Science.gov

Sample records for 2d nmr 1h-1h

  1. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  2. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  3. Vicinal 1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules.

    PubMed

    López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio

    2011-08-05

    A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones.

  4. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    PubMed

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  5. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  6. Ultrafast acquisition of (1)H-(1)H dipolar correlation experiments in spinning elastomers.

    PubMed

    Rouger, Laetitia; Yon, Maxime; Sarou-Kanian, Vincent; Fayon, Franck; Dumez, Jean-Nicolas; Giraudeau, Patrick

    2017-02-09

    We show that two widely used 2D solid-state NMR (ssNMR) pulse sequences can be implemented in an ultrafast (UF) manner, and yield 2D spectra of elastomers in a single scan, under magic-angle spinning. UF 2D ssNMR provides an acceleration of one to several orders of magnitude for classic experiments.

  7. 1H-detected 1H- 1H correlation spectroscopy of a stereo-array isotope labeled amino acid under fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Kainosho, Masatsune; Akutsu, Hideo; Fujiwara, Toshimichi

    2010-04-01

    The combined use of selective deuteration, stereo-array isotope labeling (SAIL), and fast magic-angle spinning effectively suppresses the 1H-1H dipolar couplings in organic solids. This method provided the high-field 1H NMR linewidths comparable to those achieved by combined rotation and multiple-pulse spectroscopy. This technique was applied to two-dimensional 1H-detected 1H-1H polarization transfer CHH experiments of valine. The signal sensitivity for the 1H-detected CHH experiments was greater than that for the 13C-detected 1H-1H polarization transfer experiments by a factor of 2-4. We obtained the 1H-1H distances in SAIL valine by CHH experiments with an accuracy of about 0.2 Å by using a theory developed for 1H-1H polarization transfer in 13C-labeled organic compounds.

  8. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  9. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.

    PubMed

    Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique

    2014-01-01

    Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.

  10. 2D NMR-spectroscopic screening reveals polyketides in ladybugs.

    PubMed

    Deyrup, Stephen T; Eckman, Laura E; McCarthy, Patrick H; Smedley, Scott R; Meinwald, Jerrold; Schroeder, Frank C

    2011-06-14

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature's cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature's structure space and suggests that insect metabolomes remain vastly underexplored.

  11. 2D NMR-spectroscopic screening reveals polyketides in ladybugs

    PubMed Central

    Deyrup, Stephen T.; Eckman, Laura E.; McCarthy, Patrick H.; Smedley, Scott R.; Meinwald, Jerrold; Schroeder, Frank C.

    2011-01-01

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature’s cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature’s structure space and suggests that insect metabolomes remain vastly underexplored. PMID:21646540

  12. Peak width issues with generalised 2D correlation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kirwan, Gemma M.; Adams, Michael J.

    2008-12-01

    Two-dimensional spectral correlation analysis is shown to be sensitive to fluctuations in spectral peak width as a function of perturbation variable. This is particularly significant where peak width fluctuations are of similar order of magnitude as the peak width values themselves and where changes in peak width are not random but are, for example, proportional to intensity. In such cases these trends appear in the asynchronous matrix as false peaks that serve to interfere with interpretation of the data. Complex, narrow band spectra such as provided by 1H NMR spectroscopy are demonstrated to be prone to such interference. 2D correlation analysis was applied to a series of NMR spectra corresponding to a commercial wine fermentation, in which the samples collected over a period of several days exhibit dramatic changes in concentration of minor and major components. The interference due to changing peak width effects is eliminated by synthesizing the recorded spectra using a constant peak width value prior to performing 2D correlation analysis.

  13. Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques

    NASA Astrophysics Data System (ADS)

    Topcu, Gulacti; Ulubelen, Ayhan

    2007-05-01

    In our continuing studies on Lamiaceae family plants including Salvia, Teucrium, Ajuga, Sideritis, Nepeta and Lavandula growing in Anatolia, many terpenoids, consisting of over 50 distinct triterpenoids and steroids, and over 200 diterpenoids, several sesterterpenoids and sesquiterpenoids along with many flavonoids and other phenolic compounds have been isolated. For Salvia species abietanes, for Teucrium and Ajuga species neo-clerodanes for Sideritis species ent-kaurane diterpenes are characteristic while nepetalactones are specific for Nepeta species. In this review article, only some interesting and different type of skeleton having constituents, namely rearranged, nor- or rare diterpenes, isolated from these species will be presented. For structure elucidation of these natural diterpenoids intensive one- and two-dimensional NMR techniques ( 1H, 13C, APT, DEPT, NOE/NOESY, 1H- 1H COSY, HETCOR, COLOC, HMQC/HSQC, HMBC, SINEPT) were used besides mass and some other spectroscopic methods.

  14. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    PubMed Central

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  15. Isolation and 2D NMR Studies of Alkaloids from Comptonella sessilifoliola1.

    PubMed

    Pusset, J; Lopez, J L; Pais, M; Neirabeyeh, M A; Veillon, J M

    1991-04-01

    Six known furanoquinoline alkaloids have been isolated from the wood and trunk bark of COMPTONELLA SESSILIFOLIOLA (Guillaumin) Hartley (Rutaceae). 2D NMR experiments gave the assignment of all the signals for both (1)H- and (13)C-NMR spectra. Pteleine and kokusaginine were used as models. The two-dimensional carbon-proton correlation experiments, performed for the first time on furanoquinoline alkaloids, led us to correct (13)C-NMR assignments previously described in the literature.

  16. Single-scan 2D NMR: An Emerging Tool in Analytical Spectroscopy

    PubMed Central

    Giraudeau, Patrick; Frydman, Lucio

    2016-01-01

    Two-dimensional Nuclear Magnetic Resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing an increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago a so-called “ultrafast” (UF) approach was proposed, capable to deliver arbitrary 2D NMR spectra involving any kind of homo- or hetero-nuclear correlations, in a single scan. During the intervening years the performance of this sub-second 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool witnessing an expanded scope of applications. The present reviews summarizes the principles and the main developments which have contributed to the success of this approach, and focuses on applications which have been recently demonstrated in various areas of analytical chemistry –from the real time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  17. Crystal structure of 1H,1'H-[2,2'-biimid-azol]-3-ium hydrogen tartrate hemi-hydrate.

    PubMed

    Gao, Xiao-Li; Bian, Li-Fang; Guo, Shao-Wei

    2014-11-01

    In the crystal of the title hydrated salt, C6H7N4 (+)·C4H5O6 (-)·0.5H2O, the bi-imidazole monocation, 1H,1'H-[2,2'-biimidazol]-3-ium, is hydrogen bonded, via N-H⋯O, O-H⋯O and O-H⋯N hydrogen bonds, to the hydrogen tartrate anion and the water mol-ecule, which is located on a twofold rotation axis, forming sheets parallel to (001). The sheets are linked via C-H⋯O hydrogen bonds, forming a three-dimensional structure. There are also C=O⋯π inter-actions present [O⋯π distances are 3.00 (9) and 3.21 (7) Å], involving the carbonyl O atoms and the imidazolium ring, which may help to consolidate the structure. In the cation, the dihedral angle between the rings is 11.6 (2)°.

  18. 1D and 2D NMR of nanocellulose in aqueous colloidal suspensions.

    PubMed

    Jiang, Feng; Dallas, Jerry L; Ahn, B Kollbe; Hsieh, You-Lo

    2014-09-22

    This is the first report on surface structural elucidation of individual nanocellulose as colloidal suspensions by 1D 1H, 2D heteronuclear single quantum coherence (HSQC) as well as 13C nuclear magnetic resonance (NMR). 1H NMR of rice straw CNCs (4.7 nm thick, 143 nm long, 0.04 sulfate per AG or 19.0% surface hydroxyl to sulfate conversion) resembled that of homogeneous cellulose solution. Conventional 2D HSQC NMR of CNC, CNF 1.5 (2-14 nm thick, several micrometers long, 0.10 COOH per AG) and CNF10 (2.0 nm thick, up to 1 μm long, 0.28 COOH per AG) gave H1:H2 ratios of 1.08:1, 0.97:1 and 0.94:1, respectively, all close to the theoretical 1:1 value for cellulose. The H1:H6 ratios determined from 2D HSQC NMR for CNCs, CNF1.5 and CNF10 were 1:1.47, 1:0.88 and 1:0.14, respectively, and corresponded to 26%, 56% and 93% C6 primary hydroxyl conversion to sulfate and carboxyl groups, consistent with, but more sensitive than those by conductometric titration and X-ray diffraction. Both 1H and 2D HSQC NMR data confirm that solution-state NMR detects nanocellulose surface carbons and protons primarily, validating this technique for direct surface characterization of nanocellulose in aqueous colloidal suspensions, presenting a sensitive and meaningful NMR tool for direct characterizing individual nanocellulose surfaces in never-dried state.

  19. Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy.

    PubMed

    Stintzing, Florian C; Conrad, Jürgen; Klaiber, Iris; Beifuss, Uwe; Carle, Reinhold

    2004-02-01

    Four betacyanin pigments were analysed by LC NMR and subjected to extensive NMR characterisation after isolation. Previously, low pH values were applied for NMR investigations of betalains resulting in rapid degradation of the purified substances thus preventing extensive NMR studies. Consequently, up to now only one single (13)C NMR spectrum of a betalain pigment, namely that of neobetanin (=14,15-dehydrobetanin), was available. Because of its sufficient stability under highly acidic conditions otherwise detrimental for betacyanins, this pigment remained an exemption. Since betalains are most stable in the pH range of 5-7, a new solvent system has been developed allowing improved data acquisition through improved pigment stability at near neutral pH. Thus, not only (1)H, but for the first time also partial (13)C data of betanin, isobetanin, phyllocactin and hylocerenin isolated from red-purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose, Cactaceae] could be indirectly obtained by gHSQC- and gHMQC-NMR experiments.

  20. In situ fluid typing and quantification with 1D and 2D NMR logging.

    PubMed

    Sun, Boqin

    2007-05-01

    In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples.

  1. Optimizing water hyperpolarization and dissolution for sensitivity-enhanced 2D biomolecular NMR

    NASA Astrophysics Data System (ADS)

    Olsen, Greg; Markhasin, Evgeny; Szekely, Or; Bretschneider, Christian; Frydman, Lucio

    2016-03-01

    A recent study explored the use of hyperpolarized water, to enhance the sensitivity of nuclei in biomolecules thanks to rapid proton exchanges with labile amide backbone and sidechain groups. Further optimizations of this approach have now allowed us to achieve proton polarizations approaching 25% in the water transferred into the NMR spectrometer, effective water T1 times approaching 40 s, and a reduction in the dilution demanded for the cryogenic dissolution process. Further hardware developments have allowed us to perform these experiments, repeatedly and reliably, in 5 mm NMR tubes. All these ingredients - particularly the ⩾3000× 1H polarization enhancements over 11.7 T thermal counterparts, long T1 times and a compatibility with high-resolution biomolecular NMR setups - augur well for hyperpolarized 2D NMR studies of peptides, unfolded proteins and intrinsically disordered systems undergoing fast exchanges of their protons with the solvent. This hypothesis is here explored by detailing the provisions that lead to these significant improvements over previous reports, and demonstrating 1D coherence transfer experiments and 2D biomolecular HMQC acquisitions delivering NMR spectral enhancements of 100-500× over their optimized, thermally-polarized, counterparts.

  2. Stacking structure of confined 1-butanol in SBA-15 investigated by solid-state NMR spectroscopy.

    PubMed

    Lin, Yun-Chih; Chou, Hung-Lung; Sarma, Loka Subramanyam; Hwang, Bing-Joe

    2009-10-12

    Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid-state NMR spectroscopic investigations on 1-butanol molecules confined in the hydrophilic mesoporous SBA-15 host. A range of NMR spectroscopic measurements comprising of (1)H spin-lattice (T(1)), spin-spin (T(2)) relaxation, (13)C cross-polarization (CP), and (1)H,(1)H two-dimensional nuclear Overhauser enhancement spectroscopy ((1)H,(1)H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide-line (2)H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1-butanol in SBA-15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1-butanol are extremely restricted in the confined space of the SBA-15 pores. The dynamics of the confined molecules of 1-butanol imply that the (1)H,(1)H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1-butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA-15 pores in a time-average state by solid-state NMR spectroscopy with the (1)H,(1)H 2D NOESY technique.

  3. GEL-STATE NMR OF BALL-MILLED WHOLE CELL WALLS IN DMSO-d6 USING 2D SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls were used for obtaining 2D solution-state NMR spectra without actual solubilization or structural modification. Ball-milled whole cell walls were swelled directly in the NMR tube with DMSO-d6 where they formed a gel. There are relatively few gel-state NMR studies. Most have involved...

  4. Well-defined azazirconacyclopropane complexes supported on silica structurally determined by 2D NMR comparative elucidation.

    PubMed

    El Eter, Mohamad; Hamzaoui, Bilel; Abou-Hamad, Edy; Pelletier, Jérémie D A; Basset, Jean-Marie

    2013-05-21

    Grafting of Zr(NMe2)4 on mesoporous silica SBA-15 afforded selectively well-defined surface species [triple bond, length as m-dash]SiOZr(NMe2)(η2NMeCH2). 2D solid-state NMR ((1)H-(13)C HETCOR, Multiple Quantum) experiments have shown a unique structural rearrangement occurring on the immobilised zirconium bis methylamido ligand.

  5. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  6. Determination of long-range scalar 1H-1H coupling constants responsible for polarization transfer in SABRE

    NASA Astrophysics Data System (ADS)

    Eshuis, Nan; Aspers, Ruud L. E. G.; van Weerdenburg, Bram J. A.; Feiters, Martin C.; Rutjes, Floris P. J. T.; Wijmenga, Sybren S.; Tessari, Marco

    2016-04-01

    SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz 4J coupling to p-H2 derived hydrides for their ortho protons, and a much lower 5J coupling for their meta protons. Interestingly, the 4J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz.

  7. Determination of long-range scalar (1)H-(1)H coupling constants responsible for polarization transfer in SABRE.

    PubMed

    Eshuis, Nan; Aspers, Ruud L E G; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2016-04-01

    SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz (4)J coupling to p-H2 derived hydrides for their ortho protons, and a much lower (5)J coupling for their meta protons. Interestingly, the (4)J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz.

  8. Non-linear effects in quantitative 2D NMR of polysaccharides: pitfalls and how to avoid them.

    PubMed

    Martineau, Estelle; El Khantache, Kamel; Pupier, Marion; Sepulcri, Patricia; Akoka, Serge; Giraudeau, Patrick

    2015-04-10

    Quantitative 2D NMR is a powerful analytical tool which is widely used to determine the concentration of small molecules in complex samples. Due to the site-specific response of the 2D NMR signal, the determination of absolute concentrations requires the use of a calibration or standard addition approach, where the analyte acts as its own reference. Standard addition methods, where the targeted sample is gradually spiked with known amounts of the targeted analyte, are particularly well-suited for quantitative 2D NMR of small molecules. This paper explores the potential of such quantitative 2D NMR approaches for the quantitative analysis of a high molecular weight polysaccharide. The results highlight that the standard addition method leads to a strong under-estimation of the target concentration, whatever the 2D NMR pulse sequence. Diffusion measurements show that a change in the macromolecular organization of the studied polysaccharide is the most probable hypothesis to explain the non-linear evolution of the 2D NMR signal with concentration. In spite of this non-linearity--the detailed explanation of which is out of the scope of this paper--we demonstrate that accurate quantitative results can still be obtained provided that an external calibration is performed with a wide range of concentrations surrounding the target value. This study opens the way to a number of studies where 2D NMR is needed for the quantitative analysis of macromolecules.

  9. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  10. Analysis of pyruvylated beta-carrageenan by 2D NMR spectroscopy and reductive partial hydrolysis.

    PubMed

    Falshaw, Ruth; Furneaux, Richard H; Wong, Herbert

    2003-06-23

    A polysaccharide rich in 4',6'-O-(1-carboxyethylidene)-substituted (i.e., pyruvylated) beta-carrageenan has been prepared by solvolytic desulfation of a polysaccharide containing predominantly pyruvylated alpha-carrageenan, which was extracted from the red seaweed, Callophycus tridentifer. The 13C and 1H NMR chemical shifts of pyruvylated beta-carrageenan have been fully assigned using 2D NMR spectroscopic techniques. The 4',6'-O-(1-methoxycarbonylethylidene) group, generated during chemical methylation of the polysaccharide, has been shown to survive under the conditions of acidic hydrolysis that cleave the 3,6-anhydro-alpha-D-galactosidic bonds in permethylated samples of both pyruvylated beta- and pyruvylated alpha-carrageenans. As a result, two novel pyruvylated carrabiitol derivatives have been prepared.

  11. The inversion of 2D NMR relaxometry data using L1 regularization

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaolong; Su, Guanqun; Wang, Lijia; Nie, Shengdong; Ge, Xinmin

    2017-02-01

    NMR relaxometry has been used as a powerful tool to study molecular dynamics. Many algorithms have been developed for the inversion of 2D NMR relaxometry data. Unlike traditional algorithms implementing L2 regularization, high order Tikhonov regularization or iterative regularization, L1 penalty term is involved to constrain the sparsity of resultant spectra in this paper. Then fast iterative shrinkage-thresholding algorithm (FISTA) is proposed to solve the L1 regularization problem. The effectiveness, noise vulnerability and practical utility of the proposed algorithm are analyzed by simulations and experiments. The results demonstrate that the proposed algorithm has a more excellent capability to reveal narrow peaks than traditional inversion algorithms. The L1 regularization implemented by our algorithm can be a useful complementary to the existing algorithms.

  12. Characterization of Secondary Amide Peptide Bonds Isomerization: Thermodynamics and Kinetics from 2D NMR Spectroscopy

    PubMed Central

    Zhang, Jin; Germann, Markus W.

