Science.gov

Sample records for 2d network structure

  1. Structure of a randomly grown 2-d network.

    PubMed

    Ajazi, Fioralba; Napolitano, George M; Turova, Tatyana; Zaurbek, Izbassar

    2015-10-01

    We introduce a growing random network on a plane as a model of a growing neuronal network. The properties of the structure of the induced graph are derived. We compare our results with available data. In particular, it is shown that depending on the parameters of the model the system undergoes in time different phases of the structure. We conclude with a possible explanation of some empirical data on the connections between neurons. PMID:26375356

  2. Structural Variations in the Uranyl/4,4'-Biphenyldicarboxylate System. Rare Examples of 2D → 3D Polycatenated Uranyl-Organic Networks.

    PubMed

    Thuéry, Pierre; Harrowfield, Jack

    2015-08-17

    4,4'-Biphenyldicarboxylic acid (H2L) was reacted with uranyl ions under solvo-hydrothermal conditions with variations in the experimental procedure (organic cosolvent, presence of additional 3d-block metal cations, and N-donor species), thus giving six complexes of the fully deprotonated acid that were characterized by their crystal structure and, in most cases, their emission spectrum. The three complexes [UO2(L)(DMA)] (1), [UO2(L)(NMP)] (2), and [UO2(L)(NMP)] (3) include the cosolvent as a coligand, and they crystallize as two-dimensional (2D) assemblies, with different combinations of the chelating and bridging-bidentate carboxylate coordination modes, resulting in two different topologies. Complex 4, [Ni(bipy)3][(UO2)2(L)2(C2O4)]·H2O, includes oxalate coligands generated in situ and contains an anionic planar two-dimensional (2D) assembly with a {6(3)} honeycomb topology. The same hexagonal geometry is found in the homoleptic complexes [Ni(bipy)3][(UO2)2(L)3]·6H2O (5) and [Ni(phen)3][(UO2)2(L)3]·4H2O (6), but the large size of the hexagonal rings in these cases (∼27 Å in the longest dimension) allows 2D → three-dimensional (3D) inclined polycatenation to occur, with the two families of networks either orthogonal in tetragonal complex 5 or at an angle of 73.4° in orthorhombic complex 6. The parallel networks are arranged in closely spaced groups of two, with possible π···π stacking interactions, and as many as four rods from four parallel nets pass through each ring of the inclined family of nets, an unusually high degree of catenation. These are the second cases only of 2D → 3D inclined polycatenation in uranyl-organic species. Emission spectra measured in the solid state show the usual vibronic fine structure, with variations in intensity and positions of maxima that are not simply connected with the number of equatorial donors and the presence of additional metal cations. PMID:26241368

  3. Duality Between Spin Networks and the 2D Ising Model

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.

    2016-06-01

    The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.

  4. Nonlinear Heat Transfer 2d Structure

    1987-09-01

    DOT-BPMD is a general-purpose, finite-element, heat-transfer program used to predict thermal environments. The code considers linear and nonlinear transient or steady-state heat conduction in two-dimensional planar or axisymmetric representations of structures. Capabilities are provided for modeling anisotropic heterogeneous materials with temperature-dependent thermal properties and time-dependent temperature, heat flux, convection and radiation boundary conditions, together with time-dependent internal heat generation. DOT-BPMD may be used in the evaluation of steady-state geothermal gradients as well as in themore » transient heat conduction analysis of repository and waste package subsystems. Strengths of DOT-BPMD include its ability to account for a wide range of possible boundary conditions, nonlinear material properties, and its efficient equation solution algorithm. Limitations include the lack of a three-dimensional analysis capability, no radiative or convective internal heat transfer, and the need to maintain a constant time-step in each program execution.« less

  5. Homogenization models for 2-D grid structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Cioranescu, D.; Rebnord, D. A.

    1992-01-01

    In the past several years, we have pursued efforts related to the development of accurate models for the dynamics of flexible structures made of composite materials. Rather than viewing periodicity and sparseness as obstacles to be overcome, we exploit them to our advantage. We consider a variational problem on a domain that has large, periodically distributed holes. Using homogenization techniques we show that the solution to this problem is in some topology 'close' to the solution of a similar problem that holds on a much simpler domain. We study the behavior of the solution of the variational problem as the holes increase in number, but decrease in size in such a way that the total amount of material remains constant. The result is an equation that is in general more complex, but with a domain that is simply connected rather than perforated. We study the limit of the solution as the amount of material goes to zero. This second limit will, in most cases, retrieve much of the simplicity that was lost in the first limit without sacrificing the simplicity of the domain. Finally, we show that these results can be applied to the case of a vibrating Love-Kirchhoff plate with Kelvin-Voigt damping. We rely heavily on earlier results of (Du), (CS) for the static, undamped Love-Kirchhoff equation. Our efforts here result in a modification of those results to include both time dependence and Kelvin-Voigt damping.

  6. Sigma-delta cellular neural network for 2D modulation.

    PubMed

    Aomori, Hisashi; Otake, Tsuyoshi; Takahashi, Nobuaki; Tanaka, Mamoru

    2008-01-01

    Although sigma-delta modulation is widely used for analog-to-digital (A/D) converters, sigma-delta concepts are only for 1D signals. Signal processing in the digital domain is extremely useful for 2D signals such as used in image processing, medical imaging, ultrasound imaging, and so on. The intricate task that provides true 2D sigma-delta modulation is feasible in the spatial domain sigma-delta modulation using the discrete-time cellular neural network (DT-CNN) with a C-template. In the proposed architecture, the A-template is used for a digital-to-analog converter (DAC), the C-template works as an integrator, and the nonlinear output function is used for the bilevel output. In addition, due to the cellular neural network (CNN) characteristics, each pixel of an image corresponds to a cell of a CNN, and each cell is connected spatially by the A-template. Therefore, the proposed system can be thought of as a very large-scale and super-parallel sigma-delta modulator. Moreover, the spatio-temporal dynamics is designed to obtain an optimal reconstruction signal. The experimental results show the excellent reconstruction performance and capabilities of the CNN as a sigma-delta modulator. PMID:18215502

  7. Effects of the size of aromatic chelate ligands and d 10 metal ions on the structures of dicarboxylate complexes: From dinuclear molecule to helical chains and 2D network

    NASA Astrophysics Data System (ADS)

    Han, Zhong-Xi; Wang, Ji-Jiang; Hu, Huai-Ming; Chen, Xiao-Li; Wu, Qing-Ran; Li, Dong-Sheng; Shi, Qi-Zhen

    2008-11-01

    Four new mixed-ligand complexes, namely [Zn 2(pam) 2(2,2'-bpy) 2] ( 1), [Cd(pam)(2,2'-bpy) 2] n ( 2), [Zn(pam)(phen)] n ( 3) and [Cd (pam)(phen)] n · 0.5 n CH 3CH 2OH · 0.5 nH 2O ( 4) (H 2pam = pamoic acid, 2,2'-bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline) have been synthesized under hydro(solvo)thermal conditions. Complex 1 possesses a discrete dinuclear metallamacrocyclic structure. Complex 2 is a 1D homochiral helical coordination polymer that is built from achiral components, whereas 3 displays a 1D helical chain structure. 4 is an unusual 2D double-layered structure generated by π ⋯ π interactions of two 2D networks. The structural differences of these complexes are mainly due to the differences of the size of the rigid aromatic chelate ligands and d 10 metal ions. It appears that the chelate ligands and metal ions of the larger size favor the formation of high-dimensional structures, whereas those of the smaller size favor the formation of low-dimensional structures in the present system. The photoluminescence and thermal stability of these complexes were investigated.

  8. Ring Correlations in Two-Dimensional (2D) Random Networks

    NASA Astrophysics Data System (ADS)

    Sadjadi, Mahdi; Thorpe, M. F.

    Amorphous materials can be characterized by their ring structure. Recently, two experimental groups imaged bilayers of vitreous silica at atomic resolution which provides a direct access to the ring structure of a 2D glass. It has been shown that experimental samples have various ring statistics, obey Aboav-Weaire law and have a distinct area law. In this work, we study correlations between rings as a function of their size and topological separation. We show that correlation is medium-range and vanishes when the separation is about three rings apart. We also present a generalization of the Aboav-Weaire law.

  9. 2D pattern evolution constrained by complex network dynamics

    NASA Astrophysics Data System (ADS)

    da Rocha, L. E. C.; Costa, L. da F.

    2007-03-01

    Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling several complex natural and artificial systems. In the same time in which the structural intricacies of such networks are being revealed and understood, efforts have also been directed at investigating how such connectivity properties define and constrain the dynamics of systems unfolding on such structures. However, less attention has been focused on hybrid systems, i.e. involving more than one type of network and/or dynamics. Several real systems present such an organization, e.g. the dynamics of a disease coexisting with the dynamics of the immune system. The current paper investigates a specific system involving diffusive (linear and nonlinear) dynamics taking place in a regular network while interacting with a complex network of defensive agents following Erdös Rényi (ER) and Barabási Albert (BA) graph models with moveable nodes. More specifically, the complex network is expected to control, and if possible, to extinguish the diffusion of some given unwanted process (e.g. fire, oil spilling, pest dissemination, and virus or bacteria reproduction during an infection). Two types of pattern evolution are considered: Fick and Gray Scott. The nodes of the defensive network then interact with the diffusing patterns and communicate between themselves in order to control the diffusion. The main findings include the identification of higher efficiency for the BA control networks and the presence of relapses in the case of the ER model.

  10. Temperature dependent structural variation from 2D supramolecular network to 3D interpenetrated metal–organic framework: In situ cleavage of S–S and C–S bonds

    SciTech Connect

    Ugale, Bharat; Singh, Divyendu; Nagaraja, C.M.

    2015-03-15

    Two new Zn(II)–organic compounds, [Zn(muco)(dbds){sub 2}(H{sub 2}O){sub 2}] (1) and [Zn(muco)(dbs)] (2) (where, muco=trans, trans-muconate dianion, dbds=4,4′-dipyridyldisulfide and dbs=4,4′-dipyridylsulfide) have been synthesized from same precursors but at two different temperatures. Both the compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, IR spectroscopy, thermal analysis and photoluminescence studies. Compound 1 prepared at room temperature possesses a molecular structure extended to 2D supramolecular network through (H–O…H) hydrogen-bonding interactions. Compound 2, obtained at high temperature (100 °C) shows a 3-fold interpenetrating 3D framework constituted by an in situ generated dbs linker by the cleavage of S–S and C–S bonds of dbds linker. Thus, the influence of reaction temperature on the formation of two structural phases has been demonstrated. Both 1 and 2 exhibit ligand based luminescence emission owing to n→π⁎ and π→π⁎ transitions and also high thermal stabilities. - Graphical abstract: The influence of temperature on the formation of two structural phases, a 2D supramolecular network and a 3D 3-fold interpenetrating framework has been demonstrated and their luminescence emission is measured. - Highlights: • Two new Zn(II)–organic compounds were synthesized by tuning reaction temperatures. • Temperature induced in situ generation of dbs linker has been observed. • The compounds exhibit high thermal stability and luminescence emission properties. • The effect of temperature on structure, dimension and topology has been presented.

  11. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  12. 2D ice from first principles: structures and phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Schusteritsch, Georg; Pickard, Chris J.; Salzmann, Christoph G.; Michaelides, Angelos

    Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression the pentagonal structure becomes the most stable and persists up to ca. 2 GPa at which point square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. We also find a double layer AA stacked square ice phase, which clarifies the difference between experimental observations and earlier force field simulations. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and width.

  13. 2D imaging of functional structures in perfused pig heart

    NASA Astrophysics Data System (ADS)

    Kessler, Manfred D.; Cristea, Paul D.; Hiller, Michael; Trinks, Tobias

    2002-06-01

    In 2000 by 2D-imaging we were able for the first time to visualize in subcellular space functional structures of myocardium. For these experiments we used hemoglobin-free perfused pig hearts in our lab. Step by step we learned to understand the meaning of subcellular structures. Principally, the experiment revealed that in subcellular space very fast changes of light scattering can occur. Furthermore, coefficients of different parameters were determined on the basis of multicomponent system theory.

  14. Application of quantitative artificial neural network analysis to 2D NMR spectra of hydrocarbon mixtures.

    PubMed

    Väänänen, Taito; Koskela, Harri; Hiltunen, Yrjö; Ala-Korpela, Mika

    2002-01-01

    Understanding relationships between the structure and composition of molecular mixtures and their chemical properties is a main industrial aim. One central field of research is oil chemistry where the key question is how the molecular characteristics of composite hydrocarbon mixtures can be associated with the macroscopic properties of the oil products. Apparently these relationships are complex and often nonlinear and therefore call for advanced spectroscopic techniques. An informative and an increasingly used approach is two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. In the case of composite hydrocarbons the application of 2D NMR methodologies in a quantitative manner pose many technical difficulties, and, in any case, the resulting spectra contain many overlapping resonances that challenge the analytical work. Here, we present a general methodology, based on quantitative artificial neural network (ANN) analysis, to resolve overlapping information in 2D NMR spectra and to simultaneously assess the relative importance of multiple spectral variables on the sample properties. The results in a set of 2D NMR spectra of oil samples illustrate, first, that use of ANN analysis for quantitative purposes is feasible also in 2D and, second, that this methodology offers an intrinsic opportunity to assess the complex and nonlinear relationships between the molecular composition and sample properties. The presented ANN methodology is not limited to the analysis of NMR spectra but can also be applied in a manner similar to other (multidimensional) spectroscopic data. PMID:12444730

  15. Baby universes and fractal structure of 2d gravity

    NASA Astrophysics Data System (ADS)

    Thorleifsson, Gudmar

    1994-04-01

    We extract the string susceptibility exponent γstr by measuring the distribution of baby universes on surfaces in the case of various matter fields coupled to discrete 2d quantum gravity. For c <= 1 the results are in good agreement with the KPZ-formula, if logarithmic corrections are taken into account for c = 1. For c > 1 it is not as clear how to extract γstr but universality with respect to c is observed in the fractal structure.

  16. In-Cell Protein Structures from 2D NMR Experiments.

    PubMed

    Müntener, Thomas; Häussinger, Daniel; Selenko, Philipp; Theillet, Francois-Xavier

    2016-07-21

    In-cell NMR spectroscopy provides atomic resolution insights into the structural properties of proteins in cells, but it is rarely used to solve entire protein structures de novo. Here, we introduce a paramagnetic lanthanide-tag to simultaneously measure protein pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) to be used as input for structure calculation routines within the Rosetta program. We employ this approach to determine the structure of the protein G B1 domain (GB1) in intact Xenopus laevis oocytes from a single set of 2D in-cell NMR experiments. Specifically, we derive well-defined GB1 ensembles from low concentration in-cell NMR samples (∼50 μM) measured at moderate magnetic field strengths (600 MHz), thus offering an easily accessible alternative for determining intracellular protein structures. PMID:27379949

  17. 2D Carbon Nanotube Network: A New material for Electronics

    NASA Astrophysics Data System (ADS)

    Gruner, George

    2006-03-01

    This talk will focus on the electronic properties of two dimensional carbon nanotube networks, and on their application potential. Percolation issues, together with the frequency, and temperature dependent activity will be discussed. The network can be tuned from having semiconducting to metallic like behavior, and doping with electron withdrawing and donating species leads to networks with tailor-made electronic properties. The network is also highly transparent in the visible spectral range, this attribute -- together with simple room temperature fab processes -- opens up application opportunities in the area of electronics, opto-electronics, photovoltaics and sensors. Recent results on solar cells, OLEDs and smart windows will be reviewed. Field effect transistors that incorporate nanotube network conducting channels, together with complex functional devices that incorporate networks and functional molecules will also be discussed. Finally a comparison will be made with conventional and emerging materials that compete area of disposable, flexible and printable electronics.

  18. Confinement properties of 2D porous molecular networks on metal surfaces

    NASA Astrophysics Data System (ADS)

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-04-01

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article.

  19. Confinement properties of 2D porous molecular networks on metal surfaces.

    PubMed

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-04-20

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article

  20. A 2D Polychloride Network Held Together by Halogen-Halogen Interactions.

    PubMed

    Brückner, Robin; Haller, Heike; Steinhauer, Simon; Müller, Carsten; Riedel, Sebastian

    2015-12-14

    In a eutectic mixture of two ionic liquids, we have synthesized and crystallized the new polychloride compound [Et4 N]2 [(Cl3 )2 ⋅Cl2 ] that exhibits a periodic 2D polychloride network acting as an anionic layer. Based on its low melting point and vapor pressure, this compound can be described as a room-temperature ionic liquid. The compound was fully characterized by IR and Raman spectroscopy as well as single-crystal X-ray structure determination. The characterization was complemented by solid-state quantum-chemical calculations confirming the results of the experimental work. PMID:26545703

  1. HEXAGONAL ARRAY STRUCTURE FOR 2D NDE APPLICATIONS

    SciTech Connect

    Dziewierz, J.; Ramadas, S. N.; Gachagan, A.; O'Leary, R. L.

    2010-02-22

    This paper describes a combination of simulation and experimentation to evaluate the advantages offered by utilizing a hexagonal shaped array element in a 2D NDE array structure. The active material is a 1-3 connectivity piezoelectric composite structure incorporating triangular shaped pillars--each hexagonal array element comprising six triangular pillars. A combination of PZFlex, COMSOL and Matlab has been used to simulate the behavior of this device microstructure, for operation around 2.25 MHz, with unimodal behavior and low levels of mechanical cross-coupling predicted. Furthermore, the application of hexagonal array elements enables the array aperture to increase by approximately 30%, compared to a conventional orthogonal array matrix and hence will provide enhanced volumetric coverage and SNR. Prototype array configurations demonstrate good corroboration of the theoretically predicted mechanical cross-coupling between adjacent array elements (approx23 dB).

  2. Magnetic anisotropy of metal functionalized phthalocyanine 2D networks

    NASA Astrophysics Data System (ADS)

    Zhu, Guojun; Zhang, Yun; Xiao, Huaping; Cao, Juexian

    2016-06-01

    The magnetic anisotropy of metal including Cr, Mn, Fe, Co, Mo, Tc, Ru, Rh, W, Re, Os, Ir atoms functionalized phthalocyanine networks have been investigated with first-principles calculations. The magnetic moments can be expressed as 8-n μB with n the electronic number of outmost d shell in the transition metals. The huge magnetocrystalline anisotropy energy (MAE) is obtained by torque method. Especially, the MAE of Re functionalized phthalocyanine network is about 20 meV with an easy axis perpendicular to the plane of phthalocyanine network. The MAE is further manipulated by applying the external biaxial strain. It is found that the MAE is linear increasing with the external strain in the range of -2% to 2%. Our results indicate an effective approach to modulate the MAE for practical application.

  3. Active transport and cluster formation on 2D networks.

    PubMed

    Greulich, P; Santen, L

    2010-06-01

    We introduce a model for active transport on inhomogeneous networks embedded in a diffusive environment which is motivated by vesicular transport on actin filaments. In the presence of a hard-core interaction, particle clusters are observed that exhibit an algebraically decaying distribution in a large parameter regime, indicating the existence of clusters on all scales. The scale-free behavior can be understood by a mechanism promoting preferential attachment of particles to large clusters. The results are compared with a diffusion-limited aggregation model and active transport on a regular network. For both models we observe aggregation of particles to clusters which are characterized by a finite size scale if the relevant time scales and particle densities are considered. PMID:20556462

  4. 2D MIMO Network Coding with Inter-Route Interference Cancellation

    NASA Astrophysics Data System (ADS)

    Tran, Gia Khanh; Sakaguchi, Kei; Ono, Fumie; Araki, Kiyomichi

    Infrastructure wireless mesh network has been attracting much attention due to the wide range of its application such as public wireless access, sensor network, etc. In recent years, researchers have shown that significant network throughput gain can be achieved by employing network coding in a wireless environment. For further improvement of network throughput in one dimensional (1D) topology, Ono et al. proposed to use multiple antenna technique combined with network coding. In this paper, being inspired by MIMO network coding in 1D topology, the authors establish a novel MIMO network coding algorithm for a 2D topology consisting of two crossing routes. In this algorithm, multiple network coded flows are spatially multiplexed. Owing to the efficient usage of radio resource of network coding and co-channel interference cancellation ability of MIMO, the proposed algorithm shows an 8-fold gain in network capacity compared to conventional methods in the best-case scenario.

  5. Optimal design of 2D digital filters based on neural networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-hua; He, Yi-gang; Zheng, Zhe-zhao; Zhang, Xu-hong

    2005-02-01

    Two-dimensional (2-D) digital filters are widely useful in image processing and other 2-D digital signal processing fields,but designing 2-D filters is much more difficult than designing one-dimensional (1-D) ones.In this paper, a new design approach for designing linear-phase 2-D digital filters is described,which is based on a new neural networks algorithm (NNA).By using the symmetry of the given 2-D magnitude specification,a compact express for the magnitude response of a linear-phase 2-D finite impulse response (FIR) filter is derived.Consequently,the optimal problem of designing linear-phase 2-D FIR digital filters is turned to approximate the desired 2-D magnitude response by using the compact express.To solve the problem,a new NNA is presented based on minimizing the mean-squared error,and the convergence theorem is presented and proved to ensure the designed 2-D filter stable.Three design examples are also given to illustrate the effectiveness of the NNA-based design approach.

  6. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  7. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  8. Grazing incidence neutron diffraction from large scale 2D structures

    SciTech Connect

    Toperverg, B. P.; Felcher, G. P.; Metlushko, V. V.; Leiner, V.; Siebrecht, R.; Nikonov, O.

    2000-01-13

    The distorted wave Born approximation (DWBA) is applied to evaluate the diffraction pattern of neutrons (or X-rays) from a 2D array of dots deposited onto a dissimilar substrate. With the radiation impinging on the surface at a grazing incidence angle {alpha}, the intensities diffracted both in and out the plane of specular reflection are calculated as a function of the periodicity of the array, height and diameter of the dots. The results are presented in the form of diffracted intensity contours in a plane with coordinates {alpha} and {alpha}{prime}, the latter being the glancing angle of scattering. The optimization of the experimental conditions for polarized neutron experiments on submicron dots is discussed. The feasibility of such measurements is confirmed by a test experiment.

  9. Automatic angle measurement of a 2D object using optical correlator-neural networks hybrid system

    NASA Astrophysics Data System (ADS)

    Manivannan, N.; Neil, M. A. A.

    2011-04-01

    In this paper a novel method is proposed and demonstrated for automatic rotation angle measurement of a 2D object using a hybrid architecture, consisting of a 4f optical correlator with a binary phase only multiplexed matched filter and a single layer neural network. The hybrid set-up can be considered as a two-layer perceptron-like neural network; an optical correlator is the first layer and the standard single layer neural network is the second layer. The training scheme used to train the hybrid architecture is a combination of a Direct Binary Search algorithm, to train the optical correlator, and an Error Back Propagation algorithm, to train the neural network. The aim is to perform the major information processing by the optical correlator with a small additional processing by the neural network stage. This allows the system to be used for real-time applications as optics has the inherent ability to process information in a parallel manner at high speed. The neural network stage gives an extra dimension of freedom so that complicated tasks like automatic rotation angle measurement can be achieved. Results of both computer simulation and experimental set-up are presented for rotation angle measurement of an English alphabetic character as a 2D object. The experimental set-up consists of a real optical correlator using two spatial light modulators for both input and frequency plane representations and a PC based model of a single layer network.

  10. Vehicular motion in 2D city traffic network with signals controlled by phase shift

    NASA Astrophysics Data System (ADS)

    Komada, Kazuhito; Kojima, Kengo; Nagatani, Takashi

    2011-03-01

    We study the dynamic behavior of vehicular traffic through the series of traffic lights controlled by phase shift in two-dimensional (2D) city traffic network. The nonlinear-map model is presented for the vehicular traffic. The city traffic network is made of one-way perpendicular streets arranged in a square lattice with traffic signals where vertical streets are oriented upwards and horizontal streets are oriented rightwards. There are two traffic lights for the movement to north or that to east at each crossing. The traffic lights are controlled by the cycle time, split, and phase shift. The vehicle moves through the series of signals on a path selected by the driver. The city traffic with a heterogeneous density distribution is also studied. The dependence of the arrival time on cycle time, split, phase shift, selected path, and density is clarified for 2D city traffic. It is shown that the vehicular traffic is efficiently controlled by the phase shift.

  11. Imaging 2-D Structures With Receiver Functions Using Harmonic Stripping

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.

    2010-12-01

    I present a novel technique to image dipping and anisotropic structures using receiver functions. Receiver functions isolate phase conversions from interfaces close to the seismic station. Standard analysis assumes a quasi-flat layered structure and dampens arrivals from dipping interfaces and anisotropic layers, with attempts to extract information on such structures relying on cumbersome and nonunique forward modeling. I use a simple relationship between the radial and transverse component receiver function to detect dipping and anisotropic layers and map their depth and orientation. For dipping interfaces, layers with horizontal or plunging axis anisotropy, and point scatterers, the following relationships hold: After subtracting the azimuthally invariant portion of the radial receiver functions, the remaining signal is an azimuthally shifted version of the transverse receiver functions. The strike of the dipping interface or anisotropy is given by the azimuth of polarity reversals, and the type of structure can be inferred from the amount of phase shift between the components. For a known structure type, the phase shift between the two components provides pseudoevents from back-azimuths with little seismicity. The technique allows structural mapping at depth akin to geological mapping of rock fabric and dipping layers at the surface. It reduces complex wavefield effects to two simple and geologically meaningful parameters, similar to shear wave splitting. I demonstrate the method on the Wind River Thrust as well as other structures within the Transportable Array footprint.

  12. Crystal structure of the cowpox virus-encoded NKG2D ligand OMCP.

    PubMed

    Lazear, Eric; Peterson, Lance W; Nelson, Chris A; Fremont, Daved H

    2013-01-01

    The NKG2D receptor is expressed on the surface of NK, T, and macrophage lineage cells and plays an important role in antiviral and antitumor immunity. To evade NKG2D recognition, herpesviruses block the expression of NKG2D ligands on the surface of infected cells using a diverse repertoire of sabotage methods. Cowpox and monkeypox viruses have taken an alternate approach by encoding a soluble NKG2D ligand, the orthopoxvirus major histocompatibility complex (MHC) class I-like protein (OMCP), which can block NKG2D-mediated cytotoxicity. This approach has the advantage of targeting a single conserved receptor instead of numerous host ligands that exhibit significant sequence diversity. Here, we show that OMCP binds the NKG2D homodimer as a monomer and competitively blocks host ligand engagement. We have also determined the 2.25-Å-resolution crystal structure of OMCP from the cowpox virus Brighton Red strain, revealing a truncated MHC class I-like platform domain consisting of a beta sheet flanked with two antiparallel alpha helices. OMCP is generally similar in structure to known host NKG2D ligands but has notable variations in regions typically used to engage NKG2D. Additionally, the determinants responsible for the 14-fold-higher affinity of OMCP for human than for murine NKG2D were mapped to a single loop in the NKG2D ligand-binding pocket. PMID:23115291

  13. Design of 2D chitosan scaffolds via electrochemical structuring

    PubMed Central

    Altomare, Lina; Guglielmo, Elena; Varoni, Elena Maria; Bertoldi, Serena; Cochis, Andrea; Rimondini, Lia; De Nardo, Luigi

    2014-01-01

    Chitosan (CS) is a versatile biopolymer whose morphological and chemico-physical properties can be designed for a variety of biomedical applications. Taking advantage of its electrolytic nature, cathodic polarization allows CS deposition on electrically conductive substrates, resulting in thin porous structures with tunable morphology. Here we propose an easy method to obtain CS membranes with highly oriented micro-channels for tissue engineering applications, relying on simple control of process parameters and cathodic substrate geometry.   Cathodic deposition was performed on two different aluminum grids in galvanostatic conditions at 6.25 mA cm−2 from CS solution [1g L−1] in acetic acid (pH 3.5). Self-standing thin scaffolds were cross linked either with genipin or epichlorohydrin, weighted, and observed by optical and electron microscopy. Swelling properties at pH 5 and pH 7.4 have been also investigated and tensile tests performed on swollen samples at room temperature. Finally, direct and indirect assays have been performed to evaluate the cytotoxicity at 24 and 72 h. Thin scaffolds with two different oriented porosities (1000µm and 500µm) have been successfully fabricated by electrochemical techniques. Both cross-linking agents did not affected the mechanical properties and cytocompatibility of the resulting structures. Depending on the pH, these structures show interesting swelling properties that can be exploited for drug delivery systems. Moreover, thanks to the possibility of controlling the porosity and the micro-channel orientation, they should be used for the regeneration of tissues requiring a preferential cells orientation, e.g., cardiac patches or ligament regeneration. PMID:25093705

  14. Electronic structure study on 2D hydrogenated Icosagens nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Marutheeswaran, S.; Ramaclus, Jerald V.; Paul, Dolon Chapa

    2014-12-01

    Metal nitride nanosheets has attracted remarkable importance in surface catalysis due to its characteristic ionic nature. In this paper, using density functional theory, we investigate geometric stability and electronic properties of hydrogenated Icosagen nitride nanosheets. Binding energy of the sheets reveals hydrogenation is providing more stability. Band structure of the hydrogenated sheets is found to be n-type semiconductor. Partial density of states shows metals (B, Al, Ga and In) and its hydrogens dominating in the Fermi region. Mulliken charge analysis indications that hydrogenated nanosheets are partially hydridic surface nature except boron nitride.

  15. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures.

    PubMed

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-01-01

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. PMID:26679513

  16. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures

    PubMed Central

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-01-01

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. PMID:26679513

  17. From 2D to 3D: novel nanostructured scaffolds to investigate signalling in reconstructed neuronal networks.

    PubMed

    Bosi, Susanna; Rauti, Rossana; Laishram, Jummi; Turco, Antonio; Lonardoni, Davide; Nieus, Thierry; Prato, Maurizio; Scaini, Denis; Ballerini, Laura

    2015-01-01

    To recreate in vitro 3D neuronal circuits will ultimately increase the relevance of results from cultured to whole-brain networks and will promote enabling technologies for neuro-engineering applications. Here we fabricate novel elastomeric scaffolds able to instruct 3D growth of living primary neurons. Such systems allow investigating the emerging activity, in terms of calcium signals, of small clusters of neurons as a function of the interplay between the 2D or 3D architectures and network dynamics. We report the ability of 3D geometry to improve functional organization and synchronization in small neuronal assemblies. We propose a mathematical modelling of network dynamics that supports such a result. Entrapping carbon nanotubes in the scaffolds remarkably boosted synaptic activity, thus allowing for the first time to exploit nanomaterial/cell interfacing in 3D growth support. Our 3D system represents a simple and reliable construct, able to improve the complexity of current tissue culture models. PMID:25910072

  18. 2D and 3D Histioid Disclination Networks in Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Miao; Guo, Yubing; Lavrentovich, Oleg; Wei, Qi-Huo

    Topological defects and disclination lines are of both fundamental interest and practical importance. In this paper, we will show that periodic/non-periodic 2D/3D networks of disclination lines can be created in nematic liquid crystal cells by setting well-designed alignment patterns at the top and bottom substrate surfaces. The desired complex patterns of liquid crystal molecular alignments at the substrates are obtained using a projection photoalignment technique based on plasmonic metamasks. The designs of alignment patterns and their resulting disclination line networks will be presented. These designable topological networks represent a new kind of artificial materials which could be of useful for directing colloidal and molecular assembly. National Science Foundation CMMI-1436565.

  19. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Zhang, Yong

    2016-04-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III–V, and II–VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain–low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side.

  20. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors

    PubMed Central

    Wang, Jianwei; Zhang, Yong

    2016-01-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III–V, and II–VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain–low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side. PMID:27090430

  1. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors.

    PubMed

    Wang, Jianwei; Zhang, Yong

    2016-01-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III-V, and II-VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain-low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side. PMID:27090430

  2. Simulation and analysis of solute transport in 2D fracture/pipe networks: The SOLFRAC program

    NASA Astrophysics Data System (ADS)

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-01

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL http://labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm. It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments

  3. A series of 2D metal-quinolone complexes: Syntheses, structures, and physical properties

    NASA Astrophysics Data System (ADS)

    He, Jiang-Hong; Xiao, Dong-Rong; Chen, Hai-Yan; Sun, Dian-Zhen; Yan, Shi-Wei; Wang, Xin; Ye, Zhong-Li; Luo, Qun-Li; Wang, En-Bo

    2013-02-01

    Six novel 2D metal-quinolone complexes, namely [Cd(cfH)(bpdc)]rad H2O (1), [M(norfH)(bpdc)]rad H2O (M=Cd (2) and Mn (3)), [Mn2(cfH)(odpa)(H2O)3]rad 0.5H2O (4), [Co2(norfH)(bpta)(μ2-H2O)(H2O)2]rad H2O (5) and [Co3(saraH)2(Hbpta)2(H2O)4]rad 9H2O (6) (cfH=ciprofloxacin, norfH=norfloxacin, saraH=sarafloxacin, bpdc=4,4'-biphenyldicarboxylate, odpa=4,4'-oxydiphthalate, bpta=3,3',4,4'-biphenyltetracarboxylate) have been synthesized and characterized. Compounds 1-3 consist of 2D arm-shaped layers based on the 1D {M(COO)}nn+ chains. Compounds 4 and 5 display 2D structures based on tetranuclear manganese or cobalt clusters with (3,6)-connected kgd topology. Compound 6 exhibits a 2D bilayer structure, which represents the first example of metal-quinolone complexes with 2D bilayer structure. By inspection of the structures of 1-6, it is believed that the long aromatic polycarboxylate ligands are important for the formation of 2D metal-quinolone complexes. The magnetic properties of compounds 3-6 was studied, indicating the existence of antiferromagnetic interactions. Furthermore, the luminescent properties of compounds 1-2 are discussed.

  4. Topological evolutionary computing in the optimal design of 2D and 3D structures

    NASA Astrophysics Data System (ADS)

    Burczynski, T.; Poteralski, A.; Szczepanik, M.

    2007-10-01

    An application of evolutionary algorithms and the finite-element method to the topology optimization of 2D structures (plane stress, bending plates, and shells) and 3D structures is described. The basis of the topological evolutionary optimization is the direct control of the density material distribution (or thickness for 2D structures) by the evolutionary algorithm. The structures are optimized for stress, mass, and compliance criteria. The numerical examples demonstrate that this method is an effective technique for solving problems in computer-aided optimal design.

  5. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.

    PubMed

    Kuznetsov, A I; Kiyan, R; Chichkov, B N

    2010-09-27

    A novel method for fabrication of 2D and 3D metal nanoparticle structures and arrays is proposed. This technique is based on laser-induced transfer of molten metal nanodroplets from thin metal films. Metal nanoparticles are produced by solidification of these nanodroplets. The size of the transferred nanoparticles can be controllably changed in the range from 180 nm to 1500 nm. Several examples of complex 2D and 3D microstructures generated form gold nanoparticles are demonstrated. PMID:20941016

  6. Hydrothermal Synthesis, Crystal Structure and Electrochemical Behavior of 2d Hybrid Coordination Polymer

    NASA Astrophysics Data System (ADS)

    Fan, Weiqiang; Zhu, Lin; Shi, Weidong; Chen, Fuxiao; Bai, Hongye; Song, Shuyan; Yan, Yongsheng

    2013-06-01

    A novel metal-organic coordination polymer [Cu(phen)(L)0.5(H2O)]n (H4L = (N,N‧-5,5‧-bis(isophthalic acid)-p-xylylenediamine, and phen = 1,10-phenanthroline) has been hydrothermally synthesized and characterized by elemental analysis, IR, TGA, and single-crystal X-ray diffraction. The crystallographic data show that the title compound crystallizes in monoclinic space group P21/n with a = 10.682(2), b = 15.682(3), c = 11.909(2) Å, β = 91.39(3)°, V = 1994.3(7) Å3, C24H17CuN3O5, Mr = 490.95, Dc = 1.635 g/cm3, F(000) = 1004, Z = 4, μ(MoKα) = 1.141 mm-1, the final R = 0.0418 and wR = 0.0983 for 3578 observed reflections (I > 2σ(I)). The structural analyses reveal that the title compound exhibits shows a 2D layer structure, which are further linked by hydrogen bonding interactions to form a three-dimensional supramolecular network. In addition, the thermal stability and electrochemical behavior of title compound has been studied. CCDC: 900413.

  7. A series of 2D metal-quinolone complexes: Syntheses, structures, and physical properties

    SciTech Connect

    He, Jiang-Hong; Xiao, Dong-Rong; Chen, Hai-Yan; Sun, Dian-Zhen; Yan, Shi-Wei; Wang, Xin; Ye, Zhong-Li; Luo, Qun-Li; Wang, En-Bo

    2013-02-15

    Six novel 2D metal-quinolone complexes, namely [Cd(cfH)(bpdc)]{center_dot}H{sub 2}O (1), [M(norfH)(bpdc)]{center_dot}H{sub 2}O (M=Cd (2) and Mn (3)), [Mn{sub 2}(cfH)(odpa)(H{sub 2}O){sub 3}]{center_dot}0.5H{sub 2}O (4), [Co{sub 2}(norfH)(bpta)({mu}{sub 2}-H{sub 2}O)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) and [Co{sub 3}(saraH){sub 2}(Hbpta){sub 2}(H{sub 2}O){sub 4}]{center_dot}9H{sub 2}O (6) (cfH=ciprofloxacin, norfH=norfloxacin, saraH=sarafloxacin, bpdc=4,4 Prime -biphenyldicarboxylate, odpa=4,4 Prime -oxydiphthalate, bpta=3,3 Prime ,4,4 Prime -biphenyltetracarboxylate) have been synthesized and characterized. Compounds 1-3 consist of 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Compounds 4 and 5 display 2D structures based on tetranuclear manganese or cobalt clusters with (3,6)-connected kgd topology. Compound 6 exhibits a 2D bilayer structure, which represents the first example of metal-quinolone complexes with 2D bilayer structure. By inspection of the structures of 1-6, it is believed that the long aromatic polycarboxylate ligands are important for the formation of 2D metal-quinolone complexes. The magnetic properties of compounds 3-6 was studied, indicating the existence of antiferromagnetic interactions. Furthermore, the luminescent properties of compounds 1-2 are discussed. - Graphical abstract: Six novel 2D metal-quinolone complexes have been prepared by self-assemblies of the quinolones and metal salts in the presence of long aromatic polycarboxylates. Highlights: Black-Right-Pointing-Pointer Compounds 1-3 consist of novel 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Black-Right-Pointing-Pointer Compounds 4 and 5 are two novel 2D layers based on tetranuclear Mn or Co clusters with kgd topology. Black-Right-Pointing-Pointer Compound 6 is the first example of metal-quinolone complexes with 2D bilayer structure. Black-Right-Pointing-Pointer Compounds 1-6 represent six unusual

  8. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks.

    PubMed

    Smith, Brian J; Overholts, Anna C; Hwang, Nicky; Dichtel, William R

    2016-03-01

    We explore the crystallization of a high surface area imine-linked two-dimensional covalent organic framework (2D COF). The growth process reveals rapid initial formation of an amorphous network that subsequently crystallizes into the layered 2D network. The metastable amorphous polymer may be isolated and resubjected to growth conditions to form the COF. These experiments provide the first mechanistic insight into the mechanism of imine-linked 2D COF formation, which is distinct from that of boronate-ester linked COFs. PMID:26857035

  9. Structural dynamics inside a functionalized metal–organic framework probed by ultrafast 2D IR spectroscopy

    PubMed Central

    Nishida, Jun; Tamimi, Amr; Fei, Honghan; Pullen, Sonja; Ott, Sascha; Cohen, Seth M.; Fayer, Michael D.

    2014-01-01

    The structural elasticity of metal–organic frameworks (MOFs) is a key property for their functionality. Here, we show that 2D IR spectroscopy with pulse-shaping techniques can probe the ultrafast structural fluctuations of MOFs. 2D IR data, obtained from a vibrational probe attached to the linkers of UiO-66 MOF in low concentration, revealed that the structural fluctuations have time constants of 7 and 670 ps with no solvent. Filling the MOF pores with dimethylformamide (DMF) slows the structural fluctuations by reducing the ability of the MOF to undergo deformations, and the dynamics of the DMF molecules are also greatly restricted. Methodology advances were required to remove the severe light scattering caused by the macroscopic-sized MOF particles, eliminate interfering oscillatory components from the 2D IR data, and address Förster vibrational excitation transfer. PMID:25512539

  10. Some tensor-network diagnostics for a class of 2D SPT states with internal symmetry

    NASA Astrophysics Data System (ADS)

    Prakash, Abhishodh; Wei, Tzu-Chieh

    We demonstrate some diagnostic techniques to characterize certain 2D tensor network states with internal symmetries that are classified by the third group cohomology of the symmetry group. We use the discussions of Else et al. [Phys. Rev. B 90, 235137 (2014)] to extract data that determines the phase of matter from the tensors that make up a specific class of wave functions. This is possible because the symmetry transformation at the `physical' level, which is of product form, translates to a symmetry in the `virtual' level which may no longer be of product form. An appropriate analysis of the virtual-space symmetry helps us obtain the topological information (the 3-cocycle twist) that places the wave function in the classification scheme. This reproduces the results of Chen et al. [Phys. Rev. B 87,155114 (2013)] without using projection operators in merging two 'Matrix Product Operators' of the symmetry representation of two group actions.

  11. Surface-Supported Robust 2D Lanthanide-Carboxylate Coordination Networks.

    PubMed

    Urgel, José I; Cirera, Borja; Wang, Yang; Auwärter, Willi; Otero, Roberto; Gallego, José M; Alcamí, Manuel; Klyatskaya, Svetlana; Ruben, Mario; Martín, Fernando; Miranda, Rodolfo; Ecija, David; Barth, Johannes V

    2015-12-16

    Lanthanide-based metal-organic compounds and architectures are promising systems for sensing, heterogeneous catalysis, photoluminescence, and magnetism. Herein, the fabrication of interfacial 2D lanthanide-carboxylate networks is introduced. This study combines low- and variable-temperature scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) experiments, and density functional theory (DFT) calculations addressing their design and electronic properties. The bonding of ditopic linear linkers to Gd centers on a Cu(111) surface gives rise to extended nanoporous grids, comprising mononuclear nodes featuring eightfold lateral coordination. XPS and DFT elucidate the nature of the bond, indicating ionic characteristics, which is also manifest in appreciable thermal stability. This study introduces a new generation of robust low-dimensional metallosupramolecular systems incorporating the functionalities of the f-block elements. PMID:26524215

  12. Toward IMRT 2D dose modeling using artificial neural networks: A feasibility study

    SciTech Connect

    Kalantzis, Georgios; Vasquez-Quino, Luis A.; Zalman, Travis; Pratx, Guillem; Lei, Yu

    2011-10-15

    Purpose: To investigate the feasibility of artificial neural networks (ANN) to reconstruct dose maps for intensity modulated radiation treatment (IMRT) fields compared with those of the treatment planning system (TPS). Methods: An artificial feed forward neural network and the back-propagation learning algorithm have been used to replicate dose calculations of IMRT fields obtained from PINNACLE{sup 3} v9.0. The ANN was trained with fluence and dose maps of IMRT fields for 6 MV x-rays, which were obtained from the amorphous silicon (a-Si) electronic portal imaging device of Novalis TX. Those fluence distributions were imported to the TPS and the dose maps were calculated on the horizontal midpoint plane of a water equivalent homogeneous cylindrical virtual phantom. Each exported 2D dose distribution from the TPS was classified into two clusters of high and low dose regions, respectively, based on the K-means algorithm and the Euclidian metric in the fluence-dose domain. The data of each cluster were divided into two sets for the training and validation phase of the ANN, respectively. After the completion of the ANN training phase, 2D dose maps were reconstructed by the ANN and isodose distributions were created. The dose maps reconstructed by ANN were evaluated and compared with the TPS, where the mean absolute deviation of the dose and the {gamma}-index were used. Results: A good agreement between the doses calculated from the TPS and the trained ANN was achieved. In particular, an average relative dosimetric difference of 4.6% and an average {gamma}-index passing rate of 93% were obtained for low dose regions, and a dosimetric difference of 2.3% and an average {gamma}-index passing rate of 97% for high dose region. Conclusions: An artificial neural network has been developed to convert fluence maps to corresponding dose maps. The feasibility and potential of an artificial neural network to replicate complex convolution kernels in the TPS for IMRT dose calculations

  13. Syntheses, structures, and properties of two novel cadmium coordination polymers with 1D and 2D structures

    NASA Astrophysics Data System (ADS)

    Yan, Li; Li, Chuanbi; Zhu, Dongsheng; Xu, Lin

    2011-09-01

    Two novel complexes [Cd 2(MIP) 2(BDC) 2]n ( 1) [MIP = 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, BDC = terephthalic acid] and [Cd(IPM)(NDC)]n ( 2) [IPM = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-2-methoxyphenol, NDC = naphthalene-1,4-dicarboxylic acid] have been synthesized by hydrothermal reaction and characterized by elemental analysis, IR, single-crystal X-ray diffraction and thermogravimetric analysis (TGA). Complex 1 exhibits 1D zigzag chain structure and complex 2 shows 2D layer topology. The intermolecular C sbnd H⋯O interactions extend the complex 1 into 2D networks, and the existing H-bonds further stabilized the complexes 1-2, which can be proved by TGA experiment. Furthermore, the solid-state fluorescence spectrum of the complex 2 was studied, as well as the ligand IPM. The complex 2 exhibits intense broad emission at 540 nm at room temperature, which is red-shifted by 45 nm relative to that of free ligand IPM.

  14. Quantitative nanoscale visualization of heterogeneous electron transfer rates in 2D carbon nanotube networks.

    PubMed

    Güell, Aleix G; Ebejer, Neil; Snowden, Michael E; McKelvey, Kim; Macpherson, Julie V; Unwin, Patrick R

    2012-07-17

    Carbon nanotubes have attracted considerable interest for electrochemical, electrocatalytic, and sensing applications, yet there remains uncertainty concerning the intrinsic electrochemical (EC) activity. In this study, we use scanning electrochemical cell microscopy (SECCM) to determine local heterogeneous electron transfer (HET) kinetics in a random 2D network of single-walled carbon nanotubes (SWNTs) on an Si/SiO(2) substrate. The high spatial resolution of SECCM, which employs a mobile nanoscale EC cell as a probe for imaging, enables us to sample the responses of individual portions of a wide range of SWNTs within this complex arrangement. Using two redox processes, the oxidation of ferrocenylmethyl trimethylammonium and the reduction of ruthenium (III) hexaamine, we have obtained conclusive evidence for the high intrinsic EC activity of the sidewalls of the large majority of SWNTs in networks. Moreover, we show that the ends of SWNTs and the points where two SWNTs cross do not show appreciably different HET kinetics relative to the sidewall. Using finite element method modeling, we deduce standard rate constants for the two redox couples and demonstrate that HET based solely on characteristic defects in the SWNT side wall is highly unlikely. This is further confirmed by the analysis of individual line profiles taken as the SECCM probe scans over an SWNT. More generally, the studies herein demonstrate SECCM to be a powerful and versatile method for activity mapping of complex electrode materials under conditions of high mass transport, where kinetic assignments can be made with confidence. PMID:22635266

  15. A 2-D orientation-adaptive prediction filter in lifting structures for image coding.

    PubMed

    Gerek, Omer N; Cetin, A Enis

    2006-01-01

    Lifting-style implementations of wavelets are widely used in image coders. A two-dimensional (2-D) edge adaptive lifting structure, which is similar to Daubechies 5/3 wavelet, is presented. The 2-D prediction filter predicts the value of the next polyphase component according to an edge orientation estimator of the image. Consequently, the prediction domain is allowed to rotate +/-45 degrees in regions with diagonal gradient. The gradient estimator is computationally inexpensive with additional costs of only six subtractions per lifting instruction, and no multiplications are required. PMID:16435541

  16. A 2D zinc-organic network being easily exfoliated into isolated sheets

    NASA Astrophysics Data System (ADS)

    Yu, Guihong; Li, Ruiqing; Leng, Zhihua; Gan, Shucai

    2016-08-01

    A metal-organic aggregate, namely {Zn2Cl2(BBC)}n (BBC = 4,4‧,4‧‧-(benzene-1,3,5-triyl-tris(benzene-4,1-diyl))tribenzoate) was obtained by solvothermal synthesis. Its structure is featured with the Zn2(COO)3 paddle-wheels with two chloride anions on axial positions and hexagonal pores in the layers. The exclusion of water in the precursor and the solvent plays a crucial role in the formation of target compound. This compound can be easily dissolved in alkaline solution and exfoliated into isolated sheets, which shows a novel way for the preparation of 2D materials.

  17. A salt-bridge structure in solution revealed by 2D-IR spectroscopy.

    PubMed

    Huerta-Viga, Adriana; Domingos, Sérgio R; Amirjalayer, Saeed; Woutersen, Sander

    2014-08-14

    Salt bridges are important interactions for the stability of protein conformations, but up to now it has been difficult to determine salt-bridge geometries in solution. Here we characterize the spatial structure of a salt bridge between guanidinium (Gdm(+)) and acetate (Ac(-)) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridge formation there is a significant change in the infrared response of Gdm(+) and Ac(-), and cross peaks between them appear in the 2D-IR spectrum. From the 2D-IR spectrum we determine the relative orientation of the transition-dipole moments of the vibrational modes of Gdm(+) and Ac(-), as well as the coupling between them. PMID:24676430

  18. Multiple triangulation analysis: application to determine the velocity of 2-D structures

    NASA Astrophysics Data System (ADS)

    Zhou, X.-Z.; Zong, Q.-G.; Wang, J.; Pu, Z. Y.; Zhang, X. G.; Shi, Q. Q.; Cao, J. B.

    2006-11-01

    In order to avoid the ambiguity of the application of the Triangulation Method (multi-spacecraft timing method) to two-dimensional structures, another version of this method, the Multiple Triangulation Analysis (MTA) is used, to calculate the velocities of these structures based on 4-point measurements. We describe the principle of MTA and apply this approach to a real event observed by the Cluster constellation on 2 October 2003. The resulting velocity of the 2-D structure agrees with the ones obtained by some other methods fairly well. So we believe that MTA is a reliable version of the Triangulation Method for 2-D structures, and thus provides us a new way to describe their motion.

  19. Facial Sketch Synthesis Using 2D Direct Combined Model-Based Face-Specific Markov Network.

    PubMed

    Tu, Ching-Ting; Chan, Yu-Hsien; Chen, Yi-Chung

    2016-08-01

    A facial sketch synthesis system is proposed, featuring a 2D direct combined model (2DDCM)-based face-specific Markov network. In contrast to the existing facial sketch synthesis systems, the proposed scheme aims to synthesize sketches, which reproduce the unique drawing style of a particular artist, where this drawing style is learned from a data set consisting of a large number of image/sketch pairwise training samples. The synthesis system comprises three modules, namely, a global module, a local module, and an enhancement module. The global module applies a 2DDCM approach to synthesize the global facial geometry and texture of the input image. The detailed texture is then added to the synthesized sketch in a local patch-based manner using a parametric 2DDCM model and a non-parametric Markov random field (MRF) network. Notably, the MRF approach gives the synthesized results an appearance more consistent with the drawing style of the training samples, while the 2DDCM approach enables the synthesis of outcomes with a more derivative style. As a result, the similarity between the synthesized sketches and the input images is greatly improved. Finally, a post-processing operation is performed to enhance the shadowed regions of the synthesized image by adding strong lines or curves to emphasize the lighting conditions. The experimental results confirm that the synthesized facial images are in good qualitative and quantitative agreement with the input images as well as the ground-truth sketches provided by the same artist. The representing power of the proposed framework is demonstrated by synthesizing facial sketches from input images with a wide variety of facial poses, lighting conditions, and races even when such images are not included in the training data set. Moreover, the practical applicability of the proposed framework is demonstrated by means of automatic facial recognition tests. PMID:27244737

  20. Metal-organic extended 2D structures: Fe-PTCDA on Au(111).

    PubMed

    Alvarez, Lucía; Peláez, Samuel; Caillard, Renaud; Serena, Pedro A; Martín-Gago, José A; Méndez, Javier

    2010-07-30

    In this work we combine organic molecules of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) with iron atoms on an Au (111) substrate in ultra-high vacuum conditions at different temperatures. By means of scanning tunnelling microscopy (STM) we study the formation of stable 2D metal-organic structures. We show that at certain growth conditions (temperature, time and coverage) stable 'ladder-like' nanostructures are obtained. These are the result of connecting together two metal-organic chains through PTCDA molecules placed perpendicularly, as rungs of a ladder. These structures, stable up to 450 K, can be extended in a 2D layer covering the entire surface and presenting different rotation domains. STM images at both polarities show a contrast reversal between the two molecules at the unit cell. By means of density functional theory (DFT) calculations, we confirm the stability of these structures and that their molecular orbitals are placed separately at the different molecules. PMID:20603531

  1. Formats and Network Protocols for Browser Access to 2D Raster Data

    NASA Astrophysics Data System (ADS)

    Plesea, L.

    2015-12-01

    Tiled web maps in browsers are a major success story, forming the foundation of many current web applications. Enabling tiled data access is the next logical step, and is likely to meet with similar success. Many ad-hoc approaches have already started to appear, and something similar is explored within the Open Geospatial Consortium. One of the main obstacles in making browser data access a reality is the lack of a well-known data format. This obstacle also represents an opportunity to analyze the requirements and possible candidates, applying lessons learned from web tiled image services and protocols. Similar to the image counterpart, a web tile raster data format needs to have good intrinsic compression and be able to handle high byte count data types including floating point. An overview of a possible solution to the format problem, a 2D data raster compression algorithm called Limited Error Raster Compression (LERC) will be presented. In addition to the format, best practices for high request rate HTTP services also need to be followed. In particular, content delivery network (CDN) caching suitability needs to be part of any design, not an after-thought. Last but not least, HTML 5 browsers will certainly be part of any solution since they provide improved access to binary data, as well as more powerful ways to view and interact with the data in the browser. In a simple but relevant application, digital elevation model (DEM) raster data is served as LERC compressed data tiles which are used to generate terrain by a HTML5 scene viewer.

  2. The influence of pressure on the structure of a 2D uranium(VI) carboxyphosphonoate compound

    SciTech Connect

    Spencer, Elinor C.; Ross, Nancy L.; Surbella, Robert G.; Cahill, Christopher L.

    2014-10-15

    We report the first quantitative analysis of the structural evolution of a uranyl bearing coordination polymer in response to pressure. The material that is central to this study, (UO{sub 2})(O{sub 3}PCH{sub 2}CO{sub 2}H) (1), is constructed from rigid 2D inorganic layers comprising edge sharing UO{sub 7} pentagonal bipyramids cross-linked by [PO{sub 3}(COOH)]{sup 2−} anions. Strong hydrogen bonding interactions exist between the pendent carboxylic acid groups on adjacent layers. Under pressure, 1 exhibits compressional behaviour primarily in the direction perpendicular to the inorganic layers, which is aided by a reduction in the interlayer distance and shifting of the layers with respect to each other. The bulk modulus for the 2D compound 1 is unexpectedly high [18.1(1) GPa] and is within the range reported for 3D CPs assembled from Zn{sup II} cations and inflexible imidazolate anions, and is at the lower end of the range of moduli observed for aluminosilicate zeolites (19–59 GPa). - Graphical Abstract: The compression mechanism and elastic constants for a 2D Uranium(VI) carboxyphosphonoate compound are reported. - Highlights: • The response to pressure of a uranium carboxyphosphonoate compound has been studied. • High-pressure single-crystal XRD data for this 2D uranium compound were collected. • Elastic constants for this material have been determined. • The compression mechanism for the compound has been elucidated.

  3. Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction

    NASA Astrophysics Data System (ADS)

    Ye, Jianhong; Jeng, Dongsheng; Wang, Ren; Zhu, Changqi

    2013-10-01

    A 2-D semi-coupled model PORO-WSSI 2D (also be referred as FSSI-CAS 2D) for the Fluid-Structure-Seabed Interaction (FSSI) has been developed by employing RANS equations for wave motion in fluid domain, VARANS equations for porous flow in porous structures; and taking the dynamic Biot's equations (known as "u - p" approximation) for soil as the governing equations. The finite difference two-step projection method and the forward time difference method are adopted to solve the RANS, VARANS equations; and the finite element method is adopted to solve the "u - p" approximation. A data exchange port is developed to couple the RANS, VARANS equations and the dynamic Biot's equations together. The analytical solution proposed by Hsu and Jeng (1994) and some experiments conducted in wave flume or geotechnical centrifuge in which various waves involved are used to validate the developed semi-coupled numerical model. The sandy bed involved in these experiments is poro-elastic or poro-elastoplastic. The inclusion of the interaction between fluid, marine structures and poro-elastoplastic seabed foundation is a special point and highlight in this paper, which is essentially different with other previous coupled models The excellent agreement between the numerical results and the experiment data indicates that the developed coupled model is highly reliablefor the FSSI problem.

  4. 2D and 3D X-Ray Structural Microscopy Using Submicron-Resolution Laue Microdiffraction

    SciTech Connect

    Budai, John D.; Yang, Wenge; Larson, Bennett C.; Tischler, Jonathan Z.; Liu, Wenjun; Ice, Gene E.

    2010-11-10

    We have developed a scanning, polychromatic x-ray microscopy technique with submicron spatial resolution at the Advanced Photon Source. In this technique, white undulator radiation is focused to submicron diameter using elliptical mirrors. Laue diffraction patterns scattered from the sample are collected with an area detector and then analyzed to obtain the local crystal structure, lattice orientation, and strain tensor. These new microdiffraction capabilities have enabled both 2D and 3D structural studies of materials on mesoscopic length-scales of tenths-to-hundreds of microns. For thin samples such as deposited films, 2D structural maps are obtained by step-scanning the area of interest. For example, 2D x-ray microscopy has been applied in studies of the epitaxial growth of oxide films. For bulk samples, a 3D differential-aperture x-ray microscopy technique has been developed that yields the full diffraction information from each submicron volume element. The capabilities of 3D x-ray microscopy are demonstrated here with measurements of grain orientations and grain boundary motion in polycrystalline aluminum during 3D thermal grain growth. X-ray microscopy provides the needed, direct link between the experimentally measured 3D microstructural evolution and the results of theory and modeling of materials processes on mesoscopic length scales.

  5. Structure-approximating inverse protein folding problem in the 2D HP model.

    PubMed

    Gupta, Arvind; Manuch, Ján; Stacho, Ladislav

    2005-12-01

    The inverse protein folding problem is that of designing an amino acid sequence which has a particular native protein fold. This problem arises in drug design where a particular structure is necessary to ensure proper protein-protein interactions. In this paper, we show that in the 2D HP model of Dill it is possible to solve this problem for a broad class of structures. These structures can be used to closely approximate any given structure. One of the most important properties of a good protein (in drug design) is its stability--the aptitude not to fold simultaneously into other structures. We show that for a number of basic structures, our sequences have a unique fold. PMID:16379538

  6. Locally adaptive 2D-3D registration using vascular structure model for liver catheterization.

    PubMed

    Kim, Jihye; Lee, Jeongjin; Chung, Jin Wook; Shin, Yeong-Gil

    2016-03-01

    Two-dimensional-three-dimensional (2D-3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which makes it difficult to obtain the correct solution of 2D-3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34±1.94mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets. PMID:26824922

  7. Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers

    NASA Astrophysics Data System (ADS)

    Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian

    2016-07-01

    Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers.

