transmission and reflection results. Transversely anisotropic and weakly orthorhombic materials are considered. We accelerated the computation using an open-source toolkit called PyOpenCL, which lets one to easily access the OpenCL parallel computation API's from the high-level programming environment of Python. A speedup factor over 19 using the GPU is obtained when compared with the execution of the same program in parallel using a CPU multi-core (in this case we use the 4-cores that has the CPU). The performance for different graphic cards and operating systems is included together with the full 2-D finite difference code with PyOpenCL. PMID:23290584
Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
1995-04-01
A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.
Stochastic dynamics of phase singularities under ventricular fibrillation in 2D Beeler-Reuter model
NASA Astrophysics Data System (ADS)
Suzuki, Akio; Konno, Hidetoshi
2011-09-01
The dynamics of ventricular fibrillation (VF) has been studied extensively, and the initiation mechanism of VF has been elucidated to some extent. However, the stochastic dynamical nature of sustained VF remains unclear so far due to the complexity of high dimensional chaos in a heterogeneous system. In this paper, various statistical mechanical properties of sustained VF are studied numerically in 2D Beeler-Reuter-Drouhard-Roberge (BRDR) model with normal and modified ionic current conductance. The nature of sustained VF is analyzed by measuring various fluctuations of spatial phase singularity (PS) such as velocity, lifetime, the rates of birth and death. It is found that the probability density function (pdf) for lifetime of PSs is independent of system size. It is also found that the hyper-Gamma distribution serves as a universal pdf for the counting number of PSs for various system sizes and various parameters of our model tissue under VF. Further, it is demonstrated that the nonlinear Langevin equation associated with a hyper-Gamma process can mimic the pdf and temporal variation of the number of PSs in the 2D BRDR model.
NASA Astrophysics Data System (ADS)
Yan, Bo; Li, Yuguo; Liu, Ying
2016-07-01
In this paper, we present an adaptive finite element (FE) algorithm for direct current (DC) resistivity modeling in 2-D generally anisotropic conductivity structures. Our algorithm is implemented on an unstructured triangular mesh that readily accommodates complex structures such as topography and dipping layers and so on. We implement a self-adaptive, goal-oriented grid refinement algorithm in which the finite element analysis is performed on a sequence of refined grids. The grid refinement process is guided by an a posteriori error estimator. The problem is formulated in terms of total potentials where mixed boundary conditions are incorporated. This type of boundary condition is superior to the Dirichlet type of conditions and improves numerical accuracy considerably according to model calculations. We have verified the adaptive finite element algorithm using a two-layered earth with azimuthal anisotropy. The FE algorithm with incorporation of mixed boundary conditions achieves high accuracy. The relative error between the numerical and analytical solutions is less than 1% except in the vicinity of the current source location, where the relative error is up to 2.4%. A 2-D anisotropic model is used to demonstrate the effects of anisotropy upon the apparent resistivity in DC soundings.
Qu, Qiang; Qu, Jian; Han, Lu; Zhan, Min; Wu, Lan-xiang; Zhang, Yi-wen; Zhang, Wei; Zhou, Hong-hao
2014-01-01
Aim: Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6*1 and CYP2D6*10 in vitro. Methods: HepG2 cells were stably transfected with CYP2D6*1 and CYP2D6*10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. Results: HepG2-CYP2D6*1 and HepG2-CYP2D6*10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6*1- and CYP2D6*10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6*1 and CYP2D6*10. However, their Ki values for CYP2D6*1 and CYP2D6*10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants. Conclusion: Six phytochemicals inhibit CYP2D6*1 and CYP2D6*10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6. PMID:24786236
Automatic mathematical modeling for space application
NASA Technical Reports Server (NTRS)
Wang, Caroline K.
1987-01-01
A methodology for automatic mathematical modeling is described. The major objective is to create a very friendly environment for engineers to design, maintain and verify their model and also automatically convert the mathematical model into FORTRAN code for conventional computation. A demonstration program was designed for modeling the Space Shuttle Main Engine simulation mathematical model called Propulsion System Automatic Modeling (PSAM). PSAM provides a very friendly and well organized environment for engineers to build a knowledge base for base equations and general information. PSAM contains an initial set of component process elements for the Space Shuttle Main Engine simulation and a questionnaire that allows the engineer to answer a set of questions to specify a particular model. PSAM is then able to automatically generate the model and the FORTRAN code. A future goal is to download the FORTRAN code to the VAX/VMS system for conventional computation.
Modeling and Control of 2-D Grasping of an Object with Arbitrary Shape under Rolling Contact
NASA Astrophysics Data System (ADS)
Arimoto, Suguru; Yoshida, Morio; Sekimoto, Masahiro; Tahara, Kenji
Modeling, control, and stabilization of dynamics of two-dimensional object grasping by using a pair of multi-joint robot fingers are investigated under rolling contact constraints and an arbitrary geometry of the object and fingertips. First, a fundamental testbed problem of modeling and control of rolling motion between 2-D rigid bodies with an arbitrary shape is treated under the assumption that the two contour curves coincide at the contact point and share the same tangent. The rolling constraint induces the Euler equation of motion that is parameterized by a common arclength parameter and constrained onto the kernel space orthogonally complemented to the image space spanned from the constraint gradient. By extending the analysis to the problem of stable grasp of a 2-D object with an arbitrary shape by a pair of robot fingers, the Euler-Lagrange equation of motion of the overall fingers/object system parametrized by arclength parameters is derived, together with a couple of first-order differential equations that express evolutions of contact points in terms of the second fundamental form. It is shown that 2-D rolling constraints are integrable in the sense of Frobonius even if their Pfaffian forms are characterized by arclength parameters. A control signal called “blind grasping” is introduced and shown to be effective in stabilization of grasping without using the details of the object shape and parameters or external sensing. An extension of the Dirichlet-Lagrange stability theorem to a class of systems with DOF-redundancy under constraints is suggested by using a Morse-Bott-Lyapunov function.
Uncertainties in modelling Mt. Pinatubo eruption with 2-D AER model and CCM SOCOL
NASA Astrophysics Data System (ADS)
Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.
2009-04-01
Large volcanic eruptions may introduce a strong forcing on climate. They challenge the skills of climate models. In addition to the short time attenuation of solar light by ashes the formation of stratospheric sulphate aerosols, due to volcanic sulphur dioxide injection into the lower stratosphere, may lead to a significant enhancement of the global albedo. The sulphate aerosols have a residence time of about 2 years. As a consequence of the enhanced sulphate aerosol concentration both the stratospheric chemistry and dynamics are strongly affected. Due to absorption of longwave and near infrared radiation the temperature in the lower stratosphere increases. So far chemistry climate models overestimate this warming [Eyring et al. 2006]. We present an extensive validation of extinction measurements and model runs of the eruption of Mt. Pinatubo in 1991. Even if Mt. Pinatubo eruption has been the best quantified volcanic eruption of this magnitude, the measurements show considerable uncertainties. For instance the total amount of sulphur emitted to the stratosphere ranges from 5-12 Mt sulphur [e.g. Guo et al. 2004, McCormick, 1992]. The largest uncertainties are in the specification of the main aerosol cloud. SAGE II, for instance, could not measure the peak of the aerosol extinction for about 1.5 years, because optical termination was reached. The gap-filling of the SAGE II [Thomason and Peter, 2006] using lidar measurements underestimates the total extinctions in the tropics for the first half year after the eruption by 30% compared to AVHRR [Rusell et. al 1992]. The same applies to the optical dataset described by Stenchikov et al. [1998]. We compare these extinction data derived from measurements with extinctions derived from AER 2D aerosol model calculations [Weisenstein et al., 2007]. Full microphysical calculations with injections of 14, 17, 20 and 26 Mt SO2 in the lower stratosphere were performed. The optical aerosol properties derived from SAGE II
Longtime Well-posedness for the 2D Groma-Balogh Model
NASA Astrophysics Data System (ADS)
Wan, Renhui; Chen, Jiecheng
2016-07-01
In this paper, we consider the cauchy problem for the 2D Groma-Balogh model (Acta Mater 47:3647-3654, 1999). From the works Cannone et al. (Arch Ration Mech Anal 196:71-96, 2010) and El Hajj (Ann Inst Henri Poincaré Anal Nonlinéaire 27:21-35, 2010), one can see global well-posedness for this model is an open question. However, we can prove longtime well-posedness. In particular, we show that this model admits a unique solution with the lifespan T^star satisfying T^star log ^2(1+T^star )≳ ɛ ^{-2} if the initial data is of size ɛ . To achieve this, we first establish some new decay estimates concerning the operator e^{-{R}_{12}^2t} . Then, we prove the longtime well-posedness by utilizing the weak dissipation to deal with the nonlinear terms.
The concept models and implementations of multiport neural net associative memory for 2D patterns
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Yatskovskaya, Rimma A.; Yatskovsky, Victor I.
2011-04-01
The paper considers neural net models and training and recognizing algorithms with base neurobiologic operations: p-step autoequivalence and non-equivalenc The Modified equivalently models (MEMs) of multiport neural net associative memory (MNNAM) are offered with double adaptive - equivalently weighing (DAEW) for recognition of 2D-patterns (images). It is shown, the computing process in MNNAM under using the proposed MEMs, is reduced to two-step and multi-step algorithms and step-by-step matrix-matrix (tensor-tensor) procedures. The given results of computer simulations confirmed the perspective of such models. Besides the result was received when MNNAM capacity on base of MEMs exceeded the amount of neurons.
Modeling floods in a dense urban area using 2D shallow water equations
NASA Astrophysics Data System (ADS)
Mignot, E.; Paquier, A.; Haider, S.
2006-07-01
SummaryA code solving the 2D shallow water equations by an explicit second-order scheme is used to simulate the severe October 1988 flood in the Richelieu urban locality of the French city of Nîmes. A reference calculation using a detailed description of the street network and of the cross-sections of the streets, considering impervious residence blocks and neglecting the flow interaction with the sewer network provides a mean peak water elevation 0.13 m lower than the measured flood marks with a standard deviation between the measured and computed water depths of 0.53 m. Sensitivity analysis of various topographical and numerical parameters shows that globally, the results keep the same level of accuracy, which reflects both the stability of the calculation method and the smoothening of results. However, the local flow modifications due to change of parameter values can drastically modify the local water depths, especially when the local flow regime is modified. Furthermore, the flow distribution to the downstream parts of the city can be altered depending on the set of parameters used. Finally, a second event, the 2002 flood, was simulated with the calibrated model providing results similar to 1988 flood calculation. Thus, the article shows that, after calibration, a 2D model can be used to help planning mitigation measures in a dense urban area.
Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal
NASA Astrophysics Data System (ADS)
Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun
2013-05-01
Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.
2D and 3D shape based segmentation using deformable models.
El-Baz, Ayman; Yuksel, Seniha E; Shi, Hongjian; Farag, Aly A; El-Ghar, Mohamed A; Eldiasty, Tarek; Ghoneim, Mohamed A
2005-01-01
A novel shape based segmentation approach is proposed by modifying the external energy component of a deformable model. The proposed external energy component depends not only on the gray level of the images but also on the shape information which is obtained from the signed distance maps of objects in a given data set. The gray level distribution and the signed distance map of the points inside and outside the object of interest are accurately estimated by modelling the empirical density function with a linear combination of discrete Gaussians (LCDG) with positive and negative components. Experimental results on the segmentation of the kidneys from low-contrast DCE-MRI and on the segmentation of the ventricles from brain MRI's show how the approach is accurate in segmenting 2-D and 3-D data sets. The 2D results for the kidney segmentation have been validated by a radiologist and the 3D results of the ventricle segmentation have been validated with a geometrical phantom. PMID:16686036
Interpretation of gravity data using 2-D continuous wavelet transformation and 3-D inverse modeling
NASA Astrophysics Data System (ADS)
Roshandel Kahoo, Amin; Nejati Kalateh, Ali; Salajegheh, Farshad
2015-10-01
Recently the continuous wavelet transform has been proposed for interpretation of potential field anomalies. In this paper, we introduced a 2D wavelet based method that uses a new mother wavelet for determination of the location and the depth to the top and base of gravity anomaly. The new wavelet is the first horizontal derivatives of gravity anomaly of a buried cube with unit dimensions. The effectiveness of the proposed method is compared with Li and Oldenburg inversion algorithm and is demonstrated with synthetics and real gravity data. The real gravity data is taken over the Mobrun massive sulfide ore body in Noranda, Quebec, Canada. The obtained results of the 2D wavelet based algorithm and Li and Oldenburg inversion on the Mobrun ore body had desired similarities to the drill-hole depth information. In all of the inversion algorithms the model non-uniqueness is the challenging problem. Proposed method is based on a simple theory and there is no model non-uniqueness on it.
A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method
Brocklehurst, Paul; Adeniran, Ismail; Yang, Dongmin; Sheng, Yong; Zhang, Henggui; Ye, Jianqiao
2015-01-01
Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechanics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM). In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular Ca2+ concentration, the DEM model successfully simulates the conduction of cardiac electrical waves and the tissue's corresponding mechanical contractions. The developed DEM model is numerically stable and provides a powerful method for studying the electromechanical coupling problem in the heart. PMID:26583141
Locally adaptive 2D-3D registration using vascular structure model for liver catheterization.
Kim, Jihye; Lee, Jeongjin; Chung, Jin Wook; Shin, Yeong-Gil
2016-03-01
Two-dimensional-three-dimensional (2D-3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which makes it difficult to obtain the correct solution of 2D-3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34±1.94mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets. PMID:26824922
2-D Modeling of Nanoscale MOSFETs: Non-Equilibrium Green's Function Approach
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Electron-electron interaction is treated within Hartree approximation by solving NEGF and Poisson equations self-consistently. For the calculations presented here, parallelization is performed by distributing the solution of NEGF equations to various processors, energy wise. We present simulation of the "benchmark" MIT 25nm and 90nm MOSFETs and compare our results to those from the drift-diffusion simulator and the quantum-corrected results available. In the 25nm MOSFET, the channel length is less than ten times the electron wavelength, and the electron scattering time is comparable to its transit time. Our main results are: (1) Simulated drain subthreshold current characteristics are shown, where the potential profiles are calculated self-consistently by the corresponding simulation methods. The current predicted by our quantum simulation has smaller subthreshold slope of the Vg dependence which results in higher threshold voltage. (2) When gate oxide thickness is less than 2 nm, gate oxide leakage is a primary factor which determines off-current of a MOSFET (3) Using our 2-D NEGF simulator, we found several ways to drastically decrease oxide leakage current without compromising drive current. (4) Quantum mechanically calculated electron density is much smaller than the background doping density in the poly silicon gate region near oxide interface. This creates an additional effective gate voltage. Different ways to. include this effect approximately will be discussed.
ERIC Educational Resources Information Center
Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.
2016-01-01
Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…
ERIC Educational Resources Information Center
Czocher, Jennifer A.
2016-01-01
This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…
Be2D: A model to understand the distribution of meteoric 10Be in soilscapes
NASA Astrophysics Data System (ADS)
Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Govers, Gerard
2016-04-01
Cosmogenic nuclides have revolutionised our understanding of earth surface process rates. They have become one of the standard tools to quantify soil production by weathering, soil redistribution and erosion. Especially Beryllium-10 has gained much attention due to its long half-live and propensity to be relatively conservative in the landscape. The latter makes 10Be an excellent tool to assess denudation rates over the last 1000 to 100 × 103 years, bridging the anthropogenic and geological time scale. Nevertheless, the mobility of meteoric 10Be in soil systems makes translation of meteoric 10Be inventories into erosion and deposition rates difficult. Here we present a coupled soil hillslope model, Be2D, that is applied to synthetic and real topography to address the following three research questions. (i) What is the influence of vertical meteoric Be10 mobility, caused by chemical mobility, clay translocation and bioturbation, on its lateral redistribution over the soilscape, (ii) How does vertical mobility influence erosion rates and soil residence times inferred from meteoric 10Be inventories and (iii) To what extent can a tracer with a half-life of 1.36 Myr be used to distinguish between natural and human-disturbed soil redistribution rates? The model architecture of Be2D is designed to answer these research questions. Be2D is a dynamic model including physical processes such as soil formation, physical weathering, clay migration, bioturbation, creep, overland flow and tillage erosion. Pathways of meteoric 10Be mobility are simulated using a two step approach which is updated each timestep. First, advective and diffusive mobility of meteoric 10Be is simulated within the soil profile and second, lateral redistribution because of lateral soil fluxes is calculated. The performance and functionality of the model is demonstrated through a number of synthetic and real model runs using existing datasets of meteoric 10Be from case-studies in southeastern US. Brute
Mathematical biodynamic feedthrough model applied to rotorcraft.
Venrooij, Joost; Mulder, Mark; Abbink, David A; van Paassen, Marinus M; Mulder, Max; van der Helm, Frans C T; Bulthoff, Heinrich H
2014-07-01
Biodynamic feedthrough (BDFT) occurs when vehicle accelerations feed through the human body and cause involuntary control inputs. This paper proposes a model to quantitatively predict this effect in rotorcraft. This mathematical BDFT model aims to fill the gap between the currently existing black box BDFT models and physical BDFT models. The model structure was systematically constructed using asymptote modeling, a procedure described in detail in this paper. The resulting model can easily be implemented in many typical rotorcraft BDFT studies, using the provided model parameters. The model's performance was validated in both the frequency and time domain. Furthermore, it was compared with several recent BDFT models. The results show that the proposed mathematical model performs better than typical black box models and is easier to parameterize and implement than a recent physical model. PMID:24013832
Estimating nitrogen losses in furrow irrigated soil amended by compost using HYDRUS-2D model
NASA Astrophysics Data System (ADS)
Iqbal, Shahid; Guber, Andrey; Zaman Khan, Haroon; ullah, Ehsan
2014-05-01
Furrow irrigation commonly results in high nitrogen (N) losses from soil profile via deep infiltration. Estimation of such losses and their reduction is not a trivial task because furrow irrigation creates highly nonuniform distribution of soil water that leads to preferential water and N fluxes in soil profile. Direct measurements of such fluxes are impractical. The objective of this study was to assess applicability of HYDRUS-2D model for estimating nitrogen balance in manure amended soil under furrow irrigation. Field experiments were conducted in a sandy loam soil amended by poultry manure compost (PMC) and pressmud compost (PrMC) fertilizers. The PMC and PrMC contained 2.5% and 0.9% N and were applied at 5 rates: 2, 4, 6, 8 and 10 ton/ha. Plots were irrigated starting from 26th day from planting using furrows with 1x1 ridge to furrow aspect ratio. Irrigation depths were 7.5 cm and time interval between irrigations varied from 8 to 15 days. Results of the field experiments showed that approximately the same corn yield was obtained with considerably higher N application rates using PMC than using PrMC as a fertilizer. HYDRUS-2D model was implemented to evaluate N fluxes in soil amended by PMC and PrMC fertilizers. Nitrogen exchange between two pools of organic N (compost and soil) and two pools of mineral N (soil NH4-N and soil NO3-N) was modeled using mineralization and nitrification reactions. Sources of mineral N losses from soil profile included denitrification, root N uptake and leaching with deep infiltration of water. HYDRUS-2D simulations showed that the observed increases in N root water uptake and corn yields associated with compost application could not be explained by the amount of N added to soil profile with the compost. Predicted N uptake by roots significantly underestimated the field data. Good agreement between simulated and field-estimated values of N root uptake was achieved when the rate of organic N mineralization was increased
NASA Astrophysics Data System (ADS)
Bezzeccheri, E.; Colasanti, S.; Falco, A.; Liguori, R.; Rubino, A.; Lugli, P.
2016-05-01
Vertical Organic Transistors and Phototransistors have been proven to be promising technologies due to the advantages of reduced channel length and larger sensitive area with respect to planar devices. Nevertheless, a real improvement of their performance is subordinate to the quantitative description of their operation mechanisms. In this work, we present a comparative study on the modeling of vertical and planar Organic Phototransistor (OPT) structures. Computer-based simulations of the devices have been carried out with Synopsys Sentaurus TCAD in a 2D Drift-Diffusion framework. The photoactive semiconductor material has been modeled using the virtual semiconductor approach as the archetypal P3HT:PC61BM bulk heterojunction. It has been found that both simulated devices have comparable electrical and optical characteristics, accordingly to recent experimental reports on the subject.
An investigation of DTNS2D for use as an incompressible turbulence modelling test-bed
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.
1992-01-01
This paper documents an investigation of a two dimensional, incompressible Navier-Stokes solver for use as a test-bed for turbulence modelling. DTNS2D is the code under consideration for use at the Center for Modelling of Turbulence and Transition (CMOTT). This code was created by Gorski at the David Taylor Research Center and incorporates the pseudo compressibility method. Two laminar benchmark flows are used to measure the performance and implementation of the method. The classical solution of the Blasius boundary layer is used for validating the flat plate flow, while experimental data is incorporated in the validation of backward facing step flow. Velocity profiles, convergence histories, and reattachment lengths are used to quantify these calculations. The organization and adaptability of the code are also examined in light of the role as a numerical test-bed.
Singularities of the Partition Function for the Ising Model Coupled to 2D Quantum Gravity
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.
We study the zeros in the complex plane of the partition function for the Ising model coupled to 2D quantum gravity for complex magnetic field and real temperature, and for complex temperature and real magnetic field, respectively. We compute the zeros by using the exact solution coming from a two-matrix model and by Monte-Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional curves in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of the singularities near the critical point. Despite the small size of the systems studied, we can obtain a reasonable estimate of the (known) critical exponents.
A guide to using material model No. 11 in NIKE2D: An internal variable, viscoplasticity model
Flower, E.C.; Nikkel, D.J. Jr.
1990-10-30
The need to accurately model the superplastic forming process which is highly rate and temperature dependent motivated the evaluation of Bammann's internal variable, viscoplasticity material model. The model is based upon the concepts of unified creep plasticity, but employs a yield surface for efficient implementation into large-scale numerical computer codes. It has proven elsewhere to be quite successful in describing large strain, thermal-mechanical behavior of crystalline materials. Features of the model enable it to simulate the apparent strain-rate behavior exhibited by many metals above one half the melt temperature. It is the efficient incorporation of features that make the model attractive for use in finite element modeling of metal deformation processes. Although this model was implemented into the Lawrence Livermore National Laboratory's NIKE2D finite element program in 1986, there have been no known reports of successful use by NIKE2D users. The purpose of this report is to provide the user the proper format to input model parameters, a procedure for determining appropriate values for material constants from experimental data, and supplemental information on the model relevant to the implementation in the NIKE2D finite element program. Detailed accounts of the theoretical aspects of the model can be found in the cited references. 4 refs., 8 figs.
Neutrino-electron Scattering in 2-D Models of Supernova Convection
NASA Astrophysics Data System (ADS)
DeNisco, K. R.; Swesty, F. D.; Myra, E. S.
2005-12-01
We present results from 2-D supernova simulations which include the effects of neutrino-electron scattering. The importance of neutrino-electron scattering in stellar collapse has been known for two decades. Yet it has often been neglected in multidimensional simulations due to the difficulty of implementing it consistently. The inclusion of this process is numerically challenging because of the extremely short scattering timescales involved. The stiffness resulting from this short timescale precludes an explicit numerical treatment of this phenomenon, such as those that have recently been utilized in some 2-D models. We describe our fully-implicit treatment of this process and present our initial results. This work was performed at the State University of New York at Stony Brook as part of the TeraScale Supernova Initiative, and is funded by SciDAC grant DE-FC02-01ER41185 from the U.S. Department of Energy, Office of Science High-Energy, Nuclear, and Advanced Scientific Computing Research Programs. We gratefully acknowledge support of the National Energy Research Scientific Computing Center (NERSC) for computational and consulting support.
Implications of lack-of-ergodicity in 2D Potts model
NASA Astrophysics Data System (ADS)
Ota, Smita
2015-03-01
Microcanonical Monte Carlo simulation is used to study two dimensional (2D) q state Potts model. We consider a 2D square lattice having NxN spins with periodic boundary condition and simulated the system with N =15 and q =10. The demon energy distribution is found to be exponential for high system energy and large system size. For smaller system size and above the first order transition the demon energy distribution is found to deviate from exp(- βED) and has the form exp(- βED + γ ED2). Here β = 1/kBT and kB is the Boltzmann constant. It is found that γ is finite at higher temperatures. As the system energy is reduced γ becomes zero near the first order transition. It is found that during cooling γ changes sign from negative to positive and then to negative again near the 1st order transition. Therefore the demon energy distribution becomes exp(- βED) (or ergodic) at two values of system energy near the 1st order transition. Further cooling or at still lower temperatures the system shows lack of ergodicity. However, difference in heating cooling curves are apparent in E vs γ. The system energies for which γ is zero during cooling can represent the 'ergodic' states. This can be related to the two-level systems observed in glasses at low temperatures.
Nutter, C.
1980-11-01
GRAV2D is an interactive computer program used for modeling 2-1/2 dimensional gravity data. A forward algorithm is used to give the theoretical attraction of gravity intensity at a station due to a perturbing body given by the initial model. The resultant model can then be adjusted for a better fit by a combination of manual adjustment, one-dimensional automatic search, and Marquardt inversion. GRAV2D has an interactive data management system for data manipulation and display built around subroutines to do a forward problem, a one-dimensional direct search and an inversion. This is a user's guide and documentation for GRAV2D.
2D time-domain finite-difference modeling for viscoelastic seismic wave propagation
NASA Astrophysics Data System (ADS)
Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing
2016-07-01
Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a tradeoff between accuracy and computational costs to incorporate Q into 2D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second-order in time and fourth-order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.
Transforming 2d Cadastral Data Into a Dynamic Smart 3d Model
NASA Astrophysics Data System (ADS)
Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.
2013-08-01
3D property registration has become an imperative need in order to optimally reflect all complex cases of the multilayer reality of property rights and restrictions, revealing their vertical component. This paper refers to the potentials and multiple applications of 3D cadastral systems and explores the current state-of-the art, especially the available software with which 3D visualization can be achieved. Within this context, the Hellenic Cadastre's current state is investigated, in particular its data modeling frame. Presenting the methodologies and specifications addressing the registration of 3D properties, the operating cadastral system's shortcomings and merits are pointed out. Nonetheless, current technological advances as well as the availability of sophisticated software packages (proprietary or open source) call for 3D modeling. In order to register and visualize the complex reality in 3D, Esri's CityEngine modeling software has been used, which is specialized in the generation of 3D urban environments, transforming 2D GIS Data into Smart 3D City Models. The application of the 3D model concerns the Campus of the National Technical University of Athens, in which a complex ownership status is established along with approved special zoning regulations. The 3D model was built using different parameters based on input data, derived from cadastral and urban planning datasets, as well as legal documents and architectural plans. The process resulted in a final 3D model, optimally describing the cadastral situation and built environment and proved to be a good practice example of 3D visualization.
NASA Astrophysics Data System (ADS)
Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki
2015-05-01
Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The
Turbulence modeling for subsonic separated flows over 2-D airfoils and 3-D wings
NASA Astrophysics Data System (ADS)
Rosen, Aaron M.
Accurate predictions of turbulent boundary layers and flow separation through computational fluid dynamics (CFD) are becoming more and more essential for the prediction of loads in the design of aerodynamic flight components. Standard eddy viscosity models used in many commercial codes today do not capture the nonequilibrium effects seen in a separated flow and thus do not generally make accurate separation predictions. Part of the reason for this is that under nonequilibrium conditions such as a strong adverse pressure gradient, the history effects of the flow play an important role in the growth and decay of turbulence. More recent turbulence models such as Olsen and Coakley's Lag model and Lillard's lagRST model seek to simulate these effects by lagging the turbulent variables when nonequilibrium effects become important. The purpose of the current research is to assess how these nonequilibrium turbulence models capture the separated regions on various 2-D airfoils and 3-D wings. Nonequilibrium models including the Lag model and the lagRST model are evaluated in comparison with three baseline models (Spalart-Allmaras, Wilcox's k-omega, and Menter's SST) using a modified version of the OVERFLOW code. Tuning the model coefficients of the Lag and lagRST models is also explored. Results show that the various lagRST formulations display an improvement in velocity profile predictions over the standard RANS models, but have trouble capturing the edge of the boundary layer. Experimental separation location measurements were not available, but several trends are noted which may be useful to tuning the model coefficients in the future.
2D-photochemical modeling of Saturn’s stratosphere: hydrocarbon and water distributions
NASA Astrophysics Data System (ADS)
Hue, Vincent; Cavalié, Thibault; Hersant, Franck; Dobrijevic, Michel; Greathouse, Thomas; Lellouch, Emmanuel; Hartogh, Paul; Cassidy, Timothy; Spiga, Aymeric; Guerlet, Sandrine; Sylvestre, Melody
2014-11-01
Saturn’s axial tilt of 27° produces seasons in a similar way as on Earth. The seasonal forcing over Saturn’s 30 years period influences the production/loss of the major atmospheric absorbers and coolants through photochemistry, and influences therefore Saturn’s stratospheric temperatures. We have developed a 2D time-dependent photochemical model of Saturn’s atmosphere [Hue et al., in prep.], coupled to a radiative-climate model [Greathouse et al., 2008] to study seasonal effects on its atmospheric composition. Cassini spacecraft has revealed that the distribution of hydrocarbons in Saturn’s stratosphere [Guerlet et al., 2009] differs from pure photochemical predictions, i.e. without meridional transport [Moses et al., 2005]. Differences between the observed distribution of hydrocarbons and 2D-photochemical predictions are likely to be an indicator of dynamical forcing.Disentangling the origin of water in the stratosphere of this planet has been a long-term issue. Due to Saturn’s cold tropopause trap, which acts as a transport barrier, the water vapor observed by the Infrared Space Observatory (ISO) [Feuchtgruber et al., 1997] has an external origin. Three external sources have been identified: (i) permanent flux from interplanetary dust particles, (ii) local sources form planetary environments (rings, satellites), (iii) large cometary impacts, similar to Shoemaker-Levy 9 on Jupiter. Previous observations of Saturn with Herschel’s Hsso program [Hartogh et al., 2009] led to the detection of a water torus around Saturn [Hartogh et al., 2011], fed by Enceladus’ geysers. A substantial fraction of this torus is predicted to be a local source of water for Saturn’s and its satellites, as it will spread in this system [Cassidy et al., 2010]. Using the new 2D-photochemical model, we test here the validity of Enceladus’ torus as the source of Saturn’s stratospheric water.References : Hue et al., in prep. Greathouse et al., 2008. AGU Fall Meeting
The combined effect of attraction and orientation zones in 2D flocking models
NASA Astrophysics Data System (ADS)
Iliass, Tarras; Cambui, Dorilson
2016-01-01
In nature, many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex motion of these systems, we study the Vicsek model of self-propelled particles (SPP) which is an important tool to investigate the behavior of collective motion of live organisms. This model reproduces the biological behavior patterns in the two-dimensional (2D) space. Within the framework of this model, the particles move with the same absolute velocity and interact locally in the zone of orientation by trying to align their direction with that of the neighbors. In this paper, we model the collective movement of SPP using an agent-based model which follows biologically motivated behavioral rules, by adding a second region called the attraction zone, where each particles move towards each other avoiding being isolated. Our main goal is to present a detailed numerical study on the effect of the zone of attraction on the kinetic phase transition of our system. In our study, the consideration of this zone seems to play an important role in the cohesion. Consequently, in the directional orientation, the zone that we added forms the compact particle group. In our simulation, we show clearly that the model proposed here can produce two collective behavior patterns: torus and dynamic parallel group. Implications of these findings are discussed.