    2011-01-01

    Secondary amide cis peptide bonds are of even lower abundance than the cis tertiary amide bonds of prolines, yet they are of biochemical importance. Using 2D NMR exchange spectroscopy we investigated the formation of cis peptide bonds in several oligopeptides: Ac-G-G-G-NH2, Ac-I-G-G-NH2, Ac-I-G-G-N-NH2 and its cyclic form: I-G-G-N in DMSO. From the NMR studies, using the amide protons as monitors, an occurrenc.e of 0.13% – 0.23% of cis bonds was obtained at 296 K. The rate constants for the trans to cis conversion determined from 2D EXSY spectroscopy were 4–9·10−3 s−1. Multiple minor conformations were detected for most peptide bonds. From their thermodynamic and kinetic properties the cis isomers are distinguished from minor trans isomers that appear because of an adjacent cis peptide bond. Solvent and sequence effects were investigated utilizing N-methylacetamide and various peptides, which revealed an unique enthalpy profile in DMSO. The cyclization of a tetrapeptide resulted in greatly lowered cis populations and slower isomerization rate compared to its linear counterpart, further highlighting the impact of structural constraints. PMID:21538331

  13. 1D and 2D NMR studies of isobornyl acrylate - Methyl methacrylate copolymers

    NASA Astrophysics Data System (ADS)

    Khandelwal, Deepika; Hooda, Sunita; Brar, A. S.; Shankar, Ravi

    2011-10-01

    Isobornyl acrylate - methyl methacrylate (B/M) copolymers of different compositions were synthesized by atom transfer radical polymerization (ATRP) using methyl-2-bromopropionate as an initiator and PMDETA copper complex as catalyst under nitrogen atmosphere at 70 °C. 1H NMR spectrum was used to determine the compositions of copolymer. The copolymer compositions were then used to determine the reactivity ratios of monomers. Reactivity ratios of co-monomers in B/M copolymer, determined from linear Kelen-Tudos method (KT) and non linear Error-in-Variable Method (EVM), are rB = 0.41 ± 0.11, rM = 1.11 ± 0.33 and rB = 0.52, rM = 1.31 respectively. The complete resonance assignments of 1H and 13C{ 1H} NMR spectra were carried out with the help of Distortion less Enhancement by Polarization Transfer (DEPT), two-dimensional Heteronuclear Single Quantum Coherence (HSQC). 2D HSQC assignments were further confirmed by 2D Total Correlation Spectroscopy (TOCSY). The carbonyl carbon of B and M units and methyl carbon of M unit were assigned up to triad compositional and configurational sequences whereas β-methylene carbons were assigned up to tetrad compositional and configurational sequences. Similarly the methine carbon of B unit was assigned up to pentad level. 1,3 and 1,4 bond order couplings of carbonyl carbon and quaternary carbon resonances with methine, methylene and methyl protons were studied in detail using 2D Hetero Nuclear Multiple Bond Correlation (HMBC) spectra.

  14. Measuring JHH values with a selective constant-time 2D NMR protocol

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Lin, Yanqin; Chen, Zhong

    2016-11-01

    Proton-proton scalar couplings play important roles in molecule structure elucidation. However, measurements of JHH values in complex coupled spin systems remain challenging. In this study, we develop a selective constant-time (SECT) 2D NMR protocol with which scalar coupling networks involving chosen protons can be revealed, and corresponding JHH values can be measured through doublets along the F1 dimension. All JHH values within a network of n fully coupled protons can be separately determined with (n - 1) SECT experiments. Additionally, the proposed pulse sequence possesses satisfactory sensitivity and handy implementation. Therefore, it will interest scientists who intend to address structural analyzes of molecules with overcrowded spectra, and may greatly facilitate the applications of scalar-coupling constants in molecule structure studies.

  15. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    SciTech Connect

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.

  16. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    DOE PAGES

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulkmore » IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less

  17. Chemical Shifts to Metabolic Pathways: Identifying Metabolic Pathways Directly from a Single 2D NMR Spectrum.

    PubMed

    Dubey, Abhinav; Rangarajan, Annapoorni; Pal, Debnath; Atreya, Hanudatta S

    2015-12-15

    Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) [(13)C-(1)H] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a "uniqueness score" and a "coverage score". Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of decluttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMR-based metabolomics data by reducing existing impediments.

  18. Hierarchical alignment and full resolution pattern recognition of 2D NMR spectra: application to nematode chemical ecology.

    PubMed

    Robinette, Steven L; Ajredini, Ramadan; Rasheed, Hasan; Zeinomar, Abdulrahman; Schroeder, Frank C; Dossey, Aaron T; Edison, Arthur S

    2011-03-01

    Nuclear magnetic resonance (NMR) is the most widely used nondestructive technique in analytical chemistry. In recent years, it has been applied to metabolic profiling due to its high reproducibility, capacity for relative and absolute quantification, atomic resolution, and ability to detect a broad range of compounds in an untargeted manner. While one-dimensional (1D) (1)H NMR experiments are popular in metabolic profiling due to their simplicity and fast acquisition times, two-dimensional (2D) NMR spectra offer increased spectral resolution as well as atomic correlations, which aid in the assignment of known small molecules and the structural elucidation of novel compounds. Given the small number of statistical analysis methods for 2D NMR spectra, we developed a new approach for the analysis, information recovery, and display of 2D NMR spectral data. We present a native 2D peak alignment algorithm we term HATS, for hierarchical alignment of two-dimensional spectra, enabling pattern recognition (PR) using full-resolution spectra. Principle component analysis (PCA) and partial least squares (PLS) regression of full resolution total correlation spectroscopy (TOCSY) spectra greatly aid the assignment and interpretation of statistical pattern recognition results by producing back-scaled loading plots that look like traditional TOCSY spectra but incorporate qualitative and quantitative biological information of the resonances. The HATS-PR methodology is demonstrated here using multiple 2D TOCSY spectra of the exudates from two nematode species: Pristionchus pacificus and Panagrellus redivivus. We show the utility of this integrated approach with the rapid, semiautomated assignment of small molecules differentiating the two species and the identification of spectral regions suggesting the presence of species-specific compounds. These results demonstrate that the combination of 2D NMR spectra with full-resolution statistical analysis provides a platform for chemical and

  19. Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references.

    PubMed

    Zhang, Liming; Gellerstedt, Göran

    2007-01-01

    A new analytical method based on the 2D HSQC NMR sequence is presented, which can be applied for quantitative structural determination of complicated polymers. The influence of T1 and T2 relaxations, off-resonance effects, coupling constants and homonuclear couplings are discussed. It was found that the T2 values measured on polymeric samples with the conventional HSQC-CPMG sequence could not be used to correct the errors caused by T2 relaxations during the polarization transfer delay. A unique way of selecting the proper internal standard reference signal(s) is therefore proposed to eliminate the major errors caused by T2 relaxations, resonance offsets, coupling constant deviations and homonuclear couplings. Two polymer samples, a cellulose triacetate and an acetylated lignin, have been used to illustrate the principles. The methodology developed in this work is robust to instrument miss-setting and it can find wide-spread applications in areas where a quantitative analysis of structurally complicated polymers is necessary.

  20. Monolignol acylation and lignin structure in some nonwoody plants: a 2D NMR study.

    PubMed

    Martínez, Angel T; Rencoret, Jorge; Marques, Gisela; Gutiérrez, Ana; Ibarra, David; Jiménez-Barbero, Jesús; del Río, José C

    2008-11-01

    Lignins from three nonwoody angiosperms were analyzed by 2D NMR revealing important differences in their molecular structures. The Musa textilis milled-wood-lignin (MWL), with a syringyl-to-guaiacyl (S/G) ratio of 9, was strongly acylated (near 85% of side-chains) at the gamma-carbon by both acetates and p-coumarates, as estimated from (1)H-(13)C correlations in C(gamma)-esterified and C(gamma)-OH units. The p-coumarate H(3,5)-C(3,5) correlation signal was completely displaced by acetylation, and disappeared after alkali treatment, indicating that p-coumaric acid was esterified maintaining its free phenolic group. By contrast, the Cannabis sativa MWL (S/G approximately 0.8) was free of acylating groups, and the Agave sisalana MWL (S/G approximately 4) showed high acylation degree (near 80%) but exclusively with acetates. Extensive C(gamma)-acylation results in the absence (in M. textilis lignin) or low abundance (4% in A. sisalana lignin) of beta-beta' resinol linkages, which require free C(gamma)-OH to form the double tetrahydrofuran ring. However, minor signals revealed unusual acylated beta-beta' structures confirming that acylation is produced at the monolignol level, in agreement with chromatographic identification of gamma-acetylated sinapyl alcohol among the plant extractives. In contrast, resinol substructures involved 22% side-chains in the C.sativa MWL. The ratio between beta-beta' and beta-O-4' side-chains in these and other MWL varied from 0.32 in C.sativa MWL to 0.02 in M. textilis MWL, and was inversely correlated with the degree of acylation. The opposite was observed for the S/G ratio that was directly correlated with the acylation degree. Monolignol acylation is discussed as a mechanism potentially involved in the control of lignin structure.

  1. Derivatives of pyrazinecarboxylic acid: 1H, 13C and 15N NMR spectroscopic investigations.

    PubMed

    Holzer, Wolfgang; Eller, Gernot A; Datterl, Barbara; Habicht, Daniela

    2009-07-01

    NMR spectroscopic studies are undertaken with derivatives of 2-pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts ((1)H, (13)C, (15)N) and coupling constants ((1)H,(1)H; (13)C,(1)H; (15)N,(1)H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of (13)C,(1)H spin coupling constants is accomplished by 2D (delta,J) long-range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3-hydroxy-2-pyrazinecarboxylic acid are discussed.

  2. Structural, electronic and vibrational properties of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) crystal.

    PubMed

    Colle, Renato; Grosso, Giuseppe; Cassinese, Antonio; Centore, Roberto

    2013-09-21

    We present a theoretical and experimental investigation of the crystalline structure of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) that has been deduced combining experimental XRD data, obtained from powders, with global-optimization algorithms which allow to identify Bravais lattice, primitive cell parameters, and space group of the crystal. The XRD spectrum calculated for the proposed crystalline structure very well reproduces the measured XRD data. Our results suggest the triclinic lattice structure of spatial groups P1 and P1, respectively, for the crystalline PDI-FCN2-1,7 and PDI-FCN2-1,6 isomers. In both cases, the primitive cell contains a single molecule. On the proposed crystalline structures, KS-DFT cell energy calculations, including van der Waals interactions, have been performed to assign the minimum energy geometrical structure and orientation of the molecule inside the corresponding primitive cell. These calculations evidence the molecular packing that characterizes the strong anisotropy of the PDI-FCN2 crystal. Electronic band-structures calculated for both isomers within the Kohn-Sham density-functional theory indicate that the crystalline P1 structure is an indirect gap semiconductor, while the P1 structure is a direct gap semiconductor. The electronic band structure calculations on the optimized crystal geometries highlight strong anisotropy in the dispersion curves E(k), which roots at the molecular packing in the crystal. Finally, the vibrational spectrum of both crystalline isomers has been calculated in the harmonic approximation and the dominant vibrational frequencies have been associated to collective motions of selected atoms in the molecules.

  3. Structural, electronic and vibrational properties of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) crystal

    NASA Astrophysics Data System (ADS)

    Colle, Renato; Grosso, Giuseppe; Cassinese, Antonio; Centore, Roberto

    2013-09-01

    We present a theoretical and experimental investigation of the crystalline structure of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) that has been deduced combining experimental XRD data, obtained from powders, with global-optimization algorithms which allow to identify Bravais lattice, primitive cell parameters, and space group of the crystal. The XRD spectrum calculated for the proposed crystalline structure very well reproduces the measured XRD data. Our results suggest the triclinic lattice structure of spatial groups Poverline{1} and P1, respectively, for the crystalline PDI-FCN2-1,7 and PDI-FCN2-1,6 isomers. In both cases, the primitive cell contains a single molecule. On the proposed crystalline structures, KS-DFT cell energy calculations, including van der Waals interactions, have been performed to assign the minimum energy geometrical structure and orientation of the molecule inside the corresponding primitive cell. These calculations evidence the molecular packing that characterizes the strong anisotropy of the PDI-FCN2 crystal. Electronic band-structures calculated for both isomers within the Kohn-Sham density-functional theory indicate that the crystalline Poverline{1} structure is an indirect gap semiconductor, while the P1 structure is a direct gap semiconductor. The electronic band structure calculations on the optimized crystal geometries highlight strong anisotropy in the dispersion curves E(k), which roots at the molecular packing in the crystal. Finally, the vibrational spectrum of both crystalline isomers has been calculated in the harmonic approximation and the dominant vibrational frequencies have been associated to collective motions of selected atoms in the molecules.

  4. A constraint-based assignment system for automating long side chain assignments in protein 2D NMR spectra

    SciTech Connect

    Leishman, S.; Gray, P.; Fothergill, J.E.

    1995-12-31

    The sequential assignment of protein 2D NMR data has been tackled by many automated and semi-automated systems. One area that these systems have not tackled is the searching of the TOCSY spectrum looking for cross peaks and chemical shift values for hydrogen nuclei that are at the end of long side chains. This paper describes our system for solving this problem using constraint logic programming and compares our constraint satisfaction algorithm to a standard backtracking version.

  5. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.

    PubMed

    Kotler, Samuel A; Brender, Jeffrey R; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M Banaszak; Marsh, E Neil G; Ramamoorthy, Ayyalusamy

    2015-07-03

    Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  6. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification

    NASA Astrophysics Data System (ADS)

    Kotler, Samuel A.; Brender, Jeffrey R.; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M. Banaszak; Marsh, E. Neil. G.; Ramamoorthy, Ayyalusamy

    2015-07-01

    Alzheimer’s disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling 1H-1H NMR experiments to overcome many of these limitations. Using 1H-1H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time 1H-1H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  7. An inversion method of 2D NMR relaxation spectra in low fields based on LSQR and L-curve

    NASA Astrophysics Data System (ADS)

    Su, Guanqun; Zhou, Xiaolong; Wang, Lijia; Wang, Yuanjun; Nie, Shengdong

    2016-04-01

    The low-field nuclear magnetic resonance (NMR) inversion method based on traditional least-squares QR decomposition (LSQR) always produces some oscillating spectra. Moreover, the solution obtained by traditional LSQR algorithm often cannot reflect the true distribution of all the components. Hence, a good solution requires some manual intervention, for especially low signal-to-noise ratio (SNR) data. An approach based on the LSQR algorithm and L-curve is presented to solve this problem. The L-curve method is applied to obtain an improved initial optimal solution by balancing the residual and the complexity of the solutions instead of manually adjusting the smoothing parameters. First, the traditional LSQR algorithm is used on 2D NMR T1-T2 data to obtain its resultant spectra and corresponding residuals, whose norms are utilized to plot the L-curve. Second, the corner of the L-curve as the initial optimal solution for the non-negative constraint is located. Finally, a 2D map is corrected and calculated iteratively based on the initial optimal solution. The proposed approach is tested on both simulated and measured data. The results show that this algorithm is robust, accurate and promising for the NMR analysis.

  8. Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies.

    PubMed

    Zhang, Tianqi O; Grechko, Maksim; Moran, Sean D; Zanni, Martin T

    2016-01-01

    This chapter provides protocols for isotope-labeling the human islet amyloid polypeptide (hIAPP or amylin) involved in type II diabetes and γD-crystallin involved in cataract formation. Because isotope labeling improves the structural resolution, these protocols are useful for experiments using Fourier transform infrared (FTIR), two-dimensional infrared (2D IR), and NMR spectroscopies. Our research group specializes in using 2D IR spectroscopy and isotope labeling. 2D IR spectroscopy provides structural information by measuring solvation from 2D diagonal lineshapes and vibrational couplings from cross peaks. Infrared spectroscopy can be used to study kinetics, membrane proteins, and aggregated proteins. Isotope labeling provides greater certainty in the spectral assignment, which enables new structural insights that are difficult to obtain with other methods. For amylin, we provide a protocol for (13)C/(18)O labeling backbone carbonyls at one or more desired amino acids in order to obtain residue-specific structural resolution. We also provide a protocol for expressing and purifying amylin from E. coli, which enables uniform (13)C or (13)C/(15)N labeling. Uniform labeling is useful for measuring the monomer infrared spectrum in an amyloid oligomer or fiber as well as amyloid protein bound to another polypeptide or protein, such as a chaperone or an inhibitor. In addition, our expression protocol results in 2-2.5 mg of amylin peptide per 1 L cell culture, which is a high enough yield to straightforwardly obtain the 2-10 mg needed for high resolution and solid-state NMR experiments. Finally, we provide a protocol to isotope-label either of the two domains of γD-crystallin using expressed protein ligation. Domain labeling makes it possible to resolve the structures of the two halves of the protein in FTIR and 2D IR spectra. With modifications, these strategies and protocols for isotope labeling can be applied to other amyloid polypeptides and proteins.

  9. Preparation and characterization of CdSe colloidal quantum dots by pptical spectroscopy and 2D DOSY NMR

    NASA Astrophysics Data System (ADS)

    Geru, I.; Bordian, O.; Culeac, I.; Turta, C.; Verlan, V.; Barba, A.

    2015-02-01

    We present experimental results on preparation and characterization of colloidal CdSe quantum dots (QD) in organic solvent. CdSe QDs were synthesized following a modified literature method and have been characterized by UV-Vis absorption and photoluminescent (PL) spectroscopy, as well as by 2D Diffusion Ordered Spectroscopy (DOSY) NMR. The average CdSe particles size estimated from the UV-Vis absorption spectra was found to be in the range 2.28 - 2.92 nm, which correlates very well with the results obtained from NMR measurements. The PL spectrum for CdSe nanodots can be characterized by a narrow emission band with the peak maximum shifting from 508 to 566 nm in dependence of the CdSe nanoparticle size. The PL is dominated by a near-band-edge emission, accompanied by a weak broad band in the near IR, related to the surface shallow trap emission.

  10. 2D multinuclear NMR, hyperpolarized xenon and gas storage in organosilica nanochannels with crystalline order in the walls.