  8. Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers

    PubMed Central

    Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian

    2016-01-01

    Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers. PMID:27403589

  9. Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers.

    PubMed

    Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian

    2016-01-01

    Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers. PMID:27403589

  10. Structural transformation in monolayer materials: a 2D to 1D transformation.

    PubMed

    Momeni, Kasra; Attariani, Hamed; LeSar, Richard A

    2016-07-20

    Reducing the dimensions of materials to atomic scales results in a large portion of atoms being at or near the surface, with lower bond order and thus higher energy. At such scales, reduction of the surface energy and surface stresses can be the driving force for the formation of new low-dimensional nanostructures, and may be exhibited through surface relaxation and/or surface reconstruction, which can be utilized for tailoring the properties and phase transformation of nanomaterials without applying any external load. Here we used atomistic simulations and revealed an intrinsic structural transformation in monolayer materials that lowers their dimension from 2D nanosheets to 1D nanostructures to reduce their surface and elastic energies. Experimental evidence of such transformation has also been revealed for one of the predicted nanostructures. Such transformation plays an important role in bi-/multi-layer 2D materials. PMID:27388501

  11. 2D NMR Methods for Structural Delineation of Copper(II) Complexes of Penicillin and Pilocarpine

    PubMed Central

    Gaggelli, Elena; Gaggelli, Nicola

    1994-01-01

    A method was developed for delineating the structure of paramagnetic metal complexes. The selective disappearance of cross-peaks in proton-carbon shift correlated 2D NMR maps was shown to uniquely depend upon the scalar and/or dipolar interaction between ligand nuclei and the unpaired electron(s), thus providing a means of identifying binding sites. Copper(II) was shown to form metal complexes with both Penicillin (PNC) and Pilocarpine (PLC) and the structure of the two 1:2 complexes in water solution at physiological pH were determined. PMID:18476239

  12. LOCA hydroloads calculations with multidimensional nonlinear fluid/structure interaction. Volume 2: STEALTH 2D/WHAMSE 2D single-phse fluid and elastic structure studies. Final report. [PWR

    SciTech Connect

    Chang, F.H.; Santee, G.E. Jr.; Mortensen, G.A.; Brockett, G.F.; Gross, M.B.; Silling, S.A.; Belytschko, T.

    1981-03-01

    This report, the second in a series of reports for RP-1065, describes the second step in the stepwise approach for developing the three-dimensional, nonlinear, fluid/structure interaction methodology to assess the hydroloads on a large PWR during the subcooled portions of a hypothetical LOCA. The second step in the methodology considers enhancements and special modifications to the 2D STEALTH-HYDRO computer program and the 2D WHAMSE computer program. The 2D STEALTH-HYDRO enhancements consist of a fluid-fluid coupling control-volume model and an orifice control-volume model. The enhancements to 2D WHAMSE include elimination of the implicit integration routines, material models, and structural elements not required for the hydroloads application. In addition the logic for coupling the 2D STEALTH-HYDRO computer program to the 2D WHAMSE computer program is discussed.

  13. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image

    NASA Astrophysics Data System (ADS)

    Rabbani, Arash; Ayatollahi, Shahab; Kharrat, Riyaz; Dashti, Nader

    2016-08-01

    In this study, we have utilized 3-D micro-tomography images of real and synthetic rocks to introduce two mathematical correlations which estimate the distribution parameters of 3-D coordination number using a single 2-D cross-sectional image. By applying a watershed segmentation algorithm, it is found that the distribution of 3-D coordination number is acceptably predictable by statistical analysis of the network extracted from 2-D images. In this study, we have utilized 25 volumetric images of rocks in order to propose two mathematical formulas. These formulas aim to approximate the average and standard deviation of coordination number in 3-D pore networks. Then, the formulas are applied for five independent test samples to evaluate the reliability. Finally, pore network flow modeling is used to find the error of absolute permeability prediction using estimated and measured coordination numbers. Results show that the 2-D images are considerably informative about the 3-D network of the rocks and can be utilized to approximate the 3-D connectivity of the porous spaces with determination coefficient of about 0.85 that seems to be acceptable considering the variety of the studied samples.

  14. Nanotribology Results Show that DNA Forms a Mechanically Resistant 2D Network in Metaphase Chromatin Plates

    PubMed Central

    Gállego, Isaac; Oncins, Gerard; Sisquella, Xavier; Fernàndez-Busquets, Xavier; Daban, Joan-Ramon

    2010-01-01

    In a previous study, we found that metaphase chromosomes are formed by thin plates, and here we have applied atomic force microscopy (AFM) and friction force measurements at the nanoscale (nanotribology) to analyze the properties of these planar structures in aqueous media at room temperature. Our results show that high concentrations of NaCl and EDTA and extensive digestion with protease and nuclease enzymes cause plate denaturation. Nanotribology studies show that native plates under structuring conditions (5 mM Mg2+) have a relatively high friction coefficient (μ ≈ 0.3), which is markedly reduced when high concentrations of NaCl or EDTA are added (μ ≈ 0.1). This lubricant effect can be interpreted considering the electrostatic repulsion between DNA phosphate groups and the AFM tip. Protease digestion increases the friction coefficient (μ ≈ 0.5), but the highest friction is observed when DNA is cleaved by micrococcal nuclease (μ ≈ 0.9), indicating that DNA is the main structural element of plates. Whereas nuclease-digested plates are irreversibly damaged after the friction measurement, native plates can absorb kinetic energy from the AFM tip without suffering any damage. These results suggest that plates are formed by a flexible and mechanically resistant two-dimensional network which allows the safe storage of DNA during mitosis. PMID:21156137

  15. Structure and decompression melting of a novel, high-pressure nanoconfined 2-D ice.

    PubMed

    Wang, Jianwei; Kalinichev, Andrey G; Kirkpatrick, R James

    2005-08-01

    Molecular dynamics (MD) simulations of water confined in nanospaces between layers of talc (system composition Mg(3)Si(4)O(10)(OH)(2) + 2H(2)O) at 300 K and pressures of approximately 0.45 GPa show the presence of a novel 2-D ice structure, and the simulation results at lower pressures provide insight into the mechanisms of its decompression melting. Talc is hydrophobic at ambient pressure and temperature, but weak hydrogen bonding between the talc surface and the water molecules plays an important role in stabilizing the hydrated structure at high pressure. The simulation results suggest that experimentally accessible elevated pressures may cause formation of a wide range of previously unknown water structures in nanoconfinement. In the talc 2-D ice, each water molecule is coordinated by six O(b) atoms of one basal siloxane sheet and three water molecules. The water molecules are arranged in a buckled hexagonal array in the a-b crystallographic plane with two sublayers along [001]. Each H(2)O molecule has four H-bonds, accepting one from the talc OH group and one from another water molecule and donating one to an O(b) and one to another water molecule. In plan view, the molecules are arranged in six-member rings reflecting the substrate talc structure. Decompression melting occurs by migration of water molecules to interstitial sites in the centers of six-member rings and eventual formation of separate empty and water-filled regions. PMID:16852798

  16. Synthesis, structure and luminescence property of 2D lanthanide complexes with 3-fluorophthalate and oxalate

    SciTech Connect

    Cha, Yu-E; Li, Xia; Song, Shuang

    2012-12-15

    Complexes [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (Ln=Sm 1, Eu 2, Tb 3 and Dy 4; fpht=3-fluorophthalate and ox=oxalate) have been synthesized and structurally characterized by single crystal X-ray diffraction. The four complexes possess similar 2D framework structures constructed from Ln-fpht double-stranded helices and ox linkages. Complexes 2 and 3 display the characteristic emission {sup 5}D{sub 0}{yields}{sup 7}F{sub J} (J=0-4) transitions of Eu(III) ion and {sup 5}D{sub 4}{yields}{sup 7}F{sub J} (J=6-3) transitions of Tb(III) ion, respectively. The emission decay curves reveal a monoexponential behavior yielding the lifetime values of 0.266{+-}0.002 ms for 2 and 0.733{+-}0.002 ms for 3. The emission spectrum of 1 shows three weak bands corresponding to the characteristic emission {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 5/2}, {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 7/2} and {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 9/2} transitions of Sm(III) ion. The emission spectrum of 4 displays a broad band centered at 438 nm, which comes from the {pi}{sup Low-Asterisk }-{pi} transition of the ligand. - Graphical abstract: Complexes [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (fpht=3-fluorophthalate, ox=oxalate) possess 2D structures. Sm(III), Eu(III) and Tb(III) complexes show the characteristic fluorescent emission of the Ln(III). Dy(III) complex displays ligand-based luminescent behavior. Highlights: Black-Right-Pointing-Pointer [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (fpht=3-fluorophthalate; ox=oxalate) show 2D structures. Black-Right-Pointing-Pointer The 2D structures are constructed from Ln-fpht double-stranded helices and ox linkage. Black-Right-Pointing-Pointer The Sm(III), Eu(III) and Tb(III) complexes show the characteristic emission of the Ln(III) ions. Black-Right-Pointing-Pointer Dy(III) complex displays ligand-based luminescent behavior.

  17. Parametric analysis of 2D guided-wave photonic band gap structures

    NASA Astrophysics Data System (ADS)

    Ciminelli, C.; Peluso, F.; Armenise, M. N.

    2005-11-01

    The parametric analysis of the electromagnetic properties of 2D guided wave photonic band gap structures is reported with the aim of providing a valid tool for the optimal design. The modelling approach is based on the Bloch-Floquet method. Different lattice configurations and geometrical parameters are considered. An optimum value for the ratio between the hole (or rod) radius and the lattice constant does exist and the calculation demonstrated that it is almost independent from the etching depth, only depending on the lattice type. The results are suitable for the design optimisation of photonic crystal reflectors to be used in integrated optical devices.

  18. Parametric analysis of 2D guided-wave photonic band gap structures.

    PubMed

    Ciminelli, C; Peluso, F; Armenise, M

    2005-11-28

    The parametric analysis of the electromagnetic properties of 2D guided wave photonic band gap structures is reported with the aim of providing a valid tool for the optimal design. The modelling approach is based on the Bloch-Floquet method. Different lattice configurations and geometrical parameters are considered. An optimum value for the ratio between the hole (or rod) radius and the lattice constant does exist and the calculation demonstrated that it is almost independent from the etching depth, only depending on the lattice type. The results are suitable for the design optimisation of photonic crystal reflectors to be used in integrated optical devices. PMID:19503180

  19. Nonlinear soil-structure interaction calculations simulating the SIMQUAKE experiment using STEALTH 2D

    NASA Technical Reports Server (NTRS)

    Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.

    1980-01-01

    Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.

  20. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene)

    DOE PAGESBeta

    Mashtalir, O.; Lukatskaya, Maria R.; Kolesnikov, Alexander I.; Raymundo-Pinero, E.; Naguib, Michael; Barsoum, M. W.; Gogotsi, Yury G.

    2016-03-25

    Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. Furthermore, the hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g–1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm.

  1. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene).

    PubMed

    Mashtalir, O; Lukatskaya, M R; Kolesnikov, A I; Raymundo-Piñero, E; Naguib, M; Barsoum, M W; Gogotsi, Y

    2016-04-28

    Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. The hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g(-1) in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm. PMID:27088300

  2. Synthesis and structure of high-quality films of copper polyphthalocyanine – 2D conductive polymer

    SciTech Connect

    Sedlovets, Darya M.; Shuvalov, Maksim V.; Vishnevskiy, Yury V.; Volkov, Vladimir T.; Khodos, Igor I.; Trofimov, Oleg V.; Korepanov, Vitaly I.

    2013-10-15

    Graphical abstract: - Highlights: • 2D polymers show a big promise for science and technology. • We develop a new procedure for the direct synthesis of copper polyphthalocyanine. • We obtain reliable experimental data on the CuPPC structure. • With the support of quantum chemical calculations we describe electronic structure of CuPPC. - Abstract: Copper polyphthalocyanine (CuPPC), a 2D conjugated polymer, is a promising material for electronics and photovoltaics, but its applications were hindered by a poor processability. We propose an experimental approach, by which thin films of CuPPC, can be directly synthesized in a chemical vapor deposition (CVD) set-up at mild temperature (420 °C). High polymerization degree and high crystallinity of the films were confirmed by TEM, FTIR and UV–vis studies. From XRD and TEM electron diffraction, we conclude that the polymer has AA layer stacking with the inter-layer distance of 0.32 nm. The assignment of X-ray and TEM diffraction patterns was based on quantum-chemical calculations. Based on the latter, we also discuss electronic structure and conclude that CuPPC is rather a semi-metal than semi-conductor.

  3. Correlating Structural and Electronic Degrees of Freedom in 2D Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Tung, I.-Cheng; Zhang, Z.; Seyler, K. L.; Jones, A. M.; Clark, G.; Xiao, D.; Laanait, N.; Xu, X.; Wen, H.

    We have conducted a microscopic study of the interplay between structural and electronic degrees of freedom in two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers, multilayers and heterostructures. Using the recently developed full field x-ray reflection interface microscopy with the photoluminescence microscopic probe capability at the Advanced Photon Source, we demonstrated the x-ray reflection imaging of a monolayer 2D material for the first time. The structural variation across an exfoliated WSe2 monolayer is quantified by interlayer spacing relative to the crystal substrate and the smoothness of the layer. This structural information is correlated with the electronic properties of TMDs characterized by the in-situ photoluminescence measurements. This work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012509. The use of Advanced Photon Source is supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

  4. 2D warp-and-woof interwoven networks constructed by helical chains with different chirality.

    PubMed

    Feng, Yuhua; Guo, Yang; OuYang, Yan; Liu, Zhanquan; Liao, Daizheng; Cheng, Peng; Yan, Shiping; Jiang, Zonghui

    2007-09-21

    Two unprecedented 2D entangled layers of warp-and-woof threads interwoven by left- and right-handed helical chains, {[Mn(salen)Au(CN)2]4(H2O)}n (salen = N,N'-ethylenebis(salicylideneaminato)) and {Mn(acacen)Ag(CN)2}n (acacen = N,N'-ethylenebis(acetylacetonylideneiminate)) 2, have been synthesized and characterized. PMID:17728880

  5. Observation of kinetic networks of hydrogen-bond exchange using 2D IR echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Yung Sam; Hochstrasser, Robin M.

    The ultrafast H-bond motion in acetonitrile/methanol and of methanol and water around a dicarbonyl (piperidone) dominates the mechanism of vibrational coherence transfer in linear and 2D IR echo spectra. Multiple state coherence transfer and energy transfer are seen at and between the two carbonyl groups of the piperidone in both water and methanol.

  6. Network structure controls noise

    NASA Astrophysics Data System (ADS)

    Das, Jayajit; Raychaudhuri, Subhadip

    2004-03-01

    Biochemical reactions often involve low copy number of reactant molecules. Bio-networks, however, control the intrinsic noise arising from the fluctuations of low copy number of reactant molecules quite efficiently to perform their job in a robust manner. Network structures may be very crucial in the effective modulation of fluctuation effects. We investigate the interplay between the network structure and the noise behavior in signal transduction networks using Stochastic simulations. Some of the recurrent modules in biological networks seem to be vital in noise control. We correlate the effect of those modules to the function of the global topology of the network. This may explain why certain class of modules are so ubiquitous in Bio-networks.

  7. Oscillations of light absorption in 2D macroporous silicon structures with surface nanocoatings

    NASA Astrophysics Data System (ADS)

    Karachevtseva, L.; Kuchmii, S.; Lytvynenko, O.; Sizov, F.; Stronska, O.; Stroyuk, A.

    2011-02-01

    We investigated the near-IR light absorption oscillations in 2D macroporous silicon structures with microporous silicon layers and CdTe, ZnO surface nanocrystals. The electro-optical effect was taken into account within the strong electric field approximation. Well-separated oscillations were observed in the spectral ranges of the surface bonds of macroporous silicon structures with surface nanocrystals. The model of the resonant electron scattering on impurity states in electric field of heterojunction “silicon-nanocoating” on macropore surface as well as realization of Wannier-Stark effect on the randomly distributed surface bonds were considered. The Wannier-Stark ladders are not broken by impurities because of the longer scattering lifetime as compared with the period of electron oscillations in an external electric field, in all spectral regions considered for macroporous silicon structures with CdTe and ZnO surface nanocrystals.

  8. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene)

    NASA Astrophysics Data System (ADS)

    Mashtalir, O.; Lukatskaya, M. R.; Kolesnikov, A. I.; Raymundo-Piñero, E.; Naguib, M.; Barsoum, M. W.; Gogotsi, Y.

    2016-04-01

    Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. The hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g-1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm.Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. The hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g-1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm. Electronic supplementary information (ESI) available: Characterization methods, additional XRD patterns (Fig. S1) and INS spectra (Fig. S2-S4). See DOI: 10.1039/c6nr01462c

  9. Adaptive finite element modeling of direct current resistivity in 2-D generally anisotropic structures

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Li, Yuguo; Liu, Ying

    2016-07-01

    In this paper, we present an adaptive finite element (FE) algorithm for direct current (DC) resistivity modeling in 2-D generally anisotropic conductivity structures. Our algorithm is implemented on an unstructured triangular mesh that readily accommodates complex structures such as topography and dipping layers and so on. We implement a self-adaptive, goal-oriented grid refinement algorithm in which the finite element analysis is performed on a sequence of refined grids. The grid refinement process is guided by an a posteriori error estimator. The problem is formulated in terms of total potentials where mixed boundary conditions are incorporated. This type of boundary condition is superior to the Dirichlet type of conditions and improves numerical accuracy considerably according to model calculations. We have verified the adaptive finite element algorithm using a two-layered earth with azimuthal anisotropy. The FE algorithm with incorporation of mixed boundary conditions achieves high accuracy. The relative error between the numerical and analytical solutions is less than 1% except in the vicinity of the current source location, where the relative error is up to 2.4%. A 2-D anisotropic model is used to demonstrate the effects of anisotropy upon the apparent resistivity in DC soundings.

  10. Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR

    SciTech Connect

    Jeng, Meifen; Englander, S.W.; Elove, G.A.; Wand, A.J.; Roder, H. )

    1990-11-01

    Hydrogen exchange and two-dimensional nuclear magnetic resonance (2D NMR) techniques were used to characterize the structure of oxidized horse cytochrome c at acid pH and high ionic strength. Under these conditions, cytochrome c is known to assume a globular conformation (A state) with properties resembling those of the molten globule state described for other proteins. In order to measure the rate of hydrogen-deuterium exchange for individual backbone amide protons in the A state, samples of oxidized cytochrome c were incubated at 20 {degree}C in D{sub 2}O buffer for time periods ranging from 2 min to 500 h. The exchange reaction was then quenched by transferring the protein to native conditions. The extent of exchange for 44 amide protons trapped in the refolded protein was measured by 2D NMR spectroscopy. The results show that this approach can provide detailed information on H-bonded secondary and tertiary structure in partially folded equilibrium forms of a protein. All of the slowly exchanging amide protons in the three major helices of native cytochrome c are strongly protected from exchange at acid pH, indicating that the A state contains native-like elements of helical secondary structure. By contrast, a number of amide protons involved in irregular tertiary H-bonds of the native structure are only marginally protected in the A state, indicating that these H-bonds are unstable or absent. The H-exchange results suggest that the major helices of cytochrome c and their common hydrophobic domain are largely preserved in the globular acidic form while the loop region of the native structure is flexible and partly disordered.

  11. Nanophotonic Filters and Integrated Networks in Flexible 2D Polymer Photonic Crystals

    PubMed Central

    Gan, Xuetao; Clevenson, Hannah; Tsai, Cheng-Chia; Li, Luozhou; Englund, Dirk

    2013-01-01

    Polymers have appealing optical, biochemical, and mechanical qualities, including broadband transparency, ease of functionalization, and biocompatibility. However, their low refractive indices have precluded wavelength-scale optical confinement and nanophotonic applications in polymers. Here, we introduce a suspended polymer photonic crystal (SPPC) architecture that enables the implementation of nanophotonic structures typically limited to high-index materials. Using the SPPC platform, we demonstrate nanophotonic band-edge filters, waveguides, and nanocavities featuring quality (Q) factors exceeding 2, 300 and mode volumes (Vmode) below 1.7(λ/n)3. The unprecedentedly high Q/Vmode ratio results in a spectrally selective enhancement of radiative transitions of embedded emitters via the cavity Purcell effect with an enhancement factor exceeding 100. Moreover, the SPPC architecture allows straightforward integration of nanophotonic networks, shown here by a waveguide-coupled cavity drop filter with sub-nanometer spectral resolution. The nanoscale optical confinement in polymer promises new applications ranging from optical communications to organic opto-electronics, and nanophotonic polymer sensors. PMID:23828320

  12. A simple configuration for fabrication of 2D and 3D photonic quasicrystals with complex structures

    NASA Astrophysics Data System (ADS)

    Sun, XiaoHong; Wang, Shuai; Liu, Wei; Jiang, LiuDi

    2016-06-01

    A simple method using a single-prism common-path interferometer is presented for the fabrication of complex quasicrystals in sub-micrometer scales. Multiple types of two-dimensional (2D) and three-dimensional (3D) quasicrystalline structures are designed and their diffraction patterns are obtained by using Fourier Transform method. Multi-fold rotational symmetries are demonstrated and compared. By using this method, a wide range of quasicrystals types can be produced with arbitrary complexities and rotational symmetries. The transmittance studies of 12-fold and 18-fold structures also reveal the existence of complete photonic bandgaps, which also demonstrates increased symmetry and significantly improved characteristics of photonic band-gaps.

  13. Local electronic structures and 2D topological phase transition of ultrathin Sb films

    NASA Astrophysics Data System (ADS)

    Kim, Sunghwan; Jin, Kyung-Hwan; Park, Joonbum; Kim, Jun Sung; Jhi, Seung-Hoon; Yeom, Han Woong

    We investigate local electronic structures of ultrathin Sb islands and their edges grown on Bi2Te2Se by scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) calculations. The Sb islands of various thickness are grown with atomically well ordered edge structure over the 3 bilayers (BL). On the surfaces and edges of these islands, we clearly resolve edge-localized electronic states by STS measurements, which depend on the thickness. The DFT calculations identify that the strongly localized edge states of 4 and 5 BL films correspond to a quantum spin Hall (QSH) states while the edge states of 3 BL are trivial. Our experimental and theoretical results confirm the 2D topological phase transition of the ultrathin Sb films from trivial to QSH phase. Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science and Department of Physics, Pohang University of Science and Technology, Korea.

  14. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor.

    PubMed

    Shang, Jingzhi; Shen, Xiaonan; Cong, Chunxiao; Peimyoo, Namphung; Cao, Bingchen; Eginligil, Mustafa; Yu, Ting

    2015-01-27

    Two-dimensional (2D) semiconductors, such as transition-metal dichalcogenide monolayers (TMD 1Ls), have attracted increasing attention owing to the underlying fundamental physics (e.g., many body effects) and the promising optoelectronic applications such as light-emitting diodes. Though much progress has been made, intrinsic excitonic states of TMD 1Ls are still highly debated in theory, which thirsts for direct experimental determination. Here, we report unconventional emission and excitonic fine structure in 1L WS2 revealed by electrical doping and photoexcitation, which reflects the interplay of exciton, trion, and other excitonic states. Tunable excitonic emission has been realized in a controllable manner via electrical and/or optical injection of charge carriers. Remarkably enough, the superlinear (i.e., quadratic) emission is unambiguously observed which is attributed to biexciton states, indicating the strong Coulomb interactions in such a 2D material. In a nearly neutral 1L WS2, trions and biexcitons possess large binding energies of ∼ 10-15 and 45 meV, respectively. Moreover, our finding of electrically induced robust emission opens up a possibility to boost the luminous efficiency of emerging 1L TMD light emitting diodes. PMID:25560634

  15. Impact of Structural Differences in Galactocerebrosides on the Behavior of 2D Monolayers.

    PubMed

    Stefaniu, Cristina; Ries, Annika; Gutowski, Olof; Ruett, Uta; Seeberger, Peter H; Werz, Daniel B; Brezesinski, Gerald

    2016-03-15

    The molecular interactions of three biologically important galactocerebrosides have been studied in monolayers formed at the soft air/water interface as 2D model membranes. Highly surface-sensitive techniques as GIXD (grazing incidence X-ray diffraction), IRRAS (infrared reflection-absorption spectroscopy), and BAM (Brewster angle microscopy) have been used. The study reveals that small differences in the chemical structure have a relevant impact on the physical-chemical properties and intermolecular interactions. The presence of a 2-d-hydroxyl group in the fatty acid favored for GalCer C24:0 (2-OH) monolayers a higher hydration state of the headgroup at low lateral pressures (<25 mN/m) and a higher condensation effect above 30 mN/m. An opposite behavior was recorded for GalCer C24:0 and GalCer C24:1, for which the intermolecular interactions are defined by the weakly hydrated but strong H-bonded interconnected head groups. Additionally, the 15-cis-double bond in the fatty acid chain (nervonic acid) of GalCer C24:1 stabilized the LE phase but did not disturb the packing parameters of the LC phase as compared with the saturated compound GalCer C24:0. PMID:26907993

  16. The influence of pressure on the structure of a 2D uranium(VI) carboxyphosphonoate compound

    NASA Astrophysics Data System (ADS)

    Spencer, Elinor C.; Ross, Nancy L.; Surbella, Robert G.; Cahill, Christopher L.

    2014-10-01

    We report the first quantitative analysis of the structural evolution of a uranyl bearing coordination polymer in response to pressure. The material that is central to this study, (UO2)(O3PCH2CO2H) (1), is constructed from rigid 2D inorganic layers comprising edge sharing UO7 pentagonal bipyramids cross-linked by [PO3(COOH)]2- anions. Strong hydrogen bonding interactions exist between the pendent carboxylic acid groups on adjacent layers. Under pressure, 1 exhibits compressional behaviour primarily in the direction perpendicular to the inorganic layers, which is aided by a reduction in the interlayer distance and shifting of the layers with respect to each other. The bulk modulus for the 2D compound 1 is unexpectedly high [18.1(1) GPa] and is within the range reported for 3D CPs assembled from ZnII cations and inflexible imidazolate anions, and is at the lower end of the range of moduli observed for aluminosilicate zeolites (19-59 GPa).

  17. Structure and interaction in 2D assemblies of tobacco mosaic viruses

    SciTech Connect

    Yang, L.; Wang. S.; Masafumi, F.; Checco, A.; Zhongwei, N.; Wang, Q.

    2009-08-27

    We created two-dimensional (2D) assemblies of tobacco mosaic viruses (TMVs) and characterized their structures using Atomic Force Microscopy (AFM) and X-ray scattering. The TMVs were adsorbed on an oppositely charged, fluid lipid monolayer supported by a solid substrate and submerged in a buffer solution. The lipid monolayer confined the viral particles within a plane, while providing them with lateral mobility so that overall the TMV assembly behaved like a 2D liquid. We controlled the inter-particle interaction by adjusting the chemical condition in the buffer to induce ordered TMV assemblies. We found that the presence of the lipid layer was essential for forming ordered TMV assemblies. Packed TMV assemblies formed on the lipid layer, with an average inter-particle spacing of 42 nm. By introducing Ca2+ ions into the buffer solution, we were able to improve the in-plane order within the TMV assemblies and reduce the average inter-particle spacing to 20 nm, compared to the TMV diameter of 18 nm. Quantitative analysis of the X-ray scattering data shows that the structural order within the TMV assemblies prepared under a Ca{sup 2+}-free buffer solution is consistent with purely repulsive, electrostatic inter-particle interaction. In contrast, the structural order within Ca{sup 2+}-induced TMV assemblies is consistent with the behavior of a fluid of sticky rods, implying the presence of a strong attraction between TMVs. In addition to the screening of Coulomb repulsion, this behavior is likely the result of counterion-induced as well as membrane-mediated attractions.

  18. Structure and Interaction in 2D Assemblies of Tobacco Mosaic Viruses

    SciTech Connect

    Fukuto, M.; Yang, L.; Wang, S.; Fukuto, M.; Checco, A.; Niu, Z.; Wang, Q.

    2009-12-07

    We created two-dimensional (2D) assemblies of tobacco mosaic viruses (TMVs) and characterized their structures using Atomic Force Microscopy (AFM) and X-ray scattering. The TMVs were adsorbed on an oppositely charged, fluid lipid monolayer supported by a solid substrate and submerged in a buffer solution. The lipid monolayer confined the viral particles within a plane, while providing them with lateral mobility so that overall the TMV assembly behaved like a 2D liquid. We controlled the inter-particle interaction by adjusting the chemical condition in the buffer to induce ordered TMV assemblies. We found that the presence of the lipid layer was essential for forming ordered TMV assemblies. Packed TMV assemblies formed on the lipid layer, with an average inter-particle spacing of 42 nm. By introducing Ca{sup 2+} ions into the buffer solution, we were able to improve the in-plane order within the TMV assemblies and reduce the average inter-particle spacing to 20 nm, compared to the TMV diameter of 18 nm. Quantitative analysis of the X-ray scattering data shows that the structural order within the TMV assemblies prepared under a Ca{sup 2+}-free buffer solution is consistent with purely repulsive, electrostatic inter-particle interaction. In contrast, the structural order within Ca{sup 2+}-induced TMV assemblies is consistent with the behavior of a fluid of sticky rods, implying the presence of a strong attraction between TMVs. In addition to the screening of Coulomb repulsion, this behavior is likely the result of counterion-induced as well as membrane-mediated attractions.

  19. Enantiomeric Excess-Tuned 2D Structural Transition: From Heterochiral to Homochiral Supramolecular Assemblies.

    PubMed

    Li, Shu-Ying; Chen, Ting; Wang, Lin; Sun, Bing; Wang, Dong; Wan, Li-Jun

    2016-07-12

    Spontaneous resolution of enantiomers is an intriguing and important phenomenon in surface chirality studies. Herein, we report on a two-dimensional (2D) structural transition from the heterochiral to homochiral assembly tuned by changing the enantiomeric excess (ee) of enantiomers in the solution phase. Enantiomers cocrystallize as racemates on the surface when the ee of the R-enantiomer (or S-enantiomer) remains below a critical value, whereas chiral segregation is achieved, and globally homochiral surfaces composed of exclusively one enantiomer are obtained as the critical ee is exceeded. The heterochiral-homochiral transition is ascribed to the formation of energetically unfavored homochiral molecular dimers under the control of the majority-rules principle at high ee values. Such results present an intriguing phenomenon in chiral ordering at surfaces, promising a new enlightenment toward understanding chiral resolution and the evolution of chirality. PMID:27287273

  20. A novel simple procedure to consider seismic soil structure interaction effects in 2D models

    NASA Astrophysics Data System (ADS)

    Jaramillo, Juan Diego; Gómez, Juan David; Restrepo, Doriam; Rivera, Santiago

    2014-09-01

    A method is proposed to estimate the seismic soil-structure-interaction (SSI) effects for use in engineering practice. It is applicable to 2D structures subjected to vertically incident shear waves supported by homogenous half-spaces. The method is attractive since it keeps the simplicity of the spectral approach, overcomes some of the difficulties and inaccuracies of existing classical techniques and yet it considers a physically consistent excitation. This level of simplicity is achieved through a response spectra modification factor that can be applied to the free-field 5%-damped response spectra to yield design spectral ordinates that take into account the scattered motions introduced by the interaction effects. The modification factor is representative of the Transfer Function (TF) between the structural relative displacements and the free-field motion, which is described in terms of its maximum amplitude and associated frequency. Expressions to compute the modification factor by practicing engineers are proposed based upon a parametric study using 576 cases representative of actual structures. The method is tested in 10 cases spanning a wide range of common fundamental vibration periods.

  1. Tuning the resonance properties of 2D carbon nanotube networks towards a mechanical resonator

    NASA Astrophysics Data System (ADS)

    Zhan, Haifei; Zhang, Guiyong; Zhang, Baocheng; Bell, John M.; Gu, Yuantong

    2015-08-01

    The capabilities of the mechanical resonator-based nanosensors in detecting ultra-small mass or force shifts have driven a continuing exploration of the palette of nanomaterials for such application purposes. Based on large-scale molecular dynamics simulations, we have assessed the applicability of a new class of carbon nanomaterials for nanoresonator usage, i.e. the single-wall carbon nanotube (SWNT) network. It is found that SWNT networks inherit excellent mechanical properties from the constituent SWNTs, possessing a high natural frequency. However, although a high quality factor is suggested from the simulation results, it is hard to obtain an unambiguous Q-factor due to the existence of vibration modes in addition to the dominant mode. The nonlinearities resulting from these extra vibration modes are found to exist uniformly under various testing conditions including different initial actuations and temperatures. Further testing shows that these modes can be effectively suppressed through the introduction of axial strain, leading to an extremely high quality factor in the order of 109 estimated from the SWNT network with 2% tensile strain. Additional studies indicate that the carbon rings connecting the SWNTs can also be used to alter the vibrational properties of the resulting network. This study suggests that the SWNT network can be a good candidate for applications as nanoresonators.

  2. Tuning the resonance properties of 2D carbon nanotube networks towards a mechanical resonator.

    PubMed

    Zhan, Haifei; Zhang, Guiyong; Zhang, Baocheng; Bell, John M; Gu, Yuantong

    2015-08-01

    The capabilities of the mechanical resonator-based nanosensors in detecting ultra-small mass or force shifts have driven a continuing exploration of the palette of nanomaterials for such application purposes. Based on large-scale molecular dynamics simulations, we have assessed the applicability of a new class of carbon nanomaterials for nanoresonator usage, i.e. the single-wall carbon nanotube (SWNT) network. It is found that SWNT networks inherit excellent mechanical properties from the constituent SWNTs, possessing a high natural frequency. However, although a high quality factor is suggested from the simulation results, it is hard to obtain an unambiguous Q-factor due to the existence of vibration modes in addition to the dominant mode. The nonlinearities resulting from these extra vibration modes are found to exist uniformly under various testing conditions including different initial actuations and temperatures. Further testing shows that these modes can be effectively suppressed through the introduction of axial strain, leading to an extremely high quality factor in the order of 10(9) estimated from the SWNT network with 2% tensile strain. Additional studies indicate that the carbon rings connecting the SWNTs can also be used to alter the vibrational properties of the resulting network. This study suggests that the SWNT network can be a good candidate for applications as nanoresonators. PMID:26184034

  3. A Novel Crosstalk Suppression Method of the 2-D Networked Resistive Sensor Array

    PubMed Central

    Wu, Jianfeng; Wang, Lei; Li, Jianqing; Song, Aiguo

    2014-01-01

    The 2-D resistive sensor array in the row–column fashion suffered from the crosstalk problem for parasitic parallel paths. Firstly, we proposed an Improved Isolated Drive Feedback Circuit with Compensation (IIDFCC) based on the voltage feedback method to suppress the crosstalk. In this method, a compensated resistor was specially used to reduce the crosstalk caused by the column multiplexer resistors and the adjacent row elements. Then, a mathematical equivalent resistance expression of the element being tested (EBT) of this circuit was analytically derived and verified by the circuit simulations. The simulation results show that the measurement method can greatly reduce the influence on the EBT caused by parasitic parallel paths for the multiplexers' channel resistor and the adjacent elements. PMID:25046011

  4. Methods to determine the Orientation and Velocity of 2-D structures based on multi- spacecraft data

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Pu, Z.; Zhou, X.; Wang, J.; Zong, Q.; Shi, Q.

    2006-12-01

    Many techniques have been developed to study the axial orientation and/or velocity of 2-D structures (flux ropes), by analyzing in situ data from single or multiple spacecraft. To obtain the axial orientation, there are magnetic based MVA (BMVA), current based MVA (CMVA), Minimum Direction Derivative (MDD) and Multiple Triangulation Analysis (MTA) as a modified version of timing method. To further calculate the velocity, we have DeHoffmann-Teller analysis, Spatio-Temporal Difference (STD) and several version of timing method including MTA. After a brief introduction on the principle of these methods, we theoretically estimate their error ranges based on modeled structures to examine the validity of these techniques. Because of their different principles, their error bars are shown to be distinct, depending on the parameters (such as radius, model selected and even the satellite crossing path) of the certain structure. The error estimation thus provides us some clue on the selection of methods under different conditions. Some real events are further analyzed using these techniques as the example.

  5. Prominence fine-structure dynamics as inferred from 2D non-LTE models

    NASA Astrophysics Data System (ADS)

    Gunar, Stanislav; Schmieder, Brigitte; Mein, Pierre; Heinzel, Petr

    2012-07-01

    2D multi-thread prominence fine structure models are able to produce synthetic Lyman spectra in very good agreement with spectral observations by SOHO/SUMER including the spectral line asymmetries. The synthetic differential emission measure curves derived from these models are also in a good agreement with observations. Now we show that these models are also able to produce synthetic H-alpha line profiles in very good agreement with observations which allows us to analyze not only the physical parameters of the prominence fine-structure plasma but also some aspects of its dynamical behaviour. We compare the synthetic H-alpha spectra with the observed spectra of the April 26, 2007 prominence using three statistical parameters: the line integrated intensity, the line full-width at the half-maximum (FWHM), and the Doppler velocity derived from shifts of the line profiles. This statistical analysis allows us to conclude that the overall statistical distribution of the LOS velocities in the April 26, 2007 prominence at the time of the observations was below +/-15 km/s and in the prominence core was close to +/-10 km/s. In combination with the analysis of the Lyman spectra we determine several physical parameters of the observed prominence fine structures which show that the April 26, 2007 prominence was relatively less massive. We are also able to put some constrains on the prominence core temperature that might be relatively low, reaching values below 6000 K.

  6. Learning structured models for segmentation of 2-D and 3-D imagery.

    PubMed

    Lucchi, Aurelien; Marquez-Neila, Pablo; Becker, Carlos; Li, Yunpeng; Smith, Kevin; Knott, Graham; Fua, Pascal

    2015-05-01

    Efficient and accurate segmentation of cellular structures in microscopic data is an essential task in medical imaging. Many state-of-the-art approaches to image segmentation use structured models whose parameters must be carefully chosen for optimal performance. A popular choice is to learn them using a large-margin framework and more specifically structured support vector machines (SSVM). Although SSVMs are appealing, they suffer from certain limitations. First, they are restricted in practice to linear kernels because the more powerful nonlinear kernels cause the learning to become prohibitively expensive. Second, they require iteratively finding the most violated constraints, which is often intractable for the loopy graphical models used in image segmentation. This requires approximation that can lead to reduced quality of learning. In this paper, we propose three novel techniques to overcome these limitations. We first introduce a method to "kernelize" the features so that a linear SSVM framework can leverage the power of nonlinear kernels without incurring much additional computational cost. Moreover, we employ a working set of constraints to increase the reliability of approximate subgradient methods and introduce a new way to select a suitable step size at each iteration. We demonstrate the strength of our approach on both 2-D and 3-D electron microscopic (EM) image data and show consistent performance improvement over state-of-the-art approaches. PMID:25438309

  7. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    SciTech Connect

    K.R. Maskaly

    2005-06-01

    increasing RMS roughness. Again, the homogenization approximation is able to predict these results. The problem of surface scratches on 1D photonic crystals is also addressed. Although the reflectivity decreases are lower in this study, up to a 15% change in reflectivity is observed in certain scratched photonic crystal structures. However, this reflectivity change can be significantly decreased by adding a low index protective coating to the surface of the photonic crystal. Again, application of homogenization theory to these structures confirms its predictive power for this type of imperfection as well. Additionally, the problem of a circular pores in 2D photonic crystals is investigated, showing that almost a 50% change in reflectivity can occur for some structures. Furthermore, this study reveals trends that are consistent with the 1D simulations: parameter changes that increase the absolute reflectivity of the photonic crystal will also increase its tolerance to structural imperfections. Finally, experimental reflectance spectra from roughened 1D photonic crystals are compared to the results predicted computationally in this thesis. Both the computed and experimental spectra correlate favorably, validating the findings presented herein.

  8. Ferrimagnetism in 2D networks of porphyrin-X and -XO (X=Sc,...,Zn) with acetylene bridges

    NASA Astrophysics Data System (ADS)

    Wierzbowska, Małgorzata; Sobolewski, Andrzej L.

    2016-03-01

    Magnetism in 2D networks of the acetylene-bridged transition metal porphyrins M(P)-2(C-C)-2 (denoted P-TM), and oxo-TM-porphyrins OM(P)-2(C-C)-2 (denoted P-TMO), is studied with the density functional theory (DFT) and the self-interaction corrected pseudopotential scheme (pSIC). Addition of oxygen lowers magnetism of P-TMO with respect to the corresponding P-TM for most of the first-half 3d-row TMs. In contrast, binding O with the second-half 3d-row TMs or Sc increases the magnetic moments. Ferrimagnetism is found for the porphyrin networks with the TMs from V to Co and also for these cases with oxygen. This is a long-range effect of the delocalized spin-polarization, extended even to the acetylene bridges.

  9. Dynamic force measurement of rearrangements in a 2D network of droplets

    NASA Astrophysics Data System (ADS)

    Barkley, Solomon; Backholm, Matilda; Dalnoki-Veress, Kari

    2015-03-01

    The interaction between two liquid droplets in an immiscible liquid is well understood. However, the emulsions relevant to biological and industrial processes involve high concentrations of these droplets, and multi-body effects cannot be ignored. As droplets rearrange in response to a disturbance, the importance of individual pair-wise interactions between droplets changes with the geometry of neighbours. Here we report on an experimental setup consisting of a two- dimensional network of monodisperse droplets stabilized with a surfactant. The system is studied with micropipette deflection, which permits direct measurement of forces along with simultaneous imaging of the droplet network. One micropipette is used to apply a tensile or compressive force to the droplet cluster, while a second pipette acts as a force-transducing cantilever, deflecting in response to rearrangements of the droplets.

  10. Power Versus Spectrum 2-D Sensing in Energy Harvesting Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Han, Weijia; Li, Di; Zhang, Ping; Cui, Shuguang

    2015-12-01

    Energy harvester based cognitive radio is a promising solution to address the shortage of both spectrum and energy. Since the spectrum access and power consumption patterns are interdependent, and the power value harvested from certain environmental sources are spatially correlated, the new power dimension could provide additional information to enhance the spectrum sensing accuracy. In this paper, the Markovian behavior of the primary users is considered, based on which we adopt a hidden input Markov model to specify the primary vs. secondary dynamics in the system. Accordingly, we propose a 2-D spectrum and power (harvested) sensing scheme to improve the primary user detection performance, which is also capable of estimating the primary transmit power level. Theoretical and simulated results demonstrate the effectiveness of the proposed scheme, in term of the performance gain achieved by considering the new power dimension. To the best of our knowledge, this is the first work to jointly consider the spectrum and power dimensions for the cognitive primary user detection problem.

  11. 2D and 3D multipactor modeling in dielectric-loaded accelerator structures

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Oleksandr; Nusinovich, Gregory; Antonsen, Thomas

    2010-11-01

    Multipactor (MP) is known as the avalanche growth of the number of secondary electrons emitted from a solid surface exposed to an RF electric field under vacuum conditions. MP is a severe problem in modern rf systems and, therefore, theoretical and experimental studies of MP are of great interest to the researchers working in various areas of physics and engineering. In this work we present results of MP studies in dielectric-loaded accelerator (DLA) structures. First, we show simulation results obtained with the use of the 2D self-consistent MP model (O. V. Sinitsyn, et. al., Phys. Plasmas, vol. 16, 073102 (2009)) and compare those to experimental ones obtained during recent extensive studies of DLA structures performed by Argonne National Laboratory, Naval Research Laboratory, SLAC National Accelerator Laboratory and Euclid TechLabs (C. Jing, et al., IEEE Trans. Plasma Sci., vol. 38, pp. 1354-1360 (2010)). Then we present some new results of 3D analysis of MP which include studies of particle trajectories and studies of MP development at the early stage.

  12. Contact transfer length investigation of a 2D nanoparticle network by scanning probe microscopy.

    PubMed

    Ruiz-Vargas, Carlos S; Reissner, Patrick A; Wagner, Tino; Wyss, Roman M; Park, Hyung Gyu; Stemmer, Andreas

    2015-09-11

    Nanoparticle network devices find growing application in sensing and electronics. One recurring challenge in the design and fabrication of this class of devices is ensuring a stable interface via robust yet unobstructive electrodes. A figure of merit which dictates the minimum electrode overlap required for optimal charge injection into the network is the contact transfer length. However, we find that traditional contact characterization using the transmission line model, an indirect method which requires extrapolation, is insufficient for network devices. Instead, we apply Kelvin probe force microscopy to characterize the contact resistance by imaging the surface potential with nanometer resolution. We then use scanning probe lithography to directly investigate the contact transfer length. We have determined the transfer length in graphene contacted devices to be 200-400 nm, thus apt for further device reduction which is often necessary for on-site sensing applications. Simulations from a two-dimensional resistor model support our observations and are expected to be an important tool for further optimizing the design of nanoparticle-based devices. PMID:26291069

  13. Identifying Key Structural Features and Spatial Relationships in Archean Microbialites Using 2D and 3D Visualization Methods

    NASA Astrophysics Data System (ADS)

    Stevens, E. W.; Sumner, D. Y.

    2009-12-01

    Microbialites in the 2521 ± 3 Ma Gamohaan Formation, South Africa, have several different end-member morphologies which show distinct growth structures and spatial relationships. We characterized several growth structures and spatial relationships in two samples (DK20 and 2_06) using a combination of 2D and 3D analytical techniques. There are two main goals in studying complicated microbialites with a combination of 2D and 3D methods. First, one can better understand microbialite growth by identifying important structures and structural relationships. Once structures are identified, the order in which the structures formed and how they are related can be inferred from observations of crosscutting relationships. Second, it is important to use both 2D and 3D methods to correlate 3D observations with those in 2D that are more common in the field. Combining analysis provides significantly more insight into the 3D morphology of microbial structures. In our studies, 2D analysis consisted of describing polished slabs and serial sections created by grinding down the rock 100 microns at a time. 3D analysis was performed on serial sections visualized in 3D using Vrui and 3DVisualizer software developed at KeckCAVES, UCD (http://keckcaves.org). Data were visualized on a laptop and in an immersive cave system. Both samples contain microbial laminae and more vertically orients microbial "walls" called supports. The relationships between these features created voids now filled with herringbone and blocky calcite crystals. DK20, a classic plumose structure, contains two types of support structures. Both are 1st order structures (1st order structures with organic inclusions and 1st without organic inclusions) interpreted as planar features based on 2D analysis. In the 2D analysis the 1st order structures show v branching relationships as well as single cuspate relationships (two 1st order structures with inclusions merging upward), and single tented relationships (three supports

  14. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    NASA Astrophysics Data System (ADS)

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  15. Guided Lamb wave based 2-D spiral phased array for structural health monitoring of thin panel structures

    NASA Astrophysics Data System (ADS)

    Yoo, Byungseok

    2011-12-01

    In almost all industries of mechanical, aerospace, and civil engineering fields, structural health monitoring (SHM) technology is essentially required for providing the reliable information of structural integrity of safety-critical structures, which can help reduce the risk of unexpected and sometimes catastrophic failures, and also offer cost-effective inspection and maintenance of the structures. State of the art SHM research on structural damage diagnosis is focused on developing global and real-time technologies to identify the existence, location, extent, and type of damage. In order to detect and monitor the structural damage in plate-like structures, SHM technology based on guided Lamb wave (GLW) interrogation is becoming more attractive due to its potential benefits such as large inspection area coverage in short time, simple inspection mechanism, and sensitivity to small damage. However, the GLW method has a few critical issues such as dispersion nature, mode conversion and separation, and multiple-mode existence. Phased array technique widely used in all aspects of civil, military, science, and medical industry fields may be employed to resolve the drawbacks of the GLW method. The GLW-based phased array approach is able to effectively examine and analyze complicated structural vibration responses in thin plate structures. Because the phased sensor array operates as a spatial filter for the GLW signals, the array signal processing method can enhance a desired signal component at a specific direction while eliminating other signal components from other directions. This dissertation presents the development, the experimental validation, and the damage detection applications of an innovative signal processing algorithm based on two-dimensional (2-D) spiral phased array in conjunction with the GLW interrogation technique. It starts with general backgrounds of SHM and the associated technology including the GLW interrogation method. Then, it is focused on the

  16. Mercury (I) nitroprusside: A 2D structure supported on homometallic interactions

    SciTech Connect

    Osiry, H.; Cano, A.; Reguera, L.; Lemus-Santana, A.A.; Reguera, E.

    2015-01-15

    The pentacyanonitrosylferrate complex anion, [Fe(CN){sub 5}NO]{sup 2−}, forms an insoluble solid with Hg(I) ion, of formula unit Hg{sub 2}[Fe(CN){sub 5}NO]·2H{sub 2}O, whose crystal structure and related properties are unknown. This contribution reports the preparation of that compound by the precipitation method and its structural study from X-ray powder patterns complemented with spectroscopic information from IR, Raman, and UV–vis techniques. The crystal structure was solved ab initio and then refined using the Rietveld method. The solid crystallizes with a triclinic unit cell, in the P−1 space group, with cell parameters a=10.1202(12), b=10.1000(13), c=7.4704(11) Å; α=110.664(10), β=110.114(10), γ=104.724(8) °. Within the unit cell, two formula units are accommodated (Z=2). It adopts a layered structure related with the coordination of the equatorial CN groups at their N end to the Hg atoms while the axial CN ligand remains unlinked. Within the layers neighboring Hg{sub 2}[Fe(CN){sub 5}NO] building units remain linked through four relatively strong Hg–Hg interactions, with an interatomic distance of 2.549(3) Å. The charge donation from the equatorial CN groups through their 5σ orbitals results into an increase for the electron density on the Hg atoms, which strengths the Hg–Hg bond. In the Raman spectrum, that metal–metal bond is detected as a stretching vibration band at 167 cm{sup −1}. The available free volume between neighboring layers accommodates two water molecules, which are stabilized within the framework through hydrogen bonds with the N end of the unlinked axial CN group. The removal of these weakly bonded water molecules results in structural disorder for the material 3D framework. - Graphical abstract: Assembling of Hg{sub 2}[Fe(CN){sub 5}NO] units through Hg–Hg interactions. - Highlights: • Homometallic Hg–Hg interactions in metal nitroprusside. • 2D structure supported on metal–metal interactions. • Crystal

  17. Hydrothermal synthesis and structural characterization of two 1-D and 2-D Dawson-based phosphotungstates

    SciTech Connect

    Zhao Junwei; Zheng Shoutian; Liu Wei; Yang Guoyu

    2008-03-15

    Two new Dawson-based phosphotungstates (H{sub 2}en){sub 0.5}H[Cu(en){sub 2}(H{sub 2}O)]{sub 2}{l_brace}[Cu(en){sub 2}]({alpha}{sub 1}-P{sub 2}W{sub 17}CuO{sub 61}){r_brace}.8H{sub 2}O (1) (en=ethylenediamine) and [4,4'-H{sub 2}bpy]{sub 2}{l_brace}[Cu(4,4'-bpy){sub 3}][Cu(4,4'-bpy){sub 4}(H{sub 2}O){sub 2}]{sub 2}[Cu(4,4'-bpy)][{alpha}-P{sub 2}W{sub 1=} 8O{sub 62}]{sub 2}{r_brace}.6H{sub 2}O (2) (4,4'-bpy=4,4'-bipyridine) have been hydrothermally synthesized and structurally characterized. 1 crystallizes in the triclinic space group P-1 with a=11.7626(17), b=13.246(2), c=29.350(5) A, {alpha}=87.355(5), {beta}=79.583(5), {gamma}=66.993(3){sup o}, V=4138.3(11) A{sup 3}, Z=2, GOF=1.089, R{sub 1}=0.0563 and wR{sub 2}=0.1505, whereas 2 belongs to the orthorhombic space group Iba2 with a=22.277(8), b=47.04(2), c=22.153(8) A, V=23215(17) A{sup 3}, Z=4, GOF=1.051, R{sub 1}=0.0627 and wR{sub 2}=0.1477. 1 consists of a 1-D linear chain structure constructed from monocopper{sup II}-substituted Dawson polyoxoanions, while 2 represents the first 2-D sheet-like structure with a (4,4)-connected topological net built up from plenary Dawson-type polyoxoanions and Cu{sup II}-4,4'-bpy complex cations in polyoxometalate chemistry. - Graphical abstract: Two Dawson-based phosphotungstates (H{sub 2}en){sub 0.5}H[Cu(en){sub 2}(H{sub 2}O)]{sub 2}{l_brace}[Cu(en){sub 2}]({alpha}{sub 1}-P{sub 2}W{sub 17}CuO{sub 61}){r_brace}.8H{sub 2}O (1) and [4,4'-H{sub 2}bpy]{sub 2}{l_brace}[Cu(4,4'-bpy){sub 3}][Cu(4,4'-bpy){sub 4}(H{sub 2}O){sub 2}]{sub 2}[Cu(4,4'-bpy)][{alpha}-P{sub 2}W{sub 1=} 8O{sub 62}]{sub 2}{r_brace}.6H{sub 2}O (2) have been hydrothermally synthesized and structurally characterized. 1 consists of a 1-D linear chain structure constructed from monocopper-substituted Dawson polyoxoanions, while 2 represents the first 2-D sheet-like structure with a (4,4)-connected topological net built up from saturated Dawson-type polyoxoanions and Cu{sup II}-4,4'-bpy complex cations in

  18. Diverse 2D structures obtained by adsorption of charged ABA triblock copolymer on different surfaces

    NASA Astrophysics Data System (ADS)

    Kontturi, Katri S.; Vesterinen, Arja-Helena; Seppälä, Jukka; Laine, Janne

    2012-11-01

    In the larger context of 2D polymeric structures, the morphologies obtained by adsorption and subsequent drying of charged, ABA type amphiphilic triblock copolymer of poly[2-(dimethylamino)ethyl metacrylate] (PDMAEMA) and poly(propylene oxide) (PPO) were investigated with atomic force microscopy and X-ray photoelectron spectroscopy as well as in situ adsorption analysis with quartz crystal microbalance with dissipation monitoring. Hydrophilic silica and hydrophobic polystyrene (PS) were used as substrates for adsorption. The structures emerging from the self-assembly of adsorbing polymer were profoundly influenced by composition of the aqueous solution and the choice of substrate. When adsorbed from dilute polymer solution where the concentration is so low that the polymer does not yet show surface-active behavior, the triblock copolymer unimers associated on hydrophilic silica surface forming large, irregular clustered aggregates, with sizes increasing with electrolyte concentration of the solution. On a hydrophobic PS substrate, on the other hand, unimers spread much more evenly, forming clear surface patterns. The roughness of these patterned structures was tuned with the electrolyte concentration of the solution. Adsorption from a more concentrated polymer solution, where the surface-activity of the polymer is perceptible, resulted in the formation of a smooth film with complete coverage over the hydrophilic silica substrate when the electrolyte concentration was high. On PS, on the other hand, nucleation of evenly scattered globular, disk-like micelles was induced. Besides the dry film morphology, the even distribution of the irreversibly adsorbed polymer over the PS surface was likely to serve as an optimal platform for the build-up of reversible hydrophobically bound multilayers at high electrolyte concentration. The multilayer formation was reversible because a decrease in the electrolyte concentration of the solution re-introduces strong electrostatic

  19. Fracture network evaluation program (FraNEP): A software for analyzing 2D fracture trace-line maps

    NASA Astrophysics Data System (ADS)

    Zeeb, Conny; Gomez-Rivas, Enrique; Bons, Paul D.; Virgo, Simon; Blum, Philipp

    2013-10-01

    Fractures, such as joints, faults and veins, strongly influence the transport of fluids through rocks by either enhancing or inhibiting flow. Techniques used for the automatic detection of lineaments from satellite images and aerial photographs, LIDAR technologies and borehole televiewers significantly enhanced data acquisition. The analysis of such data is often performed manually or with different analysis software. Here we present a novel program for the analysis of 2D fracture networks called FraNEP (Fracture Network Evaluation Program). The program was developed using Visual Basic for Applications in Microsoft Excel™ and combines features from different existing software and characterization techniques. The main novelty of FraNEP is the possibility to analyse trace-line maps of fracture networks applying the (1) scanline sampling, (2) window sampling or (3) circular scanline and window method, without the need of switching programs. Additionally, binning problems are avoided by using cumulative distributions, rather than probability density functions. FraNEP is a time-efficient tool for the characterisation of fracture network parameters, such as density, intensity and mean length. Furthermore, fracture strikes can be visualized using rose diagrams and a fitting routine evaluates the distribution of fracture lengths. As an example of its application, we use FraNEP to analyse a case study of lineament data from a satellite image of the Oman Mountains.

  20. Prestack depth migration for complex 2D structure using phase-screen propagators

    SciTech Connect

    Roberts, P.; Huang, Lian-Jie; Burch, C.; Fehler, M.; Hildebrand, S.

    1997-11-01

    We present results for the phase-screen propagator method applied to prestack depth migration of the Marmousi synthetic data set. The data were migrated as individual common-shot records and the resulting partial images were superposed to obtain the final complete Image. Tests were performed to determine the minimum number of frequency components required to achieve the best quality image and this in turn provided estimates of the minimum computing time. Running on a single processor SUN SPARC Ultra I, high quality images were obtained in as little as 8.7 CPU hours and adequate images were obtained in as little as 4.4 CPU hours. Different methods were tested for choosing the reference velocity used for the background phase-shift operation and for defining the slowness perturbation screens. Although the depths of some of the steeply dipping, high-contrast features were shifted slightly the overall image quality was fairly insensitive to the choice of the reference velocity. Our jests show the phase-screen method to be a reliable and fast algorithm for imaging complex geologic structures, at least for complex 2D synthetic data where the velocity model is known.

  1. Detecting 2D symmetry-protected topological phases with the tensor-network method

    NASA Astrophysics Data System (ADS)

    Huang, Ching-Yu; Wei, Tzu-Chieh

    Symmetry-protected topological (SPT) phases exhibit nontrivial order if symmetry is respected but are adiabatically connected to the trivial product phase if symmetry is not respected. However, unlike the symmetry breaking phase, there is no local order parameter for SPT phases. Here we employ a tensor-network method to compute the topological invariants characterized by the simulated modular S and T matrices proposed by Hung and Wen to study a transition in a one-parameter family of wavefunctions which are Z2 symmetric. The studied wavefunctions are in some sense the SPT analog of Z2 topological states under a string tension. The numerically obtained S and T matrices are able to characterize the two different phases and identify the transition point.