Coronary arteries motion modeling on 2D x-ray images
NASA Astrophysics Data System (ADS)
Gao, Yang; Sundar, Hari
2012-02-01
During interventional procedures, 3D imaging modalities like CT and MRI are not commonly used due to interference with the surgery and radiation exposure concerns. Therefore, real-time information is usually limited and building models of cardiac motion are difficult. In such case, vessel motion modeling based on 2-D angiography images become indispensable. Due to issues with existing vessel segmentation algorithms and the lack of contrast in occluded vessels, manual segmentation of certain branches is usually necessary. In addition, such occluded branches are the most important vessels during coronary interventions and obtaining motion models for these can greatly help in reducing the procedure time and radiation exposure. Segmenting different cardiac phases independently does not guarantee temporal consistency and is not efficient for occluded branches required manual segmentation. In this paper, we propose a coronary motion modeling system which extracts the coronary tree for every cardiac phase, maintaining the segmentation by tracking the coronary tree during the cardiac cycle. It is able to map every frame to the specific cardiac phase, thereby inferring the shape information of the coronary arteries using the model corresponding to its phase. Our experiments show that our motion modeling system can achieve promising results with real-time performance.
2-D modeling of laterally acoustically coupled thin film bulk acoustic wave resonator filters.
Pensala, Tuomas; Meltaus, Johanna; Kokkonen, Kimmo; Ylilammi, Markku
2010-11-01
A 2-D model is developed for calculating lateral acoustical coupling between adjacent thin film BAW resonators forming an electrical N-port. The model is based on solution and superposition of lateral eigenmodes and eigenfrequencies in a structure consisting of adjacent regions with known plate wave dispersion properties. Mechanical and electrical response of the device are calculated as a superposition of eigenmodes according to voltage drive at one electrical port at a time while extracting current induced in the other ports, leading to a full Y-parameter description of the device. Exemplary cases are simulated to show the usefulness of the model in the study of the basic design rules of laterally coupled thin film BAW resonator filters. Model predictions are compared to an experimental 1.9-GHz band-pass filter based on aluminum nitride thin film technology and lateral acoustical coupling. Good agreement is obtained in prediction of passband behavior. The eigenmode-based model forms a useful tool for fast simulation of laterally coupled acoustic devices. It allows one to gain insight into basic device physics in a very intuitive fashion compared with more detailed but heavier finite element method. Shortcomings of this model and possible improvements are discussed. PMID:21041141
Mathematical Models of Tuberculosis Reactivation and Relapse
Wallis, Robert S.
2016-01-01
The natural history of human infection with Mycobacterium tuberculosis (Mtb) is highly variable, as is the response to treatment of active tuberculosis. There is presently no direct means to identify individuals in whom Mtb infection has been eradicated, whether by a bactericidal immune response or sterilizing antimicrobial chemotherapy. Mathematical models can assist in such circumstances by measuring or predicting events that cannot be directly observed. The 3 models discussed in this review illustrate instances in which mathematical models were used to identify individuals with innate resistance to Mtb infection, determine the etiologic mechanism of tuberculosis in patients treated with tumor necrosis factor blockers, and predict the risk of relapse in persons undergoing tuberculosis treatment. These examples illustrate the power of various types of mathematic models to increase knowledge and thereby inform interventions in the present global tuberculosis epidemic. PMID:27242697
ERIC Educational Resources Information Center
Ciltas, Alper; Isik, Ahmet
2013-01-01
The aim of this study was to examine the modelling skills of prospective elementary mathematics teachers who were studying the mathematical modelling method. The research study group was composed of 35 prospective teachers. The exploratory case analysis method was used in the study. The data were obtained via semi-structured interviews and a…
Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields
2000-02-21
SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut awaymore » to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.« less
Surface delta interaction in the g7/2 - d5/2 model space
NASA Astrophysics Data System (ADS)
Yu, Xiaofei; Zamick, Larry
2016-05-01
Using an attractive surface delta interaction we obtain wave functions for 2 neutrons (or neutron holes) in the g7/2 -d5/2 model space. If we take the single particle energies to be degenerate we find that the g factors for I = 2 , 4 and 6 are all the same G (J) =gl, the orbital g factor of the nucleon. For a free neutron gl = 0, so in this case all 2 particles or 2 holes' g factors are equal to zero. Only the orbital part of the g-factors contributes - the spin part cancels out. We then consider the effects of introducing a single energy splitting between the 2 orbits. We make a linear approximation for all other n values.
3D prostate boundary segmentation from ultrasound images using 2D active shape models.
Hodge, Adam C; Ladak, Hanif M
2006-01-01
Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm for semi-automatic, three-dimensional (3D) segmentation of the prostate boundary from ultrasound images based on two-dimensional (2D) active shape models (ASM) and rotation-based slicing. Evaluation of the algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. The mean absolute distance between the algorithm and gold standard boundaries was 1.09+/-0.49 mm, the average percent absolute volume difference was 3.28+/-3.16%, and a 5x speed increase as compared manual planimetry was achieved. PMID:17946106
Optical fiber poling by induction: analysis by 2D numerical modeling.
De Lucia, F; Huang, D; Corbari, C; Healy, N; Sazio, P J A
2016-04-15
Since their first demonstration some 25 years ago, thermally poled silica fibers have been used to realize device functions such as electro-optic modulation, switching, polarization-entangled photons, and optical frequency conversion with a number of advantages over bulk free-space components. We have recently developed an innovative induction poling technique that could allow for the development of complex microstructured fiber geometries for highly efficient χ^{(2)}-based device applications. To systematically implement these more advanced poled fiber designs, we report here the development of comprehensive numerical models of the induction poling mechanism itself via two-dimensional (2D) simulations of ion migration and space-charge region formation using finite element analysis. PMID:27082323
Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields
Dahl, David
2000-02-21
SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut away to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.
Robust autonomous model learning from 2D and 3D data sets.
Langs, Georg; Donner, René; Peloschek, Philipp; Bischof, Horst
2007-01-01
In this paper we propose a weakly supervised learning algorithm for appearance models based on the minimum description length (MDL) principle. From a set of training images or volumes depicting examples of an anatomical structure, correspondences for a set of landmarks are established by group-wise registration. The approach does not require any annotation. In contrast to existing methods no assumptions about the topology of the data are made, and the topology can change throughout the data set. Instead of a continuous representation of the volumes or images, only sparse finite sets of interest points are used to represent the examples during optimization. This enables the algorithm to efficiently use distinctive points, and to handle texture variations robustly. In contrast to standard elasticity based deformation constraints the MDL criterion accounts for systematic deformations typical for training sets stemming from medical image data. Experimental results are reported for five different 2D and 3D data sets. PMID:18051152
Calibration Of 2D Hydraulic Inundation Models In The Floodplain Region Of The Lower Tagus River
NASA Astrophysics Data System (ADS)
Pestanana, R.; Matias, M.; Canelas, R.; Araujo, A.; Roque, D.; Van Zeller, E.; Trigo-Teixeira, A.; Ferreira, R.; Oliveira, R.; Heleno, S.
2013-12-01
In terms of inundated area, the largest floods in Portugal occur in the Lower Tagus River. On average, the river overflows every 2.5 years, at times blocking roads and causing important agricultural damages. This paper focus on the calibration of 2D-horizontal flood simulation models for the floods of 2001 and 2006 on a 70-km stretch of the Lower Tagus River. Flood extent maps, derived from ERS SAR and ENVISAT ASAR imagery were compared with the flood extent maps obtained for each simulation, to calibrate roughness coefficients. The combination of the calibration results from the 2001 and 2006 floods provided a preliminary Manning coefficient map of the study area.
Universality Class of the Nishimori Point in the 2D +/-J Random-Bond Ising Model
NASA Astrophysics Data System (ADS)
Honecker, A.; Picco, M.; Pujol, P.
2001-07-01
We study the universality class of the Nishimori point in the 2D +/-J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value pc = 0.1094+/-0.0002 and estimate ν = 1.33+/-0.03. Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c = 0.464+/-0.004. The main qualitative result is the fact that percolation is now excluded as a candidate for describing the universality class of this fixed point.
Universality class of the Nishimori point in the 2D +/- J random-bond Ising model.
Honecker, A; Picco, M; Pujol, P
2001-07-23
We study the universality class of the Nishimori point in the 2D +/- J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value p(c) = 0.1094 +/- 0.0002 and estimate nu = 1.33 +/- 0.03. Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c = 0.464 +/- 0.004. The main qualitative result is the fact that percolation is now excluded as a candidate for describing the universality class of this fixed point. PMID:11461639
Structure-approximating inverse protein folding problem in the 2D HP model.
Gupta, Arvind; Manuch, Ján; Stacho, Ladislav
2005-12-01
The inverse protein folding problem is that of designing an amino acid sequence which has a particular native protein fold. This problem arises in drug design where a particular structure is necessary to ensure proper protein-protein interactions. In this paper, we show that in the 2D HP model of Dill it is possible to solve this problem for a broad class of structures. These structures can be used to closely approximate any given structure. One of the most important properties of a good protein (in drug design) is its stability--the aptitude not to fold simultaneously into other structures. We show that for a number of basic structures, our sequences have a unique fold. PMID:16379538
An application of the distributed hydrologic model CASC2D to a tropical montane watershed
NASA Astrophysics Data System (ADS)
Marsik, Matt; Waylen, Peter
2006-11-01
SummaryIncreased stormflow in the Quebrada Estero watershed (2.5 km 2), in the northwestern Central Valley tectonic depression of Costa Rica, reportedly has caused flooding of the city of San Ramón in recent decades. Although scientifically untested, urban expansion was deemed the cause and remedial measures were recommended by the Programa de Investigación en Desarrollo Humano Sostenible (ProDUS). CASC2D, a physically-based, spatially explicit hydrologic model, was constructed and calibrated to a June 10th 2002 storm that delivered 110.5 mm of precipitation in 4.5 h visibly exceeded the bankfull stage (0.9 m) of the Quebrada flooding portions of San Ramón. The calibrated hydrograph showed a peak discharge 16.68% (2.5 m 3 s -1) higher, an above flood stage duration 20% shorter, and time to peak discharge 11 min later than the same observed discharge hydrograph characteristics. Simulations of changing land cover conditions from 1979 to 1999 showed an increase also in the peak discharge, above flood stage duration, and time to peak discharge. Analysis using a modified location quotient identified increased urbanization in lower portions of the watershed over the time period studied. These results suggest that increased urbanization in the Quebrada Estero watershed have increased flooding peaks, and durations above threshold, confirming the ProDUS report. These results and the CASC2D model offer an easy-to-use, pragmatic planning tool for policymakers in San Ramón to assess future development scenarios and their potential flooding impacts to San Ramón.
2D Distinct Element Method (DEM) models of the initiation, propagation and saturation of rock joints
NASA Astrophysics Data System (ADS)
Arslan, A.; Schöpfer, M. P.; Walsh, J. J.; Childs, C.
2009-12-01
In layered sequences, rock joints usually best develop within the more brittle layers and commonly display a regular spacing that scales with layer thickness. A variety of conceptual and mechanical models have been developed for these observations. A limitation of previous approaches, however, is that fracture initiation and associated interface slip are not explicitly simulated; instead, fractures were predefined and interfaces were welded. To surmount this problem, we have modelled the formation and growth of joints in layered sequences by using the two-dimensional Distinct Element Method (DEM) as implemented in the Particle Flow Code (PFC-2D). In PFC-2D, rock is represented by an assemblage of circular particles that are bonded at particle-particle contacts. Failure occurs if either the tensile or shear strength of a bond is exceeded. The models comprise a central brittle layer with high Young’s modulus, which is embedded in a low Young’s modulus matrix. The interfaces between the layers are defined by ‘smooth joint’ contacts, a modelling feature that eliminates interparticle bumpiness and associated interlocking friction. Consequently, this feature allows the user to assign macroscopic properties such as friction and cohesion along layer interfaces in a controlled manner. Layer parallel extension is applied by assigning a velocity to particles at the lateral boundaries of the model while maintaining a constant vertical confining pressure. Models were extended until joint saturation in the central layer was reached. We thereby explored the impact of confining pressure and interface properties (friction, cohesion) on joint spacing. A number of important conclusions can be drawn from our models: (i) The distributions of average horizontal normal stress within the layer and of shear stress at the interface are consistent with analytical solutions (stress-transfer theory). (ii) At low interfacial shear strength, new joints form preferentially midway between
Assessment of the Impacts of Compensation Flow Changes Upon Instream Habitat Using 2D Modelling
NASA Astrophysics Data System (ADS)
Mould, D. C.; Lane, S. N.; Christmas, M.
2004-05-01
Many millstone-grit rivers in northern England are impounded. In such cases the water company in the area has to release compensation flows from the reservoirs, traditionally to meet industrial needs: these flows are rarely set with ecology in mind; and have commonly involved constant flow. Dam overtopping may create spates, but spawning in many fish species is prompted by a spate flow in the early autumn when dams are rarely full enough to overtop. Such flows are important for fine sediment flushing and controlling the wetted useable area for spawning. Classical physical habitat modelling for instream habitat has been largely reliant upon 1D approaches, such as the Instream Flow Incremental Methodology (IFIM). Here we use a 2D finite element model (FESWMS), to simulate changes in instream habitat with variations in the compensation flow regimes. The spatial resolution of 2D models can be adapted to the scale of fish habitats so providing better representation of the reach-scale flow processes (such as slack water in the margins, wetting and drying) than the 1D case. The model is applied to the Rivers Rivelin and Loxley in Sheffield, Northern England. At the confluence of the two rivers, the compensation flow level is set at 30.6 Thousand Cubic Metres per Day (TCMD). Due to historical reasons, the compensation is not divided equally, as the Loxley receives 28 TCMD whilst the Rivelin receives only 2.6 TCMD. The model is used to simulate a transfer of 6 TCMD from the Loxley to the Rivelin. After validation, model predictions are combined with available habitat requirement data (e.g. velocity and depth needs) to develop an index of change in habitat suitability in terms of first order variables (e.g. velocity, depth and wetted useable area). This suggests that the change in compensation may significantly improve instream ecology in relation to macroinvertebrates, brown trout (Salmo trutta) and bullhead (Cottus gobio) in the Rivelin without causing detrimental impacts
Spin Circuit Model for Spin Orbit Torques in 2D Channels
NASA Astrophysics Data System (ADS)
Hong, Seokmin
2015-03-01
Recently, the unique coupling between charge and spin in topological insulators has been explored through various types of electrical measurements, which could have interesting applications. In this talk, we present a spin circuit model for spin orbit torques in topological insulator surface states and other 2D channels. We show with a simple example that results from the circuit model agree well with those obtained from nonequilibrium Green's function (NEGF) based quantum transport simulation. Some predictions of our model have already received experimental support and we hope this model can provide a unifying framework that can be used to critically evaluate experimental results, to explore new types of devices as well as to answer fundamental questions regarding these materials. The model for spin-orbit torques described here can be incorporated into a broader spin-circuit approach which, we believe, provides a natural platform for multi-physics, multi-component spintronic devices. This work was supported by FAME, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.
Spin Circuit Model for 2D Channels with Spin-Orbit Coupling
Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo
2016-01-01
In this paper we present a general theory for an arbitrary 2D channel with “spin momentum locking” due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, −). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U−, and D−. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green’s function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling. PMID:26932563
Thermochemical Nonequilibrium 2D Modeling of Nitrogen Inductively Coupled Plasma Flow
NASA Astrophysics Data System (ADS)
Yu, Minghao; Yusuke, Takahashi; Hisashi, Kihara; Ken-ichi, Abe; Kazuhiko, Yamada; Takashi, Abe; Satoshi, Miyatani
2015-09-01
Two-dimensional (2D) numerical simulations of thermochemical nonequilibrium inductively coupled plasma (ICP) flows inside a 10-kW inductively coupled plasma wind tunnel (ICPWT) were carried out with nitrogen as the working gas. Compressible axisymmetric Navier-Stokes (N-S) equations coupled with magnetic vector potential equations were solved. A four-temperature model including an improved electron-vibration relaxation time was used to model the internal energy exchange between electron and heavy particles. The third-order accuracy electron transport properties (3rd AETP) were applied to the simulations. A hybrid chemical kinetic model was adopted to model the chemical nonequilibrium process. The flow characteristics such as thermal nonequilibrium, inductive discharge, effects of Lorentz force were made clear through the present study. It was clarified that the thermal nonequilibrium model played an important role in properly predicting the temperature field. The prediction accuracy can be improved by applying the 3rd AETP to the simulation for this ICPWT. supported by Grant-in-Aid for Scientific Research (No. 23560954), sponsored by the Japan Society for the Promotion of Science
Incorporating a Turbulence Transport Model into 2-D Hybrid Hall Thruster Simulations
NASA Astrophysics Data System (ADS)
Cha, Eunsun; Cappelli, Mark A.; Fernandez, Eduardo
2014-10-01
2-D hybrid simulations of Hall plasma thrusters that do not resolve cross-field transport-generating fluctuations require a model to capture how electrons migrate across the magnetic field. We describe the results of integrating a turbulent electron transport model into simulations of plasma behavior in a plane spanned by the E and B field vectors. The simulations treat the electrons as a fluid and the heavy species (ions/neutrals) as discrete particles. The transport model assumes that the turbulent eddy cascade in the electron fluid to smaller scales is the primary means of electron energy dissipation. Using this model, we compare simulations to experimental measurements made on a laboratory Hall discharge over a range of discharge voltage. Both the current-voltage trends as well as the plasma properties such as plasma temperature, electron density, and ion velocities seem agree favorably with experiments, where a simple Bohm transport model tends to perform poorly in capturing much of the discharge behavior.
Spin Circuit Model for 2D Channels with Spin-Orbit Coupling.
Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo
2016-01-01
In this paper we present a general theory for an arbitrary 2D channel with "spin momentum locking" due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, -). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U-, and D-. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green's function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling. PMID:26932563
Spin Circuit Model for 2D Channels with Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo
2016-03-01
In this paper we present a general theory for an arbitrary 2D channel with “spin momentum locking” due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, -). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U-, and D-. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green’s function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling.
Field Evaluation of a Novel 2D Preferential Flow Snowpack Hydrology Model
NASA Astrophysics Data System (ADS)
Leroux, N.; Pomeroy, J. W.; Kinar, N. J.
2015-12-01
Accurate estimation of snowmelt flux is of primary importance for runoff hydrograph prediction, which is used for water management and flood forecasting. Lateral flows and preferential flow pathways in porous media flow have proven critical for improving soil and groundwater flow models, but though many physically-based layered snowmelt models have been developed, only 1D matrix flow is accounted for in these models. Therefore, there is a need for snowmelt models that include these processes so as to examine the potential to improve snowmelt hydrological modelling. A 2D model is proposed that enables an improved understanding of energy and water flows within deep heterogeneous snowpacks, including those on slopes. A dual pathway theory is presented that simulates the formation of preferential flow paths, vertical and lateral water flows through the snow matrix and flow fingers, internal energy fluxes, melt, wet snow metamorphism, and internal refreezing. The dual pathway model utilizes an explicit finite volume method to solve for the energy and water flux equations over a non-orthogonal grid. It was run and evaluated using in-situ data collected from snowpit - accessed gravimetric, thermometric, photographic, and dielectric observations and novel non-invasive acoustic observations of layering, temperature, flowpath geometry, density and wetness at the Fortress Mountain Snow Laboratory, Alberta, Canada. The melt of a natural snowpack was artificially generated after detailed observation of snowpack initial conditions such as snow layer properties, temperature, and liquid water content. Snowpack ablation and liquid water content distribution over time were then measured and used for model parameterization and validation. Energy available at the snow surface and soil slope angle were set as mondel inputs. Model verification was based on snowpack property evolution. The heterogeneous flow model can be an important tool to help understand snowmelt flow processes, how
Comprehensive Mathematical Model Of Real Fluids
NASA Technical Reports Server (NTRS)
Anderson, Peter G.
1996-01-01
Mathematical model of thermodynamic properties of water, steam, and liquid and gaseous hydrogen and oxygen developed for use in computational simulations of flows of mass and heat in main engine of space shuttle. Similar models developed for other fluids and applications. Based on HBMS equation of state.
Mathematical Modeling of Viral Zoonoses in Wildlife
Allen, L. J. S.; Brown, V. L.; Jonsson, C. B.; Klein, S. L.; Laverty, S. M.; Magwedere, K.; Owen, J. C.; van den Driessche, P.
2011-01-01
Zoonoses are a worldwide public health concern, accounting for approximately 75% of human infectious diseases. In addition, zoonoses adversely affect agricultural production and wildlife. We review some mathematical models developed for the study of viral zoonoses in wildlife and identify areas where further modeling efforts are needed. PMID:22639490
Mathematical Model For Scattering From Mirrors
NASA Technical Reports Server (NTRS)
Wang, Yaujen
1988-01-01
Additional terms account for effects of particulate contamination. Semiempirical mathematical model of scattering of light from surface of mirror gives improved account of effects of particulate contamination. Models that treated only scattering by microscopic irregularities in surface gave bidirectional reflectance distribution functions differing from measured scattering intensities over some ranges of angles.
Mathematical model for predicting human vertebral fracture
NASA Technical Reports Server (NTRS)
Benedict, J. V.
1973-01-01
Mathematical model has been constructed to predict dynamic response of tapered, curved beam columns in as much as human spine closely resembles this form. Model takes into consideration effects of impact force, mass distribution, and material properties. Solutions were verified by dynamic tests on curved, tapered, elastic polyethylene beam.
NASA Astrophysics Data System (ADS)
Shen, D.; Wang, J.; Cheng, X.; Rui, Y.; Ye, S.
2015-02-01
The rapid progress of Light Detection And Ranging (LiDAR) technology has made acquirement and application of high-resolution digital elevation model (DEM) data increasingly popular, especially with regards to the study of floodplain flow modeling. High-resolution DEM data include many redundant interpolation points, needs a high amount of calculation, and does not match the size of computational mesh. These disadvantages are a common problem for floodplain flow modeling studies. Two-dimensional (2-D) hydraulic modeling, a popular method of analyzing floodplain flow, offers high precision of elevation parameterization for computational mesh while ignoring much micro-topographic information of the DEM data itself. We offer a flood simulation method that integrates 2-D hydraulic model results and high-resolution DEM data, enabling the calculation of flood water levels in DEM grid cells through local inverse distance weighted interpolation. To get rid of the false inundation areas during interpolation, it employs the run-length encoding method to mark the inundated DEM grid cells and determine the real inundation areas through the run-length boundary tracing technique, which solves the complicated problem of the connectivity between DEM grid cells. We constructed a 2-D hydraulic model for the Gongshuangcha polder, a flood storage area of Dongting Lake, using our integrated method to simulate the floodplain flow. The results demonstrate that this method can solve DEM associated problems efficiently and simulate flooding processes with greater accuracy than DEM only simulations.
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.
Mathematical modeling relevant to closed artificial ecosystems
DeAngelis, D.L.
2003-01-01
The mathematical modeling of ecosystems has contributed much to the understanding of the dynamics of such systems. Ecosystems can include not only the natural variety, but also artificial systems designed and controlled by humans. These can range from agricultural systems and activated sludge plants, down to mesocosms, microcosms, and aquaria, which may have practical or research applications. Some purposes may require the design of systems that are completely closed, as far as material cycling is concerned. In all cases, mathematical modeling can help not only to understand the dynamics of the system, but also to design methods of control to keep the system operating in desired ranges. This paper reviews mathematical modeling relevant to the simulation and control of closed or semi-closed artificial ecosystems designed for biological production and recycling in applications in space. Published by Elsevier Science Ltd on behalf of COSPAR.
A case study of fluid flow in fractured rock mass based on 2-D DFN modeling
NASA Astrophysics Data System (ADS)
Han, Jisu; Noh, Young-Hwan; Um, Jeong-Gi; Choi, Yosoon
2014-05-01
A two dimensional steady-state fluid flow through fractured rock mass of an abandoned copper mine in Korea is addressed based on discrete fracture network modeling. An injection well and three observation wells were installed at the field site to monitor the variations of total heads induced by injection of fresh water. A series of packer tests were performed to estimate the rock mass permeability. First, the two dimensional stochastic fracture network model was built and validated for a granitic rock mass using the geometrical and statistical data obtained from surface exposures and borehole logs. This validated fracture network model was combined with the fracture data observed on boreholes to generate a stochastic-deterministic fracture network system. Estimated apertures for each of the fracture sets using permeability data obtained from borehole packer tests were discussed next. Finally, a systematic procedure for fluid flow modeling in fractured rock mass in two dimensional domain was presented to estimate the conductance, flow quantity and nodal head in 2-D conceptual linear pipe channel network. The results obtained in this study clearly show that fracture geometry parameters (orientation, density and size) play an important role in the hydraulic behavior of fractured rock masses.
Distributed and coupled 2D electro-thermal model of power semiconductor devices
NASA Astrophysics Data System (ADS)
Belkacem, Ghania; Lefebvre, Stéphane; Joubert, Pierre-Yves; Bouarroudj-Berkani, Mounira; Labrousse, Denis; Rostaing, Gilles
2014-05-01
The development of power electronics in the field of transportations (automotive, aeronautics) requires the use of power semiconductor devices providing protection and diagnostic functions. In the case of series protections power semiconductor devices which provide protection may operate in shortcircuit and act as a current limiting device. This mode of operations is very constraining due to the large dissipation of power. In these particular conditions of operation, electro-thermal models of power semiconductor devices are of key importance in order to optimize their thermal design and increase their reliability. The development of such an electro-thermal model for power MOSFET transistors based on the coupling between two computation softwares (Matlab and Cast3M) is described in this paper. The 2D electro-thermal model is able to predict (i) the temperature distribution on chip surface well as in the volume under short-circuit operations, (ii) the effect of the temperature on the distribution of the current flowing within the die and (iii) the effects of the ageing of the metallization layer on the current density and the temperature. In this paper, the electrical and thermal models are described as well as the implemented coupling scheme.
Studies of Arctic stratospheric ozone in a 2-D model including some effects of zonal asymmetries
Isaksen, I.S.A.; Rognerud, B.; Stordal, F. ); Coffey, M.T.; Mankin, W.G. )
1990-03-01
A two-dimensional (2-D) zonally averaged chemistry-transport model of the stratosphere has been extended to include some zonally asymmetric effects to study the chemically disturbed conditions in the Arctic winter during the occurrence of polar stratospheric clouds (PSCs). The model allows air parcels that have been in PSCs in the polar night to be exposed to sunlight during the passage south through a wave trough. Large enhancements of ClO are estimated as well as significant ozone reductions, most pronounced around the 20 km height level. The ozone depletions maximize in late March, about one month after the cease in PSC activity in the model, and amount to 5-8% in column ozone at 70{degree}N. In agreement with column measurements made from the DC-8, the model estimates an increase in the columns of HNO{sub 3} and ClONO{sub 2}, and a decrease in the HCl column within the polar vortex.
LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction
NASA Astrophysics Data System (ADS)
Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert
2012-10-01
The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.
Obtaining instantaneous water levels relative to a geoid with a 2D storm surge model
NASA Astrophysics Data System (ADS)
Slobbe, D. C.; Verlaan, M.; Klees, R.; Gerritsen, H.
2013-01-01
Current and new applications of 2D storm surge models such as the Dutch Continental Shelf Model (DCSM) require that the models provide proper estimates of the instantaneous water levels expressed relative to a particular geoid, rather than only the tide and surge components expressed relative to the ill-defined model's zero height surface. For DCSM, this is realized by adding the depth-averaged horizontal baroclinic pressure gradients to the model equations, which are derived from 4D salinity and temperature fields provided by the Proudman Oceanographic Laboratory hydrodynamic model (POL's hindcast). The vertical datum of the extended model is fixed to that of the European Gravimetric Geoid model 2008 (EGG08). This is done by an adjustment of the model parameters that depend on the choice of the reference surface (e.g., bathymetry) and by referring the water levels along the open boundaries to this reference surface. Using different numerical experiments we investigate the effects on the water levels of several approximations we have made during the implementation. The ability of the model to reproduce both the mean sea level (MSL) and instantaneous water levels is assessed by a comparison with the MSL derived from POL's hindcast as well as with instantaneous water levels acquired by various radar altimeter satellites. From this comparison we conclude that our modeled MSL is in good agreement with the MSL derived from POL's hindcast; the standard deviation of the differences is below 2 cm. However, larger differences in MSL are observed when comparing the model output with the MSL derived from radar altimeter data. They are attributed to either geoid errors or errors in the used salinity and temperature fields. The root mean squared (rms) differences between observed and modeled instantaneous water levels over the entire model domain varies from 9 cm for data acquired by the TOPEX satellite to 11 cm for data acquired by the GFO-1 satellite. These numbers improve to
Mathematical modeling of molecular diffusion through mucus
Cu, Yen; Saltzman, W. Mark
2008-01-01
The rate of molecular transport through the mucus gel can be an important determinant of efficacy for therapeutic agents delivered by oral, intranasal, intravaginal/rectal, and intraocular routes. Transport through mucus can be described by mathematical models based on principles of physical chemistry and known characteristics of the mucus gel, its constituents, and of the drug itself. In this paper, we review mathematical models of molecular diffusion in mucus, as well as the techniques commonly used to measure diffusion of solutes in the mucus gel, mucus gel mimics, and mucosal epithelia. PMID:19135488
A New 2D-Advection-Diffusion Model Simulating Trace Gas Distributions in the Lowermost Stratosphere
NASA Astrophysics Data System (ADS)
Hegglin, M. I.; Brunner, D.; Peter, T.; Wirth, V.; Fischer, H.; Hoor, P.