    PubMed

    Comotti, Angiolina; Bracco, Silvia; Valsesia, Patrizia; Ferretti, Lisa; Sozzani, Piero

    2007-07-11

    The combination of 2D 1H-13C and 1H-29Si solid state NMR, hyperpolarized 129Xe NMR, synchrotron X-ray diffraction, together with adsorption measurements of vapors and gases for environmental and energetic relevance, was used to investigate the structure and the properties of periodic mesoporous hybrid p-phenylenesilica endowed with crystalline order in the walls. The interplay of 1H, 13C, and 29Si in the 2D heteronuclear correlation NMR measurements, together with the application of Lee-Goldburg homonuclear decoupling, revealed the spatial relationships (<5 angstroms) among various spin-active nuclei of the framework. Indeed, the through-space correlations in the 2D experiments evidenced, for the first time, the interfaces of the matrix walls with guest molecules confined in the nanochannels. Organic-inorganic and organic-organic heterogeneous interfaces between the matrix and the guests were identified. The open-pore structure and the easy accessibility of the nanochannels to the gas phase have been demonstrated by highly sensitive hyperpolarized (HP) xenon NMR, under extreme xenon dilution. Two-dimensional exchange experiments showed the exchange time to be as short as 2 ms. Through variable-temperature HP 129Xe NMR experiments we were able to achieve an unprecedented description of the nanochannel space and surface, a physisorption energy of 13.9 kJ mol-1, and the chemical shift value of xenon probing the internal surfaces. These results prompted us to measure the high storage capacity of the matrix towards benzene, hexafluorobenzene, ethanol, and carbon dioxide. Both host-guest, CH...pi, and OH...pi interactions contribute to the stabilization of the aromatic guests (benzene and hexafluorobenzene) on the extended surfaces. The full carbon dioxide loading in the channels could be detected by synchrotron radiation X-ray diffraction experiments. The selective adsorption of carbon dioxide (ca. 90 wt %) vs that of oxygen and hydrogen, together with the permanent

  11. Resolution-optimized NMR measurement of (1)D(CH), (1)D(CC) and (2)D(CH) residual dipolar couplings in nucleic acid bases.

    PubMed

    Boisbouvier, Jérôme; Bryce, David L; O'neil-Cabello, Erin; Nikonowicz, Edward P; Bax, Ad

    2004-11-01

    New methods are described for accurate measurement of multiple residual dipolar couplings in nucleic acid bases. The methods use TROSY-type pulse sequences for optimizing resolution and sensitivity, and rely on the E.COSY principle to measure the relatively small two-bond (2)D(CH) couplings at high precision. Measurements are demonstrated for a 24-nt stem-loop RNA sequence, uniformly enriched in (13)C, and aligned in Pf1. The recently described pseudo-3D method is used to provide homonuclear (1)H-(1)H decoupling, which minimizes cross-correlation effects and optimizes resolution. Up to seven (1)H-(13)C and (13)C-(13)C couplings are measured for pyrimidines (U and C), including (1)D(C5H5), (1)D(C6H6), (2)D(C5H6), (2)D(C6H5), (1)D(C5C4), (1)D(C5C6), and (2)D(C4H5). For adenine, four base couplings ((1)D(C2H2), (1)D(C8H8), (1)D(C4C5), and (1)D(C5C6)) are readily measured whereas for guanine only three couplings are accessible at high relative accuracy ((1)D(C8H8), (1)D(C4C5), and (1)D(C5C6)). Only three dipolar couplings are linearly independent in planar structures such as nucleic acid bases, permitting cross validation of the data and evaluation of their accuracies. For the vast majority of dipolar couplings, the error is found to be less than +/-3% of their possible range, indicating that the measurement accuracy is not limiting when using these couplings as restraints in structure calculations. Reported isotropic values of the one- and two-bond J couplings cluster very tightly for each type of nucleotide.

  12. Adsorption mechanism at the molecular level between polymers and uremic octapeptide by the 2D 1H NMR Technique.

    PubMed

    Li, Guohua; Li, Jihong; Wang, Wei; Yang, Mei; Zhang, Yuanwei; Sun, Pingchuan; Yuan, Zhi; He, Binglin; Yu, Yaoting

    2006-06-01

    To remove uremic octapeptide from the blood stream of uremic patients, various modified polyacylamide cross-linked absorbents were prepared. Adsorption experiments showed these absorbents have significant differences in adsorption capacity to the target peptide. In this paper, two-dimension proton nuclear magnetic resonance (2D 1H NMR) spectroscopy was used to investigate the interaction mechanism between the peptide and the adsorbents. Because of the insolubility of the absorbent, some soluble linear polymers with the same functional groups as the absorbents were employed as the model adsorbents in 2D 1H NMR. The preferred binding site for the peptide and polymers was identified to be at the C-terminal carboxyl group of the octapeptide via chemical shift perturbation effects. In this study, we found that hydrogen bonding, electrostatic, and hydrophobic interactions all play a role in the interaction force but had different contributions. Especially, the great chemical shift changes of the aromatic amino acid residues (Trp) during the interaction between butyl-modified polyacrylamide and octapeptide suggested the hydrophobic interaction, incorporated with the electrostatic force, played an important role in the binding reaction in aqueous solutions. This information not only rationally explained the results of the adsorption experiments, but also identified the effective binding site and mechanism, and shall provide a structural basis for designing better affinity-type adsorbents for the target peptide.

  13. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae—A 2D NMR Metabolomics Study

    PubMed Central

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-01-01

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of 1H-13C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae. PMID:27598144

  14. Kinetics of Neuraminidase Action on Glycoproteins by 1D and 2D NMR

    PubMed Central

    Barb, Adam W.; Glushka, John N.; Prestegard, James H.

    2011-01-01

    The surfaces of mammalian cells are coated with complex carbohydrates, many terminated with a negatively charged N-acetylneuraminic acid residue. This motif is specifically targeted by pathogens, including influenza viruses and many pathogenic bacteria, to gain entry into the cell. A necessary step in the influenza virus life cycle is the release of viral particles from the cell surface; this is achieved by cleaving N-acetylneuraminic acid from cell surface glycans with a virally-produced neuraminidase. Here we present a laboratory exercise to model this process using a glycoprotein as a glycan carrier and using real time nuclear magnetic resonance (NMR) spectroscopy to monitor N-acetylneuraminic acid release as catalyzed by neuraminidase. A time-resolved two dimensional data processing technique, statistical total correlation spectroscopy (STOCSY), enhances the resolution of the complicated 1D glycoprotein spectrum and isolates characteristic peaks corresponding to substrates and products. This exercise is relatively straightforward and leads students through a wide range of biologically and chemically relevant procedures, including use of NMR spectroscopy, enzymology and data processing techniques. PMID:22058570

  15. Kinetics of Neuraminidase Action on Glycoproteins by 1D and 2D NMR.

    PubMed

    Barb, Adam W; Glushka, John N; Prestegard, James H

    2011-01-01

    The surfaces of mammalian cells are coated with complex carbohydrates, many terminated with a negatively charged N-acetylneuraminic acid residue. This motif is specifically targeted by pathogens, including influenza viruses and many pathogenic bacteria, to gain entry into the cell. A necessary step in the influenza virus life cycle is the release of viral particles from the cell surface; this is achieved by cleaving N-acetylneuraminic acid from cell surface glycans with a virally-produced neuraminidase. Here we present a laboratory exercise to model this process using a glycoprotein as a glycan carrier and using real time nuclear magnetic resonance (NMR) spectroscopy to monitor N-acetylneuraminic acid release as catalyzed by neuraminidase. A time-resolved two dimensional data processing technique, statistical total correlation spectroscopy (STOCSY), enhances the resolution of the complicated 1D glycoprotein spectrum and isolates characteristic peaks corresponding to substrates and products. This exercise is relatively straightforward and leads students through a wide range of biologically and chemically relevant procedures, including use of NMR spectroscopy, enzymology and data processing techniques.

  16. Conformational evaluation and detailed 1H and 13C NMR assignments of eremophilanolides.

    PubMed

    Burgueño-Tapia, Eleuterio; Hernández, Luis R; Reséndiz-Villalobos, Adriana Y; Joseph-Nathan, Pedro

    2004-10-01

    Extensive application of 1D and 2D NMR methodology, combined with molecular modeling, allowed the complete 1H and 13C NMR assignments of eremophilanolides from Senecio toluccanus. Comparison of the experimental 1H, 1H coupling constant values with those generated employing a generalized Karplus-type relationship, using dihedral angles extracted from MMX and DFT calculations, revealed that the epoxidized eremophilanolides 1 and 2 show conformational rigidity at room temperature, whereas molecules 3-6, containing an isolated double bond, are conformationally mobile.

  17. NMR assignments and X-ray diffraction spectra for two unusual kaurene diterpenes from Erythroxylum barbatum.

    PubMed

    dos Santos, Claudio Costa; Sousa Lima, Mary Anne; Braz-Filho, Raimundo; de Simone, Carlos Alberto; Silveira, Edilberto Rocha

    2005-12-01

    The structural characterization of two new, unusual kaurene diterpenes isolated from roots of Erythroxylum barbatum is described. 1D NMR and several 2D shift-correlated NMR pulse sequences (1H,1H-COSY, HMQC, HMBC and NOESY) were used for structure elucidation and the unambiguous 1H and 13C chemical shifts assignments. Single crystal X-ray diffraction analysis was also used to confirm the final relative configuration of the compounds possessing the C-20 methyl and the CH2-15 methylene groups in cis-orientation.

  18. Structural study of synthetic mica montmorillonite by means of 2D MAS NMR experiments

    NASA Astrophysics Data System (ADS)

    Alba, M. D.; Castro, M. A.; Chain, P.; Naranjo, M.; Perdigón, A. C.

    2005-07-01

    Syn-1, is a synthetic mica montmorillonite interstratified mineral that forms one of the standard clay samples in the Clay Minerals Society Source Clays Project. However, there are still controversies regarding some structural aspects such as the interlayer composition or the location of the extra-aluminium determined by chemical analysis. The main objective of this paper is to shed light on those structural aspects that affect the reactivity of the interstratified minerals. For this purpose, we have used 1 H 29 Si and 1 H 27Al HETCOR MAS NMR to show that it is likely that the interlayer space of the beidellite part is composed of ammonium ions whereas ammonium and aluminium ions are responsible for the charge balance in the mica type layer.

  19. Proton-detected 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H-1H RFDR mixing on a natural abundant sample under ultrafast MAS

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered L-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish 14N/14N correlation from a 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between 14N and 1H has been achieved by HMQC experiment, whereas 14N/14N correlation is attained through enhanced 1H-1H spin diffusion process due to 1H-1H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90 kHz) provides sensitivity enhancement through increased 1H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong 14N radio frequency (RF) fields further improves the sensitivity per unit sample volume.

  20. How to face the low intrinsic sensitivity of 2D heteronuclear NMR with fast repetition techniques: go faster to go higher !

    PubMed

    Farjon, Jonathan

    2017-04-13

    Nuclear Magnetic Resonance (NMR) is one of the most widely used analytical techniques in numerous domains where molecules are objects of investigation. However, major limitations of multidimensional NMR experiments come from their low sensitivity and from the long times needed for their acquisition. In order to overcome such limitations, fast repetition NMR techniques allowed for the reduction of 2D experimental time and for the conversion of the gained time into a higher number of scans leading to a better sensitivity. Thus, fast repetition 2D heteronuclear NMR techniques have allowed new advances in NMR, especially to access infomation on low abundant nuclei, to enhance the detection of low concentrated compounds and to probe weak interactions like hydrogen bonds at natural abundance.

  1. HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.

    PubMed

    Cornilescu, Gabriel; Bahrami, Arash; Tonelli, Marco; Markley, John L; Eghbalnia, Hamid R

    2007-08-01

    We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, "High-resolution Iterative Frequency Identification of Couplings" (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C' RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C' vector represents a realistic

  2. Effects of various types of molecular dynamics on 1D and 2D (2)H NMR studied by random walk simulations

    PubMed

    Vogel; Rossler

    2000-11-01

    By carrying out random walk simulations we systematically study the effects of various types of complex molecular dynamics on (2)H NMR experiments in solids. More precisely, we calculate one-dimensional (1D) (2)H NMR spectra and the results of two dimensional (2D) (2)H NMR experiments in time domain, taking into account isotropic as well as highly restricted motions which involve rotational jumps about different finite angles. Although the dynamical models are chosen to mimic the primary and secondary relaxation in supercooled liquids and glasses, we do not intend to describe experimental results quantitatively but rather to show general effects appearing for complex reorientations. We carefully investigate whether 2D (2)H NMR in time domain, which was originally designed to measure correlation times of ultraslow motions (tau >/= 1 ms), can be used to obtain shorter tau, too. It is demonstrated that an extension of the time window to tau >/= 10 &mgr;s is possible when dealing with exponential relaxation, but that it will fail if there is a distribution of correlation times G(lgtau). Vice versa, we show that 1D (2)H NMR spectra, usually recorded to look at dynamics with tau in the microsecond regime, are also applicable for studying ultraslow motions provided that the loss of correlation is achieved step by step. Therefore, it is useful to carry out 1D and 2D NMR experiments simultaneously in order to reveal the mechanism of complex molecular motions. In addition, we demonstrate that highly restricted dynamics can be clearly observed in 1D spectra and in 2D NMR in time domain if long solid-echo delays and large evolution times are applied, respectively. Finally, unexpected observations are described which appear in the latter experiment when considering very broad distributions G(lgtau). Because of these effects, time scale and geometry of a considered motion cannot be extracted from a straightforward analysis of experimental results. Copyright 2000 Academic Press.

  3. 2D NMR-based metabolomics uncovers interactions between conserved biochemical pathways in the model organism Caenorhabditis elegans.

    PubMed

    Izrayelit, Yevgeniy; Robinette, Steven L; Bose, Neelanjan; von Reuss, Stephan H; Schroeder, Frank C

    2013-02-15

    Ascarosides are small-molecule signals that play a central role in C. elegans biology, including dauer formation, aging, and social behaviors, but many aspects of their biosynthesis remain unknown. Using automated 2D NMR-based comparative metabolomics, we identified ascaroside ethanolamides as shunt metabolites in C. elegans mutants of daf-22, a gene with homology to mammalian 3-ketoacyl-CoA thiolases predicted to function in conserved peroxisomal lipid β-oxidation. Two groups of ethanolamides feature β-keto functionalization confirming the predicted role of daf-22 in ascaroside biosynthesis, whereas α-methyl substitution points to unexpected inclusion of methylmalonate at a late stage in the biosynthesis of long-chain fatty acids in C. elegans. We show that ascaroside ethanolamide formation in response to defects in daf-22 and other peroxisomal genes is associated with severe depletion of endocannabinoid pools. These results indicate unexpected interaction between peroxisomal lipid β-oxidation and the biosynthesis of endocannabinoids, which are major regulators of lifespan in C. elegans. Our study demonstrates the utility of unbiased comparative metabolomics for investigating biochemical networks in metazoans.

  4. 2D NMR-based metabolomics uncovers interactions between conserved biochemical pathways in the model organism Caenorhabditis elegans

    PubMed Central

    Izrayelit, Yevgeniy; Robinette, Steven L.; Bose, Neelanjan; von Reuss, Stephan H.; Schroeder, Frank C.

    2012-01-01

    Ascarosides are small-molecule signals that play a central role in C. elegans biology, including dauer formation, aging, and social behaviors, but many aspects of their biosynthesis remain unknown. Using automated 2D NMR-based comparative metabolomics, we identified ascaroside ethanolamides as shunt metabolites in C. elegans mutants of daf-22, a gene with homology to mammalian 3-ketoacyl-CoA thiolases predicted to function in conserved peroxisomal lipid β-oxidation. Two groups of ethanolamides feature β-keto functionalization confirming the predicted role of daf-22 in ascaroside biosynthesis, whereas α-methyl substitution points to unexpected inclusion of methylmalonte at a late stage in the biosynthesis of long-chain fatty acids in C. elegans. We show that ascaroside ethanolamide formation in response to defects in daf-22 and other peroxisomal genes is associated with severe depletion of endocannabinoid pools. These results indicate unexpected interaction between peroxisomal lipid β-oxidation and the biosynthesis of endocannabinoids, which are major regulators of lifespan in C. elegans. Our study demonstrates the utility of unbiased comparative metabolomics for investigating biochemical networks in metazoans. PMID:23163760

  5. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.

    PubMed

    Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G

    2010-10-04

    Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach.

  6. Liquid Disordered-Liquid Ordered Phase Coexistence in Lipid/Cholesterol Mixtures: A Deuterium 2D NMR Exchange Study.

    PubMed

    Schmidt, Miranda L; Davis, James H

    2017-02-28

    Model membranes composed of two types of long chain phospholipids, one unsaturated and one saturated, along with cholesterol can exhibit two coexisting fluid phases (liquid disordered ([Formula: see text]) and liquid ordered ([Formula: see text])) at various temperatures and compositions. Here we used 1D and 2D (2)H NMR to compare the behavior of multilamellar dispersions, magnetically oriented bicelles, and mechanically aligned bilayers on glass plates, all of which contain the same proportions of dipalmitoleoylphosphatidylcholine (DPoPC), dimyristoylphosphatidylcholine (DMPC), and cholesterol. We found that multilamellar dispersions and bilayers aligned on glass plates behave very similarly. These samples were close to a critical composition and exhibit exchange of the lipids between the two fluid phases at temperatures near the [Formula: see text] to [Formula: see text]-[Formula: see text] phase boundary. On the other hand, when a short chain lipid is added to the ternary long chain lipid/cholesterol mixture to form bicelles, the phase behavior is changed significantly and the [Formula: see text] phase occurs at a higher than expected temperature. In addition, there was no evidence of exchange of lipids between the [Formula: see text] and [Formula: see text] phases or critical fluctuations at the temperature where the bulk of the sample enters the two-phase region for these bicelles. It appears that the addition of the short chain lipid results in these samples no longer being near a critical composition.