  2. 2D and 3D GPR imaging of structural ceilings in historic and existing constructions

    NASA Astrophysics Data System (ADS)

    Colla, Camilla

    2014-05-01

    GPR applications in civil engineering are to date quite diversified. With respect to civil constructions and monumental buildings, detection of voids, cavities, layering in structural elements, variation of geometry, of moisture content, of materials, areas of decay, defects, cracks have been reported in timber, concrete and masonry elements. Nonetheless, many more fields of investigation remain unexplored. This contribution gives an account of a variety of examples of structural ceilings investigation by GPR radar in reflection mode, either as 2D or 3D data acquisition and visualisation. Ceilings have a pre-eminent role in buildings as they contribute to a good structural behaviour of the construction. Primarily, the following functions can be listed for ceilings: a) they carry vertical dead and live loads on floors and distribute such loads to the vertical walls; b) they oppose to external horizontal forces such as wind loads and earthquakes helping to transfer such forces from the loaded element to the other walls; c) they contribute to create the box skeleton and behaviour of a building, connecting the different load bearing walls and reducing the slenderness and flexural instability of such walls. Therefore, knowing how ceilings are made in specific buildings is of paramount importance for architects and structural engineers. According to the type of building and age of construction, ceilings may present very different solutions and materials. Moreover, in existing constructions, ceilings may have been substituted, modified or strengthened due to material decay or to change of use of the building. These alterations may often go unrecorded in technical documentation or technical drawings may be unavailable. In many cases, the position, orientation and number of the load carrying elements in ceilings may be hidden or not be in sight, due for example to the presence of false ceilings or to technical plants. GPR radar can constitute a very useful tool for

  3. Structural properties of spatially embedded networks

    NASA Astrophysics Data System (ADS)

    Kosmidis, K.; Havlin, S.; Bunde, A.

    2008-05-01

    We study the effects of spatial constraints on the structural properties of networks embedded in one- or two-dimensional space. When nodes are embedded in space, they have a well-defined Euclidean distance r between any pair. We assume that nodes at distance r have a link with probability p(r)~r-δ. We study the mean topological distance l and the clustering coefficient C of these networks and find that they both exhibit phase transitions for some critical value of the control parameter δ depending on the dimensionality d of the embedding space. We have identified three regimes. When δnetworks are not affected at all by the spatial constraints. They are "small-worlds"l~log N with zero clustering at the thermodynamic limit. In the intermediate regime d<δ<2d, the networks are affected by the space and the distance increases and becomes a power of log N, and have non-zero clustering. When δ>2d the networks are "large" worlds l~N1/d with high clustering. Our results indicate that spatial constrains have a significant impact on the network properties, a fact that should be taken into account when modeling complex networks.

  4. Two 2D metal-organic frameworks based on N-heterocyclic and polycarboxylates ligands: Syntheses, structures, and photoluminescent properties

    NASA Astrophysics Data System (ADS)

    Yan, Li; Li, Chuanbi; Zhu, Dongsheng

    2013-02-01

    Two novel complexes constructed from aromatic acid and N-heterocyclic ligands have been synthesized by hydrothermal reaction: {[Mn(dipt)(BDC)3ṡH2O]n (1) [dipt = 2-(2,4-dichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, BDC = terephthalic acid] and [Pb(dnpt)(BDC)2]n (2) [dnpt = 2-(4-nitrophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline]. Complexes 1 and 2 were characterized by elemental analysis, IR, single crystal X-ray diffraction and thermogravimetric analysis (TGA). The results suggest that complexes 1-2 exhibit 1D chain structure. The intermolecular C-H⋯O and N-H⋯O interactions extend the complexes into 2D networks, and the existing H-bonds further stabilized the title complexes, which can be proved by TGA experiment. Furthermore, the solid-state fluorescence spectrum of complexes 1 and 2 were also investigated, as well as the ligands dipt and dnpt.

  5. Structural and Functional Analysis of JMJD2D Reveals Molecular Basis for Site-Specific Demethylation among JMJD2 Demethylases

    SciTech Connect

    Krishnan, Swathi; Trievel, Raymond C.

    2013-01-08

    We found that JMJD2 lysine demethylases (KDMs) participate in diverse genomic processes. Most JMJD2 homologs display dual selectivity toward H3K9me3 and H3K36me3, with the exception of JMJD2D, which is specific for H3K9me3. Here, we report the crystal structures of the JMJD2D•2-oxoglutarate•H3K9me3 ternary complex and JMJD2D apoenzyme. Utilizing structural alignments with JMJD2A, molecular docking, and kinetic analysis with an array of histone peptide substrates, we elucidate the specific signatures that permit efficient recognition of H3K9me3 by JMJD2A and JMJD2D, and the residues in JMJD2D that occlude H3K36me3 demethylation. Surprisingly, these results reveal that JMJD2A and JMJD2D exhibit subtle yet important differences in H3K9me3 recognition, despite the overall similarity in the substrate-binding conformation. Further, we show that H3T11 phosphorylation abrogates demethylation by JMJD2 KDMs. These studies reveal the molecular basis for JMJD2 site specificity and provide a framework for structure-based design of selective inhibitors of JMJD2 KDMs implicated in disease.

  6. A Fast Parallel Algorithm for Selected Inversion of Structured Sparse Matrices with Application to 2D Electronic Structure Calculations

    SciTech Connect

    Lin, Lin; Yang, Chao; Lu, Jiangfeng; Ying, Lexing; E, Weinan

    2009-09-25

    We present an efficient parallel algorithm and its implementation for computing the diagonal of $H^-1$ where $H$ is a 2D Kohn-Sham Hamiltonian discretized on a rectangular domain using a standard second order finite difference scheme. This type of calculation can be used to obtain an accurate approximation to the diagonal of a Fermi-Dirac function of $H$ through a recently developed pole-expansion technique \\cite{LinLuYingE2009}. The diagonal elements are needed in electronic structure calculations for quantum mechanical systems \\citeHohenbergKohn1964, KohnSham 1965,DreizlerGross1990. We show how elimination tree is used to organize the parallel computation and how synchronization overhead is reduced by passing data level by level along this tree using the technique of local buffers and relative indices. We analyze the performance of our implementation by examining its load balance and communication overhead. We show that our implementation exhibits an excellent weak scaling on a large-scale high performance distributed parallel machine. When compared with standard approach for evaluating the diagonal a Fermi-Dirac function of a Kohn-Sham Hamiltonian associated a 2D electron quantum dot, the new pole-expansion technique that uses our algorithm to compute the diagonal of $(H-z_i I)^-1$ for a small number of poles $z_i$ is much faster, especially when the quantum dot contains many electrons.

  7. Structural requirements of pyrido[2,3-d]pyrimidin-7-one as CDK4/D inhibitors: 2D autocorrelation, CoMFA and CoMSIA analyses.

    PubMed

    Caballero, Julio; Fernández, Michael; González-Nilo, Fernando D

    2008-06-01

    2D autocorrelation, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were undertaken for a series of pyrido[2,3-d]pyrimidin-7-ones to correlate cyclin-dependent kinase (CDK) cyclin D/CDK4 inhibition with 2D and 3D structural properties of 60 known compounds. QSAR models with considerable internal as well as external predictive ability were obtained. The relevant 2D autocorrelation descriptors for modeling CDK4/D inhibitory activity were selected by linear and nonlinear genetic algorithms (GAs) using multiple linear regression (MLR) and Bayesian-regularized genetic neural network (BRGNN) approaches, respectively. Both models showed good predictive statistics; but BRGNN model enables better external predictions. A weight-based input ranking scheme and Kohonen self-organized maps (SOMs) were carried out to interpret the final net weights. The 2D autocorrelation space brings different descriptors for CDK4/D inhibition, and suggests the atomic properties relevant for the inhibitors to interact with CDK4/D active site. CoMFA and CoMSIA analyses were developed with a focus on interpretative ability using coefficient contour maps. CoMSIA produced significantly better results. The results indicate a strong correlation between the inhibitory activity of the modeled compounds and the electrostatic and hydrophobic fields around them. PMID:18468903

  8. Metal Decoration Effects on the Gas-Sensing Properties of 2D Hybrid-Structures on Flexible Substrates

    PubMed Central

    Cho, Byungjin; Yoon, Jongwon; Lim, Sung Kwan; Kim, Ah Ra; Choi, Sun-Young; Kim, Dong-Ho; Lee, Kyu Hwan; Lee, Byoung Hun; Ko, Heung Cho; Hahm, Myung Gwan

    2015-01-01

    We have investigated the effects of metal decoration on the gas-sensing properties of a device with two-dimensional (2D) molybdenum disulfide (MoS2) flake channels and graphene electrodes. The 2D hybrid-structure device sensitively detected NO2 gas molecules (>1.2 ppm) as well as NH3 (>10 ppm). Metal nanoparticles (NPs) could tune the electronic properties of the 2D graphene/MoS2 device, increasing sensitivity to a specific gas molecule. For instance, palladium NPs accumulate hole carriers of graphene/MoS2, electronically sensitizing NH3 gas molecules. Contrarily, aluminum NPs deplete hole carriers, enhancing NO2 sensitivity. The synergistic combination of metal NPs and 2D hybrid layers could be also applied to a flexible gas sensor. There was no serious degradation in the sensing performance of metal-decorated MoS2 flexible devices before/after 5000 bending cycles. Thus, highly sensitive and endurable gas sensor could be achieved through the metal-decorated 2D hybrid-structure, offering a useful route to wearable electronic sensing platforms. PMID:26404279

  9. Electronic structure of disordered CuPd alloys by positron-annihilation 2D-ACAR

    SciTech Connect

    Smedskjaer, L.C.; Benedek, R.; Siegel, R.W.; Legnini, D.G.; Stahulak, M.D.; Bansil, A.

    1988-01-01

    We report 2D-ACAR experiments and KKR CPA calculations on alpha-phase single-crystal Cu/sub 1-x/Pd/sub x/ in the range x less than or equal to 0.25. The flattening of the Fermi surface near (110) with increasing x predicted by theory is confirmed by our experimental results. 16 refs., 2 figs.

  10. Two novel 2D lanthanide sulfate frameworks: Syntheses, structures, and luminescence properties

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Yi; Zhang, Chi; Zhang, Fu-Li; Zhang, Fu-Qiang; Zhang, Xiang-Fei; Li, Su-Zhi; Cao, Guang-Xiu; Zhai, Bin

    2016-03-01

    Two novel lanthanide-sulfate compounds, [Ln2(SO4)3(H2O)8] (Ln = Tb (1) and Dy (2)), have been synthesized under hydrothermal reactions. X-ray crystal structure analyses reveal that 1 and 2 are isomorphous and crystallize in monoclinic C2/c pace group, showing a layered structure. The layers bear a rare quasi-honeycomb metal arrangement, which is fastened by μ3 = η1:η1:η1 and μ2 = η1:η1 sulfates. If assigning the μ3 = η1:η1:η1 sulfate as a 3-connected node and the Ln3+ ion as a 4-connected node, the network can be rationalized as a binodal (3,4)-connected V2O5 topology with a Schäfli symbol of (42·63·8) (42·6). In addition, the infrared, thermogravimetric analysis and luminescent properties were also studied. Complexes 1 and 2 exhibit outstanding thermal stability and characteristic terbium and dysprosium luminescence.

  11. Cyano-bridged coordination polymer hydrogel-derived Sn-Fe binary oxide nanohybrids with structural diversity: from 3D, 2D, to 2D/1D and enhanced lithium-storage performance.

    PubMed

    Zhang, Weiyu; Zhu, Xiaoshu; Chen, Xuguang; Zhou, Yiming; Tang, Yawen; Ding, Liangxin; Wu, Ping

    2016-05-14

    Metal oxide nanohybrids with uniform dimensions and controlled architectures possess unique compositional and structural superiorities, and thus harbor promising potential for a series of applications in energy, catalysis, and sensing systems. Herein, we propose a facile, general, and scalable cyano-bridged coordination polymer hydrogel-derived thermal-oxidation route for the construction of main-group metal and transition-metal heterometallic oxide nanohybrids with controlled constituents and architectures. The formation of Sn-Fe binary oxide nanohybrids has been demonstrated as an example by using cyano-bridged Sn(iv)-Fe(ii) bimetallic coordination polymer hydrogels (i.e., SnCl4-K4Fe(CN)6 cyanogels, Sn-Fe cyanogels) as precursors. The physicochemical properties of Sn-Fe cyanogels with different Sn/Fe ratios have been systematically examined, and it is found that perfect Sn-Fe cyanogels without unbridged Sn(iv) or Fe(ii) can be formed with Sn/Fe ratios from 2 : 1 to 1 : 2. More importantly, the simple adjustment of Sn/Fe ratios in the Sn-Fe cyanogel precursors can realize flexible dimensional control of the Sn-Fe binary oxide nanohybrids, and 2D/1D SnO2-Fe2O3 hierarchitectures, 2D SnO2-Fe2O3 nanosheets, and 3D SnO2-Fe2O3 networks have been synthesized using the Sn-Fe 1 : 2, Sn-Fe 1 : 1, and Sn-Fe 2 : 1 cyanogels as precursors, respectively. To demonstrate their compositional/structural superiorities and potential applications, the lithium-storage utilization of the Sn-Fe binary oxide nanohybrids has been selected as an objective application, and the nanohybrids exhibit Sn/Fe ratio-dependent lithium-storage performance. As a representative example, the 2D/1D SnO2-Fe2O3 hierarchitectures manifest markedly enhanced Li-storage performance in terms of reversible capacities and cycling stability in comparison with their constituent units, i.e., bare SnO2 nanosheets and Fe2O3 nanorods. The proposed cyanogel-derived thermal-oxidation strategy could

  12. Transformation from a 2D stacked layer to 3D interpenetrated framework by changing the spacer functionality: synthesis, structure, adsorption, and magnetic properties.

    PubMed

    Maji, Tapas Kumar; Ohba, Masaaki; Kitagawa, Susumu

    2005-12-12

    Two novel coordination polymers of Cu(II), viz. [Cu(bipy)(1,4-napdc)(H2O)2]n and {[Cu(bpe)1.5(1,4-napdc)](H2O)}n (bipy=4,4'-bipyridine; bpe=1,2-bis(4-pyridyl)ethane; 1,4-napdc2-=1,4-naphthalenedicarboxylate), have been synthesized and structurally characterized by changing only the pillar motifs. Both the compounds crystallize by slow evaporation from the ammoniacal solution of the as-synthesized solid. Framework 1 crystallizes in monoclinic crystal system, space group P2/n (No. 13), with a=11.028(19) A, b=11.16(3) A, c=7.678(13) A, beta=103.30(5) degrees, and Z=2. Framework 2 crystallizes in triclinic system, space group, P (No. 2), a=10.613(4) A, b=10.828(10) A, c=13.333(9) A, alpha=85.25(9) degrees, beta=82.59(6) degrees, gamma=60.37(5) degrees, and Z=2. The structure determination reveals that has a 2D network based on rectangular grids, where each Cu(II) is in 4+2 coordination mode. The 2D networks stacked in a staggered manner through the pi-pi interaction to form a 3D supramolecular network. In the case of, a {Cu(bpe)1.5}n ladder connected by 1,4-napdc2- results a 2D cuboidal bilayer network and each bilayer network is interlocked by two adjacent identical network (upper and lower) forming 3-fold interpenetrated 3D framework with small channel along the c-axis, which accommodates two water molecules. The TGA and XRPD measurements reveal that both the frameworks are stable after dehydration. Adsorption measurements (N2, CO2, and different solvents, like H2O, MeOH, etc.) were carried out for both frameworks. Framework shows type-II sorption profile with N2 in contrast to H2O and MeOH, which are chemisorbed in the framework. In case of, only H2O molecules can diffuse into the micropore, whereas N2, CO2, and MeOH cannot be adsorbed, as corroborated by the smaller channel aperture. The low-temperature (300-2 K) magnetic measurement of and reveals that both are weakly antiferromagnetically coupled (J=-1.85 cm-1, g=2.02; J=-0.153 cm-1, g=2.07), which is correlated

  13. 3D structural measurements of the proximal femur from 2D DXA images using a statistical atlas

    NASA Astrophysics Data System (ADS)

    Ahmad, Omar M.; Ramamurthi, Krishna; Wilson, Kevin E.; Engelke, Klaus; Bouxsein, Mary; Taylor, Russell H.

    2009-02-01

    A method to obtain 3D structural measurements of the proximal femur from 2D DXA images and a statistical atlas is presented. A statistical atlas of a proximal femur was created consisting of both 3D shape and volumetric density information and then deformably registered to 2D fan-beam DXA images. After the registration process, a series of 3D structural measurements were taken on QCT-estimates generated by transforming the registered statistical atlas into a voxel volume. These measurements were compared to the equivalent measurements taken on the actual QCT (ground truth) associated with the DXA images for each of 20 human cadaveric femora. The methodology and results are presented to address the potential clinical feasibility of obtaining 3D structural measurements from limited angle DXA scans and a statistical atlas of the proximal femur in-vivo.

  14. Cyano-bridged coordination polymer hydrogel-derived Sn-Fe binary oxide nanohybrids with structural diversity: from 3D, 2D, to 2D/1D and enhanced lithium-storage performance

    NASA Astrophysics Data System (ADS)

    Zhang, Weiyu; Zhu, Xiaoshu; Chen, Xuguang; Zhou, Yiming; Tang, Yawen; Ding, Liangxin; Wu, Ping

    2016-05-01

    Metal oxide nanohybrids with uniform dimensions and controlled architectures possess unique compositional and structural superiorities, and thus harbor promising potential for a series of applications in energy, catalysis, and sensing systems. Herein, we propose a facile, general, and scalable cyano-bridged coordination polymer hydrogel-derived thermal-oxidation route for the construction of main-group metal and transition-metal heterometallic oxide nanohybrids with controlled constituents and architectures. The formation of Sn-Fe binary oxide nanohybrids has been demonstrated as an example by using cyano-bridged Sn(iv)-Fe(ii) bimetallic coordination polymer hydrogels (i.e., SnCl4-K4Fe(CN)6 cyanogels, Sn-Fe cyanogels) as precursors. The physicochemical properties of Sn-Fe cyanogels with different Sn/Fe ratios have been systematically examined, and it is found that perfect Sn-Fe cyanogels without unbridged Sn(iv) or Fe(ii) can be formed with Sn/Fe ratios from 2 : 1 to 1 : 2. More importantly, the simple adjustment of Sn/Fe ratios in the Sn-Fe cyanogel precursors can realize flexible dimensional control of the Sn-Fe binary oxide nanohybrids, and 2D/1D SnO2-Fe2O3 hierarchitectures, 2D SnO2-Fe2O3 nanosheets, and 3D SnO2-Fe2O3 networks have been synthesized using the Sn-Fe 1 : 2, Sn-Fe 1 : 1, and Sn-Fe 2 : 1 cyanogels as precursors, respectively. To demonstrate their compositional/structural superiorities and potential applications, the lithium-storage utilization of the Sn-Fe binary oxide nanohybrids has been selected as an objective application, and the nanohybrids exhibit Sn/Fe ratio-dependent lithium-storage performance. As a representative example, the 2D/1D SnO2-Fe2O3 hierarchitectures manifest markedly enhanced Li-storage performance in terms of reversible capacities and cycling stability in comparison with their constituent units, i.e., bare SnO2 nanosheets and Fe2O3 nanorods. The proposed cyanogel-derived thermal-oxidation strategy could open up new

  15. Molecular Dynamics Simulations to Investigate the Influences of Amino Acid Mutations on Protein Three-Dimensional Structures of Cytochrome P450 2D6.1, 2, 10, 14A, 51, and 62

    PubMed Central

    Watanabe, Yurie; Hiratsuka, Masahiro; Yamaotsu, Noriyuki; Hirono, Shuichi; Manabe, Noriyoshi; Takahashi, Ohgi; Oda, Akifumi

    2016-01-01

    Many natural mutants of the drug metabolizing enzyme cytochrome P450 (CYP) 2D6 have been reported. Because the enzymatic activities of many mutants are different from that of the wild type, the genetic polymorphism of CYP2D6 plays an important role in drug metabolism. In this study, the molecular dynamics simulations of the wild type and mutants of CYP2D6, CYP2D6.1, 2, 10, 14A, 51, and 62 were performed, and the predictions of static and dynamic structures within them were conducted. In the mutant CYP2D6.10, 14A, and 61, dynamic properties of the F-G loop, which is one of the components of the active site access channel of CYP2D6, were different from that of the wild type. The F-G loop acted as the “hatch” of the channel, which was closed in those mutants. The structure of CYP2D6.51 was not converged by the simulation, which indicated that the three-dimensional structure of CYP2D6.51 was largely different from that of the wild type. In addition, the intramolecular interaction network of CYP2D6.10, 14A, and 61 was different from that of the wild type, and it is considered that these structural changes are the reason for the decrease or loss of enzymatic activities. On the other hand, the static and dynamic properties of CYP2D6.2, whose activity was normal, were not considerably different from those of the wild type. PMID:27046024

  16. Geometric Effects on Complex Network Structure in the Cortex

    NASA Astrophysics Data System (ADS)

    Henderson, J. A.; Robinson, P. A.

    2011-07-01

    It is shown that homogeneous, short-range, two-dimensional (2D) cortical connectivity, without modularity, hierarchy, or other specialized structure, reproduces key observed properties of cortical networks, including low path length, high clustering and modularity index, and apparent hierarchical block-diagonal structure in connection matrices. Geometry strongly influences connection matrices, implying that simple interpretations of connectivity measures as reflecting specialized structure can be misleading: Such apparent structure is seen in strictly uniform, locally connected architectures in 2D. Geometry is thus a proxy for function, modularity, and hierarchy and must be accounted for when structural inferences are made.

  17. Epitaxial MoS2/GaN structures to enable vertical 2D/3D semiconductor heterostructure devices

    NASA Astrophysics Data System (ADS)

    Ruzmetov, D.; Zhang, K.; Stan, G.; Kalanyan, B.; Eichfeld, S.; Burke, R.; Shah, P.; O'Regan, T.; Crowne, F.; Birdwell, A. G.; Robinson, J.; Davydov, A.; Ivanov, T.

    MoS2/GaN structures are investigated as a building block for vertical 2D/3D semiconductor heterostructure devices that utilize a 3D substrate (GaN) as an active component of the semiconductor device without the need of mechanical transfer of the 2D layer. Our CVD-grown monolayer MoS2 has been shown to be epitaxially aligned to the GaN lattice which is a pre-requisite for high quality 2D/3D interfaces desired for efficient vertical transport and large area growth. The MoS2 coverage is nearly 50 % including isolated triangles and monolayer islands. The GaN template is a double-layer grown by MOCVD on sapphire and allows for measurement of transport perpendicular to the 2D layer. Photoluminescence, Raman, XPS, Kelvin force probe microscopy, and SEM analysis identified high quality monolayer MoS2. The MoS2/GaN structures electrically conduct in the out-of-plane direction and across the van der Waals gap, as measured with conducting AFM (CAFM). The CAFM current maps and I-V characteristics are analyzed to estimate the MoS2/GaN contact resistivity to be less than 4 Ω-cm2 and current spreading in the MoS2 monolayer to be approx. 1 μm in diameter. Epitaxial MoS2/GaN heterostructures present a promising platform for the design of energy-efficient, high-speed vertical devices incorporating 2D layered materials with 3D semiconductors.

  18. Study on molecular structure and hydration mechanism of Domyoji-ko starch by IR and NIR hetero 2D analysis

    NASA Astrophysics Data System (ADS)

    Katayama, Norihisa; Kondo, Miyuki; Miyazawa, Mitsuhiro

    2010-06-01

    The hydration structure of starch molecule in Domyoji-ko, which is made from gluey rice, was investigated by hetero 2D correlation analysis of IR and NIR spectroscopy. The feature near 1020 cm -1 in the IR spectra of Domyoji-ko is changed by rehydration process, indicating that the molecular structure of amylopectin in the starch has been varied by the hydration without heating. The intensity of a band at 4770 cm -1 in NIR spectra is decreasing with the increasing of either the heating time with water or rehydration time without heating. These results suggest that the hydration of Domyoji-ko has proceeded in similar mechanisms on these processes. The generalized hetero 2D IR-NIR correlation analysis for rehydration of Domyoji-ko has supported the assignments for NIR bands concerning the gelatinization of starch.

  19. Time-structuring in the evolution of 2D nanopatterns through interactions with substrate.

    PubMed

    Choudhuri, Madhumita; Datta, Alokmay

    2016-07-21

    Hydrophobic dodecanethiol capped gold nanoparticles (AuNPs) are found to self-assemble into two-dimensional patterns in monolayers of amphiphiles spread at the air-water interface of a Langmuir trough. In this communication we investigate the role of the nanoparticle-monolayer (FNMA) and monolayer-monolayer (FMMA) lipophilic attraction in influencing morphology and dynamics of AuNP cluster patterns in fatty acid monolayers. FNMA and FMMA are progressively varied by changing n, where n is the number of -CH2 groups in the alkyl tails of the amphiphilic fatty acid (CH3(CH2)nCOOH) molecules forming the monolayer. Compressibility measurements on the pristine and nanoparticle-laden monolayers show that, while the compressibility of the pristine monolayer decreases with increasing n, pointing to a progressive increase in FMMA, the effect of nanoparticles (increase in compressibility or lowering of FMMA) is discernible only for 14 < n < 22. The corresponding pattern morphology, observed with a Brewster Angle Microscope (BAM) at an in-plane resolution of 450 nm for 6 hours, reveals that there are essentially three stages in pattern evolution, lamellae of Au nanoclusters spread over the fatty-acid monolayer background (the λ state) followed by a network of nanoclusters with high node density (the ν state) and finally rings (circular/elongated) of random sizes with very low node density (the ρ state), evolving from an initial unsegregated state, without appreciable change in the average nanoparticle number density over the field of view. Increasing FNMA alongwith FMMA is found to shift a certain state to later times, thus playing the role of a viscous drag and introducing a delay in the timeline. The mean square fluctuation of BAM intensity remains flat and then decays as f(ξ) = ξ(2H) over smaller length scales, where ξ is the spatial separation and H the Hurst exponent. The study of f(ξ) over time reveals the growth of a sub-diffusive regime (H < 0.5) at the

  20. REVIEW ARTICLE: Slow light modes for optical delay lines: 2D photonic crystal-based design structures, performances and challenges

    NASA Astrophysics Data System (ADS)

    Talneau, A.

    2010-10-01

    This paper presents an overview of 2D photonic crystal-based structures designed to display low group velocity as well as reduced group velocity dispersions. Their main envisioned applications are optical delay lines for telecom transmissions at 1.55 µm. Optical mechanisms responsible for slowing down the optical modes and encountered in the slow light regime serve as a guideline for this paper.

  1. Image restoration using 2D autoregressive texture model and structure curve construction

    NASA Astrophysics Data System (ADS)

    Voronin, V. V.; Marchuk, V. I.; Petrosov, S. P.; Svirin, I.; Agaian, S.; Egiazarian, K.

    2015-05-01

    In this paper an image inpainting approach based on the construction of a composite curve for the restoration of the edges of objects in an image using the concepts of parametric and geometric continuity is presented. It is shown that this approach allows to restore the curved edges and provide more flexibility for curve design in damaged image by interpolating the boundaries of objects by cubic splines. After edge restoration stage, a texture restoration using 2D autoregressive texture model is carried out. The image intensity is locally modeled by a first spatial autoregressive model with support in a strongly causal prediction region on the plane. Model parameters are estimated by Yule-Walker method. Several examples considered in this paper show the effectiveness of the proposed approach for large objects removal as well as recovery of small regions on several test images.

  2. A methodology for linking 2D overland flow models with the sewer network model SWMM 5.1 based on dynamic link libraries.

    PubMed

    Leandro, Jorge; Martins, Ricardo

    2016-01-01

    Pluvial flooding in urban areas is characterized by a gradually varying inundation process caused by surcharge of the sewer manholes. Therefore urban flood models need to simulate the interaction between the sewer network and the overland flow in order to accurately predict the flood inundation extents. In this work we present a methodology for linking 2D overland flow models with the storm sewer model SWMM 5. SWMM 5 is a well-known free open-source code originally developed in 1971. The latest major release saw its structure re-written in C ++ allowing it to be compiled as a command line executable or through a series of calls made to function inside a dynamic link library (DLL). The methodology developed herein is written inside the same DLL in C + +, and is able to simulate the bi-directional interaction between both models during simulation. Validation is done in a real case study with an existing urban flood coupled model. The novelty herein is that the new methodology can be added to SWMM without the need for editing SWMM's original code. Furthermore, it is directly applicable to other coupled overland flow models aiming to use SWMM 5 as the sewer network model. PMID:27332848

  3. 2D-ordered dielectric sub-micron bowls on a metal surface: a useful hybrid plasmonic-photonic structure

    NASA Astrophysics Data System (ADS)

    Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao

    2016-07-01

    Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed.Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub

  4. 2D-ordered dielectric sub-micron bowls on a metal surface: a useful hybrid plasmonic-photonic structure.

    PubMed

    Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao

    2016-07-21

    Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed. PMID:27349558

  5. The use of 2D fingerprint methods to support the assessment of structural similarity in orphan drug legislation

    PubMed Central

    2014-01-01

    Background In the European Union, medicines are authorised for some rare disease only if they are judged to be dissimilar to authorised orphan drugs for that disease. This paper describes the use of 2D fingerprints to show the extent of the relationship between computed levels of structural similarity for pairs of molecules and expert judgments of the similarities of those pairs. The resulting relationship can be used to provide input to the assessment of new active compounds for which orphan drug authorisation is being sought. Results 143 experts provided judgments of the similarity or dissimilarity of 100 pairs of drug-like molecules from the DrugBank 3.0 database. The similarities of these pairs were also computed using BCI, Daylight, ECFC4, ECFP4, MDL and Unity 2D fingerprints. Logistic regression analyses demonstrated a strong relationship between the human and computed similarity assessments, with the resulting regression models having significant predictive power in experiments using data from submissions of orphan drug medicines to the European Medicines Agency. The BCI fingerprints performed best overall on the DrugBank dataset while the BCI, Daylight, ECFP4 and Unity fingerprints performed comparably on the European Medicines Agency dataset. Conclusions Measures of structural similarity based on 2D fingerprints can provide a useful source of information for the assessment of orphan drug status by regulatory authorities. PMID:24485002

  6. Image inpainting on the basis of spectral structure from 2-D nonharmonic analysis.

    PubMed

    Hasegawa, Masaya; Kako, Takahiro; Hirobayashi, Shigeki; Misawa, Tadanobu; Yoshizawa, Toshio; Inazumi, Yasuhiro

    2013-08-01

    The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontinuous textures and thus unsatisfactory results. Here, we propose a new technique to overcome this limitation by using signal prediction based on the nonharmonic analysis (NHA) technique proposed by the authors. NHA can be used to extract accurate spectra, irrespective of the window function, and its frequency resolution is less than that of the discrete Fourier transform. The proposed method sequentially generates new textures on the basis of the spectrum obtained by NHA. Missing regions from the spectrum are repaired using an improved cost function for 2D NHA. The proposed method is evaluated using the standard images Lena, Barbara, Airplane, Pepper, and Mandrill. The results show an improvement in MSE of about 10-20 compared with the examplar-based method and good subjective quality. PMID:23549889

  7. 2D metamaterials with hexagonal structure: spatial resonances and near field imaging.

    PubMed

    Zhuromskyy, O; Shamonina, E; Solymar, L

    2005-11-14

    The current and field distribution in a 2D metamaterial consisting of resonant elements in a hexagonal arrangement are found assuming magnetic interaction between the elements. The dispersion equation of magnetoinductive (MI) waves is derived with the aid of the direct and reciprocal lattice familiar from solid state theory. A continuous model for the current variation in the elements is introduced leading to the familiar wave equation in the form of a second order differential equation. The current distributions are shown to exhibit a series of spatial resonances for rectangular, circular and hexagonal boundaries. The axial and radial components of the resulting magnetic field are compared with previously obtained experimental results on a Swiss Roll metamaterial with hexagonal boundaries. Experimental and theoretical results are also compared for the near field image of an object in the shape of the letter M followed by a more general discussion of imaging. It is concluded that a theoretical formulation based on the propagation of MI waves can correctly describe the experimental results. PMID:19503131

  8. Micro PIV measurements of turbulent flow over 2D structured roughness

    NASA Astrophysics Data System (ADS)

    Hartenberger, Joel; Perlin, Marc

    2015-11-01

    We investigate the turbulent boundary layer over surfaces with 2D spanwise square and triangular protrusions having nominal heights of 100 - 300 microns for Reynolds numbers ranging from Reτ ~ 1500 through Reτ ~ 4500 using a high speed, high magnification imaging system. Micro PIV analysis gives finely resolved velocity fields of the flow (on the order of 10 microns between vectors) enabling a detailed look at the inner region as well as the flow in the immediate vicinity of the roughness elements. Additionally, planar PIV with lower resolution is performed to capture the remainder of the boundary layer to the freestream flow. Varying the streamwise distance between individual roughness elements from one to ten times the nominal heights allows investigation of k-type and d-type roughness in both the transitionally rough and fully rough regimes. Preliminary results show a shift in the mean velocity profile similar to the results of previous studies. Turbulent statistics will be presented also. The authors would like to acknowledge the support of NAVSEA which funded this project through the Naval Engineering Education Center (NEEC).

  9. Residual resistance of 2D and 3D structures and Joule heat release.

    PubMed

    Gurevich, V L; Kozub, V I

    2011-06-22

    We consider a residual resistance and Joule heat release in 2D nanostructures as well as in ordinary 3D conductors. We assume that elastic scattering of conduction electrons by lattice defects is predominant. Within a rather intricate situation in such systems we discuss in detail two cases. (1) The elastic scattering alone (i.e. without regard of inelastic mechanisms of scattering) leads to a transition of the mechanical energy (stored by the electrons under the action of an electric field) into heat in a traditional way. This process can be described by the Boltzmann equation where it is possible to do the configuration averaging over defect positions in the electron-impurity collision term. The corresponding conditions are usually met in metals. (2) The elastic scattering can be considered with the help of the standard electron-impurity collision integral only in combination with some additional averaging procedure (possibly including inelastic scattering or some mechanisms of electron wavefunction phase destruction). This situation is typical for degenerate semiconductors with a high concentration of dopants and conduction electrons. Quite often, heat release can be observed via transfer of heat to the lattice, i.e. via inelastic processes of electron-phonon collisions and can take place at distances much larger than the size of the device. However, a direct heating of the electron system can be registered too by, for instance, local measurements of the current noise or direct measurement of an electron distribution function. PMID:21628783

  10. Network model with structured nodes

    NASA Astrophysics Data System (ADS)

    Frisco, Pierluigi

    2011-08-01

    We present a network model in which words over a specific alphabet, called structures, are associated to each node and undirected edges are added depending on some distance measure between different structures. This model shifts the underlying principle of network generation from a purely mathematical one to an information-based one. It is shown how this model differs from the Barábasi-Albert and duplication models and how it can generate networks with topological features similar to biological networks: power law degree distribution, low average path length, clustering coefficient independent from the network size, etc. Two biological networks: S. cerevisiae gene network and E. coli protein-protein interaction network, are replicated using this model.

  11. Image quality improvement for a 3D structure exhibiting multiple 2D patterns and its implementation.

    PubMed

    Hirayama, Ryuji; Nakayama, Hirotaka; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-04-01

    A three-dimensional (3D) structure designed by our proposed algorithm can simultaneously exhibit multiple two-dimensional patterns. The 3D structure provides multiple patterns having directional characteristics by distributing the effects of the artefacts. In this study, we proposed an iterative algorithm to improve the image quality of the exhibited patterns and have verified the effectiveness of the proposed algorithm using numerical simulations. Moreover, we fabricated different 3D glass structures (an octagonal prism, a cube and a sphere) using the proposed algorithm. All 3D structures exhibit four patterns, and different patterns can be observed depending on the viewing direction. PMID:27137021

  12. Network structure of production

    PubMed Central

    Atalay, Enghin; Hortaçsu, Ali; Roberts, James; Syverson, Chad

    2011-01-01

    Complex social networks have received increasing attention from researchers. Recent work has focused on mechanisms that produce scale-free networks. We theoretically and empirically characterize the buyer–supplier network of the US economy and find that purely scale-free models have trouble matching key attributes of the network. We construct an alternative model that incorporates realistic features of firms’ buyer–supplier relationships and estimate the model’s parameters using microdata on firms’ self-reported customers. This alternative framework is better able to match the attributes of the actual economic network and aids in further understanding several important economic phenomena. PMID:21402924

  13. An algorithm for computing the 2D structure of fast rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, Michel; Espinosa Lara, Francisco; Putigny, Bertrand

    2016-08-01

    Stars may be understood as self-gravitating masses of a compressible fluid whose radiative cooling is compensated by nuclear reactions or gravitational contraction. The understanding of their time evolution requires the use of detailed models that account for a complex microphysics including that of opacities, equation of state and nuclear reactions. The present stellar models are essentially one-dimensional, namely spherically symmetric. However, the interpretation of recent data like the surface abundances of elements or the distribution of internal rotation have reached the limits of validity of one-dimensional models because of their very simplified representation of large-scale fluid flows. In this article, we describe the ESTER code, which is the first code able to compute in a consistent way a two-dimensional model of a fast rotating star including its large-scale flows. Compared to classical 1D stellar evolution codes, many numerical innovations have been introduced to deal with this complex problem. First, the spectral discretization based on spherical harmonics and Chebyshev polynomials is used to represent the 2D axisymmetric fields. A nonlinear mapping maps the spheroidal star and allows a smooth spectral representation of the fields. The properties of Picard and Newton iterations for solving the nonlinear partial differential equations of the problem are discussed. It turns out that the Picard scheme is efficient on the computation of the simple polytropic stars, but Newton algorithm is unsurpassed when stellar models include complex microphysics. Finally, we discuss the numerical efficiency of our solver of Newton iterations. This linear solver combines the iterative Conjugate Gradient Squared algorithm together with an LU-factorization serving as a preconditioner of the Jacobian matrix.

  14. Analysis of simple 2-D and 3-D metal structures subjected to fragment impact

    NASA Technical Reports Server (NTRS)

    Witmer, E. A.; Stagliano, T. R.; Spilker, R. L.; Rodal, J. J. A.

    1977-01-01

    Theoretical methods were developed for predicting the large-deflection elastic-plastic transient structural responses of metal containment or deflector (C/D) structures to cope with rotor burst fragment impact attack. For two-dimensional C/D structures both, finite element and finite difference analysis methods were employed to analyze structural response produced by either prescribed transient loads or fragment impact. For the latter category, two time-wise step-by-step analysis procedures were devised to predict the structural responses resulting from a succession of fragment impacts: the collision force method (CFM) which utilizes an approximate prediction of the force applied to the attacked structure during fragment impact, and the collision imparted velocity method (CIVM) in which the impact-induced velocity increment acquired by a region of the impacted structure near the impact point is computed. The merits and limitations of these approaches are discussed. For the analysis of 3-d responses of C/D structures, only the CIVM approach was investigated.

  15. Buckling in 2D periodic, soft and porous structures: effect of pore shape and lattice pattern

    NASA Astrophysics Data System (ADS)

    Shan, Sicong; Bertoldi, Katia; Shim, Jongmin; Overvelde, Johannes T. B.; Kang, Sung Hoon

    2013-03-01

    Adaptive structures allowing dramatic shape changes offer unique opportunities for the design of responsive and reconfigurable devices. Traditional morphing and foldable structures with stiff structural members and mechanical joints remains a challenge in manufacturing at small length scales. Soft structures where the folding mechanisms are induced by a mechanical instability represent a new class of novel adaptive materials which can be easily manufactured over a wide range of length scales. More specifically, soft porous structures with deliberately designed patterns can significantly change their architecture in response to diverse stimuli, opening avenues for reconfigurable devices that change their shapes to respond to their environment. While so far only two-dimensional periodic porous structures with circular holes arranged on a square or triangular lattice have been investigated, here we investigate both numerically and experimentally the effects of pore shape and lattice pattern on the macroscopic properties of the structures. Our results show that both the pore shape and lattice pattern can be used to effectively design desired materials and pave the way for the development of a new class of soft, active and reconfigurable devices over a wide range of length scales.

  16. Four divalent transition metal carboxyarylphosphonate compounds: Hydrothermal synthesis, structural chemistry and generalized 2D FTIR correlation spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Lei, Ran; Chai, Xiaochuan; Mei, Hongxin; Zhang, Hanhui; Chen, Yiping; Sun, Yanqiong

    2010-07-01

    Four divalent transition metal carboxyarylphosphonates, [Ni(4,4'-bipy)H 2L 1(HL 1) 2(H 2O) 2]·2H 2O 1, [Ni 2(4,4'-bipy)(L 2)(OH)(H 2O) 2]·3H 2O 2, Mn(phen) 2(H 2L 1) 23 and Mn(phen)(HL 2) 4 (H 3L 1= p-H 2O 3PCH 2-C 6H 4-COOH, H 3L 2= m-H 2O 3PCH 2-C 6H 4-COOH, 4,4'-bipy=4,4'-bipyridine, phen=1,10-phenanthroline) were synthesized under hydrothermal conditions. 1 features 1D linear chains built from Ni(II) ions bridging 4,4'-bipy. In 2, neighboring Ni 4 cluster units are connected by pairs of H 3L 2 ligands to form 1D double-crankshaft chains, which are interconnected by pairs of 4,4'-bipy into 2D sheets. 3 exhibits 2D supramolecular layers via the R 22(8) ringed hydrogen bonding units. 4 has 1D ladderlike chains, in which the 4-membered rings are cross-linked by the organic moieties of the H 3L 2 ligands. Additionally, 2D FTIR correlation analysis is applied with thermal and magnetic perturbation to clarify the structural changes of functional groups from H 3L 1 and H 3L 2 ligands in the compounds more efficiently.

  17. Influence of cell wall shape and density on the mechanical behaviour of 2D foam structures

    SciTech Connect

    Harders, Harald . E-mail: h.harders@tu-bs.de; Hupfer, Knut; Roesler, Joachim

    2005-03-01

    This article describes simulations on the influence of the cell wall shape as well as the density on the elastic stiffness of regular and stochastic honeycomb structures. Starting from an equation by Gibson and Ashby for regular honeycombs, an analytical model is developed that describes the influence of different cell wall shapes on the elastic response of these structures. In addition, this analytical model is modified in order to use free parameters that can be fitted to finite element simulation results of stochastic Voronoi honeycomb structures. The model describes the results well. Young's modulus depends strongly on the cell wall shape, achieving a maximum for slightly concave shapes.

  18. 2D and 3D reconstruction and geomechanical characterization of kilometre-scale complex folded structures

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Agliardi, Federico; Crosta, Giovanni B.; Villa, Alberto; Bistacchi, Andrea; Iudica, Gaetano

    2015-04-01

    The geometrical, structural and geomechanical characterization of large-scale folded structures in sedimentary rocks is an important issue for different geological and geo-hazard applications (e.g. hydrocarbon and geothermal reservoir exploitation, natural rock slope stability, mining, and tunnelling). Fold geometry controls topography and the spatial distribution of rock types with different strength and permeability. Fold-related fracture systems condition the fracture intensity, degree of freedom, and overall strength of rock masses. Nevertheless, scale issues and limited accessibility or partial exposure of structures often hamper a complete characterization of these complex structures. During the last years, advances in remote survey techniques as terrestrial Lidar (TLS) allowed significant improvements in the geometrical and geological characterization of large or inaccessible outcrops. However, sound methods relating structures to rock mass geomechanical properties are yet to be developed. Here we present results obtained by integrating remote survey and field assessment techniques to characterize a folded sedimentary succession exposed in unreachable vertical rock walls. The study area is located in the frontal part of the Southern Alps near Bergamo, Italy. We analysed large-scale detachment folds developed in the Upper Triassic sedimentary cover in the Zu Limestone. Folds are parallel and disharmonic, with regular wavelengths and amplitudes of about 200-250 m. We used a Riegl VZ-1000 long-range laser scanner to obtain points clouds with nominal spacings between 5 cm and 20 cm from 9 scan positions characterized by range between 350 m and 1300 m. We fixed shadowing and occlusion effects related to fold structure exposure by filling point clouds with data collected by terrestrial digital photogrammetry (TDP). In addition, we carried out field surveys of fold-related brittle structures and their geomechanical attributes at key locations. We classified cloud

  19. New dicyano cyclometalated compounds containing Pd(II)-Tl(I) bonds as building blocks in 2D extended structures: synthesis, structure, and luminescence studies.

    PubMed

    Sicilia, Violeta; Forniés, Juan; Fuertes, Sara; Martín, Antonio

    2012-10-15

    New mixed metal complexes [PdTl(C^N)(CN)(2)] [C^N = 7,8-benzoquinolinate (bzq, 3); 2-phenylpyridinate (ppy, 4)] have been synthesized by reaction of their corresponding precursors (NBu(4))[Pd(C^N)(CN)(2)] [C^N = bzq (1), ppy (2)] with TlPF(6). Compounds 3 and 4 were studied by X-ray diffraction, showing the not-so-common Pd(II)-Tl(I) bonds. Both crystal structures exhibit 2-D extended networks fashioned by organometallic "PdTl(C^N)(CN)(2)" units, each one containing a donor-acceptor Pd(II)-Tl(I) bond, which are connected through additional Tl···N≡C contacts and weak Tl···π (bzq) contacts in the case of 3. Solid state emissions are red-shifted compared with those of the precursors and have been assigned to metal-metal'-to-ligand charge transfer (MM'LCT [d/s σ*(Pd,Tl) → π*(C^N)]) mixed with some intraligand ((3)IL[π(C^N) → π*(C^N)]) character. In diluted solution either at room temperature or 77 K, the Pd-Tl bond is no longer retained as confirmed by mass spectrometry, NMR, and UV-vis spectroscopic techniques. PMID:22998590

  20. Discrete hexamer water clusters and 2D water layer trapped in three luminescent Ag/tetramethylpyrazine/benzene-dicarboxylate hosts: 1D chain, 2D layer and 3D network

    NASA Astrophysics Data System (ADS)

    Mei, Hong-Xin; Zhang, Ting; Huang, Hua-Qi; Huang, Rong-Bin; Zheng, Lan-Sun

    2016-03-01

    Three mix-ligand Ag(I) coordination compounds, namely, {[Ag10(tpyz) 5(L1) 5(H2 O)2].(H2 O)4}n (1, tpyz = 2,3,4,5-tetramethylpyrazine, H2 L1 = phthalic acid), [Ag4(tpyz) 2(L2) 2(H2 O)].(H2 O)5}n (2, H2 L2 = isophthalic acid) {[Ag2(tpyz) 2(L3) (H2 O)4].(H2 O)8}n (3, H2 L3 = terephthalic acid), have been synthesized and characterized by elemental analysis, IR, PXRD and X-ray single-crystal diffraction. 1 exhibits a 2D layer which can be simplified as a (4,4) net. 2 is a 3D network which can be simplified as a (3,3)-connected 2-nodal net with a point symbol of {102.12}{102}. 3 consists of linear [Ag(tpyz) (H2 O)2]n chain. Of particular interest, discrete hexamer water clusters were observed in 1 and 2, while a 2D L10(6) water layer exists in 3. The results suggest that the benzene dicarboxylates play pivotal roles in the formation of the different host architectures as well as different water aggregations. Moreover, thermogravimetric analysis (TGA) and emissive behaviors of these compounds were investigated.

  1. Syntheses and crystal structures of four 1-D or 2-D coordination polymers based on 1-((benzotriazol-1-yl)methyl)-1 H-1,3-imidazole

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoli; Li, Weiqiang; Jin, Guanghua; Zhao, Dong; Zhu, Xiaoqing; Meng, Xiangru; Hou, Hongwei

    2011-05-01

    In this paper, four coordination polymers, {[Ag(bmi)]·NO 3} n ( 1), [Co(N 3) 2(bmi) 2] n ( 2), [Cu(SCN) 2(bmi) 2] n ( 3), and {[Cu(bmi) 2(CH 3OH)(H 2O)]·(ClO 4) 2} n ( 4) have been synthesized through the reactions of an unsymmetrical ligand 1-((benzotriazol-1-yl)methyl)-1 H-1,3-imidazole (bmi) with Ag(I), Co(II) and Cu(II) salts at room temperature. X-ray diffraction analyses showed that compound 1 exhibits double-stranded helical chain. Compounds 2- 4 display 2-D rhombus grid network structure. The rhombus grid consists of 32-membered rings, and gives the dimensions of ca. 8.9 × 8.9 Å for compound 2, ca. 10.1 × 10.1 Å for compound 3, and ca. 9.7 × 9.5 Å for compound 4. In addition, the 2-D layers of compound 3 are stacked into 3-D structure via π- π interactions, while the 3-D architecture of compound 4 is realized through complicated hydrogen bonds and π- π interactions. The thermal analyses of compounds 1 and 3 indicate that they have high thermal stability and are stable up to 259 °C.

  2. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics.

    PubMed

    Reppert, Mike; Tokmakoff, Andrei

    2016-05-27

    Two-dimensional infrared spectroscopy of amide I vibrations is increasingly being used to study the structure and dynamics of proteins and peptides. Amide I, a primarily carbonyl stretching vibration of the protein backbone, provides information on secondary structures as a result of vibrational couplings and on hydrogen-bonding contacts when isotope labeling is used to isolate specific sites. In parallel with experiments, computational models of amide I spectra that use atomistic structures from molecular dynamics simulations have evolved to calculate experimental spectra. Mixed quantum-classical models use spectroscopic maps to translate the structural information into a quantum-mechanical Hamiltonian for the spectroscopically observed vibrations. This allows one to model the spectroscopy of large proteins, disordered states, and protein conformational dynamics. With improvements in amide I models, quantitative modeling of time-dependent structural ensembles and of direct feedback between experiments and simulations is possible. We review the advances in developing these models, their theoretical basis, and current and future applications. PMID:27023758

  3. Learning the 3-D structure of objects from 2-D views depends on shape, not format

    PubMed Central

    Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit

    2016-01-01

    Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196

  4. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Tokmakoff, Andrei

    2016-05-01

    Two-dimensional infrared spectroscopy of amide I vibrations is increasingly being used to study the structure and dynamics of proteins and peptides. Amide I, a primarily carbonyl stretching vibration of the protein backbone, provides information on secondary structures as a result of vibrational couplings and on hydrogen-bonding contacts when isotope labeling is used to isolate specific sites. In parallel with experiments, computational models of amide I spectra that use atomistic structures from molecular dynamics simulations have evolved to calculate experimental spectra. Mixed quantum-classical models use spectroscopic maps to translate the structural information into a quantum-mechanical Hamiltonian for the spectroscopically observed vibrations. This allows one to model the spectroscopy of large proteins, disordered states, and protein conformational dynamics. With improvements in amide I models, quantitative modeling of time-dependent structural ensembles and of direct feedback between experiments and simulations is possible. We review the advances in developing these models, their theoretical basis, and current and future applications.

  5. Learning the 3-D structure of objects from 2-D views depends on shape, not format.

    PubMed

    Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit

    2016-05-01

    Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196

  6. Fringe structures and tunable bandgap width of 2D boron nitride nanosheets

    PubMed Central

    Sajjad, Muhammad; Li, Eric Yiming; Zhang, Hongxin; Chu, Jin; Aldalbahi, Ali; Morell, Gerardo

    2014-01-01

    Summary We report studies of the surface fringe structures and tunable bandgap width of atomic-thin boron nitride nanosheets (BNNSs). BNNSs are synthesized by using digitally controlled pulse deposition techniques. The nanoscale morphologies of BNNSs are characterized by using scanning electron microscope (SEM), and transmission electron microscopy (TEM). In general, the BNNSs appear microscopically flat in the case of low temperature synthesis, whereas at high temperature conditions, it yields various curved structures. Experimental data reveal the evolutions of fringe structures. Functionalization of the BNNSs is completed with hydrogen plasma beam source in order to efficiently control bandgap width. The characterizations are based on Raman scattering spectroscopy, X-ray diffraction (XRD), and FTIR transmittance spectra. Red shifts of spectral lines are clearly visible after the functionalization, indicating the bandgap width of the BNNSs has been changed. However, simple treatments with hydrogen gas do not affect the bandgap width of the BNNSs. PMID:25161852

  7. Structural inference for uncertain networks

    NASA Astrophysics Data System (ADS)

    Martin, Travis; Ball, Brian; Newman, M. E. J.

    2016-01-01

    In the study of networked systems such as biological, technological, and social networks the available data are often uncertain. Rather than knowing the structure of a network exactly, we know the connections between nodes only with a certain probability. In this paper we develop methods for the analysis of such uncertain data, focusing particularly on the problem of community detection. We give a principled maximum-likelihood method for inferring community structure and demonstrate how the results can be used to make improved estimates of the true structure of the network. Using computer-generated benchmark networks we demonstrate that our methods are able to reconstruct known communities more accurately than previous approaches based on data thresholding. We also give an example application to the detection of communities in a protein-protein interaction network.

  8. Formation of 2D nanoparticles with block structure in simultaneous electric explosion of conductors

    SciTech Connect

    Kryzhevich, Dmitrij S. E-mail: kost@ispms.ru; Zolnikov, Konstantin P. E-mail: kost@ispms.ru; Abdrashitov, Andrei V.; Lerner, Marat I.; Psakhie, Sergey G.

    2014-11-14

    A molecular dynamics simulation of nanoparticle formation in simultaneous electric explosion of conductors is performed. Interatomic interaction is described using potentials calculated in the framework of the embedded atom method. High-rate heating results in failure of the conductors with the formation of nanoparticles. The influence of the heating rate, temperature distribution over the specimen cross-section and the distance between simultaneously exploded conductors on the structure of formed nanoparticles is studied. The calculation results show that the electric explosion of conductors allows the formation of nanoparticles with block structure.

  9. Structural Disorder of Folded Proteins: Isotope-Edited 2D IR Spectroscopy and Markov State Modeling

    PubMed Central

    Baiz, Carlos R.; Tokmakoff, Andrei

    2015-01-01

    The conformational heterogeneity of the N-terminal domain of the ribosomal protein L9 (NTL91-39) in its folded state is investigated using isotope-edited two-dimensional infrared spectroscopy. Backbone carbonyls are isotope-labeled (13C=18O) at five selected positions (V3, V9, V9G13, G16, and G24) to provide a set of localized spectroscopic probes of the structure and solvent exposure at these positions. Structural interpretation of the amide I line shapes is enabled by spectral simulations carried out on structures extracted from a recent Markov state model. The V3 label spectrum indicates that the β-sheet contacts between strands I and II are well folded with minimal disorder. The V9 and V9G13 label spectra, which directly probe the hydrogen-bond contacts across the β-turn, show significant disorder, indicating that molecular dynamics simulations tend to overstabilize ideally folded β-turn structures in NTL91-39. In addition, G24-label spectra provide evidence for a partially disordered α-helix backbone that participates in hydrogen bonding with the surrounding water. PMID:25863066

  10. Mercury (I) nitroprusside: A 2D structure supported on homometallic interactions

    NASA Astrophysics Data System (ADS)

    Osiry, H.; Cano, A.; Reguera, L.; Lemus-Santana, A. A.; Reguera, E.

    2015-01-01

    The pentacyanonitrosylferrate complex anion, [Fe(CN)5NO]2-, forms an insoluble solid with Hg(I) ion, of formula unit Hg2[Fe(CN)5NO]·2H2O, whose crystal structure and related properties are unknown. This contribution reports the preparation of that compound by the precipitation method and its structural study from X-ray powder patterns complemented with spectroscopic information from IR, Raman, and UV-vis techniques. The crystal structure was solved ab initio and then refined using the Rietveld method. The solid crystallizes with a triclinic unit cell, in the P-1 space group, with cell parameters a=10.1202(12), b=10.1000(13), c=7.4704(11) Å; α=110.664(10), β=110.114(10), γ=104.724(8) °. Within the unit cell, two formula units are accommodated (Z=2). It adopts a layered structure related with the coordination of the equatorial CN groups at their N end to the Hg atoms while the axial CN ligand remains unlinked. Within the layers neighboring Hg2[Fe(CN)5NO] building units remain linked through four relatively strong Hg-Hg interactions, with an interatomic distance of 2.549(3) Å. The charge donation from the equatorial CN groups through their 5σ orbitals results into an increase for the electron density on the Hg atoms, which strengths the Hg-Hg bond. In the Raman spectrum, that metal-metal bond is detected as a stretching vibration band at 167 cm-1. The available free volume between neighboring layers accommodates two water molecules, which are stabilized within the framework through hydrogen bonds with the N end of the unlinked axial CN group. The removal of these weakly bonded water molecules results in structural disorder for the material 3D framework.

  11. Pores of the toxin FraC assemble into 2D hexagonal clusters in both crystal structures and model membranes.

    PubMed

    Mechaly, Ariel E; Bellomio, Augusto; Morante, Koldo; Agirre, Jon; Gil-Cartón, David; Valle, Mikel; González-Mañas, Juan Manuel; Guérin, Diego M A

    2012-11-01

    The recent high-resolution structure of the toxin FraC derived from the sea anemone Actinia fragacea has provided new insight into the mechanism of pore formation by actinoporins. In this work, we report two new crystal forms of FraC in its oligomeric prepore conformation. Together with the previously reported structure, these two new structures reveal that ring-like nonamers of the toxin assemble into compact two-dimensional hexagonal arrays. This supramolecular organization is maintained in different relative orientations adopted by the oligomers within the crystal layers. Analyses of the aggregation of FraC pores in both planar and curved (vesicles) model membranes show similar 2D hexagonal arrangements. Our observations support a model in which hexagonal pore-packing is a clustering mechanism that maximizes toxin-driven membrane damage in the target cell. PMID:22728830

  12. Tuning the Structural Color of a 2D Photonic Crystal Using a Bowl-like Nanostructure.

    PubMed

    Umh, Ha Nee; Yu, Sungju; Kim, Yong Hwa; Lee, Su Young; Yi, Jongheop

    2016-06-22

    Structural colors of the ordered photonic nanostructures are widely used as an effective platform for manipulating the propagation of light. Although several approaches have been explored in attempts to mimic the structural colors, improving the reproducibility, mechanical stability, and the economic feasibility of sophisticated photonic crystals prepared by complicated processes continues to pose a challenge. In this study, we report on an alternative, simple method for fabricating a tunable photonic crystal at room temperature. A bowl-like nanostructure of TiO2 was periodically arranged on a thin Ti sheet through a two-step anodization process where its diameters were systemically controlled by changing the applied voltage. Consequently, they displayed a broad color distribution, ranging from red to indigo, and the principal reason for color generation followed the Bragg diffraction theory. This noncolorant method was capable of reproducing a Mondrian painting on a centimeter scale without the need to employ complex architectures, where the generated structural colors were highly stable under mechanical or chemical influence. Such a color printing technique represents a potentially promising platform for practical applications for anticounterfeit trademarks, wearable sensors, and displays. PMID:27245939

  13. Reverse modeling of 2D and 3D diapiric salt structures

    NASA Astrophysics Data System (ADS)

    Fernandez, N.; Kaus, B.