2004-12-01
Tracer distributions in the lowermost stratosphere are affected by both, transport (advective and non-advective) and in situ sources and sinks. They influence ozone photochemistry, radiative forcing, and heating budgets. In-situ measurements of long-lived species during eight measurement campaigns revealed relatively simple behavior of the tracers in the lowermost stratosphere when represented in an equivalent-latitude versus potential temperature framework. We here present a new 2D-advection-diffusion model that simulates the main transport pathways influencing the tracer distributions in the lowermost stratosphere. The model includes slow diabatic descent of aged stratospheric air and vertical and/or horizontal diffusion across the tropopause and within the lowermost stratosphere. The diffusion coefficients used in the model represent the combined effects of different processes with the potential of mixing tropospheric air into the lowermost stratosphere such as breaking Rossby and gravity waves, deep convection penetrating the tropopause, turbulent diffusion, radiatively driven upwelling etc. They were specified by matching model simulations to observed distributions of long-lived trace gases such as CO and N2O obtained during the project SPURT. The seasonally conducted campaigns allow us to study the seasonal dependency of the diffusion coefficients. Despite its simplicity the model yields a surprisingly good description of the small scale features of the measurements and in particular of the observed tracer gradients at the tropopause. The correlation coefficients between modeled and measured trace gas distributions were up to 0.95. Moreover, mixing across isentropes appears to be more important than mixing across surfaces of constant equivalent latitude (or PV). With the aid of the model, the distribution of the fraction of tropospheric air in the lowermost stratosphere can be determined.
Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.
Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans
2009-11-01
We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna. PMID:19880733
Comparing a 2D fluid model of the DC planar magnetron cathode to experiments
Garcia, M.
1996-05-01
Planar magnetron cathodes have arching magnetic field lines which concentrate plasma density near the electrode surface. This enhances the ion bombardment of the surface and the yield of sputtered atoms. Magnetron cathodes are used in the Plasma Electrode Pockels Cell (PEPC) devices of the Laser Program because they provide for significantly higher conduction than do glow discharges. An essential feature of magnetron cathodes is that the vector product of the perpendicular electric field, E[sub y], with the parallel component of the magnetic field, B[sub x], forms a closed track with a circulating current along the cathode surface. An analytical, 2D, two component, quasi-neutral, continuum model yields formulas for the plasma density, the total and component current densities, the electric field, and the positive electrical potential, between the cathode surface and a distant, uniform plasma. For a specific gas, the free parameters are electron temperature, gas number density, and total current. The model is applied to the interpretation of experimental data from the PEPC device, as well as a small vacuum facility for testing magnetron cathodes. Finally, the model has been applied to generate cross sectional views of a PEPC magnetron cathode track.
Doubled CO2 Effects on NO(y) in a Coupled 2D Model
NASA Technical Reports Server (NTRS)
Rosenfield, J. E.; Douglass, A. R.
1998-01-01
Changes in temperature and ozone have been the main focus of studies of the stratospheric impact of doubled CO2. Increased CO2 is expected to cool the stratosphere, which will result in increases in stratospheric ozone through temperature dependent loss rates. Less attention has been paid to changes in minor constituents which affect the O3 balance and which may provide additional feedbacks. Stratospheric NO(y) fields calculated using the GSFC 2D interactive chemistry-radiation-dynamics model show significant sensitivity to the model CO2. Modeled upper stratospheric NO(y) decreases by about 15% in response to CO2 doubling, mainly due to the temperature decrease calculated to result from increased cooling. The abundance of atomic nitrogen, N, increases because the rate of the strongly temperature dependent reaction N + O2 yields NO + O decreases at lower temperatures. Increased N leads to an increase in the loss of NO(y) which is controlled by the reaction N + NO yields N2 + O. The NO(y) reduction is shown to be sensitive to the NO photolysis rate. The decrease in the O3 loss rate due to the NO(y) changes is significant when compared to the decrease in the O3 loss rate due to the temperature changes.
Simulation of abrasive flow machining process for 2D and 3D mixture models
NASA Astrophysics Data System (ADS)
Dash, Rupalika; Maity, Kalipada
2015-12-01
Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a
Complex 2D matrix model and geometrical map on the complex-Nc plane
NASA Astrophysics Data System (ADS)
Nawa, Kanabu; Ozaki, Sho; Nagahiro, Hideko; Jido, Daisuke; Hosaka, Atsushi
2013-08-01
We study the parameter dependence of the internal structure of resonance states by formulating a complex two-dimensional (2D) matrix model, where the two dimensions represent two levels of resonances. We calculate a critical value of the parameter at which a "nature transition" with character exchange occurs between two resonance states, from the viewpoint of geometry on complex-parameter space. Such a critical value is useful for identifying the internal structure of resonance states with variation of the parameter in the system. We apply the model to analyze the internal structure of hadrons with variation of the color number N_c from infty to a realistic value 3. By regarding 1/N_c as the variable parameter in our model, we calculate a critical color number of the nature transition between hadronic states in terms of a quark-antiquark pair and a mesonic molecule as exotics from the geometry on the complex-N_c plane. For large-N_c effective theory, we employ the chiral Lagrangian induced by holographic QCD with a D4/D8/overline {D8} multi-D brane system in type IIA superstring theory.
Field-induced magnetization jumps and quantum criticality in the 2D J-Q model
NASA Astrophysics Data System (ADS)
Iaizzi, Adam; Sandvik, Anders
The J-Q model is a `designer hamiltonian' formed by adding a four spin `Q' term to the standard antiferromagnetic S = 1 / 2 Heisenberg model. The Q term drives a quantum phase transition to a valence-bond solid (VBS) state: a non-magnetic state with a pattern of local singlets which breaks lattice symmetries. The elementary excitations of the VBS are triplons, i.e. gapped S=1 quasiparticles. There is considerable interest in the quantum phase transition between the Néel and VBS states as an example of deconfined quantum criticality. Near the phase boundary, triplons deconfine into pairs of bosonic spin-1/2 excitations known as spinons. Using exact diagonalization and the stochastic series expansion quantum monte carlo method, we study the 2D J-Q model in the presence of an external magnetic field. We use the field to force a nonzero density of magnetic excitations at T=0 and look for signatures of Bose-Einstein condensation of spinons. At higher magnetic fields, there is a jump in the induced magnetization caused by the onset of an effective attractive interaction between magnons on a ferromagnetic background. We characterize the first order quantum phase transition and determine the minimum value of the coupling ratio q ≡ Q / J required to produce this jump. Funded by NSF DMR-1410126.
2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement
Anber, Mohamed M.; Poppitz, Erich; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.
2012-08-16
We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.
Prominence fine-structure dynamics as inferred from 2D non-LTE models
NASA Astrophysics Data System (ADS)
Gunar, Stanislav; Schmieder, Brigitte; Mein, Pierre; Heinzel, Petr
2012-07-01
2D multi-thread prominence fine structure models are able to produce synthetic Lyman spectra in very good agreement with spectral observations by SOHO/SUMER including the spectral line asymmetries. The synthetic differential emission measure curves derived from these models are also in a good agreement with observations. Now we show that these models are also able to produce synthetic H-alpha line profiles in very good agreement with observations which allows us to analyze not only the physical parameters of the prominence fine-structure plasma but also some aspects of its dynamical behaviour. We compare the synthetic H-alpha spectra with the observed spectra of the April 26, 2007 prominence using three statistical parameters: the line integrated intensity, the line full-width at the half-maximum (FWHM), and the Doppler velocity derived from shifts of the line profiles. This statistical analysis allows us to conclude that the overall statistical distribution of the LOS velocities in the April 26, 2007 prominence at the time of the observations was below +/-15 km/s and in the prominence core was close to +/-10 km/s. In combination with the analysis of the Lyman spectra we determine several physical parameters of the observed prominence fine structures which show that the April 26, 2007 prominence was relatively less massive. We are also able to put some constrains on the prominence core temperature that might be relatively low, reaching values below 6000 K.
Primary School Pre-Service Mathematics Teachers' Views on Mathematical Modeling
ERIC Educational Resources Information Center
Karali, Diren; Durmus, Soner
2015-01-01
The current study aimed to identify the views of pre-service teachers, who attended a primary school mathematics teaching department but did not take mathematical modeling courses. The mathematical modeling activity used by the pre-service teachers was developed with regards to the modeling activities utilized by Lesh and Doerr (2003) in their…
Automatic 3D high-fidelity traffic interchange modeling using 2D road GIS data
NASA Astrophysics Data System (ADS)
Wang, Jie; Shen, Yuzhong
2011-03-01
3D road models are widely used in many computer applications such as racing games and driving simulations. However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially for those existing in the real world. Real road network contains various elements such as road segments, road intersections and traffic interchanges. Among them, traffic interchanges present the most challenges to model due to their complexity and the lack of height information (vertical position) of traffic interchanges in existing road GIS data. This paper proposes a novel approach that can automatically produce 3D high-fidelity road network models, including traffic interchange models, from real 2D road GIS data that mainly contain road centerline information. The proposed method consists of several steps. The raw road GIS data are first preprocessed to extract road network topology, merge redundant links, and classify road types. Then overlapped points in the interchanges are detected and their elevations are determined based on a set of level estimation rules. Parametric representations of the road centerlines are then generated through link segmentation and fitting, and they have the advantages of arbitrary levels of detail with reduced memory usage. Finally a set of civil engineering rules for road design (e.g., cross slope, superelevation) are selected and used to generate realistic road surfaces. In addition to traffic interchange modeling, the proposed method also applies to other more general road elements. Preliminary results show that the proposed method is highly effective and useful in many applications.
Govind Rajan, Ananth; Warner, Jamie H; Blankschtein, Daniel; Strano, Michael S
2016-04-26
Transition metal dichalcogenides (TMDs) like molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are layered materials capable of growth to one monolayer thickness via chemical vapor deposition (CVD). Such CVD methods, while powerful, are notoriously difficult to extend across different reactor types and conditions, with subtle variations often confounding reproducibility, particularly for 2D TMD growth. In this work, we formulate the first generalized TMD synthetic theory by constructing a thermodynamic and kinetic growth mechanism linked to CVD reactor parameters that is predictive of specific geometric shape, size, and aspect ratio from triangular to hexagonal growth, depending on specific CVD reactor conditions. We validate our model using experimental data from Wang et al. (Chem. Mater. 2014, 26, 6371-6379) that demonstrate the systemic evolution of MoS2 morphology down the length of a flow CVD reactor where variations in gas phase concentrations can be accurately estimated using a transport model (CSulfur = 9-965 μmol/m(3); CMoO3 = 15-16 mmol/m(3)) under otherwise isothermal conditions (700 °C). A stochastic model which utilizes a site-dependent activation energy barrier based on the intrinsic TMD bond energies and a series of Evans-Polanyi relations leads to remarkable, quantitative agreement with both shape and size evolution along the reactor. The model is shown to extend to the growth of WS2 at 800 °C and MoS2 under varied process conditions. Finally, a simplified theory is developed to translate the model into a "kinetic phase diagram" of the growth process. The predictive capability of this model and its extension to other TMD systems promise to significantly increase the controlled synthesis of such materials. PMID:26937889
2D dynamical magma propagation modeling: application to the 2001 Mount Etna eruption
NASA Astrophysics Data System (ADS)
Pinel, Virginie; Carrara, Alexandre; Maccaferri, Francesco; Rivalta, Eleonora; Corbi, Fabio
2016-04-01
Numerical and analog studies of dike propagation in a stress field induced by volcanic edifice construction have shown that surface loading tends both to attract the magma and to reduce its velocity. Available numerical models can either calculate the trajectory or the velocity of the ascending dikes, but not both of them simultaneously. We developed a hybrid model of dyke propagation in two dimensions solving both for the magma trajectory and velocity as a function of the source overpressure, the magma physical properties (density and viscosity) as well as the crustal density and stress field. We first calculate a dyke trajectory in 2D and secondly run a 1D dynamical model of dyke propagation along this trajectory taken into account the influence of the stress field seen by the magma along this path. This model is used to characterize the influence of surface load on magma migration towards the surface and compared to previous results obtained by analog modeling.We find that the amplitude of dyke deflection and magma velocity variation depend on the ratio between the dyke driving pressure (source overpressure as well buoyancy) and the stress field perturbation. Our model is then applied to the July 2001 eruption of Etna, where the final dyke deflection had been previously interpreted as due to the topographic load by Bonaccorso et al. [2010]. We show that the velocity decrease observed during the last stage of the propagation can also be attributed to the local stress field. We use the dyke propagation duration to estimate the magma overpressure at the dyke bottom to be less than 4 MPa.
Wu, Chao; Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming
2009-01-01
Harmaline is a β-carboline alkaloid showing neuroprotective and neurotoxic properties. Our recent studies have revealed an important role for cytochrome P450 2D6 (CYP2D6) in harmaline O-demethylation. This study, therefore, aimed to delineate the effects of CYP2D6 phenotype/genotype on harmaline metabolism, pharmacokinetics (PK) and pharmacodynamics (PD), and to develop a pharmacogenetics mechanism-based compartmental PK model. In vitro kinetic studies on metabolite formation in human CYP2D6 extensive metabolizer (EM) and poor metabolizer (PM) hepatocytes indicated that harmaline O-demethylase activity (Vmax/Km) was about 9-fold higher in EM hepatocytes. Substrate depletion showed mono-exponential decay trait, and estimated in vitro harmaline clearance (CLint, μL/min/106 cells) was significantly lower in PM hepatocytes (28.5) than EM hepatocytes (71.1). In vivo studies in CYP2D6-humanized and wild-type mouse models showed that wild-type mice were subjected to higher and longer exposure to harmaline (5 and 15 mg/kg; i.v. and i.p.), and more severe hypothermic responses. The PK/PD data were nicely described by our pharmacogenetics-based PK model involving the clearance of drug by CYP2D6 (CLCYP2D6) and other mechanisms (CLother), and an indirect response PD model, respectively. Wild-type mice were also more sensitive to harmaline in marble-burying tests, as manifested by significantly lower ED50 and steeper Hill slope. These findings suggest that distinct CYP2D6 status may cause considerable variations in harmaline metabolism, PK and PD. In addition, the pharmacogenetics-based PK model may be extended to define PK difference caused by other polymorphic drug-metabolizing enzyme in different populations. PMID:19445902
The (Mathematical) Modeling Process in Biosciences
Torres, Nestor V.; Santos, Guido
2015-01-01
In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology. PMID:26734063
MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes
NASA Astrophysics Data System (ADS)
Aricò, C.; Sinagra, M.; Begnudelli, L.; Tucciarelli, T.
2011-11-01
A new methodology for the solution of the 2D diffusive shallow water equations over Delaunay unstructured triangular meshes is presented. Before developing the new algorithm, the following question is addressed: it is worth developing and using a simplified shallow water model, when well established algorithms for the solution of the complete one do exist? The governing Partial Differential Equations are discretized using a procedure similar to the linear conforming Finite Element Galerkin scheme, with a different flux formulation and a special flux treatment that requires Delaunay triangulation but entire solution monotonicity. A simple mesh adjustment is suggested, that attains the Delaunay condition for all the triangle sides without changing the original nodes location and also maintains the internal boundaries. The original governing system is solved applying a fractional time step procedure, that solves consecutively a convective prediction system and a diffusive correction system. The non linear components of the problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system of the order of the number of computational cells. A semi-analytical procedure is applied for the solution of the prediction step. The discretized formulation of the governing equations allows to handle also wetting and drying processes without any additional specific treatment. Local energy dissipations, mainly the effect of vertical walls and hydraulic jumps, can be easily included in the model. Several numerical experiments have been carried out in order to test (1) the stability of the proposed model with regard to the size of the Courant number and to the mesh irregularity, (2) its computational performance, (3) the convergence order by means of mesh refinement. The model results are also compared with the results obtained by a fully dynamic model. Finally, the application to a real field case with a Venturi channel is presented.
Basic Brackets of a 2D Model for the Hodge Theory Without its Canonical Conjugate Momenta
NASA Astrophysics Data System (ADS)
Kumar, R.; Gupta, S.; Malik, R. P.
2016-06-01
We deduce the canonical brackets for a two (1+1)-dimensional (2D) free Abelian 1-form gauge theory by exploiting the beauty and strength of the continuous symmetries of a Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian density that respects, in totality, six continuous symmetries. These symmetries entail upon this model to become a field theoretic example of Hodge theory. Taken together, these symmetries enforce the existence of exactly the same canonical brackets amongst the creation and annihilation operators that are found to exist within the standard canonical quantization scheme. These creation and annihilation operators appear in the normal mode expansion of the basic fields of this theory. In other words, we provide an alternative to the canonical method of quantization for our present model of Hodge theory where the continuous internal symmetries play a decisive role. We conjecture that our method of quantization is valid for a class of field theories that are tractable physical examples for the Hodge theory. This statement is true in any arbitrary dimension of spacetime.
Learning structured models for segmentation of 2-D and 3-D imagery.
Lucchi, Aurelien; Marquez-Neila, Pablo; Becker, Carlos; Li, Yunpeng; Smith, Kevin; Knott, Graham; Fua, Pascal
2015-05-01
Efficient and accurate segmentation of cellular structures in microscopic data is an essential task in medical imaging. Many state-of-the-art approaches to image segmentation use structured models whose parameters must be carefully chosen for optimal performance. A popular choice is to learn them using a large-margin framework and more specifically structured support vector machines (SSVM). Although SSVMs are appealing, they suffer from certain limitations. First, they are restricted in practice to linear kernels because the more powerful nonlinear kernels cause the learning to become prohibitively expensive. Second, they require iteratively finding the most violated constraints, which is often intractable for the loopy graphical models used in image segmentation. This requires approximation that can lead to reduced quality of learning. In this paper, we propose three novel techniques to overcome these limitations. We first introduce a method to "kernelize" the features so that a linear SSVM framework can leverage the power of nonlinear kernels without incurring much additional computational cost. Moreover, we employ a working set of constraints to increase the reliability of approximate subgradient methods and introduce a new way to select a suitable step size at each iteration. We demonstrate the strength of our approach on both 2-D and 3-D electron microscopic (EM) image data and show consistent performance improvement over state-of-the-art approaches. PMID:25438309
T-duality without isometry via extended gauge symmetries of 2D sigma models
NASA Astrophysics Data System (ADS)
Chatzistavrakidis, Athanasios; Deser, Andreas; Jonke, Larisa
2016-01-01
Target space duality is one of the most profound properties of string theory. However it customarily requires that the background fields satisfy certain invariance conditions in order to perform it consistently; for instance the vector fields along the directions that T-duality is performed have to generate isometries. In the present paper we examine in detail the possibility to perform T-duality along non-isometric directions. In particular, based on a recent work of Kotov and Strobl, we study gauged 2D sigma models where gauge invariance for an extended set of gauge transformations imposes weaker constraints than in the standard case, notably the corresponding vector fields are not Killing. This formulation enables us to follow a procedure analogous to the derivation of the Buscher rules and obtain two dual models, by integrating out once the Lagrange multipliers and once the gauge fields. We show that this construction indeed works in non-trivial cases by examining an explicit class of examples based on step 2 nilmanifolds.
A computational model of the short-cut rule for 2D shape decomposition.
Luo, Lei; Shen, Chunhua; Liu, Xinwang; Zhang, Chunyuan
2015-01-01
We propose a new 2D shape decomposition method based on the short-cut rule. The short-cut rule originates from cognition research, and states that the human visual system prefers to partition an object into parts using the shortest possible cuts. We propose and implement a computational model for the short-cut rule and apply it to the problem of shape decomposition. The model we proposed generates a set of cut hypotheses passing through the points on the silhouette, which represent the negative minima of curvature. We then show that most part-cut hypotheses can be eliminated by analysis of local properties of each. Finally, the remaining hypotheses are evaluated in ascending length order, which guarantees that of any pair of conflicting cuts only the shortest will be accepted. We demonstrate that, compared with state-of-the-art shape decomposition methods, the proposed approach achieves decomposition results, which better correspond to human intuition as revealed in psychological experiments. PMID:25438318
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
NASA Astrophysics Data System (ADS)
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
NASA Astrophysics Data System (ADS)
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-05-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite-differences to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P, slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High order explicit finite-differences (FD) can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
2D stochastic-integral models for characterizing random grain noise in titanium alloys
Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Cherry, Matthew; Pilchak, Adam; Knopp, Jeremy S.; Blodgett, Mark P.
2014-02-18
We extend our previous work, in which we applied high-dimensional model representation (HDMR) and analysis of variance (ANOVA) concepts to the characterization of a metallic surface that has undergone a shot-peening treatment to reduce residual stresses, and has, therefore, become a random conductivity field. That example was treated as a onedimensional problem, because those were the only data available. In this study, we develop a more rigorous two-dimensional model for characterizing random, anisotropic grain noise in titanium alloys. Such a model is necessary if we are to accurately capture the 'clumping' of crystallites into long chains that appear during the processing of the metal into a finished product. The mathematical model starts with an application of the Karhunen-Loève (K-L) expansion for the random Euler angles, θ and φ, that characterize the orientation of each crystallite in the sample. The random orientation of each crystallite then defines the stochastic nature of the electrical conductivity tensor of the metal. We study two possible covariances, Gaussian and double-exponential, which are the kernel of the K-L integral equation, and find that the double-exponential appears to satisfy measurements more closely of the two. Results based on data from a Ti-7Al sample will be given, and further applications of HDMR and ANOVA will be discussed.
Mathematical model of self-cycling fermentation
Wincure, B.M.; Cooper, D.G.; Rey, A.
1995-04-20
This article presents a mathematical model for biomass, limiting substrate, and dissolved oxygen concentrations during stable operation of self-cycling fermentation (SCF). Laboratory experiments using the bacterium Acinetobacter calcoaceticus RAG-1 and ethanol as the limiting substrate were performed to validate the model. A computer simulation developed from the model successfully matched experimental SCF intracycle trends and end-of-cycle results and, most importantly, settled into an unimposed periodicity characteristic of stable SCF operation.
Two Mathematical Models of Nonlinear Vibrations
NASA Technical Reports Server (NTRS)
Brugarolas, Paul; Bayard, David; Spanos, John; Breckenridge, William
2007-01-01
Two innovative mathematical models of nonlinear vibrations, and methods of applying them, have been conceived as byproducts of an effort to develop a Kalman filter for highly precise estimation of bending motions of a large truss structure deployed in outer space from a space-shuttle payload bay. These models are also applicable to modeling and analysis of vibrations in other engineering disciplines, on Earth as well as in outer space.
Hydraulic Modeling of Alluvial Fans along the Truckee Canal using the 2-Dimensional Model SRH2D
NASA Astrophysics Data System (ADS)
Wright, J.; Kallio, R.; Sankovich, V.
2013-12-01
Alluvial fans are gently sloping, fan-shaped landforms created by sediment deposition at the ends of mountain valleys. Their gentle slopes and scenic vistas are attractive to developers. Unfortunately, alluvial fans are highly flood-prone, and the flow paths of flood events are highly variable, thereby placing human developments at risk. Many studies have been performed on alluvial fans in the arid west because of the uncertainty of their flow paths and flood extents. Most of these studies have been focused on flood elevations and mitigation. This study is not focused on the flood elevations. Rather, it is focused on the attenuation effects of alluvial fans on floods entering and potentially failing a Reclamation canal. The Truckee Canal diverts water from the Truckee River to Lahontan Reservoir. The drainage areas along the canal are alluvial fans with complex distributary channel networks . Ideally, in nature, the sediment grain-size distribution along the alluvial fan flow paths would provide enough infiltration and subsurface storage to attenuate floods entering the canal and reduce risk to low levels. Human development, however, can prevent the natural losses from occurring due to concentrated flows within the alluvial fan. While the concentrated flows might mitigate flood risk inside the fan, they do not lower the flood risk of the canal. A 2-dimensional hydraulic model, SRH-2D, was coupled to a 1-dimensional rainfall-runoff model to estimate the flood attenuation effects of the alluvial fan network surrounding an 11 mile stretch of the Truckee Canal near Fernley, Nevada. Floods having annual exceedance probabilities ranging from 1/10 to 1/100 were computed and analyzed. SRH-2D uses a zonal approach for modeling river systems, allowing areas to be divided into separate zones based on physical parameters such as surface roughness and infiltration. One of the major features of SRH-2D is the adoption of an unstructured hybrid mixed element mesh, which is based
Establishing an Explanatory Model for Mathematics Identity
ERIC Educational Resources Information Center
Cribbs, Jennifer D.; Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M.
2015-01-01
This article empirically tests a previously developed theoretical framework for mathematics identity based on students' beliefs. The study employs data from more than 9,000 college calculus students across the United States to build a robust structural equation model. While it is generally thought that students' beliefs about their own competence…
Mathematical Model Of Nerve/Muscle Interaction
NASA Technical Reports Server (NTRS)
Hannaford, Blake
1990-01-01
Phasic Excitation/Activation (PEA) mathematical model simulates short-term nonlinear dynamics of activation and control of muscle by nerve. Includes electronic and mechanical elements. Is homeomorphic at level of its three major building blocks, which represent motoneuron, dynamics of activation of muscle, and mechanics of muscle.
Mathematical and physical modelling of materials processing
NASA Technical Reports Server (NTRS)
1982-01-01
Mathematical and physical modeling of turbulence phenomena in metals processing, electromagnetically driven flows in materials processing, gas-solid reactions, rapid solidification processes, the electroslag casting process, the role of cathodic depolarizers in the corrosion of aluminum in sea water, and predicting viscoelastic flows are described.
Identification of the noise using mathematical modelling
NASA Astrophysics Data System (ADS)
Dobeš, Josef; Kozubková, Milada; Mahdal, Miroslav
2016-03-01
In engineering applications the noisiness of a component or the whole device is a common problem. Currently, a lot of effort is put to eliminate noise of the already produced devices, to prevent generation of acoustic waves during the design of new components, or to specify the operating problems based on noisiness change. The experimental method and the mathematical modelling method belong to these identification methods. With the power of today's computers the ability to identify the sources of the noise on the mathematical modelling level is a very appreciated tool for engineers. For example, the noise itself may be generated by the vibration of the solid object, combustion, shock, fluid flow around an object or cavitation at the fluid flow in an object. For the given task generating the noise using fluid flow on the selected geometry and propagation of the acoustic waves and their subsequent identification are solved and evaluated. In this paper the principle of measurement of variables describing the fluid flow field and acoustic field are described. For the solution of fluid flow a mathematical model implemented into the CFD code is used. The mathematical modelling evaluation of the flow field is compared to the experimental data.
Introduction to mathematical models and methods
Siddiqi, A. H.; Manchanda, P.
2012-07-17
Some well known mathematical models in the form of partial differential equations representing real world systems are introduced along with fundamental concepts of Image Processing. Notions such as seismic texture, seismic attributes, core data, well logging, seismic tomography and reservoirs simulation are discussed.
Mathematical Modeling of Loop Heat Pipes
NASA Technical Reports Server (NTRS)
Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.
1998-01-01
The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.
Some mathematical tools for a modeller's workbench
NASA Technical Reports Server (NTRS)
Cohen, E.
1984-01-01
The development of a mathematical software tools in workbench environment to model related objects more straightforward is outlined. A computer model from informal drawings and a plastic model of a helicopter is discussed. Lofting was the predominant, characteristic modelling technique. Ships and airplane designs use lofting as a technique because they have defined surfaces, (hulls and fuselages) from vertical station cuts perpendicular to the vertical center plane defining the major axis of reflective symmetry. A turbine blade from a jet engine was modelled in this way. The aerodynamic portion and the root comes from different paradigms. The union of these two parts into a coherent model is shown.
Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison
NASA Astrophysics Data System (ADS)
Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe
2015-04-01
The study of volcanic domes growth (e.g. St. Helens, Unzen, Montserrat) shows that it is often characterized by a succession of extrusion phases, dome explosions and collapse events. Lava dome eruptive activity may last from days to decades. Therefore, their internal structure, at the end of the eruption, is complex and includes massive extrusions and lava lobes, talus and pyroclastic deposits as well as hydrothermal alteration. The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for volcano structure imaging. Because a large range of resistivity values is often observed in volcanic environments, the method is well suited to study the internal structure of volcanic edifices. We performed an ERT survey on an 11ka years old trachytic lava dome, the Puy de Dôme volcano (French Massif Central). The analysis of a recent high resolution DEM (LiDAR 0.5 m), as well as other geophysical data, strongly suggest that the Puy de Dôme is a composite dome. 11 ERT profiles have been carried out, both at the scale of the entire dome (base diameter of ~2 km and height of 400 m) on the one hand, and at a smaller scale on the summit part on the other hand. Each profile is composed of 64 electrodes. Three different electrode spacing have been used depending on the study area (35 m for the entire dome, 10 m and 5 m for its summit part). Some profiles were performed with half-length roll-along acquisitions, in order to keep a good trade-off between depth of investigation and resolution. Both Wenner-alpha and Wenner-Schlumberger protocols were used. 2-D models of the electrical resistivity distribution were computed using RES2DINV software. In order to constrain inversion models interpretation, the depth of investigation (DOI) method was applied to those results. It aims to compute a sensitivity index on inversion results, illustrating how the data influence the model and constraining models
Water cycling beneath subduction zones in 2D and 3D numerical models (Invited)
NASA Astrophysics Data System (ADS)
Rupke, L.; Iyer, K. H.; Hasenclever, J.; Morgan, J.
2013-12-01
Tracing the cycling of fluids and volatiles through subduction zones continues to be a challenging task with budgets still having large error bars attached to them. In this contribution we show how numerical models can help to integrate various geological, geophysical, and geochemical datasets and how they can be used to put better bounds on the likely amounts of water being subducted, released into the arc and back-arc melting regions, and recycled to the deeper mantle. To achieve this task we use a suite of numerical models. Bending related faulting and hydration of the incoming lithosphere is resolved using a reactive flow model that solves for crustal scale fluid flow and mantle serpentinization using reaction kinetics. Seismic tomography studies from offshore Chile and Central America are used to evaluate and constrain the effective reaction rate. These rates are then used to assess the contribution of serpentinization to the water budget at subduction zones. The pattern of hydration is controlled by the reaction kinetics and serpentinization is most intense around the 270°C isotherm. The depth of this isotherm correlates well with the dominant spacing of double seismic zones observed globally. Comparison of the results with heat flow data suggests that observed seafloor temperature gradients in the bend-fault region are too low to be caused by ';one-pass' downward water flow into the serpentinizing lithosphere, but rather suggest that bend-faults are areas of active hydrothermal circulation. This implies that serpentine-sourced vents and chemosynthetic vent communities should be found in this deep-sea environment as well. Dehydration reactions are resolved with a 2D kinematic subduction zone model that computes the temperature field and the likely locations and volumes of slab fluid release due to metamorphic dehydration reactions. Here we find that up to 1/3 of the subducted water may be transported into the deeper mantle for the coldest subduction zones
Mathematical challenges in glacier modeling (Invited)
NASA Astrophysics Data System (ADS)
jouvet, G.