  7. Complete assignment of NMR data of 22 phenyl-1H-pyrazoles' derivatives.

    PubMed

    de Oliveira, Aline Lima; Alves de Oliveira, Carlos Henrique; Mairink, Laura Maia; Pazini, Francine; Menegatti, Ricardo; Lião, Luciano Morais

    2011-08-01

    Complete assignment of (1)H and (13)C NMR chemical shifts and J((1)H/(1)H and (1)H/(19)F) coupling constants for 22 1-phenyl-1H-pyrazoles' derivates were performed using the concerted application of (1)H 1D and (1)H, (13)C 2D gs-HSQC and gs-HMBC experiments. All 1-phenyl-1H-pyrazoles' derivatives were synthesized as described by Finar and co-workers. The formylated 1-phenyl-1H-pyrazoles' derivatives were performed under Duff's conditions.

  8. Mixed micelles of polyethylene glycol (23) lauryl ether with ionic surfactants studied by proton 1D and 2D NMR.

    PubMed

    Gao, Hong-Chang; Zhao, Sui; Mao, Shi-Zhen; Yuan, Han-Zhen; Yu, Jia-Yong; Shen, Lian-Fang; Du, You-Ru

    2002-05-01

    (1)H NMR chemical shift, spin-lattice relaxation time, spin-spin relaxation time, self-diffusion coefficient, and two-dimensional nuclear Overhauser enhancement (2D NOESY) measurements have been used to study the nonionic-ionic surfactant mixed micelles. Cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) were used as the ionic surfactants and polyethylene glycol (23) lauryl ether (Brij-35) as the nonionic surfactant. The two systems are both with varying molar ratios of CTAB/Brij-35 (C/B) and SDS/Brij-35 (S/B) ranging from 0.5 to 2, respectively, at a constant concentration of 6 mM for Brij-35 in aqueous solutions. Results give information about the relative arrangement of the surfactant molecules in the mixed micelles. In the former system, the trimethyl groups attached to the polar heads of the CTAB molecules are located between the first oxy-ethylene groups next to the hydrophobic chains of Brij-35 molecules. These oxy-ethylene groups gradually move outward from the hydrophobic core of the mixed micelle with an increase in C/B in the mixed solution. In contrast to the case of the CTAB/Triton X-100 system, the long flexible hydrophilic poly oxy-ethylene chains, which are in the exterior part of the mixed micelles, remain coiled, but looser, surrounding the hydrophobic core. There is almost no variation in conformation of the hydrophilic chains of Brij-35 molecules in the mixed micelles of the SDS/Brij-35 system as the S/B increases. The hydrophobic chains of both CTAB and SDS are co-aggregated with Brij-35, respectively, in their mixed micellar cores.

  9. Solution behavior and complete sup 1 H and sup 13 C NMR assignments of the coenzyme B sub 12 derivative (5 prime -deoxyadenosyl)cobinamide using modern 2D NMR experiments, including 600-MHz sup 1 H NMR data

    SciTech Connect

    Pagano, T.G.; Yohannes, P.G.; Marzilli, L.G. ); Hay, B.P.; Scott, J.R.; Finke, R.G. )

    1989-02-15

    Two-dimensional (2D) NMR methods have been used to assign completely the {sup 1}H and {sup 13}C NMR spectra of the (5{prime}-deoxyadenosyl)cobinamide cation (AdoCbi{sup +}) in D{sub 2}O. Most of the {sup 1}H spectral assignments were made by using 2D homonuclear shift correlation spectroscopy (COSY), homonuclear Hartmann-Hahn spectroscopy (HOHAHA), absorption-mode (phase sensitive) 2D nuclear Overhauser effect (NOE) spectroscopy, and spin-locked NOE spectroscopy (also called ROESY, for rotating-frame Overhauser enhancement spectroscopy). Most of the protonated carbon resonances were assigned by using {sup 1}H-detected heteronuclear multiple-quantum coherence (HMQC) spectroscopy. The nonprotonated carbon resonances, as well as the remaining unassigned {sup 1}H and {sup 13}C NMR signals, were assigned from long-range {sup 1}H-{sup 13}C connectivities determined from {sup 1}H-detected multiple-bond heteronuclear multiple-quantum coherence spectroscopy (HMBC). Comparison of the {sup 13}C chemical shifts and {sup 1}H NOEs of AdoCbi{sup +} with those of coenzyme B{sup 12} ((5{prime}-deoxyadenosyl)cobalamin) and its benzimidazole-protonated, base-off form indicates that the electronic properties and structure of AdoCbi{sup +} are similar to that of coenzyme B{sup 12} in the protonated, base-off form. The {sup 13}C chemical shifts of most of the carbons of AdoCbi{sup +} do not vary significantly from those of base-off, benzimidazole-protonated coenzyme B{sup 12}, indicating that the electronic environment of the corrin ring is also similar in both compounds. However, significant differences in the chemical shifts of some of the corresponding carbons of the b, d, e, and f corrin side chains in AdoCbi{sup +} and in base-off, benzimidazole-protonated coenzyme B{sub 12} indicate that the positions of these side chains may be different in AdoCbi{sup +} compared to base-off coenzyme B{sup 12}.

  10. Elucidating structural characteristics of biomass using solution-state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide

    DOE PAGES

    Pu, Yunqiao; Ragauskas, Arthur J.; Yoo, Chang Geun; ...

    2016-04-26

    In recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO-d6) and hexamethylphosphoramide (HMPA-d18). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. Moreover, the structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO-d6/HMPA-d18; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass, facilitating a facile sample preparation and involvingmore » with no signals overlapping with biomass peaks. Furthermore, it also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities.« less

  11. High-resolution 2D NMR spectra in inhomogeneous fields based on intermolecular multiple-quantum coherences with efficient acquisition schemes

    NASA Astrophysics Data System (ADS)

    Lin, Meijin; Huang, Yuqing; Chen, Xi; Cai, Shuhui; Chen, Zhong

    2011-01-01

    High-resolution 2D NMR spectra in inhomogeneous fields can be achieved by the use of intermolecular multiple-quantum coherences and shearing reconstruction of 3D data. However, the long acquisition time of 3D spectral data is generally unbearable for invivo applications. To overcome this problem, two pulse sequences dubbed as iDH-COSY and iDH-JRES were proposed in this paper. Although 3D acquisition is still required for the new sequences, the high-resolution 2D spectra can be obtained with a relatively short scanning time utilizing the manipulation of indirect evolution period and sparse sampling. The intermolecular multiple-quantum coherence treatment combined with the raising and lowering operators was applied to derive analytical signal expressions for the new sequences. And the experimental observations agree with the theoretical predictions. Our results show that the new sequences possess bright perspective in the applications on invivo localized NMR spectroscopy.

  12. Simultaneously cycled NMR spectroscopy.

    PubMed

    Parish, David M; Szyperski, Thomas

    2008-04-09

    Simultaneously cycled (SC) NMR was introduced and exemplified by implementing a set of 2-D [1H,1H] SC exclusive COSY (E.COSY) NMR experiments, that is, rf pulse flip-angle cycled (SFC), rf pulse phase cycled (SPC), and pulsed field gradient (PFG) strength cycled (SGC) E.COSY. Spatially selective 1H rf pulses were applied as composite pulses such that all steps of the respective cycles were affected simultaneously in different slices of the sample. This increased the data acquisition speed for an n-step cycle n-fold. A high intrinsic sensitivity was achieved by defining the cycles in a manner that the receiver phase remains constant for all steps of the cycle. Then, the signal resulting from applying the cycle corresponded to the sum of the signals from all steps of the cycle. Hence, the detected free induction decay did not have to be separated into the contributions arising from different slices, and read-out PFGs, which not only greatly reduce sensitivity but also negatively impact lineshapes in the direct dimension, were avoided. The current implementation of SFC E.COSY reached approximately 65% of the intrinsic sensitivity of the conventional phase cycled congener, making this experiment highly attractive whenever conventional data acquisition is sampling limited. Highly resolved SC E.COSY yielding accurate 3J-coupling values was recorded for the 416 Da plant alkaloid tomatidine within 80 min, that is, 12 times faster than with conventional phase cycled E.COSY. SC NMR is applicable for a large variety of NMR experiments and thus promises to be a valuable addition to the arsenal of approaches for tackling the NMR sampling problem to avoid sampling limited data acquisition.

  13. Microwave assisted regioselective synthesis and 2D-NMR studies of novel azoles and azoloazines utilizing fluorine-containing building blocks

    NASA Astrophysics Data System (ADS)

    Al-Bogami, Abdullah S.; Saleh, Tamer S.; Mekky, Ahmed E. M.; Shaaban, Mohamed R.

    2016-10-01

    An efficient regioselective synthesis of novel azoles containing a trifluoromethyl moiety via the 1,3-dipolar cycloaddition reaction under microwave irradiation, using fluorine-containing building blocks methodology was achieved. Furthermore, these novel azoles scaffolds have been employed as the starting material in the synthesis of new azoloazines containing a trifluoromethyl group. An unambiguous structural assignment of the obtained regioisomers was determined using the 2D HMBC NMR techniques as a valuable tool.

  14. NMR characterisation of inulin-type fructooligosaccharides as the major water-soluble carbohydrates from Matricaria maritima (L.).

    PubMed

    Cérantola, Stéphane; Kervarec, Nelly; Pichon, Roger; Magné, Christian; Bessieres, Marie-Anne; Deslandes, Eric

    2004-10-04

    By use of 1H and 13C NMR spectroscopy including 2D 1H,1H DQF-COSY/TOCSY and 1H,13C HMQC/HMBC experiments, the main water-soluble carbohydrate components extracted from leaves of Matricaria maritima were identified as oligofructans composed of a linear chain of (2-->1)-linked beta-D-fructofuranosyl residues specifying an inulin-type structure. Alpha-D-Glcp-(1-->2)-[beta-D-Fruf-(2-->1)-beta-D-Frucf]n-(2-->1)-beta-D-Fruf.

  15. Elucidating structural characteristics of biomass using solution-state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide

    SciTech Connect

    Pu, Yunqiao; Ragauskas, Arthur J.; Yoo, Chang Geun; Li, Mi

    2016-04-26

    In recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO-d6) and hexamethylphosphoramide (HMPA-d18). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. Moreover, the structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO-d6/HMPA-d18; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass, facilitating a facile sample preparation and involving with no signals overlapping with biomass peaks. Furthermore, it also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities.

  16. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  17. Insights into atomic-level interaction between mefenamic acid and eudragit EPO in a supersaturated solution by high-resolution magic-angle spinning NMR spectroscopy.

    PubMed

    Higashi, Kenjirou; Yamamoto, Kazutoshi; Pandey, Manoj Kumar; Mroue, Kamal H; Moribe, Kunikazu; Yamamoto, Keiji; Ramamoorthy, Ayyalusamy

    2014-01-06

    The intermolecular interaction between mefenamic acid (MFA), a poorly water-soluble nonsteroidal anti-inflammatory drug, and Eudragit EPO (EPO), a water-soluble polymer, is investigated in their supersaturated solution using high-resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy. The stable supersaturated solution with a high MFA concentration of 3.0 mg/mL is prepared by dispersing the amorphous solid dispersion into a d-acetate buffer at pH 5.5 and 37 °C. By virtue of MAS at 2.7 kHz, the extremely broad and unresolved (1)H resonances of MFA in one-dimensional (1)H NMR spectrum of the supersaturated solution are well-resolved, thus enabling the complete assignment of MFA (1)H resonances in the aqueous solution. Two-dimensional (2D) (1)H/(1)H nuclear Overhauser effect spectroscopy (NOESY) and radio frequency-driven recoupling (RFDR) under MAS conditions reveal the interaction of MFA with EPO in the supersaturated solution at an atomic level. The strong cross-correlations observed in the 2D (1)H/(1)H NMR spectra indicate a hydrophobic interaction between the aromatic group of MFA and the backbone of EPO. Furthermore, the aminoalkyl group in the side chain of EPO forms a hydrophilic interaction, which can be either electrostatic or hydrogen bonding, with the carboxyl group of MFA. We believe these hydrophobic and hydrophilic interactions between MFA and EPO molecules play a key role in the formation of this extremely stable supersaturated solution. In addition, 2D (1)H/(1)H RFDR demonstrates that the molecular MFA-EPO interaction is quite flexible and dynamic.

  18. Contribution of NAD 2D-NMR in liquid crystals to the determination of hydrogen isotope profile of methyl groups in miliacin

    NASA Astrophysics Data System (ADS)

    Berdagué, Philippe; Lesot, Philippe; Jacob, Jérémy; Terwilliger, Valery J.; Le Milbeau, Claude

    2016-01-01

    The hydrogen isotopic composition (δD or (D/H) value) of molecular biomarkers preserved in sedimentary archives is increasingly used to provide clues about the evolution of past climatic conditions. The rationale is that intact biomarkers retain isotopic information related to the climatic conditions that prevailed at the time of their synthesis. Some of these biomarkers may be degraded during diagenesis, however. The extent to which these degradations alter the original δD value of the source biomarker is presently debated and the capacity to resolve this question by determination of compound-specific δD values alone is limited. The "bulk" or "global" δD value of any molecule is in fact a composite of δD values at each site within this molecule (δDi or (D/H)i with i = number of hydrogen/deuterium atoms in the considered molecule). Determination of this site-specific δDi value in biomarkers could not only yield outstanding paleoenvironmental information but also help forecast the impacts of diagenesis and define essential steps in biosynthetic pathways. This task is analytically challenging. Here, we examined the capabilities of natural abundance deuterium 2D-NMR (NAD 2D-NMR) using homopolypeptide liquid crystals as an NMR solvent to: (i) analyze the NAD spectra of biomakers; (ii) determine the site-specific distribution of hydrogen in the nine methyl groups (δDMei with i = 23-31) of miliacin, a pentacyclic triterpene of the amyrin family and key biomarker for broomcorn millet in sedimentary archives. Relative (D/H)Mei values were established by anisotropic NAD 2D-NMR. Then absolute δDMei values were obtained by determining δDMei value of the methoxy group of miliacin using two independent approaches: isotropic NAD NMR (SNIF-NMR™) and GC-irMS. The resulting isotope profile for miliacin shows, for the first time, large variations in δDMei values that can directly be explained by biosynthetic processes. This approach has also the potential to permit

  19. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.

    PubMed

    Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi

    2015-05-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.

  20. Characterization of the isomeric configuration and impurities of (Z)-endoxifen by 2D NMR, high resolution LC⬜MS, and quantitative HPLC analysis.

    PubMed

    Elkins, Phyllis; Coleman, Donna; Burgess, Jason; Gardner, Michael; Hines, John; Scott, Brendan; Kroenke, Michelle; Larson, Jami; Lightner, Melissa; Turner, Gregory; White, Jonathan; Liu, Paul

    2014-01-01

    (Z)-Endoxifen (4-hydroxy-N-desmethyltamoxifen), an active metabolite generated via actions of CYP3A4/5 and CYP2D6, is a more potent selective estrogen receptor modulator (SERM) than tamoxifen. In the MCF-7 human mammary tumor xenograft model with female athymic mice, (Z)-endoxifen, at an oral dose of 4⬜8 mg/kg, significantly inhibits tumor growth. (Z)-Endoxifen's potential as an alternative therapeutic agent independent of CYP2D6 activities, which can vary widely in ER+ breast cancer patients, is being actively evaluated. This paper describes confirmation of the configuration of the active (Z)-isomer through 2D NMR experiments, including NOE (ROESY) to establish spatial proton⬜proton correlations, and identification of the major impurity as the (E)-isomer in endoxifen drug substance by HPLC/HRMS (HPLC/MS-TOF). Stability of NMR solutions was confirmed by HPLC/UV analysis. For pre-clinical studies, a reverse-phase HPLC⬜UV method, with methanol/water mobile phases containing 10 mM ammonium formate at pH 4.3, was developed and validated for the accurate quantitation and impurity profiling of drug substance and drug product. Validation included demonstration of linearity, method precision, accuracy, and specificity in the presence of impurities, excipients (for the drug product), and degradation products. Ruggedness and reproducibility of the method were confirmed by collaborative studies between two independent laboratories. The method is being applied for quality control of the API and oral drug product. Kinetic parameters of Z- to E-isomerization were also delineated in drug substance and in aqueous formulation, showing conversion at temperatures above 25 °C.

  1. Characterization of the isomeric configuration and impurities of (Z)-endoxifen by 2D NMR, high resolution LC–MS, and quantitative HPLC analysis

    PubMed Central

    Elkins, Phyllis; Coleman, Donna; Burgess, Jason; Gardner, Michael; Hines, John; Scott, Brendan; Kroenke, Michelle; Larson, Jami; Lightner, Melissa; Turner, Gregory; White, Jonathan; Liu, Paul

    2014-01-01

    (Z)-Endoxifen (4-hydroxy-N-desmethyltamoxifen), an active metabolite generated via actions of CYP3A4/5 and CYP2D6, is a more potent selective estrogen receptor modulator (SERM) than tamoxifen. In the MCF-7 human mammary tumor xenograft model with female athymic mice, (Z)-endoxifen, at an oral dose of 4– 8 mg/kg, significantly inhibits tumor growth. (Z)-Endoxifen's potential as an alternative therapeutic agent independent of CYP2D6 activities, which can vary widely in ER+ breast cancer patients, is being actively evaluated. This paper describes confirmation of the configuration of the active (Z)-isomer through 2D NMR experiments, including NOE (ROESY) to establish spatial proton–proton correlations, and identification of the major impurity as the (E)-isomer in endoxifen drug substance by HPLC/HRMS (HPLC/MS-TOF). Stability of NMR solutions was confirmed by HPLC/UV analysis. For pre-clinical studies, a reverse-phase HPLC–UV method, with methanol/water mobile phases containing 10 mM ammonium formate at pH 4.3, was developed and validated for the accurate quantitation and impurity profiling of drug substance and drug product. Validation included demonstration of linearity, method precision, accuracy, and specificity in the presence of impurities, excipients (for the drug product), and degradation products. Ruggedness and reproducibility of the method were confirmed by collaborative studies between two independent laboratories. The method is being applied for quality control of the API and oral drug product. Kinetic parameters of Z- to E-isomerization were also delineated in drug substance and in aqueous formulation, showing conversion at temperatures above 25 °C. PMID:24055701

  2. 2D 31P solid state NMR spectroscopy, electronic structure and thermochemistry of PbP7

    NASA Astrophysics Data System (ADS)

    Benndorf, Christopher; Hohmann, Andrea; Schmidt, Peer; Eckert, Hellmut; Johrendt, Dirk; Schäfer, Konrad; Pöttgen, Rainer

    2016-03-01

    Phase pure polycrystalline PbP7 was prepared from the elements via a lead flux. Crystalline pieces with edge-lengths up to 1 mm were obtained. The assignment of the previously published 31P solid state NMR spectrum to the seven distinct crystallographic sites was accomplished by radio-frequency driven dipolar recoupling (RFDR) experiments. As commonly found in other solid polyphosphides there is no obvious correlation between the 31P chemical shift and structural parameters. PbP7 decomposes incongruently under release of phosphorus forming liquid lead as remainder. The thermal decomposition starts at T>550 K with a vapor pressure almost similar to that of red phosphorus. Electronic structure calculations reveal PbP7 as a semiconductor according to the Zintl description and clearly shows the stereo-active Pb-6s2 lone pairs in the electron localization function ELF.