    2013-12-01

    Mechanical forward modeling of salt diapirs formed by two different processes (differential loading and buoyancy driven) has been widely performed with numerical codes in many studies, whereas works focusing on the dynamic retro-deformation of such structures remain scarce. Buoyancy driven diapirs, in which the density difference between salt and overburden induces upward motion of salt, have been successfully retro-deformed in two and three dimensions using simple rheologies for the salt and overburden (e.g., Kaus & Podladchikov 2001). However, retro-deformation of down-building diapirs (syndepositional process in which salt structures grow while sediments are being deposited) using mechanical codes has only been done in two dimensions (e.g., Ismael-Zadeh et al. 2001), even though the importance of three-dimensionality in salt diapirism is accepted. We have used the two-dimensional visco-elasto-plastic finite element code MILAMIN_VEP to perform both forward and backward simulations and to check the validity of a reversed time step method (Kaus & Podladchikov 2001 and Ismael-Zadeh et al. 2001) for a wide range of parameters, variable sedimentation rates, and for non-linear rheologies. Forward simulations are run until the salt layer is exhausted and then a reverse time step is applied in order to retro-deform the model. Down-building process was mimicked using a fast-erosion condition at the surface, which keeps it flat and redistributes material at every time step. Initially, we have tested our method by retro-deforming salt structures that develop from an interface that is sinusoidally perturbed. More realistic simulations were performed by starting with randomly perturbed salt interface and using different rheological parameters for the salt and the overburden as well as variable sedimentation rates. Once the method has been proved successful for different parameters in two dimensions, the finite differences parallel code LaMEM has also been used to dynamically

  14. Crystal structure and temperature-dependent fluorescent property of a 2D cadmium (II) complex based on 3,6-dibromobenzene-1,2,4,5-tetracarboxylic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Liang-Liang; Guo, Yu; Wei, Yan-Hui; Guo, Jie; Wang, Xing-Po; Sun, Dao-Feng

    2013-04-01

    A new cadmium (II) organic coordination polymers [Cd(dbtec)0.5(H2O)3]·H2O (1), has been constructed based on 3,6-dibromobenzene-1,2,4,5-tetracarboxylic acid (H4dbtec), and characterized by elemental analysis (EA), infrared spectroscopy (IR), powder X-ray diffraction (PXRD), and single crystal X-ray diffraction. In 1, μ2-η1:η1 and μ4-η2:η2 dbtec ligands link four hepta-coordinated CdII ions to form a 2D 44 topological layer structure, which is further connected into an interesting 3D network by hydrogen bond and Br⋯O halogen bond. Moreover, the thermal stabilities, solid ultraviolet spectroscopy and temperature-dependent fluorescent properties of 1 were investigated.

  15. Investigation of 2D laterally dispersive photonic crystal structures : LDRD 33602 final report.

    SciTech Connect

    Subramania,Ganapathi Subramanian; Vawter, Gregory Allen; Wendt, Joel Robert; Peake, Gregory Merwin; Guo, Junpeng; Peters, David William; Hadley, G. Ronald

    2003-12-01

    Artificially structured photonic lattice materials are commonly investigated for their unique ability to block and guide light. However, an exciting aspect of photonic lattices which has received relatively little attention is the extremely high refractive index dispersion within the range of frequencies capable of propagating within the photonic lattice material. In fact, it has been proposed that a negative refractive index may be realized with the correct photonic lattice configuration. This report summarizes our investigation, both numerically and experimentally, into the design and performance of such photonic lattice materials intended to optimize the dispersion of refractive index in order to realize new classes of photonic devices.

  16. Perspective: Probing 2-D magnetic structures in a 3-D world

    NASA Astrophysics Data System (ADS)

    Grutter, A. J.

    2016-03-01

    Magnetic interfaces have been identified as promising systems upon which to base next-generation spintronic devices. In these nearly two-dimensional systems, deviations from bulk electronic structure and competition between nearly degenerate magnetic ground states allow the stabilization of widely tunable emergent properties. However, ever smaller length scales pose new challenges which must be overcome in order to understand and control magnetic properties at the atomic level. Using recent examples in oxide heterostructures and topological insulators, we discuss how combining techniques such as neutron scattering, X-ray scattering, X-ray spectroscopy, and transmission electron microscopy enables the probing of magnetism on the Angstrom scale.

  17. ADDENDUM: Addendum to `On the singularity structure of the 2D Ising model susceptibility'

    NASA Astrophysics Data System (ADS)

    Nickel, Bernie

    2000-03-01

    A remarkable product formula first derived by Palmer and Tracy (1981 Adv. Appl. Math. 2 329) for the integrand of the two-dimensional Ising model susceptibility expansion coefficients icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/> (2n ) for temperatures T less than the critical T c is shown to apply equally for icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/> (2n +1) for T >T c and agrees with formulae derived by Yamada (1984 Prog. Theor. Phys. 71 1416). This new representation simplifies the derivation of the results in the original paper of this title (1999 J. Phys. A: Math. Gen. 32 3889) to the extent that the leading series behaviour and the singularity structure can be deduced almost by inspection. The derivation of series is also simplified and I show, using extended series and knowledge of the singularity structure, that there is now unambiguous evidence for correction to scaling terms in the susceptibility beyond those inferred from a nonlinear scaling field analysis.

  18. Morphometric structural diversity of a natural armor assembly investigated by 2D continuum strain analysis.

    PubMed

    Varshney, Swati; Song, Juha; Li, Yaning; Boyce, Mary C; Ortiz, Christine

    2015-12-01

    Many armored fish scale assemblies use geometric heterogeneity of subunits as a design parameter to provide tailored biomechanical flexibility while maintaining protection from external penetrative threats. This study analyzes the spatially varying shape of individual ganoid scales as a structural element in a biological system, the exoskeleton of the armored fish Polypterus senegalus (bichir). X-ray microcomputed tomography is used to generate digital 3D reconstructions of the mineralized scales. Landmark-based geometric morphometrics is used to measure the geometric variation among scales and to define a set of geometric parameters to describe shape variation. A formalism using continuum mechanical strain analysis is developed to quantify the spatial geometry change of the scales and illustrate the mechanisms of shape morphing between scales. Five scale geometry variants are defined (average, anterior, tail, ventral, and pectoral fin) and their functional implications are discussed in terms of the interscale mobility mechanisms that enable flexibility within the exoskeleton. The results suggest that shape variation in materials design, inspired by structural biological materials, can allow for tunable behavior in flexible composites made of segmented scale assemblies to achieve enhanced user mobility, custom fit, and flexibility around joints for a variety of protective applications. PMID:26481418

  19. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions

    PubMed Central

    Renosh, P. R.; Schmitt, Francois G.; Loisel, Hubert

    2015-01-01

    Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics. PMID:26017551

  20. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions.

    PubMed

    Renosh, P R; Schmitt, Francois G; Loisel, Hubert

    2015-01-01

    Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics. PMID:26017551

  1. Discovering Network Structure Beyond Communities

    PubMed Central

    Nishikawa, Takashi; Motter, Adilson E.

    2011-01-01

    To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest. PMID:22355667

  2. Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques

    NASA Astrophysics Data System (ADS)

    Topcu, Gulacti; Ulubelen, Ayhan

    2007-05-01

    In our continuing studies on Lamiaceae family plants including Salvia, Teucrium, Ajuga, Sideritis, Nepeta and Lavandula growing in Anatolia, many terpenoids, consisting of over 50 distinct triterpenoids and steroids, and over 200 diterpenoids, several sesterterpenoids and sesquiterpenoids along with many flavonoids and other phenolic compounds have been isolated. For Salvia species abietanes, for Teucrium and Ajuga species neo-clerodanes for Sideritis species ent-kaurane diterpenes are characteristic while nepetalactones are specific for Nepeta species. In this review article, only some interesting and different type of skeleton having constituents, namely rearranged, nor- or rare diterpenes, isolated from these species will be presented. For structure elucidation of these natural diterpenoids intensive one- and two-dimensional NMR techniques ( 1H, 13C, APT, DEPT, NOE/NOESY, 1H- 1H COSY, HETCOR, COLOC, HMQC/HSQC, HMBC, SINEPT) were used besides mass and some other spectroscopic methods.

  3. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism.

    PubMed

    Manchanda, Priyanka; Skomski, Ralph

    2016-02-17

    Density-functional theory is used to investigate the phase-segregation behavior of two-dimensional transition-metal dichalcogenides, which are of current interest as beyond-graphene materials for optoelectronic and spintronic applications. Our focus is on the behavior of W1-x V x Se2 monolayers, whose end members are semiconducting WSe2 and ferromagnetic VSe2. The energetics favors phase segregation, but the spinodal decomposition temperature is rather low, about 420 K. The addition of V leads to a transition from a nonmagnetic semiconductor to a metallic ferromagnet, with a ferromagnetic moment of about 1.0 μ B per V atom. The transition is caused by a p-type doping mechanism, which shifts the Fermi level into the valence band. The finite-temperature structure and magnetism of the diselenide systems are discussed in terms of Onsager-type critical fluctuations and Bruggeman effective-medium behavior. PMID:26794410

  4. Robust Level Coincidences in the Subband Structure of Quasi 2D Systems

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Wang, L. Y.; Lin, Y. H.; Chu, C. S.

    2011-03-01

    Recently, level crossings in the energy bands of crystals have been identified as a key signature for topological phase transitions. In general, three independent parameters must be tuned appropriately to bring two quantum levels into degeneracy. Using realistic models we show that for Bloch electrons in a crystal the parameter space controlling the occurrence of level coincidences has a much richer structure than anticipated previously. In particular, we identify cases where level coincidences depend on only two independent parameters thus making the level coincidences robust, i.e., they cannot be removed by a small perturbation of the Hamiltonian compatible with the crystal symmetry. We consider HgTe/CdTe quantum wells as a specific example. (See arXiv:1011.xxxx) Work supported by Taiwan NSC (Contract No. 99-2112-M-009-006) and a MOE-ATU grant. Work at Argonne supported by DOE BES under Contract No. DE-AC02-06CH11357.

  5. Conductance based characterization of structure and hopping site density in 2D molecule-nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    McCold, Cliff E.; Fu, Qiang; Howe, Jane Y.; Hihath, Joshua

    2015-09-01

    Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from chemical sensing to nanoscale electronics. However, creating reproducible and repeatable composite materials with precise properties has remained one of the primary challenges to the implementation of these technologies. Understanding the sources of variation that dominate the assembly and transport behavior is essential for the advancement of nanoparticle-array based devices. In this work, we use a combination of charge-transport measurements, electron microscopy, and optical characterization techniques to determine the role of morphology and structure on the charge transport properties of 2-dimensional monolayer arrays of molecularly-interlinked Au nanoparticles. Using these techniques we are able to determine the role of both assembly-dependent and particle-dependent defects on the conductivities of the films. These results demonstrate that assembly processes dominate the dispersion of conductance values, while nanoparticle and ligand features dictate the mean value of the conductance. By performing a systematic study of the conductance of these arrays as a function of nanoparticle size we are able to extract the carrier mobility for specific molecular ligands. We show that nanoparticle polydispersity correlates with the void density in the array, and that because of this correlation it is possible to accurately determine the void density within the array directly from conductance measurements. These results demonstrate that conductance-based measurements can be used to accurately and non-destructively determine the morphological and structural properties of these hybrid arrays, and thus provide a characterization platform that helps move 2-dimensional nanoparticle arrays toward robust and reproducible electronic systems.Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from

  6. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism

    NASA Astrophysics Data System (ADS)

    Manchanda, Priyanka; Skomski, Ralph

    2016-02-01

    Density-functional theory is used to investigate the phase-segregation behavior of two-dimensional transition-metal dichalcogenides, which are of current interest as beyond-graphene materials for optoelectronic and spintronic applications. Our focus is on the behavior of W1-x V x Se2 monolayers, whose end members are semiconducting WSe2 and ferromagnetic VSe2. The energetics favors phase segregation, but the spinodal decomposition temperature is rather low, about 420 K. The addition of V leads to a transition from a nonmagnetic semiconductor to a metallic ferromagnet, with a ferromagnetic moment of about 1.0 μ B per V atom. The transition is caused by a p-type doping mechanism, which shifts the Fermi level into the valence band. The finite-temperature structure and magnetism of the diselenide systems are discussed in terms of Onsager-type critical fluctuations and Bruggeman effective-medium behavior.

  7. Algorithms for the automatic generation of 2-D structured multi-block grids

    NASA Technical Reports Server (NTRS)

    Schoenfeld, Thilo; Weinerfelt, Per; Jenssen, Carl B.

    1995-01-01

    Two different approaches to the fully automatic generation of structured multi-block grids in two dimensions are presented. The work aims to simplify the user interactivity necessary for the definition of a multiple block grid topology. The first approach is based on an advancing front method commonly used for the generation of unstructured grids. The original algorithm has been modified toward the generation of large quadrilateral elements. The second method is based on the divide-and-conquer paradigm with the global domain recursively partitioned into sub-domains. For either method each of the resulting blocks is then meshed using transfinite interpolation and elliptic smoothing. The applicability of these methods to practical problems is demonstrated for typical geometries of fluid dynamics.

  8. Controllability of structural brain networks

    NASA Astrophysics Data System (ADS)

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-10-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.

  9. Controllability of structural brain networks

    PubMed Central

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-01-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function. PMID:26423222

  10. Four divalent transition metal carboxyarylphosphonate compounds: Hydrothermal synthesis, structural chemistry and generalized 2D FTIR correlation spectroscopy studies

    SciTech Connect

    Lei Ran; Chai Xiaochuan; Mei Hongxin; Zhang Hanhui; Chen Yiping; Sun Yanqiong

    2010-07-15

    Four divalent transition metal carboxyarylphosphonates, [Ni(4,4'-bipy)H{sub 2}L{sup 1}(HL{sup 1}){sub 2}(H{sub 2}O){sub 2}].2H{sub 2}O 1, [Ni{sub 2}(4,4'-bipy)(L{sup 2})(OH)(H{sub 2}O){sub 2}].3H{sub 2}O 2, Mn(phen){sub 2}(H{sub 2}L{sup 1}){sub 2}3 and Mn(phen)(HL{sup 2}) 4 (H{sub 3}L{sup 1}=p-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, H{sub 3}L{sup 2}=m-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, 4,4'-bipy=4,4'-bipyridine, phen=1,10-phenanthroline) were synthesized under hydrothermal conditions. 1 features 1D linear chains built from Ni(II) ions bridging 4,4'-bipy. In 2, neighboring Ni{sub 4} cluster units are connected by pairs of H{sub 3}L{sup 2} ligands to form 1D double-crankshaft chains, which are interconnected by pairs of 4,4'-bipy into 2D sheets. 3 exhibits 2D supramolecular layers via the R{sub 2}{sup 2}(8) ringed hydrogen bonding units. 4 has 1D ladderlike chains, in which the 4-membered rings are cross-linked by the organic moieties of the H{sub 3}L{sup 2} ligands. Additionally, 2D FTIR correlation analysis is applied with thermal and magnetic perturbation to clarify the structural changes of functional groups from H{sub 3}L{sup 1} and H{sub 3}L{sup 2} ligands in the compounds more efficiently. - Graphical abstract: A series of divalent transition metal carboxyarylphosphonate compounds were synthesized under hydrothermal conditions. The figure displays 2D sheet structure with large windows in compound 2.

  11. Network Structure and City Size

    PubMed Central

    Levinson, David

    2012-01-01

    Network structure varies across cities. This variation may yield important knowledge about how the internal structure of the city affects its performance. This paper systematically compares a set of surface transportation network structure variables (connectivity, hierarchy, circuity, treeness, entropy, accessibility) across the 50 largest metropolitan areas in the United States. A set of scaling parameters are discovered to show how network size and structure vary with city size. These results suggest that larger cities are physically more inter-connected. Hypotheses are presented as to why this might obtain. This paper then consistently measures and ranks access to jobs across 50 US metropolitan areas. It uses that accessibility measure, along with network structure variables and city size to help explain journey-to-work time and auto mode share in those cities. A 1 percent increase in accessibility reduces average metropolitan commute times by about 90 seconds each way. A 1 percent increase in network connectivity reduces commute time by 0.1 percent. A 1 percent increase in accessibility results in a 0.0575 percent drop in auto mode share, while a 1 percent increase in treeness reduces auto mode share by 0.061 percent. Use of accessibility and network structure measures is important for planning and evaluating the performance of network investments and land use changes. PMID:22253764

  12. Collective network for computer structures

    DOEpatents

    Blumrich, Matthias A.; Coteus, Paul W.; Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd E.; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.

    2011-08-16

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

  13. Dynamics of quiescent prominence fine structures analyzed by 2D non-LTE modelling of the Hα line

    NASA Astrophysics Data System (ADS)

    Gunár, S.; Mein, P.; Schmieder, B.; Heinzel, P.; Mein, N.

    2012-07-01

    Aims: We analyze the dynamics of the prominence fine structures of a quiescent prominence observed on April 26, 2007 during a coordinated campaign of several spaceborne and ground-based instruments. We use Lyman spectra observed by SOHO/SUMER and the Hα line spectra obtained by MSDP spectrograph working at the Meudon Solar Tower. Methods: We employ the 2D multi-thread prominence fine-structure modelling that includes randomly distributed line-of-sight (LOS) velocities of individual threads to derive models producing synthetic Lyman lines in good agreement with the SOHO/SUMER observations. We then use these models to produce synthetic Hα line spectra that we compare with the observed spectra using three statistical parameters: the line integrated intensity, the line full-width at half-maximum (FWHM), and the Doppler velocity derived from shifts of the line profiles. Results: We demonstrate that the 2D multi-thread models that produce synthetic Lyman spectra in agreement with observations also generate synthetic Hα spectra in good agreement with the observed ones. The statistical analysis of the FWHM and Doppler velocities of the synthetic Hα line profiles show that the overall LOS velocities in the April 26, 2007 prominence at the time of the observations were below 15 km s-1 and in the prominence core were close to 10 km s-1. In combination with the analysis of the Lyman spectra, we determine several physical parameters of the observed prominence fine-structures that show that the April 26, 2007 prominence had a relatively low-mass weakly magnetized structure. We are also able to impose some constraints on the prominence core temperature, which may be relatively low, with values below 6000 K. Conclusions: The combination of 2D non-LTE prominence fine-structure modelling with the statistical analysis of the observed and synthetic Lyman and Hα spectra allows us to analyze the influence of the model input parameters and the velocity fields on the synthetic H

  14. Structure and properties of phosphorene-like IV-VI 2D materials.

    PubMed

    Ma, Zhinan; Wang, Bo; Ou, Liangkai; Zhang, Yan; Zhang, Xu; Zhou, Zhen

    2016-10-14

    Because of the excellent physical and chemical properties of phosphorene, phosphorene and phosphorene-like materials have attracted extensive attention. Since phosphorus belongs to group V, some group IV-VI compounds could also form phosphorene-like configurations. In this work, GeO, SnO, GeS, and SnS monolayers were constructed to investigate the structural and electronic properties by employing first-principles computations. Phonon spectra suggest that these monolayers are dynamically stable and could be realized in experiments. These monolayers are all semiconductors with the band gaps of 2.26 ∼ 4.13 eV. Based on the monolayers, GeO, SnO, GeS, and SnS bilayers were also constructed. The band gaps of these bilayers are smaller than those of the corresponding monolayers. Moreover, the optical properties of these monolayers and bilayers were calculated, and the results indicate that the SnO, GeS and SnS bilayers exhibit obvious optical absorption in the visible spectrum. All the results suggest that phosphorene-like IV-VI materials are promising candidates for electronic and optical devices. PMID:27608201

  15. A novel 2-D transition metal cyanide membrane: Modeling, structural, magnetic, and functional characterization

    NASA Astrophysics Data System (ADS)

    Goss, Marcus

    A novel 2-dimensional crystalline material composed of cyanide-bridged metal nanosheets with a square planar framework has been prepared. This material, similar to Hofmann clathrates, has a variety of interesting properties. The material is crystalline and possesses characteristics that include magnetic properties, electronic properties and useful structural features. They have recently been exfoliated into individual crystalline sheets. These sheets show a strong potential for use as ion selective membranes. Performance improvements in water purification and desalination by reverse osmosis methods owing to their single atom thickness is possible. A series of dynamic molecular simulations has provided an understanding of the mechanism for water permeability and salt rejection. Energy profiles for the passage of water and ionic species through the porous areas of these nanosheets have been built and reported. Performance estimates of the efficacy of this novel material for use as an ion selective membrane such as an improved desalination RO membrane are presented. Experiments in synthesis and exfoliation of this class of cyanide-bridged transition metal complex were conducted and the results are presented. A preliminary investigation into the magnetic properties of these materials is included.

  16. Theoretical predictions on the electronic structure and charge carrier mobility in 2D Phosphorus sheets

    PubMed Central

    Xiao, Jin; Long, Mengqiu; Zhang, Xiaojiao; Ouyang, Jun; Xu, Hui; Gao, Yongli

    2015-01-01

    We have investigated the electronic structure and carrier mobility of four types of phosphorous monolayer sheet (α-P, β-P,γ-P and δ-P) using density functional theory combined with Boltzmann transport method and relaxation time approximation. It is shown that α-P, β-P and γ-P are indirect gap semiconductors, while δ-P is a direct one. All four sheets have ultrahigh carrier mobility and show anisotropy in-plane. The highest mobility value is ~3 × 105 cm2V−1s−1, which is comparable to that of graphene. Because of the huge difference between the hole and electron mobilities, α-P, γ-P and δ-P sheets can be considered as n-type semiconductors, and β-P sheet can be considered as a p-type semiconductor. Our results suggest that phosphorous monolayer sheets can be considered as a new type of two dimensional materials for applications in optoelectronics and nanoelectronic devices. PMID:26035176

  17. Unusual Domain Structure and Filamentary Superfluidity for 2D Hard-Core Bosons in Insulating Charge-Ordered Phase

    NASA Astrophysics Data System (ADS)

    Panov, Yu. D.; Moskvin, A. S.; Rybakov, F. N.; Borisov, A. B.

    2016-01-01

    We made use of a special algorithm for compute unified device architecture for NVIDIA graphics cards, a nonlinear conjugate-gradient method to minimize energy functional, and Monte-Carlo technique to directly observe the forming of the ground state configuration for the 2D hard-core bosons by lowering the temperature and its evolution with deviation away from half-filling. The novel technique allowed us to examine earlier implications and uncover novel features of the phase transitions, in particular, look upon the nucleation of the odd domain structure, emergence of filamentary superfluidity nucleated at the antiphase domain walls of the charge-ordered phase, and nucleation and evolution of different topological structures.

  18. Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures

    NASA Astrophysics Data System (ADS)

    Fefferman, C. L.; Lee-Thorp, J. P.; Weinstein, M. I.

    2016-03-01

    Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge.

  19. Dihydrofolate reductase: Sequential resonance assignments using 2D and 3D NMR and secondary structure determination in solution

    SciTech Connect

    Carr, M.D.; Birdsall, B.; Jimenez-Barbero, J.; Polshakov, V.I.; McCormick, J.E.; Feeney, J.; Frenkiel, T.A.; Bauer, C.J. ); Roberts, G.C.K. )

    1991-06-25

    Three-dimensional (3D) heteronuclear NMR techniques have been used to make sequential {sup 1}H and {sup 15}H resonance assignments for most of the residues of Lactobacillus casei dihydrofolate reductase (DHFR), a monomeric protein of molecular mass 18,300 Da. A uniformly {sup 15}N-labeled sample of the protein was prepared and its complex with methotrexate (MTX) studied by 3D {sup 15}N/{sup 1}H nuclear Overhauserheteronuclear multiple quantum coherence (NOESY-HMQC), Harmann-Hahn-heteronuclear multiple quantum coherence (HOHAHA-HMQC), and HMQC-NOESY-HMQC experiments. These experiments overcame most of the spectral overlap problems caused by chemical shift degeneracies in 2D spectra and allowed the {sup 1}H-{sup 1}H through-space and through-bond connectivities to be identified unambiguously, leading to the resonance assignments. The novel HMQC-NOESY-HMQC experiment allows NOE cross peaks to be detected between NH protons even when their {sup 1}H chemical shifts are degenerate as long as the amide {sup 15}N chemical shifts are nondegenerate. The 3D experiments, in combination with conventional 2D NOESY, COSY, and HOHAHA experiments on unlabelled and selectively deuterated DHFR, provide backbone assignments for 146 of the 162 residues and side-chain assignments for 104 residues of the protein. Data from the NOE-based experiments and identification of the slowly exchanging amide protons provide detailed information about the secondary structure of the binary complex of the protein with methotrexate.

  20. Ab Initio Based 2D Continuum Mechanics - Sensitivity Prediction for Contact Resonance Atomic Force Microscopy Based Structure Fingerprints

    NASA Astrophysics Data System (ADS)

    Tu, Qing; Lange, Björn; Lopes, J. Marcelo J.; Zauscher, Stefan; Blum, Volker

    Contact resonance AFM is demonstrated as a powerful tool for mapping differences in the mechanical properties of 2D materials and heterostructures, permitting to resolve surface and subsurface structural differences of different domains. Measured contact resonance frequencies are related to the contact stiffness of the combined tip-sample system. Based on first principles predicted elastic properties and a continuum approach to model the mechanical impedance, we find contact stiffness ratios between different domains of few-layer graphene on 3C-SiC(111) in excellent agreement with experiment. We next demonstrate that the approach is able to quantitatively resolve differences between other 2D materials domains, e.g., for h-BN, MoS2 and MoO3 on graphene on SiC. We show that the combined effect of several materials parameters, especially the in-plane elastic properties and the layer thickness, determines the contact stiffness, therefore boosting the sensitivity even if the out-of-plane elastic properties are similar.

  1. MIA-QSAR: a simple 2D image-based approach for quantitative structure activity relationship analysis

    NASA Astrophysics Data System (ADS)

    Freitas, Matheus P.; Brown, Steven D.; Martins, José A.

    2005-03-01

    An accessible and quite simple QSAR method, based on 2D image analysis, is reported. A case study is carried out in order to compare this model with a previously reported sophisticated methodology. A well known set of ( S)- N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxybenzamides, compounds with affinity to the dopamine D 2 receptor subtype, was divided in 40 calibration compounds and 18 test compounds and the descriptors were generated from pixels of 2D structures of each compound, which can be drawn with aid of any appropriate program. Bilinear (conventional) PLS was utilized as the regression method and leave-one-out cross-validation was performed using the NIPALS algorithm. The good predicted Q2 value obtained for the series of test compounds (0.58), together with the similar prediction quality obtained to other data sets (nAChR ligands, HIV protease inhibitors, COX-2 inhibitors and anxiolytic agents), suggests that the model is robust and seems to be as applicable as more complex methods.

  2. Collective network for computer structures

    DOEpatents

    Blumrich, Matthias A; Coteus, Paul W; Chen, Dong; Gara, Alan; Giampapa, Mark E; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd E; Steinmacher-Burow, Burkhard D; Vranas, Pavlos M

    2014-01-07

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to the needs of a processing algorithm.

  3. A hybrid wave-mode formulation for the vibro-acoustic analysis of 2D periodic structures

    NASA Astrophysics Data System (ADS)

    Droz, C.; Zhou, C.; Ichchou, M. N.; Lainé, J.-P.

    2016-02-01

    In the framework of vibrational analysis of 2D periodic waveguides, Floquet-Bloch theorem is widely applied for the determination of wave dispersion characteristics. In this context, the Wave Finite Element Method (WFEM) combines Periodic Structure Theory (PST) with standard FE packages, enabling wave dispersion analysis of waveguides involving structurally realistic unit-cells. For such applications, the computational efficiency of the WFEM depends on the choice of the formulation and can lead to numerical issues, worsen by extensive computational cost. This paper presents a coupled wave-mode approach for the determination of wave dispersion characteristics in structurally advanced periodic structures. It combines two scales of model order reduction. At the unit-cell's scale, Component Mode Synthesis (CMS) provides the displacement field associated with local resonances of the periodic structure, while the free wave propagation is considered using a spectral problem projection on a reduced set of shape functions associated with propagating waves, thus providing considerable reduction of the computational cost. An application is provided for a bi-directionally stiffened panel and the influence of reduction parameters is discussed, as well as the robustness of the numerical results.

  4. Electronic band structure and charge density wave transition in quasi-2D KMo6O17 purple bronze

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Vyalikh, D. V.; Guyot, H.; Laubschat, C.; Molodtsov, S. L.; Asensio, M. C.

    2008-03-01

    High resolution angle-resolved photoemission of quasi-2D KMo6O17 purple bronze has been performed in the range from room temperature to 130 K, slightly above the charge density wave (CDW) transition (Tc = 110 K), and down to 35 K (well below Tc). In this paper we report a detailed study of how electronic band structure is affected by this transition driven by the hidden nesting scenario. The expected spectroscopic fingerprints of the CDW phase transition have been found and discussed according to the hidden one dimension and the development of a quasi-commensurate CDW. The excellent agreement between theory and our experimental results makes of potassium purple bronze a reference system for studying this type of instabilities.

  5. An Improved Analytic Signal Technique for the Depth and Structural Index from 2D Magnetic Anomaly Data

    NASA Astrophysics Data System (ADS)

    Ma, Guoqing; Du, Xiaojuan

    2012-12-01

    This paper presents a new inversion method for the interpretation of 2D magnetic anomaly data, which uses the combination of the analytic signal and its total gradient to estimate the depth and the nature (structural index) of an isolated magnetic source. However, our proposed method is sensitive to noise. In order to lower the effect of noise, we apply upward continuation technique to smooth the anomaly. Tests on synthetic noise-free and noise corrupted magnetic data show that the new method can successfully estimate the depth and the nature of the causative source. The practical application of the technique is applied to measured magnetic anomaly data from Jurh area, northeast China, and the inversion results are in agreement with the inversion results from Euler deconvolution of the analytic signal.

  6. A review of MBE grown 0D, 1D and 2D quantum structures in a nanowire

    NASA Astrophysics Data System (ADS)

    de la Mata, Maria; Zhou, Xiang; Furtmayr, Florian; Teubert, Jörg; Gradecak, Silvija; Eickhoff, Martin; Fontcuberta i Morral, Anna; Arbiol, Jordi

    2013-05-01

    We review different strategies to achieve a three-dimensional energy bandgap modulation in a nanowire (NW) by the introduction of self-assembled 0D, 1D and 2D quantum structures, quantum dots (QDs), quantum wires (QWRs) and quantum wells (QWs). Starting with the well-known axial, radial (coaxial/prismatic) or polytypic quantum wells in GaN/AlN, GaAs/AlAs or wurtzite/zinc-blende systems, respectively, we move to more sophisticated structures by lowering their dimensionality. New recent approaches developed for the self-assembly of GaN quantum wires and InAs or AlGaAs quantum dots on single nanowire templates are reported and discussed. Aberration corrected scanning transmission electron microcopy is presented as a powerful tool to determine the structure and morphology at the atomic scale allowing for the creation of 3D atomic models that can help us to understand the enhanced optical properties of these advanced quantum structures.

  7. Self-Assembly of Graphene Single Crystals with Uniform Size and Orientation: The First 2D Super-Ordered Structure.

    PubMed

    Zeng, Mengqi; Wang, Lingxiang; Liu, Jinxin; Zhang, Tao; Xue, Haifeng; Xiao, Yao; Qin, Zhihui; Fu, Lei

    2016-06-29

    The challenges facing the rapid developments of highly integrated electronics, photonics, and microelectromechanical systems suggest that effective fabrication technologies are urgently needed to produce ordered structures using components with high performance potential. Inspired by the spontaneous organization of molecular units into ordered structures by noncovalent interactions, we succeed for the first time in synthesizing a two-dimensional superordered structure (2DSOS). As demonstrated by graphene, the 2DSOS was prepared via self-assembly of high-quality graphene single crystals under mutual electrostatic force between the adjacent crystals assisted by airflow-induced hydrodynamic forces at the liquid metal surface. The as-obtained 2DSOS exhibits tunable periodicity in the crystal space and outstanding uniformity in size and orientation. Moreover, the intrinsic property of each building block is preserved. With simplicity, scalability, and continuously adjustable feature size, the presented approach may open new territory for the precise assembly of 2D atomic crystals and facilitate its application in structurally derived integrated systems. PMID:27313075

  8. Kohn-Sham Band Structure Benchmark Including Spin-Orbit Coupling for 2D and 3D Solids

    NASA Astrophysics Data System (ADS)

    Huhn, William; Blum, Volker

    2015-03-01

    Accurate electronic band structures serve as a primary indicator of the suitability of a material for a given application, e.g., as electronic or catalytic materials. Computed band structures, however, are subject to a host of approximations, some of which are more obvious (e.g., the treatment of the exchange-correlation of self-energy) and others less obvious (e.g., the treatment of core, semicore, or valence electrons, handling of relativistic effects, or the accuracy of the underlying basis set used). We here provide a set of accurate Kohn-Sham band structure benchmarks, using the numeric atom-centered all-electron electronic structure code FHI-aims combined with the ``traditional'' PBE functional and the hybrid HSE functional, to calculate core, valence, and low-lying conduction bands of a set of 2D and 3D materials. Benchmarks are provided with and without effects of spin-orbit coupling, using quasi-degenerate perturbation theory to predict spin-orbit splittings. This work is funded by Fritz-Haber-Institut der Max-Planck-Gesellschaft.

  9. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box.

    PubMed

    Ciompi, Francesco; de Hoop, Bartjan; van Riel, Sarah J; Chung, Kaman; Scholten, Ernst Th; Oudkerk, Matthijs; de Jong, Pim A; Prokop, Mathias; van Ginneken, Bram

    2015-12-01

    In this paper, we tackle the problem of automatic classification of pulmonary peri-fissural nodules (PFNs). The classification problem is formulated as a machine learning approach, where detected nodule candidates are classified as PFNs or non-PFNs. Supervised learning is used, where a classifier is trained to label the detected nodule. The classification of the nodule in 3D is formulated as an ensemble of classifiers trained to recognize PFNs based on 2D views of the nodule. In order to describe nodule morphology in 2D views, we use the output of a pre-trained convolutional neural network known as OverFeat. We compare our approach with a recently presented descriptor of pulmonary nodule morphology, namely Bag of Frequencies, and illustrate the advantages offered by the two strategies, achieving performance of AUC = 0.868, which is close to the one of human experts. PMID:26458112

  10. Self-Consistent Interpretation of the 2D Structure of the Liquid Au82Si18 Surface: Bending Rigidity and the Debye-Waller Effect

    NASA Astrophysics Data System (ADS)

    Mechler, S.; Pershan, P. S.; Yahel, E.; Stoltz, S. E.; Shpyrko, O. G.; Lin, B.; Meron, M.; Sellner, S.

    2010-10-01

    The structural and mechanical properties of 2D crystalline surface phases that form at the surface of liquid eutectic Au82Si18 are studied using synchrotron x-ray scattering over a large temperature range. In the vicinity of the eutectic temperature the surface consists of a 2D atomic bilayer crystalline phase that transforms into a 2D monolayer crystalline phase during heating. The latter phase eventually melts into a liquidlike surface on further heating. We demonstrate that the short wavelength capillary wave fluctuations are suppressed due to the bending rigidity of 2D crystalline phases. The corresponding reduction in the Debye-Waller factor allows for measured reflectivity to be explained in terms of an electron density profile that is consistent with the 2D surface crystals.

  11. Structurally Dynamic Spin Market Networks

    NASA Astrophysics Data System (ADS)

    Horváth, Denis; Kuscsik, Zoltán

    The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.

  12. Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)-organic framework

    NASA Astrophysics Data System (ADS)

    Lee, Li-Wei; Luo, Tzuoo-Tsair; Wang, Chih-Min; Lee, Gene-Hsiang; Peng, Shie-Ming; Liu, Yen-Hsiang; Lee, Sheng-Long; Lu, Kuang-Lieh

    2016-07-01

    A Cd(II)-organic framework {[Cd2(tpim)4(SO4)(H2O)2]·(SO4)·21H2O}n (1) was synthesized by reacting CdSO4·8/3H2O and 2,4,5-tri(4-pyridyl)imidazole (tpim) under hydrothermal conditions. A structural analysis showed that compound 1 adopts a layered structure in which the [Cd(tpim)2]n chains are linked by sulfate anions. These 2D layers are further packed into a 3D supramolecular framework via π-π interactions. The structure contains two types of SO42- anions, i.e., bridging SO42- and free SO42- anions, the latter of which are included in the large channels of the framework. Compound 1 exhibits interesting anion exchange behavior. In the presence of SCN- anions, both the bridging and free SO42- anions in 1 were completely exchanged by SCN- ligands to form a 1D species [Cd(tpim)2(SCN)2] (1A), in which the SCN- moieties function as a monodentate ligand. On the other hand, when compound 1 was ion exchanged with N3- anions in aqueous solution, the bridging SO42- moieties remained intact, and only the free guest SO42- were replaced by N3- anions. The gas adsorption behavior of the activated compound 1 was also investigated.

  13. Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures.

    PubMed

    Kang, Jun; Li, Jingbo; Li, Shu-Shen; Xia, Jian-Bai; Wang, Lin-Wang

    2013-01-01

    The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will be formed. By analyzing the electronic structures of different stacking configurations, we predict that the valence-band maximum (VBM) state will come from the Γ point due to interlayer electronic coupling. This is confirmed by a direct calculation of a Moiré pattern supercell containing 6630 atoms using the linear scaling three-dimensional fragment method. The VBM state is found to be strongly localized, while the conduction band minimum (CBM) state is only weakly localized, and it comes from the MoS2 layer at the K point. We predict such wave function localization can be a general feature for many two-dimensional (2D) van der Waals heterostructures and can have major impacts on the carrier mobility and other electronic and optical properties. PMID:24079953

  14. Comparison of 2D and 3D Fourier modal methods for modeling subwavelength-structured silicon waveguides

    NASA Astrophysics Data System (ADS)

    Kwiecien, Pavel; Richter, Ivan; Čtyroký, Jiří

    2012-02-01

    Frequency-domain Fourier modal methods have recently evolved into efficient tools for rigorous numerical modeling of a wide class of photonic and plasmonic structures and devices. In this contribution we describe the application of our 2D and 3D in-house tools, namely aperiodic rigorous coupled wave analysis (aRCWA) and bi-directional mode expansion propagation method using harmonic expansion (BEXX), on a recently described novel type of subwavelength grating (SWG) waveguides. They are created by means of periodically interlacing silicon segments with a superstrate material with a lower refractive index. It has been shown recently, both theoretically and experimentally, that for a suitable choice of SWG parameters such as grating period and duty cycle, the structure can support low-loss guided (Bloch) mode. Its effective index, mode profile and dispersion characteristics can thus be tailored to specific needs without the necessity of changing material composition. In our methods, either complex coordinate transformation or uniaxial anisotropic perfectly matched layers have been applied as efficient absorption boundary conditions. In order to reduce the number of expansion terms needed to reach required accuracy, the adaptive spatial resolution technique has been implemented. Structural symmetries of the devices can be fully utilized to this aim, too. Propagation constants of Bloch modes are also compared with those obtained with a full-vector film mode matching (FiMM) mode solver using the very simple effective medium theory (EMT).

  15. Comparison of 2D and 3D Fourier modal methods for modeling subwavelength-structured silicon waveguides

    NASA Astrophysics Data System (ADS)

    Kwiecien, Pavel; Richter, Ivan; Čtyroký, Jiří

    2011-09-01

    Frequency-domain Fourier modal methods have recently evolved into efficient tools for rigorous numerical modeling of a wide class of photonic and plasmonic structures and devices. In this contribution we describe the application of our 2D and 3D in-house tools, namely aperiodic rigorous coupled wave analysis (aRCWA) and bi-directional mode expansion propagation method using harmonic expansion (BEXX), on a recently described novel type of subwavelength grating (SWG) waveguides. They are created by means of periodically interlacing silicon segments with a superstrate material with a lower refractive index. It has been shown recently, both theoretically and experimentally, that for a suitable choice of SWG parameters such as grating period and duty cycle, the structure can support low-loss guided (Bloch) mode. Its effective index, mode profile and dispersion characteristics can thus be tailored to specific needs without the necessity of changing material composition. In our methods, either complex coordinate transformation or uniaxial anisotropic perfectly matched layers have been applied as efficient absorption boundary conditions. In order to reduce the number of expansion terms needed to reach required accuracy, the adaptive spatial resolution technique has been implemented. Structural symmetries of the devices can be fully utilized to this aim, too. Propagation constants of Bloch modes are also compared with those obtained with a full-vector film mode matching (FiMM) mode solver using the very simple effective medium theory (EMT).

  16. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2',3'-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    SciTech Connect

    Liu Guocheng; Chen Yongqiang; Wang Xiuli Chen Baokuan; Lin Hongyan

    2009-03-15

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H{sub 2}O){sub 2}][Cd(Dpq)(1,8-NDC)].2H{sub 2}O (1), [Cd(Dpq)(1,4-NDC)(H{sub 2}O)] (2), and [Cd(Dpq)(2,6-NDC)] (3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H{sub 2}NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H{sub 2}NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H{sub 2}NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and {pi}-{pi} stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer {pi}-{pi} stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature. - Graphical abstract: Three novel Cd(II) compounds have been synthesized under hydrothermal conditions exhibiting a systematic variation of architecture by the employment of three structurally related naphthalene-dicarboxylate ligands.

  17. 3D spin-flop transition in enhanced 2D layered structure single crystalline TlCo2Se2.

    PubMed

    Jin, Z; Xia, Z-C; Wei, M; Yang, J-H; Chen, B; Huang, S; Shang, C; Wu, H; Zhang, X-X; Huang, J-W; Ouyang, Z-W

    2016-10-01

    The enhanced 2D layered structure single crystalline TlCo2Se2 has been successfully fabricated, which exhibits field-induced 3D spin-flop phase transitions. In the case of the magnetic field parallel to the c-axis (B//c), the applied magnetic field induces the evolution of the noncollinear helical magnetic coupling into a ferromagnetic (FM) state with all the magnetization of the Co ion parallel to the c-axis. A striking variation of the field-induced strain within the ab-plane is noticed in the magnetic field region of 20-30 T. In the case of the magnetic field perpendicular to the c-axis (B  ⊥  c), the inter-layer helical antiferromagnetic (AFM) coupling may transform to an initial canted AFM coupling, and then part of it transforms to an intermediate metamagnetic phase with the alignment of two-up-one-down Co magnetic moments and finally to an ultimate FM coupling in higher magnetic fields. The robust noncollinear AFM magnetic coupling is completely destroyed above 30 T. In combination with the measurements of magnetization, magnetoresistance and field-induced strain, a complete magnetic phase diagram of the TlCo2Se2 single crystal has been depicted, demonstrating complex magnetic structures even though the crystal geometry itself gives no indication of the magnetic frustration. PMID:27485370

  18. A 2-D Pore-Network Model of the Drying of Single-Component Liquids in Porous Media

    SciTech Connect

    Yortsos, Yanic C.; Yiotis, A.G.; Stubos, A.K.; Boundovis, A.G.

    2000-01-20

    The drying of liquid-saturated porous media is typically approaching using macroscopic continuum models involving phenomenological coefficients. Insight on these coefficients can be obtained by a more fundamental study at the pore- and pore-network levels. In this report, a model based on pore-network representation of porous media that accounts for various process at the pore-scale is presented. These include mass transfer by advection and diffusion in the gas phase, viscous flow in liquid and gas phases and capillary effects at the gas-liquid menisci in the pore throats.

  19. A statistical model of fracture for a 2D hexagonal mesh: The Cell Network Model of Fracture for the bamboo Guadua angustifolia

    NASA Astrophysics Data System (ADS)

    Villalobos, Gabriel; Linero, Dorian L.; Muñoz, José D.

    2011-01-01

    A 2D, hexagonal in geometry, statistical model of fracture is proposed. The model is based on the drying fracture process of the bamboo Guadua angustifolia. A network of flexible cells are joined by brittle junctures of fixed Young moduli that break at a certain thresholds in tensile force. The system is solved by means of the Finite Element Method (FEM). The distribution of avalanche breakings exhibits a power law with exponent -2.93(9), in agreement with the random fuse model (Bhattacharyya and Chakrabarti, 2006) [1].

  20. Large structure rearrangement of colicin ia channel domain after membrane binding from 2D 13C spin diffusion NMR.

    PubMed

    Luo, Wenbin; Yao, Xiaolan; Hong, Mei

    2005-05-01

    One of the main mechanisms of membrane protein folding is by spontaneous insertion into the lipid bilayer from the aqueous environment. The bacterial toxin, colicin Ia, is one such protein. To shed light on the conformational changes involved in this dramatic transfer from the polar to the hydrophobic milieu, we carried out 2D magic-angle spinning (13)C NMR experiments on the water-soluble and membrane-bound states of the channel-forming domain of colicin Ia. Proton-driven (13)C spin diffusion spectra of selectively (13)C-labeled protein show unequivocal attenuation of cross-peaks after membrane binding. This attenuation can be assigned to distance increases but not reduction of the diffusion coefficient. Analysis of the statistics of the interhelical and intrahelical (13)C-(13)C distances in the soluble protein structure indicates that the observed cross-peak reduction is well correlated with a high percentage of short interhelical contacts in the soluble protein. This suggests that colicin Ia channel domain becomes open and extended upon membrane binding, thus lengthening interhelical distances. In comparison, cross-peaks with similar intensities between the two states are dominated by intrahelical contacts in the soluble state. This suggests that the membrane-bound structure of colicin Ia channel domain may be described as a "molten globule", in which the helical secondary structure is retained while the tertiary structure is unfolded. This study demonstrates that (13)C spin diffusion NMR is a valuable tool for obtaining qualitative long-range distance constraints on membrane protein folding. PMID:15853348

  1. Structure of Mutualistic Complex Networks

    NASA Astrophysics Data System (ADS)

    Hwang, Jun Kyung; Maeng, Seong Eun; Cha, Moon Yong; Lee, Jae Woo

    We consider the structures of six plant-pollinator mutualistic networks. The plants and pollinators are linked by the plant-pollinating relation. We assigned the visiting frequency of pollinators to a plant as a weight of each link. We calculated the cumulative distribution functions of the degree and strength for the networks. We observed a power-law, linear, and stretched exponential dependence of the cumulative distribution function. We also calculated the disparity and the strength of the nodes s(k) with degree k. We observed that the plant-pollinator networks exhibit an disassortative behaviors and nonlinear dependence of the strength on the nodes. In mutualistic networks links with large weight are connected to the neighbors with small degrees.

  2. Structural reducibility of multilayer networks

    NASA Astrophysics Data System (ADS)

    de Domenico, Manlio; Nicosia, Vincenzo; Arenas, Alexandre; Latora, Vito

    2015-04-01

    Many complex systems can be represented as networks consisting of distinct types of interactions, which can be categorized as links belonging to different layers. For example, a good description of the full protein-protein interactome requires, for some organisms, up to seven distinct network layers, accounting for different genetic and physical interactions, each containing thousands of protein-protein relationships. A fundamental open question is then how many layers are indeed necessary to accurately represent the structure of a multilayered complex system. Here we introduce a method based on quantum theory to reduce the number of layers to a minimum while maximizing the distinguishability between the multilayer network and the corresponding aggregated graph. We validate our approach on synthetic benchmarks and we show that the number of informative layers in some real multilayer networks of protein-genetic interactions, social, economical and transportation systems can be reduced by up to 75%.

  3. Crystal structure and characterization of a novel luminescent 2D metal-organic framework, poly[aquaitaconatocalcium(II)] possessing an open framework structure with hydrophobic channels

    NASA Astrophysics Data System (ADS)

    Nair, Remya M.; Sudarsanakumar, M. R.; Suma, S.; Prathapachandra Kurup, M. R.

    2016-02-01

    A novel 2D metal-organic framework poly[aquaitaconatocalcium(II)] with an open framework structure has been successfully grown by single gel diffusion technique. Sodium metasilicate was used for gel preparation. The structure was determined by single crystal X-ray diffraction. The compound crystallizes in monoclinic space group P21/c with hydrophobic 1D channels. The obtained crystals were further characterized by elemental analysis, FT-IR and UV-Visible spectroscopy, powder X-ray diffraction and thermogravimetry. The luminescent property of the complex was also discussed.

  4. Terrace Zone Structure in the Chicxulub Impact Crater Based on 2-D Seismic Reflection Profiles: Preliminary Results From EW#0501

    NASA Astrophysics Data System (ADS)

    McDonald, M. A.; Gulick, S. P.; Gorney, D. L.; Christeson, G. L.; Barton, P. J.; Morgan, J. V.; Warner, M. R.; Urrutia-Fucugauchi, J.; Melosh, H. J.; Vermeesch, P. M.; Surendra, A. T.; Goldin, T.; Mendoza, K.

    2005-05-01

    Terrace zones, central peaks, and flat floors characterize complex craters like the Chicxulub impact crater located near the northeast coast of the Yucatan Peninsula. The subsurface crater structure was studied using seismic reflection surveying in Jan/Feb 2005 by the R/V Maurice Ewing. We present 2-D seismic profiles including constant radius, regional, and grid profiles encompassing the 195 km width of the crater. These diversely oriented lines clearly show the terrace zones and aid in the search for crater ejecta as we investigate the formation of the crater including the incidence angle and direction of the extraterrestrial object that struck the Yucatan Peninsula 65 million years ago (K-T boundary). Terrace zones form in complex craters after the modification stage as a result of the gravitational collapse of overextended sediment back into the crater cavity. The terrace zone is clearly imaged on seismic profiles confirming the complex structure of the Chixculub crater. Recent work on reprocessed 1996 profiles found different sizes and spacing of the terraces and concluded that the variations in radial structure are a result of an oblique impact. A SW-NE profile from this study was the only line to show a concentration of deformation near the crater rim hinting that the northeast was the downrange direction of impact. We confirm this narrowing in terrace spacing using a profile with a similar orientation in the 2005 images. Through integration of the new dense grid of profiles and radial lines from the 1996 and 2005 surveys we map the 3-D variability of the terrace zones to further constrain impact direction and examine the formative processes of the Chixculub and other large impact craters.

  5. 2D double-layer-tube-shaped structure Bi2S3/ZnS heterojunction with enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Wang, Zihang; Fu, Feng; Li, Xiang; Li, Wenhong

    2015-10-01

    Bi2S3/ZnS heterojunction with 2D double-layer-tube-shaped structures was prepared by the facile synthesis method. The corresponding relationship was obtained among loaded content to phase, morphology, and optical absorption property of Bi2S3/ZnS composite. The results shown that Bi2S3 loaded could evidently change the crystallinity of ZnS, enhance the optical absorption ability for visible light of ZnS, and improve the morphologies and microstructure of ZnS. The photocatalytic activities of the Bi2S3/ZnS sample were evaluated for the photodegradation of phenol and desulfurization of thiophene under visible light irradiation. The results showed that Bi2S3 loaded greatly improved the photocatalytic activity of ZnS, and the content of loaded Bi2S3 had an impact on the catalytic activity of ZnS. Moreover, the mechanism of enhanced photocatalytic activity was also investigated by analysis of relative band positions of Bi2S3 and ZnS, and photo-generated hole was main active radicals during photocatalytic oxidation process.

  6. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The

  7. Crystal structures and fluorescence properties of two 2D MnII/CdII trimellitic complexes containing terpyridine

    NASA Astrophysics Data System (ADS)

    Ren, Yixia; Chai, Hongmei; Hou, Xiangyang; Wang, Jijiang; Fu, Feng

    2015-12-01

    Hydrothermal reactions of manganese (II)/cadmium(II) salts with 1,2,4-trimellitic acid (H3tma) and 2,2‧:6‧,2-terpyridine (tpy) result in two novel complexes formulated with [M(Htma)(tpy)]·H2O (M = Mn(1) and Cd(2)). X-ray diffraction structural analyses of two complexes reveal they are isomorphic except for the different center metal ions and crystallize in the monoclinic crystal system of P(2)/n space group. The metal ion lies in a six-coordinated distorted octahedral environment coordinated with three Htma2- anions and one tpy ligand. There is an infinite two-dimensional rhombic network based on the metallic dimmers and Htma2- anions with the tpy ligands in void. Furthermore, the tpy ligands from the adjacent network weakly interact each other by π⋯π packing interactions into 3D supramolecular structure. The fluorescence properties could be assigned to the π - π* transition of organic ligands.

  8. From network structure to network reorganization: implications for adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Schneider-Mizell, Casey M.; Parent, Jack M.; Ben-Jacob, Eshel; Zochowski, Michal R.; Sander, Leonard M.

    2010-12-01

    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells.

  9. Syntheses, crystal structures, and characterization of three 1D, 2D and 3D complexes based on mixed multidentate N- and O-donor ligands

    NASA Astrophysics Data System (ADS)

    Yang, Huai-Xia; Liang, Zhen; Hao, Bao-Lian; Meng, Xiang-Ru

    2014-10-01

    Three new 1D to 3D complexes, namely, {[Ni(btec)(Himb)2(H2O)2]·6H2O}n (1), {[Cd(btec)0.5(imb)(H2O)]·1.5H2O}n (2), and {[Zn(btec)0.5(imb)]·H2O}n (3) (H4btec=1,2,4,5-benzenetetracarboxylic acid, imb=2-(1H-imidazol-1-methyl)-1H-benzimidazole) have been synthesized by adjusting the central metal ions. Single-crystal X-ray diffraction analyses reveal that complex 1 possesses a 1D chain structure which is further extended into the 3D supramolecular architecture via hydrogen bonds. Complex 2 features a 2D network with Schla¨fli symbol (53·62·7)(52·64). Complex 3 presents a 3D framework with a point symbol of (4·64·8)(42·62·82). Moreover, their IR spectra, PXRD patterns, thermogravimetric curves, and luminescent emissions were studied at room temperature.

  10. Automated structure verification based on a combination of 1D (1)H NMR and 2D (1)H - (13)C HSQC spectra.

    PubMed

    Golotvin, Sergey S; Vodopianov, Eugene; Pol, Rostislav; Lefebvre, Brent A; Williams, Antony J; Rutkowske, Randy D; Spitzer, Timothy D

    2007-10-01

    A method for structure validation based on the simultaneous analysis of a 1D (1)H NMR and 2D (1)H - (13)C single-bond correlation spectrum such as HSQC or HMQC is presented here. When compared with the validation of a structure by a 1D (1)H NMR spectrum alone, the advantage of including a 2D HSQC spectrum in structure validation is that it adds not only the information of (13)C shifts, but also which proton shifts they are directly coupled to, and an indication of which methylene protons are diastereotopic. The lack of corresponding peaks in the 2D spectrum that appear in the 1D (1)H spectrum, also gives a clear picture of which protons are attached to heteroatoms. For all these benefits, combined NMR verification was expected and found by all metrics to be superior to validation by 1D (1)H NMR alone. Using multiple real-life data sets of chemical structures and the corresponding 1D and 2D data, it was possible to unambiguously identify at least 90% of the correct structures. As part of this test, challenging incorrect structures, mostly regioisomers, were also matched with each spectrum set. For these incorrect structures, the false positive rate was observed as low as 6%. PMID:17694570

  11. Syntheses, crystal structures, and characterization of three 1D, 2D and 3D complexes based on mixed multidentate N- and O-donor ligands

    SciTech Connect

    Yang, Huai-Xia; Liang, Zhen; Hao, Bao-Lian; Meng, Xiang-Ru

    2014-10-15

    Three new 1D to 3D complexes, namely, ([Ni(btec)(Himb){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O){sub n} (1), ([Cd(btec){sub 0.5}(imb)(H{sub 2}O)]·1.5H{sub 2}O){sub n} (2), and ([Zn(btec){sub 0.5}(imb)]·H{sub 2}O){sub n} (3) (H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, imb=2-(1H-imidazol-1-methyl)-1H-benzimidazole) have been synthesized by adjusting the central metal ions. Single-crystal X-ray diffraction analyses reveal that complex 1 possesses a 1D chain structure which is further extended into the 3D supramolecular architecture via hydrogen bonds. Complex 2 features a 2D network with Schla¨fli symbol (5{sup 3}·6{sup 2}·7)(5{sup 2}·6{sup 4}). Complex 3 presents a 3D framework with a point symbol of (4·6{sup 4}·8)(4{sup 2}·6{sup 2}·8{sup 2}). Moreover, their IR spectra, PXRD patterns, thermogravimetric curves, and luminescent emissions were studied at room temperature. - Graphical abstract: Three new 1D to 3D complexes with different structural and topological motifs have been obtained by modifying the central metal ions. Additionally, their IR, TG analyses and fluorescent properties are also investigated. - Highlights: • Three complexes based on mixed multidentate N- and O-donor ligands. • The complexes are characterized by IR, luminescence and TGA techniques. • Benzenetetracarboxylates display different coordination modes in complexes 1–3. • Changing the metal ions can result in complexes with completely different structures.

  12. Mesh2d

    SciTech Connect

    Greg Flach, Frank Smith

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.

  13. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  14. Watching Silica's Dance: Imaging the Structure and Dynamics of the Atomic (Re-) Arrangements in 2D Glass

    NASA Astrophysics Data System (ADS)

    Muller, David

    2014-03-01

    Even though glasses are almost ubiquitous--in our windows, on our iPhones, even on our faces--they are also mysterious. Because glasses are notoriously difficult to study, basic questions like: ``How are the atoms arranged? Where and how do glasses break?'' are still under contention. We use aberration corrected transmission electron microscopy (TEM) to image the atoms in a new two-dimensional phase of silica glass - freestanding it becomes the world's thinnest pane of glass at only 3-atoms thick, and take a unique look into these questions. Using atom-by-atom imaging and spectroscopy, we are able to reconstruct the full structure and bonding of this 2D glass and identify it as a bi-tetrahedral layer of SiO2. Our images also strikingly resemble Zachariasen's original cartoon models of glasses, drawn in 1932. As such, our work realizes an 80-year-old vision for easily understandable glassy systems and introduces promising methods to test theoretical predictions against experimental data. We image atoms in the disordered solid and track their motions in response to local strain. We directly obtain ring statistics and pair distribution functions that span short-, medium-, and long-range order, and test these against long-standing theoretical predictions of glass structure and dynamics. We use the electron beam to excite atomic rearrangements, producing surprisingly rich and beautiful videos of how a glass bends and breaks, as well as the exchange of atoms at a solid/liquid interface. Detailed analyses of these videos reveal a complex dance of elastic and plastic deformations, phase transitions, and their interplay. These examples illustrate the wide-ranging and fundamental materials physics that can now be studied at atomic-resolution via transmission electron microscopy of two-dimensional glasses. Work in collaboration with: S. Kurasch, U. Kaiser, R. Hovden, Q. Mao, J. Kotakoski, J. S. Alden, A. Shekhawat, A. A. Alemi, J. P. Sethna, P. L. McEuen, A.V. Krasheninnikov

  15. Designing molecular structure to achieve ductile fracture behavior in a stiff and strong 2D polymer, ``graphylene''

    NASA Astrophysics Data System (ADS)

    Sandoz-Rosado, E.; Beaudet, T. D.; Balu, R.; Wetzel, E. D.