2013-12-01
Many of Earth's glaciers are currently shrinking and it is expected that this trend will continue as global warming progresses. To virtually reproduce the evolution of glaciers and finally to predict their future, one needs to couple models of different disciplines and scales. Indeed, the slow motion of ice is described by fluid mechanics equations while the daily snow precipitations and melting are described by hydrological and climatic models. Less visible, applied mathematics are essential to run such a coupling at two different levels: by solving numerically the underlying equations and by seeking parameters using optimisation methods. This talk aims to make visible the role of mathematics in this area. I will first present a short educational film I have made for the "Mathematics of Planet Earth 2013", which is an introduction to the topic. To go further, solving the mechanical model of ice poses several mathematical challenges due to the complexity of the equations and geometries of glaciers. Then, I will describe some strategies to deal with such difficulties and design robust simulation tools. Finally, I will present some simulations of the largest glacier of the European Alps, the Aletsch glacier. As a less unexpected application, I will show how these results allowed us to make a major advance in a police investigation started in 1926.
ERIC Educational Resources Information Center
Bukova-Guzel, Esra
2011-01-01
This study examines the approaches displayed by pre-service mathematics teachers in their experiences of constructing mathematical modelling problems and the extent to which they perform the modelling process when solving the problems they construct. This case study was carried out with 35 pre-service teachers taking the Mathematical Modelling…
Determining the Views of Mathematics Student Teachers Related to Mathematical Modelling
ERIC Educational Resources Information Center
Tekin, Ayse; Kula, Semiha; Hidiroglu, Caglar Naci; Bukova-Guzel, Esra; Ugurel, Isikhan
2012-01-01
The purpose of this qualitative research is to examine the views of 21 secondary mathematics student teachers attending Mathematical Modelling Course regarding mathematical modelling in a state university in Turkey; reasons why they chose this course and their expectations from the course in question. For this reason, three open-ended questions…
Modeling of two-storey precast school building using Ruaumoko 2D program
Hamid, N. H.; Tarmizi, L. H.; Ghani, K. D.
2015-05-15
The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm.
NASA Astrophysics Data System (ADS)
Straatsma, Menno; Huthoff, Fredrik
2011-01-01
In The Netherlands, 2D-hydrodynamic simulations are used to evaluate the effect of potential safety measures against river floods. In the investigated scenarios, the floodplains are completely inundated, thus requiring realistic representations of hydraulic roughness of floodplain vegetation. The current study aims at providing better insight into the uncertainty of flood water levels due to uncertain floodplain roughness parameterization. The study focuses on three key elements in the uncertainty of floodplain roughness: (1) classification error of the landcover map, (2), within class variation of vegetation structural characteristics, and (3) mapping scale. To assess the effect of the first error source, new realizations of ecotope maps were made based on the current floodplain ecotope map and an error matrix of the classification. For the second error source, field measurements of vegetation structure were used to obtain uncertainty ranges for each vegetation structural type. The scale error was investigated by reassigning roughness codes on a smaller spatial scale. It is shown that classification accuracy of 69% leads to an uncertainty range of predicted water levels in the order of decimeters. The other error sources are less relevant. The quantification of the uncertainty in water levels can help to make better decisions on suitable flood protection measures. Moreover, the relation between uncertain floodplain roughness and the error bands in water levels may serve as a guideline for the desired accuracy of floodplain characteristics in hydrodynamic models.
Modeling of two-storey precast school building using Ruaumoko 2D program
NASA Astrophysics Data System (ADS)
Hamid, N. H.; Tarmizi, L. H.; Ghani, K. D.
2015-05-01
The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm.
Modelling 2001 lahars at Popocatépetl volcano using FLO2D numerical code
NASA Astrophysics Data System (ADS)
Caballero, L.; Capra, L.
2013-12-01
Popocatépetl volcano is located on the central part of the Transmexican Volcanic Belt. It is one of the most active volcanoes in Mexico and endanger more than 25 million people that lives in its surroundings. In the last months, the renewal of its volcanic activity put into alert scientific community. One of the possible scenarios is the 2001 explosive activity, which was characterized by a 8 km eruptive column and the subsequent formation of pumice flows up to 4 km from the crater. Lahars were generated few hours after, remobilizing the new deposits towards NE flank of the volcano, along Huiloac Gorge, almost reaching Santiago Xalitzintla town (Capra et al., 2004). The occurrence of a similar scenario makes very important to reproduce this event to delimitate accurately lahar hazard zones. In this work, 2001 lahar deposit is modeled using FLO2D numerical code. Geophone data is used to reconstruct initial hydrograph and sediment concentration. Sensitivity study of most important parameters used by this code like Manning, and α and β coefficients was conducted in order to achieve a good simulation. Results obtained were compared with field data and demonstrated a good agreement in thickness and flow distribution. A comparison with previously published data with laharZ program (Muñoz-Salinas, 2009) is also made. Additionally, lahars with fluctuating sediment concentrations but with similar volume are simulated to observe the influence of the rheological behavior on lahar distribution.
Spot size variation FCS in simulations of the 2D Ising model
NASA Astrophysics Data System (ADS)
Burns, Margaret C.; Nouri, Mariam; Veatch, Sarah L.
2016-06-01
Spot variation fluorescence correlation spectroscopy (svFCS) was developed to study the movement and organization of single molecules in plasma membranes. This experimental technique varies the size of an illumination area while measuring correlations in time using standard fluorescence correlation methods. Frequently, this data is interpreted using the assumption that correlation measurements reflect the dynamics of single molecule motions, and not motions of the average composition. Here, we explore how svFCS measurements report on the dynamics of components diffusing within simulations of a 2D Ising model with a conserved order parameter. Simulated correlation functions report on both the fast dynamics of single component mobility and the slower dynamics of the average composition. Over a range of simulation conditions, a conventional svFCS analysis suggests the presence of anomalous diffusion even though single molecule motions are nearly Brownian in these simulations. This misinterpretation is most significant when the surface density of the fluorescent label is elevated, therefore we suggest future measurements be made over a range of tracer densities. Some simulation conditions reproduce qualitative features of published svFCS experimental data. Overall, this work emphasizes the need to probe membranes using multiple complimentary experimental methodologies in order to draw conclusions regarding the nature of spatial and dynamical heterogeneity in these systems.
GPU computing with OpenCL to model 2D elastic wave propagation: exploring memory usage
NASA Astrophysics Data System (ADS)
Iturrarán-Viveros, Ursula; Molero-Armenta, Miguel
2015-01-01
Graphics processing units (GPUs) have become increasingly powerful in recent years. Programs exploring the advantages of this architecture could achieve large performance gains and this is the aim of new initiatives in high performance computing. The objective of this work is to develop an efficient tool to model 2D elastic wave propagation on parallel computing devices. To this end, we implement the elastodynamic finite integration technique, using the industry open standard open computing language (OpenCL) for cross-platform, parallel programming of modern processors, and an open-source toolkit called [Py]OpenCL. The code written with [Py]OpenCL can run on a wide variety of platforms; it can be used on AMD or NVIDIA GPUs as well as classical multicore CPUs, adapting to the underlying architecture. Our main contribution is its implementation with local and global memory and the performance analysis using five different computing devices (including Kepler, one of the fastest and most efficient high performance computing technologies) with various operating systems.
2D and 3D multipactor modeling in dielectric-loaded accelerator structures
NASA Astrophysics Data System (ADS)
Sinitsyn, Oleksandr; Nusinovich, Gregory; Antonsen, Thomas
2010-11-01
Multipactor (MP) is known as the avalanche growth of the number of secondary electrons emitted from a solid surface exposed to an RF electric field under vacuum conditions. MP is a severe problem in modern rf systems and, therefore, theoretical and experimental studies of MP are of great interest to the researchers working in various areas of physics and engineering. In this work we present results of MP studies in dielectric-loaded accelerator (DLA) structures. First, we show simulation results obtained with the use of the 2D self-consistent MP model (O. V. Sinitsyn, et. al., Phys. Plasmas, vol. 16, 073102 (2009)) and compare those to experimental ones obtained during recent extensive studies of DLA structures performed by Argonne National Laboratory, Naval Research Laboratory, SLAC National Accelerator Laboratory and Euclid TechLabs (C. Jing, et al., IEEE Trans. Plasma Sci., vol. 38, pp. 1354-1360 (2010)). Then we present some new results of 3D analysis of MP which include studies of particle trajectories and studies of MP development at the early stage.
Spectral functions in the 1D and 2D Bose Hubbard model
NASA Astrophysics Data System (ADS)
Ivancic, Robert; Duchon, Eric; Trivedi, Nandini
2014-03-01
We use state of the art numerical techniques including quantum Monte Carlo and maximum entropy methods to obtain the low energy excitation spectra in the superfluid and Mott-insulator phases of the Bose Hubbard model. These results are checked in 1D against Bethe Ansatz and tDMRG results and extended to 2D where such approaches are impossible. In the superfluid, we find linearly dispersing Bogoliubov sound modes as well as additional gapped modes broadened by interaction effects. In the Mott insulator, we find evidence for a finite gap and well defined quasiparticle excitations. We examine properties such as the excitation lifetime, density of states, and speed of sound as the system is tuned across the quantum phase transition that separates the superfluid and Mott states. These results provide an important theoretical framework for upcoming ultracold atom experiments in one and two dimensions. We acknowledge support from the NSF DMR-0907275 (R.I., E.D. and N.T.).
D Recording for 2d Delivering - the Employment of 3d Models for Studies and Analyses -
NASA Astrophysics Data System (ADS)
Rizzi, A.; Baratti, G.; Jiménez, B.; Girardi, S.; Remondino, F.
2011-09-01
In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d'Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino). APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy) with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying and 3D material to
Approaches to Modeling Coupled Flow and Reaction in a 2-D Cementation Experiment
Steefel, Carl; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; van der Lee, J.
2008-04-01
Porosity evolution at reactive interfaces is a key process that governs the evolution and performances of many engineered systems that have important applications in earth and environmental sciences. This is the case, for example, at the interface between cement structures and clays in deep geological nuclear waste disposals. Although in a different transport regime, similar questions arise for permeable reactive barriers used for biogeochemical remediation in surface environments. The COMEDIE project aims at investigating the coupling between transport, hydrodynamics and chemistry when significant variations of porosity occur. The present work focuses on a numerical benchmark used as a design exercise for the future COMEDIE-2D experiment. The use of reactive transport simulation tools like Hytec and Crunch provides predictions of the physico-chemical evolutions that are expected during the future experiments in laboratory. Focus is given in this paper on the evolution during the simulated experiment of precipitate, permeability and porosity fields. A first case is considered in which the porosity is constant. Results obtained with Crunch and Hytec are in relatively good agreement. Differences are attributable to the models of reactive surface area taken into account for dissolution/precipitation processes. Crunch and Hytec simulations taking into account porosity variations are then presented and compared. Results given by the two codes are in qualitative agreement, with differences attributable in part to the models of reactive surface area for dissolution/precipitation processes. As a consequence, the localization of secondary precipitates predicted by Crunch leads to lower local porosities than for predictions obtained by Hytec and thus to a stronger coupling between flow and chemistry. This benchmark highlights the importance of the surface area model employed to describe systems in which strong porosity variations occur as a result of dissolution
1D and 2D urban dam-break flood modelling in Istanbul, Turkey
NASA Astrophysics Data System (ADS)
Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih
2014-05-01
Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond
NASA Astrophysics Data System (ADS)
Jung, J.; Arakawa, A.
2015-12-01
Through explicitly resolved cloud-scale processes by embedded 2-D cloud-resolving models (CRMs), the Multiscale Modeling Framework (MMF) known as the superparameterization has been reasonably successful to simulate various atmospheric events over a wide range of time scales. One thing to be justified is, however, if the influence of complex 3-D topography can be adequately represented by the embedded 2-D CRMs. In this study, simulations are performed in the presence of a variety of topography with embedded 3-D and 2-D CRMs in a single-column inactive GCM. Through the comparison between these simulations, it is demonstrated that the 2-D representation of topography is able to simulate the statistics of precipitation due to 3-D topography reasonably well as long as the topographic characteristics, such as the mean and standard deviation, are closely recognized. It is also shown that the use of two perpendicular sets of 2-D representations tends to reduce the error due to a 2-D representation.
NASA Astrophysics Data System (ADS)
Smith, Erick; Haarer, Shawn; Confrey, Jere
Although reform efforts in mathematics education have called for more diverse views of mathematics, there have been few studies of how mathematics is used and takes form in practices outside of mathematics itself. Thus legitimate diverse models have largely been missing in education. This study attempts to broaden our understanding of mathematics by investigating how applied mathematicians and biologists, working together to construct dynamic population models, understand these models within the framework of their perspective practices, that is how these models take on a role as ''boundary objects'' between the two practices. By coming to understand how these models function within the practice of biology, the paper suggests that mathematics educators have the opportunity both to reevaluate their own assumptions about modeling and to build an understanding of the dialectic process necessary for these models to develop an epistemological basis that is shared across practices. Investigating this dialectic process is both important and missing in most mathematical classrooms.1
Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling
NASA Astrophysics Data System (ADS)
Harrison, L. R.; Keller, E. A.
2003-12-01
In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is
On craton thinning/destruction: Insight from 2D thermal-mechanical numerical modeling
NASA Astrophysics Data System (ADS)
Liao, J.
2014-12-01
Although most cratons maintain stable, some exceptions are present, such as the North China craton, North Atlantic craton, and Wyoming craton, which have experienced dramatic lithospheric deformation/thinning. Mechanisms triggering cratonic thinning remains enigmatic [Lee et al., 2011]. Using a 2D thermo-mechanical coupled numerical model [Gerya and Yuen, 2007], we investigate two possible mechanisms: (1) stratification of cratonic lithospheric mantle, and (2) rheological weakening due to hydration.Lithospheric mantle stratification is a common feature in cratonic areas which has been demonstrated by geophysical and geochemical studies [Thybo and Perchuc, 1997; Griffin et al., 2004; Romanowicz, 2009; Rychert and Shearer, 2009; Yuan and Romanowicz, 2010]. The influence of lithospheric mantle stratification during craton evolution remains poorly understood. A rheologically weak layer representing hydrated and/or metasomatized composition is implemented in the lithospheric mantle. Our results show that the weak mantle layer changes the dynamics of lithospheric extension by enhancing the deformation of the overlying mantle and crust and inhibiting deformation of the underlying mantle [Liao et al., 2013; Liao and Gerya, 2014]. Modeling results are compared with North China and North Atlantic cratons. Our work indicates that although the presence of a weak layer may not be sufficient to initiate craton deformation, it enhances deformation by lowering the required extensional plate boundary force. Rheological weakening due to hydration is a possible mechanism triggering/enhancing craton deformation, especially for cratons jaxtaposing with a subduction, since water can release from a subducting slab. We investigate the influence of wet mantle flow laws [Hirth and Kohlstedt, 2003], in which a water parameter (i.e. constant water content) is involved. Our results show that wet dislocation alone does not accelerate cratonic deformation significantly. However, if wet diffusion
Facial Sketch Synthesis Using 2D Direct Combined Model-Based Face-Specific Markov Network.
Tu, Ching-Ting; Chan, Yu-Hsien; Chen, Yi-Chung
2016-08-01
A facial sketch synthesis system is proposed, featuring a 2D direct combined model (2DDCM)-based face-specific Markov network. In contrast to the existing facial sketch synthesis systems, the proposed scheme aims to synthesize sketches, which reproduce the unique drawing style of a particular artist, where this drawing style is learned from a data set consisting of a large number of image/sketch pairwise training samples. The synthesis system comprises three modules, namely, a global module, a local module, and an enhancement module. The global module applies a 2DDCM approach to synthesize the global facial geometry and texture of the input image. The detailed texture is then added to the synthesized sketch in a local patch-based manner using a parametric 2DDCM model and a non-parametric Markov random field (MRF) network. Notably, the MRF approach gives the synthesized results an appearance more consistent with the drawing style of the training samples, while the 2DDCM approach enables the synthesis of outcomes with a more derivative style. As a result, the similarity between the synthesized sketches and the input images is greatly improved. Finally, a post-processing operation is performed to enhance the shadowed regions of the synthesized image by adding strong lines or curves to emphasize the lighting conditions. The experimental results confirm that the synthesized facial images are in good qualitative and quantitative agreement with the input images as well as the ground-truth sketches provided by the same artist. The representing power of the proposed framework is demonstrated by synthesizing facial sketches from input images with a wide variety of facial poses, lighting conditions, and races even when such images are not included in the training data set. Moreover, the practical applicability of the proposed framework is demonstrated by means of automatic facial recognition tests. PMID:27244737
NASA Astrophysics Data System (ADS)
Shen, D.; Wang, J.; Cheng, X.; Rui, Y.; Ye, S.
2015-08-01
The rapid progress of lidar technology has made the acquirement and application of high-resolution digital elevation model (DEM) data increasingly popular, especially in regards to the study of floodplain flow. However, high-resolution DEM data pose several disadvantages for floodplain modeling studies; e.g., the data sets contain many redundant interpolation points, large numbers of calculations are required to work with data, and the data do not match the size of the computational mesh. Two-dimensional (2-D) hydraulic modeling, which is a popular method for analyzing floodplain flow, offers highly precise elevation parameterization for computational mesh while ignoring much of the micro-topographic information of the DEM data itself. We offer a flood simulation method that integrates 2-D hydraulic model results and high-resolution DEM data, thus enabling the calculation of flood water levels in DEM grid cells through local inverse distance-weighted interpolation. To get rid of the false inundation areas during interpolation, it employs the run-length encoding method to mark the inundated DEM grid cells and determine the real inundation areas through the run-length boundary tracing technique, which solves the complicated problem of connectivity between DEM grid cells. We constructed a 2-D hydraulic model for the Gongshuangcha detention basin, which is a flood storage area of Dongting Lake in China, by using our integrated method to simulate the floodplain flow. The results demonstrate that this method can solve DEM associated problems efficiently and simulate flooding processes with greater accuracy than simulations only with DEM.
Voters' Fickleness:. a Mathematical Model
NASA Astrophysics Data System (ADS)
Boccara, Nino
This paper presents a spatial agent-based model in order to study the evolution of voters' choice during the campaign of a two-candidate election. Each agent, represented by a point inside a two-dimensional square, is under the influence of its neighboring agents, located at a Euclidean distance less than or equal to d, and under the equal influence of both candidates seeking to win its support. Moreover, each agent located at time t at a given point moves at the next timestep to a randomly selected neighboring location distributed normally around its position at time t. Besides their location in space, agents are characterized by their level of awareness, a real a ∈ [0, 1], and their opinion ω ∈ {-1, 0, +1}, where -1 and +1 represent the respective intentions to cast a ballot in favor of one of the two candidates while 0 indicates either disinterest or refusal to vote. The essential purpose of the paper is qualitative; its aim is to show that voters' fickleness is strongly correlated to the level of voters' awareness and the efficiency of candidates' propaganda.
Mathematical models of malaria - a review
2011-01-01
Mathematical models have been used to provide an explicit framework for understanding malaria transmission dynamics in human population for over 100 years. With the disease still thriving and threatening to be a major source of death and disability due to changed environmental and socio-economic conditions, it is necessary to make a critical assessment of the existing models, and study their evolution and efficacy in describing the host-parasite biology. In this article, starting from the basic Ross model, the key mathematical models and their underlying features, based on their specific contributions in the understanding of spread and transmission of malaria have been discussed. The first aim of this article is to develop, starting from the basic models, a hierarchical structure of a range of deterministic models of different levels of complexity. The second objective is to elaborate, using some of the representative mathematical models, the evolution of modelling strategies to describe malaria incidence by including the critical features of host-vector-parasite interactions. Emphasis is more on the evolution of the deterministic differential equation based epidemiological compartment models with a brief discussion on data based statistical models. In this comprehensive survey, the approach has been to summarize the modelling activity in this area so that it helps reach a wider range of researchers working on epidemiology, transmission, and other aspects of malaria. This may facilitate the mathematicians to further develop suitable models in this direction relevant to the present scenario, and help the biologists and public health personnel to adopt better understanding of the modelling strategies to control the disease PMID:21777413
Building a 2.5D Digital Elevation Model from 2D Imagery
NASA Technical Reports Server (NTRS)
Padgett, Curtis W.; Ansar, Adnan I.; Brennan, Shane; Cheng, Yang; Clouse, Daniel S.; Almeida, Eduardo
2013-01-01
When projecting imagery into a georeferenced coordinate frame, one needs to have some model of the geographical region that is being projected to. This model can sometimes be a simple geometrical curve, such as an ellipse or even a plane. However, to obtain accurate projections, one needs to have a more sophisticated model that encodes the undulations in the terrain including things like mountains, valleys, and even manmade structures. The product that is often used for this purpose is a Digital Elevation Model (DEM). The technology presented here generates a high-quality DEM from a collection of 2D images taken from multiple viewpoints, plus pose data for each of the images and a camera model for the sensor. The technology assumes that the images are all of the same region of the environment. The pose data for each image is used as an initial estimate of the geometric relationship between the images, but the pose data is often noisy and not of sufficient quality to build a high-quality DEM. Therefore, the source imagery is passed through a feature-tracking algorithm and multi-plane-homography algorithm, which refine the geometric transforms between images. The images and their refined poses are then passed to a stereo algorithm, which generates dense 3D data for each image in the sequence. The 3D data from each image is then placed into a consistent coordinate frame and passed to a routine that divides the coordinate frame into a number of cells. The 3D points that fall into each cell are collected, and basic statistics are applied to determine the elevation of that cell. The result of this step is a DEM that is in an arbitrary coordinate frame. This DEM is then filtered and smoothed in order to remove small artifacts. The final step in the algorithm is to take the initial DEM and rotate and translate it to be in the world coordinate frame [such as UTM (Universal Transverse Mercator), MGRS (Military Grid Reference System), or geodetic] such that it can be saved in
Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction
NASA Astrophysics Data System (ADS)
Arredondo, K.; Billen, M. I.
2012-12-01
Descending subducted slabs affect both plate tectonics at the surface and overall mantle flow (e.g. Conrad and Lithgow-Bertelloni, 2002). For time-dependent numerical models, the potential evolution of these slabs, ranging from immediate penetration into the lower mantle to prior buckling and stagnation, are affected by parameters such as the plate age, the viscosity jump into the lower mantle, the presence of phase transitions, trench motion and the chosen governing equation approximation (e.g. Billen and Hirth, 2007). Similarly, the overall deviatoric stress within the slab, especially where modified by the phase transitions, may explain the uneven distribution of deep earthquakes with depth (e.g. Bina, 1997). Better understanding of these processes may arise from a more realistic 2-D model that is fully-dynamic, with an overriding plate, freely-moving trench, compositionally-layered slab and seven major phase transitions, in addition to using the compressible (TALA) form of the governing equations. Though the thermodynamic parameters of certain phase transitions may be uncertain, this study aims to test the latest data and encourage further mineralogical research. We will present fully-dynamic models, which explore the importance of the phase transitions, especially those that have been previously excluded such as the wadsleyite to ringwoodite and the pyroxene and garnet phase transitions. These phase transitions, coupled with the modeled compositionally distinct crust, harzburgite, and pyrolite lithosphere layers, may produce new large-scale dynamic behavior not seen in past numerical models, as well as stress variations within the slab related to deep slab seismicity. Feedback from the compositionally complex slab to the dynamic trench may provide further insight on the mechanics of slab stagnation and behavior in the upper and lower mantle. Billen, M. I., and G. Hirth, Rheologic controls on slab dynamics, Geochemistry, Geophysics and Geosystems, 8 (Q08012
Development of a Geocryologic Model of Permafrost From 2D Inversion of IP Profiling
NASA Astrophysics Data System (ADS)
Fortier, R.; Leblanc, A.
2004-05-01
Non-invasive investigation of permafrost along a planned route of pipeline, road or airstrip in cold regions involves the use of effective methods for detecting, characterizing, mapping and monitoring permafrost conditions on various spatial and temporal scales. Among the available near-surface geophysical methods, the electrical resistivity imaging is probably the most suitable method since the resistivity contrast between unfrozen and frozen ground can be one or two orders of magnitude. Induced polarization (IP) profiling was carried out to study the spatial distribution of ground ice in two permafrost mounds near Umiujaq in Nunavik, Canada. A dipole-dipole array was used to perform the IP profiling. Pseudo-sections of electrical resistivity and chargeability giving a misrepresented cross-section of the sub-surface were first draw. The inversion of IP profiling was also performed using DCIP2D developed by UBC-GIF for estimating the spatial distribution of electrical properties in the ground to create realistic models of sub-surface resistivity and chargeability cross-section. The inverse models show clearly the presence of ice-rich core in the permafrost mounds. The ice-rich cores are underlined by high resistivity values while the unfrozen zones show low resistivity values. The localisation of the permafrost table is highlighted by a strong contrast of resistivity while the permafrost base is marked by a transitional change in resistivity. In the hollow between the permafrost mounds, the models show low resistivity values characteristic of unfrozen zone. A synthetic resistivity sounding built from the most acceptable inverse model correlates well with electrical resistivity logging carried out in the permafrost mound during cone penetration tests. The inversion of IP profiling is fundamental for defining realistic models of sub-surface resistivity and chargeability. Electrical resistivity imaging is a appropriate near-surface geophysical method for permafrost
NASA Astrophysics Data System (ADS)
Croissant, Thomas; Lague, Dimitri; Davy, Philippe; Steer, Philippe
2016-04-01
In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment piles that will be eroded and transported along the river network causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and also for understanding landscape dynamics at the timescale of the seismic cycle. The export time of landslide-derived sediments after large-magnitude earthquakes has been studied from suspended load measurements but a full understanding of the total process, including the coupling between sediment transfer and channel geometry change, still remains an issue. Note that the transport of small sediment pulses has been studied in the context of river restoration, but the magnitude of sediment pulses generated by landslides may make the problem different. Here, we study the export of large volumes (>106 m3) of sediments with the 2D hydro-morphodynamic model, Eros. This model uses a new hydrodynamic module that resolves a reduced form of the Saint-Venant equations with a particle method. It is coupled with a sediment transport and lateral and vertical erosion model. Eros accounts for the complex retroactions between sediment transport and fluvial geometry, with a stochastic description of the floods experienced by the river. Moreover, it is able to reproduce several features deemed necessary to study the evacuation of large sediment pulses, such as river regime modification (single-thread to multi-thread), river avulsion and aggradation, floods and bank erosion. Using a synthetic and simple topography we first present how granulometry, landslide volume and geometry, channel slope and flood frequency influence 1) the dominance of pulse advection vs. diffusion during its evacuation, 2) the pulse export time and 3) the remaining volume of sediment in the catchment
The stability of colorectal cancer mathematical models
NASA Astrophysics Data System (ADS)
Khairudin, Nur Izzati; Abdullah, Farah Aini
2013-04-01
Colorectal cancer is one of the most common types of cancer. To better understand about the kinetics of cancer growth, mathematical models are used to provide insight into the progression of this natural process which enables physicians and oncologists to determine optimal radiation and chemotherapy schedules and develop a prognosis, both of which are indispensable for treating cancer. This thesis investigates the stability of colorectal cancer mathematical models. We found that continuous saturating feedback is the best available model of colorectal cancer growth. We also performed stability analysis. The result shows that cancer progress in sequence of genetic mutations or epigenetic which lead to a very large number of cells population until become unbounded. The cell population growth initiate and its saturating feedback is overcome when mutation changes causing the net per-capita growth rate of stem or transit cells exceed critical threshold.
Computing Linear Mathematical Models Of Aircraft
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Antoniewicz, Robert F.; Krambeer, Keith D.
1991-01-01
Derivation and Definition of Linear Aircraft Model (LINEAR) computer program provides user with powerful, and flexible, standard, documented, and verified software tool for linearization of mathematical models of aerodynamics of aircraft. Intended for use in software tool to drive linear analysis of stability and design of control laws for aircraft. Capable of both extracting such linearized engine effects as net thrust, torque, and gyroscopic effects, and including these effects in linear model of system. Designed to provide easy selection of state, control, and observation variables used in particular model. Also provides flexibility of allowing alternate formulations of both state and observation equations. Written in FORTRAN.
Implementing the Standards: Incorporating Mathematical Modeling into the Curriculum.
ERIC Educational Resources Information Center
Swetz, Frank
1991-01-01
Following a brief historical review of the mechanism of mathematical modeling, examples are included that associate a mathematical model with given data (changes in sea level) and that model a real-life situation (process of parallel parking). Also provided is the rationale for the curricular implementation of mathematical modeling. (JJK)
Mathematical Modeling for Preservice Teachers: A Problem from Anesthesiology.
ERIC Educational Resources Information Center
Lingefjard, Thomas
2002-01-01
Addresses the observed actions of prospective Swedish mathematics teachers as they worked with a modeling situation. Explores prospective teachers' preparation to teach in grades 4-12 during a course of mathematical modeling. Focuses on preservice teachers' understanding of modeling and how they relate mathematical models to the real world.…
An Experimental Approach to Mathematical Modeling in Biology
ERIC Educational Resources Information Center
Ledder, Glenn
2008-01-01
The simplest age-structured population models update a population vector via multiplication by a matrix. These linear models offer an opportunity to introduce mathematical modeling to students of limited mathematical sophistication and background. We begin with a detailed discussion of mathematical modeling, particularly in a biological context.…
NASA Astrophysics Data System (ADS)
Abdelmalak, M.; Mourgues, R.; Bureau, D.
2012-04-01
The analysis of surface deformation in response to approaching intrusion is important for assessing volcanic hazards. In this paper, we present results from 2D scaled models of magma intrusion, in which we discuss the propagation mode and related surface deformation during dyke growth. Our experiments consist in the injection of analogue magma (Golden syrup) into cohesive fine-grained silica powder, simulating the brittle upper crust. Using an optical image correlation technique (Particle Imaging Velocimetry), we were able to follow the surface deformation, the displacements within the country rock and to calculate strains induced by the magma emplacement. We identified two kinds of intrusion morphologies resulting from different interactions between the dyke and plastic deformations occurring in the country rock near the surface. In both morphologies, the dyke is vertical at depth. Our analysis demonstrates that both hydraulic tensile opening and shear-related propagation operate during this first stage of vertical growth. At the same time, the surface lifted up and formed a smooth symmetrical dome. Both types of morphologies differ in the upper part. During a second stage of evolution, the first type of intrusion inclined at a dip between 45 to 65°. This inclination is not caused by shear deformations and is attributed to stress rotation near the tip. Closer to the surface, the growth of the inclined sheet creates shear bands which conduct the fluid toward the surface. The surface uplift becomes asymmetric. The second type of intrusion does not rotate at depth and continues its vertical propagation by catching vertical tensile cracks. The intrusion of magma in these cracks creates horizontal stresses which are responsible for the closure of fractures and the formation of reverse faults. At the surface the dome remains symmetrical. For both intrusions, the surface uplift accelerates during the second stage and it is strongly influenced by the presence or the
The Two-Commponent Model and 2d Metal-Insulator Transition
NASA Astrophysics Data System (ADS)
Castner, Theodore G.