  3. 2D-NMR investigation and in vitro evaluation of antioxidant, antigenotoxic and estrogenic/antiestrogenic activities of strawberry grape.

    PubMed

    D'Abrosca, Brigida; Lavorgna, Margherita; Scognamiglio, Monica; Russo, Chiara; Graziani, Vittoria; Piscitelli, Concetta; Fiorentino, Antonio; Isidori, Marina

    2017-03-27

    Strawberry grape is considered beneficial due to its extensive phytochemical properties. To expand the knowledge about the chemical constituents and the biological activities of the whole plant, 2D-NMR investigation has been carried out on pulp, peel, seeds, stalks and leaves. Catechin and epicatechin were identified as the main constituents of the seed extract, quercetin and ferulic acid were detected in the leaves and malvidin and cyanidin glucopyranoside in the peels. The leaf, stalk and seed extracts were found to be very rich in phytochemicals and were tested for their ability to reduce the mutagenicity and genotoxicity of standard agents via Salmonella mutagenicity assay and SOS chromotest, respectively. Moreover, the estrogen/antiestrogen-like activity was evaluated on the MCF-7 estrogen-responsive cells. Seed and stalk extracts had an elevated antimutagenic/antigenotoxic activity. Stalk extracts highly reduced the proliferative effect of natural estrogen, 17β-estradiol.

  4. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t{sub 1} and t{sub 3} periods, respectively. In addition to through-space and through-bond {sup 13}C/{sup 1}H and {sup 13}C/{sup 13}C chemical shift correlations, the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment also provides a COSY-type {sup 1}H/{sup 1}H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ({sup 1}H/{sup 1}H chemical shift correlation spectrum) at different {sup 13}C chemical shift frequencies from the 3D {sup 1}H/{sup 13}C/{sup 1}H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the

  5. A spectroscopic study of nicotine analogue 2-phenylpyrrolidine (PPD) using resonant two-photon ionization (R2PI), microwave, and 2D NMR techniques.

    PubMed

    Martin, Danielle E; Robertson, Evan G; MacLellan, Jonathan G; Godfrey, Peter D; Thompson, Christopher D; Morrison, Richard J S

    2009-02-25

    Conformational preferences of the nicotine analogue 2-phenylpyrrolidine (PPD) have been studied in both gaseous and solution phases. Theoretical calculations at the MP2 and B3LYP levels point to 5-6 stable conformers which differ in three degrees of conformational freedom; torsion between the two rings, inversion at the pyrrolidine (PY) amine, and PY ring puckering, characterized using the Cremer-Pople definition for pseudorotation. Only one conformer has a trans arrangement between the amino hydrogen and the phenyl substituent. It is 6-8 kJ mol(-1) more stable than the cis conformers, has a perpendicular ring arrangement, and puckers at the nitrogen atom--similar to structures reported for nicotine. Resonant two-photon ionization (R2PI) data, including hole burn spectra, indicate only one conformer is present in the free jet expansion, and band contour analysis suggests assignment to the trans conformer. Confirmation was provided by microwave spectroscopy. Fifty-seven lines measured in the 48-72 GHz region were assigned to 206 b-type transitions and fitted to yield rotational constants within 2 MHz of MP2 values predicted for the trans conformer. The solution-phase conformers of PPD were studied using 1D and 2D (1)H NMR spectroscopy and solvent-based theoretical calculations. In marked contrast to the gas phase, NMR data reveals only cis conformers present in solution. Calculations confirm increased stability for these conformers when placed in simulated chloroform or water environments. Solvent molecules are believed to disrupt a crucial N...H(ortho) stabilizing interaction present within the trans conformer.

  6. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  7. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations

    PubMed Central

    Wang, Tuo; Yang, Hui; Kubicki, James D.; Hong, Mei

    2017-01-01

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D 13C-13C correlation spectra of uniformly 13C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose 13C chemical shifts differ significantly from the 13C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing and hydrogen bonding from celluloses of other organisms. 2D 13C-13C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Cellulose f and g are well mixed chains on the microfibril surface, cellulose a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of bacterial, algal

  8. Conformation states of gramicidin A along the pathway to the formation of channels in model membranes determined by 2D NMR and circular dichroism spectroscopy.

    PubMed

    Abdul-Manan, N; Hinton, J F

    1994-06-07

    Gramicidin A incorporated into SDS (sodium dodecyl sulfate) micelles exists as a right-handed, N-to-N-terminal beta 6.3 helical dimer [Lomize, A. L., Orechov, V. Yu., & Arseniev, A.S. (1992) Bioorg. Khim. 18, 182-189]. In the incorporation procedure to achieve the ion channel state of gramicidin A in SDS micelles, trifluoroethanol (TFE) is used to solubilize the hydrophobic peptide before addition to the aqueous/micelle solution. The conformational transition of gramicidin A to form ion channels in SDS micelles, i.e., in TFE and 10% TFE/water, has been investigated using 2D NMR and CD spectroscopy. In neat TFE, gramicidin A was found to be monomeric and may possibly exist in an equilibrium of rapidly interconverting conformers of at least three different forms believed to be left- and/or right-handed alpha and beta 4.4 helices. It was found that the interconversion between these conformers was slowed down in 55% TFE as evident by the observation of at least three different sets of d alpha N COSY peaks although CD gave a net spectrum similar to that in neat TFE. In 10% TFE gramicidin A spontaneously forms a precipitate. The precipitated species were isolated and solubilized in dioxane where gramicidin conformers undergo very slow interconversion and could be characterized by NMR. At least seven different gramicidin A conformations were found in 10% TFE. Four of thes are the same types of double helices as previously found in ethanol (i.e., a symmetric left-handed parallel beta 5.6 double helix, an unsymmetric left-handed parallel beta 5.6 double helix, a symmetric left-handed antiparallel beta 5.6 double helix, a symmetric right-handed parallel beta 5.6 double helix); the fifth is possibly a symmetric right-handed antiparallel beta 5.6 double helix. There is also evidence for the presence of at least one form of monomeric species. Previous observation on the solvent history dependence in the ease of channel incorporation may be explained by the presence of several

  9. Alternating zinc fingers in the human male associated protein ZFY: 2D NMR structure of an even finger and implications for jumping-linker DNA recognition

    SciTech Connect

    Kochoyan, M.; Havel, T.F.; Dahl, C.E. ); Nguyen, D.T.; Keutmann, H.T. ); Weiss, M.A. Massachusetts General Hospital, Boston )

    1991-04-09

    ZFY, a sex-related Zn-finger protein encoded by the human Y chromosome, is distinguished from the general class of Zn-finger proteins by the presence of a two-finger repeat. Whereas odd-numbered domains and linkers fit a general consensus, even-numbered domains and linkers exhibit systematic differences. Because this alternation may have fundamental implications for the mechanism of protein-DNA recognition, the authors have undertaken biochemical and structural studies of fragments of ZFY. They describe here the solution structure of a representative nonconsensus (even-numbered) Zn finger based on 2D NMR studies of a 30-residue peptide. Structural modeling by distance geometry and simulated annealing (DG/SA) demonstrates that this peptide folds as a miniglobular domain containing a C-terminal {beta}-hairpin and N-terminal {alpha}-helix ({beta}{beta}{alpha} motif). These features are similar to (but not identical with) those previously described in consensus-type Zn fingers (derived from ADR1 and Xfin); the similarities suggest that even and odd ZFY domains bind DNA by a common mechanism. A model of the protein-DNA complex (designated the jumping-linker model) is presented and discussed in terms of the ZFY two-finger repeat. In this model every other linker is proposed to cross the minor groove by means of a putative finger/linker submotif HX{sub 4}HX{sub 3}-hydrophobic residue-X{sub 3}.

  10. Understanding API-polymer proximities in amorphous stabilized composite drug products using fluorine-carbon 2D HETCOR solid-state NMR.

    PubMed

    Abraham, Anuji; Crull, George

    2014-10-06

    A simple and robust method for obtaining fluorine-carbon proximities was established using a (19)F-(13)C heteronuclear correlation (HETCOR) two-dimensional (2D) solid-state nuclear magnetic resonance (ssNMR) experiment under magic-angle spinning (MAS). The method was applied to study a crystalline active pharmaceutical ingredient (API), avagacestat, containing two types of fluorine atoms and its API-polymer composite drug product. These results provide insight into the molecular structure, aid with assigning the carbon resonances, and probe API-polymer proximities in amorphous spray dried dispersions (SDD). This method has an advantage over the commonly used (1)H-(13)C HETCOR because of the large chemical shift dispersion in the fluorine dimension. In the present study, fluorine-carbon distances up to 8 Å were probed, giving insight into the API structure, crystal packing, and assignments. Most importantly, the study demonstrates a method for probing an intimate molecular level contact between an amorphous API and a polymer in an SDD, giving insights into molecular association and understanding of the role of the polymer in API stability (such as recrystallization, degradation, etc.) in such novel composite drug products.

  11. Investigation of Uña De Gato I. 7-Deoxyloganic acid and 15N NMR spectroscopic studies on pentacyclic oxindole alkaloids from Uncaria tomentosa.

    PubMed

    Muhammad, I; Dunbar, D C; Khan, R A; Ganzera, M; Khan, I A

    2001-07-01

    The C-8-(S) isomer of deoxyloganic acid (7-deoxyloganic acid), together with beta-sitosteryl glucoside, five known stereoisomeric pentacyclic oxindole alkaloids and the tetracyclic oxindole isorhyncophylline, were isolated from the inner bark of Uncaria tomentosa. Structures of the isolated compounds were based on 1H and 13C NMR data, mainly 2D NMR experiments, including 1H-13C HMBC and 1H-1H NOESY correlation. Furthermore, the hitherto unreported 15N chemical shifts of the isomeric oxindole alkaloids, using 1H-15N HMBC experiments, were utilized to facilitate their characterization. Uncarine D showed weak cytotoxic activity against SK-MEL, KB, BT-549 and SK-OV-3 cell lines with IC(50) values between 30 and 40 microg/ml, while uncarine C exhibited weak cytotoxicity only against ovarian carcinoma (IC(50) at 37 microg/ml).

  12. Spatial structure of fibrinopeptide B in water solution with DPC micelles by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Blokhin, Dmitriy S.; Fayzullina, Adeliya R.; Filippov, Andrei V.; Karataeva, Farida Kh.; Klochkov, Vladimir V.

    2015-12-01

    Fibrinopeptide B (GluFib) is one of the factors of thrombosis. Normal blood protein soluble, fibrinogen (fibrinopeptide A and fibrinopeptide B), is transformed into the insoluble, fibrin, which in the form of filaments adheres to the vessel wall at the site of injury, forming a grid. However, the spatial structure of this peptide has not been established till now. In this article, GluFib peptide is investigated together with dodecylphosphocholine (DPC) micelles which were used for mimicking the environment of peptide in blood vessels. The spatial structure was obtained by applying 1D and 2D 1H-1H NMR spectroscopy (TOCSY, NOESY). It was shown that the fibrinopeptide B does not have a secondary structure but we can distinguish the fragment Gly 9 - Arg 14 with a good convergence (the backbone RMSD for the Gly9 - Arg14 is 0.18 ± 0.08 Å).

  13. X-ray structure, NMR and stability-in-solution study of 6-(furfurylamino)-9-(tetrahydropyran-2-yl)purine - A new active compound for cosmetology

    NASA Astrophysics Data System (ADS)

    Walla, Jan; Szüčová, Lucie; Císařová, Ivana; Gucký, Tomáš; Zatloukal, Marek; Doležal, Karel; Greplová, Jarmila; Massino, Frank J.; Strnad, Miroslav

    2010-06-01

    The crystal and molecular structure of 6-(furfurylamino)-9-(tetrahydropyran-2-yl)purine ( 1) was determined at 150(2) K. The compound crystallizes in monoclinic P2 1/ c space group with a = 10.5642(2), b = 13.6174(3), c = 10.3742(2) Å, V = 1460.78(5) Å 3, Z = 4, R( F) = for 3344 unique reflections. The purine moiety and furfuryl ring are planar and the tetrahydropyran-2-yl is disordered in the ratio 1:3, probably due to the chiral carbon atom C(17). The individual 1H and 13C NMR signals were assigned by 2D correlation experiments such as 1H- 1H COSY and ge-2D HSQC. Stability-in-solution was determined in methanol/water in acidic pH (3-7).

  14. Hyphenation of capillary HPLC to microcoil (1)H NMR spectroscopy for the determination of tocopherol homologues.

    PubMed

    Krucker, Manfred; Lienau, Annette; Putzbach, Karsten; Grynbaum, Marc David; Schuler, Paul; Albert, Klaus

    2004-05-01

    Highly selective reversed phases (C(30) phases) are self-packed in 250 microm inner diameter fused-silica capillaries and employed for capillary HPLC separation of shape-constrained natural compounds (tocopherol homologues, vitamin E). Miniaturized hyphenated systems such as capillary HPLC-ESI-MS (positive ionization mode) and, with special emphasis, continuous-flow capillary HPLC- NMR are used for structural determination of the separated compounds. Despite the small amount of sample available (1.33 microg of each tocopherol), the authors have been able to monitor the capillary HPLC separation under continuous-flow (1)H NMR conditions, thus allowing an immediate peak identification. Further structural assignment was carried out in the stopped-flow NMR mode as shown, for example, by a 2D (1)H,(1)H COSY NMR spectrum of alpha-tocopherol. We demonstrate in this paper the considerable potential of hyphenated capillary separations coupled to MS and NMR for the investigation of restricted amounts of sample.

  15. Synthesis and Resolution of the Atropisomeric 1,1'-Bi-2-Naphthol: An Experiment in Organic Synthesis and 2-D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.

    2004-01-01

    NMR spectroscopy is presented. It is seen that the experiment regarding the synthesis and resolution of 1,1'-Bi-2-naphtol presents a good experiment for teaching organic synthesis and NMR spectroscopy and provides a strategy for obtaining enantiopure compounds from achiral starting materials.

  16. Revised NMR data for incartine: an alkaloid from Galanthus elwesii.

    PubMed

    Berkov, Strahil; Reyes-Chilpa, Ricardo; Codina, Carles; Viladomat, Francesc; Bastida, Jaume

    2007-07-12

    Phytochemical studies on Galanthus elwesii resulted in the isolation of five alkaloids: incartine, hordenine, hippeastrine, 8-O-demethylhomolycorine and lycorine. The NMR data given previously for incartine were revised and completed by two-dimensional 1H-1H and 1H-13C chemical shift correlation experiments. In vitro studies on the bioactivity of incartine were carried out.

  17. Deciphering the Conformational Choreography of Zinc Coordination Complexes with Standard and Novel Proton NMR Techniques Combined with DFT Methods.

    PubMed

    Pucheta, Jose Enrique Herbert; Prim, Damien; Gillet, Jean Michel; Farjon, Jonathan

    2016-04-04

    The presence of water has been shown to deeply impact the stability and geometry of Zn complexes in solution. Evidence for tetra- and penta-coordinated species in a pyridylmethylamine-Zn(II) model complex is presented. Novel (1) H NMR tools such as T1 -filtered selective exchange spectroscopy and pure shifted gradient-encoded selective refocusing as well as classical 2D ((1) H-(1) H) exchange spectroscopy, diffusion-ordered spectroscopy and T1 ((1) H) measurements, in combination with density functional theory methods allow the full conformational dynamics of a pyridylmethylamine-Zn(II) complex to be revealed. Four conformers and two families of complexes depending on the hydration states are elucidated.

  18. Complete (1)H and (13)C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper.

    PubMed

    Roslund, Mattias U; Säwén, Elin; Landström, Jens; Rönnols, Jerk; Jonsson, K Hanna M; Lundborg, Magnus; Svensson, Mona V; Widmalm, Göran

    2011-08-16

    The computer program casper uses (1)H and (13)C NMR chemical shift data of mono- to trisaccharides for the prediction of chemical shifts of oligo- and polysaccharides. In order to improve the quality of these predictions the (1)H and (13)C, as well as (31)P when applicable, NMR chemical shifts of 30 mono-, di-, and trisaccharides were assigned. The reducing sugars gave two distinct sets of NMR resonances due to the α- and β-anomeric forms. In total 35 (1)H and (13)C NMR chemical shift data sets were obtained from the oligosaccharides. One- and two-dimensional NMR experiments were used for the chemical shift assignments and special techniques were employed in some cases such as 2D (1)H,(13)C-HSQC Hadamard Transform methodology which was acquired approximately 45 times faster than a regular t(1) incremented (1)H,(13)C-HSQC experiment and a 1D (1)H,(1)H-CSSF-TOCSY experiment which was able to distinguish spin-systems in which the target protons were only 3.3Hz apart. The (1)H NMR chemical shifts were subsequently refined using total line-shape analysis with the PERCH NMR software. The acquired NMR data were then utilized in the casper program (http://www.casper.organ.su.se/casper/) for NMR chemical shift predictions of the O-antigen polysaccharides from Klebsiella O5, Shigella flexneri serotype X, and Salmonella arizonae O62. The data were compared to experimental data of the polysaccharides from the two former strains and the lipopolysaccharide of the latter strain showing excellent agreement between predicted and experimental (1)H and (13)C NMR chemical shifts.