    2016-05-01

    As the simplest two-dimensional (2D) polymer, graphene has immensely high intrinsic strength and elastic stiffness but has limited toughness due to brittle fracture. We use atomistic simulations to explore a new class of graphene/polyethylene hybrid 2D polymer, ``graphylene'', that exhibits ductile fracture mechanisms and has a higher fracture toughness and flaw tolerance than graphene. A specific configuration of this 2D polymer hybrid, denoted ``GrE-2'' for the two-carbon-long ethylene chains connecting benzene rings in the inherent framework, is prioritized for study. MD simulations of crack propagation show that the energy release rate to propagate a crack in GrE-2 is twice that of graphene. We also demonstrate that GrE-2 exhibits delocalized failure and other energy-dissipating fracture mechanisms such as crack branching and bridging. These results demonstrate that 2D polymers can be uniquely tailored to achieve a balance of fracture toughness with mechanical stiffness and strength.As the simplest two-dimensional (2D) polymer, graphene has immensely high intrinsic strength and elastic stiffness but has limited toughness due to brittle fracture. We use atomistic simulations to explore a new class of graphene/polyethylene hybrid 2D polymer, ``graphylene'', that exhibits ductile fracture mechanisms and has a higher fracture toughness and flaw tolerance than graphene. A specific configuration of this 2D polymer hybrid, denoted ``GrE-2'' for the two-carbon-long ethylene chains connecting benzene rings in the inherent framework, is prioritized for study. MD simulations of crack propagation show that the energy release rate to propagate a crack in GrE-2 is twice that of graphene. We also demonstrate that GrE-2 exhibits delocalized failure and other energy-dissipating fracture mechanisms such as crack branching and bridging. These results demonstrate that 2D polymers can be uniquely tailored to achieve a balance of fracture toughness with mechanical stiffness and

  16. 2D and 3D soil moisture imaging using a sensor-based platform moving inside a subsurface network of pipes

    NASA Astrophysics Data System (ADS)

    Gravalos, I.; Moshou, D.; Loutridis, S.; Gialamas, Th.; Kateris, D.; Bompolas, E.; Tsiropoulos, Z.; Xyradakis, P.; Fountas, S.

    2013-08-01

    In this study a prototype sensor-based platform moving inside a subsurface network of pipes with the task of monitoring the soil moisture content is presented. It comprises of a mobile platform, a modified commercial soil moisture sensor (Diviner 2000), a network of subsurface polyvinylchloride (PVC) access pipes, driving hardware and image processing software. The software allows the composition of two-dimensional (2D) or three-dimensional (3D) images with high accuracy and at a large scale. The 3D soil moisture images are created by using 2D slices for better illustration of the soil moisture variability. Three case studies of varying soil moisture content using an experimental soil tank were examined. In the first case study, the irrigation water was applied uniformly on the entire tank surface. In second and third case studies, the irrigation water was applied uniformly only on the surface of the intermediate and last part of the soil tank respectively. The processed images give a detailed description of the soil moisture distribution of a layer at 15 cm depth under the soil surface in the tank. In all case studies that have been investigated, the distribution of soil moisture was characterized by a significant variability (difference between poorly and well-drained regions) of the soil tank. A very poorly-drained region was located in the middle of the soil tank, while well-drained soil areas were located southwest and northeast. The knowledge of the spatial and temporal distribution of soil moisture is a valuable tool for proper management of crop irrigation.

  17. Designing molecular structure to achieve ductile fracture behavior in a stiff and strong 2D polymer, "graphylene".

    PubMed

    Sandoz-Rosado, E; Beaudet, T D; Balu, R; Wetzel, E D

    2016-06-01

    As the simplest two-dimensional (2D) polymer, graphene has immensely high intrinsic strength and elastic stiffness but has limited toughness due to brittle fracture. We use atomistic simulations to explore a new class of graphene/polyethylene hybrid 2D polymer, "graphylene", that exhibits ductile fracture mechanisms and has a higher fracture toughness and flaw tolerance than graphene. A specific configuration of this 2D polymer hybrid, denoted "GrE-2" for the two-carbon-long ethylene chains connecting benzene rings in the inherent framework, is prioritized for study. MD simulations of crack propagation show that the energy release rate to propagate a crack in GrE-2 is twice that of graphene. We also demonstrate that GrE-2 exhibits delocalized failure and other energy-dissipating fracture mechanisms such as crack branching and bridging. These results demonstrate that 2D polymers can be uniquely tailored to achieve a balance of fracture toughness with mechanical stiffness and strength. PMID:26996950

  18. Gold-induced nanowires on the Ge(100) surface yield a 2D and not a 1D electronic structure

    NASA Astrophysics Data System (ADS)

    de Jong, N.; Heimbuch, R.; Eliëns, S.; Smit, S.; Frantzeskakis, E.; Caux, J.-S.; Zandvliet, H. J. W.; Golden, M. S.

    2016-06-01

    Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, one-dimensional Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D (one-dimensional) metallic states. In light of this debate, we report here a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. The high-resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k space. Comparison of the E (kx,ky) surface measured using high-resolution ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by approximately factor of two. Additionally, by pinpointing the Au-induced surface states in the first, second, and third surface Brillouin zones and analyzing their periodicity in k||, the nanowire propagation direction seen clearly in STM can be imported into the ARPES data. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (tperp). This proves that the Au-induced electron pockets possess a two-dimensional, closed Fermi surface, and this firmly places the Au/Ge(100) nanowire system outside potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with scanning tunneling spectroscopic measurements of the spatially resolved electronic structure and find that the spatially straight—wirelike—conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are rather more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D (two-dimentional) nature of the Au

  19. Social structure of Facebook networks

    NASA Astrophysics Data System (ADS)

    Traud, Amanda L.; Mucha, Peter J.; Porter, Mason A.

    2012-08-01

    We study the social structure of Facebook “friendship” networks at one hundred American colleges and universities at a single point in time, and we examine the roles of user attributes-gender, class year, major, high school, and residence-at these institutions. We investigate the influence of common attributes at the dyad level in terms of assortativity coefficients and regression models. We then examine larger-scale groupings by detecting communities algorithmically and comparing them to network partitions based on user characteristics. We thereby examine the relative importance of different characteristics at different institutions, finding for example that common high school is more important to the social organization of large institutions and that the importance of common major varies significantly between institutions. Our calculations illustrate how microscopic and macroscopic perspectives give complementary insights on the social organization at universities and suggest future studies to investigate such phenomena further.

  20. Discrimination of adulterated milk based on two-dimensional correlation spectroscopy (2D-COS) combined with kernel orthogonal projection to latent structure (K-OPLS).

    PubMed

    Yang, Renjie; Liu, Rong; Xu, Kexin; Yang, Yanrong

    2013-12-01

    A new method for discrimination analysis of adulterated milk and pure milk is proposed by combining two-dimensional correlation spectroscopy (2D-COS) with kernel orthogonal projection to latent structure (K-OPLS). Three adulteration types of milk with urea, melamine, and glucose were prepared, respectively. The synchronous 2D spectra of adulterated milk and pure milk samples were calculated. Based on the characteristics of 2D correlation spectra of adulterated milk and pure milk, a discriminant model of urea-tainted milk, melamine-tainted milk, glucose-tainted milk, and pure milk was built by K-OPLS. The classification accuracy rates of unknown samples were 85.7, 92.3, 100, and 87.5%, respectively. The results show that this method has great potential in the rapid discrimination analysis of adulterated milk and pure milk. PMID:24359648

  1. Residue-Specific Structural Kinetics of Proteins through the Union of Isotope Labeling, Mid-IR Pulse Shaping, and Coherent 2D IR Spectroscopy

    PubMed Central

    Middleton, Chris T.; Woys, Ann Marie; Mukherjee, Sudipta S.; Zanni, Martin T.

    2010-01-01

    We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for 13C=18O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide form type 2 diabetes. PMID:20472067

  2. Social network structures and bank runs

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; Li, Jiaheng

    2016-05-01

    This paper investigates the impact of social network structures of depositors on bank runs. The analyzed network structures include random networks, small-world networks and scale-free networks. Simulation results show that the probability of bank run occurrence in random networks is larger than that in small-world networks, but the probability of bank run occurrence in scale-free networks drops from the highest to the lowest among the three types of network structures with the increase of the proportion of impatient depositors. The average degree of depositor networks has a significant impact on bank runs, but this impact is related to the proportion of impatient depositors and the confidence levels of depositors in banks.

  3. Structural Equivalence in a Journal Network.

    ERIC Educational Resources Information Center

    Doreian, Patrick; Fararo, Thomas J.

    1985-01-01

    Techniques used in contemporary social network analysis are applied to citation data for a network of journals from three time periods--1970/71, 1975/76, 1980/81. Blocks or positions in journal network based on structural equivalence correspond closely to categorization by aims and objectives. Hypotheses concerning journal networks are advanced.…

  4. Efficient training of convolutional deep belief networks in the frequency domain for application to high-resolution 2D and 3D images.

    PubMed

    Brosch, Tom; Tam, Roger

    2015-01-01

    Deep learning has traditionally been computationally expensive, and advances in training methods have been the prerequisite for improving its efficiency in order to expand its application to a variety of image classification problems. In this letter, we address the problem of efficient training of convolutional deep belief networks by learning the weights in the frequency domain, which eliminates the time-consuming calculation of convolutions. An essential consideration in the design of the algorithm is to minimize the number of transformations to and from frequency space. We have evaluated the running time improvements using two standard benchmark data sets, showing a speed-up of up to 8 times on 2D images and up to 200 times on 3D volumes. Our training algorithm makes training of convolutional deep belief networks on 3D medical images with a resolution of up to 128×128×128 voxels practical, which opens new directions for using deep learning for medical image analysis. PMID:25380341

  5. 2D modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    SciTech Connect

    Faudot, E.; Heuraux, S.; Colas, L.

    2005-09-26

    Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.

  6. Network structure exploration in networks with node attributes

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Wang, Xiaolong; Bu, Junzhao; Tang, Buzhou; Xiang, Xin

    2016-05-01

    Complex networks provide a powerful way to represent complex systems and have been widely studied during the past several years. One of the most important tasks of network analysis is to detect structures (also called structural regularities) embedded in networks by determining group number and group partition. Most of network structure exploration models only consider network links. However, in real world networks, nodes may have attributes that are useful for network structure exploration. In this paper, we propose a novel Bayesian nonparametric (BNP) model to explore structural regularities in networks with node attributes, called Bayesian nonparametric attribute (BNPA) model. This model does not only take full advantage of both links between nodes and node attributes for group partition via shared hidden variables, but also determine group number automatically via the Bayesian nonparametric theory. Experiments conducted on a number of real and synthetic networks show that our BNPA model is able to automatically explore structural regularities in networks with node attributes and is competitive with other state-of-the-art models.

  7. The structure of salt bridges between Arg+ and Glu- in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries

    NASA Astrophysics Data System (ADS)

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R.; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu-) and arginine (Arg+) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu- and Arg+, which provide a sensitive structural probe of Glu-⋯Arg+ salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  8. Global Electricity Trade Network: Structures and Implications.

    PubMed

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S F; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions. PMID:27504825

  9. Global Electricity Trade Network: Structures and Implications

    PubMed Central

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S. F.; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions. PMID:27504825

  10. Isolation and structural and pharmacological characterization of α-elapitoxin-Dpp2d, an amidated three finger toxin from black mamba venom.

    PubMed

    Wang, Ching-I Anderson; Reeks, Timothy; Vetter, Irina; Vergara, Irene; Kovtun, Oleksiy; Lewis, Richard J; Alewood, Paul F; Durek, Thomas

    2014-06-17

    We isolated a novel, atypical long-chain three-finger toxin (TFT), α-elapitoxin-Dpp2d (α-EPTX-Dpp2d), from black mamba (Dendroaspis polylepis polylepis) venom. Proteolytic digestion with trypsin and V8 protease, together with MS/MS de novo sequencing, indicated that the mature toxin has an amidated C-terminal arginine, a posttranslational modification rarely observed for snake TFTs. α-EPTX-Dpp2d was found to potently inhibit α7 neuronal nicotinic acetylcholine receptors (nAChR; IC₅₀, 58 ± 24 nM) and muscle-type nAChR (IC₅₀, 114 ± 37 nM) but did not affect α3β2 and α3β4 nAChR isoforms at 1 μM concentrations. Competitive radioligand binding assays demonstrated that α-EPTX-Dpp2d competes with epibatidine binding to the Lymnea stagnalis acetylcholine-binding protein (Ls-AChBP; IC₅₀, 4.9 ± 2.3 nM). The activity profile and binding data are reminiscent of classical long-chain TFTs with a free carboxyl termini, suggesting that amidation does not significantly affect toxin selectivity. The crystal structure of α-EPTX-Dpp2d was determined at 1.7 Å resolution and displayed a dimeric toxin assembly with each monomer positioned in an antiparallel orientation. The dimeric structure is stabilized by extensive intermolecular hydrogen bonds and electrostatic interactions, which raised the possibility that the toxin may exist as a noncovalent homodimer in solution. However, chemical cross-linking and size-exclusion chromatography coupled with multiangle laser light scattering (MALLS) data indicated that the toxin is predominantly monomeric under physiological conditions. Because of its high potency and selectivity, we expect this toxin to be a valuable pharmacological tool for studying the structure and function of nAChRs. PMID:24867092

  11. Analyzing network reliability using structural motifs

    NASA Astrophysics Data System (ADS)

    Khorramzadeh, Yasamin; Youssef, Mina; Eubank, Stephen; Mowlaei, Shahir

    2015-04-01

    This paper uses the reliability polynomial, introduced by Moore and Shannon in 1956, to analyze the effect of network structure on diffusive dynamics such as the spread of infectious disease. We exhibit a representation for the reliability polynomial in terms of what we call structural motifs that is well suited for reasoning about the effect of a network's structural properties on diffusion across the network. We illustrate by deriving several general results relating graph structure to dynamical phenomena.

  12. The impact of pore structure and surface roughness on capillary trapping for 2-D and 3-D porous media: Comparison with percolation theory

    NASA Astrophysics Data System (ADS)

    Geistlinger, Helmut; Ataei-Dadavi, Iman; Mohammadian, Sadjad; Vogel, Hans-Jörg

    2015-11-01

    We study the impact of pore structure and surface roughness on capillary trapping of nonwetting gas phase during imbibition with water for capillary numbers between 10-7 and 5 × 10-5, within glass beads, natural sands, glass beads monolayers, and 2-D micromodels. The materials exhibit different roughness of the pore-solid interface. We found that glass beads and natural sands, which exhibit nearly the same grain size distribution, pore size distribution, and connectivity, showed a significant difference of the trapped gas phase of about 15%. This difference can be explained by the microstructure of the pore-solid interface. Based on the visualization of the trapping dynamics within glass beads monolayers and 2-D micromodels, we could show that bypass trapping controls the trapping process in glass beads monolayers, while snap-off trapping controls the trapping process in 2-D micromodels. We conclude that these different trapping processes are the reason for the different trapping efficiency, when comparing glass beads packs with natural sand packs. Moreover, for small capillary numbers of 10-6, we found that the cluster size distribution of trapped gas clusters of all 2-D and 3-D porous media can be described by a universal power law behavior predicted from percolation theory. This cannot be expected a priori for 2-D porous media, because bicontinuity of the two bulk phases is violated. Obviously, bicontinuity holds for the thin-film water phase and the bulk gas phase. The snap-off trapping process leads to ordinary bond percolation in front of the advancing bulk water phase and is the reason for the observed universal power law behavior in 2-D micromodels with rough surfaces.

  13. Reduced dimensionality (3,2)D NMR experiments and their automated analysis: implications to high-throughput structural studies on proteins.

    PubMed

    Reddy, Jithender G; Kumar, Dinesh; Hosur, Ramakrishna V

    2015-02-01

    Protein NMR spectroscopy has expanded dramatically over the last decade into a powerful tool for the study of their structure, dynamics, and interactions. The primary requirement for all such investigations is sequence-specific resonance assignment. The demand now is to obtain this information as rapidly as possible and in all types of protein systems, stable/unstable, soluble/insoluble, small/big, structured/unstructured, and so on. In this context, we introduce here two reduced dimensionality experiments – (3,2)D-hNCOcanH and (3,2)D-hNcoCAnH – which enhance the previously described 2D NMR-based assignment methods quite significantly. Both the experiments can be recorded in just about 2-3 h each and hence would be of immense value for high-throughput structural proteomics and drug discovery research. The applicability of the method has been demonstrated using alpha-helical bovine apo calbindin-D9k P43M mutant (75 aa) protein. Automated assignment of this data using AUTOBA has been presented, which enhances the utility of these experiments. The backbone resonance assignments so derived are utilized to estimate secondary structures and the backbone fold using Web-based algorithms. Taken together, we believe that the method and the protocol proposed here can be used for routine high-throughput structural studies of proteins. PMID:25178811

  14. Self-assembly of three new coordination complexes: Formation of 2-D square grid, 1-D chain and tape structures

    NASA Astrophysics Data System (ADS)

    Indrani, Murugan; Ramasubramanian, Ramasamy; Fronczek, Frank R.; Vasanthacharya, N. Y.; Kumaresan, Sudalaiandi

    2009-08-01

    Three distinct coordination complexes, viz., [Co(imi) 2(tmb) 2] ( 1) [where imi = imidazole], {[Ni(tmb) 2(H 2O) 3]·2H 2O} n ( 2) and [Cu 2(μ-tmb) 4(CH 3OH) 2] ( 3), have been synthesized hydrothermally by the reactions of metal acetates, 2,4,6-trimethylbenzoic acid (Htmb) and with or without appropriate amine. The Ni analogue of 1 and the Co analogue of 2 have also been synthesized. X-ray single-crystal diffraction suggests that complex 1 represents discrete mononuclear species and complex 2 represents a 1D chain coordination polymer in which the Ni(II) ions are connected by the bridging water molecules. Complex 3 represents a neutral dinuclear complex. In 1, the central metal ions are associated by the carboxylate moiety and imidazole ligands, whereas the central metal atom is coordinated to the carboxylate moiety and the respective solvent molecules in 2 and 3. In 3, the four 2,4,6-trimethylbenzoate moieties act as a bridge connecting two copper (II) ions and the O atoms of methanol coordinate in an anti arrangement to form a square pyramidal geometry, with the methanol molecule at the apical position. In all the three structures the central metal atom sits on a crystallographic inversion centre. In all the cases, the coordination entities are further organized via hydrogen bonding interactions to generate multifarious supramolecular networks. Complexes 1, 2 and 3 have also been characterized by spectroscopic (UV/Vis and IR) and thermal analysis (TGA). In addition, the complexes were found to exhibit antimicrobial activity.The magnetic susceptibility measurements, measured from 8 to 300 K, revealed antiferromagnetic interactions between the Co(II) ions in compound 1 and the Ni(II) ions in 1a, respectively.

  15. Centrality measures for networks with community structure

    NASA Astrophysics Data System (ADS)

    Gupta, Naveen; Singh, Anurag; Cherifi, Hocine

    2016-06-01

    Understanding the network structure, and finding out the influential nodes is a challenging issue in large networks. Identifying the most influential nodes in a network can be useful in many applications like immunization of nodes in case of epidemic spreading, during intentional attacks on complex networks. A lot of research is being done to devise centrality measures which could efficiently identify the most influential nodes in a network. There are two major approaches to this problem: On one hand, deterministic strategies that exploit knowledge about the overall network topology, while on the other end, random strategies are completely agnostic about the network structure. Centrality measures that can deal with a limited knowledge of the network structure are of prime importance. Indeed, in practice, information about the global structure of the overall network is rarely available or hard to acquire. Even if available, the structure of the network might be too large that it is too much computationally expensive to calculate global centrality measures. To that end, a centrality measure is proposed here that requires information only at the community level. Indeed, most of the real-world networks exhibit a community structure that can be exploited efficiently to discover the influential nodes. We performed a comparative evaluation of prominent global deterministic strategies together with stochastic strategies, an available and the proposed deterministic community-based strategy. Effectiveness of the proposed method is evaluated by performing experiments on synthetic and real-world networks with community structure in the case of immunization of nodes for epidemic control.

  16. Managing Network Partitions in Structured P2P Networks

    NASA Astrophysics Data System (ADS)

    Shafaat, Tallat M.; Ghodsi, Ali; Haridi, Seif

    Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Consequently, the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems. This makes it a crucial requirement for building any structured peer-to-peer systems to be resilient to network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. Structured overlays have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this chapter, we motivate the problem of network partitions and mergers in structured overlays. We discuss how a structured overlay can automatically detect a network partition and merger. We present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter.

  17. revealing H{sub 2}D{sup +} depletion and compact structure in starless and protostellar cores with ALMA

    SciTech Connect

    Friesen, R. K.; Di Francesco, J.; Bourke, T. L.; Caselli, P.; Jørgensen, J. K.; Pineda, J. E.; Wong, M.

    2014-12-10

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H{sub 2}D{sup +} 1{sub 10}-1{sub 11} emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1N. The data reveal small-scale condensations within both cores, with mass upper limits of M ≲ 0.02 M {sub ☉} (∼20 M {sub Jup}). The SM1 condensation is consistent with a nearly symmetric Gaussian source with a width of only 37 AU. The SM1N condensation is elongated and extends 500 AU along its major axis. No evidence for substructure is seen in either source. A Jeans analysis indicates that these sources are unlikely to fragment, suggesting that both will form single stars. H{sub 2}D{sup +} is only detected toward SM1N, offset from the continuum peak by ∼150-200 AU. This offset may be due to either heating from an undetected, young, low-luminosity protostellar source or first hydrostatic core, or HD (and consequently H{sub 2}D{sup +}) depletion in the cold center of the condensation. We propose that SM1 is protostellar and that the condensation detected by ALMA is a warm (T ∼ 30-50 K) accretion disk. The less concentrated emission of the SM1N condensation suggests that it is still starless, but we cannot rule out the presence of a low-luminosity source, perhaps surrounded by a pseudodisk. These data observationally reveal the earliest stages of the formation of circumstellar accretion regions and agree with theoretical predictions that disk formation can occur very early in the star formation process, coeval with or just after the formation of a first hydrostatic core or protostar.

  18. Hamiltonian structure of Dubrovin{close_quote}s equation of associativity in 2-d topological field theory

    SciTech Connect

    Galvao, C.A.; Nutku, Y.

    1996-12-01

    mA third order Monge-Amp{grave e}re type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac{close_quote}s theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra. {copyright} {ital 1996 American Institute of Physics.}

  19. Synthesis and structure of a 2D → 3D framework with coexistence of hydrogen bonds and polythreading character

    SciTech Connect

    Zhang, Ming-Dao Zhuang, Qi-Fan; Xu, Jing; Cao, Hui

    2015-12-15

    The title complex, ([Co(BPPA)(5-OH-bdc)] · (H{sub 2}O)){sub n} was prepared under hydrothermal conditions based on two ligands, namely, bis(4-(pyridin-4-yl)phenyl)amine (BPPA) and 5-hydroxyisophthalic acid (5-OH-H{sub 2}bdc). 5-OH-bdc{sup 2–} anions coordinated to Co atoms to give layers in crystal. BPPA ligands coordinate to Co atoms and thread into the adjacent layers. There are hydrogen bonds between adjacent layers, giving rise to a 2D → 3D framework.

  20. Taxonomies of networks from community structure

    NASA Astrophysics Data System (ADS)

    Onnela, Jukka-Pekka; Fenn, Daniel J.; Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2012-09-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.

  1. Taxonomies of networks from community structure

    PubMed Central

    Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.

    2014-01-01

    The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: they can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi. PMID:23030977

  2. Synthesizing 2D and 3D Selenidostannates in Ionic Liquids: The Synergistic Structure-Directing Effects of Ionic Liquids and Metal-Amine Complexes.

    PubMed

    Du, Cheng-Feng; Shen, Nan-Nan; Li, Jian-Rong; Hao, Min-Ting; Wang, Zi; Huang, Xiao-Ying

    2016-05-20

    Presented are the ionothermal syntheses, characterizations, and properties of a series of two- and three-dimensional selenidostannate compounds synergistically directed by metal-amine complex (MAC) cations and ionic liquids (ILs) of [Bmmim]Cl (Bmmim=1-butyl-2,3-dimethylimidazolium). Four selenidostannates, namely, 2D-(Bmmim)3 [Ni(en)3 ]2 [Sn9 Se21 ]Cl (1, en=ethylenediamine), 2D-(Bmmim)8 [Ni2 (teta)2 (μ-teta)]Sn18 Se42 (2, teta=triethylenetetramine), 2D-(Bmmim)4 [Ni(tepa)Cl]2 [Ni(tepa)Sn12 Se28 ] (3, tepa=tetraethylenepentamine), and 3D-(Bmmim)2 [Ni(1,2-pda)3 ]Sn8 Se18 (4, 1,2-pda=1,2-diaminopropane), were obtained. Single-crystal X-ray diffraction analyses revealed that compounds 1 and 2 possess a lamellar anionic [Sn3 Se7 ]n (2n-) structure comprising distinct eight-membered ring units, whereas 3 features a MAC-decorated anionic [Ni(tepa)Sn12 Se28 ]n (6n-) layered structure. In contrast to 1-3, compound 4 exhibits a 3D open framework of anionic [Sn4 Se9 ]n (2n-) . The structural variation from 1 to 4 clearly indicates that on the basis of the synergistic structure-directing ability of the MACs and ILs, variation of the organic polyamine ligand has a significant impact on the formation of selenidostannates. PMID:27037731

  3. Robustness and structure of complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai

    This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks

  4. Efficient Decoding of 2D Structured Illumination with Linear Phase Stepping in X-Ray Phase Contrast and Dark-Field Imaging

    PubMed Central

    Harmon, Katherine J.; Bennett, Eric E.; Gomella, Andrew A.; Wen, Han

    2014-01-01

    The ability to map the phase distribution and lateral coherence of an x-ray wavefront offers the potential for imaging the human body through phase contrast, without the need to deposit significant radiation energy. The classic means to achieve this goal is structured illumination, in which a periodic intensity modulation is introduced into the image, and changes in the phase distribution of the wavefront are detected as distortions of the modulation pattern. Two-dimensional periodic patterns are needed to fully characterize a transverse wavefront. Traditionally, the information in a 2D pattern is retrieved at high resolution by acquiring multiple images while shifting the pattern over a 2D matrix of positions. Here we describe a method to decode 2D periodic patterns with single-axis phase stepping, without either a loss of information or increasing the number of sampling steps. The method is created to reduce the instrumentation complexity of high-resolution 2D wavefront sensing in general. It is demonstrated with motionless electromagnetic phase stepping and a flexible processing algorithm in x-ray dark-field and phase contrast imaging. PMID:24489853

  5. Efficient decoding of 2D structured illumination with linear phase stepping in X-ray phase contrast and dark-field imaging.

    PubMed

    Harmon, Katherine J; Bennett, Eric E; Gomella, Andrew A; Wen, Han

    2014-01-01

    The ability to map the phase distribution and lateral coherence of an x-ray wavefront offers the potential for imaging the human body through phase contrast, without the need to deposit significant radiation energy. The classic means to achieve this goal is structured illumination, in which a periodic intensity modulation is introduced into the image, and changes in the phase distribution of the wavefront are detected as distortions of the modulation pattern. Two-dimensional periodic patterns are needed to fully characterize a transverse wavefront. Traditionally, the information in a 2D pattern is retrieved at high resolution by acquiring multiple images while shifting the pattern over a 2D matrix of positions. Here we describe a method to decode 2D periodic patterns with single-axis phase stepping, without either a loss of information or increasing the number of sampling steps. The method is created to reduce the instrumentation complexity of high-resolution 2D wavefront sensing in general. It is demonstrated with motionless electromagnetic phase stepping and a flexible processing algorithm in x-ray dark-field and phase contrast imaging. PMID:24489853

  6. Unraveling the dynamics and structure of functionalized self-assembled monolayers on gold using 2D IR spectroscopy and MD simulations.

    PubMed

    Yan, Chang; Yuan, Rongfeng; Pfalzgraff, William C; Nishida, Jun; Wang, Lu; Markland, Thomas E; Fayer, Michael D

    2016-05-01

    Functionalized self-assembled monolayers (SAMs) are the focus of ongoing investigations because they can be chemically tuned to control their structure and dynamics for a wide variety of applications, including electrochemistry, catalysis, and as models of biological interfaces. Here we combine reflection 2D infrared vibrational echo spectroscopy (R-2D IR) and molecular dynamics simulations to determine the relationship between the structures of functionalized alkanethiol SAMs on gold surfaces and their underlying molecular motions on timescales of tens to hundreds of picoseconds. We find that at higher head group density, the monolayers have more disorder in the alkyl chain packing and faster dynamics. The dynamics of alkanethiol SAMs on gold are much slower than the dynamics of alkylsiloxane SAMs on silica. Using the simulations, we assess how the different molecular motions of the alkyl chain monolayers give rise to the dynamics observed in the experiments. PMID:27044113

  7. Structure and inference in annotated networks

    NASA Astrophysics Data System (ADS)

    Newman, M. E. J.; Clauset, Aaron

    2016-06-01

    For many networks of scientific interest we know both the connections of the network and information about the network nodes, such as the age or gender of individuals in a social network. Here we demonstrate how this `metadata' can be used to improve our understanding of network structure. We focus in particular on the problem of community detection in networks and develop a mathematically principled approach that combines a network and its metadata to detect communities more accurately than can be done with either alone. Crucially, the method does not assume that the metadata are correlated with the communities we are trying to find. Instead, the method learns whether a correlation exists and correctly uses or ignores the metadata depending on whether they contain useful information. We demonstrate our method on synthetic networks with known structure and on real-world networks, large and small, drawn from social, biological and technological domains.

  8. Structure and inference in annotated networks.

    PubMed

    Newman, M E J; Clauset, Aaron

    2016-01-01

    For many networks of scientific interest we know both the connections of the network and information about the network nodes, such as the age or gender of individuals in a social network. Here we demonstrate how this 'metadata' can be used to improve our understanding of network structure. We focus in particular on the problem of community detection in networks and develop a mathematically principled approach that combines a network and its metadata to detect communities more accurately than can be done with either alone. Crucially, the method does not assume that the metadata are correlated with the communities we are trying to find. Instead, the method learns whether a correlation exists and correctly uses or ignores the metadata depending on whether they contain useful information. We demonstrate our method on synthetic networks with known structure and on real-world networks, large and small, drawn from social, biological and technological domains. PMID:27306566

  9. Structure and inference in annotated networks

    PubMed Central

    Newman, M. E. J.; Clauset, Aaron

    2016-01-01

    For many networks of scientific interest we know both the connections of the network and information about the network nodes, such as the age or gender of individuals in a social network. Here we demonstrate how this ‘metadata' can be used to improve our understanding of network structure. We focus in particular on the problem of community detection in networks and develop a mathematically principled approach that combines a network and its metadata to detect communities more accurately than can be done with either alone. Crucially, the method does not assume that the metadata are correlated with the communities we are trying to find. Instead, the method learns whether a correlation exists and correctly uses or ignores the metadata depending on whether they contain useful information. We demonstrate our method on synthetic networks with known structure and on real-world networks, large and small, drawn from social, biological and technological domains. PMID:27306566

  10. Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation.

    PubMed

    van Winden, Wouter A; van Gulik, Walter M; Schipper, Dick; Verheijen, Peter J T; Krabben, Preben; Vinke, Jacobus L; Heijnen, Joseph J

    2003-07-01

    At present two alternative methods are available for analyzing the fluxes in a metabolic network: (1) combining measurements of net conversion rates with a set of metabolite balances including the cofactor balances, or (2) leaving out the cofactor balances and fitting the resulting free fluxes to measured (13)C-labeling data. In this study these two approaches are applied to the fluxes in the glycolysis and pentose phosphate pathway of Penicillium chrysogenum growing on either ammonia or nitrate as the nitrogen source, which is expected to give different pentose phosphate pathway fluxes. The presented flux analyses are based on extensive sets of 2D [(13)C, (1)H] COSY data. A new concept is applied for simulation of this type of (13)C-labeling data: cumulative bondomer modeling. The outcomes of the (13)C-labeling based flux analysis substantially differ from those of the pure metabolite balancing approach. The fluxes that are determined using (13)C-labeling data are shown to be highly dependent on the chosen metabolic network. Extending the traditional nonoxidative pentose phosphate pathway with additional transketolase and transaldolase reactions, extending the glycolysis with a fructose 6-phosphate aldolase/dihydroxyacetone kinase reaction sequence or adding a phosphoenolpyruvate carboxykinase reaction to the model considerably improves the fit of the measured and the simulated NMR data. The results obtained using the extended version of the nonoxidative pentose phosphate pathway model show that the transketolase and transaldolase reactions need not be assumed reversible to get a good fit of the (13)C-labeling data. Strict statistical testing of the outcomes of (13)C-labeling based flux analysis using realistic measurement errors is demonstrated to be of prime importance for verifying the assumed metabolic model. PMID:12740935

  11. Genetic Network Inference Using Hierarchical Structure.

    PubMed

    Kimura, Shuhei; Tokuhisa, Masato; Okada-Hatakeyama, Mariko

    2016-01-01

    Many methods for inferring genetic networks have been proposed, but the regulations they infer often include false-positives. Several researchers have attempted to reduce these erroneous regulations by proposing the use of a priori knowledge about the properties of genetic networks such as their sparseness, scale-free structure, and so on. This study focuses on another piece of a priori knowledge, namely, that biochemical networks exhibit hierarchical structures. Based on this idea, we propose an inference approach that uses the hierarchical structure in a target genetic network. To obtain a reasonable hierarchical structure, the first step of the proposed approach is to infer multiple genetic networks from the observed gene expression data. We take this step using an existing method that combines a genetic network inference method with a bootstrap method. The next step is to extract a hierarchical structure from the inferred networks that is consistent with most of the networks. Third, we use the hierarchical structure obtained to assign confidence values to all candidate regulations. Numerical experiments are also performed to demonstrate the effectiveness of using the hierarchical structure in the genetic network inference. The improvement accomplished by the use of the hierarchical structure is small. However, the hierarchical structure could be used to improve the performances of many existing inference methods. PMID:26941653

  12. Exploring the hierarchical structure in road network

    NASA Astrophysics Data System (ADS)

    He, Jing; Zhang, Hong; Lan, Tian; Cao, Weiwei; Wu, Xun

    2015-12-01

    Hierarchical structure of road network has received intensive attention either in urban planning or multi-scale representation. On the one hand, high-efficiency traffic flow counts on a reasonable hierarchical structure. On the other hand, it is a guide-line for cartographic generalization of road network. The paper attempts to investigate the hierarchical structure of a road network from two perspectives, a) the ht-index in terms of the degree connectivity, which was proposed to quantify the scaling and hierarchical structure of the network, b) the renormalization process, originated from complex network analysis, which is able to uncover the self-similarity of a network and reveal its hierarchical structure. We argue that the first point exhibits a big picture of the whole network, revealing the depth of the hierarchy, while the second point further illustrates how the nodes are organized to form a hierarchical structure at different scales. The hierarchical structures of 6 road networks in reality are examined accordingly. Results show that both indices are able to reveal the complexity of the hierarchy of a network. These conclusions can be beneficial to the road network generalization.

  13. Structure of triadic relations in multiplex networks

    NASA Astrophysics Data System (ADS)

    Cozzo, Emanuele; Kivelä, Mikko; De Domenico, Manlio; Solé-Ribalta, Albert; Arenas, Alex; Gómez, Sergio; Porter, Mason A.; Moreno, Yamir

    2015-07-01

    Recent advances in the study of networked systems have highlighted that our interconnected world is composed of networks that are coupled to each other through different ‘layers’ that each represent one of many possible subsystems or types of interactions. Nevertheless, it is traditional to aggregate multilayer networks into a single weighted network in order to take advantage of existing tools. This is admittedly convenient, but it is also extremely problematic, as important information can be lost as a result. It is therefore important to develop multilayer generalizations of network concepts. In this paper, we analyze triadic relations and generalize the idea of transitivity to multiplex networks. By focusing on triadic relations, which yield the simplest type of transitivity, we generalize the concept and computation of clustering coefficients to multiplex networks. We show how the layered structure of such networks introduces a new degree of freedom that has a fundamental effect on transitivity. We compute multiplex clustering coefficients for several real multiplex networks and illustrate why one must take great care when generalizing standard network concepts to multiplex networks. We also derive analytical expressions for our clustering coefficients for ensemble averages of networks in a family of random multiplex networks. Our analysis illustrates that social networks have a strong tendency to promote redundancy by closing triads at every layer and that they thereby have a different type of multiplex transitivity from transportation networks, which do not exhibit such a tendency. These insights are invisible if one only studies aggregated networks.

  14. Consensus between Pipelines in Structural Brain Networks

    PubMed Central

    Parker, Christopher S.; Deligianni, Fani; Cardoso, M. Jorge; Daga, Pankaj; Modat, Marc; Dayan, Michael; Clark, Chris A.

    2014-01-01

    Structural brain networks may be reconstructed from diffusion MRI tractography data and have great potential to further our understanding of the topological organisation of brain structure in health and disease. Network reconstruction is complex and involves a series of processesing methods including anatomical parcellation, registration, fiber orientation estimation and whole-brain fiber tractography. Methodological choices at each stage can affect the anatomical accuracy and graph theoretical properties of the reconstructed networks, meaning applying different combinations in a network reconstruction pipeline may produce substantially different networks. Furthermore, the choice of which connections are considered important is unclear. In this study, we assessed the similarity between structural networks obtained using two independent state-of-the-art reconstruction pipelines. We aimed to quantify network similarity and identify the core connections emerging most robustly in both pipelines. Similarity of network connections was compared between pipelines employing different atlases by merging parcels to a common and equivalent node scale. We found a high agreement between the networks across a range of fiber density thresholds. In addition, we identified a robust core of highly connected regions coinciding with a peak in similarity across network density thresholds, and replicated these results with atlases at different node scales. The binary network properties of these core connections were similar between pipelines but showed some differences in atlases across node scales. This study demonstrates the utility of applying multiple structural network reconstrution pipelines to diffusion data in order to identify the most important connections for further study. PMID:25356977

  15. Minimum structural controllability problems of complex networks

    NASA Astrophysics Data System (ADS)

    Yin, Hongli; Zhang, Siying

    2016-02-01

    Controllability of complex networks has been one of the attractive research areas for both network and control community, and has yielded many promising and significant results in minimum inputs and minimum driver vertices. However, few studies have been devoted to studying the minimum controlled vertex set through which control over the network with arbitrary structure can be achieved. In this paper, we prove that the minimum driver vertices driven by different inputs are not sufficient to ensure the full control of the network when the associated graph contains the inaccessible strongly connected component which has perfect matching and propose an algorithm to identify a minimum controlled vertex set for network with arbitrary structure using convenient graph and mathematical tools. And the simulation results show that the controllability of network is correlated to the number of inaccessible strongly connected components which have perfect matching and these results promote us to better understand the relationship between the network's structural characteristics and its control.

  16. Exploring the structural regularities in networks

    NASA Astrophysics Data System (ADS)

    Shen, Hua-Wei; Cheng, Xue-Qi; Guo, Jia-Feng

    2011-11-01

    In this paper, we consider the problem of exploring structural regularities of networks by dividing the nodes of a network into groups such that the members of each group have similar patterns of connections to other groups. Specifically, we propose a general statistical model to describe network structure. In this model, a group is viewed as a hidden or unobserved quantity and it is learned by fitting the observed network data using the expectation-maximization algorithm. Compared with existing models, the most prominent strength of our model is the high flexibility. This strength enables it to possess the advantages of existing models and to overcome their shortcomings in a unified way. As a result, not only can broad types of structure be detected without prior knowledge of the type of intrinsic regularities existing in the target network, but also the type of identified structure can be directly learned from the network. Moreover, by differentiating outgoing edges from incoming edges, our model can detect several types of structural regularities beyond competing models. Tests on a number of real world and artificial networks demonstrate that our model outperforms the state-of-the-art model in shedding light on the structural regularities of networks, including the overlapping community structure, multipartite structure, and several other types of structure, which are beyond the capability of existing models.

  17. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Popescu, Maria-Cristina; Froidevaux, Julien; Navi, Parviz; Popescu, Carmen-Mihaela

    2013-02-01

    It is known that heat treatment of wood combined with a low percent of relative humidity causes transformations in the chemical composition of it. The modifications and/or degradation of wood components occur by hydrolysis, oxidation, and decarboxylation reactions. The aim of this study was to give better insights on wood chemical modifications during wood heat treatment under low temperature at about 140 °C and 10% percentage of relative humidity, by infrared, principal component analysis and two dimensional infrared correlation spectroscopy. For this purpose, hardwood samples of lime (Tilia cordata) were investigated and analysed. The infrared spectra of treated samples were compared with the reference ones, the most important differences being observed in the "fingerprint" region. Due to the complexity of this region, which have contributions from all the wood constituents the chemical changes during hydro-thermal treatment were examined in detail using principal component analysis and 2D IR correlation spectroscopy. By hydro-thermal treatment of wood results the formation of acetic acid, which catalyse the hydrolysis reactions of hemicelluloses and amorphous cellulose. The cleavage of the β-O-4 linkages and splitting of the aliphatic methoxyl chains from the aromatic lignin ring was also observed. For the first treatment interval, a higher extent of carbohydrates degradation was observed, then an increase of the extent of the lignin degradation also took place.

  18. Structural and magnetic properties of quasi-1 and 2D pyrazine-containing spin-1/2 antiferromagnets.

    SciTech Connect

    Manson, J. L.; Connor, M. M.; Schlueter, J. A.; Hyzer, K. A.; Kykeem, A.; Materials Science Division; Eastern Washington Univ.

    2007-06-01

    Aqueous reaction of Cu(BF{sub 4}){sub 2}, NH{sub 4}HF{sub 2}, and pyrazine leads to formation of a novel 3D framework, [Cu(HF{sub 2})(pyz){sub 2}]BF{sub 4} (1), where 2D [Cu(pyz){sub 2}]{sup 2+} square layers are connected via HF{sub 2}{sup -}. A second compound, Cu(ReO{sub 4}){sub 2}(H{sub 2}O){sub 2}(pyz) (2), was the result of our attempt to create the perrhenate analog of 1; a linear chain compound consisting of CuO{sub 4}N{sub 2} octahedra linked through pyrazine ligands formed instead. Both compounds exhibit extensive hydrogen bonding interactions where bifluoride, F...H...F{sup -}, and O-H...O link layers and chains together in 1 and 2, respectively. Broad maxima indicative of short-range magnetic ordering (SRO) were observed in the magnetic susceptibility at 5.5 (1) and 7.7 K (2) while no evidence for the transition to long-range magnetic ordering (LRO) was detected above 2 K.

  19. Network structure of inter-industry flows

    NASA Astrophysics Data System (ADS)

    McNerney, James; Fath, Brian D.; Silverberg, Gerald

    2013-12-01

    We study the structure of inter-industry relationships using networks of money flows between industries in 45 national economies. We find these networks vary around a typical structure characterized by a Weibull link weight distribution, exponential industry size distribution, and a common community structure. The community structure is hierarchical, with the top level of the hierarchy comprising five industry communities: food industries, chemical industries, manufacturing industries, service industries, and extraction industries.

  20. Optimized Null Model for Protein Structure Networks

    PubMed Central

    Lappe, Michael; Pržulj, Nataša

    2009-01-01

    Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs) as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model for RIGs, by

  1. Origin and Structure of Dynamic Cooperative Networks

    PubMed Central

    Wardil, Lucas; Hauert, Christoph

    2014-01-01

    Societies are built on social interactions among individuals. Cooperation represents the simplest form of a social interaction: one individual provides a benefit to another one at a cost to itself. Social networks represent a dynamical abstraction of social interactions in a society. The behaviour of an individual towards others and of others towards the individual shape the individual's neighbourhood and hence the local structure of the social network. Here we propose a simple theoretical framework to model dynamic social networks by focussing on each individual's actions instead of interactions between individuals. This eliminates the traditional dichotomy between the strategy of individuals and the structure of the population and easily complements empirical studies. As a consequence, altruists, egoists and fair types are naturally determined by the local social structures, while globally egalitarian networks or stratified structures arise. Cooperative interactions drive the emergence and shape the structure of social networks. PMID:25030202

  2. Origin and Structure of Dynamic Cooperative Networks

    NASA Astrophysics Data System (ADS)

    Wardil, Lucas; Hauert, Christoph

    2014-07-01

    Societies are built on social interactions among individuals. Cooperation represents the simplest form of a social interaction: one individual provides a benefit to another one at a cost to itself. Social networks represent a dynamical abstraction of social interactions in a society. The behaviour of an individual towards others and of others towards the individual shape the individual's neighbourhood and hence the local structure of the social network. Here we propose a simple theoretical framework to model dynamic social networks by focussing on each individual's actions instead of interactions between individuals. This eliminates the traditional dichotomy between the strategy of individuals and the structure of the population and easily complements empirical studies. As a consequence, altruists, egoists and fair types are naturally determined by the local social structures, while globally egalitarian networks or stratified structures arise. Cooperative interactions drive the emergence and shape the structure of social networks.

  3. Structure-Activity Relationships and Pharmacophore Model of a Non-Competitive Pyrazoline Containing Class of GluN2C/GluN2D Selective Antagonists

    PubMed Central

    Acker, Timothy M.; Khatri, Alpa; Vance, Katie M.; Slabber, Cathryn; Bacsa, John; Snyder, James P.; Traynelis, Stephen F.; Liotta, Dennis C.

    2013-01-01

    Here we describe the synthesis and structure-activity relationship for a class of pyrazoline-containing dihydroquinolone negative allosteric modulators of the NMDA receptor that show strong subunit-selectivity for GluN2C- and GluN2D-containing receptors over GluN2A-and GluN2B-containing receptors. Several members of this class inhibit NMDA receptor responses in the nanomolar range, and are more than 50-fold selective over GluN1/GluN2A and GluN1/GluN2B NMDA receptors, as well as AMPA, kainate, GABA, glycine, nicotinic, serotonin, and purinergic receptors. Analysis of the purified enantiomers of one of the more potent and selective compounds shows that the S-enantiomer is both more potent and more selective than the R-enantiomer. The S-enantiomer had an IC50 value of 0.17–0.22 µM at GluN2D- and GluN2C-containing receptors, respectively, and showed over 70-fold selectivity over other NMDA receptor subunits. The subunit-selectivity of this class of compounds should be useful in defining the role of GluN2C- and GluN2D-containing receptors in specific brain circuits in both physiological and patho-physiological conditions. PMID:23909910

  4. Thermal Solitons in 1d and 2d Anharmonic Lattices - Solectrons and the Organization of Non-Linear Fluctuations in Long-Living Dynamical Structures

    NASA Astrophysics Data System (ADS)

    Velarde, M. G.; Ebeling, W.; Chetverikov, A. P.

    2013-01-01

    We study the thermal excitation of intrinsic localized modes in the form of solitons in 1d and 2d anharmonic lattices at moderately high temperatures. Such finite-amplitude fluctuations form long-living dynamical structures with life-time in the pico-second range thus surviving a relatively long time in comparison to other thermal fluctuations. Further we discuss the influence of such long-living fluctuations on the dynamics of added excess free electrons. The atomic lattice units are treated as quasi-classical objects interacting by Morse forces and stochastically moving according to Langevin equations. In 2d the atoms are initially organized in a triangular lattice. The electron distributions are in a first estimate represented by equilibrium adiabatic distributions in the actual polarization fields. Computer simulations show that in 2d systems such excitations are moving with supersonic velocities along lattice rows oriented with the cristallographic axes. By following the electron distributions we have also been able to study the excitations of solectron type (electron-soliton dynamic bound states) and estimate their life times.

  5. Cross-linked structure of network evolution

    NASA Astrophysics Data System (ADS)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Porter, Mason A.; Mucha, Peter J.; Grafton, Scott T.

    2014-03-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  6. Cross-linked structure of network evolution

    SciTech Connect

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  7. Temporal network structures controlling disease spreading.

    PubMed

    Holme, Petter

    2016-08-01

    We investigate disease spreading on eight empirical data sets of human contacts (mostly proximity networks recording who is close to whom, at what time). We compare three levels of representations of these data sets: temporal networks, static networks, and a fully connected topology. We notice that the difference between the static and fully connected networks-with respect to time to extinction and average outbreak size-is smaller than between the temporal and static topologies. This suggests that, for these data sets, temporal structures influence disease spreading more than static-network structures. To explain the details in the differences between the representations, we use 32 network measures. This study concurs that long-time temporal structures, like the turnover of nodes and links, are the most important for the spreading dynamics. PMID:27627315

  8. Network Structure and Travel Time Perception

    PubMed Central

    Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig

    2013-01-01

    The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time. PMID:24204932

  9. Modularity and community structure in networks.

    PubMed

    Newman, M E J

    2006-06-01

    Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as "modularity" over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets. PMID:16723398

  10. Band structure of a 2D photonic crystal based on ferrofluids of Co(1-x)Znx Fe2O4 nanoparticles under perpendicular applied magnetic field

    NASA Astrophysics Data System (ADS)

    Lopez, Javier; Gonzalez, Luz Esther; Quinonez, Mario; Porras, Nelson; Zambrano, Gustavo; Gomez, Maria Elena

    2014-03-01

    Using a ferrfluid of cobalt-zinc ferrite nanoparticles Co(1 - x)ZnxFe2O4 coated with oleic acid and suspended in ethanol, we have fabricated a 2D photonic crystal (PC) by the application of an external magnetic field perpendicular to the plane of the ferrofluid. The 2D PC is made by rods of nanoparticles organized in a hexagonal structure. By means of the plane-wave expansion method, we study its photonic band structure (PBS) which depends on the effective permittivity and on the area ratio of the liquid phase. Additionaly, taking into account the Maxwell-Garnett theory we calculated the effective permittivity of the rods. We have found that the effective refractive index of the ferrofluid increases with its magnetization. Using these results we calculate the band structure of the photonic crystal at different applied magnetic fields, finding that the increase of the applied magnetic field shifts the band structure to lower frequencies with the appearance of more band gaps. Departamento de Física, Universidad del Valle, A.A. 25360, Cali, Colombia

  11. Self-assembly of 2D sandwich-structured MnFe{sub 2}O{sub 4}/graphene composites for high-performance lithium storage

    SciTech Connect

    Li, Songmei Wang, Bo; Li, Bin; Liu, Jianhua; Yu, Mei; Wu, Xiaoyu

    2015-01-15

    Highlights: • MFO/GN composites were synthesized by a facile in situ solvothermal approach. • The MFO microspheres are sandwiched between the graphene layers. • Each MFO microsphere is an interstitial cluster of nanoparticles. • The MFO/GN electrode exhibits an enhanced cyclability for Li-ion batteries anodes. - Abstract: In this study, two-dimensional (2D) sandwich-structured MnFe{sub 2}O{sub 4}/graphene (MFO/GN) composites are synthesized by a facile in situ solvothermal approach, using cetyltrimethylammonium bromide (CTAB) as cationic surfactant. As a consequence, the nanocomposites of MFO/GN self-assembled into a 2D sandwich structure, in which the interstitial cluster structure of microsphere-type MnFe{sub 2}O{sub 4} is sandwiched between the graphene layers. This special structure of the MFO/GN composites used as anodes for lithium-ion batteries will be favorable for the maximum accessible surface of electroactive materials, fast diffusion of lithium ions and migration of electron, and elastomeric space to accommodate volume changes during the discharge–charge processes. The as-synthesized MFO/GN composites deliver a high specific reversible capacity of 987.95 mA h g{sup −1} at a current density of 200 mA g{sup −1}, a good capacity retention of 69.27% after 80 cycles and excellent rate performance for lithium storage.

  12. Communication Structure of Cortical Networks

    PubMed Central

    da Fontoura Costa, Luciano; Batista, João Luiz B.; Ascoli, Giorgio A.

    2011-01-01

    Large-scale cortical networks exhibit characteristic topological properties that shape communication between brain regions and global cortical dynamics. Analysis of complex networks allows the description of connectedness, distance, clustering, and centrality that reveal different aspects of how the network's nodes communicate. Here, we focus on a novel analysis of complex walks in a series of mammalian cortical networks that model potential dynamics of information flow between individual brain regions. We introduce two new measures called absorption and driftness. Absorption is the average length of random walks between any two nodes, and takes into account all paths that may diffuse activity throughout the network. Driftness is the ratio between absorption and the corresponding shortest path length. For a given node of the network, we also define four related measurements, namely in- and out-absorption as well as in- and out-driftness, as the averages of the corresponding measures from all nodes to that node, and from that node to all nodes, respectively. We find that the cat thalamo-cortical system incorporates features of two classic network topologies, Erdös–Rényi graphs with respect to in-absorption and in-driftness, and configuration models with respect to out-absorption and out-driftness. Moreover, taken together these four measures separate the network nodes based on broad functional roles (visual, auditory, somatomotor, and frontolimbic). PMID:21427794

  13. Assembly of 1D, 2D and 3D lanthanum(iii) coordination polymers with perchlorinated benzenedicarboxylates: positional isomeric effect, structural transformation and ring-opening polymerisation of glycolide.

    PubMed

    Chen, Sheng-Chun; Dai, An-Qi; Huang, Kun-Lin; Zhang, Zhi-Hui; Cui, Ai-Jun; He, Ming-Yang; Chen, Qun

    2016-02-28

    Utilizing a series of positional isomers of tetrachlorinated benzenedicarboxylic acid ligands, seven La(iii)-based coordination polymers were solvothermally synthesized and structurally characterized. Their structural dimensionalities varying from 1D double chains, to the 2D 3,4,5-connected network, to 3D 6-connected pcu topological nets are only governed by the positions of carboxyl groups on the tetrachlorinated benzene ring. A comprehensive analysis and comparison reveals that the size of the carbonyl solvent molecules (DMF, DEF, DMA, and NMP) can affect the coordination geometries around the La(iii) ions, the coordination modes of carboxylate groups, the packing arrangements, and the void volumes of the overall crystal lattices. One as-synthesized framework further shows an unprecedented structural transformation from a 3D 6-connected network to a 3D 4,5-connected net through the dissolution and reformation pathway in water, suggesting that these easily hydrolyzed lanthanide complexes may serve as precursors to produce new high-dimensional frameworks. The bulk solvent-free melt polymerisation of glycolide utilizing these La(iii) complexes as initiators has been reported herein for the first time. All complexes were found to promote the polymerization of glycolide over a temperature range of 200 to 220 °C, producing poly(glycolic acid) (PGA) with a molecular weight up to 93,280. Under the same experimental conditions, the different catalytic activities for these complexes may result from their structural discrepancy. PMID:26811117

  14. 2D dual permeability modeling of flow and transport in a two-scale structured lignitic mine soil

    NASA Astrophysics Data System (ADS)

    Dusek, J.; Gerke, H. H.; Vogel, T.; Maurer, T.; Buczko, U.

    2009-04-01

    Two-dimensional single- and dual-permeability simulations are used to analyze water and solute fluxes in heterogeneous lignitic mine soil at a forest-reclaimed mine spoil heap. The soil heterogeneity on this experimental site "Bärenbrücker Höhe" resulted from inclined dumping structures and sediment mixtures that consist of sand with lignitic dust and embedded lignitic fragments. Observations on undisturbed field suction-cell lysimeters including tracer experiments revealed funneling-type preferential flow with lateral water and bromide movement along inclined sediment structures. The spatial distribution of soil structures and fragment distributions was acquired by a digital camera and identified by a supervised classification of the digital profile image. First, a classical single-domain modeling approach was used, with spatially variable scaling factors inferred from image analyses. In the next step, a two-continuum scenario was constructed to examine additional effects of nonequilibrium on the flow regime. The scaling factors used for the preferential flow domain are here obtained from the gradient of the grayscale images. So far, the single domain scenarios failed to predict the bromide leaching patterns although water effluent could be described. Dual-permeability model allows the incorporation of structural effects and can be used as a tool to further testing other approaches that account for structure effects. The numerical study suggests that additional experiments are required to obtain better understanding of the highly complex transport processes on this experimental site.

  15. Controls on the Flow Regime and Thermal Structure of the Subduction Zone Mantle Wedge: A Systematic 2-D and 3-D Investigation

    NASA Astrophysics Data System (ADS)

    Le Voci, Giuseppe; Davies, Rhodri; Goes, Saskia; Kramer, Stephan; Wilson, Cian

    2014-05-01

    Arc volcanism at subduction zones is likely regulated by the mantle wedge's flow regime and thermal structure and, hence, numerous studies have attempted to quantify the principal controls on mantle wedge conditions. Here, we build on these previous studies by undertaking the first systematic 2-D and 3-D numerical investigation, across a wide parameter-space, into how hydration and thermal buoyancy influence the wedge's flow regime and associated thermal structure, above a kinematically driven subducting plate. We find that small-scale convection (SSC), resulting from Rayleigh-Taylor instabilities, or drips, off the base of the overriding lithosphere, is a typical occurrence, if: (i) viscosities are < 5×1018 Pa s; and (ii) hydrous weakening of wedge rheology extends at least 100-150 km from the trench. In 2-D models, instabilities generally take the form of 'drips'. Although along-strike averages of wedge velocities and temperature in 3-D structure are consistent with those in 2-D, fluctuations are larger in 3-D. Furthermore, in 3-D, two separate, but interacting, longitudinal Richter roll systems form (with their axes aligned perpendicular to the trench), the first below the arc region and the second below the back-arc region. These instabilities result in transient and spatial temperature fluctuations of 100-150K, which are sufficient to influence melting, the stability of hydrous minerals and the dehydration of crustal material. Furthermore, they are efficient at eroding the overriding lithosphere, particularly in 3-D and, thus, provide a means to explain observations of high heat flow and thin back-arc lithosphere at many subduction zones, if back-arc mantle is hydrated.

  16. Investigation of mechanical strength of 2D nanoscale structures using a molecular dynamics based computational intelligence approach

    NASA Astrophysics Data System (ADS)

    Garg, A.; Vijayaraghavan, V.; Wong, C. H.; Tai, K.; Singru, Pravin M.; Mahapatra, S. S.; Sangwan, K. S.

    2015-09-01

    A molecular dynamics (MD) based computational intelligence (CI) approach is proposed to investigate the Young modulus of two graphene sheets: Armchair and Zigzag. In this approach, the effect of aspect ratio, the temperature, the number of atomic planes and the vacancy defects on the Young modulus of two graphene sheets are first analyzed using the MD simulation. The data obtained using the MD simulation is then fed into the paradigm of a CI cluster comprising of genetic programming, which was specifically designed to formulate the explicit relationship of Young modulus of two graphene structures. We find that the MD-based-CI model is able to model the Young modulus of two graphene structures very well, which compiles in good agreement with that of experimental results obtained from the literature. Additionally, we also conducted sensitivity and parametric analysis and found that the number of defects has the most dominating influence on the Young modulus of two graphene structures.

  17. Large-area 2D periodic crystalline silicon nanodome arrays on nanoimprinted glass exhibiting photonic band structure effects.