2004-03-01
Fermi liquid theory for the 2d MIT is extended to include the soft correlation gap (CG) in the density-of-states N(E) from carrier interactions [N(E)α(E-E_F)^t] producing a minimum in N(E) at E_F. The results are consistent with the scaling form g=g_cexp(xT_o/T) in a limited T-regime, but not as Tarrow0 ruling out the perfect conductor scenario. The two-component model of itinerant plus localized electrons n_i+n_loc=n=n_c(1+x) for n>nc is an essential feature and allows a full explanation of the T-dependence of the metallic resistivity ratio ρ_i(T)/ρ_i(0) [ρ_i= 1/(σ-σ_c)] including the maximum at T_max. The results explain the Hanein et al. data^1 for p-type GaAs and show p_i(T)/p_i(0)=1+T/T_phi in a restricted T-range where T_phi=xTc [T_c=E_c/k, E_c=mobility edge] as x=p/p_c-1 goes to 0. The correction to EF from the soft CG [of width |Delta_c] yields a constant ratio E_F/Δc as x goes to 0. The origin of the nonuniversal gc [ρc at x=0] and implications for the beta function β(g)=ln(g/g_c) and single particle scaling will be discussed. 1. Y. Hanein et al., PRL80, 1288 (1998);Phys.Rev.B58, R13338 (1998).
2D condensation model for the inner Solar Nebula: an enstatite-rich environment
NASA Astrophysics Data System (ADS)
Pignatale, F. C.; Liffman, Kurt; Maddison, Sarah T.; Brooks, Geoffrey
2016-04-01
Infrared observations provide the dust composition in the protoplanetary discs surface layers, but cannot probe the dust chemistry in the mid-plane, where planet formation occurs. Meteorites show that dynamics was important in determining the dust distribution in the Solar Nebula and needs to be considered if we are to understand the global chemistry in discs. 1D radial condensation sequences can only simulate one disc layer at a time and cannot describe the global chemistry or the complexity of meteorites. To address these limitations, we compute for the first time the 2D distribution of condensates in the inner Solar Nebula using a thermodynamic equilibrium model, and derive time-scales for vertical settling and radial migration of dust. We find two enstatite-rich zones within 1 AU from the young Sun: a band ˜0.1 AU thick in the upper optically-thin layer of the disc interior to 0.8 AU, and in the optically-thick disc mid-plane out to ˜0.4 AU. The two enstatite-rich zones support recent evidence that Mercury and enstatite chondrites (ECs) shared a bulk material with similar composition. Our results are also consistent with infrared observation of protoplanetary disc which show emission of enstatite-rich dust in the inner surface of discs. The resulting chemistry and dynamics suggests that the formation of the bulk material of ECs occurred in the inner surface layer of the disc, within 0.4 AU. We also propose a simple alternative scenario in which gas fractionation and vertical settling of the condensates lead to an enstatite-chondritic bulk material.
Mathematical modeling of vertebrate limb development.
Zhang, Yong-Tao; Alber, Mark S; Newman, Stuart A
2013-05-01
In this paper, we review the major mathematical and computational models of vertebrate limb development and their roles in accounting for different aspects of this process. The main aspects of limb development that have been modeled include outgrowth and shaping of the limb bud, establishment of molecular gradients within the bud, and formation of the skeleton. These processes occur interdependently during development, although (as described in this review), there are various interpretations of the biological relationships among them. A wide range of mathematical and computational methods have been used to study these processes, including ordinary and partial differential equation systems, cellular automata and discrete, stochastic models, finite difference methods, finite element methods, the immersed boundary method, and various combinations of the above. Multiscale mathematical modeling and associated computational simulation have become integrated into the study of limb morphogenesis and pattern formation to an extent with few parallels in the field of developmental biology. These methods have contributed to the design and analysis of experiments employing microsurgical and genetic manipulations, evaluation of hypotheses for limb bud outgrowth, interpretation of the effects of natural mutations, and the formulation of scenarios for the origination and evolution of the limb skeleton. PMID:23219575
Editorial: Mathematical modelling of infectious diseases.
Fenton, Andy
2016-06-01
The field of disease ecology - the study of the spread and impact of parasites and pathogens within their host populations and communities - has a long history of using mathematical models. Dating back over 100 years, researchers have used mathematics to describe the spread of disease-causing agents, understand the relationship between host density and transmission and plan control strategies. The use of mathematical modelling in disease ecology exploded in the late 1970s and early 1980s through the work of Anderson and May (Anderson and May, 1978, 1981, 1992; May and Anderson, 1978), who developed the fundamental frameworks for studying microparasite (e.g. viruses, bacteria and protozoa) and macroparasite (e.g. helminth) dynamics, emphasizing the importance of understanding features such as the parasite's basic reproduction number (R 0) and critical community size that form the basis of disease ecology research to this day. Since the initial models of disease population dynamics, which primarily focused on human diseases, theoretical disease research has expanded hugely to encompass livestock and wildlife disease systems, and also to explore evolutionary questions such as the evolution of parasite virulence or drug resistance. More recently there have been efforts to broaden the field still further, to move beyond the standard 'one-host-one-parasite' paradigm of the original models, to incorporate many aspects of complexity of natural systems, including multiple potential host species and interactions among multiple parasite species. PMID:27027318
A mathematical model of collagen lattice contraction
Dallon, J. C.; Evans, E. J.; Ehrlich, H. Paul
2014-01-01
Two mathematical models for fibroblast–collagen interaction are proposed which reproduce qualitative features of fibroblast-populated collagen lattice contraction. Both models are force based and model the cells as individual entities with discrete attachment sites; however, the collagen lattice is modelled differently in each model. In the collagen lattice model, the lattice is more interconnected and formed by triangulating nodes to form the fibrous structure. In the collagen fibre model, the nodes are not triangulated, are less interconnected, and the collagen fibres are modelled as a string of nodes. Both models suggest that the overall increase in stress of the lattice as it contracts is not the cause of the reduced rate of contraction, but that the reduced rate of contraction is due to inactivation of the fibroblasts. PMID:25142520
Building Mathematical Models of Simple Harmonic and Damped Motion.
ERIC Educational Resources Information Center
Edwards, Thomas
1995-01-01
By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)
Mathematical Models for HIV Transmission Dynamics
Cassels, Susan; Clark, Samuel J.; Morris, Martina
2012-01-01
Summary HIV researchers have long appreciated the need to understand the social and behavioral determinants of HIV-related risk behavior, but the cumulative impact of individual behaviors on population-level HIV outcomes can be subtle and counterintuitive, and the methods for studying this are rarely part of a traditional social science or epidemiology training program. Mathematical models provide a way to examine the potential effects of the proximate biologic and behavioral determinants of HIV transmission dynamics, alone and in combination. The purpose of this article is to show how mathematical modeling studies have contributed to our understanding of the dynamics and disparities in the global spread of HIV. Our aims are to demonstrate the value that these analytic tools have for social and behavioral sciences in HIV prevention research, to identify gaps in the current literature, and to suggest directions for future research. PMID:18301132
ERIC Educational Resources Information Center
Jurow, A. Susan
2004-01-01
Generalizing or making claims that extend beyond particular situations is a central mathematical practice and a focus of classroom mathematics instruction. This study examines how aspects of generality are produced through the situated activities of a group of middle school mathematics students working on an 8-week population-modeling project. The…
ERIC Educational Resources Information Center
Martins, Ana Margarida; Vera-Licona, Paola; Laubenbacher, Reinhard
2008-01-01
This article describes a mathematical biology workshop given to secondary school teachers of the Danville area in Virginia, USA. The goal of the workshop was to enable teams of teachers with biology and mathematics expertise to incorporate lesson plans in mathematical modelling into the curriculum. The biological focus of the activities is the…
ERIC Educational Resources Information Center
Lim, L. L.; Tso, T. -Y.; Lin, F. L.
2009-01-01
This article reports the attitudes of students towards mathematics after they had participated in an applied mathematical modelling project that was part of an Applied Mathematics course. The students were majoring in Earth Science at the National Taiwan Normal University. Twenty-six students took part in the project. It was the first time a…
Finite-size effects for anisotropic 2D Ising model with various boundary conditions
NASA Astrophysics Data System (ADS)
Izmailian, N. Sh
2012-12-01
We analyze the exact partition function of the anisotropic Ising model on finite M × N rectangular lattices under four different boundary conditions (periodic-periodic (pp), periodic-antiperiodic (pa), antiperiodic-periodic (ap) and antiperiodic-antiperiodic (aa)) obtained by Kaufman (1949 Phys. Rev. 76 1232), Wu and Hu (2002 J. Phys. A: Math. Gen. 35 5189) and Kastening (2002 Phys. Rev. E 66 057103)). We express the partition functions in terms of the partition functions Zα, β(J, k) with (α, β) = (0, 0), (1/2, 0), (0, 1/2) and (1/2, 1/2), J is an interaction coupling and k is an anisotropy parameter. Based on such expressions, we then extend the algorithm of Ivashkevich et al (2002 J. Phys. A: Math. Gen. 35 5543) to derive the exact asymptotic expansion of the logarithm of the partition function for all boundary conditions mentioned above. Our result is f = fbulk + ∑∞p = 0fp(ρ, k)S-p - 1, where f is the free energy of the system, fbulk is the free energy of the bulk, S = MN is the area of the lattice and ρ = M/N is the aspect ratio. All coefficients in this expansion are expressed through analytical functions. We have introduced the effective aspect ratio ρeff = ρ/sinh 2Jc and show that for pp and aa boundary conditions all finite size correction terms are invariant under the transformation ρeff → 1/ρeff. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.
Combined global 2D-local 3D modeling of the industrial Czochralski silicon crystal growth process
NASA Astrophysics Data System (ADS)
Jung, T.; Seebeck, J.; Friedrich, J.
2013-04-01
A global, axisymmetric thermal model of a Czochralski furnace is coupled to an external, local, 3D, time-dependent flow model of the melt via the inclusion of turbulent heat fluxes, extracted from the 3D melt model, into the 2D furnace model. Boundary conditions of the 3D model are updated using results from the 2D model. In the 3D model the boundary layers are resolved by aggressive mesh refinement towards the walls, and the Large Eddy Simulation approach is used to model the turbulent flow in the melt volume on a relatively coarse mesh to minimize calculation times. It is shown that by using this approach it is possible to reproduce fairly good results from Direct Numerical Simulations obtained on much finer meshes, as well as experimental results for interface shape and oxygen concentration in the case of growth of silicon crystals with 210 mm diameter for photovoltaics by the Czochralski method.
Mathematical modelling of leprosy and its control.
Blok, David J; de Vlas, Sake J; Fischer, Egil A J; Richardus, Jan Hendrik
2015-03-01
Leprosy or Hansen's disease is an infectious disease caused by the bacterium Mycobacterium leprae. The annual number of new leprosy cases registered worldwide has remained stable over the past years at over 200,000. Early case finding and multidrug therapy have not been able interrupt transmission completely. Elimination requires innovation in control and sustained commitment. Mathematical models can be used to predict the course of leprosy incidence and the effect of intervention strategies. Two compartmental models and one individual-based model have been described in the literature. Both compartmental models investigate the course of leprosy in populations and the long-term impact of control strategies. The individual-based model focusses on transmission within households and the impact of case finding among contacts of new leprosy patients. Major improvement of these models should result from a better understanding of individual differences in exposure to infection and developing leprosy after exposure. Most relevant are contact heterogeneity, heterogeneity in susceptibility and spatial heterogeneity. Furthermore, the existing models have only been applied to a limited number of countries. Parameterization of the models for other areas, in particular those with high incidence, is essential to support current initiatives for the global elimination of leprosy. Many challenges remain in understanding and dealing with leprosy. The support of mathematical models for understanding leprosy epidemiology and supporting policy decision making remains vital. PMID:25765193
Mathematical Model For Deposition Of Soot
NASA Technical Reports Server (NTRS)
Makel, Darby B.
1991-01-01
Semiempirical mathematical model predicts deposition of soot in tubular gas generator in which hydrocarbon fuel burned in very-fuel-rich mixture with pure oxygen. Developed in response to concern over deposition of soot in gas generators and turbomachinery of rocket engines. Also of interest in terrestrial applications involving fuel-rich combustion or analogous process; e.g., purposeful deposition of soot to manufacture carbon black pigments.
On mathematical modelling of flameless combustion
Mancini, Marco; Schwoeppe, Patrick; Weber, Roman; Orsino, Stefano
2007-07-15
A further analysis of the IFRF semi-industrial-scale experiments on flameless (mild) combustion of natural gas is carried out. The experimental burner features a strong oxidizer jet and two weak natural gas jets. Numerous publications have shown the inability of various RANS-based mathematical models to predict the structure of the weak jet. We have proven that the failure is in error predictions of the entrainment and therefore is not related to any chemistry submodels, as has been postulated. (author)
Chen, Meimei; Yang, Xuemei; Lai, Xinmei; Gao, Yuxing
2015-10-15
Cholesteryl ester transfer protein (CETP) inhibitors hold promise as new agents against coronary heart disease. Molecular modeling techniques such as 2D-QSAR and 3D-QSAR analysis were applied to establish models to distinguish potent and weak CETP inhibitors. 2D and 3D QSAR models-based a series of diphenylpyridylethanamine (DPPE) derivatives (newly identified as CETP inhibitors) were then performed to elucidate structural and physicochemical requirements for higher CETP inhibitory activity. The linear and spline 2D-QSAR models were developed through multiple linear regression (MLR) and support vector machine (SVM) methods. The best 2D-QSAR model obtained by SVM gave a high predictive ability (R(2)train=0.929, R(2)test=0.826, Q(2)LOO=0.780). Also, the 2D-QSAR models uncovered that SlogP_VSA0, E_sol and Vsurf_DW23 were important features in defining activity. In addition, the best 3D-QSAR model presented higher predictive ability (R(2)train=0.958, R(2)test=0.852, Q(2)LOO=0.734) based on comparative molecular field analysis (CoMFA). Meanwhile, the derived contour maps from 3D-QSAR model revealed the significant structural features (steric and electronic effects) required for improving CETP inhibitory activity. Consequently, twelve newly designed DPPE derivatives were proposed to be robust and potent CETP inhibitors. Overall, these derived models may help to design novel DPPE derivatives with better CETP inhibitory activity. PMID:26346366
Basic Perforator Flap Hemodynamic Mathematical Model
Tao, Youlun; Ding, Maochao; Wang, Aiguo; Zhuang, Yuehong; Chang, Shi-Min; Mei, Jin; Hallock, Geoffrey G.
2016-01-01
Background: A mathematical model to help explain the hemodynamic characteristics of perforator flaps based on blood flow resistance systems within the flap will serve as a theoretical guide for the future study and clinical applications of these flaps. Methods: There are 3 major blood flow resistance network systems of a perforator flap. These were defined as the blood flow resistance of an anastomosis between artery and artery of adjacent perforasomes, between artery and vein within a perforasome, and then between vein and vein corresponding to the outflow of that perforasome. From this, a calculation could be made of the number of such blood flow resistance network systems that must be crossed for all perforasomes within a perforator flap to predict whether that arrangement would be viable. Results: The summation of blood flow resistance networks from each perforasome in a given perforator flap could predict which portions would likely survive. This mathematical model shows how this is directly dependent on the location of the vascular pedicle to the flap and whether supercharging or superdrainage maneuvers have been added. These configurations will give an estimate of the hemodynamic characteristics for the given flap design. Conclusions: This basic mathematical model can (1) conveniently determine the degree of difficulty for each perforasome within a perforator flap to survive; (2) semiquantitatively allow the calculation of basic hemodynamic parameters; and (3) allow the assessment of the pros and cons expected for each pattern of perforasomes encountered clinically based on predictable hemodynamic observations.
A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS
In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...
• LTV can be used to characterize free phase PCE architecture in 2-D flow chambers without using a dye. • Results to date suggest that error in PCE detection using LTV can be less than 10% if the imaging system is optimized. • Mass balance calculations show a maximum error of 9...
Mathematical Models and the Experimental Analysis of Behavior
ERIC Educational Resources Information Center
Mazur, James E.
2006-01-01
The use of mathematical models in the experimental analysis of behavior has increased over the years, and they offer several advantages. Mathematical models require theorists to be precise and unambiguous, often allowing comparisons of competing theories that sound similar when stated in words. Sometimes different mathematical models may make…
Mathematical models of breast and ovarian cancers.
Botesteanu, Dana-Adriana; Lipkowitz, Stanley; Lee, Jung-Min; Levy, Doron
2016-07-01
Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review, we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, as answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. WIREs Syst Biol Med 2016, 8:337-362. doi: 10.1002/wsbm.1343 For further resources related to this article, please visit the WIREs website. PMID:27259061
Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.
Ekama, G A; Marais, P
2004-01-01
The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the
Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D. [LMFBR
Zielinski, R.G.; Kazimi, M.S.
1981-09-01
Several features were incorporated into NATOF-2D, a two-dimensional, two fluid code developed at MIT for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, momentum and energy exchange rate models, and a cell-to-cell radial heat conduction mechanism which was calibrated by simulation of Westinghouse Blanket Heat Transfer Test Program Runs 544 and 545. Finally, a direct method of pressure field solution was implemented into a direct method of pressure field solution was implemented into NATOF-2D, replacing the iterative technique previously available, and resulted in substantially reduced computational costs.
NASA Technical Reports Server (NTRS)
Dyominov, I. G.
1989-01-01
On the basis of the 2-D radiative-photochemical model of the ozone layer at heights 0 to 60 km in the Northern Hemisphere there are revealed and analyzed in detail the characteristic features of the season-altitude-latitude variations of ozone and temperature due to changes of the solar flux during the 11 year cycle, electron and proton precipitations.
Mathematical modeling of deformation during hot rolling
Jin, D.; Stachowiak, R.G.; Samarasekera, I.V.; Brimacombe, J.K.
1994-12-31
The deformation that occurs in the roll bite during the hot rolling of steel, particularly the strain-rate and strain distribution, has been mathematically modeled using finite-element analysis. In this paper three different finite-element models are compared with one another and with industrial measurements. The first model is an Eulerian analysis based on the flow formulation method, while the second utilizes an Updated Lagrangian approach. The third model is based on a commercially available program DEFORM which also utilizes a Lagrangian reference frame. Model predictions of strain and strain-rate distribution, particularly near the surface of the slab, are strongly influenced by the treatment of friction at the boundary and the magnitude of the friction coefficient or shear factor. Roll forces predicted by the model have been compared with industrial rolling loads from a seven-stand hot-strip mill.
Aircraft engine mathematical model - linear system approach
NASA Astrophysics Data System (ADS)
Rotaru, Constantin; Roateşi, Simona; Cîrciu, Ionicǎ
2016-06-01
This paper examines a simplified mathematical model of the aircraft engine, based on the theory of linear and nonlinear systems. The dynamics of the engine was represented by a linear, time variant model, near a nominal operating point within a finite time interval. The linearized equations were expressed in a matrix form, suitable for the incorporation in the MAPLE program solver. The behavior of the engine was included in terms of variation of the rotational speed following a deflection of the throttle. The engine inlet parameters can cover a wide range of altitude and Mach numbers.
Mathematical Modeling of Ultraporous Nonmetallic Reticulated Materials
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Cherepanov, V. V.; Morzhukhina, A. V.
2015-01-01
We have developed an imitation statistical mathematical model reflecting the structure and the thermal, electrophysical, and optical properties of nonmetallic ultraporous reticulated materials. This model, in combination with a nonstationary thermal experiment and methods of the theory of inverse heat transfer problems, permits determining the little-studied characteristics of the above materials such as the radiative and conductive heat conductivities, the spectral scattering and absorption coefficients, the scattering indicatrix, and the dielectric constants, which are of great practical interest but are difficult to investigate.
Mathematical and computational models of plasma flows
NASA Astrophysics Data System (ADS)
Brushlinsky, K. V.
Investigations of plasma flows are of interest, firstly, due to numerous applications, and secondly, because of their general principles, which form a special branch of physics: the plasma dynamics. Numerical simulation and computation, together with theoretic and experimental methods, play an important part in these investigations. Speaking on flows, a relatively dense plasma is mentioned, so its mathematical models appertain to the fluid mechanics, i.e., they are based on the magnetohydrodynamic description of plasma. Time dependent two dimensional models of plasma flows of two wide-spread types are considered: the flows across the magnetic field and those in the magnetic field plane.
A mathematical model of 'Pride and Prejudice'.
Rinaldi, Sergio; Rossa, Fabio Della; Landi, Pietro
2014-04-01
A mathematical model is proposed for interpreting the love story between Elizabeth and Darcy portrayed by Jane Austen in the popular novel Pride and Prejudice. The analysis shows that the story is characterized by a sudden explosion of sentimental involvements, revealed by the existence of a saddle-node bifurcation in the model. The paper is interesting not only because it deals for the first time with catastrophic bifurcations in romantic relation-ships, but also because it enriches the list of examples in which love stories are described through ordinary differential equations. PMID:24560011
NASA Astrophysics Data System (ADS)
Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.
2014-12-01
In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is
Driven microswimmers on a 2D substrate: A stochastic towed sled model
NASA Astrophysics Data System (ADS)
Marchegiani, Giampiero; Marchesoni, Fabio
2015-11-01
We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques.
Driven microswimmers on a 2D substrate: A stochastic towed sled model
Marchegiani, Giampiero; Marchesoni, Fabio
2015-11-14
We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques.
Numerical Simulations of High-Frequency Respiratory Flows in 2D and 3D Lung Bifurcation Models
NASA Astrophysics Data System (ADS)
Chen, Zixi; Parameswaran, Shamini; Hu, Yingying; He, Zhaoming; Raj, Rishi; Parameswaran, Siva
2014-07-01
To better understand the human pulmonary system and optimize the high-frequency oscillatory ventilation (HFOV) design, numerical simulations were conducted under normal breathing frequency and HFOV condition using a CFD code Ansys Fluent and its user-defined C programs. 2D and 3D double bifurcating lung models were created, and the geometry corresponds to fifth to seventh generations of airways with the dimensions based on the Weibel's pulmonary model. Computations were carried out for different Reynolds numbers (Re = 400 and 1000) and Womersley numbers (α = 4 and 16) to study the air flow fields, gas transportation, and wall shear stresses in the lung airways. Flow structure was compared with experimental results. Both 2D and 3D numerical models successfully reproduced many results observed in the experiment. The oxygen concentration distribution in the lung model was investigated to analyze the influence of flow oscillation on gas transport inside the lung model.
Modeling the Transverse Thermal Conductivity of 2-D SiCf/SiC Composites Made with Woven Fabric
Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.
2004-06-30
The hierarchical two-layer (H2L) model was developed to describe the effective transverse thermal conductivity, Keff, of a 2D-SiCf/SiC composite made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the expected effects of fiber-matrix interfacial conductance as well as the effects of high fiber packing fractions within individual tows and the non-uniform nature of 2D-fabric layers that usually include a significant amount of interlayer porosity. Previously, H2L model predictions were compared to measured values of Keff for two versions of DuPont 2D-Hi NicalonÃ”/PyC/ICVI-SiC composite, one with a â€œthinâ€ (0.110 Î¼m) and the other with a â€œthickâ€ (1.040 Î¼m) pyrocarbon (PyC) fiber coating, and for a 2D-TyrannoÃ” SA/â€thinâ€ PyC/FCVI-SIC composite made by ORNL. In this study, H2L model predictions are compared to measured Keff-values for a 2D-SiCf/SiC composite made by GE Power Systems (formerly DuPont Lanxide) using the ICVI-process with Hi-NicalonÃ” type S fabric. The values of Keff determined for the composite made with the Hi-NicalonÃ” type S fabric were significantly greater than Keff-values determined for the composites made with either the Hi-NicalonÃ”or the TyrannoÃ” SA fabrics. Differences in Keff-values were expected for using different fiber types, but major differences also were due to observed microstructural variations between the systems, and as predicted by the H2L model.
A mathematical model of adult subventricular neurogenesis
Ashbourn, J. M. A.; Miller, J. J.; Reumers, V.; Baekelandt, V.; Geris, L.
2012-01-01
Neurogenesis has been the subject of active research in recent years and many authors have explored the phenomenology of the process, its regulation and its purported purpose. Recent developments in bioluminescent imaging (BLI) allow direct in vivo imaging of neurogenesis, and in order to interpret the experimental results, mathematical models are necessary. This study proposes such a mathematical model that describes adult mammalian neurogenesis occurring in the subventricular zone and the subsequent migration of cells through the rostral migratory stream to the olfactory bulb (OB). This model assumes that a single chemoattractant is responsible for cell migration, secreted both by the OB and in an endocrine fashion by the cells involved in neurogenesis. The solutions to the system of partial differential equations are compared with the physiological rodent process, as previously documented in the literature and quantified through the use of BLI, and a parameter space is described, the corresponding solution to which matches that of the rodent model. A sensitivity analysis shows that this parameter space is stable to perturbation and furthermore that the system as a whole is sloppy. A large number of parameter sets are stochastically generated, and it is found that parameter spaces corresponding to physiologically plausible solutions generally obey constraints similar to the conditions reported in vivo. This further corroborates the model and its underlying assumptions based on the current understanding of the investigated phenomenon. Concomitantly, this leaves room for further quantitative predictions pertinent to the design of future proposed experiments. PMID:22572029
NASA Astrophysics Data System (ADS)
Fang, F.; Zhang, T.; Pavlidis, D.; Pain, C. C.; Buchan, A. G.; Navon, I. M.
2014-10-01
A novel reduced order model (ROM) based on proper orthogonal decomposition (POD) has been developed for a finite-element (FE) adaptive mesh air pollution model. A quadratic expansion of the non-linear terms is employed to ensure the method remained efficient. This is the first time such an approach has been applied to air pollution LES turbulent simulation through three dimensional landscapes. The novelty of this work also includes POD's application within a FE-LES turbulence model that uses adaptive resolution. The accuracy of the reduced order model is assessed and validated for a range of 2D and 3D urban street canyon flow problems. By comparing the POD solutions against the fine detail solutions obtained from the full FE model it is shown that the accuracy is maintained, where fine details of the air flows are captured, whilst the computational requirements are reduced. In the examples presented below the size of the reduced order models is reduced by factors up to 2400 in comparison to the full FE model while the CPU time is reduced by up to 98% of that required by the full model.
Chen, J-S.; Drake, R.; Lin, Z.; Jewett, D. G.
2002-02-26
Five vadose zone models with different degrees of complexity (CHAIN, MULTIMED{_}DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in radionuclide soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide ({sup 99}Tc) release scenario at the Las Cruces Trench Site in New Mexico. Sensitivity of three model outputs to the input parameters were evaluated and compared among the models. The three outputs were peak contaminant concentrations, time to peak concentrations at the water table, and time to exceed the contaminants maximum critical level at a representative receptor well. Model parameters investigated include soil properties such as bulk density, water content, soil water retention parameters and hydraulic conductivity. Chemical properties examined include distribution coefficient, radionuclide half-life, dispersion coefficient, and molecular diffusion. Other soil characteristics, such as recharge rate, also were examined. Model sensitivity was quantified in the form of sensitivity and relative sensitivity coefficients. Relative sensitivities were used to compare the sensitivities of different parameters. The analysis indicates that soil water content, recharge rate, saturated soil water content, and soil retention parameter, {beta}, have a great influence on model outputs. In general, the results of sensitivities and relative sensitivities using five models are similar for a specific scenario. Slight differences were observed in predicted peak contaminant concentrations due to different mathematical treatment among models. The results of benchmarking and sensitivity analysis would facilitate the model selection and application of the model in SSL calculations.
Development of a Multidisciplinary Middle School Mathematics Infusion Model
ERIC Educational Resources Information Center
Russo, Maria; Hecht, Deborah; Burghardt, M. David; Hacker, Michael; Saxman, Laura
2011-01-01
The National Science Foundation (NSF) funded project "Mathematics, Science, and Technology Partnership" (MSTP) developed a multidisciplinary instructional model for connecting mathematics to science, technology and engineering content areas at the middle school level. Specifically, the model infused mathematics into middle school curriculum…
Assessment of Primary 5 Students' Mathematical Modelling Competencies
ERIC Educational Resources Information Center
Chan, Chun Ming Eric; Ng, Kit Ee Dawn; Widjaja, Wanty; Seto, Cynthia
2012-01-01
Mathematical modelling is increasingly becoming part of an instructional approach deemed to develop students with competencies to function as 21st century learners and problem solvers. As mathematical modelling is a relatively new domain in the Singapore primary school mathematics curriculum, many teachers may not be aware of the learning outcomes…
Exploring the Relationship between Mathematical Modelling and Classroom Discourse
ERIC Educational Resources Information Center
Redmond, Trevor; Sheehy, Joanne; Brown, Raymond
2010-01-01
This paper explores the notion that the discourse of the mathematics classroom impacts on the practices that students engage when modelling mathematics. Using excerpts of a Year 12 student's report on modelling Newton's law of cooling, this paper argues that when students engage with the discourse of their mathematics classroom in a manner that…
Mathematical model to predict drivers' reaction speeds.
Long, Benjamin L; Gillespie, A Isabella; Tanaka, Martin L
2012-02-01
Mental distractions and physical impairments can increase the risk of accidents by affecting a driver's ability to control the vehicle. In this article, we developed a linear mathematical model that can be used to quantitatively predict drivers' performance over a variety of possible driving conditions. Predictions were not limited only to conditions tested, but also included linear combinations of these tests conditions. Two groups of 12 participants were evaluated using a custom drivers' reaction speed testing device to evaluate the effect of cell phone talking, texting, and a fixed knee brace on the components of drivers' reaction speed. Cognitive reaction time was found to increase by 24% for cell phone talking and 74% for texting. The fixed knee brace increased musculoskeletal reaction time by 24%. These experimental data were used to develop a mathematical model to predict reaction speed for an untested condition, talking on a cell phone with a fixed knee brace. The model was verified by comparing the predicted reaction speed to measured experimental values from an independent test. The model predicted full braking time within 3% of the measured value. Although only a few influential conditions were evaluated, we present a general approach that can be expanded to include other types of distractions, impairments, and environmental conditions. PMID:22431214
Mathematical modelling of submarine landslide motion
NASA Astrophysics Data System (ADS)
Burminskij, A.