  19. Molecular characterization and quantification using state of the art solid-state adiabatic TOBSY NMR in burn trauma.

    PubMed

    Righi, Valeria; Andronesi, Ovidiu; Mintzopoulos, Dionyssios; Tzika, A Aria

    2009-12-01

    We describe a novel solid-state nuclear magnetic resonance (NMR) method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS), relative conventional liquid-state NMR approaches, when applied to intact biopsies of skeletal muscle specimens collected from burn trauma patients. This novel method, termed optimized adiabatic TOtal through Bond correlation SpectroscopY (TOBSY) solid-state NMR pulse sequence for two-dimensional (2D) 1H-1H homonuclear scalar-coupling longitudinal isotropic mixing, was demonstrated to provide a 40-60% improvement in signal-to-noise ratio (SNR) relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). Using 1- and 2-dimensional HRMAS NMR experiments, we identified several metabolites in burned tissues. Quantification of metabolites in burned tissues showed increased levels of lipid compounds, intracellular metabolites (e.g., taurine and phosphocreatine) and substantially decreased water-soluble metabolites (e.g., glutathione, carnosine, glucose, glutamine/glutamate and alanine). These findings demonstrate that HRMAS NMR Spectroscopy using TOBSY is a feasible technique that reveals new insights into the pathophysiology of burn trauma. Moreover, this method has applications that facilitate the development of novel therapeutic strategies.

  20. Molecular Engineering of Liquid Crystal Polymers by Living Polymerization. 17. Characterization of Poly(10-((4-Cyano-4’-Biphenyl)oxy) decanyl Vinyl Ether)s by 1-D and 2-D H-NMR Spectroscopy

    DTIC Science & Technology

    1991-10-30

    Spectroscopy by Virril Percec and Myongsoo Lee Department of Macromolecular Science Case Western Reserve University Cleveland, OH 44106-2699 and Peter L ...AUTHOrZ(S) Virgil Percec, Myongsoo Lee, Peter L . Rinaldi and Vincent E. Litman l3a TYPE OF REPORT 1131) TIME COVERED 14. DATE OF REPORT (Year. Afot? Dy I...with CF3SO 3 H/S(CH 3)2 in CH2Cl2 at 0OC and termninated by ammoniacal methanol, by 1 -D and 2-D (COSY) 300 MHz IH-NMR spectroscopy is presented. The

  1. Structure and Metabolic-Flow Analysis of Molecular Complexity in a (13) C-Labeled Tree by 2D and 3D NMR.

    PubMed

    Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Kikuchi, Jun

    2016-05-10

    Improved signal identification for biological small molecules (BSMs) in a mixture was demonstrated by using multidimensional NMR on samples from (13) C-enriched Rhododendron japonicum (59.5 atom%) cultivated in air containing (13) C-labeled carbon dioxide for 14 weeks. The resonance assignment of 386 carbon atoms and 380 hydrogen atoms in the mixture was achieved. 42 BSMs, including eight that were unlisted in the spectral databases, were identified. Comparisons between the experimental values and the (13) C chemical shift values calculated by density functional theory supported the identifications of unlisted BSMs. Tracing the (13) C/(12) C ratio by multidimensional NMR spectra revealed faster and slower turnover ratios of BSMs involved in central metabolism and those categorized as secondary metabolites, respectively. The identification of BSMs and subsequent flow analysis provided insight into the metabolic systems of the plant.

  2. Exploiting the phase of NMR signals to carry useful information. Application to the measurement of chemical shifts in aliased 2D spectra.

    PubMed

    Ramírez-Gualito, Karla; Jeannerat, Damien

    2015-11-01

    Taking advantage of the phase of nuclear magnetic resonance (NMR) signals to encode NMR information is not easy because of their low precision and their sensitivity to nearby signals. We nevertheless demonstrated that the phase in indirect dimension of (1) H-(13) C heteronuclear single quantum coherence (HSQC) signals could provide carbon chemical shifts at low, but sufficient precision to resolve the ambiguities of the chemical shifts in aliased spectra. This approach, we called phase-encoding of the aliasing order Na (PHANA), only requires inserting a constant delay during the t1 evolution time to obtain spectra where signals with mixed phases can be decoded at the processing to reconstruct full spectra with a 15-fold increase in resolution.

  3. Solution structure of the 45-residue MgATP-binding peptide of adenylate kinase as examined by 2-D NMR, FTIR, and CD spectroscopy.

    PubMed

    Fry, D C; Byler, D M; Susi, H; Brown, E M; Kuby, S A; Mildvan, A S

    1988-05-17

    The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme [Fry, D.C., Kuby, S.A., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694], appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase [Sachsenheimer, W., & Schulz, G.E. (1977) J. Mol. Biol. 114, 23-26], with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of beta-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% alpha-helix, 38% beta-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possibly due to disorder, it can be fit by using methods developed on well-characterized globular proteins. On this basis, the peptide consists of 35 +/- 10% beta-structure, 60 +/- 12% turns and aperiodic structure, and not more than 10% alpha-helix. The CD spectrum is best fit by assuming the presence of at most 13% alpha-helix in the peptide, 24 +/- 2% beta-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformational changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assessed by CD. Detailed assignments of resonances in the peptide spectrum and intermolecular NOEs between protons of bound MgATP and

  4. Novel stilbene-based Fischer base analog of leuco-TAM - (2E,2'Z)-{2-(4-(E)-styrylphenyl)propane-1,3-diylidene}bis(1,3,3-trimethylindoline) - derivatives: synthesis and structural consideration by 1D NMR and 2D NMR spectroscopy.

    PubMed

    Keum, Sam-Rok; Lim, Hyun-Woo

    2016-02-01

    We report the synthesis of a series of novel stilbene-based (St) Fischer base analogs of leuco-triarylmethane (LTAM) dyes by treating Fischer base with (E)-4-styrylbenzaldehyde derivatives. All St-LTAM molecules examined herein are characterized by 1D and 2D NMR. They were found to exhibit ZE configuration and isomerize to their diastereomers EE and ZZ in 2-3 h. They exhibit type I behavior of diastereomeric isomerization.

  5. Fluorine detected 2D NMR experiments for the practical determination of size and sign of homonuclear F-F and heteronuclear C-F multiple bond J-coupling constants in multiple fluorinated compounds.

    PubMed

    Aspers, Ruud L E G; Ampt, Kirsten A M; Dvortsak, Peter; Jaeger, Martin; Wijmenga, Sybren S

    2013-06-01

    The use of fluorine in molecules obtained from chemical synthesis has become increasingly important within the pharmaceutical and agricultural industry. NMR characterization of these compounds is of great value with respect to their structure elucidation, their screening in metabolomics investigations and binding studies. The favorable NMR properties of the fluorine nucleus make NMR with fluorine detection of great value in this respect. A suite of NMR 2D F-F- and F-C-correlation experiments with fluorine detection was applied to the assignment of resonances, (n)J(CF)- and (n)J(FF)-couplings as well as the determination of their size and sign. The utilization of this experiment suite was exemplarily demonstrated for a highly fluorinated vinyl alkyl ether. Especially F-C HSQC and J-scaled F-C HMBC experiments allowed determining the size of the J-couplings of this compound. The relative sign of its homo- and heteronuclear couplings was achieved by different combinations of 2D NMR experiments, including non-selective and F2-selective F-C XLOC, F2-selective F-C HMQC, and F-F COSY. The F2-one/two-site selective F-C XLOC versions were found highly useful, as they led to simplifications of the common E.COSY patterns and resulted in a higher confidence level of the assignment by using selective excitation. The combination of F2-one/two-site selective F-C XLOC experiments with a F2-one-site selective F-C HMQC experiment provided the signs of all (n)J(CF)- and (n)J(FF)-couplings in the vinyl moiety of the test compound. Other combinations of experiments were found useful as well for special purposes when focusing for example on homonuclear couplings a combination of F-F COSY-10 with a F2-one-site selective F-C HMQC could be used. The E.COSY patterns in the spectra demonstrated were analyzed by use of the spin-selective displacement vectors, and in case of the XLOC also by use of the DQ- and ZQ-displacement vectors. The variety of experiments presented shall contribute to

  6. 13C and 15N—Chemical Shift Anisotropy of Ampicillin and Penicillin-V Studied by 2D-PASS and CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Antzutkin, Oleg N.; Lee, Young K.; Levitt, Malcolm H.

    1998-11-01

    The principal values of the chemical shift tensors of all13C and15N sites in two antibiotics, ampicillin and penicillin-V, were determined by 2-dimensionalphaseadjustedspinningsideband (2D-PASS) and conventional CP/MAS experiments. The13C and15N chemical shift anisotropies (CSA), and their confidence limits, were evaluated using a Mathematica program. The CSA values suggest a revised assignment of the 2-methyl13C sites in the case of ampicillin. We speculate on a relationship between the chemical shift principal values of many of the13C and15N sites and the β-lactam ring conformation.

  7. 31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy

    PubMed Central

    Gao, Ling; Cui, Weina; Zhang, Pengyuan; Jang, Albert; Zhu, Wuqiang; Zhang, Jianyi

    2016-01-01

    Utilizing a fast 31P magnetic resonance spectroscopy (MRS) 2-dimensional chemical shift imaging (2D-CSI) method, this study examined the heterogeneity of creatine kinase (CK) forward flux rate of hearts with postinfarction left ventricular (LV) remodeling. Immunosuppressed Yorkshire pigs were assigned to 4 groups: 1) A sham-operated normal group (SHAM, n = 6); 2) A 60 minutes distal left anterior descending coronary artery ligation and reperfusion (MI, n = 6); 3) Open patch group; ligation injury plus open fibrin patch over the site of injury (Patch, n = 6); and 4) Cell group, hiPSCs-cardiomyocytes, -endothelial cells, and -smooth muscle cells (2 million, each) were injected into the injured myocardium pass through a fibrin patch (Cell+Patch, n = 5). At 4 weeks, the creatine phosphate (PCr)/ATP ratio, CK forward flux rate (Flux PCr→ATP), and k constant of CK forward flux rate (kPCr→ATP) were severely decreased at border zone myocardium (BZ) adjacent to MI. Cell treatment results in significantly increase of PCr/ATP ratio and improve the value of kPCr→ATP and Flux PCr→ATP in BZ myocardium. Moreover, the BZ myocardial CK total activity and protein expression of CK mitochondria isozyme and CK myocardial isozyme were significantly reduced, but recovered in response to cell treatment. Thus, cell therapy results in improvement of BZ bioenergetic abnormality in hearts with postinfarction LV remodeling, which is accompanied by significantly improvements in BZ CK activity and CK isozyme expression. The fast 2D 31P MR CSI mapping can reliably measure the heterogeneity of bioenergetics in hearts with post infarction LV remodeling. PMID:27606901

  8. Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations.

    PubMed

    Paluch, Piotr; Pawlak, Tomasz; Jeziorna, Agata; Trébosc, Julien; Hou, Guangjin; Vega, Alexander J; Amoureux, Jean-Paul; Dracinsky, Martin; Polenova, Tatyana; Potrzebowski, Marek J

    2015-11-21

    We report a new multidimensional magic angle spinning NMR methodology, which provides an accurate and detailed probe of molecular motions occurring on timescales of nano- to microseconds, in sidechains of proteins. The approach is based on a 3D CPVC-RFDR correlation experiment recorded under fast MAS conditions (ν(R) = 62 kHz), where (13)C-(1)H CPVC dipolar lineshapes are recorded in a chemical shift resolved manner. The power of the technique is demonstrated in model tripeptide Tyr-(d)Ala-Phe and two nanocrystalline proteins, GB1 and LC8. We demonstrate that, through numerical simulations of dipolar lineshapes of aromatic sidechains, their detailed dynamic profile, i.e., the motional modes, is obtained. In GB1 and LC8 the results unequivocally indicate that a number of aromatic residues are dynamic, and using quantum mechanical calculations, we correlate the molecular motions of aromatic groups to their local environment in the crystal lattice. The approach presented here is general and can be readily extended to other biological systems.

  9. Magnetic structure and domain conversion of the quasi-2D frustrated antiferromagnet CuCrO{sub 2} probed by NMR

    SciTech Connect

    Sakhratov, Yu. A.; Svistov, L. E.; Kuhns, P. L.; Zhou, H. D.; Reyes, A. P.

    2014-11-15

    We have carried out {sup 63,65}Cu NMR spectra measurements in a magnetic field up to about 15.5 T on a single crystal of the multiferroic triangular-lattice antiferromagnet CuCrO{sub 2}. The measurements were performed for perpendicular and parallel orientations of the magnetic field with respect to the c axis of the crystal, and the detailed angle dependence of the spectra on the magnetic field direction in the ab plane was studied. The shape of the spectra can be well described in the model of spiral spin structure proposed by recent neutron diffraction experiments. When the field is rotated perpendicular to the crystal c axis, we observed, directly for the first time, a remarkable reorientation of the spin plane simultaneous with rotation of the incommensurate wavevector, by quantitatively deducing the conversion of the energetically less favorable domain to a more favorable one. At high enough fields parallel to the c axis, the data are consistent with either a field-induced commensurate spiral magnetic structure or an incommensurate spiral magnetic structure with a disorder in the c direction, suggesting that high fields may have influence on interplanar ordering.

  10. 2D-NMR, X-ray crystallography and theoretical studies of the reaction mechanism for the synthesis of 1,5-benzodiazepines from dehydroacetic acid derivatives and o-phenylenediamines

    NASA Astrophysics Data System (ADS)

    Rabahi, Amal; Hamdi, Safouane M.; Rachedi, Yahia; Hamdi, Maamar; Talhi, Oualid; Almeida Paz, Filipe A.; Silva, Artur S. M.; Fadila, Balegroune; Malika, Hamadène; Kamel, Taïbi

    2014-03-01

    The synthesis of 1,5-benzodiazepines by the reaction of o-phenylenediamines (o-PDAs) with dehydroacetic acid DHAA [3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one] or conjugate analogues is largely reported in the literature, but still with uncontrolled stereochemistry. In this work, a comprehensive mechanistic study on the formation of some synthesized 1,5-benzodiazepine models following different organic routes is established based on liquid-state 2D NMR, single-crystal X-ray diffraction and theoretical calculations allowing the classification of two prototropic forms A (enaminopyran-2,4-dione) and B (imino-4-hydroxypyran-2-one). Evidences are presented to show that most of the reported 1,5-benzodiazepine structures arising from DHAA and derivatives preferentially adopt the (E)-enaminopyran-2,4-diones A.

  11. The NMR studies on two new furostanol saponins from Agave sisalana leaves.

    PubMed

    Zou, Peng; Fu, Jing; Yu, He-shui; Zhang, Jie; Kang, Li-ping; Ma, Bai-ping; Yan, Xian-zhong

    2006-12-01

    The detailed NMR studies and full assignments of the 1H and 13C spectral data for two new furostanol saponins isolated from Agave sisalana leaves are described. Their structures were established using a combination of 1D and 2D NMR techniques including 1H, 13C, 1H-1H COSY, TOCSY, HSQC, HMBC and HSQC-TOCSY, and also FAB-MS spectrometry and chemical methods. The structures were established as (25S)-26-(beta-D-glucopyranosyl)-22 xi-hydroxyfurost-12-one-3beta-yl-O-alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->3)-O-[O-beta-D-glucopyranosyl-(1-->2)]-O-beta-D-glucopyranosyl-(1-->4)-beta-D-galacto- pyranoside (1) and (25S)-26-(beta-D-glucopyranosyl)-22xi-hydroxyfurost-5-en-12-one-3beta-yl-O-alpha-L-rhamno- pyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->3)-O-[O-beta-D-glucopyranosyl-(1-->2)]-O-beta-D-glucopyranosyl- (1-->4)-beta-D-galactopyranoside (2).

  12. NMR Metabolic profiling of green tea (Camellia sinensis L.) leaves grown at Kemuning, Indonesia

    NASA Astrophysics Data System (ADS)

    Wahyuni, D. S. C.; Kristanti, M. W.; Putri, R. K.; Rinanto, Y.

    2017-01-01

    Green tea (Camellia sinensis L.) has been famous as a beverage and natural medicine. It contains a broad range of primary and secondary metabolites i.e. polyphenols. Nuclear Magnetic Resonance (NMR) has been widely used for metabolic profiling in medicinal plants. It provides a very fast and detailed analysis of the biomolecular composition of crude extracts. Moreover, an NMR spectrum is a physical characteristic of a compound and thus highly reproducible. Therefore, this study aims to profile metabolites of three different varieties of green tea C. Sinensis grown in Kemuning, Middle Java. Three varieties of green tea collected on Kemuning (TR1 2025, Gambung 4/5, and Chiaruan 143) were used in this study. 1H-NMR spectra were recorded at 230C on a 400 MHz Agilent WB (Widebore). The analysis was performed on dried green tea leaves and analyzed by 1H-NMR, 2D-J-resolved and 1H-1H correlated spectroscopy (COSY). MestRenova version 11.0.0 applied to identify metabolites in samples. A 1H-NMR spectrum of tea showed amino acids and organic acids signal at the area δ 0.8–4.0. These were theanine, alanine, threonine, succinic acid, aspartic acid, lactic acid. Anomeric protons of carbohydrate were shown by the region of β-glucose, α-glucose, fructose and sucrose. The phenolic region was depicted at area δ 5.5-8.5. Epigallocatechin derivates and caffeine were detected in the tea leaves. The detail compound identification was observed and discussed in the text.