    PubMed

    Becker, C; Lockau, D; Sontheimer, T; Schubert-Bischoff, P; Rudigier-Voigt, E; Bockmeyer, M; Schmidt, F; Rech, B

    2012-04-01

    Two-dimensional silicon nanodome arrays are prepared on large areas up to 50 cm² exhibiting photonic band structure effects in the near-infrared and visible wavelength region by downscaling a recently developed fabrication method based on nanoimprint-patterned glass, high-rate electron-beam evaporation of silicon, self-organized solid phase crystallization and wet-chemical etching. The silicon nanodomes, arranged in square lattice geometry with 300 nm lattice constant, are optically characterized by angular resolved reflection measurements, allowing the partial determination of the photonic band structure. This experimentally determined band structure agrees well with the outcome of three-dimensional optical finite-element simulations. A 16% photonic bandgap is predicted for an optimized geometry of the silicon nanodome arrays. By variation of the duration of the selective etching step, the geometry as well as the optical properties of the periodic silicon nanodome arrays can be controlled systematically. PMID:22422473

  18. Finite Element Method for Analysis of Band Structures of 2D Phononic Crystals with Archimedean-like tilings

    NASA Astrophysics Data System (ADS)

    Li, Jianbao; Wang, Yue-Sheng; Zhang, Chuanzeng

    2010-05-01

    In this paper, a finite element method based on the ABAQUS code and user subroutine is presented to evaluate the propagation of acoustic waves in the two-dimensional phononic crystals with Archimedean-like tilings. Two systems composed of cylinder scatters embedded in a host in Ladybug and Bathroom lattices are considered. Complete and accurate band structures and transmission spectra are obtained to identify the band gaps and eigenmodes. We found that Archimedean-like structures can have some advantages over the traditional square lattice regarding the completeness of the gap and its position and width. Also, due to the same square primitive unit cell and the first Brillouin zone, the two square-like lattices have similar acoustic response in lower bands. The results indicate that the finite element method is precise for the band structure computation of the complex phononic crystals with Archimedean tilings.

  19. Theoretical study of the thermodynamic stability and electronic structure of thin films of 3 C, 2 H, and 2 D silicon carbides

    NASA Astrophysics Data System (ADS)

    Kuzubov, A. A.; Eliseeva, N. S.; Krasnov, P. O.; Tomilin, F. N.; Fedorov, A. S.; Tolstaya, A. V.

    2014-08-01

    Silicon carbide is among the most common materials used in semiconductor engineering. Silicon carbide thin films are attractive from the standpoint of designing devices based on heterojunctions. This is due to a characteristic feature of this compound, such as polytypism, leading to the difference in the physical properties and also hampering the preparation of high-quality material samples. In this work, the thermodynamic stability and electronic structure of thin films based on the polytypes 3 C, 2 H, and 2 D with a thickness of a few nanometers have been studied.

  20. An Easily Accessible Self-Healing Transparent Film Based on a 2D Supramolecular Network of Hydrogen-Bonding Interactions between Polymeric Chains.

    PubMed

    Roy, Nabarun; Tomović, Željko; Buhler, Eric; Lehn, Jean-Marie

    2016-09-12

    Self-healing polymers hold great promise for the future, enhancing in particular the longevity of polymeric materials. We describe a self-healing covalent polymer, presenting an extensive array of hydrogen-bonding sites based on the combination of urea, urethane, and bis-acyl-hydrazine units. Solvent-cast thin-films prepared by polycondensation of a commercially available dihydrazide and a diisocyanate prepolymer exhibited excellent room temperature autonomous healing with almost full recovery of mechanical properties when two parts of a cut film were overlapped and gently pressed together. This autonomous healing upon damage may be attributed to the supramolecular dynamics of multiple lateral inter-chain hydrogen-bonding interactions between the polymer chains. The solid-state structure of a model compound incorporating the same structural backbone corroborates the existence of an extensive two-dimensional supramolecular hydrogen-bonding network. PMID:27226034

  1. Sparsity-based Ankylography for Recovering 3D molecular structures from single-shot 2D scattered light intensity

    PubMed Central

    Mutzafi, Maor; Shechtman, Yoav; Eldar, Yonina C.; Cohen, Oren; Segev, Mordechai

    2015-01-01

    Deciphering the three-dimensional (3D) structure of complex molecules is of major importance, typically accomplished with X-ray crystallography. Unfortunately, many important molecules cannot be crystallized, hence their 3D structure is unknown. Ankylography presents an alternative, relying on scattering an ultrashort X-ray pulse off a single molecule before it disintegrates, measuring the far-field intensity on a two-dimensional surface, followed by computation. However, significant information is absent due to lower dimensionality of the measurements and the inability to measure the phase. Recent Ankylography experiments attracted much interest, but it was counter-argued that Ankylography is valid only for objects containing a small number of volume pixels. Here, we propose a sparsity-based approach to reconstruct the 3D structure of molecules. Sparsity is natural for Ankylography, because molecules can be represented compactly in stoichiometric basis. Utilizing sparsity, we surpass current limits on recoverable information by orders of magnitude, paving the way for deciphering the 3D structure of macromolecules. PMID:26289358

  2. Community Structure in Directed Networks

    NASA Astrophysics Data System (ADS)

    Leicht, E. A.; Newman, M. E. J.

    2008-03-01

    We consider the problem of finding communities or modules in directed networks. In the past, the most common approach to this problem has been to ignore edge direction and apply methods developed for community discovery in undirected networks, but this approach discards potentially useful information contained in the edge directions. Here we show how the widely used community finding technique of modularity maximization can be generalized in a principled fashion to incorporate information contained in edge directions. We describe an explicit algorithm based on spectral optimization of the modularity and show that it gives demonstrably better results than previous methods on a variety of test networks, both real and computer generated.

  3. Synthesis of 2D/2D Structured Mesoporous Co3O4 Nanosheet/N-Doped Reduced Graphene Oxide Composites as a Highly Stable Negative Electrode for Lithium Battery Applications.

    PubMed

    Sennu, Palanichamy; Kim, Hyo Sang; An, Jae Youn; Aravindan, Vanchiappan; Lee, Yun-Sung

    2015-08-01

    Mesoporous Co3O4 nanosheets (Co3 O4 -NS) and nitrogen-doped reduced graphene oxide (N-rGO) are synthesized by a facile hydrothermal approach, and the N-rGO/Co3O4 -NS composite is formulated through an infiltration procedure. Eventually, the obtained composites are subjected to various characterization techniques, such as XRD, Raman spectroscopy, surface area analysis, X-ray photoelectron spectroscopy (XPS), and TEM. The lithium-storage properties of N-rGO/Co3O4 -NS composites are evaluated in a half-cell assembly to ascertain their suitability as a negative electrode for lithium-ion battery applications. The 2D/2D nanostructured mesoporous N-rGO/Co3O4 -NS composite delivered a reversible capacity of about 1305 and 1501 mAh g(-1) at a current density of 80 mA g(-1) for the 1st and 50th cycles, respectively. Furthermore, excellent cyclability, rate capability, and capacity retention characteristics are noted for the N-rGO/Co3O4 -NS composite. This improved performance is mainly related to the existence of mesoporosity and a sheet-like 2D hierarchical morphology, which translates into extra space for lithium storage and a reduced electron pathway. Also, the presence of N-rGO and carbon shells in Co3O4 -NS should not be excluded from such exceptional performance, which serves as a reliable conductive channel for electrons and act as synergistically to accommodate volume expansion upon redox reactions. Ex-situ TEM, impedance spectroscopy, and XPS, are also conducted to corroborate the significance of the 2D morphology towards sustained lithium storage. PMID:26033848

  4. Numerical investigation of ultrasonic attenuation through 2D trabecular bone structures reconstructed from CT scans and random realizations.

    PubMed

    Gilbert, Robert P; Guyenne, Philippe; Li, Jing

    2014-02-01

    In this paper, we compare ultrasound interrogations of actual CT-scanned images of trabecular bone with artificial randomly constructed bone. Even though it is known that actual bone does not have randomly distributed trabeculae, we find that the ultrasound attenuations are close enough to cast doubt on any microstructural information, such as trabeculae width and distance between trabeculae, being gleaned from such experiments. More precisely, we perform numerical simulations of ultrasound interrogation on cancellous bone to investigate the phenomenon of ultrasound attenuation as a function of excitation frequency and bone porosity. The theoretical model is based on acoustic propagation equations for a composite fluid-solid material and is solved by a staggered-grid finite-difference scheme in the time domain. Numerical experiments are performed on two-dimensional bone samples reconstructed from CT-scanned images of real human calcaneus and from random distributions of fluid-solid particles generated via the turning bands method. A detailed comparison is performed on various parameters such as the attenuation rate and speed of sound through the bone samples as well as the normalized broadband ultrasound attenuation coefficient. Comparing results from these two types of bone samples allows us to assess the role of bone microstructure in ultrasound attenuation. It is found that the random model provides suitable bone samples for ultrasound interrogation in the transverse direction of the trabecular network. PMID:24480174

  5. Information transfer in community structured multiplex networks

    NASA Astrophysics Data System (ADS)

    Solé Ribalta, Albert; Granell, Clara; Gómez, Sergio; Arenas, Alex

    2015-08-01

    The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  6. Deducing the subsurface geological conditions and structural framework of the NE Gulf of Suez area, using 2-D and 3-D seismic data

    NASA Astrophysics Data System (ADS)

    Zahra, Hesham Shaker; Nakhla, Adel Mokhles

    2015-06-01

    An interpretation of the seismic data of Ras Budran and Abu Zenima oil fields, northern central Gulf of Suez, is carried out to evaluate its subsurface tectonic setting. The structural configuration, as well as the tectonic features of the concerned area is criticized through the study of 2D and 3D seismic data interpretation with the available geological data, in which the geo-seismic depth maps for the main interesting levels (Kareem, Nukhul, Matulla, Raha and Nubia Formations) are depicted. Such maps reflect that, the Miocene structure of Ras Budran area is a nearly NE-SW trending anticlinal feature, which broken into several panels by a set of NWSE and NE-SW trending faults. The Pre-Miocene structure of the studied area is very complex, where Ras Budran area consists of step faults down stepping to the south and southwest, which have been subjected to cross faults of NE-SW trend with lateral and vertical displacements.

  7. Quantitative Subsurface Atomic Structure Fingerprint for 2D Materials and Heterostructures by First-Principles-Calibrated Contact-Resonance Atomic Force Microscopy.

    PubMed

    Tu, Qing; Lange, Björn; Parlak, Zehra; Lopes, Joao Marcelo J; Blum, Volker; Zauscher, Stefan

    2016-07-26

    Interfaces and subsurface layers are critical for the performance of devices made of 2D materials and heterostructures. Facile, nondestructive, and quantitative ways to characterize the structure of atomically thin, layered materials are thus essential to ensure control of the resultant properties. Here, we show that contact-resonance atomic force microscopy-which is exquisitely sensitive to stiffness changes that arise from even a single atomic layer of a van der Waals-adhered material-is a powerful experimental tool to address this challenge. A combined density functional theory and continuum modeling approach is introduced that yields sub-surface-sensitive, nanomechanical fingerprints associated with specific, well-defined structure models of individual surface domains. Where such models are known, this information can be correlated with experimentally obtained contact-resonance frequency maps to reveal the (sub)surface structure of different domains on the sample. PMID:27263541

  8. A time series generalized functional model based method for vibration-based damage precise localization in structures consisting of 1D, 2D, and 3D elements

    NASA Astrophysics Data System (ADS)

    Sakaris, C. S.; Sakellariou, J. S.; Fassois, S. D.

    2016-06-01

    This study focuses on the problem of vibration-based damage precise localization via data-based, time series type, methods for structures consisting of 1D, 2D, or 3D elements. A Generalized Functional Model Based method is postulated based on an expanded Vector-dependent Functionally Pooled ARX (VFP-ARX) model form, capable of accounting for an arbitrary structural topology. The FP model's operating parameter vector elements are properly constrained to reflect any given topology. Damage localization is based on operating parameter vector estimation within the specified topology, so that the location estimate and its uncertainty bounds are statistically optimal. The method's effectiveness is experimentally demonstrated through damage precise localization on a laboratory spatial truss structure using various damage scenarios and a single pair of random excitation - vibration response signals in a low and limited frequency bandwidth.

  9. Elucidating structural characteristics of biomass using solution-state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide

    DOE PAGESBeta

    Pu, Yunqiao; Ragauskas, Arthur J.; Yoo, Chang Geun; Li, Mi

    2016-04-26

    In recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO-d6) and hexamethylphosphoramide (HMPA-d18). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. Moreover, the structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO-d6/HMPA-d18; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass, facilitating a facile sample preparation and involvingmore » with no signals overlapping with biomass peaks. Furthermore, it also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities.« less

  10. 2D 31P solid state NMR spectroscopy, electronic structure and thermochemistry of PbP7

    NASA Astrophysics Data System (ADS)

    Benndorf, Christopher; Hohmann, Andrea; Schmidt, Peer; Eckert, Hellmut; Johrendt, Dirk; Schäfer, Konrad; Pöttgen, Rainer

    2016-03-01

    Phase pure polycrystalline PbP7 was prepared from the elements via a lead flux. Crystalline pieces with edge-lengths up to 1 mm were obtained. The assignment of the previously published 31P solid state NMR spectrum to the seven distinct crystallographic sites was accomplished by radio-frequency driven dipolar recoupling (RFDR) experiments. As commonly found in other solid polyphosphides there is no obvious correlation between the 31P chemical shift and structural parameters. PbP7 decomposes incongruently under release of phosphorus forming liquid lead as remainder. The thermal decomposition starts at T>550 K with a vapor pressure almost similar to that of red phosphorus. Electronic structure calculations reveal PbP7 as a semiconductor according to the Zintl description and clearly shows the stereo-active Pb-6s2 lone pairs in the electron localization function ELF.

  11. Deterministic sub-micron 2D grating structures on steel by UV-fs-laser interference patterning

    NASA Astrophysics Data System (ADS)

    Bekesi, J.; Simon, P.; Ihlemann, J.

    2014-01-01

    Large area linear and crossed grating structures on steel surfaces are obtained by UV-femtosecond-laser ablation at 248 nm. High resolution on large areas is secured using a beam delivery system based on a two-grating interferometer. Thus, deterministic gratings with periods down to 330 nm and modulation depths of more than 100 nm are fabricated on tool steel and stainless steel. Areas of up to mm can be processed without stitching errors.

  12. Ag (I)-based 2D metal frameworks with helical structures decorated by the homochiral camphor-10-sulfonic acid

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Wang, Jing; Wang, Jun; Pan, Daocheng; Xu, Guohai

    2010-12-01

    Two two-dimension homochiral Ag (I) metal frameworks constructed from enantiopure camphor-10-sulfonic acid and hexamethylenetetramine have been synthesized at the room temperature. These two complexes with (6, 3) topology decorated by the homochiral camphor-10-sulfonic acid possess the unique helical structures. The result of Circular Dichroism (CD) spectroscopy confirms that the bulk materials are homochiral and also indicates the handedness of the single crystals can be controlled by the chirality of the camphor-10-sulfonic acid.

  13. Structural controllability of unidirectional bipartite networks

    NASA Astrophysics Data System (ADS)

    Nacher, Jose C.; Akutsu, Tatsuya

    2013-04-01

    The interactions between fundamental life molecules, people and social organisations build complex architectures that often result in undesired behaviours. Despite all of the advances made in our understanding of network structures over the past decade, similar progress has not been achieved in the controllability of real-world networks. In particular, an analytical framework to address the controllability of bipartite networks is still absent. Here, we present a dominating set (DS)-based approach to bipartite network controllability that identifies the topologies that are relatively easy to control with the minimum number of driver nodes. Our theoretical calculations, assisted by computer simulations and an evaluation of real-world networks offer a promising framework to control unidirectional bipartite networks. Our analysis should open a new approach to reverting the undesired behaviours in unidirectional bipartite networks at will.

  14. Deciphering Network Community Structure by Surprise

    PubMed Central

    Aldecoa, Rodrigo; Marín, Ignacio

    2011-01-01

    The analysis of complex networks permeates all sciences, from biology to sociology. A fundamental, unsolved problem is how to characterize the community structure of a network. Here, using both standard and novel benchmarks, we show that maximization of a simple global parameter, which we call Surprise (S), leads to a very efficient characterization of the community structure of complex synthetic networks. Particularly, S qualitatively outperforms the most commonly used criterion to define communities, Newman and Girvan's modularity (Q). Applying S maximization to real networks often provides natural, well-supported partitions, but also sometimes counterintuitive solutions that expose the limitations of our previous knowledge. These results indicate that it is possible to define an effective global criterion for community structure and open new routes for the understanding of complex networks. PMID:21909420

  15. Temporal network structures controlling disease spreading

    NASA Astrophysics Data System (ADS)

    Holme, Petter

    2016-08-01

    We investigate disease spreading on eight empirical data sets of human contacts (mostly proximity networks recording who is close to whom, at what time). We compare three levels of representations of these data sets: temporal networks, static networks, and a fully connected topology. We notice that the difference between the static and fully connected networks—with respect to time to extinction and average outbreak size—is smaller than between the temporal and static topologies. This suggests that, for these data sets, temporal structures influence disease spreading more than static-network structures. To explain the details in the differences between the representations, we use 32 network measures. This study concurs that long-time temporal structures, like the turnover of nodes and links, are the most important for the spreading dynamics.

  16. Network Ecology and Adolescent Social Structure

    PubMed Central

    McFarland, Daniel A.; Moody, James; Diehl, David; Smith, Jeffrey A.; Thomas, Reuben J.

    2014-01-01

    Adolescent societies—whether arising from weak, short-term classroom friendships or from close, long-term friendships—exhibit various levels of network clustering, segregation, and hierarchy. Some are rank-ordered caste systems and others are flat, cliquish worlds. Explaining the source of such structural variation remains a challenge, however, because global network features are generally treated as the agglomeration of micro-level tie-formation mechanisms, namely balance, homophily, and dominance. How do the same micro-mechanisms generate significant variation in global network structures? To answer this question we propose and test a network ecological theory that specifies the ways features of organizational environments moderate the expression of tie-formation processes, thereby generating variability in global network structures across settings. We develop this argument using longitudinal friendship data on schools (Add Health study) and classrooms (Classroom Engagement study), and by extending exponential random graph models to the study of multiple societies over time. PMID:25535409

  17. 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures

    NASA Astrophysics Data System (ADS)

    Tornabene, Francesco; Viola, Erasmo; Inman, Daniel J.

    2009-12-01

    This paper focuses on the dynamic behavior of functionally graded conical, cylindrical shells and annular plates. The last two structures are obtained as special cases of the conical shell formulation. The first-order shear deformation theory (FSDT) is used to analyze the above moderately thick structural elements. The treatment is developed within the theory of linear elasticity, when materials are assumed to be isotropic and inhomogeneous through the thickness direction. The two-constituent functionally graded shell consists of ceramic and metal that are graded through the thickness, from one surface of the shell to the other. Two different power-law distributions are considered for the ceramic volume fraction. The homogeneous isotropic material is inferred as a special case of functionally graded materials (FGM). The governing equations of motion, expressed as functions of five kinematic parameters, are discretized by means of the generalized differential quadrature (GDQ) method. The discretization of the system leads to a standard linear eigenvalue problem, where two independent variables are involved without using the Fourier modal expansion methodology. For the homogeneous isotropic special case, numerical solutions are compared with the ones obtained using commercial programs such as Abaqus, Ansys, Nastran, Straus, Pro/Mechanica. Very good agreement is observed. Furthermore, the convergence rate of natural frequencies is shown to be very fast and the stability of the numerical methodology is very good. Different typologies of non-uniform grid point distributions are considered. Finally, for the functionally graded material case numerical results illustrate the influence of the power-law exponent and of the power-law distribution choice on the mechanical behavior of shell structures.

  18. Synthesis and structure of a 2D Zn complex with mixed ligands stacked in offset ABAB manner

    NASA Astrophysics Data System (ADS)

    Qin, Ling; Wang, Yan-Qing; Ni, Gang

    2016-07-01

    The title complex, {[Zn(ODIB)1/2( bpdc)]·2DMF} n was prepared under hydrothermal conditions (dimethylformamide and water) based on two ligands, namely, 1,1'-oxy-bis[3,5-diimidazolyl-benzene] (ODIB) and biphenyldicarboxylic acid (H2 bpdc). ODIB ligands link Zn cations to give layers in crystal. bpdc 2- anions coordinate to Zn atoms, however, their introduction does not increase the dimension of the structure. Each layer is partially passes through the adjacent layers in the offset ABAB manner.

  19. Can fractional quantum Hall effect be due to the formation of coherent wave structures in a 2D electron gas?

    NASA Astrophysics Data System (ADS)

    Mirza, Babur M.

    2016-05-01

    A microscopic theory of integer and fractional quantum Hall effects is presented here. In quantum density wave representation of charged particles, it is shown that, in a two-dimensional electron gas coherent structures form under the low temperature and high density conditions. With a sufficiently high applied magnetic field, the combined N particle quantum density wave exhibits collective periodic oscillations. As a result the corresponding quantum Hall voltage function shows a step-wise change in multiples of the ratio h/e2. At lower temperatures further subdivisions emerge in the Hall resistance, exhibiting the fractional quantum Hall effect.

  20. Sensitivity analysis of the non-linear dynamic viscoplastic response of 2-d structures with respect to material parameters

    NASA Technical Reports Server (NTRS)

    Kulkarni, Makarand; Noor, Ahmed K.

    1995-01-01

    A computational procedure is presented for evaluating the sensitivity coefficients of the viscoplastic response of structures subjected to dynamic loading. A state of plane stress is assumed to exist in the structure, a velocity strain-Cauchy stress formulation is used, and the geometric non-linearities arising from large strains are incorporated. The Jaumann rate is used as a frame indifferent stress rate. The material model is chosen to be isothermal viscoplasticity, and an associated flow rule is used with a von Mises effective stress. The equations of motion emanating from a finite element semi-discretization are integrated using an explicit central difference scheme with an implicit stress update. The sensitivity coefficients are evaluated using a direct differentiation approach. Since the domain of integration is the current configuration, the sensitivity coefficients of the spatial derivatives of the shape functions must be included. Numerical results are presented for a thin plate with a central cutout subjected to an in-plane compressive loading. The sensitivity coefficients are generated by evaluating the derivatives of the response quantities with respect to Young's modulus, and two of the material parameters characterizing the viscoplastic response. Time histories of the response and sensitivity coefficients, and spatial distributions at selected times are presented.

  1. Exploiting Recurring Structure in a Semantic Network

    NASA Technical Reports Server (NTRS)

    Wolfe, Shawn R.; Keller, Richard M.

    2004-01-01

    With the growing popularity of the Semantic Web, an increasing amount of information is becoming available in machine interpretable, semantically structured networks. Within these semantic networks are recurring structures that could be mined by existing or novel knowledge discovery methods. The mining of these semantic structures represents an interesting area that focuses on mining both for and from the Semantic Web, with surprising applicability to problems confronting the developers of Semantic Web applications. In this paper, we present representative examples of recurring structures and show how these structures could be used to increase the utility of a semantic repository deployed at NASA.

  2. Pipelining performance of structured dataflow networks

    SciTech Connect

    Tonge, F.M.

    1983-01-01

    A particular approach to specifying procedure interconnection and allocation is presented. The major result is that, within stated assumptions, networks constructed using a small set of structured process connectives can achieve at least as good throughput (pipelining performance) as arbitrarily interconnected networks. 20 references.

  3. Iterative closest curve: a framework for curvilinear structure registration application to 2D/3D coronary arteries registration.

    PubMed

    Benseghir, Thomas; Malandain, Grégoire; Vaillant, Régis

    2013-01-01

    Treatment coronary arteries endovascular involves catheter navigation through patient vasculature. The projective angiography guidance is limited in the case of chronic total occlusion where occluded vessel can not be seen. Integrating standard preoperative CT angiography information with live fluoroscopic images addresses this limitation but requires alignment of both modalities. This article proposes a structure-based registration method that intrinsically preserves both the geometrical and topological coherencies of the vascular centrelines to be registered, by the means of a dedicated curve-to-curve distance pairs of closest curves are identified, while pairing their points. Preliminary experiments demonstrate that the proposed approach performs better than the standard Iterative Closest Point method giving a wider attraction basin and improved accuracy. PMID:24505664

  4. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist

    SciTech Connect

    Chien, Ellen Y.T.; Liu, Wei; Zhao, Qiang; Katritch, Vsevolod; Han, Gye Won; Hanson, Michael A.; Shi, Lei; Newman, Amy Hauck; Javitch, Jonathan A.; Cherezov, Vadim; Stevens, Raymond C.

    2010-11-30

    Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.

  5. Probing the 2D temperature structure of protoplanetary disks with Herschel observations of high-J CO lines

    NASA Astrophysics Data System (ADS)

    Fedele, D.; van Dishoeck, E. F.; Kama, M.; Bruderer, S.; Hogerheijde, M. R.

    2016-06-01

    The gas temperature structure of protoplanetary disks is a key ingredient for interpreting various disk observations and for quantifying the subsequent evolution of these systems. The comparison of low- and mid-J CO rotational lines is a powerful tool for assessing the temperature gradient in the warm molecular layer of disks. Spectrally resolved high-J (Ju> 14) CO lines probe intermediate distances and heights from the star that are not sampled by (sub-)millimeter CO spectroscopy. This paper presents new Herschel/HIFI and archival PACS observations of 12CO, 13CO, and [C ii] emission in four Herbig AeBe disks (HD 100546, HD 97048, IRS 48, HD 163296) and three T Tauri disks (AS 205, S CrA, TW Hya). In the case of the T Tauri systems AS 205 and S CrA, the CO emission has a single-peaked profile, likely due to a slow wind. For all the other systems, the Herschel CO spectra are consistent with pure disk emission and the spectrally resolved lines (HIFI) and the CO rotational ladder (PACS) are analyzed simultaneously assuming power-law temperature and column density profiles, using the velocity profile to locate the emission in the disk. The temperature profile varies substantially from disk to disk. In particular, Tgas in the disk surface layers can differ by up to an order of magnitude among the four Herbig AeBe systems; HD 100546 is the hottest and HD 163296 the coldest disk in the sample. Clear evidence of a warm disk layer where Tgas>Tdust is found in all the Herbig Ae disks. The observed CO fluxes and line profiles are compared to predictions of physical-chemical models. The primary parameters affecting the disk temperature structure are the flaring angle, the gas-to-dust mass ratio, the scale height, and the dust settling.

  6. Tuning the structures based on polyoxometalates from 1-D to 2-D by using different secondary organic ligands.

    PubMed

    Hu, Yang-Yang; Xiao-Zhang; Zhao, De-Chuan; Guo, Hai-Yang; Fu, Li-Wei; Guo, Lan-Lan; Cui, Xiao-Bing; Huo, Qi-Sheng; Xu, Ji-Qing

    2015-09-01

    Six new organic-inorganic hybrid compounds based on [XM12O40](4-) (X = heteroatom, M = metal atom), namely [Cu(pic)2][H2XM12O40]·2Hapy·2apy (X = Si, M = W for , X = Ge, M = W for and X = Si, M = Mo for ), [Cu(2,2'-bpy)2][Cu(2,2'-bpy)(H2O)][Cu(pic)2]0.5[XM12O40]·nH2O (X = Si, M = Mo, n = 0.5 for , X = Ge, M = W, n = 1 for ) and [Cu(phen)(H2O)]2[Cu(pic)2][GeW12O40]·2.5H2O () (pic = deprotonated picolinic acid, apy = 2-aminopyridine, 2,2'-bpy = 2,2'-bipyridine, phen = phenanthroline), have been synthesized and characterized by IR, UV-Vis, XRD, cyclic voltammetric measurements and single crystal X-ray diffraction analysis. Single crystal X-ray analysis reveals that compounds are isomorphous and isostructural, in which each is based on [H2XM12O40](2-) and [Cu(pic)2]. Compounds and are also isomorphous and isostructural, of which the structures are more interesting than those of compounds . Both structures are constructed from [XM12O40](4-) and metal mixed-organic-ligand complexes. Compound is also constructed from Keggin ions and metal mixed-organic-ligand complexes, which are, however, thoroughly different from those of compounds and . The photodegradation properties of compounds have been analyzed. Compounds also exhibit rapid absorption properties for RhB (Rhodamine B). Detailed analysis of the photodegradation properties of compounds reveals that the molybdate POM has stronger degradation ability for RhB than the tungstate one. PMID:26223513

  7. Contrasting 1D tunnel-structured and 2D layered polymorphs of V2O5: relating crystal structure and bonding to band gaps and electronic structure.

    PubMed

    Tolhurst, Thomas M; Leedahl, Brett; Andrews, Justin L; Marley, Peter M; Banerjee, Sarbajit; Moewes, Alexander

    2016-06-21

    New V2O5 polymorphs have risen to prominence as a result of their open framework structures, cation intercalation properties, tunable electronic structures, and wide range of applications. The application of these materials and the design of new, useful polymorphs requires understanding their defining structure-property relationships. We present a characterization of the band gap and electronic structure of nanowires of the novel ζ-phase and the orthorhombic α-phase of V2O5 using X-ray spectroscopy and density functional theory calculations. The band gap is found to decrease from 1.90 ± 0.20 eV in the α-phase to 1.50 ± 0.20 eV in the ζ-phase, accompanied by the loss of the α-phase's characteristic split-off dxy band in the ζ-phase. States of dxy origin continue to dominate the conduction band edge in the new polymorph but the inequivalence of the vanadium atoms and the increased local symmetry of [VO6] octahedra results in these states overlapping with the rest of the V 3d conduction band. ζ-V2O5 exhibits anisotropic conductivity along the b direction, defining a 1D tunnel, in contrast to α-V2O5 where the anisotropic conductivity is along the ab layers. We explain the structural origins of the differences in electronic properties that exist between the α- and ζ-phase. PMID:27230816

  8. Structural evolution of the Brazilian airport network

    NASA Astrophysics Data System (ADS)

    da Rocha, Luis E. C.

    2009-04-01

    The aviation sector is profitable, but sensitive to economic fluctuations, geopolitical constraints and governmental regulations. As for other means of transportation, the relation between origin and destination results in a complex map of routes, which can be complemented with information associated with the routes themselves, for instance, frequency, traffic load and distance. The theory of networks provides a natural framework for investigating the dynamics on the resulting structure. Here, we investigate the structure and evolution of the Brazilian airport network (BAN) as regards several quantities: routes, connections, passengers and cargo. Some structural features are in accordance with previous results for other airport networks. The analysis of the evolution of the BAN shows that its structure is dynamic, with changes in the relative relevance of some airports and routes. The results indicate that the connections converge to specific routes. The network shrinks at the route level but grows in number of passengers and amount of cargo, which more than doubled during the period studied.

  9. Nonparametric inference of network structure and dynamics

    NASA Astrophysics Data System (ADS)

    Peixoto, Tiago P.

    The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among

  10. Organic carboxylate ligands tuned structural variations of two new Cd(II) coordination polymers: From 2D layer to 3D framework

    NASA Astrophysics Data System (ADS)

    Lv, Chang-Wei; Li, Jing; Liu, Yan-Wu; Li, Xia; Yuan, Zhi

    2015-11-01

    Two new Cd(II) coordination polymers, namely [Cd(4,4‧-sdb) (biimpy)]n·1.5n(H2O) (1) and [Cd2(Htci)2(biimpy)2]n (2) (4,4‧-H2sdb = 4,4‧-sulfonyldibenzoate, H3tci = tri(2-carboxyethyl)isocyanurate and biimpy = 2,6-bis(1-imdazoly)pyridine), have been synthesized by the hydrothermal reactions of Cd(NO3)2 and the mixed ligands of 4,4‧-H2sdb and biimpy or H3tci and biimpy. Single crystal X-ray structural analyses reveal that compound 1 features a 2D layered structure with 3-connected topology, and compound 2 features a 3D framework with 6-connected 6T8 topology. In addition, the thermal stabilities and luminescent properties of compounds 1 and 2 were also investigated.

  11. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    SciTech Connect

    Chai, Feng; Chen, YiPing; You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)₃]₃[CoW₁₂O₄₀]·9H₂O 1 (phen=1,10-phenanthroline) and [Fe(phen)₃]₂[FeW₁₂O₄₀]·H₃O·H₂O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)₃]²⁺ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm⁻¹, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

  12. Global optimization of data quality checks on 2-D and 3-D networks of GPR cross-well tomographic data for automatic correction of unknown well deviations

    SciTech Connect

    Sassen, D. S.; Peterson, J. E.

    2010-03-15

    .g. Bautu et al., 2006). In the technique of algebraic reconstruction tomography (ART), which is used herein for the travel time inversion (Peterson et al., 1985), a small relaxation parameter will smooth imaging artifacts caused by data errors at the expense of resolution and contrast (Figure 2). However, large data errors such as unaccounted well deviations cannot be adequately suppressed through inversion weighting schemes. Previously, problems with tomograms were treated manually. However, in large data sets and/or networks of data sets, trial and error changes to well geometries become increasingly difficult and ineffective. Mislocation of the transmitter and receiver stations of GPR cross-well tomography data sets can lead to serious imaging artifacts if not accounted for prior to inversion. Previously, problems with tomograms have been treated manually prior to inversion. In large data sets and/or networks of tomographic data sets, trial and error changes to well geometries become increasingly difficult and ineffective. Our approach is to use cross-well data quality checks and a simplified model of borehole deviation with particle swarm optimization (PSO) to automatically correct for source and receiver locations prior to tomographic inversion. We present a simple model of well deviation, which is designed to minimize potential corruption of actual data trends. We also provide quantitative quality control measures based on minimizing correlations between take-off angle and apparent velocity, and a quality check on the continuity of velocity between adjacent wells. This methodology is shown to be accurate and robust for simple 2-D synthetic test cases. Plus, we demonstrate the method on actual field data where it is compared to deviation logs. This study shows the promise for automatic correction of well deviations in GPR tomographic data. Analysis of synthetic data shows that very precise estimates of well deviation can be made for small deviations, even in the

  13. Static network structure can stabilize human cooperation.

    PubMed

    Rand, David G; Nowak, Martin A; Fowler, James H; Christakis, Nicholas A

    2014-12-01

    The evolution of cooperation in network-structured populations has been a major focus of theoretical work in recent years. When players are embedded in fixed networks, cooperators are more likely to interact with, and benefit from, other cooperators. In theory, this clustering can foster cooperation on fixed networks under certain circumstances. Laboratory experiments with humans, however, have thus far found no evidence that fixed network structure actually promotes cooperation. Here, we provide such evidence and help to explain why others failed to find it. First, we show that static networks can lead to a stable high level of cooperation, outperforming well-mixed populations. We then systematically vary the benefit that cooperating provides to one's neighbors relative to the cost required to cooperate (b/c), as well as the average number of neighbors in the network (k). When b/c > k, we observe high and stable levels of cooperation. Conversely, when b/c ≤ k or players are randomly shuffled, cooperation decays. Our results are consistent with a quantitative evolutionary game theoretic prediction for when cooperation should succeed on networks and, for the first time to our knowledge, provide an experimental demonstration of the power of static network structure for stabilizing human cooperation. PMID:25404308

  14. The structure and dynamics of multilayer networks

    NASA Astrophysics Data System (ADS)

    Boccaletti, S.; Bianconi, G.; Criado, R.; del Genio, C. I.; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal, I.; Wang, Z.; Zanin, M.

    2014-11-01

    In the past years, network theory has successfully characterized the interaction among the constituents of a variety of complex systems, ranging from biological to technological, and social systems. However, up until recently, attention was almost exclusively given to networks in which all components were treated on equivalent footing, while neglecting all the extra information about the temporal- or context-related properties of the interactions under study. Only in the last years, taking advantage of the enhanced resolution in real data sets, network scientists have directed their interest to the multiplex character of real-world systems, and explicitly considered the time-varying and multilayer nature of networks. We offer here a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.

  15. Dynamics of overlapping structures in modular networks.

    PubMed

    Almendral, J A; Leyva, I; Li, D; Sendiña-Nadal, I; Havlin, S; Boccaletti, S

    2010-07-01

    Modularity is a fundamental feature of real networks, being intimately bounded to their functionality, i.e., to their capability of performing parallel tasks in a coordinated way. Although the modular structure of real graphs has been intensively studied, very little is known on the interactions between functional modules of a graph. Here, we present a general method based on synchronization of networking oscillators, that is able to detect overlapping structures in multimodular environments. We furthermore report the full analytical and theoretical description on the relationship between the overlapping dynamics and the underlying network topology. The method is illustrated by means of a series of applications. PMID:20866697

  16. Two-dimensional topological insulator molecular networks: dependence on structure, symmetry, and composition

    NASA Astrophysics Data System (ADS)

    Tan, Liang Z.; Louie, Steven G.

    2014-03-01

    2D molecular networks can be fabricated from a wide variety of molecular building blocks, arranged in many different configurations. Interactions between neighboring molecular building blocks result in the formation of new 2D materials. Examples of 2D organic topological insulators, that contain molecular building blocks and heavy elements arranged in a hexagonal lattice, have been recently proposed by Feng Liu and coworkers (Nano Lett., 13, 2842 (2013)). In this work, we present a systematic study of the design space of 2D molecular network topological insulators, elucidating the role of structure, symmetry, and composition of the networks. We show that the magnitude and presence of spin-orbit gaps in the electronic band structure is strongly dependent on the symmetry properties and arrangement of the individual components of the molecular lattice. We present general rules to maximize the magnitude of spin-orbit gaps and perform ab-initio calculations on promising structures derived from these guidelines. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the NSF through XSEDE resources at NICS.

  17. Hyperfine structure and lifetime measurements in the 4s2nd 2D3/2 Rydberg sequence of Ga I by time-resolved laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Chunqing; Tian, Yanshan; Yu, Qi; Bai, Wanshuang; Wang, Xinghao; Wang, Chong; Dai, Zhenwen

    2016-05-01

    The hyperfine structure (HFS) constants of the 4s2nd 2D3/2 (n=6-18) Rydberg sequence and the 4s26p 2P3/2 level for two isotopes of 69Ga and 71Ga atoms were measured by means of the time-resolved laser-induced fluorescence (TR-LIF) technique and the quantum beat method. The observed hyperfine quantum beat spectra were analyzed and the magnetic-dipole HFS constants A as well as the electric-quadrupole HFS constants B of these levels were obtained by Fourier transform and a program for multiple regression analysis. Also using TR-LIF method radiative lifetimes of the above sequence states were determined at room temperature. The measured lifetime values range from 69 to 2279 ns with uncertainties no more than 10%. To our knowledge, the HFS constants of this Rydberg sequence and the lifetimes of the 4s2nd 2D3/2 (n=10-18) levels are reported for the first time. Good agreement between our results and the previous is achieved.

  18. Analysis of the rotational structure in the high-resolution infrared spectra of trans-hexatriene-2-d1 and -3-d1

    SciTech Connect

    Craig, Norman C.; Chen, Yihui; van Besien, Herman; Blake, Thomas A.

    2014-09-01

    The 2-d1 and 3-d1 isotopologues of trans-hexatriene have been synthesized, and their high-resolution (0.0015 cm-1) IR spectra have been recorded. For each of the isotopologues the rotational structure in four C-type bands for out-of-plane vibrational modes has been analyzed, and the ground state combination differences (GSCDs) have been pooled. Ground state rotational constants have been fitted to the GSCDs. For the 2-d species, A0, B0, and C0 values of 0.7837254(5), 0.0442806(3), and 0.0419299(2) cm-1 were fitted to 2450 GSCDs. For the 3-d species, A0, B0, and C0 values of 0.7952226(8), 0.0446149(7), and 0.0422661(4) cm-1 were fitted to 2234 GSCDs. For the eleven out-of-plane modes of the two isotopologues, predictions of anharmonic wavenumbers and harmonic intensities have been computed and compared with experiment where possible.

  19. Crystal structure and antiferromagnetic ordering of quasi-2D [Cu(HF{sub 2})(pyz){sub 2}]TaF{sub 6} (pyz = pyrazine).

    SciTech Connect

    Manson, J. L.; Schlueter, J. A.; McDonald, R. D.; Singleton, J.; Materials Science Division; Eastern Washington Univ.; LANL

    2010-04-01

    The crystal structure of the title compound was determined by X-ray diffraction at 90 and 295 K. Copper(II) ions are coordinated to four bridging pyz ligands to form square layers in the ab-plane. Bridging HF{sub 2}{sup -} ligands join the layers together along the c-axis to afford a tetragonal, three-dimensional (3D) framework that contains Taf{sub 6}{sup -} anions in every cavity. At 295 K, the pyz rings lie exactly perpendicular to the layers and cooling to 90 K induces a canting of those rings. Magnetically, the compound exhibits 2D antiferromagnetic correlations within the 2D layers with an exchange interaction of -13.1(1) K. Weak interlayer interactions, as mediated by Cu-F-H-F-Cu, leads to long-range magnetic order below 4.2 K. Pulsed-field magnetization data at 0.5 K show a concave curvature with increasing B and reveal a saturation magnetization at 35.4 T.

  20. Structural measures for multiplex networks

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Nicosia, Vincenzo; Latora, Vito

    2014-03-01

    Many real-world complex systems consist of a set of elementary units connected by relationships of different kinds. All such systems are better described in terms of multiplex networks, where the links at each layer represent a different type of interaction between the same set of nodes rather than in terms of (single-layer) networks. In this paper we present a general framework to describe and study multiplex networks, whose links are either unweighted or weighted. In particular, we propose a series of measures to characterize the multiplexicity of the systems in terms of (i) basic node and link properties such as the node degree, and the edge overlap and reinforcement, (ii) local properties such as the clustering coefficient and the transitivity, and (iii) global properties related to the navigability of the multiplex across the different layers. The measures we introduce are validated on a genuinely multiplex data set of Indonesian terrorists, where information among 78 individuals are recorded with respect to mutual trust, common operations, exchanged communications, and business relationships.

  1. Structural measures for multiplex networks.

    PubMed

    Battiston, Federico; Nicosia, Vincenzo; Latora, Vito

    2014-03-01

    Many real-world complex systems consist of a set of elementary units connected by relationships of different kinds. All such systems are better described in terms of multiplex networks, where the links at each layer represent a different type of interaction between the same set of nodes rather than in terms of (single-layer) networks. In this paper we present a general framework to describe and study multiplex networks, whose links are either unweighted or weighted. In particular, we propose a series of measures to characterize the multiplexicity of the systems in terms of (i) basic node and link properties such as the node degree, and the edge overlap and reinforcement, (ii) local properties such as the clustering coefficient and the transitivity, and (iii) global properties related to the navigability of the multiplex across the different layers. The measures we introduce are validated on a genuinely multiplex data set of Indonesian terrorists, where information among 78 individuals are recorded with respect to mutual trust, common operations, exchanged communications, and business relationships. PMID:24730896

  2. Closed benchmarks for network community structure characterization

    NASA Astrophysics Data System (ADS)

    Aldecoa, Rodrigo; Marín, Ignacio

    2012-02-01

    Characterizing the community structure of complex networks is a key challenge in many scientific fields. Very diverse algorithms and methods have been proposed to this end, many working reasonably well in specific situations. However, no consensus has emerged on which of these methods is the best to use in practice. In part, this is due to the fact that testing their performance requires the generation of a comprehensive, standard set of synthetic benchmarks, a goal not yet fully achieved. Here, we present a type of benchmark that we call “closed,” in which an initial network of known community structure is progressively converted into a second network whose communities are also known. This approach differs from all previously published ones, in which networks evolve toward randomness. The use of this type of benchmark allows us to monitor the transformation of the community structure of a network. Moreover, we can predict the optimal behavior of the variation of information, a measure of the quality of the partitions obtained, at any moment of the process. This enables us in many cases to determine the best partition among those suggested by different algorithms. Also, since any network can be used as a starting point, extensive studies and comparisons can be performed using a heterogeneous set of structures, including random ones. These properties make our benchmarks a general standard for comparing community detection algorithms.

  3. Structural and dynamical properties of complex networks

    NASA Astrophysics Data System (ADS)

    Ghoshal, Gourab

    Recent years have witnessed a substantial amount of interest within the physics community in the properties of networks. Techniques from statistical physics coupled with the widespread availability of computing resources have facilitated studies ranging from large scale empirical analysis of the worldwide web, social networks, biological systems, to the development of theoretical models and tools to explore the various properties of these systems. Following these developments, in this dissertation, we present and solve for a diverse set of new problems, investigating the structural and dynamical properties of both model and real world networks. We start by defining a new metric to measure the stability of network structure to disruptions, and then using a combination of theory and simulation study its properties in detail on artificially generated networks; we then compare our results to a selection of networks from the real world and find good agreement in most cases. In the following chapter, we propose a mathematical model that mimics the structure of popular file-sharing websites such as Flickr and CiteULike and demonstrate that many of its properties can solved exactly in the limit of large network size. The remaining part of the dissertation primarily focuses on the dynamical properties of networks. We first formulate a model of a network that evolves under the addition and deletion of vertices and edges, and solve for the equilibrium degree distribution for a variety of cases of interest. We then consider networks whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. In addition we define a simple local algorithm by which appropriate rules can be implemented in practice. Finally, we conclude our

  4. The pH-Dependent Picosecond Structural Dynamics in the Distal Pocket of Nitrophorin 4 Investigated by 2D IR Spectroscopy

    PubMed Central

    Cheng, Mark; Brookes, Jennifer F.; Montfort, William R.; Khalil, Munira

    2013-01-01

    Nitrophorin 4 (NP4) belongs to a family of pH-sensitive, nitric oxide (NO) transporter proteins which undergo a large structural change from a closed to an open conformation at high pH to allow for NO delivery. Measuring the pH-dependent structural dynamics in NP4–NO around the ligand binding site is crucial for developing a mechanistic understanding of NO binding and release. In this study we use coherent two-dimensional infrared (2D IR) spectroscopy to measure picosecond structural dynamics sampled by the nitrosyl stretch in NP4–NO as a function of pH at room temperature. Our results show that both the closed and open conformers of the protein are present at low (pD 5.1) and high (pD 7.9) pH conditions. The closed and open conformers are characterized by two frequencies of the nitrosyl stretching vibration labeled A0 and A1, respectively. Analysis of the 2D IR lineshapes reveals that at pD 5.1, the closed conformer experiences structural fluctuations arising from solvation dynamics on a ∼3 ps timescale. At pD 7.9, both the open and closed conformers exhibit fluctuations on a ∼1 ps timescale. At both pD conditions, the closed conformers maintain a static distribution of structures within the experimental time window of 100 ps. This is in contrast to the open conformer, which is able to interconvert among its sub-states on a ∼100 ps timescale. Our results directly measure the timescales of solvation dynamics in the distal pocket, the flexibility of the open conformation at high pH, and the rigidity of the closed conformers at both pH conditions. We discuss how the pH dependent equilibrium structural fluctuations of the nitrosyl ligand measured in this study are related to the uptake and delivery of nitric oxide in Nitrophorin 4. PMID:23885811

  5. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  6. A Topological Perspective of Neural Network Structure

    NASA Astrophysics Data System (ADS)

    Sizemore, Ann; Giusti, Chad; Cieslak, Matthew; Grafton, Scott; Bassett, Danielle

    The wiring patterns of white matter tracts between brain regions inform functional capabilities of the neural network. Indeed, densely connected and cyclically arranged cognitive systems may communicate and thus perform distinctly. However, previously employed graph theoretical statistics are local in nature and thus insensitive to such global structure. Here we present an investigation of the structural neural network in eight healthy individuals using persistent homology. An extension of homology to weighted networks, persistent homology records both circuits and cliques (all-to-all connected subgraphs) through a repetitive thresholding process, thus perceiving structural motifs. We report structural features found across patients and discuss brain regions responsible for these patterns, finally considering the implications of such motifs in relation to cognitive function.

  7. Investigation of 2D photonic crystal structure based channel drop filter using quad shaped photonic crystal ring resonator for CWDM system

    NASA Astrophysics Data System (ADS)

    Chhipa, Mayur Kumar; Dusad, Lalit Kumar

    2016-05-01

    In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 and 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm2.

  8. Identifying community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Chenxi; Duan, Yubing

    2015-07-01

    A wide variety of applications could be formulated to resolve the problem of finding all communities from a given network, ranging from social and biological network analysis to web mining and searching. In this study, we propose the concept of virtual attractive strength between each pair of node in networks, and then give the definition of community structure based on the proposed attractive strength. Furthermore, we present a community detection method by moving vertices to the clusters that produce the largest attractive strengths to them until the division of network reaches unchanged. Experimental results on synthetic and real networks indicate that the proposed approach has favorite effectiveness and fast convergence speed, which provides an efficient method for exploring and analyzing complex systems.

  9. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  10. Five inorganic–organic hybrids based on Keggin polyanion [SiMo{sub 12}O{sub 40}]{sup 4−}: From 0D to 2D network

    SciTech Connect

    Yu, Xiao-Yang; Cui, Xiao-Bing; Lu, Jing; Luo, Yu-Hui; Zhang, Hong; Gao, Wei-Ping

    2014-01-15

    Five new inorganic–organic hybrids based on 4,4′-bipyridine and Keggin-type polyoxometalate [SiMo{sub 12}O{sub 40}]{sup 4−}, (SiMo{sub 12}O{sub 40})(H{sub 2}bipy){sub 2}·2H{sub 2}O (1), [Cu(Hbipy){sub 4}(HSiMo{sub 12}O{sub 40})(SiMo{sub 12}O{sub 40})](H{sub 2}bipy){sub 0.5}·7H{sub 2}O (2), [Cu{sub 2}(Hbipy){sub 6}(bipy)(SiMo{sub 12}O{sub 40}){sub 3}](Hbipy){sub 2}·6H{sub 2}O (3), [Cu(bipy){sub 2}(SiMo{sub 12}O{sub 40})](H{sub 2}bipy)·2H{sub 2}O (4) and [Cu{sub 2}(bipy){sub 4}(H{sub 2}O){sub 4}](SiMo{sub 12}O{sub 40})·13H{sub 2}O (5) (bipy=4,4′-bipyridine), have been hydrothermally synthesized. 1 consists of H{sub 2}bipy{sup 2+} and [SiMo{sub 12}O{sub 40}]{sup 4−} units. In 2, two [SiMo{sub 12}O{sub 40}]{sup 4−} are bridged by [Cu(Hbipy){sub 4}]{sup 6+} to form a [Cu(Hbipy){sub 4}(SiMo{sub 12}O{sub 40}){sub 2}]{sup 2−} dimmer. In 3, [SiMo{sub 12}O{sub 40}]{sup 4−} polyanions acting as bidentated bridging ligands and monodentated auxiliary ligands connect [Cu{sub 2}(Hbipy){sub 6}(bipy)]{sup 8+} units into a 1D zigzag chain. In 4, [SiMo{sub 12}O{sub 40}]{sup 4−} polyanions bridge neighboring 1D [Cu(bipy){sub 2}]{sup 2+} double chains into a 2D extended layer. In 5, [SiMo{sub 12}O{sub 40}]{sup 4−} polyanions acting as templates site alternately upon the grids from both sides of the square grid [Cu{sub 2}(bipy){sub 4}(H{sub 2}O){sub 4}]{sup 4+} layer. In addition, the electrochemical behaviors of 1, 3 and 4 and the photocatalysis property of 1 have been investigated. - Graphical abstract: Five new compounds based on [SiMo{sub 12}O{sub 40}]{sup 4−} have been successfully generated. [SiMo{sub 12}O{sub 40}]{sup 4−} anions play different roles in the structures of the five compounds. Display Omitted - Highlights: • Five new compounds based on [SiMo{sub 12}O{sub 40}]{sup 4−} have been generated. • [SiMo{sub 12}O{sub 40}]{sup 4−} anions play different roles in the five structures. • The electrochemical behaviors of 1, 3 and 4 have been

  11. Network deconstruction reveals network structure in responsive microgels.

    PubMed

    Smith, Michael H; Herman, Emily S; Lyon, L Andrew

    2011-04-14

    Detailed characterization of hydrogel particle erosion revealed critical physicochemical differences between spheres, where network decomposition was informative of network structure. Real-time, in situ monitoring of the triggered erosion of colloidal hydrogels (microgels) was performed via multiangle light scattering. The solution-average molar mass and root-mean-square radii of eroding particles were measured as a function of time for microgels prepared from N-isopropylacrylamide (NIPAm) or N-isopropylmethacrylamide (NIPMAm), copolymerized with a chemically labile cross-linker (1,2-dihydroxylethylene)bisacrylamide (DHEA). Precipitation polymerization was employed to yield particles of comparable dimensions but with distinct topological features. Heterogeneous cross-linker incorporation resulted in a heterogeneous network structure for pNIPAm microgels. During the erosion reaction, mass loss proceeded from the exterior toward the interior of the polymer. In contrast, pNIPMAm microgels had a more homogeneous network structure, which resulted in a more uniform mass loss throughout the particle during erosion. Although both particle types degraded into low molar mass products, pNIPAm microgels were incapable of complete dissolution due to the presence of nondegradable cross-links arising from chain transfer and branching during particle synthesis. The observations described herein provide insight into key design parameters associated with the synthesis of degradable hydrogel particles, which may be of use in various biotechnological applications. PMID:21425815

  12. 2D and 3D Shear-Wave Velocity Structure to >1 Km Depth from Ambient and Active Surface Waves: Three "Deep Remi" Case Studies

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Pancha, A.; Pullammanappallil, S. K.

    2014-12-01

    Refraction microtermor routinely assesses 1D and 2D velocity-depth profiles to shallow depths of approximately 100 m primarily for engineering applications. Estimation of both shallow and deep (>100 m) shear-velocity structure are key elements in the assessment of urban areas for potential earthquake ground shaking, damage, and the calibration of recorded ground motions. Three independent studies investigated the ability of the refraction microtremor technology to image deep velocity structure, to depths exceeding 1 km (Deep ReMi). In the first study, we were able to delineate basin thicknesses of up to 900 m and the deep-basin velocity structure beneath the Reno-area basin. Constraints on lateral velocity changes in 3D as well as on velocity profiles extended down to 1500 m, and show a possible fault offset. This deployment used 30 stand-alone wireless instruments mated to 4.5 Hz geophones, along each of five arrays 2.9 to 5.8 km long. Rayleigh-wave dispersion was clear at frequencies as low as 0.5 Hz using 120 sec ambient urban noise records. The results allowed construction of a 3D velocity model, vetted by agreement with gravity studies. In a second test, a 5.8 km array delimited the southern edge of the Tahoe Basin, with constraints from gravity. There, bedrock depth increased by 250 m in thickness over a distance of 1600 m, with definition of the velocity of the deeper basin sediments. The third study delineated the collapse region of an underground nuclear explosion within a thick sequence of volcanic extrusives, using a shear-wave minivibe in a radial direction, and horizontal geophones. Analysis showed the cavity extends to 620 m depth, with a width of 180 m and a height of 220 m. Our results demonstrate that deep velocity structure can be recovered using ambient noise. This technique offers the ability to define 2D and 3D structural representations essential for seismic hazard evaluation.

  13. Exploration of tetrahedral structures in silicate cathodes using a motif-network scheme

    DOE PAGESBeta

    Zhao, Xin; Wu, Shunqing; Lv, Xiaobao; Nguyen, Manh Cuong; Wang, Cai -Zhuang; Lin, Zijing; Zhu, Zi -Zhong; Ho, Kai -Ming

    2015-10-26

    Using a motif-network search scheme, we studied the tetrahedral structures of the dilithium/disodium transition metal orthosilicates A2MSiO4 with A = Li or Na and M = Mn, Fe or Co. In addition to finding all previously reported structures, we discovered many other different tetrahedral-network-based crystal structures which are highly degenerate in energy. In addition, these structures can be classified into structures with 1D, 2D and 3D M-Si-O frameworks. A clear trend of the structural preference in different systems was revealed and possible indicators that affect the structure stabilities were introduced. For the case of Na systems which have been muchmore » less investigated in the literature relative to the Li systems, we predicted their ground state structures and found evidence for the existence of new structural motifs.« less

  14. Exploration of tetrahedral structures in silicate cathodes using a motif-network scheme

    PubMed Central

    Zhao, Xin; Wu, Shunqing; Lv, Xiaobao; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Lin, Zijing; Zhu, Zi-Zhong; Ho, Kai-Ming

    2015-01-01

    Using a motif-network search scheme, we studied the tetrahedral structures of the dilithium/disodium transition metal orthosilicates A2MSiO4 with A = Li or Na and M = Mn, Fe or Co. In addition to finding all previously reported structures, we discovered many other different tetrahedral-network-based crystal structures which are highly degenerate in energy. These structures can be classified into structures with 1D, 2D and 3D M-Si-O frameworks. A clear trend of the structural preference in different systems was revealed and possible indicators that affect the structure stabilities were introduced. For the case of Na systems which have been much less investigated in the literature relative to the Li systems, we predicted their ground state structures and found evidence for the existence of new structural motifs. PMID:26497381

  15. Exploration of tetrahedral structures in silicate cathodes using a motif-network scheme

    SciTech Connect

    Zhao, Xin; Wu, Shunqing; Lv, Xiaobao; Nguyen, Manh Cuong; Wang, Cai -Zhuang; Lin, Zijing; Zhu, Zi -Zhong; Ho, Kai -Ming

    2015-10-26

    Using a motif-network search scheme, we studied the tetrahedral structures of the dilithium/disodium transition metal orthosilicates A2MSiO4 with A = Li or Na and M = Mn, Fe or Co. In addition to finding all previously reported structures, we discovered many other different tetrahedral-network-based crystal structures which are highly degenerate in energy. In addition, these structures can be classified into structures with 1D, 2D and 3D M-Si-O frameworks. A clear trend of the structural preference in different systems was revealed and possible indicators that affect the structure stabilities were introduced. For the case of Na systems which have been much less investigated in the literature relative to the Li systems, we predicted their ground state structures and found evidence for the existence of new structural motifs.

  16. NAPS: Network Analysis of Protein Structures.

    PubMed

    Chakrabarty, Broto; Parekh, Nita

    2016-07-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue-residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein-protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  17. The structure and evolution of story networks.