2012-04-01
Mathematical modelling of submarine landslide motion The paper presents a mathematical model to calculate dynamic parameters of a submarine landslide. The problem of estimation possible submarine landslides dynamic parameters and run-out distances as well as their effect on submarine structures becomes more and more actual because they can have significant impacts on infrastructure such as the rupture of submarine cables and pipelines, damage to offshore drilling platforms, cause a tsunami. In this paper a landslide is considered as a viscoplastic flow and is described by continuum mechanics equations, averaged over the flow depth. The model takes into account friction at the bottom and at the landslide-water boundary, as well as the involvement of bottom material in motion. A software was created and series of test calculations were performed. Calculations permitted to estimate the contribution of various model coefficients and initial conditions. Motion down inclined bottom was studied both for constant and variable slope angle. Examples of typical distributions of the flow velocity, thickness and density along the landslide body at different stages of motion are given.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House.
The recommended Senate amendment to the bill (H.R. 996) to establish the Congressional Scholarships for Science, Mathematics, and Engineering, and the joint explanatory statement of the committee of conference are presented. The sections to be amended include the following: (1) Mathematics, Science and Technology Improvements; (2) Higher…
NASA Astrophysics Data System (ADS)
Yogurtcu, Osman N.; Johnson, Margaret E.
2015-08-01
The dynamics of association between diffusing and reacting molecular species are routinely quantified using simple rate-equation kinetics that assume both well-mixed concentrations of species and a single rate constant for parameterizing the binding rate. In two-dimensions (2D), however, even when systems are well-mixed, the assumption of a single characteristic rate constant for describing association is not generally accurate, due to the properties of diffusional searching in dimensions d ≤ 2. Establishing rigorous bounds for discriminating between 2D reactive systems that will be accurately described by rate equations with a single rate constant, and those that will not, is critical for both modeling and experimentally parameterizing binding reactions restricted to surfaces such as cellular membranes. We show here that in regimes of intrinsic reaction rate (ka) and diffusion (D) parameters ka/D > 0.05, a single rate constant cannot be fit to the dynamics of concentrations of associating species independently of the initial conditions. Instead, a more sophisticated multi-parametric description than rate-equations is necessary to robustly characterize bimolecular reactions from experiment. Our quantitative bounds derive from our new analysis of 2D rate-behavior predicted from Smoluchowski theory. Using a recently developed single particle reaction-diffusion algorithm we extend here to 2D, we are able to test and validate the predictions of Smoluchowski theory and several other theories of reversible reaction dynamics in 2D for the first time. Finally, our results also mean that simulations of reactive systems in 2D using rate equations must be undertaken with caution when reactions have ka/D > 0.05, regardless of the simulation volume. We introduce here a simple formula for an adaptive concentration dependent rate constant for these chemical kinetics simulations which improves on existing formulas to better capture non-equilibrium reaction dynamics from dilute
Mathematical Modeling of Extinction of Inhomogeneous Populations.
Karev, G P; Kareva, I
2016-04-01
Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed of clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the "unobserved heterogeneity," i.e., the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of "internal population time" is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117
Mathematical Modeling of Extinction of Inhomogeneous Populations
Karev, G.P.; Kareva, I.
2016-01-01
Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the “unobserved heterogeneity”, i.e. the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of “internal population time” is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117
Mathematical Models of Continuous Flow Electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.; Snyder, R. S.
1985-01-01
Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.
NASA Technical Reports Server (NTRS)
Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne
2003-01-01
The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.
Mathematical modeling of diesel fuel hydrotreating
NASA Astrophysics Data System (ADS)
Tataurshikov, A.; Ivanchina, E.; Krivtcova, N.; Krivtsov, E.; Syskina, A.
2015-11-01
Hydrotreating of the diesel fraction with the high initial sulfur content of 1,4 mass% is carried out in the flow-through laboratory setup with the industrial GKD-202 catalyst at various process temperature. On the basis of the experimental data the regularities of the hydrogenation reactions are revealed, and the formalized scheme of sulfur-containing components (sulfides, benzothiophenes, and dibenzothiophenes) transformations is made. The mathematical model of hydrotreating process is developed, the constant values for the reaction rate of hydrodesulfurization of the specified components are calculated.
Mathematical model of laser PUVA psoriasis treatment
NASA Astrophysics Data System (ADS)
Medvedev, Boris A.; Tuchin, Valery V.; Yaroslavsky, Ilya V.
1991-05-01
In order to optimize laser PUVA psoriasis treatment we develop the mathematical model of the dynamics of cell processes within epidermis. We consider epidermis as a structure consisting of N cell monolayers. There are four kinds of cells that correspond to four epidermal strata. The different kinds of cells can exist within a given monolayer. We assume that the following cell processes take place: division, death and transition from one stratum to the following. Discrete transition of cells from stratum j to j + 1 approximates to real differentiation.
NASA Astrophysics Data System (ADS)
Ciminelli, C.; Armenise, M. N.
2007-07-01
In this paper report on the design of a 2D PBG filter in polymeric material. The filter is a Fabry-Perot cavity having a self-sustained membrane configuration. A deep parametric analysis has been carried out for improving the performance, taking also into account the fabrication tolerances Best performance in terms of lateral confinement have been obtained in case of square lattice. As for materials, polystyrene shown best in terms of refractive index value, length of the photonic crystal structure and attenuation value in the band gap. The filter can be used either in sensing applications or in telecommunication field.
NASA Astrophysics Data System (ADS)
Ivy, D. J.; Rigby, M. L.; Prinn, R. G.; Muhle, J.; Weiss, R. F.
2009-12-01
We present optimized annual global emissions from 1973-2008 of nitrogen trifluoride (NF3), a powerful greenhouse gas which is not currently regulated by the Kyoto Protocol. In the past few decades, NF3 production has dramatically increased due to its usage in the semiconductor industry. Emissions were estimated through the 'pulse-method' discrete Kalman filter using both a simple, flexible 2-D 12-box model used in the Advanced Global Atmospheric Gases Experiment (AGAGE) network and the Model for Ozone and Related Tracers (MOZART v4.5), a full 3-D atmospheric chemistry model. No official audited reports of industrial NF3 emissions are available, and with limited information on production, a priori emissions were estimated using both a bottom-up and top-down approach with two different spatial patterns based on semiconductor perfluorocarbon (PFC) emissions from the Emission Database for Global Atmospheric Research (EDGAR v3.2) and Semiconductor Industry Association sales information. Both spatial patterns used in the models gave consistent results, showing the robustness of the estimated global emissions. Differences between estimates using the 2-D and 3-D models can be attributed to transport rates and resolution differences. Additionally, new NF3 industry production and market information is presented. Emission estimates from both the 2-D and 3-D models suggest that either the assumed industry release rate of NF3 or industry production information is still underestimated.
Mathematical modeling of infectious disease dynamics
Siettos, Constantinos I.; Russo, Lucia
2013-01-01
Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works. PMID:23552814
Stock, Kristin; Estrada, Marta F; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vítor E; Barbier, Michaël; Blom, Sami; Arundkar, Sharath C; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph
2016-01-01
Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models. PMID:27364600
Stock, Kristin; Estrada, Marta F.; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vítor E.; Barbier, Michaël; Blom, Sami; Arundkar, Sharath C.; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph
2016-01-01
Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models. PMID:27364600
A Mathematical Model of Idiopathic Pulmonary Fibrosis
Hao, Wenrui; Marsh, Clay; Friedman, Avner
2015-01-01
Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology, and life expectancy of 3-5 years after diagnosis. The incidence rate in the United States is estimated as high as 15 per 100,000 persons per year. The disease is characterized by repeated injury to the alveolar epithelium, resulting in inflammation and deregulated repair, leading to scarring of the lung tissue, resulting in progressive dyspnea and hypoxemia. The disease has no cure, although new drugs are in clinical trials and two agents have been approved for use by the FDA. In the present paper we develop a mathematical model based on the interactions among cells and proteins that are involved in the progression of the disease. The model simulations are shown to be in agreement with available lung tissue data of human patients. The model can be used to explore the efficacy of potential drugs. PMID:26348490
Müller, Peter; Messmer, Marie; Bayer, Monika; Pfeilschifter, Josef M; Hintermann, Edith; Christen, Urs
2016-05-01
Non-alcoholic fatty liver disease (NAFLD) and its more severe development non-alcoholic steatohepatitis (NASH) are increasing worldwide. In particular NASH, which is characterized by an active hepatic inflammation, has often severe consequences including progressive fibrosis, cirrhosis, and eventually hepatocellular carcinoma (HCC). Here we investigated how metabolic liver injury is influencing the pathogenesis of autoimmune hepatitis (AIH). We used the CYP2D6 mouse model in which wild type C57BL/6 mice are infected with an Adenovirus expressing the major liver autoantigen cytochrome P450 2D6 (CYP2D6). Such mice display several features of human AIH, including interface hepatitis, formation of LKM-1 antibodies and CYP2D6-specific T cells, as well as hepatic fibrosis. NAFLD was induced with a high-fat diet (HFD). We found that pre-existing NAFLD potentiates the severity of AIH. Mice fed for 12 weeks with a HFD displayed increased cellular infiltration of the liver, enhanced hepatic fibrosis and elevated numbers of liver autoantigen-specific T cells. Our data suggest that a pre-existing metabolic liver injury constitutes an additional risk for the severity of an autoimmune condition of the liver, such as AIH. PMID:26924542
Mathematical modelling of eukaryotic DNA replication.
Hyrien, Olivier; Goldar, Arach
2010-01-01
Eukaryotic DNA replication is a complex process. Replication starts at thousand origins that are activated at different times in S phase and terminates when converging replication forks meet. Potential origins are much more abundant than actually fire within a given S phase. The choice of replication origins and their time of activation is never exactly the same in any two cells. Individual origins show different efficiencies and different firing time probability distributions, conferring stochasticity to the DNA replication process. High-throughput microarray and sequencing techniques are providing increasingly huge datasets on the population-averaged spatiotemporal patterns of DNA replication in several organisms. On the other hand, single-molecule replication mapping techniques such as DNA combing provide unique information about cell-to-cell variability in DNA replication patterns. Mathematical modelling is required to fully comprehend the complexity of the chromosome replication process and to correctly interpret these data. Mathematical analysis and computer simulations have been recently used to model and interpret genome-wide replication data in the yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe, in Xenopus egg extracts and in mammalian cells. These works reveal how stochasticity in origin usage confers robustness and reliability to the DNA replication process. PMID:20205354
Mathematical Modelling: Transitions between the Real World and the Mathematical Model
ERIC Educational Resources Information Center
Crouch, Rosalind; Haines, Christopher
2004-01-01
Applications in engineering, science and technology within undergraduate programmes can be difficult for students to understand. In this paper, new results are presented which go some way to demonstrate and explain the problems faced by students in linking mathematical models to real-world applications. The study is based on student responses to…
Preparing Secondary Mathematics Teachers: A Focus on Modeling in Algebra
ERIC Educational Resources Information Center
Jung, Hyunyi; Mintos, Alexia; Newton, Jill
2015-01-01
This study addressed the opportunities to learn (OTL) modeling in algebra provided to secondary mathematics pre-service teachers (PSTs). To investigate these OTL, we interviewed five instructors of required mathematics and mathematics education courses that had the potential to include opportunities for PSTs to learn algebra at three universities.…
Building Mathematics Achievement Models in Four Countries Using TIMSS 2003
ERIC Educational Resources Information Center
Wang, Ze; Osterlind, Steven J.; Bergin, David A.
2012-01-01
Using the Trends in International Mathematics and Science Study 2003 data, this study built mathematics achievement models of 8th graders in four countries: the USA, Russia, Singapore and South Africa. These 4 countries represent the full spectrum of mathematics achievement. In addition, they represent 4 continents, and they include 2 countries…
SU-E-T-05: A 2D EPID Transit Dosimetry Model Based On An Empirical Quadratic Formalism
Tan, Y; Metwaly, M; Glegg, M; Baggarley, S; Elliott, A
2014-06-01
Purpose: To describe a 2D electronic portal imaging device (EPID) transit dosimetry model, based on an empirical quadratic formalism, that can predict either EPID or in-phantom dose distribution for comparisons with EPID captured image or treatment planning system (TPS) dose respectively. Methods: A quadratic equation can be used to relate the reduction in intensity of an exit beam to the equivalent path length of the attenuator. The calibration involved deriving coefficients from a set of dose planes measured for homogeneous phantoms with known thicknesses under reference conditions. In this study, calibration dose planes were measured with EPID and ionisation chamber (IC) in water for the same reference beam (6MV, 100mu, 20×20cm{sup 2}) and set of thicknesses (0–30cm). Since the same calibration conditions were used, the EPID and IC measurements can be related through the quadratic equation. Consequently, EPID transit dose can be predicted from TPS exported dose planes and in-phantom dose can be predicted using EPID distribution captured during treatment as an input. The model was tested with 4 open fields, 6 wedge fields, and 7 IMRT fields on homogeneous and heterogeneous phantoms. Comparisons were done using 2D absolute gamma (3%/3mm) and results were validated against measurements with a commercial 2D array device. Results: The gamma pass rates for comparisons between EPID measured and predicted ranged from 93.6% to 100.0% for all fields and phantoms tested. Results from this study agreed with 2D array measurements to within 3.1%. Meanwhile, comparisons in-phantom between TPS computed and predicted ranged from 91.6% to 100.0%. Validation with 2D array device was not possible for inphantom comparisons. Conclusion: A 2D EPID transit dosimetry model for treatment verification was described and proven to be accurate. The model has the advantage of being generic and allows comparisons at the EPID plane as well as multiple planes in-phantom.
A new micromechanical approach of micropolar continuum modeling for 2-D periodic cellular material
NASA Astrophysics Data System (ADS)
Niu, Bin; Yan, Jun
2016-06-01
In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional (2-D) periodic cellular material to capture its non-local properties and to explain the size effects in its structural analysis. The new united approach takes both the displacement compatibility and the equilibrium of forces and moments into consideration, where Taylor series expansion of the displacement and rotation fields and the extended averaging procedure with an explicit enforcement of equilibrium are adopted in the micromechanical analysis of a unit cell. In numerical examples, the effective micropolar constants obtained in this paper and others derived in the literature are used for the equivalent micropolar continuum simulation of cellular solids. The solutions from the equivalent analysis are compared with the discrete simulation solutions of the cellular solids. It is found that the micropolar constants developed in this paper give satisfying results of equivalent analysis for the periodic cellular material.
2-D Modeling of the Variability of the Solar Interior for Climate Studies
NASA Astrophysics Data System (ADS)
Sofia, S.; Li, L. H.; Spada, F.; Ventura, P.
2012-07-01
To establish the possible influence of solar variability on climate, it is necessary to understand the luminosity changes induced by a variable dynamo magnetic field. To accomplish this, we have developed a 2D code of the structure and evolution of the solar interior (based on the 1D YREC code), that includes rotation, magnetic fields of arbitrary configuration, and turbulence, that can be run on very short time scales (down to 1 year), and that represents all global parameters (R, L, Teff) with a relative accuracy of 1 part per million, or better. This paper discusses the motivation for this work, the structure and the physical components of the code, and its application to interpret the results of the SODISM experiment on the PICARD satellite, and of the balloon-borne Solar Disk Sextant (SDS) experiment.
A 2-D Self-Consistent DSMC Model for Chemically Reacting Low Pressure Plasma Reactors
Bartel, Timothy J.; Economou, Demetre; Johannes, Justine E.
1999-06-17
This paper will focus on the methodology of using a 2D plasma Direct Simulation Monte Carlo technique to simulate the species transport in an inductively coupled, low pressure, chemically reacting plasma system. The pressure in these systems is typically less than 20 mtorr with plasma densities of approximately 10{sup 17} {number_sign}/m{sup 3} and an ionization level of only 0.1%. This low ionization level tightly couples the neutral, ion, and electron chemistries and interactions in a system where the flow is subsonic. We present our strategy and compare simulation results to experimental data for Cl{sub 2} in a Gaseous Electronics Conference (GEC) reference cell modified with an inductive coil.
2D full wave modeling for a synthetic Doppler backscattering diagnostic
Hillesheim, J. C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A.; Holland, C.
2012-10-15
Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (k{sub {theta}}{rho}{sub s}{approx} 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.
Mathematics Teacher Education: A Model from Crimea.
ERIC Educational Resources Information Center
Ferrucci, Beverly J.; Evans, Richard C.
1993-01-01
Reports on the mathematics teacher preparation program at Simferopol State University, the largest institution of higher education in the Crimea. The article notes the value of investigating what other countries consider essential in mathematics teacher education to improve the mathematical competence of students in the United States. (SM)
Missing the Promise of Mathematical Modeling
ERIC Educational Resources Information Center
Meyer, Dan
2015-01-01
The Common Core State Standards for Mathematics (CCSSM) have exerted enormous pressure on every participant in a child's education. Students are struggling to meet new standards for mathematics learning, and parents are struggling to understand how to help them. Teachers are growing in their capacity to develop new mathematical competencies, and…
Mathematical modeling of a rotary hearth calciner
Meisingset, H.C.; Balchen, J.G.; Fernandez, R.
1996-10-01
Calcination of petroleum coke is a thermal process where green petroleum coke is heat-treated to a pre-determined temperature. During heat treatment the associated moisture is removed and the volatile combustible matter (VCM) is released. The VCM is burned in the gas phase giving the energy to sustain the process. In addition, structural changes take place. The combination of the final calcination temperature and the residence time determine the final real density of the calcined coke. Depending on its further use, different real density requirements may arise. It is important to control the dynamics of the calcination process so that the specified final quality is achieved. A dynamic mathematical model of a Rotary Hearth Calciner is presented. The model is based on physicochemical laws involving the most important phenomena taking place and the relevant calcination parameters. The temperature profile in the coke bed is predicted which in terms is related to the real density of the coke.
Mathematical modeling of a thermovoltaic cell
NASA Technical Reports Server (NTRS)
White, Ralph E.; Kawanami, Makoto
1992-01-01
A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.
NASA Astrophysics Data System (ADS)
Lin, L.; Ding, S. S.; Chen, J.; Liang, X. Y.; Li, X. M.
2012-05-01
A 2D random void model (RVM) is proposed to describe voids morphology in Carbon Fiber Reinforced Plastic (CFRP) composite materials and used to investigate Ultrasonic Scattering Attenuation Coefficient (USAC). Void morphology simulations from RVM present good matches to micrographic observations. The fluctuations of USAC due to the randomness of void morphology and their dependence on the frequency have been discussed, which are significantly helpful to clarify ultrasonic scattering attenuation mechanism from voids in nature.
Mathematical modeling of acid-base physiology
Occhipinti, Rossana; Boron, Walter F.
2015-01-01
pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3− , NH4+) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cell–which to our knowledge is the first one capable of handling a multitude of buffer reaction–that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3− influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. PMID:25617697
2D Radiation MHD K-shell Modeling of Single Wire Array Stainless Steel Experiments on the Z Machine
Thornhill, J. W.; Giuliani, J. L.; Apruzese, J. P.; Chong, Y. K.; Davis, J.; Dasgupta, A.; Whitney, K. G.; Clark, R. W.; Jones, B.; Coverdale, C. A.; Ampleford, D. J.; Cuneo, M. E.; Deeney, C.
2009-01-21
Many physical effects can produce unstable plasma behavior that affect K-shell emission from arrays. Such effects include: asymmetry in the initial density profile, asymmetry in power flow, thermal conduction at the boundaries, and non-uniform wire ablation. Here we consider how asymmetry in the radiation field also contributes to the generation of multidimensional plasma behavior that affects K-shell power and yield. To model this radiation asymmetry, we have incorporated into the MACH2 r-z MHD code a self-consistent calculation of the non-LTE population kinetics based on radiation transport using multi-dimensional ray tracing. Such methodology is necessary for modeling the enhanced radiative cooling that occurs at the anode and cathode ends of the pinch during the run-in phase of the implosion. This enhanced radiative cooling is due to reduced optical depth at these locations producing an asymmetric flow of radiative energy that leads to substantial disruption of large initial diameter (>5 cm) pinches and drives 1D into 2D fluid (i.e., Rayleigh-Taylor like) flows. The impact of this 2D behavior on K-shell power and yield is investigated by comparing 1D and 2D model results with data obtained from a series of single wire array stainless steel experiments performed on the Z generator.
Compartment modeling anslysis of C-11 flumazenil kinetics in human brain using dynamic 2D and 3D PET
Choi, Y.; Simpson, N.; Townsend, D.W.
1994-05-01
We examined the feasibility of compartment modeling analysis and the numerical accuracy of model parameters of radioligand delivery and binding in the brain using 2D and 3D PET. Two subjects were injected with C-11 flumazenil (FMZ) i.v., and imaged over the brain with a dynamic sequence of 6x20 s, 2x30 s, 4x90 s, 4x180 s, 2x300 s, 2x600 s, and 2x1200 s frames. Different scatter correction methods were applied to the 3D data: No scatter correction (NOC), dual-energy window subtraction (DEW) and convolution-subtraction (CON). The kinetic data for regions listed below were fitted to a 2-compartment, 2-parameter model. Both 2D and 3D results are similar and within the expected range. The 3D %SE was less than 2D despite the smaller dose. The effect of the scatter in 3D parameter estimates appears to be small. These preliminary data indicate temporally sufficient kinetic data can be acquired in 3D mode to perform compartmental analysis of C-11 FMZ. Improved sensitivity in 3D may allow more accurate receptor characterization especially in small structures or in low specific binding areas.
Incorporating neurophysiological concepts in mathematical thermoregulation models
NASA Astrophysics Data System (ADS)
Kingma, Boris R. M.; Vosselman, M. J.; Frijns, A. J. H.; van Steenhoven, A. A.; van Marken Lichtenbelt, W. D.
2014-01-01
Skin blood flow (SBF) is a key player in human thermoregulation during mild thermal challenges. Various numerical models of SBF regulation exist. However, none explicitly incorporates the neurophysiology of thermal reception. This study tested a new SBF model that is in line with experimental data on thermal reception and the neurophysiological pathways involved in thermoregulatory SBF control. Additionally, a numerical thermoregulation model was used as a platform to test the function of the neurophysiological SBF model for skin temperature simulation. The prediction-error of the SBF-model was quantified by root-mean-squared-residual (RMSR) between simulations and experimental measurement data. Measurement data consisted of SBF (abdomen, forearm, hand), core and skin temperature recordings of young males during three transient thermal challenges (1 development and 2 validation). Additionally, ThermoSEM, a thermoregulation model, was used to simulate body temperatures using the new neurophysiological SBF-model. The RMSR between simulated and measured mean skin temperature was used to validate the model. The neurophysiological model predicted SBF with an accuracy of RMSR < 0.27. Tskin simulation results were within 0.37 °C of the measured mean skin temperature. This study shows that (1) thermal reception and neurophysiological pathways involved in thermoregulatory SBF control can be captured in a mathematical model, and (2) human thermoregulation models can be equipped with SBF control functions that are based on neurophysiology without loss of performance. The neurophysiological approach in modelling thermoregulation is favourable over engineering approaches because it is more in line with the underlying physiology.
Teaching Mathematical Modelling for Earth Sciences via Case Studies
NASA Astrophysics Data System (ADS)
Yang, Xin-She
2010-05-01
Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).
Mathematical model of tumor-immune surveillance.
Mahasa, Khaphetsi Joseph; Ouifki, Rachid; Eladdadi, Amina; Pillis, Lisette de
2016-09-01
We present a novel mathematical model involving various immune cell populations and tumor cell populations. The model describes how tumor cells evolve and survive the brief encounter with the immune system mediated by natural killer (NK) cells and the activated CD8(+) cytotoxic T lymphocytes (CTLs). The model is composed of ordinary differential equations describing the interactions between these important immune lymphocytes and various tumor cell populations. Based on up-to-date knowledge of immune evasion and rational considerations, the model is designed to illustrate how tumors evade both arms of host immunity (i.e. innate and adaptive immunity). The model predicts that (a) an influx of an external source of NK cells might play a crucial role in enhancing NK-cell immune surveillance; (b) the host immune system alone is not fully effective against progression of tumor cells; (c) the development of immunoresistance by tumor cells is inevitable in tumor immune surveillance. Our model also supports the importance of infiltrating NK cells in tumor immune surveillance, which can be enhanced by NK cell-based immunotherapeutic approaches. PMID:27317864
Mathematical Model of Evolution of Brain Parcellation.
Ferrante, Daniel D; Wei, Yi; Koulakov, Alexei A
2016-01-01
We study the distribution of brain and cortical area sizes [parcellation units (PUs)] obtained for three species: mouse, macaque, and human. We find that the distribution of PU sizes is close to lognormal. We propose the mathematical model of evolution of brain parcellation based on iterative fragmentation and specialization. In this model, each existing PU has a probability to be split that depends on PU size only. This model suggests that the same evolutionary process may have led to brain parcellation in these three species. Within our model, region-to-region (macro) connectivity is given by the outer product form. We show that most experimental data on non-zero macaque cortex macroscopic-level connections can be explained by the outer product power-law form suggested by our model (62% for area V1). We propose a multiplicative Hebbian learning rule for the macroconnectome that could yield the correct scaling of connection strengths between areas. We thus propose an evolutionary model that may have contributed to both brain parcellation and mesoscopic level connectivity in mammals. PMID:27378859
Mathematical Model of Evolution of Brain Parcellation
Ferrante, Daniel D.; Wei, Yi; Koulakov, Alexei A.
2016-01-01
We study the distribution of brain and cortical area sizes [parcellation units (PUs)] obtained for three species: mouse, macaque, and human. We find that the distribution of PU sizes is close to lognormal. We propose the mathematical model of evolution of brain parcellation based on iterative fragmentation and specialization. In this model, each existing PU has a probability to be split that depends on PU size only. This model suggests that the same evolutionary process may have led to brain parcellation in these three species. Within our model, region-to-region (macro) connectivity is given by the outer product form. We show that most experimental data on non-zero macaque cortex macroscopic-level connections can be explained by the outer product power-law form suggested by our model (62% for area V1). We propose a multiplicative Hebbian learning rule for the macroconnectome that could yield the correct scaling of connection strengths between areas. We thus propose an evolutionary model that may have contributed to both brain parcellation and mesoscopic level connectivity in mammals. PMID:27378859
Mathematical modeling of electrocardiograms: a numerical study.
Boulakia, Muriel; Cazeau, Serge; Fernández, Miguel A; Gerbeau, Jean-Frédéric; Zemzemi, Nejib
2010-03-01
This paper deals with the numerical simulation of electrocardiograms (ECG). Our aim is to devise a mathematical model, based on partial differential equations, which is able to provide realistic 12-lead ECGs. The main ingredients of this model are classical: the bidomain equations coupled to a phenomenological ionic model in the heart, and a generalized Laplace equation in the torso. The obtention of realistic ECGs relies on other important features--including heart-torso transmission conditions, anisotropy, cell heterogeneity and His bundle modeling--that are discussed in detail. The numerical implementation is based on state-of-the-art numerical methods: domain decomposition techniques and second order semi-implicit time marching schemes, offering a good compromise between accuracy, stability and efficiency. The numerical ECGs obtained with this approach show correct amplitudes, shapes and polarities, in all the 12 standard leads. The relevance of every modeling choice is carefully discussed and the numerical ECG sensitivity to the model parameters investigated. PMID:20033779
Toward IMRT 2D dose modeling using artificial neural networks: A feasibility study
Kalantzis, Georgios; Vasquez-Quino, Luis A.; Zalman, Travis; Pratx, Guillem; Lei, Yu
2011-10-15
Purpose: To investigate the feasibility of artificial neural networks (ANN) to reconstruct dose maps for intensity modulated radiation treatment (IMRT) fields compared with those of the treatment planning system (TPS). Methods: An artificial feed forward neural network and the back-propagation learning algorithm have been used to replicate dose calculations of IMRT fields obtained from PINNACLE{sup 3} v9.0. The ANN was trained with fluence and dose maps of IMRT fields for 6 MV x-rays, which were obtained from the amorphous silicon (a-Si) electronic portal imaging device of Novalis TX. Those fluence distributions were imported to the TPS and the dose maps were calculated on the horizontal midpoint plane of a water equivalent homogeneous cylindrical virtual phantom. Each exported 2D dose distribution from the TPS was classified into two clusters of high and low dose regions, respectively, based on the K-means algorithm and the Euclidian metric in the fluence-dose domain. The data of each cluster were divided into two sets for the training and validation phase of the ANN, respectively. After the completion of the ANN training phase, 2D dose maps were reconstructed by the ANN and isodose distributions were created. The dose maps reconstructed by ANN were evaluated and compared with the TPS, where the mean absolute deviation of the dose and the {gamma}-index were used. Results: A good agreement between the doses calculated from the TPS and the trained ANN was achieved. In particular, an average relative dosimetric difference of 4.6% and an average {gamma}-index passing rate of 93% were obtained for low dose regions, and a dosimetric difference of 2.3% and an average {gamma}-index passing rate of 97% for high dose region. Conclusions: An artificial neural network has been developed to convert fluence maps to corresponding dose maps. The feasibility and potential of an artificial neural network to replicate complex convolution kernels in the TPS for IMRT dose calculations
Mathematical modeling heat and mass transfer processes in porous media
NASA Astrophysics Data System (ADS)
Akhmed-Zaki, Darkhan
2013-11-01
On late development stages of oil-fields appears a complex problem of oil-recovery reduction. One of solution approaches is injecting of surfactant together with water in the form of active impurities into the productive layer - for decreasing oil viscosity and capillary forces between ``oil-water'' phases system. In fluids flow the surfactant can be in three states: dissolved in water, dissolved in oil and adsorbed on pore channels' walls. The surfactant's invasion into the reservoir is tracked by its diffusion with reservoir liquid and mass-exchange with two phase (liquid and solid) components of porous structure. Additionally, in this case heat exchange between fluids (injected, residual) and framework of porous medium has practical importance for evaluating of temperature influences on enhancing oil recovery. Now, the problem of designing an adequate mathematical model for describing a simultaneous flowing heat and mass transfer processes in anisotropic heterogeneous porous medium -surfactant injection during at various temperature regimes has not been fully researched. In this work is presents a 2D mathematical model of surfactant injections into the oil reservoir. Description of heat- and mass transfer processes in a porous media is done through differential and kinetic equations. For designing a computational algorithm is used modify version of IMPES method. The sequential and parallel computational algorithms are developed using an adaptive curvilinear meshes which into account heterogeneous porous structures. In this case we can evaluate the boundaries of our process flows - fronts (``invasion'', ``heat'' and ``mass'' transfers), according to the pressure, temperature, and concentration gradient changes.