  13. Structure elucidation and complete NMR spectral assignments of four new diterpenoids from Smallantus sonchifolius.

    PubMed

    Dou, De-Qiang; Tian, Fang; Qiu, Ying-Kun; Kang, Ting-Guo; Dong, Feng

    2008-08-01

    Four new diterpenoids, named smaditerpenic acid A-D, together with five known compounds, were isolated from the H(2)O extract of the leaves of Smallantus sonchifolius (yacon) cultivated in Liaoning, China and their structures were elucidated on the basis of one- and two-dimensional NMR (including (1)H, (13)C-NMR, (1)H-(1)H COSY, HSQC, TOCSY, HMBC, and ROESY), electrospray ionization mass spectrometry (ESI-MS), and chemical methods.

  14. Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid Pretreatment as Studied by Solution-State 2D 1H-13C NMR

    PubMed Central

    Teramura, Hiroshi; Sasaki, Kengo; Oshima, Tomoko; Aikawa, Shimpei; Matsuda, Fumio; Okamoto, Mami; Shirai, Tomokazu; Kawaguchi, Hideo; Ogino, Chiaki; Yamasaki, Masanori; Kikuchi, Jun; Kondo, Akihiko

    2015-01-01

    A renewable raw material, rice straw is pretreated for biorefinery usage. Solution-state two-dimensional (2D) 1H-13 C hetero-nuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, was used to analyze 13 cultivars of rice straw before and after dilute acid pretreatment, to characterize general changes in the lignin and polysaccharide components. Intensities of most (15 of 16) peaks related to lignin aromatic regions, such as p-coumarate, guaiacyl, syringyl, p-hydroxyphenyl, and cinnamyl alcohol, and methoxyl, increased or remained unchanged after pretreatment. In contrast, intensities of most (11 of 13) peaks related to lignin aliphatic linkages or ferulate decreased. Decreased heterogeneity in the intensities of three peaks related to cellulose components in acid-insoluble residues resulted in similar glucose yield (0.45–0.59 g/g-dry biomass). Starch-derived components showed positive correlations (r = 0.71 to 0.96) with glucose, 5-hydroxymethylfurfural (5-HMF), and formate concentrations in the liquid hydrolysates, and negative correlations (r = –0.95 to –0.97) with xylose concentration and acid-insoluble residue yield. These results showed the fate of lignin and polysaccharide components by pretreatment, suggesting that lignin aromatic regions and cellulose components were retained in the acid insoluble residues and starch-derived components were transformed into glucose, 5-HMF, and formate in the liquid hydrolysate. PMID:26083431

  15. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), (1)H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong (1)H-(1)H homonuclear dipolar couplings and narrow (1)H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) (1)H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about (1)H-(1)H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical

  16. Human- and computer-accessible 2D correlation data for a more reliable structure determination of organic compounds. Future roles of researchers, software developers, spectrometer managers, journal editors, reviewers, publisher and database managers toward artificial-intelligence analysis of NMR spectra.

    PubMed

    Jeannerat, Damien

    2017-01-01

    The introduction of a universal data format to report the correlation data of 2D NMR spectra such as COSY, HSQC and HMBC spectra will have a large impact on the reliability of structure determination of small organic molecules. These lists of assigned cross peaks will bridge signals found in NMR 1D and 2D spectra and the assigned chemical structure. The record could be very compact, human and computer readable so that it can be included in the supplementary material of publications and easily transferred into databases of scientific literature and chemical compounds. The records will allow authors, reviewers and future users to test the consistency and, in favorable situations, the uniqueness of the assignment of the correlation data to the associated chemical structures. Ideally, the data format of the correlation data should include direct links to the NMR spectra to make it possible to validate their reliability and allow direct comparison of spectra. In order to take the full benefits of their potential, the correlation data and the NMR spectra should therefore follow any manuscript in the review process and be stored in open-access database after publication. Keeping all NMR spectra, correlation data and assigned structures together at all time will allow the future development of validation tools increasing the reliability of past and future NMR data. This will facilitate the development of artificial intelligence analysis of NMR spectra by providing a source of data than can be used efficiently because they have been validated or can be validated by future users. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Fischer indolisation of N-(α-ketoacyl)anthranilic acids into 2-(indol-2-carboxamido)benzoic acids and 2-indolyl-3,1-benzoxazin-4-ones and their NMR study.

    PubMed

    Proisl, Karel; Kafka, Stanislav; Urankar, Damijana; Gazvoda, Martin; Kimmel, Roman; Košmrlj, Janez

    2014-12-21

    N-(α-ketoacyl)anthranilic acids reacted with phenylhydrazinium chloride in boiling acetic acid to afford 2-(indol-2-carboxamido)benzoic acids in good to excellent yields and 2-indolyl-3,1-benzoxazin-4-ones as by-products. The formation of the latter products could easily be suppressed by a hydrolytic workup. Alternatively, by increasing the reaction temperature and/or time, 2-indolyl-3,1-benzoxazin-4-ones can be obtained exclusively. Optimisations of the reaction conditions as well as the scope and the course of the transformations were investigated. The products were characterized by (1)H, (13)C and (15)N NMR spectroscopy. The corresponding resonances were assigned on the basis of the standard 1D and gradient selected 2D NMR experiments ((1)H-(1)H gs-COSY, (1)H-(13)C gs-HSQC, (1)H-(13)C gs-HMBC) with (1)H-(15)N gs-HMBC as a practical tool to determine (15)N NMR chemical shifts at the natural abundance level of (15)N isotope.

  18. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    PubMed

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  19. Isolation and structural characterization of unusual pyranoanthocyanins and related anthocyanins from Staghorn sumac (Rhus typhina L.) via UPLC-ESI-MS, (1)H, (13)C, and 2D NMR spectroscopy.

    PubMed

    Kirby, Christopher W; Wu, Tao; Tsao, Rong; McCallum, Jason L

    2013-10-01

    The six major anthocyanins found in the burgundy coloured fruits of Staghorn sumac (Rhus typhina L.) were isolated and the structures of four compounds were determined by NMR spectroscopic methods as being: 7-O-methyl-delphinidin-3-O-(2″galloyl)-β-d-galactopyranoside; 7-O-methyl-cyanidin-3-O-(2″galloyl)-β-d-galactopyranoside; 7-O-methyl-delphinidin-3-O-(2″'galloyl)-β-d-galactopyranoside-4-vinyl-catechol-3″-O-β-d-glucopyranoside; and 7-O-methyl-cyanidin-3-O-(2″'galloyl)-β-d-galactopyranoside-4-vinyl-catechol-3″-O-β-d-glucopyranoside, respectively. Additionally, two related anthocyanin compounds, cyanidin-3-O-(2″galloyl)-β-d-galactopyranoside and 7-O-methyl-cyanidin-3-O-β-d-galactopyranoside were also recovered, with NMR spectroscopic values closely matching previous reports from other plant species. The prevalence of 7-O-methyl anthocyanins and their galloylated derivatives in sumac is highly unusual, and warrants special attention. Additionally, the in planta occurrence of two 7-O-methyl-pyranoanothocyanin-vinyl-catechol aglycones, Sumadin A and Sumadin B, and their derivatives is noted. To our knowledge, E-ring glycosylated vinyl-catechol pyranoanthocyanins were previously unknown.

  20. Proton and deuterium NMR experiments in zero field. [Perdeuterated p-demethoxybenzene, perdeuterated malonic acid, diethyl terephthalate-d4, nonadecane-2,2'-D2, sodium propionate-D2

    SciTech Connect

    Millar, J.M.

    1986-02-01

    High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution /sup 2/H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs.

  1. 2D NMR analysis of highly restricted internal rotation in 2-methylthio-3H-4- p-bromophenyl)-7-[( ortho- and para-substituted)-phenylthio]-1,5-benzodiazepines

    NASA Astrophysics Data System (ADS)

    Cortes C., E.; Becerra L., M. I.; Osornio P., Y. M.; Díaz T., E.; Jankowski, K.

    2000-08-01

    The complete assignments of twelve 4-ary1-7-thioary1-1,5-benzodiazepines 1H and 13C spectra, performed with the use of high resolution variable solvent and temperature 1D and 2D techniques (e.g. HOMOCOSY, NOESY, HMQC and HMBC), lead to the determination of conformational equilibria between two rotamers having the aromatic ring of the thioaryl oriented in a perpendicular or helical orientation toward the benzodiazepine ring. The restricted rotation was evaluated from the population of these conformers.

  2. Proton-Detected Solid-State NMR Spectroscopy of Bone with Ultrafast Magic Angle Spinning

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Nishiyama, Yusuke; Kumar Pandey, Manoj; Gong, Bo; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2015-07-01

    While obtaining high-resolution structural details from bone is highly important to better understand its mechanical strength and the effects of aging and disease on bone ultrastructure, it has been a major challenge to do so with existing biophysical techniques. Though solid-state NMR spectroscopy has the potential to reveal the structural details of bone, it suffers from poor spectral resolution and sensitivity. Nonetheless, recent developments in magic angle spinning (MAS) NMR technology have made it possible to spin solid samples up to 110 kHz frequency. With such remarkable capabilities, 1H-detected NMR experiments that have traditionally been challenging on rigid solids can now be implemented. Here, we report the first application of multidimensional 1H-detected NMR measurements on bone under ultrafast MAS conditions to provide atomistic-level elucidation of the complex heterogeneous structure of bone. Our investigations demonstrate that two-dimensional 1H/1H chemical shift correlation spectra for bone are obtainable using fp-RFDR (finite-pulse radio-frequency-driven dipolar recoupling) pulse sequence under ultrafast MAS. Our results infer that water exhibits distinct 1H-1H dipolar coupling networks with the backbone and side-chain regions in collagen. These results show the promising potential of proton-detected ultrafast MAS NMR for monitoring structural and dynamic changes caused by mechanical loading and disease in bone.

  3. Characterization and 2D NMR study of the stable [9-21, 15-27] 2 disulfide intermediate in the folding of the 3 disulfide trypsin inhibitor EETI II.

    PubMed Central

    Le-Nguyen, D.; Heitz, A.; Chiche, L.; el Hajji, M.; Castro, B.

    1993-01-01

    The three disulfide Ecballium elaterium trypsin inhibitor II (EETI II) reduction with dithiothreitol (DTT) and reoxidation of the fully reduced derivative have been examined. A common stable intermediate has been observed for both processes. Isolation and sequencing of carboxymethylated material showed that the intermediate lacks the [2-19] bridge. The NMR study showed a very strong structural conservation as compared to the native EETI II, suggesting that the bridges are the [9-21] and [15-27] native ones. The differences occurred in sections 2-7 (containing the free cysteine 2 and the Arg 4-Ile 5 active site) and 19-21 (containing the second free cysteine). Distance geometry calculations and restrained molecular dynamics refinements were also in favor of a [9-21, 15-27] arrangement and resulted in a well-conserved (7-28) segment. PMID:8443596

  4. Synthesis and structural analysis using 2-D NMR of Sialyl Lewis X (SLe{sup x}) and Lewis X (Le{sup x}) oligosaccharides: Ligands related to E-selectin [ELAM-1] binding

    SciTech Connect

    Ball, G.E.; Nagy, J.O.; Brown, E.G.

    1992-06-17

    The sialyl Lewis X (SLe{sup x}) determinant (NeuAc-{alpha}-2,3-Gal-{beta}-1,4-[Fuc-{alpha}-1,3]-GlcNAc), compound 1, is a ligand for E-selectin (endothelial leucocyte adhesion molecule 1, or ELAM-1), a member of the selectin family of cell adhesion molecules. Interactions between E-selectin and leucocyte-bound SLe{sup x} or closely related oligosaccharides are thought to be important early events in the inflammation process. Binding analysis has shown that the sialic acid (NeuAc) and the fucose (Fuc) moieties are essential for high affinity. The related desialylated trisaccharide Le{sup x} (Gas-{beta}-1,4-[Fuc-{alpha}-1,3]-GlcNAc), for example, is not a high-affinity ligand for E-selectin. In this communication, the authors describe the syntheses of SLe{sup x} 1 and the {beta}-O-allyl glycoside of Le{sup x} 2 using a cloned fucosyltransferase and their complete NMR spectral assignments including ROESY and NOESY experiments in order to investigate the conformation of these compounds in solution. 25 refs., 2 figs.

  5. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  6. Non-uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination

    PubMed Central

    Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt

    2015-01-01

    High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [1H,1H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. PMID:26227870

  7. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  8. DFT molecular modeling and NMR conformational analysis of a new longipinenetriolone diester

    NASA Astrophysics Data System (ADS)

    Cerda-García-Rojas, Carlos M.; Guerra-Ramírez, Diana; Román-Marín, Luisa U.; Hernández-Hernández, Juan D.; Joseph-Nathan, Pedro

    2006-05-01

    The structure and conformational behavior of the new natural compound (4 R,5 S,7 S,8 R,9 S,10 R,11 R)-longipin-2-en-7,8,9-triol-1-one 7-angelate-9-isovalerate (1) isolated from Stevia eupatoria, were studied by molecular modeling and NMR spectroscopy. A Monte Carlo search followed by DFT calculations at the B3LYP/6-31G* level provided the theoretical conformations of the sesquiterpene framework, which were in full agreement with results derived from the 1H- 1H coupling constant analysis.

  9. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  10. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  11. Revised NMR data for 9-O-demethylgalanthine: an alkaloid from Zephyranthes robusta (Amaryllidaceae) and its biological activity.

    PubMed

    Safratová, Marcela; Novák, Zdenek; Kulhánková, Andrea; Kunes, Jirí; Hrabinová, Martina; Jun, Daniel; Macáková, Katerina; Opletal, Lubomír; Cahlíková, Lucie

    2014-06-01

    Ongoing studies of Zephyranthes robusta resulted in the isolation of the lycorine-type alkaloid previously called carinatine and 10-O-demethylgalanthine. The NMR data given previously for this compound were revised and completed by two-dimensional 1H-1H and 1H-13C chemical shift correlation experiments. The name of the isolated compound was corrected to 9-O-demethylgalanthine in accordance with the currently used system of numbering of lycorine-type alkaloids. 9-O-Demethylgalanthine and galanthine, a previously isolated alkaloid from Z robusta, were inactive in acetylcholinesterase/butyrylcholinesterase assays (IC50 > 500 microM), but showed important prolyl oligopeptidase inhibition activity.

  12. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  13. Solid state and solution properties of lanthanide(III) complexes of a tetraiminodiphenolate macrocyclic ligand. X-ray structure, 1H NMR and luminescence spectral studies

    NASA Astrophysics Data System (ADS)

    Bag, Pradip; Dutta, Supriya; Flörke, Ulrich; Nag, Kamalaksha

    2008-11-01

    The lanthanide(III) complexes of composition [Ln(LH 2)(H 2O) 3Cl]Cl 2 (Ln = La-Lu and Y, 1- 15) derived from the tetraiminodiphenolate macrocyclic ligand L 2- have been prepared and characterized. In these compounds, the two uncoordinated imine nitrogens of the macrocycle are protonated and hydrogen-bonded with the metal-bound phenolate oxygens and thereby provide a zwitterionic structure to the ligand. The X-ray crystal structure of the compounds of La and Nd have been determined and they are found to be isostructural. The coordination polyhedra for the eight-coordinated metal centre in the complex cation [Ln(N 2O 2)(O 3Cl)] 2+ can be described as distorted square antiprism. Intermolecular hydrogen-bondings involving the three coordinated water molecules and the two uncoordinated chloride ions give rise to the 2-D network in which the chlorides are triply hydrogen-bridged and the water molecules are doubly hydrogen-bridged. Moreover, the aromatic rings in this network are involved in π-π interaction in two different ways. 1H NMR spectra of the complexes in (CD 3) 2SO have been studied. The spectral assignments for the paramagnetic complexes of Ce-Eu have been made from { 1H- 1H} COSY spectra and longitudinal relaxation time ( T1) measurements. It is inferred that the complex species [Ln(LH 2){(CD 3) 2SO} 4] 3+ that exist in solution are isostructural for the compounds of La-Eu. The contact and pseudo-contact contribution to the isotropic paramagnetic shifts in the complexes of Ce-Eu have been estimated. The luminescence spectra of the complexes of La, Sm, Eu and Tb have been studied in methanol-ethanol (1:4) glassy matrix and in the solid state at 77 K, and the quantum yields have been estimated.

  14. Complex mixture analysis of organic compounds in green coffee bean extract by two-dimensional NMR spectroscopy.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2010-11-01

    A complex mixture analysis by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy was carried out for the first time for the identification and quantification of organic compounds in green coffee bean extract (GCBE). A combination of (1)H-(1)H DQF-COSY, (1)H-(13)C HSQC, and (1)H-(13)C CT-HMBC two-dimensional sequences was used, and 16 compounds were identified. In particular, three isomers of caffeoylquinic acid were identified in the complex mixture without any separation. In addition, GCBE components were quantified by the integration of carbon signals by use of a relaxation reagent and an inverse-gated decoupling method without a nuclear Overhauser effect. This NMR methodology provides detailed information about the kinds and amounts of GCBE components, and in our study, the chemical makeup of GCBE was clarified by the NMR results.

  15. (17)O NMR Investigation of Water Structure and Dynamics.

    PubMed

    Keeler, Eric G; Michaelis, Vladimir K; Griffin, Robert G

    2016-08-18

    The structure and dynamics of the bound water in barium chlorate monohydrate were studied with (17)O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. (17)O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the (17)O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of (1)H decoupling, we observe a well-resolved (1)H-(17)O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two (1)H-(17)O dipoles and the (1)H-(1)H dipole.

  16. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    SciTech Connect

    Cort, John R.; Cho, Herman M.

    2009-10-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  17. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  18. Structure of a Conserved Retroviral RNA Packaging Element by NMR Spectroscopy and Cryo-Electron Tomography

    PubMed Central

    Miyazaki, Yasuyuki; Irobalieva, Rossitza N.; Tolbert, Blanton; Smalls-Mantey, Adjoa; Iyalla, Kilali; Loeliger, Kelsey; D’Souza, Victoria; Khant, Htet; Schmid, Michael F.; Garcia, Eric; Telesnitsky, Alice; Chiu, Wah; Summers, Michael F.