    PubMed

    Karsdorp, Folgert; van den Bosch, Antal

    2016-06-01

    With this study, we advance the understanding about the processes through which stories are retold. A collection of story retellings can be considered as a network of stories, in which links between stories represent pre-textual (or ancestral) relationships. This study provides a mechanistic understanding of the structure and evolution of such story networks: we construct a story network for a large diachronic collection of Dutch literary retellings of Red Riding Hood, and compare this network to one derived from a corpus of paper chain letters. In the analysis, we first provide empirical evidence that the formation of these story networks is subject to age-dependent selection processes with a strong lopsidedness towards shorter time-spans between stories and their pre-texts (i.e. 'young' story versions are preferred in producing new versions). Subsequently, we systematically compare these findings with and among predictions of various formal models of network growth to determine more precisely which kinds of attractiveness are also at play or might even be preferred as explicatory models. By carefully studying the structure and evolution of the two story networks, then, we show that existing stories are differentially preferred to function as a new version's pre-text given three types of attractiveness: (i) frequency-based and (ii) model-based attractiveness which (iii) decays in time. PMID:27429767

  18. The structure and evolution of story networks

    PubMed Central

    Karsdorp, Folgert; van den Bosch, Antal

    2016-01-01

    With this study, we advance the understanding about the processes through which stories are retold. A collection of story retellings can be considered as a network of stories, in which links between stories represent pre-textual (or ancestral) relationships. This study provides a mechanistic understanding of the structure and evolution of such story networks: we construct a story network for a large diachronic collection of Dutch literary retellings of Red Riding Hood, and compare this network to one derived from a corpus of paper chain letters. In the analysis, we first provide empirical evidence that the formation of these story networks is subject to age-dependent selection processes with a strong lopsidedness towards shorter time-spans between stories and their pre-texts (i.e. ‘young’ story versions are preferred in producing new versions). Subsequently, we systematically compare these findings with and among predictions of various formal models of network growth to determine more precisely which kinds of attractiveness are also at play or might even be preferred as explicatory models. By carefully studying the structure and evolution of the two story networks, then, we show that existing stories are differentially preferred to function as a new version's pre-text given three types of attractiveness: (i) frequency-based and (ii) model-based attractiveness which (iii) decays in time. PMID:27429767

  19. Aspects of alternative network structure evolution

    NASA Astrophysics Data System (ADS)

    Singh, Naveen Kumar

    The focus of this prospectus is to study a new and simple process method to prepare and characterize elastomers and hydrogels. A prestressed double network thermoplastic elastomer and hydrogel is prepared by a two step curing process where first network is introduced in the unstrained state, while the second is introduced in the strained state, hence varying prestress after first curing step. The focus of this thesis is towards the understanding of the basic network mechanism governing the final physical, mechanical and thermo-mechanical properties of these prestressed double networks and relating them to their microstructure and morphology. Moreover, the major factors governing the final properties of these networks are being identified including the type of crosslinks, the extent of crosslinking in the two states of stresses/strains, mode of deformation and the behavior is compared with simple theoretical models. The network structure of swollen hydrogel networks has been studied and the effect of various topological constraints ranging from the crosslinks to entangled linear chains to stiff nanofillers have been studied. The study has been utilized to propose a filler reinforcing mechanism for elastomeric networks and also identify the competition between the effect of various constraints in the final steady state and relaxation properties of the swollen hydrogel networks. The final part of this thesis focuses towards the network evolution in ultra high molecular weight poly (tetrafluoroethylene) (PTFE) in its melt state. Initial studies on the viscoelastic properties of PTFE in its melt state has been discussed and later a method to alter the network evolution utilizing supercritical carbon dioxide has been discussed. The effect of supercritical carbon dioxide on the melt of PTFE has been observed by utilizing a new setup to understand the behavior of PTFE in-situ in presence of supercritical carbon dioxide.

  20. Community Structure in Online Collegiate Social Networks

    NASA Astrophysics Data System (ADS)

    Traud, Amanda; Kelsic, Eric; Mucha, Peter; Porter, Mason

    2009-03-01

    Online social networking sites have become increasingly popular with college students. The networks we studied are defined through ``friendships'' indicated by Facebook users from UNC, Oklahoma, Caltech, Georgetown, and Princeton. We apply the tools of network science to study the Facebook networks from these five different universities at a single point in time. We investigate each single-institution network's community structure, which we obtain through partitioning the graph using an eigenvector method. We use both graphical and quantitative tools, including pair-counting methods, which we interpret through statistical analysis and permutation tests to measure the correlations between the network communities and a set of characteristics given by each user (residence, class year, major, and high school). We also analyze the single gender subsets of these networks, and the impact of missing demographical data. Our study allows us to compare the online social networks for the five schools as well as infer differences in offline social interactions. At the schools studied, we were able to define which characteristics of the Facebook users correlate best with friendships.

  1. Two-dimensional tungsten oxide nanowire networks

    NASA Astrophysics Data System (ADS)

    Zhao, Y. M.; Li, Y. H.; Ahmad, I.; McCartney, D. G.; Zhu, Y. Q.; Hu, W. B.

    2006-09-01

    The authors report the synthesis and characterization of two-dimensional (2D) single crystalline nanonetworks consisting of tungsten oxide nanowires with diameters of ca. 20nm. The 2D networks are believed to result from the nanowire growth along the four crystallographic equivalent directions of ⟨110⟩ in the tetragonal WO2.9 structure. These 2D tungsten oxide networks may be potential precursors for creating 2D networks comprising WS2 nanotubes.

  2. Electronic structures and magnetic stabilities of 2D Mn-doped GaAs nanosheets: The role of long-range exchange interactions and doping strategies

    SciTech Connect

    Lan, Mu; Xiang, Gang Zhang, Xi

    2014-08-28

    We investigate the structural, electronic and magnetic properties of Mn atoms doped two-dimensional (2D) hexagonal GaAs nanosheets (GaAsNSs) using both first-principle calculations and Monte Carlo simulations. The first-principle molecular dynamics is first used to test the structural stability of Mn-doped GaAsNS ((Ga,Mn)AsNS). The analysis of spin-resolved electronic structures and determination of magnetic exchange interactions based on density functional theory (DFT) calculations reveals the existence of long-range exchange interaction in the system. Finally, Metropolis Monte Carlo simulation is employed to estimate Curie temperatures (T{sub C}s) of (Ga,Mn)AsNSs with different doping concentrations by different doping strategies. The results indicate that a T{sub C} up to 82 K can be obtained in regularly-doped (Ga,Mn)AsNSs and doping strategies have prominent impact on T{sub C}s of the systems, which emphasizes the importance of both long-range interactions and doping strategies in reduced dimensional diluted magnetic semiconductors (DMSs)

  3. 2D magnetotelluric imaging of the Anqing-Guichi ore district, Yangtze metallogenic belt, eastern China: An insight into the crustal structure and tectonic units

    NASA Astrophysics Data System (ADS)

    Chen, Xiangbin; Yan, Jiayong

    2016-08-01

    Two parallel NW-trending magnetotelluric (MT) profiles were placed perpendicularly to the main structures of the Anqing-Guichi ore district, one of the seven ore districts in the middle-lower Yangtze River metallogenic belt of eastern China. In October-December 2013, the MT data acquisition was carried out at 117 sites with 0.5-1 km site spacing. The MT data has a good quality in the frequency range between 320 and 0.01 Hz. The dimensionality analysis and 2D resistivity inversion results indicate that: (1) the deep of the ore district with three-dimensional structural characteristics, but two-dimensional structural characteristics for shallow; (2) there is a clear correlation between resistivity and the main geological units of the ore district, as well as correlation with mapped surface faults; (3) the Gandan deep fault (GDF) and Jiangnan deep fault (JNF) extend from the surface to 10 km deep, with dip of NW45°, and dip angles larger than 60°. A series of NE-trending acidic intrusive rocks were controlled by the GDF.

  4. Resolving 2D Amorphous Materials with Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim

    Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.

  5. Structural covariance networks in the mouse brain.

    PubMed

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks. PMID:26802512

  6. Morphisms of reaction networks that couple structure to function

    PubMed Central

    2014-01-01

    Background The mechanisms underlying complex biological systems are routinely represented as networks. Network kinetics is widely studied, and so is the connection between network structure and behavior. However, similarity of mechanism is better revealed by relationships between network structures. Results We define morphisms (mappings) between reaction networks that establish structural connections between them. Some morphisms imply kinetic similarity, and yet their properties can be checked statically on the structure of the networks. In particular we can determine statically that a complex network will emulate a simpler network: it will reproduce its kinetics for all corresponding choices of reaction rates and initial conditions. We use this property to relate the kinetics of many common biological networks of different sizes, also relating them to a fundamental population algorithm. Conclusions Structural similarity between reaction networks can be revealed by network morphisms, elucidating mechanistic and functional aspects of complex networks in terms of simpler networks. PMID:25128194

  7. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  8. Structurally robust control of complex networks

    NASA Astrophysics Data System (ADS)

    Nacher, Jose C.; Akutsu, Tatsuya

    2015-01-01

    Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role.

  9. Structurally robust control of complex networks.

    PubMed

    Nacher, Jose C; Akutsu, Tatsuya

    2015-01-01

    Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role. PMID:25679675

  10. The solid-state structures of two photoluminescent 2D silver(I) arenedisulfonate incorporating aminopyrimidyl ligands: Substituents influence on π⋯π interaction

    NASA Astrophysics Data System (ADS)

    Sun, Di; Zhang, Na; Wei, Zhan-Hua; Yang, Cheng-Feng; Huang, Rong-Bin; Zheng, Lan-Sun

    2010-09-01

    Two silver(I) arenedisulfonate incorporating aminopyrimidyl ligands of the formula [Ag(apym)(nds) 0.5] n ( 1) and [Ag(dmapym)(nds) 0.5] n ( 2) (apym = 2-aminopyrimidine, dmapym = 2-amino-4,6-dimethylpyrimidine, H2nds = 1,5-naphthalenedisulfonic acid) were synthesized and characterized by element analysis, IR spectroscopy and X-ray single-crystal diffraction. Both 1 and 2 are undulated 2D 4 4- sql nets constructed by μ 2-nds and μ 2-aminopyrimidyl ligands incorporating Ag(I) centers. When apym was replaced by dmapym, no obvious change of structures from 1 to 2 was observed, however, substituent effect on the structures was unambiguously presented in π⋯π interactions. The shortest centroid⋯centroid distances between pyrimidyl and naphthyl of 1 and 2 are 3.623(5) and 4.091(3) Å, respectively, which is due to the combination of steric and electronic effect of two more methyl groups. Moreover, the photoluminescence properties of 1 and 2 were investigated in the solid state at room temperature.

  11. Bifurcation structure of the special class of nonstationary regimes emerging in the 2D inertially coupled, unit-cell model: Analytical study

    NASA Astrophysics Data System (ADS)

    Vorotnikov, K.; Starosvetsky, Y.

    2016-09-01

    Present work is devoted to the analytical investigation of the bifurcation structure of special class of nonstationary low-energy regimes emerging in the locally resonant unit-cell model. System under consideration comprises an outer mass with internal rotator and subject to the 2D, nonlinear local potential. These regimes are characterized by the slow, purely rotational motion of the rotator synchronized with the periodic energy beats between the axial and the lateral vibrations of the outer element. Thus the angular speed of the rotator and the beating frequency of the outer element satisfy the 1:2 resonance condition. In the present study these regimes are referred to as regimes of synchronous nonlinear beats (RSNB). Using the regular muti-scale analysis in the limit of low energy excitation we derive the slow-flow model. To showcase the evolution of RSNBs we used the special Poincaré map technique applied on the slow-flow model. Results of the Poincaré sections unveiled some interesting local bifurcations undergone by these regimes. Further analysis of the slow-flow model enabled us to describe the RSNBs analytically as well as exposed their entire bifurcation structure. The bifurcation analysis has shown the coexistence of several branches of RSNBs corresponding to the regimes of weak and strong, two-dimensional, recurrent energy channeling. We substantiate the results of the analytical study with numerical simulations of the full model and find them to be in the very good agreement.

  12. Optical properties and structural phase transitions of lead-halide based inorganic-organic 3D and 2D perovskite semiconductors under high pressure

    NASA Astrophysics Data System (ADS)

    Matsuishi, K.; Ishihara, T.; Onari, S.; Chang, Y. H.; Park, C. H.

    2004-11-01

    Optical absorption, photoluminescence and Raman scattering of lead-halide based inorganic-organic perovskite semiconductors were measured under quasi-hydrostatic pressure at room temperature. For the 3D perovskite semiconductor, (CH3NH3)PbBr3, the free exciton photoluminescence band exhibits red-shifts with pressure, and jumps to a higher energy by 0.07 eV at 0.8 GPa, which is associated with a phase transition from a cubic to an orthorhombic structure confirmed by Raman scattering. Above the phase transition pressure, the exciton band shows blue-shifts with further increasing pressure, and eventually disappears above 4.7 GPa. The results are compared with those for the 2D perovskite semiconductor, (C4H9NH3)2PbI4. First principles pseudopotential calculations were performed to investigate changes in octahedral distortion and electronic band structures with pressure. The calculations have explained the origins of the intriguing changes in the electronic states with pressure in view of bonding characters between atomic orbitals in octahedra.

  13. Five novel transition metal coordination polymers with 2D/3D framework structure based on flexible H{sub 2}tzda and ancillary ligand bpe

    SciTech Connect

    Wang Yuting; Xu Yan; Fan Yaoting; Hou Hongwei

    2009-10-15

    Five new transition metal coordination polymers based on H{sub 2}tzda and co-ligand bpe, {l_brace}[M(tzda)(bpe)].H{sub 2}O{r_brace}{sub n} [M=Zn(1), Cd(2), Mn(3), Co(4)] and [Ni{sub 2}(tzda){sub 2}(bpe){sub 2}(H{sub 2}O)]{sub n} (5) [H{sub 2}tzda=(1,3,4-thiadiazole-2,5-diyldithio)diacetic acid, bpe=1,2-bis(4-pyridyl)ethane], have been hydrothermally synthesized and structurally characterized. Compounds 1-4 feature a 2D-layered architecture generated from [M(tzda)]{sub n} moiety with double-chain structure cross-linking bpe spacers. However, the conformations bpe adopts in 3 and 4 are different from those in 1 and 2 due to the rotation of C-C single bond in bpe. Polymer 5 exhibits an interesting 3D porous framework with 2-fold interpenetration, in which intriguing 1D double helix chains are observed. The photoluminescence properties of 1 and 2 in the solid-state at room temperature are investigated. In addition, variable-temperature magnetic data show weak antiferromagnetic behavior in 3-5. - Graphical abstract: Five new transition metal coordination polymers based on flexible H{sub 2}tzda and bpe have been hydrothermally synthesized and characterized by X-ray diffraction, luminescent emission spectra and low-temperature magnetic measurements, respectively.

  14. X-ray study of femtosecond structural dynamics in the 2D charge density wave compound 1T-TaS2

    NASA Astrophysics Data System (ADS)

    Laulhé, C.; Cario, L.; Corraze, B.; Janod, E.; Huber, T.; Lantz, G.; Boulfaat, S.; Ferrer, A.; Mariager, S. O.; Johnson, J. A.; Grübel, S.; Lübcke, A.; Ingold, G.; Beaud, P.; Johnson, S. L.; Ravy, S.

    2015-03-01

    1T-TaS2 is a 2D metallic compound which undergoes a series of electronically driven phase transitions toward charge density wave and Mott phases. Its intricate electron-phonon interactions and electron-electron correlations have been promising peculiar out-of-equilibrium dynamics. In this paper, we provide the first direct information on the atomic structure response to an ultra-fast infrared laser pulse in the commensurate phase of 1T-TaS2, by using femtosecond time-resolved X-ray diffraction. We show that ultra-fast excitation with near-infrared photons drives a displacive excitation of the amplitude mode of the commensurate charge density wave. About 3 ps after laser excitation, the system reaches a new, photo-induced state that is maintained for at least 10 ps. We give evidence that this long-lived state exhibits the same structural modulation as in the thermodynamically stable commensurate phase, with a large correlation length. Only the average amplitude of the modulation is found to decrease. We propose that the long-lived state is formed from the commensurate phase by reducing the modulation amplitude on few superlattice nodes. The underlying mechanism proposed is the annihilation of self-trapped polarons.

  15. The structure of scientific collaboration networks

    PubMed Central

    Newman, M. E. J.

    2001-01-01

    The structure of scientific collaboration networks is investigated. Two scientists are considered connected if they have authored a paper together and explicit networks of such connections are constructed by using data drawn from a number of databases, including MEDLINE (biomedical research), the Los Alamos e-Print Archive (physics), and NCSTRL (computer science). I show that these collaboration networks form “small worlds,” in which randomly chosen pairs of scientists are typically separated by only a short path of intermediate acquaintances. I further give results for mean and distribution of numbers of collaborators of authors, demonstrate the presence of clustering in the networks, and highlight a number of apparent differences in the patterns of collaboration between the fields studied. PMID:11149952

  16. Self-healing networks: redundancy and structure.

    PubMed

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-01-01

    We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. We then analyze the effect of the level of redundancy on the resilience to multiple failures; in particular, we measure the fraction of nodes still served for increasing levels of network damages. Finally, we study the effects of redundancy under different connectivity patterns-from planar grids, to small-world, up to scale-free networks-on healing performances. Small-world topologies show that introducing some long-range connections in planar grids greatly enhances the resilience to multiple failures with performances comparable to the case of the most resilient (and least realistic) scale-free structures. Obvious applications of self-healing are in the important field of infrastructural networks like gas, power, water, oil distribution systems. PMID:24533065

  17. Structural phase transition in evolving networks.

    PubMed

    Kim, Sang-Woo; Noh, Jae Dong

    2009-08-01

    A network as a substrate for dynamic processes may have its own dynamics. We propose a model for networks which evolve together with diffusing particles through a coupled dynamics and investigate emerging structural property. The model consists of an undirected weighted network of fixed mean degree and randomly diffusing particles of fixed density. The weight w of an edge increases by the amount of traffics through its connecting nodes or decreases by a constant factor. Edges are removed with the probability P(rew)=1/(1+w) and replaced by new ones having w=0 at random locations. We find that the model exhibits a structural phase transition between the homogeneous phase characterized by an exponentially decaying degree distribution and the heterogeneous phase characterized by the presence of hubs. The hubs emerge as a consequence of a positive feedback between the particle and the edge dynamics. PMID:19792212

  18. Bayesian network structure learning using quantum annealing

    NASA Astrophysics Data System (ADS)

    O'Gorman, B.; Babbush, R.; Perdomo-Ortiz, A.; Aspuru-Guzik, A.; Smelyanskiy, V.

    2015-02-01

    We introduce a method for the problem of learning the structure of a Bayesian network using the quantum adiabatic algorithm. We do so by introducing an efficient reformulation of a standard posterior-probability scoring function on graphs as a pseudo-Boolean function, which is equivalent to a system of 2-body Ising spins, as well as suitable penalty terms for enforcing the constraints necessary for the reformulation; our proposed method requires 𝓞(n2) qubits for n Bayesian network variables. Furthermore, we prove lower bounds on the necessary weighting of these penalty terms. The logical structure resulting from the mapping has the appealing property that it is instance-independent for a given number of Bayesian network variables, as well as being independent of the number of data cases.

  19. WN4 longitudinal structure in the O (5S - 3P) and O+ (2P - 2D) ionospheric emissions as simulated by the C-IAM

    NASA Astrophysics Data System (ADS)

    Martynenko, Oleg; Ward, William E.; Shepherd, Gordon; Cho, Young-Min; Namgaladze, Alexander; Fomichev, Victor; McConnell, John; Semeniuk, Kirill; Beagley, Stephen

    A newly developed Canadian Ionosphere and Atmosphere Model (C-IAM) is introduced. It is being developed on the basis of two existing first principle models: the extended Canadian Middle Atmosphere Model (CMAM) and the ionospheric part of the Upper Atmosphere Model (UAM). The model extends from the surface to the inner magnetosphere and hence, is able to describe in a self-consistent way how lower atmosphere dynamical variability propagates into and affects the upper atmosphere and ionosphere. The C-IAM was applied to model the spatial structure of two different ionospheric emissions: the nighttime 135.6 nm O ( (5) S - (3) P) and daytime 732 nm O (+) ( (2) P - (2) D) emissions. The IMAGE satellite observations showed a wave number 4 (WN4) longitudinal structure in the 135.6 nm ionospheric emission emanating from the equatorial ionization anomaly at 350-400 km near 20:00 local time at each longitude. C-IAM simulations are in a good agreement with the observations. Model result analysis reveals that the main mechanism for generating the WN4 structure in the 135.6 nm emission is a modification of the ionospheric dynamo field caused by longitudinal variation of the zonal wind due to waves penetrating from the lower atmosphere. It was also shown, that during geomagnetic storms and substorms the high-latitudinal electric field fully suppresses the dynamo, so that the emission intensity dramatically decreases and the WN4 structure does not appear. The 732 nm emission simulated with the C-IAM also reveals the WN4 structure. Similar to the 135.6 nm emission, this structure is caused by waves penetrating from the lower atmosphere. However, the mechanism of excitation is quite different. The 732 nm emission is produced by the instant local ionization and excitation, and, hence, its variation is caused by the neutral density variability in the F2 region (above 200 km) without any involvement of the electric field effects. Correspondingly, latitudinal distribution of this

  20. Social Network Structures among Groundnut Farmers

    ERIC Educational Resources Information Center

    Thuo, Mary; Bell, Alexandra A.; Bravo-Ureta, Boris E.; Okello, David K.; Okoko, Evelyn Nasambu; Kidula, Nelson L.; Deom, C. Michael; Puppala, Naveen

    2013-01-01

    Purpose: Groundnut farmers in East Africa have experienced declines in production despite research and extension efforts to increase productivity. This study examined how social network structures related to acquisition of information about new seed varieties and productivity among groundnut farmers in Uganda and Kenya.…

  1. Tensegrity II. How structural networks influence cellular information processing networks

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  2. Quantification of transition dipole strengths using 1D and 2D spectroscopy for the identification of molecular structures via exciton delocalization: Application to α-helices

    PubMed Central

    Grechko, Maksim; Zanni, Martin T.

    2012-01-01

    Vibrational and electronic transition dipole strengths are often good probes of molecular structures, especially in excitonically coupled systems of chromophores. One cannot determine transition dipole strengths using linear spectroscopy unless the concentration is known, which in many cases it is not. In this paper, we report a simple method for measuring transition dipole moments from linear absorption and 2D IR spectra that does not require knowledge of concentrations. Our method is tested on several model compounds and applied to the amide I′ band of a polypeptide in its random coil and α-helical conformation as modulated by the solution temperature. It is often difficult to confidently assign polypeptide and protein secondary structures to random coil or α-helix by linear spectroscopy alone, because they absorb in the same frequency range. We find that the transition dipole strength of the random coil state is 0.12 ± 0.013 D2, which is similar to a single peptide unit, indicating that the vibrational mode of random coil is localized on a single peptide unit. In an α-helix, the lower bound of transition dipole strength is 0.26 ± 0.03 D2. When taking into account the angle of the amide I′ transition dipole vector with respect to the helix axis, our measurements indicate that the amide I′ vibrational mode is delocalized across a minimum of 3.5 residues in an α-helix. Thus, one can confidently assign secondary structure based on exciton delocalization through its effect on the transition dipole strength. Our method will be especially useful for kinetically evolving systems, systems with overlapping molecular conformations, and other situations in which concentrations are difficult to determine. PMID:23163364

  3. Quantification of transition dipole strengths using 1D and 2D spectroscopy for the identification of molecular structures via exciton delocalization: Application to α-helices

    NASA Astrophysics Data System (ADS)

    Grechko, Maksim; Zanni, Martin T.

    2012-11-01

    Vibrational and electronic transition dipole strengths are often good probes of molecular structures, especially in excitonically coupled systems of chromophores. One cannot determine transition dipole strengths using linear spectroscopy unless the concentration is known, which in many cases it is not. In this paper, we report a simple method for measuring transition dipole moments from linear absorption and 2D IR spectra that does not require knowledge of concentrations. Our method is tested on several model compounds and applied to the amide I' band of a polypeptide in its random coil and α-helical conformation as modulated by the solution temperature. It is often difficult to confidently assign polypeptide and protein secondary structures to random coil or α-helix by linear spectroscopy alone, because they absorb in the same frequency range. We find that the transition dipole strength of the random coil state is 0.12 ± 0.013 D2, which is similar to a single peptide unit, indicating that the vibrational mode of random coil is localized on a single peptide unit. In an α-helix, the lower bound of transition dipole strength is 0.26 ± 0.03 D2. When taking into account the angle of the amide I' transition dipole vector with respect to the helix axis, our measurements indicate that the amide I' vibrational mode is delocalized across a minimum of 3.5 residues in an α-helix. Thus, one can confidently assign secondary structure based on exciton delocalization through its effect on the transition dipole strength. Our method will be especially useful for kinetically evolving systems, systems with overlapping molecular conformations, and other situations in which concentrations are difficult to determine.

  4. The structure and stratigraphy of the sedimentary succession in the Swedish sector of the Baltic Basin: New insights from vintage 2D marine seismic data

    NASA Astrophysics Data System (ADS)

    Sopher, Daniel; Erlström, Mikael; Bell, Nicholas; Juhlin, Christopher

    2016-04-01

    We present five interpreted regional seismic profiles, describing the full sedimentary sequence across the Swedish sector of the Baltic Sea. The data for the study are part of an extensive and largely unpublished 2D seismic dataset acquired between 1970 and 1990 by the Swedish Oil Prospecting Company (OPAB). The Baltic Basin is an intracratonic basin located in northern Europe. Most of the Swedish sector of the basin constitutes the NW flank of a broad synclinal depression, the Baltic Basin. In the SW of the Swedish sector lies the Hanö Bay Basin, formed by subsidence associated with inversion of the Tornquist Zone during the Late Cretaceous. The geological history presented here is broadly consistent with previously published works. We observe an area between the Hanö Bay and the Baltic Basin where the Palaeozoic strata has been affected by transpression and subsequent inversion, associated with the Tornquist Zone during the late Carboniferous-Early Permian and Late Cretaceous, respectively. We propose that the Christiansø High was a structural low during the Late Jurassic, which was later inverted in the Late Cretaceous. We suggest that a fan shaped feature in the seismic data, adjacent to the Christiansø Fault within the Hanö Bay Basin, represents rapidly deposited, coarse-grained sediments eroded from the inverted Christiansø High during the Late Cretaceous. We identify a number of faults within the deeper part of the Baltic Basin, which we also interpret to be transpressional in nature, formed during the Caledonian Orogeny in the Late Silurian-Early Devonian. East of Gotland a number of sedimentary structures consisting of Silurian carbonate reefs and Ordovician carbonate mounds, as well as a large Quaternary glacial feature are observed. Finally, we use the seismic interpretation to infer the structural and stratigraphic history of the Baltic and Hanö Bay basins within the Swedish sector.

  5. Functional and structural syntax networks in aging.

    PubMed

    Antonenko, Daria; Brauer, Jens; Meinzer, Marcus; Fengler, Anja; Kerti, Lucia; Friederici, Angela D; Flöel, Agnes

    2013-12-01

    Language abilities are known to deteriorate in aging, possibly related to decreased functional and structural connectivity within specialized brain networks. Here, we investigated syntactic ability in healthy young and older adults using a comprehensive assessment of behavioral performance, task-independent functional (FC) and structural brain connectivity (SC). Seed-based FC originating from left pars opercularis (part of Broca's area) known to support syntactic processes was assessed using resting-state functional magnetic resonance imaging, and SC using fractional anisotropy from diffusion weighted imaging, in the dorsally located superior longitudinal and the ventrally located uncinate fasciculi (SLF, UF) and forceps minor. Young compared to older adults exhibited superior syntactic performance and stronger FC within the mainly left-lateralized syntax network, which was beneficial for performance. In contrast, in older adults, FC within the mainly left-lateralized syntax network was reduced and did not correlate with performance; inter-hemispheric FC to right inferior frontal and angular gyri was detrimental for performance. In both groups, performance was positively correlated with inter-hemispheric SC. For intra-hemispheric SC, performance correlated with structural integrity of SLF in young adults and with integrity of UF in older adults. Our data show that reduced syntactic ability in older adults is associated with decreased FC within dedicated syntax networks. Moreover, young adults showed an association of syntactic ability with structural integrity of the dorsal tract, while older adults rely more on ventral fibers. In sum, our study provided novel insight into the relationship between connectivity and syntactic performance in young and older adults. In addition to elucidating age-related changes in syntax networks and their behavioral relevance, our results contribute to a better understanding of age-related changes in functional and structural brain

  6. Modeling Insurgent Network Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Gabbay, Michael; Thirkill-Mackelprang, Ashley

    2010-03-01

    We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.

  7. Information diffusion in structured online social networks

    NASA Astrophysics Data System (ADS)

    Li, Pei; Zhang, Yini; Qiao, Fengcai; Wang, Hui

    2015-05-01

    Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.

  8. Fundamental structures of dynamic social networks.

    PubMed

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-09-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision. PMID:27555584

  9. Watershed hydrology, network allometry and ecosystem structure

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.

    2003-04-01

    The lecture covers recent advances relevant to watershed hydrology, in particular derived from the realm of data now available, covering a wide range of scales and objectively collected and analyzed. It is intended to summarize results that are, in the lecturer's opinion, crucial to our current understanding of a variety of issues. Key among them, landscape evolution models, models of the hydrologic response and, indeed a scientific challenge, ecosystem structure. In particular, a new allometric scaling law for loopless networks, confirmed through studies on rivers, exact network results and computer simulations, offers unique insight on a variety of phenomena, ranging from the ubiquity of the 'quarter-power' law in biology to the origin of scaling size spectra in marine microbial ecosystems, to the proper geomorphological description of a river basin and its hydrological implications. In a sense, networks are a byproduct of the hydrologic dynamics, and indeed can be shown to be related to ecosystem structure. Si parva licet, I will provide evidence suggesting that ensemble averaging of the allometric property (where individual realizations are different networks) leads to results in excellent accord with the known limit scaling of efficient and compact networks with remarkably little scatter with implications of somewhat general character. Such results complement recent work suggesting that scaling features are quite robust to geometrical fluctuations of network properties. Finally, I shall gather from the morphological analysis on river networks the potential for predicting the main characters of the hydrologic response in ungauged basins - a task of practical nature with many social implications, possibly relevant to the Session's aims.

  10. 2D Modelling of the Gorkha earthquake through the joint exploitation of Sentinel 1-A DInSAR measurements and geological, structural and seismological information

    NASA Astrophysics Data System (ADS)

    De Novellis, Vincenzo; Castaldo, Raffaele; Solaro, Giuseppe; De Luca, Claudio; Pepe, Susi; Bonano, Manuela; Casu, Francesco; Zinno, Ivana; Manunta, Michele; Lanari, Riccardo; Tizzani, Pietro

    2016-04-01

    A Mw 7.8 earthquake struck Nepal on 25 April 2015 at 06:11:26 UTC, killing more than 9,000 people, injuring more than 23,000 and producing extensive damages. The main seismic event, known as the Gorkha earthquake, had its epicenter localized at ~82 km NW of the Kathmandu city and the hypocenter at a depth of approximately 15 km. After the main shock event, about 100 aftershocks occurred during the following months, propagating toward the south-east direction; in particular, the most energetic shocks were the Mw 6.7 and Mw 7.3 occurred on 26 April and 12 May, respectively. In this study, we model the causative fault of the earthquake by jointly exploiting surface deformation retrieved by the DInSAR measurements collected through the Sentinel 1-A (S1A) space-borne sensor and the available geological, structural and seismological information. We first exploit the analytical solution performing a back-analysis of the ground deformation detected by the first co-seismic S1A interferogram, computed by exploiting the 17/04/2015 and 29/04/2015 SAR acquisitions and encompassing the main earthquake and some aftershocks, to search for the location and geometry of the fault plane. Starting from these findings and by benefiting from the available geological, structural and seismological data, we carry out a Finite Element (FE)-based 2D modelling of the causative fault, in order to evaluate the impact of the geological structures activated during the seismic event on the distribution of the ground deformation field. The obtained results show that the causative fault has a rather complex compressive structure, dipping northward, formed by segments with different dip angles: 6° the deep segment and 60° the shallower one. Therefore, although the hypocenters of the main shock and most of the more energetic aftershocks are located along the deeper plane, corresponding to a segment of the Main Himalayan Thrust (MHT), the FE solution also indicates the contribution of the shallower

  11. The impact of structural deformation in a 2D basin and petroleum system model of the East Coast Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Burgreen, B.; Graham, S. A.; Meisling, K. E.

    2013-12-01

    The East Coast Basin of New Zealand is a petroliferous forearc basin that has eluded commercial development largely because of challenges related to its complex structural and tectonic history. Basin formation is associated with three tectonic phases: 1) a Cretaceous convergent margin phase, 2) a Late Cretaceous to Paleogene rifting to passive margin phase, and 3) a Neogene to present convergent margin phase. Beginning in Neogene time, the basin underwent multiple stages of structural deformation including low angle thrust faulting, listric normal faulting, and inversion. This complex basin history provides an ideal situation to test the influence of tectonics on petroleum system development. This study focuses on offshore Hawke Bay where a regional 2D seismic line has been interpreted, palinspastically reconstructed, and incorporated into a basin and petroleum system model. In the model, several paleo-heat flow scenarios are developed to represent the tectonic evolution of the basin. Higher heat flow is modeled during the rifting to passive margin phase, and a reduction in heat flow is modeled during the Neogene phase to account for cold slab subduction. Heat flow scenarios are calibrated to temperature, apatite-fission track data, and vitrinite-intertinite reflectance and fluorescence data from the Hawke Bay-1 and Opoutama-1 wells. The palinspastic reconstructions are integrated into the basin and petroleum system model to assess the impact of different styles of deformation. Faults play a key role in the burial history/rate of burial, fluid migration, and pressure compartmentalization. The relative timing of paleo-heat flow and structural events are tested in the model to understand how they enhance and/or negate effects on petroleum generation. For example, models with early Miocene low angle thrusts (i.e. structural thickening) contemporaneous with remnant high heat flow from the passive margin phase create a scenario for mid-Miocene petroleum generation

  12. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    PubMed Central

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  13. Electronic Structure and Fermi Surface of the Quaternary Intermetallic Borocarbide Superconductor YNi2B2C from 2D-ACAR

    NASA Astrophysics Data System (ADS)

    Hamid, A. S.

    We measured the angular momentum density distribution of YNi2B2C to acquire information about its electronic structure. The measurements were performed using the full-scale utility of the two-dimensional angular correlation of annihilation radiation (2D-ACAR). The measured spectra clarified that Ni (3d) like state, predominantly, affected the Fermi surface of YNi2B2C. Further, s- and p-like-states enhanced its superconducting properties. The Fermi surface of YNi2B2C. was reconstructed using Fourier transformation followed by the LCW (Loucks, Crisp and West) folding procedure. It showed a large and complex surface similar to that of the high temperature superconductors HTS, with anisotropic properties. It also disclosed the effect of d-like state. Nevertheless, the current Fermi surface could deliver the needed topological information to isolate its features. The general layouts of this Fermi surface are; two large electron surfaces running along Γ-Z direction; as well as an additional large electron surface centered on X point; beside one hole surface centered on 100 point. This Fermi surface was interpreted in view of the earlier results.

  14. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity.

    PubMed

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  15. Analytic modeling of temperature dependence of 2D carrier mobility in as-grown and annealed GaInNAs/GaAs quantum well structures

    NASA Astrophysics Data System (ADS)

    Donmez, O.; Sarcan, F.; Lisesivdin, S. B.; Vaughan, M. P.; Erol, A.; Gunes, M.; Arikan, M. C.; Puustinen, J.; Guina, M.

    2014-12-01

    Temperature and nitrogen dependence of 2D carrier mobility in as-grown and annealed Ga1-xInxNyAs1-y/GaAs quantum well (QW) structures (x = 0.32 y = 0, 0.009, and 0.012) are investigated. An analytical model that accounts for the most prominent scattering mechanisms is used to explain the characteristic of temperature dependence of the carrier mobility. An expression for alloy scattering-limited mobility in N-related alloys is developed to explain the behavior of hole mobility for N-containing p-type samples. Analytical modeling of temperature dependence of the electron mobility indicates that N-related alloy scattering and interface roughness scattering are the dominant mechanism at the entire temperature range of interest. The temperature insensitivity of the electron mobility is explained in terms of the overriding effect of N-related alloy scattering and high 2D electron density. A deviation between theoretical and experimental electron mobility at low temperatures is observed not to have any dependency on N concentration. We, therefore, suggest that CNM interaction parameter of the band anti-crossing (BAC) model must be defined as temperature dependent in order to explain the observed low temperature characteristics of electron mobility. The hole mobility is mainly restricted by interface roughness and alloy scatterings at temperatures lower than 100 K, whilst high temperature hole mobility is drastically affected from optical phonon scattering. Moreover, the hole mobility at high temperatures exhibits an N-independent characteristic and hole density starts to increase at temperatures above 70 K, which is explained using the concept of parallel conduction. Extraction of the hole density in each transport channel (QW and barrier) by using a simple parallel conduction extraction method (SPCEM) shows that, in p-type samples, low temperature hole mobility takes place in quantum well, while as temperature increases barrier channel also contribute to the hole

  16. A frequency-based approach to locate common structure for 2D-3D intensity-based registration of setup images in prostate radiotherapy

    SciTech Connect

    Munbodh, Reshma; Chen Zhe; Jaffray, David A.; Moseley, Douglas J.; Knisely, Jonathan P. S.; Duncan, James S.

    2007-07-15

    In many radiotherapy clinics, geometric uncertainties in the delivery of 3D conformal radiation therapy and intensity modulated radiation therapy of the prostate are reduced by aligning the patient's bony anatomy in the planning 3D CT to corresponding bony anatomy in 2D portal images acquired before every treatment fraction. In this paper, we seek to determine if there is a frequency band within the portal images and the digitally reconstructed radiographs (DRRs) of the planning CT in which bony anatomy predominates over non-bony anatomy such that portal images and DRRs can be suitably filtered to achieve high registration accuracy in an automated 2D-3D single portal intensity-based registration framework. Two similarity measures, mutual information and the Pearson correlation coefficient were tested on carefully collected gold-standard data consisting of a kilovoltage cone-beam CT (CBCT) and megavoltage portal images in the anterior-posterior (AP) view of an anthropomorphic phantom acquired under clinical conditions at known poses, and on patient data. It was found that filtering the portal images and DRRs during the registration considerably improved registration performance. Without filtering, the registration did not always converge while with filtering it always converged to an accurate solution. For the pose-determination experiments conducted on the anthropomorphic phantom with the correlation coefficient, the mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters were {theta}{sub x}:0.18(0.19) deg., {theta}{sub y}:0.04(0.04) deg., {theta}{sub z}:0.04(0.02) deg., t{sub x}:0.14(0.15) mm, t{sub y}:0.09(0.05) mm, and t{sub z}:0.49(0.40) mm. The mutual information-based registration with filtered images also resulted in similarly small errors. For the patient data, visual inspection of the superimposed registered images showed that they were correctly aligned in all instances. The results presented in this

  17. Network structure of multivariate time series.

    PubMed

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-01-01

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail. PMID:26487040

  18. Network structure of multivariate time series

    PubMed Central

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-01-01

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail. PMID:26487040

  19. Network structure of multivariate time series

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-01

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  20. From 1D chain to 3D network: A theoretical study on TiO2 low dimensional structures

    NASA Astrophysics Data System (ADS)

    Guo, Ling-ju; Zeng, Zhi; He, Tao

    2015-06-01

    We have performed a systematic study on a series of low dimensional TiO2 nanostructures under density functional theory methods. The geometries, stabilities, growth mechanism, and electronic structures of 1D chain, 2D ring, 2D ring array, and 3D network of TiO2 nanostructures are analyzed. Based on the Ti2O4 building unit, a series of 1D TiO2 nano chains and rings can be built. Furthermore, 2D ring array and 3D network nanostructures can be constructed from 1D chains and rings. Among non-periodic TiO2 chain and ring structures, one series of ring structures is found to be more stable. The geometry model of the 2D ring arrays and 3D network structures in this work has provided a theoretical understanding on the structure information in experiments. Based on these semiconductive low dimensional structures, moreover, it can help to understand and design new hierarchical TiO2 nanostructure in the future.

  1. From 1D chain to 3D network: A theoretical study on TiO{sub 2} low dimensional structures

    SciTech Connect

    Guo, Ling-ju; He, Tao; Zeng, Zhi

    2015-06-14

    We have performed a systematic study on a series of low dimensional TiO{sub 2} nanostructures under density functional theory methods. The geometries, stabilities, growth mechanism, and electronic structures of 1D chain, 2D ring, 2D ring array, and 3D network of TiO{sub 2} nanostructures are analyzed. Based on the Ti{sub 2}O{sub 4} building unit, a series of 1D TiO{sub 2} nano chains and rings can be built. Furthermore, 2D ring array and 3D network nanostructures can be constructed from 1D chains and rings. Among non-periodic TiO{sub 2} chain and ring structures, one series of ring structures is found to be more stable. The geometry model of the 2D ring arrays and 3D network structures in this work has provided a theoretical understanding on the structure information in experiments. Based on these semiconductive low dimensional structures, moreover, it can help to understand and design new hierarchical TiO{sub 2} nanostructure in the future.

  2. Improving resource utilization in hierarchy network by optimizing topological structure

    NASA Astrophysics Data System (ADS)

    Liu, G. L.; Peng, H. P.; Li, L. X.; Sun, F.; Yang, Y. X.

    2012-02-01

    We study the performance of peer-to-peer (P2P) network built on the top of hierarchy topological structure of local area networks (LAN). We find that the topological structure of the underlying physical network has significant impacts on the resource utilization of the P2P overlay network. The larger size of the physical network is, the lower resource utilization of the overlay network is. Through optimizing the topological structure of physical network, we propose two novel schemes to improve the resource utilization. The experimental results show that in any case the resource utilization of P2P network can always achieve 100% by these two schemes.

  3. Structural determinants of criticality in biological networks

    PubMed Central

    Valverde, Sergi; Ohse, Sebastian; Turalska, Malgorzata; West, Bruce J.; Garcia-Ojalvo, Jordi

    2015-01-01

    Many adaptive evolutionary systems display spatial and temporal features, such as long-range correlations, typically associated with the critical point of a phase transition in statistical physics. Empirical and theoretical studies suggest that operating near criticality enhances the functionality of biological networks, such as brain and gene networks, in terms for instance of information processing, robustness, and evolvability. While previous studies have explained criticality with specific system features, we still lack a general theory of critical behavior in biological systems. Here we look at this problem from the complex systems perspective, since in principle all critical biological circuits have in common the fact that their internal organization can be described as a complex network. An important question is how self-similar structure influences self-similar dynamics. Modularity and heterogeneity, for instance, affect the location of critical points and can be used to tune the system toward criticality. We review and discuss recent studies on the criticality of neuronal and genetic networks, and discuss the implications of network theory when assessing the evolutionary features of criticality. PMID:26005422

  4. Community structure in the phonological network

    PubMed Central

    Siew, Cynthia S. Q.

    2013-01-01

    Community structure, which refers to the presence of densely connected groups within a larger network, is a common feature of several real-world networks from a variety of domains such as the human brain, social networks of hunter-gatherers and business organizations, and the World Wide Web (Porter et al., 2009). Using a community detection technique known as the Louvain optimization method, 17 communities were extracted from the giant component of the phonological network described in Vitevitch (2008). Additional analyses comparing the lexical and phonological characteristics of words in these communities against words in randomly generated communities revealed several novel discoveries. Larger communities tend to consist of short, frequent words of high degree and low age of acquisition ratings, and smaller communities tend to consist of longer, less frequent words of low degree and high age of acquisition ratings. Real communities also contained fewer different phonological segments compared to random communities, although the number of occurrences of phonological segments found in real communities was much higher than that of the same phonological segments in random communities. Interestingly, the observation that relatively few biphones occur very frequently and a large number of biphones occur rarely within communities mirrors the pattern of the overall frequency of words in a language (Zipf, 1935). The present findings have important implications for understanding the dynamics of activation spread among words in the phonological network that are relevant to lexical processing, as well as understanding the mechanisms that underlie language acquisition and the evolution of language. PMID:23986735

  5. Fast fixation with a generic network structure

    NASA Astrophysics Data System (ADS)

    Baxter, Gareth J.; Blythe, Richard A.; McKane, Alan J.

    2012-09-01

    We investigate the dynamics of a broad class of stochastic copying processes on a network that includes examples from population genetics (spatially structured Wright-Fisher models), ecology (Hubbell-type models), linguistics (the utterance selection model), and opinion dynamics (the voter model) as special cases. These models all have absorbing states of fixation where all the nodes are in the same state. Earlier studies of these models showed that the mean time when this occurs can be made to grow as different powers of the network size by varying the degree distribution of the network. Here we demonstrate that this effect can also arise if one varies the asymmetry of the copying dynamics while holding the degree distribution constant. In particular, we show that the mean time to fixation can be accelerated even on homogeneous networks when certain nodes are very much more likely to be copied from than copied to. We further show that there is a complex interplay between degree distribution and asymmetry when they may covary, and that the results are robust to correlations in the network or the initial condition.

  6. Inner structure of capital control networks

    NASA Astrophysics Data System (ADS)

    Battiston, Stefano

    2004-07-01

    We study the topological structure of the network of shareholding relationships in the Italian stock market (MIB) and in two US stock markets (NYSE and NASDAQ). The portfolio diversification and the wealth invested on the market by economical agents have been shown in our previous work to have all a power law behavior. However, a further investigation shows that the inner structure of the capital control network are not at all the same across markets. The shareholding network is a weighted graph, therefore we introduce two quantities analogous to in-degree and out-degree for weighted graphs which measure, respectively: the number of effective shareholders of a stock and the number of companies effectively controlled by a single holder. Combining the information carried by the distributions of these two quantities we are able to extract the backbone of each market and we find that while the MIB splits into several separated groups of interest, the US markets is characterized by very large holders sharing control on overlapping subsets of stocks. This method seems promising for the analysis of the topology of capital control networks in general and not only in the stock market.

  7. Synthesis, characterization and structure determination of two isotypes of a layered aluminophosphate with a new 2D network topology

    SciTech Connect

    Tuel, A. . E-mail: tuel@catalyse.cnrs.fr; Lorentz, Ch.; Gramlich, V.; Baerlocher, Ch.

    2005-07-15

    Two isotypes of a new layered aluminophosphate, further denoted MDAP-3 and MDAE-1, have been synthesized under hydrothermal conditions using N-methyl-1,3-propanediamine and N-methyl-ethylenediamine, respectively. MDAP-3, with the empirical formula [Al{sub 2}(HPO{sub 4})(PO{sub 4}){sub 2}](C{sub 4}N{sub 2}H{sub 14})(H{sub 2}O), crystallizes in the orthorhombic space group Pna2(1) (No. 33) with a=9.602(16)A, b=9.26(2)A, c=16.03(3)A, Z=4, R{sub 1}=0.0498 and wR{sub 2}=0.1217. The second solid, MDAE-1, with the empirical formula [Al{sub 2}(HPO{sub 4})(PO{sub 4}){sub 2}](C{sub 3}N{sub 2}H{sub 12})(H{sub 2}O), crystallizes in the same space group with a=9.4250(19)A, b=9.3170(19)A, c=15.907(3)A, Z=4, R{sub 1}=0.0407 and wR{sub 2}=0.0954. The two compounds possess the same layer topology. Inorganic layers contain PO{sub 3}=O, PO{sub 3}OH, AlO{sub 4} and AlO{sub 6} polyhedra, linked together to generate a new 4x8 net. MDAP-3 and MDAE-1 represent the first examples of two-dimensional layered aluminophosphates with the Al{sub 2}P{sub 3}O{sub 12} stoichiometry, and containing AlO{sub 6} octahedra.

  8. HOTCFGM-2D: A Coupled Higher-Order Theory for Cylindrical Structural Components with Bi-Directionally Components with Bi-Directionally Graded Microstructures

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Aboudi, Jacob

    2000-01-01

    The objective of this two-year project was to develop and deliver to the NASA-Glenn Research Center a two-dimensional higher-order theory, and related computer codes, for the analysis and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, brisk blades). To satisfy this objective, two-dimensional version of the higher-order theory, HOTCFGM-2D, and four computer codes based on this theory, for the analysis and design of structural components functionally graded in the radial and circumferential directions were developed in the cylindrical coordinate system r-Theta-z. This version of the higher-order theory is a significant generalization of the one-dimensional theory, HOTCFGM-1D, developed during the FY97 for the analysis and design of cylindrical structural components with radially graded microstructures. The generalized theory is applicable to thin multi-phased composite shells/cylinders subjected to steady-state thermomechanical, transient thermal and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial direction, and arbitrarily distributed in the radial and circumferential direction, thereby allowing functional grading of the internal reinforcement in the r-Theta plane. The four computer codes fgmc3dq.cylindrical.f, fgmp3dq.cylindrical.f, fgmgvips3dq.cylindrical.f, and fgmc3dq.cylindrical.transient.f are research-oriented codes for investigating the effect of functionally graded architectures, as well as the properties of the multi-phase reinforcement, in thin shells subjected to thermomechanical and inertial loading, on the internal temperature, stress and (inelastic) strain fields. The reinforcement distribution in the radial and circumferential directions is specified by the user. The thermal

  9. Synthesis and characterization of a new metal organic framework structure with a 2D porous system: (H 2NEt 2) 2[Zn 3(BDC) 4]ṡ3DEF

    NASA Astrophysics Data System (ADS)

    Biemmi, Enrica; Bein, Thomas; Stock, Norbert

    2006-03-01

    A new open-framework zinc terephthalate (H 2NEt 2) 2[Zn 3(BDC) 4]ṡ3DEF (BDC = 1,4-benzendicarboxylate, DEF=N,N-diethylformamide) was obtained under slightly acidic condition by reacting 1,4-benzendicarboxylic acid (H 2BDC) with ZnO in a DEF solution. The structure was obtained by single crystal X-ray diffraction and consists of trimetallic zinc building units, that are interconnected by eight BDC units each (crystal data: monoclinic, C2/c, a=3337.24(5), b=983.17(2), c=1819.67(2) pm, β=92.455(1, V=5965.0(2)×10 pm, Z=4, R=0.0395, wR=0.0843 for 4533 reflections I>2σ(I)). Six BDC ions together with the trimetallic zinc units form a two-dimensional (3,6)-net while the other two BDC unit pillar these layers. Thus a three-dimensional anionic framework with a 2D pore system is formed. The pore space is occupied by solvent molecules (DEF) and diethylammonium ions, produced by in situ hydrolysis of DEF. These are interconnected as well as connected to the framework by hydrogen-bonds. The TG investigation in combination with powder X-ray diffraction and vibrational-spectroscopy show a two-step loss of the pore filling molecules as well as one H 2BDC molecule leading to crystalline phases which are stable up to 250 and 400 °C, respectively. In addition, 13C MAS-NMR data of the title compound is presented.

  10. Structural Connectivity Networks of Transgender People.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Küblböck, Martin; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2015-10-01

    Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF) transgender patients before hormone therapy as compared with 25 female and 25 male healthy controls. Graph theoretical analysis of whole-brain probabilistic tractography networks (adjusted for differences in intracranial volume) showed decreased hemispheric connectivity ratios of subcortical/limbic areas for both transgender groups. Subsequent analysis revealed that this finding was driven by increased interhemispheric lobar connectivity weights (LCWs) in MtF transsexuals and decreased intrahemispheric LCWs in FtM patients. This was further reflected on a regional level, where the MtF group showed mostly increased local efficiencies and FtM patients decreased values. Importantly, these parameters separated each patient group from the remaining subjects for the majority of significant findings. This work complements previously established regional alterations with important findings of structural connectivity. Specifically, our data suggest that network parameters may reflect unique characteristics of transgender patients, whereas local physiological aspects have been shown to represent the transition from the biological sex to the actual gender identity. PMID:25217469

  11. Network-based modular latent structure analysis

    PubMed Central

    2014-01-01

    Background High-throughput expression data, such as gene expression and metabolomics data, exhibit modular structures. Groups of features in each module follow a latent factor model, while between modules, the latent factors are quasi-independent. Recovering the latent factors can shed light on the hidden regulation patterns of the expression. The difficulty in detecting such modules and recovering the latent factors lies in the high dimensionality of the data, and the lack of knowledge in module membership. Methods Here we describe a method based on community detection in the co-expression network. It consists of inference-based network construction, module detection, and interacting latent factor detection from modules. Results In simulations, the method outperformed projection-based modular latent factor discovery when the input signals were not Gaussian. We also demonstrate the method's value in real data analysis. Conclusions The new method nMLSA (network-based modular latent structure analysis) is effective in detecting latent structures, and is easy to extend to non-linear cases. The method is available as R code at http://web1.sph.emory.edu/users/tyu8/nMLSA/. PMID:25435002

  12. Structural Connectivity Networks of Transgender People

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Küblböck, Martin; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.; Lanzenberger, Rupert

    2015-01-01

    Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF) transgender patients before hormone therapy as compared with 25 female and 25 male healthy controls. Graph theoretical analysis of whole-brain probabilistic tractography networks (adjusted for differences in intracranial volume) showed decreased hemispheric connectivity ratios of subcortical/limbic areas for both transgender groups. Subsequent analysis revealed that this finding was driven by increased interhemispheric lobar connectivity weights (LCWs) in MtF transsexuals and decreased intrahemispheric LCWs in FtM patients. This was further reflected on a regional level, where the MtF group showed mostly increased local efficiencies and FtM patients decreased values. Importantly, these parameters separated each patient group from the remaining subjects for the majority of significant findings. This work complements previously established regional alterations with important findings of structural connectivity. Specifically, our data suggest that network parameters may reflect unique characteristics of transgender patients, whereas local physiological aspects have been shown to represent the transition from the biological sex to the actual gender identity. PMID:25217469

  13. HBNG: Graph theory based visualization of hydrogen bond networks in protein structures

    PubMed Central

    Tiwari, Abhishek; Tiwari, Vivek

    2007-01-01

    HBNG is a graph theory based tool for visualization of hydrogen bond network in 2D. Digraphs generated by HBNG facilitate visualization of cooperativity and anticooperativity chains and rings in protein structures. HBNG takes hydrogen bonds list files (output from HBAT, HBEXPLORE, HBPLUS and STRIDE) as input and generates a DOT language script and constructs digraphs using freeware AT and T Graphviz tool. HBNG is useful in the enumeration of favorable topologies of hydrogen bond networks in protein structures and determining the effect of cooperativity and anticooperativity on protein stability and folding. HBNG can be applied to protein structure comparison and in the identification of secondary structural regions in protein structures. Availability Program is available from the authors for non-commercial purposes. PMID:18084648

  14. Color tunable and near white-light emission of two solvent-induced 2D lead(II) coordination networks based on a rigid ligand 1-tetrazole-4-imidazole-benzene.

    PubMed

    Chen, Jun; Zhang, Qing; Liu, Zhi-Fa; Wang, Shuai-Hua; Xiao, Yu; Li, Rong; Xu, Jian-Gang; Zhao, Ya-Ping; Zheng, Fa-Kun; Guo, Guo-Cong

    2015-06-01

    Two new lead(II) coordination polymers, [Pb(NO3)(tzib)]n (1) and [Pb(tzib)2]n (2), were successfully synthesized from the reaction of a rigid ligand 1-tetrazole-4-imidazole-benzene (Htzib) and lead(II) nitrate in different solvents. The obtained polymers have been characterized by single-crystal X-ray diffraction analyses, which show that both polymers feature 2D layer structures. The inorganic anion nitrate in 1 shows a μ2-κO3:κO3 bridging mode to connect adjacent lead ions into a zigzag chain, and then the organic ligands tzib(-) join the neighboring chains into a 2D layer by a μ3-κN1:κN2:κN6 connection mode. In 2, there are two different bridging modes of the tzib(-) ligand: μ3-κN1:κN2:κN6 and μ3-κN1:κN6 to coordinate the lead ions into a 2D layer structure. Interestingly, both polymers displayed broadband emissions covering the entire visible spectra, which could be tunable to near white-light emission by varying excitation wavelengths. PMID:25952460

  15. Topological structures in the equities market network

    PubMed Central

    Leibon, Gregory; Pauls, Scott; Rockmore, Daniel; Savell, Robert

    2008-01-01

    We present a new method for articulating scale-dependent topological descriptions of the network structure inherent in many complex systems. The technique is based on “partition decoupled null models,” a new class of null models that incorporate the interaction of clustered partitions into a random model and generalize the Gaussian ensemble. As an application, we analyze a correlation matrix derived from 4 years of close prices of equities in the New York Stock Exchange (NYSE) and National Association of Securities Dealers Automated Quotation (NASDAQ). In this example, we expose (i) a natural structure composed of 2 interacting partitions of the market that both agrees with and generalizes standard notions of scale (e.g., sector and industry) and (ii) structure in the first partition that is a topological manifestation of a well-known pattern of capital flow called “sector rotation.” Our approach gives rise to a natural form of multiresolution analysis of the underlying time series that naturally decomposes the basic data in terms of the effects of the different scales at which it clusters. We support our conclusions and show the robustness of the technique with a successful analysis on a simulated network with an embedded topological structure. The equities market is a prototypical complex system, and we expect that our approach will be of use in understanding a broad class of complex systems in which correlation structures are resident.

  16. Cu-PDC-bpa solid coordination frameworks (PDC=2,5-pyrindinedicarboxylate; bpa=1,2-DI(4-pyridil)ethane)): 2D and 3D structural flexibility producing a 3-c herringbone array next to ideal

    SciTech Connect

    Llano-Tomé, Francisco; Bazán, Begoña; Urtiaga, Miren-Karmele; Barandika, Gotzone; Antonia Señarís-Rodríguez, M.; and others

    2015-10-15

    Combination of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce solid coordination frameworks (SCF) which are crystalline materials based on connections between metal ions through organic ligands. In this context, this work is focused on two novel Cu{sup II}-based SCFs exhibiting PDC (2,5-pyridinedicarboxylate) and bpa (1,2-di(4-pyridyl)ethane), being the first structures reported in literature containing both ligands. Chemical formula are [Cu{sub 2}[(PDC){sub 2}(bpa)(H{sub 2}O){sub 2}]·3H{sub 2}O·DMF (1), and [Cu{sub 2}(PDC){sub 2}(bpa)(H{sub 2}O){sub 2}]·7H{sub 2}O (2), where DMF is dimethylformamide. Compounds 1 and 2 have been characterized by means of X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric (TG) analysis, differential thermal analysis (DTA) and dielectric measurements. The crystallographic analysis revealed that compounds 1 and 2 can be described as herringbone-type layers formed by helicoidal Cu-PDC-Cu chains connected through bpa ligands. Solvent molecules are crystallized between the layers, providing the inter-layer connections through hydrogen bonds. Differences between both compounds are attributable to the flexibility of bpa (in 2D) as well as to the 3D packing of the layers which is solvent dependent. This fact results in the fact that compound 2 is the most regular 3-c herringbone array reported so far. The structural dynamism of these networks is responsible for the crystalline to-amorphous to-crystalline (CAC) transformation from compound 1 to compound 2. Crystallochemical features for both compounds have also been studied and compared to similar 3-connected herringbone-arrays. - Graphical abstract: Cu-PDC-bpa 3-c herringbone arrays. - Highlights: • The most ideal herringbone array reported so far is a Cu-PDC-bpa SCF. • Conformational freedom of bpa results in 2D and 3D flexibility of the SCFs. • The flexibility of the SCFs is related to a phase transformation. • Dielectric

  17. Optimizing Dynamical Network Structure for Pinning Control

    PubMed Central

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-01-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights. PMID:27067020

  18. Optimizing Dynamical Network Structure for Pinning Control.

    PubMed

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-01-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights. PMID:27067020

  19. Optimizing Dynamical Network Structure for Pinning Control

    NASA Astrophysics Data System (ADS)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  20. High-throughput critical dimensions uniformity (CDU) measurement of two-dimensional (2D) structures using scanning electron microscope (SEM) systems

    NASA Astrophysics Data System (ADS)

    Fullam, Jennifer; Boye, Carol; Standaert, Theodorus; Gaudiello, John; Tomlinson, Derek; Xiao, Hong; Fang, Wei; Zhang, Xu; Wang, Fei; Ma, Long; Zhao, Yan; Jau, Jack

    2011-03-01

    In this paper, we tested a novel methodology of measuring critical dimension (CD) uniformity, or CDU, with electron beam (e-beam) hotspot inspection and measurement systems developed by Hermes Microvision, Inc. (HMI). The systems were used to take images of two-dimensional (2D) array patterns and measure CDU values in a custom designated fashion. Because this methodology combined imaging of scanning micro scope (SEM) and CD value averaging over a large array pattern of optical CD, or OCD, it can measure CDU of 2D arrays with high accuracy, high repeatability and high throughput.