A novel simple procedure to consider seismic soil structure interaction effects in 2D models
NASA Astrophysics Data System (ADS)
Jaramillo, Juan Diego; Gómez, Juan David; Restrepo, Doriam; Rivera, Santiago
2014-09-01
A method is proposed to estimate the seismic soil-structure-interaction (SSI) effects for use in engineering practice. It is applicable to 2D structures subjected to vertically incident shear waves supported by homogenous half-spaces. The method is attractive since it keeps the simplicity of the spectral approach, overcomes some of the difficulties and inaccuracies of existing classical techniques and yet it considers a physically consistent excitation. This level of simplicity is achieved through a response spectra modification factor that can be applied to the free-field 5%-damped response spectra to yield design spectral ordinates that take into account the scattered motions introduced by the interaction effects. The modification factor is representative of the Transfer Function (TF) between the structural relative displacements and the free-field motion, which is described in terms of its maximum amplitude and associated frequency. Expressions to compute the modification factor by practicing engineers are proposed based upon a parametric study using 576 cases representative of actual structures. The method is tested in 10 cases spanning a wide range of common fundamental vibration periods.
Mathematical model for contemplative amoeboid locomotion
NASA Astrophysics Data System (ADS)
Ueda, Kei-Ichi; Takagi, Seiji; Nishiura, Yasumasa; Nakagaki, Toshiyuki
2011-02-01
It has recently been reported that even single-celled organisms appear to be “indecisive” or “contemplative” when confronted with an obstacle. When the amoeboid organism Physarum plasmodium encounters the chemical repellent quinine during migration along a narrow agar lane, it stops for a period of time (typically several hours) and then suddenly begins to move again. When movement resumes, three distinct types of behavior are observed: The plasmodium continues forward, turns back, or migrates in both directions simultaneously. Here, we develop a continuum mathematical model of the cell dynamics of contemplative amoeboid movement. Our model incorporates the dynamics of the mass flow of the protoplasmic sol, in relation to the generation of pressure based on the autocatalytic kinetics of pseudopod formation and retraction (mainly, sol-gel conversion accompanying actin-myosin dynamics). The biological justification of the model is tested by comparing with experimentally measured spatiotemporal profiles of the cell thickness. The experimentally observed types of behavior are reproduced in simulations based on our model, and the core logic of the modeled behavior is clarified by means of nonlinear dynamics. An on-off transition between the refractory and activated states of the chemical reactivity that takes place at the leading edge of the plasmodium plays a key role in the emergence of contemplative behavior.
Mathematical modelling of the anaerobic hybrid reactor.
Soroa, S; Gomez, J; Ayesa, E; Garcia-Heras, J L
2006-01-01
This paper presents a new mathematical model for the anaerobic hybrid reactor (AHR) (a UASB reactor and an anaerobic filter in series) and its experimental calibration and verification. The model includes a biochemical part and a mass transport one, which considers the AHR as two contact reactors in series. The anaerobic process transformations are described by the model developed by Siegrist et al. The fraction (F) of solids in the clarification zone of the UASB reactor that leaves this first reactor is the key physical parameter to be estimated. The main parameters of the model were calibrated using experimental results from a bench-scale AHR fed with real slaughterhouse wastewater. The fraction of inert particulate COD in the influent and the factor F were estimated by a trial and error procedure comparing experimental and simulated results of the mass of solids in the lower tank and the VSS concentration in the AHR effluent. A good fit was obtained. The final verification was carried out by comparing a set of experiments with simulated data. The model's capability to predict the process performance was thus proved. PMID:16939085
ERIC Educational Resources Information Center
Akgün, Levent
2015-01-01
The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…
Mathematics Models in Chemistry--An Innovation for Non-Mathematics and Non-Science Majors
ERIC Educational Resources Information Center
Rash, Agnes M.; Zurbach, E. Peter
2004-01-01
The intention of this article is to present a year-long interdisciplinary course, Mathematical Models in Chemistry. The course is comprised of eleven units, each of which has both a mathematical and a chemical component. A syllabus of the course is given and the format of the class is explained. The interaction of the professors and the content is…
Mathematical Modeling of the Origins of Life
NASA Technical Reports Server (NTRS)
Pohorille, Andrew
2006-01-01
The emergence of early metabolism - a network of catalyzed chemical reactions that supported self-maintenance, growth, reproduction and evolution of the ancestors of contemporary cells (protocells) was a critical, but still very poorly understood step on the path from inanimate to animate matter. Here, it is proposed and tested through mathematical modeling of biochemically plausible systems that the emergence of metabolism and its initial evolution towards higher complexity preceded the emergence of a genome. Even though the formation of protocellular metabolism was driven by non-genomic, highly stochastic processes the outcome was largely deterministic, strongly constrained by laws of chemistry. It is shown that such concepts as speciation and fitness to the environment, developed in the context of genomic evolution, also held in the absence of a genome.
Mathematical analysis of epidemiological models with heterogeneity
Van Ark, J.W.
1992-01-01
For many diseases in human populations the disease shows dissimilar characteristics in separate subgroups of the population; for example, the probability of disease transmission for gonorrhea or AIDS is much higher from male to female than from female to male. There is reason to construct and analyze epidemiological models which allow this heterogeneity of population, and to use these models to run computer simulations of the disease to predict the incidence and prevalence of the disease. In the models considered here the heterogeneous population is separated into subpopulations whose internal and external interactions are homogeneous in the sense that each person in the population can be assumed to have all average actions for the people of that subpopulation. The first model considered is an SIRS models; i.e., the Susceptible can become Infected, and if so he eventually Recovers with temporary immunity, and after a period of time becomes Susceptible again. Special cases allow for permanent immunity or other variations. This model is analyzed and threshold conditions are given which determine whether the disease dies out or persists. A deterministic model is presented; this model is constructed using difference equations, and it has been used in computer simulations for the AIDS epidemic in the homosexual population in San Francisco. The homogeneous version and the heterogeneous version of the differential-equations and difference-equations versions of the deterministic model are analyzed mathematically. In the analysis, equilibria are identified and threshold conditions are set forth for the disease to die out if the disease is below the threshold so that the disease-free equilibrium is globally asymptotically stable. Above the threshold the disease persists so that the disease-free equilibrium is unstable and there is a unique endemic equilibrium.
Mathematical modeling plasma transport in tokamaks
Quiang, Ji
1995-12-31
In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10{sup 20}/m{sup 3} with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.
Mathematical modeling of human secondary osteons.
Ascenzi, Maria-Grazia; Andreuzzi, Marta; Kabo, J Michael
2004-01-01
This investigation explores the structural dimensions and patterns within single secondary osteons, with consideration of their biological variation. New data from images obtained previously of osteons observed through linearly polarized light, electron microscopy, and micro-x-ray, combined with recent findings on lamellae by circularly polarized light, confocal microscopy, synchrotron x-ray diffraction, and micro-x-ray, provide the basis for novel computerized models of single osteons and single lamellae. The novelty of such models is the concurrent representation of (1) collagen-hydroxyapatite orientation, (2) relative hydroxyapatite percentage, (3) distributions of osteocytes' lacunae and canaliculae, and (4) biological variations in dimensions of the relevant structures. The mathematical software Maple realizes the computerized models. While the parts of the models are constructed on a personal computer, the voluminous data associated with the representation of lacunar and canalicular distributions require a supercomputer for assembly of the models and final analysis. The programming used to define the models affords the option to randomize the dimensional specifications of osteons, lamellae, lacunae, and canaliculae within the experimentally observed numeric ranges and distributions. Through this option, the program can operate so that each run of the file produces a unique random model within the observed biological variations. The program can also be run to implement specific dimensional requirements. The modeling has applications in the microstructural study of fracture propagation and remodeling, as well as in the simulation of mechanical testing. The approach taken here is of wide application and could be of value in other areas of microscopy such as scanning electron microscopy, microcomputerized tomography scan, and magnetic resonance imaging on cancellous bone structures. PMID:15000289
Mathematical Model for the Mineralization of Bone
NASA Technical Reports Server (NTRS)
Martin, Bruce
1994-01-01
A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. The model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.
Mathematical modelling of animate and intentional motion.
Rittscher, Jens; Blake, Andrew; Hoogs, Anthony; Stein, Gees
2003-01-01
Our aim is to enable a machine to observe and interpret the behaviour of others. Mathematical models are employed to describe certain biological motions. The main challenge is to design models that are both tractable and meaningful. In the first part we will describe how computer vision techniques, in particular visual tracking, can be applied to recognize a small vocabulary of human actions in a constrained scenario. Mainly the problems of viewpoint and scale invariance need to be overcome to formalize a general framework. Hence the second part of the article is devoted to the question whether a particular human action should be captured in a single complex model or whether it is more promising to make extensive use of semantic knowledge and a collection of low-level models that encode certain motion primitives. Scene context plays a crucial role if we intend to give a higher-level interpretation rather than a low-level physical description of the observed motion. A semantic knowledge base is used to establish the scene context. This approach consists of three main components: visual analysis, the mapping from vision to language and the search of the semantic database. A small number of robust visual detectors is used to generate a higher-level description of the scene. The approach together with a number of results is presented in the third part of this article. PMID:12689374
Mathematical Model for the Mineralization of Bone
NASA Technical Reports Server (NTRS)
Martin, Bruce
1994-01-01
A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. ne model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.
Cocaine addiction and personality: a mathematical model.
Caselles, Antonio; Micó, Joan C; Amigó, Salvador
2010-05-01
The existence of a close relation between personality and drug consumption is recognized, but the corresponding causal connection is not well known. Neither is it well known whether personality exercises an influence predominantly at the beginning and development of addiction, nor whether drug consumption produces changes in personality. This paper presents a dynamic mathematical model of personality and addiction based on the unique personality trait theory (UPTT) and the general modelling methodology. This model attempts to integrate personality, the acute effect of drugs, and addiction. The UPTT states the existence of a unique trait of personality called extraversion, understood as a dimension that ranges from impulsive behaviour and sensation-seeking (extravert pole) to fearful and anxious behaviour (introvert pole). As a consequence of drug consumption, the model provides the main patterns of extraversion dynamics through a system of five coupled differential equations. It combines genetic extraversion, as a steady state, and dynamic extraversion in a unique variable measured on the hedonic scale. The dynamics of this variable describes the effects of stimulant drugs on a short-term time scale (typical of the acute effect); while its mean time value describes the effects of stimulant drugs on a long-term time scale (typical of the addiction effect). This understanding may help to develop programmes of prevention and intervention in drug misuse. PMID:20030966
NASA Astrophysics Data System (ADS)
Puyate, Y. T.; Rim-Rukeh, A.
A 2D model that describes diffusion of oxygen with biochemical reaction during biofilm formation process in static aqueous medium is presented. The analysis is based on X60 steel placed at the bottom of a container containing produced water inoculated with Leptothrix discophora (iron-oxidizing bacteria). These bacteria form biofilms on the exposed surfaces of the metal. The biofilm-microorganisms absorb oxygen from the produced water through biochemical reaction, resulting in transfer of oxygen from the bulk liquid phase to the biofilm. Predictions of the model are compared with experimental data and good agreement is obtained.
Kraloua, B.; Hennad, A.
2008-09-23
The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.
NASA Astrophysics Data System (ADS)
Klemm, Dietmar; Marrani, Alessio; Petri, Nicolò; Santoli, Camilla
2015-09-01
We consider a deformation of the well-known stu model of N = 2, D = 4 supergravity, characterized by a non-homogeneous special Kähler manifold, and by the smallest electric-magnetic duality Lie algebra consistent with its upliftability to five dimensions. We explicitly solve the BPS attractor equations and construct static supersymmetric black holes with radial symmetry, in the context of U(1) dyonic Fayet-Iliopoulos gauging, focussing on axion-free solutions. Due to non-homogeneity of the scalar manifold, the model evades the analysis recently given in the literature. The relevant physical properties of the resulting black hole solution are discussed.
NASA Astrophysics Data System (ADS)
Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe
2016-04-01
In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the
Local Mass Transfer Coefficient for Idealized 2D Urban Street Canyon Models
NASA Astrophysics Data System (ADS)
Leung, Ka Kit; Liu, Chun-Ho
2011-09-01
Human activities in urban areas is one of the major sources of anthropogenic releases in the atmospheric boundary layer (ABL). The mechanism of urban morphology for the heat and mass transfer in built environment is thus an attractive topic in the research community. In this paper, a series of laboratory measurements is conducted to elucidate the mass transfer from hypothetical urban roughness constructed by idealized 2D street canyons. The experiments are carried out in the wind tunnel in the University of Hong Kong. The urban ABL structure inside the wind tunnel is controlled by placing small cubic Styrofoam blocks upstream of the test section. The street canyons are fabricated by movable rectangular acrylic blocks so that different building height to street width (aspect) ratios are examined. The height of building blocks is kept minimum to make sure that the urban ABL over the street canyons is high enough for fully developed turbulent flows. The prevailing wind is normal to the street axis, demonstrating the scenario of least pollutant removal from the street canyons to the urban ABL. The sample street canyon is covered by soaked filter papers to represent uniform mass concentrations on the building facades and ground surface. The wet bulb temperature of the filter papers is continuously monitored to ensure saturated conditions. Their weight before and after an experiment is used to measure the amount of water evaporated. Preliminary results illustrate the local mass transfer coefficient distribution for aspect ratios 1/4, 1/2, 1, and 2, which are comparable with those available in literuatre.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.
This document contains the transcript of a Senate hearing on the crisis in science and math education. The document includes mathematics, science, and engineering education; enhance the scientific and technical literacy of the U.S. public; stimulate the professional from the state of Oregon; Carl Sagan, Cornell women and minorities in careers in…
Review and verification of CARE 3 mathematical model and code
NASA Technical Reports Server (NTRS)
Rose, D. M.; Altschul, R. E.; Manke, J. W.; Nelson, D. L.
1983-01-01
The CARE-III mathematical model and code verification performed by Boeing Computer Services were documented. The mathematical model was verified for permanent and intermittent faults. The transient fault model was not addressed. The code verification was performed on CARE-III, Version 3. A CARE III Version 4, which corrects deficiencies identified in Version 3, is being developed.
Turbulent motion of mass flows. Mathematical modeling
NASA Astrophysics Data System (ADS)
Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana
2016-04-01
New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362
NASA Astrophysics Data System (ADS)
Luo, Xin; Lu, Xin; Cong, Chunxiao; Yu, Ting; Xiong, Qihua; Ying Quek, Su
2015-10-01
2D layered materials have recently attracted tremendous interest due to their fascinating properties and potential applications. The interlayer interactions are much weaker than the intralayer bonds, allowing the as-synthesized materials to exhibit different stacking sequences, leading to different physical properties. Here, we show that regardless of the space group of the 2D materials, the Raman frequencies of the interlayer shear modes observed under the typical configuration blue shift for AB stacked materials, and red shift for ABC stacked materials, as the number of layers increases. Our predictions are made using an intuitive bond polarizability model which shows that stacking sequence plays a key role in determining which interlayer shear modes lead to the largest change in polarizability (Raman intensity); the modes with the largest Raman intensity determining the frequency trends. We present direct evidence for these conclusions by studying the Raman modes in few layer graphene, MoS2, MoSe2, WSe2 and Bi2Se3, using both first principles calculations and Raman spectroscopy. This study sheds light on the influence of stacking sequence on the Raman intensities of intrinsic interlayer modes in 2D layered materials in general, and leads to a practical way of identifying the stacking sequence in these materials.
2005-07-01
Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.
On Mathematical Modeling Of Quantum Systems
Achuthan, P.; Narayanankutty, Karuppath
2009-07-02
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
Mathematical Models of Cardiac Pacemaking Function
NASA Astrophysics Data System (ADS)
Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak
2013-10-01
Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.
NASA Technical Reports Server (NTRS)
Matthaeus, W. H.; Pontius, D. H., Jr.; Gray, P. C.; Bieber, J. W.
1995-01-01
A two-component model for the spectrum of interplanetary magnetic fluctuations was proposed on the basis of ISEE observations, and has found an intriguing level of application in other solar wind studies. The model fluctuations consist of a fraction of 'slab' fluctuations, varying only in the direction parallel to the locally uniform mean magnetic field B(0) and a complement of 2D (two-dimensional) fluctuations that vary in the directions transverse to B(0). We have developed an spectral method computational algorithm for computing the magnetic flux surfaces (flux tubes) associated with the composite model, based upon a precise analogy with equations for ideal transport of a passive scalar in planar two dimensional geometry. Visualization of various composite models will be presented, including the 80 percent 2D/ 20 percent slab model with delta B/B(0) approximately equals 1 and a minus 5/3 spectral law, that is thought to approximately represent a snapshot of solar wind turbulence. Characteristically, the visualizations show that flux tubes, even when defined as regular on some plane, shred and disperse rapidly as they are viewed along the parallel direction. This diffusive process, which generalizes the standard picture of field line random walk, will be discussed in detail. Evidently, the traditional picture that flux tubes randomize like strands of spaghetti with a uniform tangle along the axial direction is in need of modification.
NASA Technical Reports Server (NTRS)
Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Stolarski, Richard S.
1999-01-01
In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes
Mathematical Modeling of Electrochemical Flow Capacitors
Hoyt, NC; Wainright, JS; Savinell, RF
2015-01-13
Electrochemical flow capacitors (EFCs) for grid-scale energy storage are a new technology that is beginning to receive interest. Prediction of the expected performance of such systems is important as modeling can be a useful avenue in the search for design improvements. Models based off of circuit analogues exist to predict EFC performance, but these suffer from deficiencies (e.g. a multitude of fitting constants that are required and the ability to analyze only one spatial direction at a time). In this paper mathematical models based off of three-dimensional macroscopic balances (similar to models for porous electrodes) are reported. Unlike existing three-dimensional porous electrode-based approaches for modeling slurry electrodes, advection (i.e., transport associated with bulk fluid motion) of the overpotential is included in order to account for the surface charge at the interface between flowing particles and the electrolyte. Doing so leads to the presence of overpotential boundary layers that control the performance of EFCs. These models were used to predict the charging behavior of an EFC under both flowing and non-flowing conditions. Agreement with experimental data was good, including proper prediction of the steady-state current that is achieved during charging of a flowing EFC. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.
Munbodh, Reshma; Tagare, Hemant D.; Chen Zhe; Jaffray, David A.; Moseley, Douglas J.; Knisely, Jonathan P. S.; Duncan, James S.
2009-10-15
Purpose: In external beam radiation therapy of pelvic sites, patient setup errors can be quantified by registering 2D projection radiographs acquired during treatment to a 3D planning computed tomograph (CT). We present a 2D-3D registration framework based on a statistical model of the intensity values in the two imaging modalities. Methods: The model assumes that intensity values in projection radiographs are independently but not identically distributed due to the nonstationary nature of photon counting noise. Two probability distributions are considered for the intensity values: Poisson and Gaussian. Using maximum likelihood estimation, two similarity measures, maximum likelihood with a Poisson (MLP) and maximum likelihood with Gaussian (MLG), distribution are derived. Further, we investigate the merit of the model-based registration approach for data obtained with current imaging equipment and doses by comparing the performance of the similarity measures derived to that of the Pearson correlation coefficient (ICC) on accurately collected data of an anthropomorphic phantom of the pelvis and on patient data. Results: Registration accuracy was similar for all three similarity measures and surpassed current clinical requirements of 3 mm for pelvic sites. For pose determination experiments with a kilovoltage (kV) cone-beam CT (CBCT) and kV projection radiographs of the phantom in the anterior-posterior (AP) view, registration accuracies were 0.42 mm (MLP), 0.29 mm (MLG), and 0.29 mm (ICC). For kV CBCT and megavoltage (MV) AP portal images of the same phantom, registration accuracies were 1.15 mm (MLP), 0.90 mm (MLG), and 0.69 mm (ICC). Registration of a kV CT and MV AP portal images of a patient was successful in all instances. Conclusions: The results indicate that high registration accuracy is achievable with multiple methods including methods that are based on a statistical model of a 3D CT and 2D projection images.
Comparison of 2-D and 3-D models of grid erosion in an ion thruster
NASA Technical Reports Server (NTRS)
Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis
1991-01-01
Numerical results of particle-in-cell/Monte Carlo calculations of accelerator grid erosion in an ion thruster are presented. Specifically, it is shown that a three-dimensional model is required to account for the experimentally observed pitting of the accelerator grid between grid apertures. Some comparisons with earlier two-dimensional, axisymmetric model are made, and it is shown that, for identical operating conditions of the thruster, the wear-through time in the three-dimensional model is about two to three times higher than that obtained previously with the two-dimensional model, namely on the order of 10,000 hours for sample calculation.
NASA Astrophysics Data System (ADS)
Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.
2016-04-01
Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation
Modelling Mathematical Reasoning in Physics Education
ERIC Educational Resources Information Center
Uhden, Olaf; Karam, Ricardo; Pietrocola, Mauricio; Pospiech, Gesche
2012-01-01
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a…
Model Learner Outcomes for Mathematics Education.
ERIC Educational Resources Information Center
Halvorson, Judith K.; Stenglein, Sharon M.
Awareness of the need for essential reforms within mathematics education evolved fundamentally as the consequence of several national reports, culminating in the documentation of this need with "Everybody Counts" in January 1989. The publication of "Curriculum and Evaluation Standards for School Mathematics" by the National Council of Teachers of…
Modelling Mathematical Argumentation: The Importance of Qualification
ERIC Educational Resources Information Center
Inglis, Matthew; Mejia-Ramos, Juan; Simpson, Adrian
2007-01-01
In recent years several mathematics education researchers have attempted to analyse students' arguments using a restricted form of Toulmina's ["The Uses of Argument," Cambridge University Press, UK, 1958] argumentation scheme. In this paper we report data from task-based interviews conducted with highly talented postgraduate mathematics students,…
Mathematics Teacher TPACK Standards and Development Model
ERIC Educational Resources Information Center
Niess, Margaret L.; Ronau, Robert N.; Shafer, Kathryn G.; Driskell, Shannon O.; Harper, Suzanne R.; Johnston, Christopher; Browning, Christine; Ozgun-Koca, S. Asli; Kersaint, Gladis
2009-01-01
What knowledge is needed to teach mathematics with digital technologies? The overarching construct, called technology, pedagogy, and content knowledge (TPACK), has been proposed as the interconnection and intersection of technology, pedagogy, and content knowledge. Mathematics Teacher TPACK Standards offer guidelines for thinking about this…
Collective Flocking Dynamics: Long Rang Order in a Non-Equilibrium 2D XY Model
NASA Astrophysics Data System (ADS)
Tu, Yuhai
1996-03-01
We propose and study a non-equilibrium continuum dynamical model for the collective motion of large groups of biological organisms (e.g., flocks of birds, slime molds, schools of fishs, etc.) (J. Toner and Y. Tu, Phys. Rev. Lett.), 75(23), 4326(1995) Our model becomes highly non-trivial, and different from the equilibrium model, for d
Li, Yunfeng; Pizlo, Zygmunt; Steinman, Robert M
2009-05-01
Human beings perceive 3D shapes veridically, but the underlying mechanisms remain unknown. The problem of producing veridical shape percepts is computationally difficult because the 3D shapes have to be recovered from 2D retinal images. This paper describes a new model, based on a regularization approach, that does this very well. It uses a new simplicity principle composed of four shape constraints: viz., symmetry, planarity, maximum compactness and minimum surface. Maximum compactness and minimum surface have never been used before. The model was tested with random symmetrical polyhedra. It recovered their 3D shapes from a single randomly-chosen 2D image. Neither learning, nor depth perception, was required. The effectiveness of the maximum compactness and the minimum surface constraints were measured by how well the aspect ratio of the 3D shapes was recovered. These constraints were effective; they recovered the aspect ratio of the 3D shapes very well. Aspect ratios recovered by the model were compared to aspect ratios adjusted by four human observers. They also adjusted aspect ratios very well. In those rare cases, in which the human observers showed large errors in adjusted aspect ratios, their errors were very similar to the errors made by the model. PMID:18621410
FireStem2D – A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires
Chatziefstratiou, Efthalia K.; Bohrer, Gil; Bova, Anthony S.; Subramanian, Ravishankar; Frasson, Renato P. M.; Scherzer, Amy; Butler, Bret W.; Dickinson, Matthew B.
2013-01-01
FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes. PMID:23894599
Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model
NASA Technical Reports Server (NTRS)
Biegal, Bryan A.; Rafferty, Connor S.; Yu, Zhiping; Ancona, Mario G.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)
1998-01-01
The continued down-scaling of electronic devices, in particular the commercially dominant MOSFET, will force a fundamental change in the process of new electronics technology development in the next five to ten years. The cost of developing new technology generations is soaring along with the price of new fabrication facilities, even as competitive pressure intensifies to bring this new technology to market faster than ever before. To reduce cost and time to market, device simulation must become a more fundamental, indeed dominant, part of the technology development cycle. In order to produce these benefits, simulation accuracy must improve markedly. At the same time, device physics will become more complex, with the rapid increase in various small-geometry and quantum effects. This work describes both an approach to device simulator development and a physical model which advance the effort to meet the tremendous electronic device simulation challenge described above. The device simulation approach is to specify the physical model at a high level to a general-purpose (but highly efficient) partial differential equation solver (in this case PROPHET, developed by Lucent Technologies), which then simulates the model in 1-D, 2-D, or 3-D for a specified device and test regime. This approach allows for the rapid investigation of a wide range of device models and effects, which is certainly essential for device simulation to catch up with, and then stay ahead of, electronic device technology of the present and future. The physical device model used in this work is the density-gradient (DG) quantum correction to the drift-diffusion model [Ancona, Phys. Rev. B 35(5), 7959 (1987)]. This model adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We used the DG model in 1-D and 2-D (for the first time) to simulate both bipolar and unipolar devices. Simulations of heavily-doped, short-base diodes indicated that the DG quantum
Mathematical Models and the Experimental Analysis of Behavior
Mazur, James E
2006-01-01
The use of mathematical models in the experimental analysis of behavior has increased over the years, and they offer several advantages. Mathematical models require theorists to be precise and unambiguous, often allowing comparisons of competing theories that sound similar when stated in words. Sometimes different mathematical models may make equally accurate predictions for a large body of data. In such cases, it is important to find and investigate situations for which the competing models make different predictions because, unless two models are actually mathematically equivalent, they are based on different assumptions about the psychological processes that underlie an observed behavior. Mathematical models developed in basic behavioral research have been used to predict and control behavior in applied settings, and they have guided research in other areas of psychology. A good mathematical model can provide a common framework for understanding what might otherwise appear to be diverse and unrelated behavioral phenomena. Because psychologists vary in their quantitative skills and in their tolerance for mathematical equations, it is important for those who develop mathematical models of behavior to find ways (such as verbal analogies, pictorial representations, or concrete examples) to communicate the key premises of their models to nonspecialists. PMID:16673829
Interface localization in the 2D Ising model with a driven line
NASA Astrophysics Data System (ADS)
Cohen, O.; Mukamel, D.
2016-04-01
We study the effect of a one-dimensional driving field on the interface between two coexisting phases in a two dimensional model. This is done by considering an Ising model on a cylinder with Glauber dynamics in all sites and additional biased Kawasaki dynamics in the central ring. Based on the exact solution of the two-dimensional Ising model, we are able to compute the phase diagram of the driven model within a special limit of fast drive and slow spin flips in the central ring. The model is found to exhibit two phases where the interface is pinned to the central ring: one in which it fluctuates symmetrically around the central ring and another where it fluctuates asymmetrically. In addition, we find a phase where the interface is centered in the bulk of the system, either below or above the central ring of the cylinder. In the latter case, the symmetry breaking is ‘stronger’ than that found in equilibrium when considering a repulsive potential on the central ring. This equilibrium model is analyzed here by using a restricted solid-on-solid model.
Mathematical modeling of Chikungunya fever control
NASA Astrophysics Data System (ADS)
Hincapié-Palacio, Doracelly; Ospina, Juan
2015-05-01
Chikungunya fever is a global concern due to the occurrence of large outbreaks, the presence of persistent arthropathy and its rapid expansion throughout various continents. Globalization and climate change have contributed to the expansion of the geographical areas where mosquitoes Aedes aegypti and Aedes albopictus (Stegomyia) remain. It is necessary to improve the techniques of vector control in the presence of large outbreaks in The American Region. We derive measures of disease control, using a mathematical model of mosquito-human interaction, by means of three scenarios: a) a single vector b) two vectors, c) two vectors and human and non-human reservoirs. The basic reproductive number and critical control measures were deduced by using computer algebra with Maple (Maplesoft Inc, Ontario Canada). Control measures were simulated with parameter values obtained from published data. According to the number of households in high risk areas, the goals of effective vector control to reduce the likelihood of mosquito-human transmission would be established. Besides the two vectors, if presence of other non-human reservoirs were reported, the monthly target of effective elimination of the vector would be approximately double compared to the presence of a single vector. The model shows the need to periodically evaluate the effectiveness of vector control measures.
Analysis of Mathematical Modelling on Potentiometric Biosensors
Mehala, N.; Rajendran, L.
2014-01-01
A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories. PMID:25969765
Analysis of mathematical modelling on potentiometric biosensors.
Mehala, N; Rajendran, L
2014-01-01
A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories. PMID:25969765
A Coupled Finite-Volume Model for 2-D Surface and 3-D Subsurface Flows
Technology Transfer Automated Retrieval System (TEKTRAN)
Surface-subsurface interactions are an intrinsic component of the hydrologic response within a watershed; therefore, hydrologic modeling tools should consider these interactions to provide reliable predictions, especially during rainfall-runoff processes. This paper presents a fully implicit coupled...
A 2D stochastic micro-macro model of equiaxed eutectic solidification
NASA Astrophysics Data System (ADS)
Charbon, Ch; LeSar, R.
1997-01-01
We propose a model of equiaxed eutectic solidification that couples macroscopic heat diffusion with a microscopic description of nucleation and growth of the eutectic grains. The heat equation is solved numerically by means of an implicit finite difference method. The evolution of solid fraction is deduced from a stochastic model of nucleation and growth which uses the local temperature (interpolated from the FDM mesh) to determine the local grain density and the local growth rate. The model predicts the evaluations of both temperature and solid fraction at any point of the sample. Moreover, a realistic appearance of the recalescence on the cooling curves, as well as a detailed picture of the microstructure, are predicted. We apply the model to the solidification of grey cast iron.
A 2D analytical cylindrical gate tunnel FET (CG-TFET) model: impact of shortest tunneling distance
NASA Astrophysics Data System (ADS)
Dash, S.; Mishra, G. P.
2015-09-01
A 2D analytical tunnel field-effect transistor (FET) potential model with cylindrical gate (CG-TFET) based on the solution of Laplace’s equation is proposed. The band-to-band tunneling (BTBT) current is derived by the help of lateral electric field and the shortest tunneling distance. However, the analysis is extended to obtain the subthreshold swing (SS) and transfer characteristics of the device. The dependency of drain current, SS and transconductance on gate voltage and shortest tunneling distance is discussed. Also, the effect of scaling the gate oxide thickness and the cylindrical body diameter on the electrical parameters of the device is analyzed.