  1. Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits

    NASA Astrophysics Data System (ADS)

    Lacava, C.; Carrol, L.; Bozzola, A.; Marchetti, R.; Minzioni, P.; Cristiani, I.; Fournier, M.; Bernabe, S.; Gerace, D.; Andreani, L. C.

    2016-03-01

    We present the characterization of Silicon-on-insulator (SOI) photonic-crystal based 2D grating-couplers (2D-GCs) fabricated by CEA-Leti in the frame of the FP7 Fabulous project, which is dedicated to the realization of devices and systems for low-cost and high-performance passives-optical-networks. On the analyzed samples different test structures are present, including 2D-GC connected to another 2D-GC by different waveguides (in a Mach-Zehnder like configuration), and 2D-GC connected to two separate 2D-GCs, so as to allow a complete assessment of different parameters. Measurements were carried out using a tunable laser source operating in the extended telecom bandwidth and a fiber-based polarization controlling system at the input of device-under-test. The measured data yielded an overall fiber-to-fiber loss of 7.5 dB for the structure composed by an input 2D-GC connected to two identical 2D-GCs. This value was obtained at the peak wavelength of the grating, and the 3-dB bandwidth of the 2D-GC was assessed to be 43 nm. Assuming that the waveguide losses are negligible, so as to make a worst-case analysis, the coupling efficiency of the single 2D-GC results to be equal to -3.75 dB, constituting, to the best of our knowledge, the lowest value ever reported for a fully CMOS compatible 2D-GC. It is worth noting that both the obtained values are in good agreement with those expected by the numerical simulations performed using full 3D analysis by Lumerical FDTD-solutions.

  2. Structure and Interactions in Neurofilament Networks

    NASA Astrophysics Data System (ADS)

    Jones, Jayna; Ojeda-Lopez, Miguel; Safinya, Cyrus

    2004-03-01

    Neurofilaments (NFs) are a major constituent of myelinated axons of nerve cells, which assemble from three subunit proteins of low, medium, and high molecular weight to form a 10 nm diameter rod with sidearms radiating from the center. The sidearm interactions impart structural stability and result in an oriented network of NFs running parallel to the axon. Over or under expression of NF subunits is related to abnormal NF-networks, which are known hallmarks of motor neuron diseases (ALS). Here, we reassemble NFs from subunit proteins purified from bovine spinal cord. We demonstrate the formation of the NF network in vitro where synchrotron x-ray scattering (SSRL) reveals a well-defined interfilament spacing while the defect structure in polarized optical microcopy shows the liquid crystalline nature. The spacing varies depending on subunit molar ratios and salt conditions and we relate this change to the mechanical stability of the lattice. This change in lattice spacing yields insight into the stabilizing interactions between the NF sidearms. Supported by NSF DMR- 0203755, CTS-0103516, and NIH GM-59288.

  3. Measuring structural similarity in large online networks.

    PubMed

    Shi, Yongren; Macy, Michael

    2016-09-01

    Structural similarity based on bipartite graphs can be used to detect meaningful communities, but the networks have been tiny compared to massive online networks. Scalability is important in applications involving tens of millions of individuals with highly skewed degree distributions. Simulation analysis holding underlying similarity constant shows that two widely used measures - Jaccard index and cosine similarity - are biased by the distribution of out-degree in web-scale networks. However, an alternative measure, the Standardized Co-incident Ratio (SCR), is unbiased. We apply SCR to members of Congress, musical artists, and professional sports teams to show how massive co-following on Twitter can be used to map meaningful affiliations among cultural entities, even in the absence of direct connections to one another. Our results show how structural similarity can be used to map cultural alignments and demonstrate the potential usefulness of social media data in the study of culture, politics, and organizations across the social and behavioral sciences. PMID:27480374

  4. Formation and properties of a terpyridine-based 2D MOF on the surface of water

    NASA Astrophysics Data System (ADS)

    Koitz, Ralph; Hutter, Jürg; Iannuzzi, Marcella

    2016-06-01

    Two-dimensional networks inspired by graphene are of prime importance in nanoscience. We present a computational study of an infinite molecular sheet confined on a water surface to assess its properties and formation mechanism. Terpyridine-based ligand molecules are interlinked by Zn ions to form an extended 2D metal-organic framework. We show that the network is stable on the water surface, and that the substrate affects the dynamic properties of the sheet, exhibiting a confining effect and flattening the sheet by 30%. We use metadynamics to characterize the process of network formation and breaking and determine an intra-network binding energy of 143 kJ mol‑1. Based on this mechanistic insight we propose that the 2D network strength can be tuned by varying the rigidity of the ligand through its chemical structure.

  5. Cu-PDC-bpa solid coordination frameworks (PDC=2,5-pyrindinedicarboxylate; bpa=1,2-DI(4-pyridil)ethane)): 2D and 3D structural flexibility producing a 3-c herringbone array next to ideal

    NASA Astrophysics Data System (ADS)

    Llano-Tomé, Francisco; Bazán, Begoña; Urtiaga, Miren-Karmele; Barandika, Gotzone; Antonia Señarís-Rodríguez, M.; Sánchez-Andújar, Manuel; Arriortua, María-Isabel

    2015-10-01

    Combination of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce solid coordination frameworks (SCF) which are crystalline materials based on connections between metal ions through organic ligands. In this context, this work is focused on two novel CuII-based SCFs exhibiting PDC (2,5-pyridinedicarboxylate) and bpa (1,2-di(4-pyridyl)ethane), being the first structures reported in literature containing both ligands. Chemical formula are [Cu2[(PDC)2(bpa)(H2O)2]·3H2O·DMF (1), and [Cu2(PDC)2(bpa)(H2O)2]·7H2O (2), where DMF is dimethylformamide. Compounds 1 and 2 have been characterized by means of X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric (TG) analysis, differential thermal analysis (DTA) and dielectric measurements. The crystallographic analysis revealed that compounds 1 and 2 can be described as herringbone-type layers formed by helicoidal Cu-PDC-Cu chains connected through bpa ligands. Solvent molecules are crystallized between the layers, providing the inter-layer connections through hydrogen bonds. Differences between both compounds are attributable to the flexibility of bpa (in 2D) as well as to the 3D packing of the layers which is solvent dependent. This fact results in the fact that compound 2 is the most regular 3-c herringbone array reported so far. The structural dynamism of these networks is responsible for the crystalline to-amorphous to-crystalline (CAC) transformation from compound 1 to compound 2. Crystallochemical features for both compounds have also been studied and compared to similar 3-connected herringbone-arrays.

  6. A new family of 1D, 2D and 3D frameworks aggregated from Ni5, Ni4 and Ni7 building units: synthesis, structure, and magnetism.

    PubMed

    Liu, Ya-Hui; Lu, Li-Ping; Zhu, Miao-Li; Feng, Si-Si; Su, Feng

    2016-05-31

    Three new Ni(ii)-clusters based on a Y-shaped ligand (biphenyl-3,4',5-tricarboxylate, H3BPT), [Ni5(HBPT)4(OH)2(H2O)12]n (), [Ni4(BPT)2(OH)2(H2O)6]n·4nH2O (), and [Ni7(BPT)2(1,4-bib)2(OH)6(HCO2)2]n·3nH2O () (1,4-bib = 1,4-bi(1H-imidazol-1-yl)benzene), have been synthesized under solvothermal conditions. They were studied by infrared spectroscopy (IR), single crystal X-ray diffraction, thermogravimetric analysis (TGA), and magnetochemistry. The complexes contain low nuclear Ni-clusters as building units (BUs). Structurally, in , the cluster BUs of [Ni5(μ3-OH)2](8+) can be viewed as two reverse triangles sharing a common vertex, which are connected by the partially deprotonated μ2-η(1):η(1)-HBPT(2-) forming 1D chains. The BUs of [Ni4(μ3-OH)2](6+) clusters in can be considered as two reverse triangles sharing a common edge and extended by deprotonated μ6-η(1):η(1):η(1):η(1):η(2)-BPT(3-) constructing a 2D framework. The 3D framework of complex consists of a [Ni7(μ3-OH)4(R-COO)7(HCO2)3] cluster BUs with fully deprotonated μ5-η(1):η(1):η(1):η(1):η(1):η(1)-BPT(3-) and 1,4-bib ligands. In addition, TGA reveals that the complexes are stable in the range of 293-548 K. Magnetostructural analyses indicate ferromagnetic coupling of J1 = 1.85(3) and J2 = 2.25(4) cm(-1) in and J = 5.76(6) cm(-1) in , whereas magnetic parameters J1 = -2.64(3), J2 = -23.22(19) and J3 = 12.02(5) cm(-1) indicate an alternating magnetic chain (AF/F) in . PMID:27180871

  7. Improving Network Structure can lead to Functional Failures.

    PubMed

    Pade, Jan Philipp; Pereira, Tiago

    2015-01-01

    In many real-world networks the ability to synchronize is a key property for their performance. Recent work on undirected networks with diffusive interaction revealed that improvements in the network connectivity such as making the network more connected and homogeneous enhances synchronization. However, real-world networks have directed and weighted connections. In such directed networks, understanding the impact of structural changes on the network performance remains a major challenge. Here, we show that improving the structure of a directed network can lead to a failure in the network function. For instance, introducing new links to reduce the minimum distance between nodes can lead to instabilities in the synchronized motion. This effect only occurs in directed networks. Our results allow to identify the dynamical importance of a link and thereby have a major impact on the design and control of directed networks. PMID:25989294

  8. Inertial solvation in femtosecond 2D spectra

    NASA Astrophysics Data System (ADS)

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  9. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  10. Structuring networks for maximum performance under managed care.

    PubMed

    Miller, T R

    1996-12-01

    Healthcare providers interested in forming delivery networks to secure managed care contracts must decide how to structure their networks. Two basic structural models are available: the noncorporate model and the corporate model. The noncorporate model delivery network typically has a single governing body and management infrastructure to oversee only managed care contracting and related business. The corporate model delivery system has a unified governance management infrastructure that handles all of the network's business. While either structure can work, corporate model networks usually are better able to enforce provider behavior that is in the best interest of a network as a whole. PMID:10163003

  11. Three new 2-D metal-organic frameworks containing 1-D metal chains bridged by N-benzesulfonyl-glutamic acid: Syntheses, crystal structures and properties

    SciTech Connect

    Ma Lufang; Huo Xiankuan; Wang Liya Wang Jiange; Fan Yaoting

    2007-05-15

    To explore the possibility of obtaining the metal-organic frameworks (MOFs) bearing the bsgluH{sub 2} ligand, two new Cd(II) and one Cu(II) coordination polymers, [Cd(bsglu)(bipy)] {sub n} (1), [Cd(bsglu).(H{sub 2}O)] {sub n} (2) and {l_brace}[Cu{sub 2}(bsglu){sub 2}(bipy){sub 2}].4H{sub 2}O{r_brace} {sub n} (3) (bsglu=N-benzesulfonyl-glutamic acid bianion, bipy=2,2'-bipyridine) were synthesized and characterized by IR, elemental analysis and X-ray diffraction analysis. Compounds 1 and 3 exhibit one-dimensional coordination chains, which are further connected to form two-dimensional supramolecular networks through {pi}-{pi} aromatic stacking interactions in a novel zipper-like way. Compound 2 presents a two-dimensional layer structure. To the best of our knowledge, 2 is the first two-dimensional complex formed from transition metal and bsgluH{sub 2} ligand. Interestingly, the bsglu anion exhibits remarkable versatile coordination modes in these complexes. Fluorescent analyses show that 1 exhibits photoluminescence in the solid state. Magnetic measurements for 3 revealed that the Cu(II) chain exhibit a weak antiferromagnetic behavior with a J value of -0.606 cm{sup -1}. - Graphical abstract: Three new complexes, [Cd(bsglu)(bipy)] {sub n} (1), [Cd(bsglu).(H{sub 2}O)] {sub n} (2) and {l_brace}[Cu{sub 2}(bsglu){sub 2}(bipy){sub 2}].4H{sub 2}O{r_brace} {sub n} (3), constructed from Cd(II) or Cu(II) salt with N-benzesulfonyl-glutamic acid were synthesized and characterized. Compounds 1 and 3 exhibit one-dimensional chains which are further connected to form two-dimensional supramolecular networks through {pi}-{pi} aromatic stacking interactions in a novel zipper-like way. Compound 2 presents a two-dimensional layer structure. Luminescence of 1 and magnetic properties of 3 are also investigated.

  12. Common community structure in time-varying networks

    NASA Astrophysics Data System (ADS)

    Zhang, Shihua; Zhao, Junfei; Zhang, Xiang-Sun

    2012-05-01

    In this report we introduce the concept of common community structure in time-varying networks. We propose a novel optimization algorithm to rapidly detect common community structure in such networks. Both theoretical and numerical results show that the proposed method not only can resolve detailed common communities, but also can effectively identify the dynamical phenomena in time-varying networks.

  13. Complex quantum networks as structured environments: engineering and probing

    PubMed Central

    Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki

    2016-01-01

    We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity. PMID:27230125

  14. Complex quantum networks as structured environments: engineering and probing

    NASA Astrophysics Data System (ADS)

    Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki

    2016-05-01

    We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity.

  15. Complex quantum networks as structured environments: engineering and probing.

    PubMed

    Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki

    2016-01-01

    We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity. PMID:27230125

  16. Associated neural network independent component analysis structure

    NASA Astrophysics Data System (ADS)

    Kim, Keehoon; Kostrzweski, Andrew

    2006-05-01

    Detection, classification, and localization of potential security breaches in extremely high-noise environments are important for perimeter protection and threat detection both for homeland security and for military force protection. Physical Optics Corporation has developed a threat detection system to separate acoustic signatures from unknown, mixed sources embedded in extremely high-noise environments where signal-to-noise ratios (SNRs) are very low. Associated neural network structures based on independent component analysis are designed to detect/separate new acoustic sources and to provide reliability information. The structures are tested through computer simulations for each critical component, including a spontaneous detection algorithm for potential threat detection without a predefined knowledge base, a fast target separation algorithm, and nonparametric methodology for quantified confidence measure. The results show that the method discussed can separate hidden acoustic sources of SNR in 5 dB noisy environments with an accuracy of 80%.

  17. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  18. NUBOW-2D Inelastic

    2002-01-31

    This program solves the two-dimensional mechanical equilbrium configuration of a core restraint system, which is subjected to radial temperature and flux gradients, on a time increment basis. At each time increment, the code calculates the irradiation creep and swelling strains for each duct from user-specified creep and swelling correlations. Using the calculated thermal bowing, inelastic bowing and the duct dilation, the corresponding equilibrium forces, beam deflections, total beam displacements, and structural reactivity changes are calculated.

  19. Computing with structured connections networks. Technical report

    SciTech Connect

    Feldman, J.A.; Fanty, M.A.; Goddard, N.; Lynne, K.

    1987-04-01

    Rapid advances both in the neurosciences and in computer science are beginning to lead to a new interest in computational models linking animal brains and behavior. In computer science, there is a large and growing body of knowledge about parallel computation and another, largely separate, science of artificial intelligence. The idea of looking directly at massively parallel realizations of intelligent activity promises to be fruitful for the study of both natural and artificial computations. Much attention has been directed towards the biological implications of this interdisciplinary effort, but there are equally important relations with computational theory, hardware and software. This article focuses on the design and use of massively parallel computational models, particularly in artificial intelligence. Much of the recent work on massively parallel computation has been carried out by physicists and examines the emergent behavior of large, unstructured collections of computing units. We are more concerned with how one can design, realize and analyze networks that embody the specific computational structures needed to solve hard problems. Adaptation and learning are treated as ways to improve structured networks, not as a replacement for analysis and design.

  20. Low-rank network decomposition reveals structural characteristics of small-world networks

    NASA Astrophysics Data System (ADS)

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2015-12-01

    Small-world networks occur naturally throughout biological, technological, and social systems. With their prevalence, it is particularly important to prudently identify small-world networks and further characterize their unique connection structure with respect to network function. In this work we develop a formalism for classifying networks and identifying small-world structure using a decomposition of network connectivity matrices into low-rank and sparse components, corresponding to connections within clusters of highly connected nodes and sparse interconnections between clusters, respectively. We show that the network decomposition is independent of node indexing and define associated bounded measures of connectivity structure, which provide insight into the clustering and regularity of network connections. While many existing network characterizations rely on constructing benchmark networks for comparison or fail to describe the structural properties of relatively densely connected networks, our classification relies only on the intrinsic network structure and is quite robust with respect to changes in connection density, producing stable results across network realizations. Using this framework, we analyze several real-world networks and reveal new structural properties, which are often indiscernible by previously established characterizations of network connectivity.

  1. Social inheritance can explain the structure of animal social networks.

    PubMed

    Ilany, Amiyaal; Akçay, Erol

    2016-01-01

    The social network structure of animal populations has major implications for survival, reproductive success, sexual selection and pathogen transmission of individuals. But as of yet, no general theory of social network structure exists that can explain the diversity of social networks observed in nature, and serve as a null model for detecting species and population-specific factors. Here we propose a simple and generally applicable model of social network structure. We consider the emergence of network structure as a result of social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds randomly. We compare model output with data from several species, showing that it can generate networks with properties such as those observed in real social systems. Our model demonstrates that important observed properties of social networks, including heritability of network position or assortative associations, can be understood as consequences of social inheritance. PMID:27352101

  2. Social inheritance can explain the structure of animal social networks

    PubMed Central

    Ilany, Amiyaal; Akçay, Erol

    2016-01-01

    The social network structure of animal populations has major implications for survival, reproductive success, sexual selection and pathogen transmission of individuals. But as of yet, no general theory of social network structure exists that can explain the diversity of social networks observed in nature, and serve as a null model for detecting species and population-specific factors. Here we propose a simple and generally applicable model of social network structure. We consider the emergence of network structure as a result of social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds randomly. We compare model output with data from several species, showing that it can generate networks with properties such as those observed in real social systems. Our model demonstrates that important observed properties of social networks, including heritability of network position or assortative associations, can be understood as consequences of social inheritance. PMID:27352101

  3. Structure of trophic and mutualistic networks across broad environmental gradients

    PubMed Central

    Welti, Ellen A R; Joern, Anthony

    2015-01-01

    This study aims to understand how inherent ecological network structures of nestedness and modularity vary over large geographic scales with implications for community stability. Bipartite networks from previous research from 68 locations globally were analyzed. Using a meta-analysis approach, we examine relationships between the structure of 22 trophic and 46 mutualistic bipartite networks in response to extensive gradients of temperature and precipitation. Network structures varied significantly across temperature gradients. Trophic networks showed decreasing modularity with increasing variation in temperature within years. Nestedness of mutualistic networks decreased with increasing temperature variability between years. Mean annual precipitation and variability of precipitation were not found to have significant influence on the structure of either trophic or mutualistic networks. By examining changes in ecological networks across large-scale abiotic gradients, this study identifies temperature variability as a potential environmental mediator of community stability. Understanding these relationships contributes to our ability to predict responses of biodiversity to climate change at the community level. PMID:25691960

  4. Towards structural controllability of local-world networks

    NASA Astrophysics Data System (ADS)

    Sun, Shiwen; Ma, Yilin; Wu, Yafang; Wang, Li; Xia, Chengyi

    2016-05-01

    Controlling complex networks is of vital importance in science and engineering. Meanwhile, local-world effect is an important ingredient which should be taken into consideration in the complete description of real-world complex systems. In this letter, structural controllability of a class of local-world networks is investigated. Through extensive numerical simulations, firstly, effects of local world size M and network size N on structural controllability are examined. For local-world networks with sparse topological configuration, compared to network size, local-world size can induce stronger influence on controllability, however, for dense networks, controllability is greatly affected by network size and local-world effect can be neglected. Secondly, relationships between controllability and topological properties are analyzed. Lastly, the robustness of local-world networks under targeted attacks regarding structural controllability is discussed. These results can help to deepen the understanding of structural complexity and connectivity patterns of complex systems.

  5. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  6. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  7. Functional approximation using artificial neural networks in structural mechanics

    NASA Technical Reports Server (NTRS)

    Alam, Javed; Berke, Laszlo

    1993-01-01

    The artificial neural networks (ANN) methodology is an outgrowth of research in artificial intelligence. In this study, the feed-forward network model that was proposed by Rumelhart, Hinton, and Williams was applied to the mapping of functions that are encountered in structural mechanics problems. Several different network configurations were chosen to train the available data for problems in materials characterization and structural analysis of plates and shells. By using the recall process, the accuracy of these trained networks was assessed.

  8. Adaptable coordination of U(IV) in the 2D-(4,4) uranium oxalate network: From 8 to 10 coordinations in the uranium (IV) oxalate hydrates

    SciTech Connect

    Duvieubourg-Garela, L.; Vigier, N. Grandjean, S.

    2008-08-15

    Crystals of uranium (IV) oxalate hydrates, U(C{sub 2}O{sub 4}){sub 2}.6H{sub 2}O (1) and U(C{sub 2}O{sub 4}){sub 2}.2H{sub 2}O (2), were obtained by hydrothermal methods using two different U(IV) precursors, U{sub 3}O{sub 8} oxide and nitric U(IV) solution in presence of hydrazine to avoid oxidation of U(IV) into uranyl ion. Growth of crystals of solvated monohydrated uranium (IV) oxalate, U(C{sub 2}O{sub 4}){sub 2}.H{sub 2}O.(dma) (3), dma=dimethylamine, was achieved by slow diffusion of U(IV) into a gel containing oxalate ions. The three structures are built on a bi-dimensional complex polymer of U(IV) atoms connected through bis-bidentate oxalate ions forming [U(C{sub 2}O{sub 4})]{sub 4} pseudo-squares. The flexibility of this supramolecular arrangement allows modifications of the coordination number of the U(IV) atom which, starting from 8 in 1 increases to 9 in 3 and, finally increases, to 10 in 2. The coordination polyhedron changes from a distorted cube, formed by eight oxygen atoms of four oxalate ions, in 1, to a mono-capped square anti-prism in 3 and, finally, to a di-capped square anti-prism in 2, resulting from rotation of the oxalate ions and addition of one and two water oxygen atoms in the coordination of U(IV). In 1, the space between the {sub {infinity}}{sup 2}[U(C{sub 2}O{sub 4}){sub 2}] planar layers is occupied by non-coordinated water molecules; in 2, the space between the staggered {sub {infinity}}{sup 2}[U(C{sub 2}O{sub 4}){sub 2}.2H{sub 2}O] layers is empty, finally in 3, the solvate molecules occupy the interlayer space between corrugated {sub {infinity}}{sup 2}[U(C{sub 2}O{sub 4}){sub 2}.H{sub 2}O] sheets. The thermal decomposition of U(C{sub 2}O{sub 4}){sub 2}.6H{sub 2}O under air and argon atmospheres gives U{sub 3}O{sub 8} and UO{sub 2}, respectively. - Graphical abstract: The adaptable environment of U(IV) in U(IV) oxalates: from eight cubic coordination in U(C{sub 2}O{sub 4}){sub 2}.6H{sub 2}O (a) completed by water oxygens to nine in

  9. Network nestedness as generalized core-periphery structures

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon

    2016-02-01

    The concept of nestedness, in particular for ecological and economical networks, has been introduced as a structural characteristic of real interacting systems. We suggest that the nestedness is in fact another way to express a mesoscale network property called the core-periphery structure. With real ecological mutualistic networks and synthetic model networks, we reveal the strong correlation between the nestedness and core-periphery-ness (likeness to the core-periphery structure), by defining the network-level measures for nestedness and core-periphery-ness in the case of weighted and bipartite networks. However, at the same time, via more sophisticated null-model analysis, we also discover that the degree (the number of connected neighbors of a node) distribution poses quite severe restrictions on the possible nestedness and core-periphery parameter space. Therefore, there must exist structurally interwoven properties in more fundamental levels of network formation, behind this seemingly obvious relation between nestedness and core-periphery structures.

  10. Visual Analysis of Complex Networks and Community Structure

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Ye, Qi; Wang, Yi; Bi, Ran; Suo, Lijun; Hu, Deyong; Yang, Shengqi

    Many real-world domains can be represented as complex networks.A good visualization of a large and complex network is worth more than millions of words. Visual depictions of networks, which exploit human visual processing, are more prone to cognition of the structure of such complex networks than the computational representation. We star by briefly introducing some key technologies of network visualization, such as graph drawing algorithm and community discovery methods. The typical tools for network visualization are also reviewed. A newly developed software framework JSNVA for network visual analysis is introduced. Finally,the applications of JSNVA in bibliometric analysis and mobile call graph analysis are presented.

  11. Distance metric learning for complex networks: Towards size-independent comparison of network structures

    NASA Astrophysics Data System (ADS)

    Aliakbary, Sadegh; Motallebi, Sadegh; Rashidian, Sina; Habibi, Jafar; Movaghar, Ali

    2015-02-01

    Real networks show nontrivial topological properties such as community structure and long-tail degree distribution. Moreover, many network analysis applications are based on topological comparison of complex networks. Classification and clustering of networks, model selection, and anomaly detection are just some applications of network comparison. In these applications, an effective similarity metric is needed which, given two complex networks of possibly different sizes, evaluates the amount of similarity between the structural features of the two networks. Traditional graph comparison approaches, such as isomorphism-based methods, are not only too time consuming but also inappropriate to compare networks with different sizes. In this paper, we propose an intelligent method based on the genetic algorithms for integrating, selecting, and weighting the network features in order to develop an effective similarity measure for complex networks. The proposed similarity metric outperforms state of the art methods with respect to different evaluation criteria.

  12. Electrical Transport and Network Percolation in Graphene and Boron Nitride Mixed-Platelet Structures.

    PubMed

    Debbarma, Rousan; Behura, Sanjay; Nguyen, Phong; Sreeprasad, T S; Berry, Vikas

    2016-04-01

    Percolating network of mixed 2D nanomaterials (2DNs) can leverage the unique electronic structures of different 2DNs, their interfacial doping, manipulable conduction pathways, and local traps. Here, we report on the percolation mechanism and electro-capacitive transport pathways of mixed-platelet network of hexagonal boron nitride (hBN) and reduced graphene oxide (rGO), two isostructural and isoelectronic 2DNs. The transport mechanism is explained in terms of electron hopping through isolated hBN defect traps between rGO (possibly via electron tunneling/hopping through "funneling" points). With optical bandgaps of 4.57 and 4.08 eV for the hBN-domains and 2.18 eV for the rGO domains, the network of hBN with rGO exhibits Poole-Frenkel emission-based transport with mean hopping gap of 1.12 nm (∼hBN trilayer) and an activation barrier of ∼15 ± 0.7 meV. Further, hBN (1.7 pF) has a 6-fold lower capacitance than 1:1 hBN:rGO, which has a resistance 2 orders of magnitude higher than that of rGO (1.46 MΩ). These carrier transport results can be applied to other multi-2DN networks for development of next-generation functional 2D-devices. PMID:27002378

  13. A topology-constrained distance network algorithm for protein structure determination from NOESY data.

    PubMed

    Huang, Yuanpeng Janet; Tejero, Roberto; Powers, Robert; Montelione, Gaetano T

    2006-03-15

    This article formulates the multidimensional nuclear Overhauser effect spectroscopy (NOESY) interpretation problem using graph theory and presents a novel, bottom-up, topology-constrained distance network analysis algorithm for NOESY cross peak interpretation using assigned resonances. AutoStructure is a software suite that implements this topology-constrained distance network analysis algorithm and iteratively generates structures using the three-dimensional (3D) protein structure calculation programs XPLOR/CNS or DYANA. The minimum input for AutoStructure includes the amino acid sequence, a list of resonance assignments, and lists of 2D, 3D, and/or 4D-NOESY cross peaks. AutoStructure can also analyze homodimeric proteins when X-filtered NOESY experiments are available. The quality of input data and final 3D structures is evaluated using recall, precision, and F-measure (RPF) scores, a statistical measure of goodness of fit with the input data. AutoStructure has been tested on three protein NMR data sets for which high-quality structures have previously been solved by an expert, and yields comparable high-quality distance constraint lists and 3D protein structures in hours. We also compare several protein structures determined using AutoStructure with corresponding homologous proteins determined with other independent methods. The program has been used in more than two dozen protein structure determinations, several of which have already been published. PMID:16374783

  14. Interplay between the structural and magnetic probes in the elucidation of the structure of a novel 2D layered [V4O4(OH)2(O2CC6H4CO2)4]·DMF.

    PubMed

    Djerdj, Igor; Škapin, Srečo D; Ceh, Miran; Jagličić, Zvonko; Pajić, Damir; Kozlevčar, Bojan; Orel, Bojan; Orel, Zorica Crnjak

    2012-01-14

    The title compound has been synthesized under solvothermal conditions by reacting vanadium(V) oxytriisopropoxide with terephthalic acid in N,N-dimethylformamide. A combination of synchrotron powder diffraction, infrared spectroscopy, scanning and transmission electron microscopy, and thermal and chemical analysis elucidated the chemical, structural and microstructural features of a new 2D layered inorganic-organic framework. Due to the low-crystallinity of the final material, its crystal structure has been solved from synchrotron X-ray powder diffraction data using a direct space global optimization technique and subsequent constraint Rietveld refinement. [V(4)O(4)(OH)(2)(O(2)CC(6)H(4)CO(2))(4)]·DMF crystallizes in the monoclinic system (space group P2/m (No. 10)); cell parameters: a = 20.923(4) Å, b = 5.963(4) Å, c = 20.425(1) Å, β = 123.70(6)°, V = 2120.1(9) Å(3), Z = 2. The overall structure can be described as an array of parallel 2D layers running along [-101] direction, consisting of two types of vanadium oxidation states and coordination polyhedra: face-shared trigonal prisms (V(4+)) and distorted corner-shared square pyramids (V(5+)). Both configurations form independent parallel chains oriented along the 2-fold symmetry crystallographic b-axis mutually interlinked with terephthalate ligands in a monodentate mode perpendicular to it. The morphology of the compound exhibits long nanofibers, with the growth direction along the layered [-101] axis. The magnetic susceptibility measurements show that the magnetic properties of [V(4)O(4)(OH)(2)(O(2)CC(6)H(4)CO(2))(4)]·DMF can be described by a linear antiferromagnetic chain model, with the isotropic exchange interaction of J = -75 K between the nearest V(4+) neighbours of S = 1/2. PMID:22042096

  15. Epidemic spreading on complex networks with community structures

    NASA Astrophysics Data System (ADS)

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.

    2016-07-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities.

  16. Epidemic spreading on complex networks with community structures

    PubMed Central

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176

  17. Epidemic spreading on complex networks with community structures.

    PubMed

    Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S H

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176

  18. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  19. Generates 2D Input for DYNA NIKE & TOPAZ

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  20. Numerical simulation of fibrous biomaterials with randomly distributed fiber network structure.

    PubMed

    Jin, Tao; Stanciulescu, Ilinca

    2016-08-01

    This paper presents a computational framework to simulate the mechanical behavior of fibrous biomaterials with randomly distributed fiber networks. A random walk algorithm is implemented to generate the synthetic fiber network in 2D used in simulations. The embedded fiber approach is then adopted to model the fibers as embedded truss elements in the ground matrix, which is essentially equivalent to the affine fiber kinematics. The fiber-matrix interaction is partially considered in the sense that the two material components deform together, but no relative movement is considered. A variational approach is carried out to derive the element residual and stiffness matrices for finite element method (FEM), in which material and geometric nonlinearities are both included. Using a data structure proposed to record the network geometric information, the fiber network is directly incorporated into the FEM simulation without significantly increasing the computational cost. A mesh sensitivity analysis is conducted to show the influence of mesh size on various simulation results. The proposed method can be easily combined with Monte Carlo (MC) simulations to include the influence of the stochastic nature of the network and capture the material behavior in an average sense. The computational framework proposed in this work goes midway between homogenizing the fiber network into the surrounding matrix and accounting for the fully coupled fiber-matrix interaction at the segment length scale, and can be used to study the connection between the microscopic structure and the macro-mechanical behavior of fibrous biomaterials with a reasonable computational cost. PMID:26342926

  1. Generalized hypercube structures and hyperswitch communication network

    NASA Technical Reports Server (NTRS)

    Young, Steven D.

    1992-01-01

    This paper discusses an ongoing study that uses a recent development in communication control technology to implement hybrid hypercube structures. These architectures are similar to binary hypercubes, but they also provide added connectivity between the processors. This added connectivity increases communication reliability while decreasing the latency of interprocessor message passing. Because these factors directly determine the speed that can be obtained by multiprocessor systems, these architectures are attractive for applications such as remote exploration and experimentation, where high performance and ultrareliability are required. This paper describes and enumerates these architectures and discusses how they can be implemented with a modified version of the hyperswitch communication network (HCN). The HCN is analyzed because it has three attractive features that enable these architectures to be effective: speed, fault tolerance, and the ability to pass multiple messages simultaneously through the same hyperswitch controller.

  2. Evolving networks-Using past structure to predict the future

    NASA Astrophysics Data System (ADS)

    Shang, Ke-ke; Yan, Wei-sheng; Small, Michael

    2016-08-01

    Many previous studies on link prediction have focused on using common neighbors to predict the existence of links between pairs of nodes. More broadly, research into the structural properties of evolving temporal networks and temporal link prediction methods have recently attracted increasing attention. In this study, for the first time, we examine the use of links between a pair of nodes to predict their common neighbors and analyze the relationship between the weight and the structure in static networks, evolving networks, and in the corresponding randomized networks. We propose both new unweighted and weighted prediction methods and use six kinds of real networks to test our algorithms. In unweighted networks, we find that if a pair of nodes connect to each other in the current network, they will have a higher probability to connect common nodes both in the current and the future networks-and the probability will decrease with the increase of the number of neighbors. Furthermore, we find that the original networks have their particular structure and statistical characteristics which benefit link prediction. In weighted networks, the prediction algorithm performance of networks which are dominated by human factors decrease with the decrease of weight and are in general better in static networks. Furthermore, we find that geographical position and link weight both have significant influence on the transport network. Moreover, the evolving financial network has the lowest predictability. In addition, we find that the structure of non-social networks has more robustness than social networks. The structure of engineering networks has both best predictability and also robustness.

  3. Application of neural networks to health monitoring of bridge structures

    NASA Astrophysics Data System (ADS)

    Loh, Chin-Hsiung; Yeh, ShyChing

    2000-06-01

    A procedure based on the use of artificial neural networks for the identification of dynamic system is developed and applied to the bridge structure under earthquake excitation. This neural network-based approach is also applied for the detection of changes in the characteristics of structure- unknown system. Based on the vibration measurement from a linear/healthy system to train the neural network for identification purposes, then the trained network is fed comparable vibration measurements from the same structure under different episodes of response in order to monitor the nonlinearity of the system. The learning ability of the network is examined for the use of multiple inputs. The effects of the network parameters on learning and accuracy of predictions are discussed. Based on this study it is found that the configuration of neural network model is the same as NARMA model and has the potential for structural damage detection.

  4. Structure and formation of ant transportation networks

    PubMed Central

    Latty, Tanya; Ramsch, Kai; Ito, Kentaro; Nakagaki, Toshiyuki; Sumpter, David J. T.; Middendorf, Martin; Beekman, Madeleine

    2011-01-01

    Many biological systems use extensive networks for the transport of resources and information. Ants are no exception. How do biological systems achieve efficient transportation networks in the absence of centralized control and without global knowledge of the environment? Here, we address this question by studying the formation and properties of inter-nest transportation networks in the Argentine ant (Linepithema humile). We find that the formation of inter-nest networks depends on the number of ants involved in the construction process. When the number of ants is sufficient and networks do form, they tend to have short total length but a low level of robustness. These networks are topologically similar to either minimum spanning trees or Steiner networks. The process of network formation involves an initial construction of multiple links followed by a pruning process that reduces the number of trails. Our study thus illuminates the conditions under and the process by which minimal biological transport networks can be constructed. PMID:21288958

  5. Health and the Structure of Adolescent Social Networks

    ERIC Educational Resources Information Center

    Haas, Steven A.; Schaefer, David R.; Kornienko, Olga

    2010-01-01

    Much research has explored the role of social networks in promoting health through the provision of social support. However, little work has examined how social networks themselves may be structured by health. This article investigates the link between individuals' health and the characteristics of their social network positions.We first develop…

  6. Estimates of the statistical two-dimensional spatial structure in rain over a small network of disdrometers

    NASA Astrophysics Data System (ADS)

    Jameson, A. R.; Larsen, M. L.

    2016-06-01

    Microphysical understanding of the variability in rain requires a statistical characterization of different drop sizes both in time and in all dimensions of space. Temporally, there have been several statistical characterizations of raindrop counts. However, temporal and spatial structures are neither equivalent nor readily translatable. While there are recent reports of the one-dimensional spatial correlation functions in rain, they can only be assumed to represent the two-dimensional (2D) correlation function under the assumption of spatial isotropy. To date, however, there are no actual observations of the (2D) spatial correlation function in rain over areas. Two reasons for this deficiency are the fiscal and the physical impossibilities of assembling a dense network of instruments over even hundreds of meters much less over kilometers. Consequently, all measurements over areas will necessarily be sparsely sampled. A dense network of data must then be estimated using interpolations from the available observations. In this work, a network of 19 optical disdrometers over a 100 m by 71 m area yield observations of drop spectra every minute. These are then interpolated to a 1 m resolution grid. Fourier techniques then yield estimates of the 2D spatial correlation functions. Preliminary examples using this technique found that steadier, light rain decorrelates spatially faster than does the convective rain, but in both cases the 2D spatial correlation functions are anisotropic, reflecting an asymmetry in the physical processes influencing the rain reaching the ground not accounted for in numerical microphysical models.

  7. Effect of random structure on permeability and heat transfer characteristics for flow in 2D porous medium based on MRT lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Yang, PeiPei; Wen, Zhi; Dou, RuiFeng; Liu, Xunliang

    2016-08-01

    Flow and heat transfer through a 2D random porous medium are studied by using the lattice Boltzmann method (LBM). For the random porous medium, the influence of disordered cylinder arrangement on permeability and Nusselt number are investigated. Results indicate that the permeability and Nusselt number for different cylinder locations are unequal even with the same number and size of cylinders. New correlations for the permeability and coefficient b‧Den of the Forchheimer equation are proposed for random porous medium composed of Gaussian distributed circular cylinders. Furthermore, a general set of heat transfer correlations is proposed and compared with existing experimental data and empirical correlations. Our results show that the Nu number increases with the increase of the porosity, hence heat transfer is found to be accurate considering the effect of porosity.

  8. Detection of community structure in networks based on community coefficients

    NASA Astrophysics Data System (ADS)

    Lu, Hu; Wei, Hui

    2012-12-01

    Determining community structure in networks is fundamental to the analysis of the structural and functional properties of those networks, including social networks, computer networks, and biological networks. Modularity function Q, which was proposed by Newman and Girvan, was once the most widely used criterion for evaluating the partition of a network into communities. However, modularity Q is subject to a serious resolution limit. In this paper, we propose a new function for evaluating the partition of a network into communities. This is called community coefficient C. Using community coefficient C, we can automatically identify the ideal number of communities in the network, without any prior knowledge. We demonstrate that community coefficient C is superior to the modularity Q and does not have a resolution limit. We also compared the two widely used community structure partitioning methods, the hierarchical partitioning algorithm and the normalized cuts (Ncut) spectral partitioning algorithm. We tested these methods on computer-generated networks and real-world networks whose community structures were already known. The Ncut algorithm and community coefficient C were found to produce better results than hierarchical algorithms. Unlike several other community detection methods, the proposed method effectively partitioned the networks into different community structures and indicated the correct number of communities.

  9. Supramolecular inclusion-based molecular integral rigidity: a feasible strategy for controlling the structural connectivity of uranyl polyrotaxane networks.

    PubMed

    Mei, Lei; Wang, Lin; Yuan, Li-yong; An, Shu-wen; Zhao, Yu-liang; Chai, Zhi-fang; Burns, Peter C; Shi, Wei-qun

    2015-08-01

    The assembly of two-dimensional (2D) large channel uranyl-organic polyrotaxane networks as well as structural regulation of uranyl-bearing units using jointed cucurbit[6]uril-based pseudorotaxanes with integral rigidity based on supramolecular inclusion is presented for the first time. This construction strategy concerning controlling molecular integral rigidity based on supramolecular inclusion may afford an entirely new methodology for coordination chemistry. PMID:26121567

  10. Relation between structure and size in social networks.

    PubMed

    López, Luis; Sanjuán, Miguel A F

    2002-03-01

    In the context of complex network systems, we model social networks with the property that there is certain degradation of the information flowing through the network. We analyze different kinds of networks, from regular lattices to random graphs. We define an average coordination degree for the network, which can be associated with a certain notion of efficiency. Assuming that there is a limit to the information a person may handle, we show that there exists a close relationship between the structure of the network and its maximum size. PMID:11909165

  11. Baby universes in 2d quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar

    1993-06-01

    We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.

  12. Network structure, topology, and dynamics in generalized models of synchronization

    NASA Astrophysics Data System (ADS)

    Lerman, Kristina; Ghosh, Rumi

    2012-08-01

    Network structure is a product of both its topology and interactions between its nodes. We explore this claim using the paradigm of distributed synchronization in a network of coupled oscillators. As the network evolves to a global steady state, nodes synchronize in stages, revealing the network's underlying community structure. Traditional models of synchronization assume that interactions between nodes are mediated by a conservative process similar to diffusion. However, social and biological processes are often nonconservative. We propose a model of synchronization in a network of oscillators coupled via nonconservative processes. We study the dynamics of synchronization of a synthetic and real-world networks and show that the traditional and nonconservative models of synchronization reveal different structures within the same network.

  13. The National Biomedical Communications Network as a Developing Structure *

    PubMed Central

    Davis, Ruth M.

    1971-01-01

    The National Biomedical Communications Network has evolved both from a set of conceptual recommendations over the last twelve years and an accumulation of needs manifesting themselves in the requests of members of the medical community. With a short history of three years this network and its developing structure have exhibited most of the stresses of technology interfacing with customer groups, and of a structure attempting to build itself upon many existing fragmentary unconnected segments of a potentially viable resourcesharing capability. In addition to addressing these topics, the paper treats a design appropriate to any network devoted to information transfer in a special interest user community. It discusses fundamentals of network design, highlighting that network structure most appropriate to a national information network. Examples are given of cost analyses of information services and certain conjectures are offered concerning the roles of national networks. PMID:5542912

  14. The relevance of network micro-structure for neural dynamics.

    PubMed

    Pernice, Volker; Deger, Moritz; Cardanobile, Stefano; Rotter, Stefan

    2013-01-01

    The activity of cortical neurons is determined by the input they receive from presynaptic neurons. Many previous studies have investigated how specific aspects of the statistics of the input affect the spike trains of single neurons and neurons in recurrent networks. However, typically very simple random network models are considered in such studies. Here we use a recently developed algorithm to construct networks based on a quasi-fractal probability measure which are much more variable than commonly used network models, and which therefore promise to sample the space of recurrent networks in a more exhaustive fashion than previously possible. We use the generated graphs as the underlying network topology in simulations of networks of integrate-and-fire neurons in an asynchronous and irregular state. Based on an extensive dataset of networks and neuronal simulations we assess statistical relations between features of the network structure and the spiking activity. Our results highlight the strong influence that some details of the network structure have on the activity dynamics of both single neurons and populations, even if some global network parameters are kept fixed. We observe specific and consistent relations between activity characteristics like spike-train irregularity or correlations and network properties, for example the distributions of the numbers of in- and outgoing connections or clustering. Exploiting these relations, we demonstrate that it is possible to estimate structural characteristics of the network from activity data. We also assess higher order correlations of spiking activity in the various networks considered here, and find that their occurrence strongly depends on the network structure. These results provide directions for further theoretical studies on recurrent networks, as well as new ways to interpret spike train recordings from neural circuits. PMID:23761758

  15. Multiple regimes of robust patterns between network structure and biodiversity.

    PubMed

    Jover, Luis F; Flores, Cesar O; Cortez, Michael H; Weitz, Joshua S

    2015-01-01

    Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities. PMID:26632996

  16. Multiple regimes of robust patterns between network structure and biodiversity

    NASA Astrophysics Data System (ADS)

    Jover, Luis F.; Flores, Cesar O.; Cortez, Michael H.; Weitz, Joshua S.

    2015-12-01

    Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities.

  17. Multiple regimes of robust patterns between network structure and biodiversity

    PubMed Central

    Jover, Luis F.; Flores, Cesar O.; Cortez, Michael H.; Weitz, Joshua S.

    2015-01-01

    Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities. PMID:26632996

  18. Structural factoring approach for analyzing stochastic networks

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Shier, Douglas R.

    1991-01-01

    The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.

  19. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  20. Network analysis of cosmic structures: network centrality and topological environment

    NASA Astrophysics Data System (ADS)

    Hong, Sungryong; Dey, Arjun

    2015-06-01

    We apply simple analyses techniques developed for the study of complex networks to the study of the cosmic web, the large-scale galaxy distribution. In this paper, we measure three network centralities (ranks of topological importance): degree centrality (DC), closeness centrality (CL), and betweenness centrality (BC) from a network built from the Cosmological Evolution Survey (COSMOS) catalogue. We define eight galaxy populations according to the centrality measures: void, wall, and cluster by DC; main branch and dangling leaf by BC; and kernel, backbone, and fracture by CL. We also define three populations by Voronoi tessellation density to compare these with the DC selection. We apply the topological selections to galaxies in the (photometric) redshift range 0.91 < z < 0.94 from the COSMOS survey, and explore whether the red and blue galaxy populations show differences in colour, star formation rate, and stellar mass in the different topological regions. Despite the limitations and uncertainties associated with using photometric redshift and indirect measurements of galactic parameters, the preliminary results illustrate the potential of network analysis. Future surveys will provide better statistical samples to test and improve this `network cosmology'.

  1. Exploring network structure, dynamics, and function using networkx

    SciTech Connect

    Hagberg, Aric; Swart, Pieter; S Chult, Daniel

    2008-01-01

    NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility mades NetworkX ideal for representing networks found in many different scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distribution and many more. NetworkX can read and write various graph formats for eash exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdoes-Renyi, Small World, and Barabasi-Albert models, are included. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.

  2. Image-Based Structural Modeling of the Cardiac Purkinje Network

    PubMed Central

    Liu, Benjamin R.; Cherry, Elizabeth M.

    2015-01-01

    The Purkinje network is a specialized conduction system within the heart that ensures the proper activation of the ventricles to produce effective contraction. Its role during ventricular arrhythmias is less clear, but some experimental studies have suggested that the Purkinje network may significantly affect the genesis and maintenance of ventricular arrhythmias. Despite its importance, few structural models of the Purkinje network have been developed, primarily because current physical limitations prevent examination of the intact Purkinje network. In previous modeling efforts Purkinje-like structures have been developed through either automated or hand-drawn procedures, but these networks have been created according to general principles rather than based on real networks. To allow for greater realism in Purkinje structural models, we present a method for creating three-dimensional Purkinje networks based directly on imaging data. Our approach uses Purkinje network structures extracted from photographs of dissected ventricles and projects these flat networks onto realistic endocardial surfaces. Using this method, we create models for the combined ventricle-Purkinje system that can fully activate the ventricles through a stimulus delivered to the Purkinje network and can produce simulated activation sequences that match experimental observations. The combined models have the potential to help elucidate Purkinje network contributions during ventricular arrhythmias. PMID:26583120

  3. Measuring the robustness of network community structure using assortativity

    PubMed Central

    Shizuka, Daizaburo; Farine, Damien R.

    2016-01-01

    The existence of discrete social clusters, or ‘communities’, is a common feature of social networks in human and nonhuman animals. The level of such community structure in networks is typically measured using an index of modularity, Q. While modularity quantifies the degree to which individuals associate within versus between social communities and provides a useful measure of structure in the social network, it assumes that the network has been well sampled. However, animal social network data is typically subject to sampling errors. In particular, the associations among individuals are often not sampled equally, and animal social network studies are often based on a relatively small set of observations. Here, we extend an existing framework for bootstrapping network metrics to provide a method for assessing the robustness of community assignment in social networks using a metric we call community assortativity (rcom). We use simulations to demonstrate that modularity can reliably detect the transition from random to structured associations in networks that differ in size and number of communities, while community assortativity accurately measures the level of confidence based on the detectability of associations. We then demonstrate the use of these metrics using three publicly available data sets of avian social networks. We suggest that by explicitly addressing the known limitations in sampling animal social network, this approach will facilitate more rigorous analyses of population-level structural patterns across social systems. PMID:26949266

  4. 3DProIN: Protein-Protein Interaction Networks and Structure Visualization

    PubMed Central

    Li, Hui; Liu, Chunmei

    2015-01-01

    3DProIN is a computational tool to visualize protein–protein interaction networks in both two dimensional (2D) and three dimensional (3D) view. It models protein-protein interactions in a graph and explores the biologically relevant features of the tertiary structures of each protein in the network. Properties such as color, shape and name of each node (protein) of the network can be edited in either 2D or 3D views. 3DProIN is implemented using 3D Java and C programming languages. The internet crawl technique is also used to parse dynamically grasped protein interactions from protein data bank (PDB). It is a java applet component that is embedded in the web page and it can be used on different platforms including Linux, Mac and Window using web browsers such as Firefox, Internet Explorer, Chrome and Safari. It also was converted into a mac app and submitted to the App store as a free app. Mac users can also download the app from our website. 3DProIN is available for academic research at http://bicompute.appspot.com PMID:25664223

  5. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  6. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  7. Utilizing structures of CYP2D6 and BACE1 complexes to reduce risk of drug-drug interactions with a novel series of centrally efficacious BACE1 inhibitors.

    PubMed

    Brodney, Michael A; Beck, Elizabeth M; Butler, Christopher R; Barreiro, Gabriela; Johnson, Eric F; Riddell, David; Parris, Kevin; Nolan, Charles E; Fan, Ying; Atchison, Kevin; Gonzales, Cathleen; Robshaw, Ashley E; Doran, Shawn D; Bundesmann, Mark W; Buzon, Leanne; Dutra, Jason; Henegar, Kevin; LaChapelle, Erik; Hou, Xinjun; Rogers, Bruce N; Pandit, Jayvardhan; Lira, Ricardo; Martinez-Alsina, Luis; Mikochik, Peter; Murray, John C; Ogilvie, Kevin; Price, Loren; Sakya, Subas M; Yu, Aijia; Zhang, Yong; O'Neill, Brian T

    2015-04-01

    In recent years, the first generation of β-secretase (BACE1) inhibitors advanced into clinical development for the treatment of Alzheimer's disease (AD). However, the alignment of drug-like properties and selectivity remains a major challenge. Herein, we describe the discovery of a novel class of potent, low clearance, CNS penetrant BACE1 inhibitors represented by thioamidine 5. Further profiling suggested that a high fraction of the metabolism (>95%) was due to CYP2D6, increasing the potential risk for victim-based drug-drug interactions (DDI) and variable exposure in the clinic due to the polymorphic nature of this enzyme. To guide future design, we solved crystal structures of CYP2D6 complexes with substrate 5 and its corresponding metabolic product pyrazole 6, which provided insight into the binding mode and movements between substrate/inhibitor complexes. Guided by the BACE1 and CYP2D6 crystal structures, we designed and synthesized analogues with reduced risk for DDI, central efficacy, and improved hERG therapeutic margins. PMID:25781223

  8. Utilizing Structures of CYP2D6 and BACE1 Complexes To Reduce Risk of Drug–Drug Interactions with a Novel Series of Centrally Efficacious BACE1 Inhibitors

    PubMed Central

    2016-01-01

    In recent years, the first generation of β-secretase (BACE1) inhibitors advanced into clinical development for the treatment of Alzheimer’s disease (AD). However, the alignment of drug-like properties and selectivity remains a major challenge. Herein, we describe the discovery of a novel class of potent, low clearance, CNS penetrant BACE1 inhibitors represented by thioamidine 5. Further profiling suggested that a high fraction of the metabolism (>95%) was due to CYP2D6, increasing the potential risk for victim-based drug–drug interactions (DDI) and variable exposure in the clinic due to the polymorphic nature of this enzyme. To guide future design, we solved crystal structures of CYP2D6 complexes with substrate 5 and its corresponding metabolic product pyrazole 6, which provided insight into the binding mode and movements between substrate/inhibitor complexes. Guided by the BACE1 and CYP2D6 crystal structures, we designed and synthesized analogues with reduced risk for DDI, central efficacy, and improved hERG therapeutic margins. PMID:25781223

  9. Influence of a network structure on the network effect in the communication service market

    NASA Astrophysics Data System (ADS)

    Uchida, Makoto; Shirayama, Susumu

    2008-09-01

    In this study, we analyze the network effect in a model of a personal communication market, by using a multi-agent based simulation approach. We introduce into the simulation model complex network structures as the interaction patterns of agents. With complex network models, we investigate the dynamics of a market in which two providers are competing. We also examine the structure of networks that affect the complex behavior of the market. By a series of simulations, we show that the structural properties of complex networks, such as the clustering coefficient and degree correlation, have a major influence on the dynamics of the market. We find that the network effect is increased if the interaction pattern of agents is characterized by a high clustering coefficient, or a positive degree correlation. We also discuss a suitable model of the interaction pattern for reproducing market dynamics in the real world, by performing simulations using real data of a social network.

  10. Topological effects of network structure on long-term social network dynamics in a wild mammal

    PubMed Central

    Ilany, Amiyaal; Booms, Andrew S.; Holekamp, Kay E.

    2015-01-01

    Social structure influences ecological processes such as dispersal and invasion, and affects survival and reproductive success. Recent studies have used static snapshots of social networks, thus neglecting their temporal dynamics, and focused primarily on a limited number of variables that might be affecting social structure. Here, instead we modelled effects of multiple predictors of social network dynamics in the spotted hyena, using observational data collected during 20 years of continuous field research in Kenya. We tested the hypothesis that the current state of the social network affects its long-term dynamics. We employed stochastic agent-based models that allowed us to estimate the contribution of multiple factors to network changes. After controlling for environmental and individual effects, we found that network density and individual centrality affected network dynamics, but that social bond transitivity consistently had the strongest effects. Our results emphasise the significance of structural properties of networks in shaping social dynamics. PMID:25975663

  11. Topological effects of network structure on long-term social network dynamics in a wild mammal.

    PubMed

    Ilany, Amiyaal; Booms, Andrew S; Holekamp, Kay E

    2015-07-01

    Social structure influences ecological processes such as dispersal and invasion, and affects survival and reproductive success. Recent studies have used static snapshots of social networks, thus neglecting their temporal dynamics, and focused primarily on a limited number of variables that might be affecting social structure. Here, instead we modelled effects of multiple predictors of social network dynamics in the spotted hyena, using observational data collected during 20 years of continuous field research in Kenya. We tested the hypothesis that the current state of the social network affects its long-term dynamics. We employed stochastic agent-based models that allowed us to estimate the contribution of multiple factors to network changes. After controlling for environmental and individual effects, we found that network density and individual centrality affected network dynamics, but that social bond transitivity consistently had the strongest effects. Our results emphasise the significance of structural properties of networks in shaping social dynamics. PMID:25975663

  12. Studying the effect of noise on the performance of 2D and 3D texture measures for quantifying the trabecular bone structure as obtained with high resolution MR imaging at 3 tesla

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto; Bauer, Jan; Mueller, Dirk; Rummeny, Ernst J.; Link, Thomas M.; Majumdar, Sharmila; Matsuura, Maiko; Eckstein, Felix; Sidorenko, Irina; Raeth, Christoph W.

    2008-03-01

    3.0 Tesla MRI devices are becoming popular in clinical applications since they render images with a higher signal-tonoise ratio than the former 1.5 Tesla MRI devices. Here, we investigate if higher signal-to-noise ratio can be beneficial for a quantitative image analysis in the context of bone research. We performed a detailed analysis of the effect of noise on the performance of 2D morphometric linear measures and a 3D nonlinear measure with respect to their correlation with biomechanical properties of the bone expressed by the maximum compressive strength. The performance of both 2D and 3D texture measures was relatively insensitive to superimposed artificial noise. This finding suggests that MR sequences for visualizing bone structures at 3T should rather be optimized to spatial resolution (or scanning time) than to signal-to-noise ratio.

  13. Functional clustering in hippocampal cultures: relating network structure and dynamics

    NASA Astrophysics Data System (ADS)

    Feldt, S.; Wang, J. X.; Shtrahman, E.; Dzakpasu, R.; Olariu, E.; Żochowski, M.

    2010-12-01

    In this work we investigate the relationship between gross anatomic structural network properties, neuronal dynamics and the resultant functional structure in dissociated rat hippocampal cultures. Specifically, we studied cultures as they developed under two conditions: the first supporting glial cell growth (high glial group), and the second one inhibiting it (low glial group). We then compared structural network properties and the spatio-temporal activity patterns of the neurons. Differences in dynamics between the two groups could be linked to the impact of the glial network on the neuronal network as the cultures developed. We also implemented a recently developed algorithm called the functional clustering algorithm (FCA) to obtain the resulting functional network structure. We show that this new algorithm is useful for capturing changes in functional network structure as the networks evolve over time. The FCA detects changes in functional structure that are consistent with expected dynamical differences due to the impact of the glial network. Cultures in the high glial group show an increase in global synchronization as the cultures age, while those in the low glial group remain locally synchronized. We additionally use the FCA to quantify the amount of synchronization present in the cultures and show that the total level of synchronization in the high glial group is stronger than in the low glial group. These results indicate an interdependence between the glial and neuronal networks present in dissociated cultures.

  14. Electronic structure of charge-density-wave state in quasi-2D KMo6O17 purple bronze characterized by angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Drouard, S.; Guyot, H.; Asensio, M. C.

    2006-01-01

    We report on an angle-resolved-photoemission spectroscopy (ARPES) investigation of layered quasi-two dimensional (2D) Molybdenum purple bronze KMo6O17 in order to study and characterizes the transition to a charge-density-wave (CDW) state. We have performed photoemission temperature dependent measurements cooling down from room temperature (RT) to 32 K, well below the Peierls transition for this material, with CDW transition temperature Tc =110 K. The spectra have been taken at a selected kF point of the Fermi surface (FS) that satisfies the nesting condition of the FS, looking for the characteristic pseudo-gap opening in this kind of materials. The pseudogap has been estimated and it result to be in agreement with our previous works. The shift to lower binding energy of crossing Fermi level ARPES feature have been also confirmed and studied as a function of temperature, showing a rough like BCS behaviour. Finally we have also focused on ARPES measurements along ΓM¯ high symmetry direction for both room and low temperature states finding some insight for ‘shadow’ or back folded bands indicating the new periodicity of real lattice after the CDW lattice distortion.

  15. Network versus portfolio structure in financial systems

    NASA Astrophysics Data System (ADS)

    Kobayashi, Teruyoshi

    2013-10-01

    The question of how to stabilize financial systems has attracted considerable attention since the global financial crisis of 2007-2009. Recently, Beale et al. [Proc. Natl. Acad. Sci. USA 108, 12647 (2011)] demonstrated that higher portfolio diversity among banks would reduce systemic risk by decreasing the risk of simultaneous