Performance of Replica-Exchange Wang-Landau Sampling for the 2D Ising Model: A Brief Survey
Zhao, Yiwei; Cheung, Siu Wun; Li, Ying Wai; Eisenbach, Markus
2014-01-01
We report a brief performance study of the replica-exchange Wang-Landau algorithm, a recently proposed parallel realization of Wang-Landau sampling, using the 2D Ising model as a test case. The simulation time is found to scale inversely with the square root of the number of subwindows (and thus number of processors) used to span the global parameter space. We also investigate the time profiles for random walkers in dierent subwindows to complete iterations, which will aid the development of and adaptive load-balancing scheme.
Mathematical Modeling of Photochemical Air Pollution.
NASA Astrophysics Data System (ADS)
McRae, Gregory John
Air pollution is an environmental problem that is both pervasive and difficult to control. An important element of any rational control approach is a reliable means for evaluating the air quality impact of alternative abatement measures. This work presents such a capability, in the form of a mathematical description of the production and transport of photochemical oxidants within an urban airshed. The combined influences of advection, turbulent diffusion, chemical reaction, emissions and surface removal processes are all incorporated into a series of models that are based on the species continuity equations. A delineation of the essential assumptions underlying the formulation of a three-dimensional, a Lagrangian trajectory, a vertically integrated and single cell air quality model is presented. Since each model employs common components and input data the simpler forms can be used for rapid screening calculations and the more complex ones for detailed evaluations. The flow fields, needed for species transport, are constructed using inverse distance weighted polynomial interpolation techniques that map routine monitoring data onto a regular computational mesh. Variational analysis procedures are then employed to adjust the field so that mass is conserved. Initial concentration and mixing height distributions can be established with the same interpolation algorithms. Subgrid scale turbulent transport is characterized by a gradient diffusion hypothesis. Similarity solutions are used to model the surface layer fluxes. Above this layer different treatments of turbulent diffusivity are required to account for variations in atmospheric stability. Convective velocity scaling is utilized to develop eddy diffusivities for unstable conditions. The predicted mixing times are in accord with results obtained during sulfur hexafluoride (SF(,6)) tracer experiments. Conventional models are employed for neutral and stable conditions. A new formulation for gaseous deposition fluxes
Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory
Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun
2010-09-15
We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.
Multi-level model for 2D human motion analysis and description
NASA Astrophysics Data System (ADS)
Foures, Thomas; Joly, Philippe
2003-01-01
This paper deals with the proposition of a model for human motion analysis in a video. Its main caracteristic is to adapt itself automatically to the current resolution, the actual quality of the picture, or the level of precision required by a given application, due to its possible decomposition into several hierarchical levels. The model is region-based to address some analysis processing needs. The top level of the model is only defined with 5 ribbons, which can be cut into sub-ribbons regarding to a given (or an expected) level of details. Matching process between model and current picture consists in the comparison of extracted subject shape with a graphical rendering of the model built on the base of some computed parameters. The comparison is processed by using a chamfer matching algorithm. In our developments, we intend to realize a platform of interaction between a dancer and tools synthetizing abstract motion pictures and music in the conditions of a real-time dialogue between a human and a computer. In consequence, we use this model in a perspective of motion description instead of motion recognition: no a priori gestures are supposed to be recognized as far as no a priori application is specially targeted. The resulting description will be made following a Description Scheme compliant with the movement notation called "Labanotation".
Teaching Modelling as an Alternative Approach to School Mathematics
ERIC Educational Resources Information Center
Yanagimoto, Tomoko
2005-01-01
Nowadays, mathematics has come to be increasingly put into practical use in various fields in society. However, Japanese students dislike mathematics. The purpose of this study is to consider the significance of teaching modelling. In this paper, I take up "Fuzzy modelling" as teaching material for senior high school students. As a result, it was…
Mathematical Models of the Value of Achievement Testing.
ERIC Educational Resources Information Center
Pinsky, Paul D.
The mathematical models of this paper were developed as an outgrowth of working with the Comprehensive Achievement Monitoring project (Project CAM) which was conceived as a model and application of sampling procedures such as those used in industrial quality control techniques to educational measurement. This paper explores mathematical modeling…
iSTEM: Promoting Fifth Graders' Mathematical Modeling
ERIC Educational Resources Information Center
Yanik, H. Bahadir; Karabas, Celil
2014-01-01
Modeling requires that people develop representations or procedures to address particular problem situations (Lesh et al. 2000). Mathematical modeling is used to describe essential characteristics of a phenomenon or a situation that one intends to study in the real world through building mathematical objects. This article describes how fifth-grade…
Mathematical modeling of moving boundary problems in thermal energy storage
NASA Technical Reports Server (NTRS)
Solomon, A. D.
1980-01-01
The capability for predicting the performance of thermal energy storage (RES) subsystems and components using PCM's based on mathematical and physical models is developed. Mathematical models of the dynamic thermal behavior of (TES) subsystems using PCM's based on solutions of the moving boundary thermal conduction problem and on heat and mass transfer engineering correlations are also discussed.
Visual Modeling as a Motivation for Studying Mathematics and Art
ERIC Educational Resources Information Center
Sendova, Evgenia; Grkovska, Slavica
2005-01-01
The paper deals with the possibility of enriching the curriculum in mathematics, informatics and art by means of visual modeling of abstract paintings. The authors share their belief that in building a computer model of a construct, one gains deeper insight into the construct, and is motivated to elaborate one's knowledge in mathematics and…
Students' Approaches to Learning a New Mathematical Model
ERIC Educational Resources Information Center
Flegg, Jennifer A.; Mallet, Daniel G.; Lupton, Mandy
2013-01-01
In this article, we report on the findings of an exploratory study into the experience of undergraduate students as they learn new mathematical models. Qualitative and quantitative data based around the students' approaches to learning new mathematical models were collected. The data revealed that students actively adopt three approaches to…
Mathematical Manipulative Models: In Defense of "Beanbag Biology"
ERIC Educational Resources Information Center
Jungck, John R.; Gaff, Holly; Weisstein, Anton E.
2010-01-01
Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process--1) use of physical manipulatives, 2) interactive exploration of computer…
Mathematical modeling of biomass fuels formation process
Gaska, Krzysztof Wandrasz, Andrzej J.
2008-07-01
The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task.
A mathematical model of biological evolution.
Ishii, K; Matsuda, H; Ogita, N
1982-01-01
In order to understand generally how the biological evolution rate depends on relevant parameters such as mutation rate, intensity of selection pressure and its persistence time, the following mathematical model is proposed: dNn(t)/dt = (mn(t) - mu)Nn(t) + muNn-1(t) (n = 0,1,2,3,...), where Nn(t) and mn(t) are respectively the number and Malthusian parameter of replicons with step number n in a population at time t and mean is the mutation rate, assumed to be a positive constant. The step number of each replicon is defined as either equal to or larger by one than that of its parent, the latter case occurring when and only when mutation has taken place. The average evolution rate defined by v infinity identical to lim t leads to infinity sigma infinity n = o nNn(t)/t sigma infinity n = o Nn(t) is rigorously obtained for the case (i) mn(t) = mn is independent of t (constant fitness model), where mn is essentially periodic with respect to n, and for the case (ii) mn(t) = s(-1) n+[t/tau] (periodic fitness model), together with the long time average -m infinity of the average Malthusian parameter -m identical to sigma infinity n = o mn(t)Nn(t)/sigma infinity n = o Nn(t). The biological meaning of the results is discussed, comparing them with the features of actual molecular evolution and with some results of computer simulation of the model for finite populations. PMID:7119589
Is there Life after Modelling? Student conceptions of mathematics
NASA Astrophysics Data System (ADS)
Houston, Ken; Mather, Glyn; Wood, Leigh N.; Petocz, Peter; Reid, Anna; Harding, Ansie; Engelbrecht, Johann; Smith, Geoff H.
2010-09-01
We have been investigating university student conceptions of mathematics over a number of years, with the goal of enhancing student learning and professional development. We developed an open-ended survey of three questions, on "What is mathematics" and two questions about the role of mathematics in the students' future. This questionnaire was completed by 1,200 undergraduate students of mathematics in Australia, the UK, Canada, South Africa, and Brunei. The sample included students ranging from those majoring in mathematics to those taking only one or two modules in mathematics. Responses were analysed starting from a previously-developed phenomenographic framework that required only minor modification, leading to an outcome space of four levels of conceptions about mathematics. We found that for many students modelling is fundamental to their conception of "What is mathematics?". In a small number of students, we identified a broader conception of mathematics, that we have labelled Life. This describes a view of mathematics as a way of thinking about reality and as an integral part of life, and represents an ideal aim for university mathematics education.
New urban area flood model: a comparison with MIKE11-quasi2d
NASA Astrophysics Data System (ADS)
Sole, A.; Zuccaro, G.
2005-08-01
Recent hydrogeological events have increased both public interest and that of the Scientific Community in a more accurate study of flooding in urban areas. The present project proposes a new model which offers an optimal integration of two models, one for flood wave propagation in riverbeds and the other for flooding in urban areas. We consider it necessary to not only treat the modelling of the outflow in riverbeds and outside riverbeds.together but to integrate them thoroughly. We simulate the propagation in riverbed of the flood event with a model solving the equations of De Saint Venant with the explicit scheme at the finite differences by McCormack. The propagation outside the riverbed is simulated using an algorithm proposed by Braschi et al. (1990). This algorithm is based on a local discretization of the urban territory, divided in a series of "tanks" and "channels". Each tank is associated with an area of an extension related to the position of the other tanks and the quantity of buildings, modelled as insurmountable obstacles. The model facilitates the simultaneous performance of the two simulations: at each instant, the quantitiy of water overflow, depending on the piezometric level in every section, is calculated as a function of the dimensions of the weirs (the banks), assuming it passes through the critical state. Then, it is transferred to the tanks placed in the surroundings of the overflow points. Those points are the starting nodes for the propagation of the flood because they are connected to the network of tanks in which the surrounding land has been schematised. In this paper, we present a comparison of one of the most powerful models of inundation simulation in urban and no-urban areas. The field area is the city of Albenga (SV, Italy) and the simulated event is the inundation of the 1994 (return period of about 25 years).
SIMULATION REAL SCALE EXPERIMENT ON LEVEE BREACH USING 2D SHALLOW FLOW MODEL
NASA Astrophysics Data System (ADS)
Zenno, Hiroki; Iwasaki, Toshiki; Shimizu, Yasuyuki; Kimura, Ichiro
Flood in rivers is a common disaster all over the world. If a levee breach happens, it sometimes causes a fatal disaster. In addition, many buildings, urban facilities, lifelines, etc. are seriously damaged. Detailed mechanism of a levee breach has not been clarified yet. Therefore, it is important to predict the collapsing process of riverbank and behavior of overtop flow for reducing damage. We applied a two-dimensional shallow flow computational model to levee breach phenomena caused by overflow and the performance of the model was elucidated. A calibration of the numerical model is made through the comparison with field experimental data. Recently, a real-scale experiment on a levee breach was carried out at the Chiyoda Experimental Channel in Hokkaido, Japan. We performed the computation under the same conditions in the experiment. The computational results showed the excellent performance for simulating levee breach phenomena.
Pangolin v1.0, a conservative 2-D transport model for large scale parallel calculation
NASA Astrophysics Data System (ADS)
Praga, A.; Cariolle, D.; Giraud, L.
2014-07-01
To exploit the possibilities of parallel computers, we designed a large-scale bidimensional atmospheric transport model named Pangolin. As the basis for a future chemistry-transport model, a finite-volume approach was chosen both for mass preservation and to ease parallelization. To overcome the pole restriction on time-steps for a regular latitude-longitude grid, Pangolin uses a quasi-area-preserving reduced latitude-longitude grid. The features of the regular grid are exploited to improve parallel performances and a custom domain decomposition algorithm is presented. To assess the validity of the transport scheme, its results are compared with state-of-the-art models on analytical test cases. Finally, parallel performances are shown in terms of strong scaling and confirm the efficient scalability up to a few hundred of cores.
Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling
Travis, Adam R; Freels, James D; Ekici, Kivanc
2013-01-01
A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model s domain consists of a single, explicitly represented three-dimensional fuel plate and a simplified two-dimensional coolant channel slice. In simplifying the coolant channel, and thus the number of mesh points in which the Navier-Stokes equations must be solved, the computational cost and solution time are both greatly reduced. In order for the reduced-dimension coolant channel to interact with the explicitly represented fuel plate, however, interdimensional variable coupling must be enacted along all shared boundaries. The primary focus of this paper is in detailing the collection, storage, passage, and application of variables across this interdimensional interface. Comparisons are made showing the general speed-up associated with this simplified coupled model.
A mathematical model of a computational problem solving system
NASA Astrophysics Data System (ADS)
Aris, Teh Noranis Mohd; Nazeer, Shahrin Azuan
2015-05-01
This paper presents a mathematical model based on fuzzy logic for a computational problem solving system. The fuzzy logic uses truth degrees as a mathematical model to represent vague algorithm. The fuzzy logic mathematical model consists of fuzzy solution and fuzzy optimization modules. The algorithm is evaluated based on a software metrics calculation that produces the fuzzy set membership. The fuzzy solution mathematical model is integrated in the fuzzy inference engine that predicts various solutions to computational problems. The solution is extracted from a fuzzy rule base. Then, the solutions are evaluated based on a software metrics calculation that produces the level of fuzzy set membership. The fuzzy optimization mathematical model is integrated in the recommendation generation engine that generate the optimize solution.
Global existence for a model of inhomogeneous incompressible elastodynamics in 2D
NASA Astrophysics Data System (ADS)
Yin, Silu
2016-05-01
In this paper, we investigate a model of incompressible, isotropic, inhomogeneous elastodynamics in two space dimensions, inspired by Lei in [18]. We prove the global existence for this Cauchy problem with sufficiently small initial displacement and small density disturbance around constant.
An Inexpensive 2-D and 3-D Model of the Sarcomere as a Teaching Aid
ERIC Educational Resources Information Center
Rios, Vitor Passos; Bonfim, Vanessa Maria Gomes
2013-01-01
To address a common problem of teaching the sliding filament theory (that is, students have difficulty in visualizing how the component proteins of the sarcomere differ, how they organize themselves into a single working unit, and how they function in relation to each other), we have devised a simple model, with inexpensive materials, to be built…
Edge gradients evaluation for 2D hybrid finite volume method model
Technology Transfer Automated Retrieval System (TEKTRAN)
In this study, a two-dimensional depth-integrated hydrodynamic model was developed using FVM on a hybrid unstructured collocated mesh system. To alleviate the negative effects of mesh irregularity and non-uniformity, a conservative evaluation method for edge gradients based on the second-order Tayl...
A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1998-01-01
Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.
A simplified 2D model for meander migration with physically-based bank evolution
Technology Transfer Automated Retrieval System (TEKTRAN)
The migration rate calculated by numerical models of river meandering is commonly based on a method that relates migration rate to near-bank excess velocity multiplied by a dimensionless coefficient. Notwithstanding its simplicity, since the early 1980s this method has provided important insight int...
Nonlinear state-space modeling of human motion using 2-D marker observations.
Vartiainen, Paavo; Bragge, Timo; Arokoski, Jari P; Karjalainen, Pasi A
2014-07-01
A novel method for the estimation of human kinematics, based on state-space modeling, is proposed. The state consists of the positions, orientations, velocities, and accelerations of an articulated model. Estimation is performed using the unscented Kalman filter (UKF) algorithm with a fixed-interval smoother. Impulsive acceleration at floor contact of the foot is estimated by implementing a contact constraint in the UKF evolution model. The constraint inserts an acceleration impulse into the model state. The estimation method was applied to marker-based motion analysis in a motion laboratory. Validation measurements were performed with a rigid test device and with human gait. A triaxial accelerometer was used to evaluate acceleration estimates. Comparison between the proposed method and the extended Kalman smoother showed a clear difference in the quality of estimates during impulsive accelerations. The proposed approach enables estimation of human kinematics during both continuous and transient accelerations. The approach provides a novel way of estimating acceleration at foot initial contact, and thus enables more accurate evaluation of loading from the beginning of the floor contact. PMID:24760898
Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction
NASA Astrophysics Data System (ADS)
Arredondo, K.; Billen, M. I.
2013-12-01
While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. Běhounková and Cízková, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and
Application of 2D-Nonlinear Shallow Water Model of Tsunami by using Adomian Decomposition Method
Waewcharoen, Sribudh; Boonyapibanwong, Supachai; Koonprasert, Sanoe
2008-09-01
One of the most important questions in tsunami modeling is the estimation of tsunami run-up heights at different points along a coastline. Methods for numerical simulation of tsunami wave propagation in deep and shallow seas are well developed and have been widely used by many scientists (2001-2008). In this paper, we consider a two-dimensional nonlinear shallow water model of tsunami given by Tivon Jacobson is work [1]. u{sub t}+uu{sub x}+{nu}u{sub y} -c{sup 2}(h{sub x}+(h{sub b}){sub x}) {nu}{sub t}+u{nu}{sub x}+{nu}{nu}{sub y} = -c{sup 2}(h{sub y}+(h{sub b}){sub y}) h{sub t}+(hu){sub x}+(h{nu}){sub y} = 0 g-shore, h is surface elevation and s, t is time, u is velocity of cross-shore, {nu} is velocity of along-shore, h is surface elevation and h{sub b} is function of shore. This is a nondimensionalized model with the gravity g and constant reference depth H factored into c = {radical}(gH). We apply the Adomian Decompostion Method (ADM) to solve the tsunami model. This powerful method has been used to obtain explicit and numerical solutions of three types of diffusion-convection-reaction (DECR) equations. The ADM results for the tsunami model yield analytical solutions in terms of a rapidly convergent infinite power series. Symbolic computation, numerical results and graphs of solutions are obtained by Maple program.
Magmatism vs mushmatism: 2D thermo-mechanical modelling of crustal mush processes
NASA Astrophysics Data System (ADS)
Roele, K.; Morgan, J. V.; Jackson, M.
2015-12-01
The concept of 'mushmatism'- that a magma chamber resides in a crystalline state for the majority of its life, has been suggested as a plausible mechanism for observed crustal melt evolution. It is proposed that as melt is generated, its composition evolves as it rises buoyantly, reacting chemically with the surrounding crystal mush at progressively lower temperatures. It is therefore possible to explain formation of granitic melts and observed mafic-felsic layering in the crust using mush processes. It has previously been assumed that a high influx rate of molten material is required for large volumes of crustal melt to be produced. This has been modelled in the past with repetitive sill intrusion at unrealistically high rates (>3x107 m3a-1) to cause a large enough thermal perturbation of the geotherm to sustain eruptible melt in the shallow crust. However, these models are purely thermal and neglect the effects of melt segregation and mush processes on longevity of melt volumes in the crust. We have developed an axisymmetric thermo-mechanical model that includes mass transport described by coupled matrix compaction and buoyant melt segregation during repeated sill intrusion. Results are consistent with thermal models in that they demonstrate dominance of crystalline mush processes in the transient magma chamber at low-to-moderate intrusion rates. However, addition of buoyant segregation leads to formation of discrete high melt fraction layers as melt ascends through the emplacement zone. This causes a decoupling in location of maximum temperature and melt fraction not observed by purely thermal models. Our results therefore have significant implications for current methods of interpretation of geophysical data, in particular, calculating melt volumes and determining the depth of the magma chamber. In addition, transient reservoirs are produced at lower emplacement rates by the thermo-mechanical model because accumulated magma is evolved and able to remain liquid
A Survey on Model Based Approaches for 2D and 3D Visual Human Pose Recovery
Perez-Sala, Xavier; Escalera, Sergio; Angulo, Cecilio; Gonzàlez, Jordi
2014-01-01
Human Pose Recovery has been studied in the field of Computer Vision for the last 40 years. Several approaches have been reported, and significant improvements have been obtained in both data representation and model design. However, the problem of Human Pose Recovery in uncontrolled environments is far from being solved. In this paper, we define a general taxonomy to group model based approaches for Human Pose Recovery, which is composed of five main modules: appearance, viewpoint, spatial relations, temporal consistence, and behavior. Subsequently, a methodological comparison is performed following the proposed taxonomy, evaluating current SoA approaches in the aforementioned five group categories. As a result of this comparison, we discuss the main advantages and drawbacks of the reviewed literature. PMID:24594613
Multi-particle FEM modeling on microscopic behavior of 2D particle compaction
NASA Astrophysics Data System (ADS)
Zhang, Y. X.; An, X. Z.; Zhang, Y. L.
2015-03-01
In this paper, the discrete random packing and various ordered packings such as tetragonal and hexagonal close packed structures generated by discrete element method and honeycomb, which is manually generated were input as the initial packing structures into the multi-particle finite element model (FEM) to study their densification during compaction, where each particle is discretized as a FEM mesh. The macro-property such as relative density and micro-properties such as local morphology, stress, coordination number and densification mechanism obtained from various initial packings are characterized and analyzed. The results show that the coupling of discrete feature in particle scale with the continuous FEM in macro-scale can effectively conquer the difficulties in traditional FEM modeling, which provides a reasonable way to reproduce the compaction process and identify the densification mechanism more accurately and realistically.
Stability of Solitary Waves and Vortices in a 2D Nonlinear Dirac Model
NASA Astrophysics Data System (ADS)
Cuevas-Maraver, Jesús; Kevrekidis, Panayotis G.; Saxena, Avadh; Comech, Andrew; Lan, Ruomeng
2016-05-01
We explore a prototypical two-dimensional massive model of the nonlinear Dirac type and examine its solitary wave and vortex solutions. In addition to identifying the stationary states, we provide a systematic spectral stability analysis, illustrating the potential of spinor solutions to be neutrally stable in a wide parametric interval of frequencies. Solutions of higher vorticity are generically unstable and split into lower charge vortices in a way that preserves the total vorticity. These conclusions are found not to be restricted to the case of cubic two-dimensional nonlinearities but are found to be extended to the case of quintic nonlinearity, as well as to that of three spatial dimensions. Our results also reveal nontrivial differences with respect to the better understood nonrelativistic analogue of the model, namely the nonlinear Schrödinger equation.
Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation
Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; Shu, Chi-Wang
1995-01-01
In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less
A 2D Particle in Cell model for ion extraction and focusing in electrostatic accelerators
Veltri, P. Serianni, G.; Cavenago, M.
2014-02-15
Negative ions are fundamental to produce intense and high energy neutral beams used to heat the plasma in fusion devices. The processes regulating the ion extraction involve the formation of a sheath on a scale comparable to the Debye length of the plasma. On the other hand, the ion acceleration as a beam is obtained on distances greater than λ{sub D}. The paper presents a model for both the phases of ion extraction and acceleration of the ions and its implementation in a numerical code. The space charge of particles is deposited following usual Particle in Cell codes technique, while the field is solved with finite element methods. Some hypotheses on the beam plasma transition are described, allowing to model both regions at the same time. The code was tested with the geometry of the NIO1 negative ions source, and the results are compared with existing ray tracing codes and discussed.
Stability of Solitary Waves and Vortices in a 2D Nonlinear Dirac Model.
Cuevas-Maraver, Jesús; Kevrekidis, Panayotis G; Saxena, Avadh; Comech, Andrew; Lan, Ruomeng
2016-05-27
We explore a prototypical two-dimensional massive model of the nonlinear Dirac type and examine its solitary wave and vortex solutions. In addition to identifying the stationary states, we provide a systematic spectral stability analysis, illustrating the potential of spinor solutions to be neutrally stable in a wide parametric interval of frequencies. Solutions of higher vorticity are generically unstable and split into lower charge vortices in a way that preserves the total vorticity. These conclusions are found not to be restricted to the case of cubic two-dimensional nonlinearities but are found to be extended to the case of quintic nonlinearity, as well as to that of three spatial dimensions. Our results also reveal nontrivial differences with respect to the better understood nonrelativistic analogue of the model, namely the nonlinear Schrödinger equation. PMID:27284659
Mathematical model of electrical contact bouncing
NASA Astrophysics Data System (ADS)
Kharin, Stanislav
2015-09-01
Mathematical model of a contact bouncing takes into account elastic-plastic and electrodynamic forces, phase transformations during interaction of electrical arc with the contact surface as a result of increasing temperature. It is based on the integro-differential equations for the contact motion and Stefan problem for the temperature field. These equations describe four consecutive stages of the contact vibration from the impact at contact closing up to opening after bouncing including effects of penetration and restitution. The new method for the solution of the Stefan problem is elaborated, which enables us to get the information about dynamics of zones of elasticity, plasticity and phase transformations during contact vibration. It is shown that the decrement of damping depends on the coefficient of plasticity and the moment of inertia only, while the frequency of vibration depends also on the hardness of contact, its temperature, properties of contact spring, and geometry of rotational mechanism. It is found also from the solution of Stefan problem that the relationship between dynamical zones of plasticity and melting explains the decrease of current density and contact welding. The results of calculations are compared with the experimental data.
A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites
NASA Astrophysics Data System (ADS)
Brely, Lucas; Bosia, Federico; Pugno, Nicola
2015-07-01
In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.
Intermittent Turbulence and SOC Dynamics in a 2-D Driven Current-Sheet Model
NASA Technical Reports Server (NTRS)
Klimas, A. J.; Uritsky, V.; Vinas, A. F.; Vassiliasdis, D.; Baker, D. N.
2005-01-01
Borovsky et al. have shown that Earth's magnetotail plasma sheet is strongly turbulent. More recently, Borovsky and Funsten have shown that eddy turbulence dominates and have suggested that the eddy turbulence is driven by fast flows that act as jets in the plasma. Through basic considerations of energy and magnetic flux conservation, these fast flows are thought to be localized to small portions of the total plasma sheet and to be generated by magnetic flux reconnection that is similarly localized. Angelopoulos et al., using single spacecraft Geotail data, have shown that the plasma sheet turbulence exhibits signs of intermittence and Weygand et al., using four spacecraft Cluster data, have confirmed and expanded on this conclusion. Uritsky et al., using Polar UVI image data, have shown that the evolution of bright, nightside, UV auroral emission regions is consistent with many of the properties of systems in self-organized criticality (SOC). Klimas et al. have suggested that the auroral dynamics is a reflection of the dynamics of the fast flows in the plasma. sheet. Their hypothesis is that the transport of magnetic fludenergy through the magnetotail is enabled by scale-free avalanches of localized reconnection whose SOC dynamics are reflected in the auroral UV emission dynamics. A corollary of this hypothesis is that the strong, intermittent, eddy turbulence of the plasma sheet is closely related to its critical dynamics. The question then arises: Can in situ evidence for the SOC dynamics be found in the properties of the plasma sheet turbulence? A 2-dimensional numerical driven current-sheet model of the central plasma sheet has been developed that incorporates an idealized current-driven instability with a resistive MHD system. It has been shown that the model can evolve into SOC in a physically relevant parameter regime. Initial results from a study of intermittent turbulence in this model and the relationship of this turbulence to the model's known SOC
Radar Reflectivity Simulated by a 2-D Spectra Bin Model: Sensitivity of Cloud-aerosol Interaction
NASA Technical Reports Server (NTRS)
Li, Kiaowen; Tao, Wei-Kuo; Khain, Alexander; Simpson, Joanne; Johnson, Daniel
2003-01-01
The Goddard Cumulus Ensemble (GCE) model with bin spectra microphysics is used to simulate mesoscale convective systems.The model uses explicit bins to represent size spectra of cloud nuclei, water drops, ice crystals, snow and graupel. Each hydrometeorite category is described by 33 mass bins. The simulations provide a unique data set of simulated raindrop size distribution in a realistic dynamic frame. Calculations of radar parameters using simulated drop size distribution serve as an evaluation of numerical model performance. In addition, the GCE bin spectra modes is a very useful tool to study uncertainties related to radar observations; all the environmental parameters are precisely known. In this presentation, we concentrate on the discussion of Z-R (ZDR-R) relation in the simulated systems. Due to computational limitations, the spectra bin model has been run in two dimensions with 31 stretched vertical layers and 1026 horizontal grid points (1 km resolution). Two different cases, one in midlatitude continent, the other in tropical ocean, have been simulated. The continental case is a strong convection which lasted for two hours. The oceanic case is a persistent system with more than 10 hours' life span. It is shown that the simulated Z-R (ZDR-R) relations generally agree with observations using radar and rain gauge data. The spatial and temporal variations of Z-R relation in different locations are also analyzed. Impact of aerosols on cloud formation and raindrop size distribution was studied. Both clean (low CCN) and dirty (high CCN) cases are simulated. The Z-R relation is shown to vary considerable in the initial CCN concentrations.
Impacts of Large-Scale Circulation on Convection: A 2-D Cloud Resolving Model Study
NASA Technical Reports Server (NTRS)
Li, X; Sui, C.-H.; Lau, K.-M.
1999-01-01
Studies of impacts of large-scale circulation on convection, and the roles of convection in heat and water balances over tropical region are fundamentally important for understanding global climate changes. Heat and water budgets over warm pool (SST=29.5 C) and cold pool (SST=26 C) were analyzed based on simulations of the two-dimensional cloud resolving model. Here the sensitivity of heat and water budgets to different sizes of warm and cold pools is examined.
NASA Astrophysics Data System (ADS)
Hue, V.; Greathouse, T. K.; Cavalié, T.; Dobrijevic, M.; Hersant, F.
2016-03-01
Saturn's axial tilt of 26.7° produces seasons in a similar way as on Earth. Both the stratospheric temperature and composition are affected by this latitudinally varying insolation along Saturn's orbital path. The atmospheric thermal structure is controlled and regulated by the amount of hydrocarbons in the stratosphere, which act as absorbers and coolants from the UV to the far-IR spectral range, and this structure has an influence on the amount of hydrocarbons. We study here the feedback between the chemical composition and the thermal structure by coupling a latitudinal and seasonal photochemical model with a radiative seasonal model. Our results show that the seasonal temperature peak in the higher stratosphere, associated with the seasonal increase of insolation, is shifted earlier than the maximum insolation peak. This shift is increased with increasing latitudes and is caused by the low amount of stratospheric coolants in the spring season. At 80° in both hemispheres, the temperature peak at 10-2 mbar is seen to occur half a season (3-4 Earth years) earlier than was previously predicted by radiative seasonal models that assumed spatially and temporally uniform distribution of coolants. This shift progressively decreases with increasing pressure, up to around the 0.5 mbar pressure level where it vanishes. On the opposite, the thermal field has a small feedback on the abundance distributions. Accounting for that feedback modifies the predicted equator-to-pole temperature gradient. The meridional gradients of temperature at the mbar pressure levels are better reproduced when this feedback is accounted for. At lower pressure levels, Saturn's stratospheric thermal structure seems to depart from pure radiative seasonal equilibrium as previously suggested by Guerlet et al. (2014). Although the agreement with the absolute value of the stratospheric temperature observed by Cassini is moderate, it is a mandatory step toward a fully coupled GCM-photochemical model.