    2010-01-01

    The 5′-untranslated regions (5′-UTRs) of all gammaretroviruses contain a conserved “double hairpin motif” (ΨCD) that is required for genome packaging. Both hairpins (SL-C and SL-D) contain GACG tetraloops that, in isolated RNAs, are capable of forming “kissing” interactions stabilized by two intermolecular G-C base pairs. We have determined the three-dimensional structure of the double hairpin from the Moloney Murine Leukemia Virus (MoMuLV) ([ΨCD]2, 132-nucleotides, 42.8 kDaltons) using a 2H-edited NMR spectroscopy-based approach. This approach enabled the detection of 1H-1H dipolar interactions that were not observed in previous studies of isolated SL-C and SL-D hairpin RNAs using traditional 1H-1H correlated and 1H-13C-edited NMR methods. The hairpins participate in intermolecular cross-kissing interactions (SL-C to SL-D’ and SLC’ to SL-D), and stack in an end-to-end manner (SL-C to SL-D and SL-C’ to SL-D’) that gives rise to an elongated overall shape (ca. 95 Å by 45 Å by 25 Å). The global structure was confirmed by cryo-electron tomography (cryo-ET), making [ΨCD]2 simultaneously the smallest RNA to be structurally characterized to date by cryo-ET and among the largest to be determined by NMR. Our findings suggest that, in addition to promoting dimerization, [ΨCD]2 functions as a scaffold that helps initiate virus assembly by exposing a cluster of conserved UCUG elements for binding to the cognate nucleocapsid domains of assembling viral Gag proteins. PMID:20933521

  19. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  20. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  1. Significance of symmetry in the nuclear spin Hamiltonian for efficient heteronuclear dipolar decoupling in solid-state NMR: A Floquet description of supercycled rCW schemes

    NASA Astrophysics Data System (ADS)

    Equbal, Asif; Shankar, Ravi; Leskes, Michal; Vega, Shimon; Nielsen, Niels Chr.; Madhu, P. K.

    2017-03-01

    Symmetry plays an important role in the retention or annihilation of a desired interaction Hamiltonian in NMR experiments. Here, we explore the role of symmetry in the radio-frequency interaction frame Hamiltonian of the refocused-continuous-wave (rCW) pulse scheme that leads to efficient 1H heteronuclear decoupling in solid-state NMR. It is demonstrated that anti-periodic symmetry of single-spin operators (Ix, Iy, Iz) in the interaction frame can lead to complete annihilation of the 1H-1H homonuclear dipolar coupling effects that induce line broadening in solid-state NMR experiments. This symmetry also plays a critical role in cancelling or minimizing the effect of 1H chemical-shift anisotropy in the effective Hamiltonian. An analytical description based on Floquet theory is presented here along with experimental evidences to understand the decoupling efficiency of supercycled (concatenated) rCW scheme.

  2. Significance of symmetry in the nuclear spin Hamiltonian for efficient heteronuclear dipolar decoupling in solid-state NMR: A Floquet description of supercycled rCW schemes.

    PubMed

    Equbal, Asif; Shankar, Ravi; Leskes, Michal; Vega, Shimon; Nielsen, Niels Chr; Madhu, P K

    2017-03-14

    Symmetry plays an important role in the retention or annihilation of a desired interaction Hamiltonian in NMR experiments. Here, we explore the role of symmetry in the radio-frequency interaction frame Hamiltonian of the refocused-continuous-wave (rCW) pulse scheme that leads to efficient (1)H heteronuclear decoupling in solid-state NMR. It is demonstrated that anti-periodic symmetry of single-spin operators (Ix, Iy, Iz) in the interaction frame can lead to complete annihilation of the (1)H-(1)H homonuclear dipolar coupling effects that induce line broadening in solid-state NMR experiments. This symmetry also plays a critical role in cancelling or minimizing the effect of (1)H chemical-shift anisotropy in the effective Hamiltonian. An analytical description based on Floquet theory is presented here along with experimental evidences to understand the decoupling efficiency of supercycled (concatenated) rCW scheme.

  3. Optimized strategy of 1H and 13C solid-state NMR methods to investigate water dynamics in soil organic matter as well as the influence of crystallinity of poly(methylene) segments

    NASA Astrophysics Data System (ADS)

    Bertmer, Marko; Jaeger, Alexander; Schwarz, Jette; Schaumann, Gabriele

    2010-05-01

    Water plays a crucial role in soil organic matter (SOM) having various different functions such as transport of material, elution of ,e. g., pollutants in soil, and also the sequestration of humic substances. Furthermore, the generation and quantification of hydrophilic and hydrophobic regions in soil has several effects on SOM which can also include the storage amount and time of certain material, especially chemical pollutants. The importance of water in soil is also documented by the multitude of scientific approaches to characterize soils including diffusion NMR to study the water channel structure in soil. Our focus is on the study of water dynamics and soil structure to elucidate mechanisms of physicochemical aging. The approach uses the application of various solid-state NMR techniques - including 1H and 13C NMR - to get a multitude of information on SOM. In non-rotating samples, 1H lines are usually very broad and unstructured. Nevertheless, this rather simple technique allows for a differentiation of 1H containing chemicals based on their dynamics in soil. This includes rather solid soil components and solid as well as mobile water molecules. Based on an optimized 1H solid-state NMR strategy to study soil material together with a straightforward lineshape analysis, a series of soils and peats are characterized. Although even 1H NMR with sample spinning (MAS) often gives only limited information on different structures, we present results on the application of 2D 1H-1H phase-modulated Lee-Goldburg sequences (PMLG), that show already at medium spinning speeds the separation of functional groups. Their quantification can be correlated with sample composition, type of sample conditioning, and other parameters such as cation type or concentration and heat treatment. We are especially interested to correlate NMR data with DSC measurements based on a certain heat treatment of the soils. Our proposed model describes the presence of water in soil as a matrix

  4. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  5. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  6. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  7. Fluxionality in a paramagnetic seven-coordinate iron(II) complex: a variable-temperature, two-dimensional NMR and DFT study.

    PubMed

    Lonnon, David G; Ball, Graham E; Taylor, Ivan; Craig, Donald C; Colbran, Stephen B

    2009-06-01

    The preparation and detailed characterizations of the high-spin seven-coordinate complexes [M(kappa(7)N-L)](ClO(4))(2) (M = Mn(II), Fe(II); L = N,N,N',N'-tetrakis(2-pyridylmethyl)-2,6-bis(aminomethyl)pyridine) are described. The X-ray crystal structures reveal seven-coordinate metal complex ions. Consideration of continuous shape measures reveals that the coordination environments about the metal ions are better described as having (C(s)) face-capped trigonal prismatic symmetry than (C(2)) pentagonal bipyramidal symmetry. The (S = (5)/(2)) Mn(II) species shows complicated X-band electron paramagnetic resonance (EPR) spectra and broad, unrevealing (1)H NMR spectra. In contrast, the (S = 2) Fe(II) complex is EPR-silent and shows completely interpretable (1)H NMR spectra containing the requisite number of paramagnetically shifted peaks in the range delta +150 to -60. The (13)C NMR spectra are likewise informative. Variable-temperature (1)H NMR spectra show coalescences and decoalescences indicative of an intramolecular process that pairwise-exchanges the nonequivalent pyridylmethyl "arms" of the two bis(pyridylmethyl)amine (bpa) domains. A suite of NMR techniques, including T(1) relaxation measurements and variable-temperature (1)H-(1)H correlation spectroscopy, (1)H-(1)H total correlation spectroscopy, (1)H-(1)H nuclear Overhauser effect spectroscopy/exchange spectroscopy, and (1)H-(13)C heteronuclear multiple-quantum coherence experiments, has been used to assign the NMR spectra and characterize the exchange process. Analysis of the data from these experiments yields the following thermodynamic parameters for the exchange: DeltaH++ = 53.6 +/- 2.8 kJ mol(-1), DeltaS++ = -10.0 +/- 9.8 J K(-1) mol(-1), and DeltaG++ (298 K) = 50.6 kJ mol(-1). Density functional theory (B3LYP) calculations have been used to explore the energetics of possible mechanistic pathways for the underlying fluxional process. The most plausible mechanism found involves dissociation of a

  8. Unequivocal assignments of flavonoids from Tephrosia sp. (Fabaceae).

    PubMed

    Arriaga, A M C; Lima, J Q; Vasconcelos, J N; de Oliveira, M C F; Andrade-Neto, M; Santiago, G M P; Uchoa, D E A; Malcher, G T; Mafezoli, J; Braz-Filho, R

    2009-06-01

    (1)H and (13)C NMR chemical shifts of praecansone B, pongaflavone and dehydrorotenone isolated from Tephrosia egregia Sandw and obovatin from T. toxicaria Pers. were unambiguously assigned by 1D and 2D NMR experiments including (1)H, (1)H COSY, gHMQC and gHMBC, allowing the correction of literature assignments.

  9. WHNMR--a universal NMR application package.

    PubMed

    Xiaodong, Z; Hongbin, H; Nian, H; Lianfang, S; Chaohui, Y

    1996-06-01

    A PC-based NMR off-line data processing system is developed and described in detail. With this software system, one-dimensional (1D), two-dimensional (2D), and NMR imaging (MRI) data can be processed easily, and give reliable results. By the applications of this system, a versatile software interface is set up to achieve data exchanging and integrated usage with other PC application software and aids the PC to become an effective and powerful workstation.

  10. Differential protonation and dynamic structure of doxylamine succinate in solution using 1H and 13C NMR.

    PubMed

    Somashekar, B S; Nagana Gowda, G A; Ramesha, A R; Khetrapal, C L

    2004-07-01

    A protonation and dynamic structural study of doxylamine succinate, a 1:1 salt of succinic acid with dimethyl-[2-(1-phenyl-1-pyridin-2-yl-ethoxy)ethyl]amine, in solution using one- and two-dimensional 1H and 13C NMR experiments at variable temperature and concentration is presented. The two acidic protons of the salt doxylamine succinate are in 'intermediate' exchange at room temperature, as evidenced by the appearance of a broad signal. This signal evolves into two distinct signals below about -30 degrees C. A two-dimensional 1H-1H double quantum filtered correlation experiment carried out at -55 degrees C shows protonation of one of the acidic protons to the dimethylamine nitrogen. A two-dimensional rotating frame 1H-1H NOE experiment at the same temperature reveals that the other proton remains with the succinate moiety. Comparison of the 1H and 13C chemical shifts and the 13C T1 relaxation times of the salt with those of the free base further substantiate the findings.

  11. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  12. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  13. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  14. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  15. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  16. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  17. Natural-abundance 15N NMR studies of Turkey ovomucoid third domain. Assignment of peptide 15N resonances to the residues at the reactive site region via proton-detected multiple-quantum coherence

    NASA Astrophysics Data System (ADS)

    Ortiz-Polo, Gilberto; Krishnamoorthi, R.; Markley, John L.; Live, David H.; Davis, Donald G.; Cowburn, David

    Heteronuclear two-dimensional 1H{ 15N} multiple-quantum (MQ) spectroscopy has been applied to a protein sample at natural abundance: ovomucoid third domain from turkey ( Meleagris gallopavo), a serine proteinase inhibitor of 56 amino acid residues. Peptide amide 1H NMR assignments obtained by two-dimensional 1H{ 1H} NMR methods (R. Krishnamoorthi and J. L. Markley, unpublished data) led to identification of the corresponding 1H{ 15N} MQ coherence cross peaks. From these, 15N NMR chemical shifts were determined for several specific backbone amide groups of amino acid residues located around the reactive site region of the inhibitor. The results suggest that amide 15N chemical shifts, which are readily obtained in this way, may serve as sensitive probes for conformational studies of proteins.

  18. Probing intermolecular interactions in a diethylcarbamazine citrate salt by fast MAS (1)H solid-state NMR spectroscopy and GIPAW calculations.

    PubMed

    Venâncio, Tiago; Oliveira, Lyege Magalhaes; Ellena, Javier; Boechat, Nubia; Brown, Steven P

    2017-03-02

    Fast magic-angle spinning (MAS) NMR is used to probe intermolecular interactions in a diethylcarbamazine salt, that is widely used as a treatment against adult worms of Wuchereria bancrofti which cause a common disease in tropical countries named filariasis. Specifically, a dihydrogen citrate salt that has improved thermal stability and solubility as compared to the free form is studied. One-dimensional (1)H, (13)C and (15)N and two-dimensional (1)H-(13)C and (14)N-(1)H heteronuclear correlation NMR experiments under moderate and fast MAS together with GIPAW (CASTEP) calculations enable the assignment of the (1)H, (13)C and (14)N/(15)N resonances. A two-dimensional (1)H-(1)H double-quantum (DQ) -single-quantum (SQ) MAS spectrum recorded with BaBa recoupling at 60kHz MAS identifies specific proton-proton proximities associated with citrate-citrate and citrate-diethylcarbamazine intermolecular interactions.

  19. [NMR study of complex formation of aromatic ligands with heptadeoxynucleotide 5'-d(GCGAAGC) forming stable hairpin structure in aqueous solution].

    PubMed

    Veselkov, A N; Eaton, R J; Semanin, A V; Pakhomov, V I; Dymant, L N; Karavaev, L; Davies, D V

    2002-01-01

    Complex formation of hairpin-producing heptadeoxynucleotide 5'-d(GCGAAGC) with aromatic molecules: acridine dye proflavine and anthracycline antibiotic daunomycin was studied by one-dimensional 1H NMR and two-dimensional correlation 1H-1H (2M-TOCSY, 2M-NOESY), 1H-31P (2M-HMBC) NMR spectroscopy (500 and 600 MHz) in aqueous solution. Concentration and temperature dependences for the chemical shifts of ligand protons were measured, molecular models of equilibrium in solution were developed, and equilibrium thermodynamic parameters for the formation of intercalation complexes were calculated. Spatial structures of dye and antibiotic complexes with the heptamer hairpin were constructed on the basis of 2M-NOE data and the calculated values of limiting chemical shifts of ligand protons.

  20. 2D aquifer characterization and improved prediction of hydraulic conductivity using surface Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Dlugosch, Raphael; Günther, Thomas; Müller-Petke, Mike; Yaramanci, Ugur

    2014-05-01

    We present recent studies on the characterization of shallow aquifers using Nuclear Magnetic Resonance (NMR). NMR can help to gather detailed information about the water content and pore size related NMR relaxation time, of porous and water saturated material. The field application of surface NMR uses large wire loops placed at the surface of the Earth allows imaging the subsurface down to around hundred meters. First, a sophisticated inversion scheme is presented to simultaneously determine the two-dimensional (2D) distribution of the water content and the NMR relaxation time (T2*) in the subsurface from a surface NMR survey. The outstanding features of the new inversion scheme are its robustness to noisy data and the potential to distinguish aquifers of different lithology due to their specific NMR relaxation time. The successful application of the inversion scheme is demonstrated on two field cases both characterized by channel structures in the glacial sediments of Northern Germany. Second, we revise the prediction of hydraulic conductivity from NMR measurements for coarse-grained and unconsolidated sediments, commonly found in shallow aquifers. The presented Kozeny-Godefroy model replaces the empirical factors in known relations with physical, structural, and intrinsic NMR parameters. It additionally accounts for bulk water relaxation and is not limited to fast diffusion conditions. This improves the prediction of the hydraulic conductivity for clay-free sediments with grain sizes larger than medium sand. The model is validated by laboratory measurements on glass beads and sand samples. Combining the new inversion scheme and petrophysical model allows 2D imaging of the hydraulic conductivity in the subsurface from a surface NMR survey.

  1. Combined NMR analysis of huge residual dipolar couplings and pseudocontact shifts in terbium(III)-phthalocyaninato single molecule magnets.

    PubMed

    Damjanovic, Marko; Katoh, Keiichi; Yamashita, Masahiro; Enders, Markus

    2013-09-25

    Several small paramagnetic complexes combine large hyperfine NMR shifts with large magnetic anisotropies. The latter are a prerequisite for single molecule magnet (SMM) behavior. We choose the SMM tris(octabutoxyphthalocyaninato) diterbium (1) for a high resolution NMR study where we combined for the first time a comprehensive (1)H and (13)C chemical shift analysis of a SMM with the evaluation of large residual dipolar couplings (RDCs). The latter are a consequence of partial alignment of SMM 1 in the strong magnetic field of the NMR spectrometer. To the best of our knowledge RDCs in SMMs have never been reported before. We measured RDCs between -78 and +99 Hz for the (13)C-(1)H vectors of CH bonds and up to -109 Hz for (1)H-(1)H vectors of geminal hydrogen atoms (magnetic field of 14.09 T, temperature 295 K). Considerable negative Fermi contact shifts (up to -60 ppm) were determined for (13)C atoms at the phthalocyaninato core. Paramagnetic (13)C NMR shifts of the butoxy chains as well as all (1)H NMR chemical shifts are a result of pseudocontact shifts (pcs), and therefore it is easily possible to determine the positions of the respective nuclei in solution. Measurements of CH and HH vectors by RDC analysis are in accordance with the geometry as determined by the pseudocontact shifts, but in addition to that, RDCs give information about internal mobility. The axial component of the magnetic susceptibility tensor has been determined independently by pcs and by RDC.

  2. Complete NMR analysis of oxytocin in phosphate buffer.

    PubMed

    Ohno, Akiko; Kawasaki, Nana; Fukuhara, Kiyoshi; Okuda, Haruhiro; Yamaguchi, Teruhide

    2010-02-01

    Complete NMR analysis of oxytocin (OXT) in phosphate buffer was elucidated by one-dimensional (1D)- and two-dimensional (2D)-NMR techniques, which involve the assignment of peptide amide NH protons and carbamoyl NH(2) protons. The (1)H-(15)N correlation of seven amide NH protons and three carbamoyl NH(2) protons were also shown by HSQC NMR of OXT without (15)N enrichment.

  3. Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory

    ERIC Educational Resources Information Center

    Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.

    2015-01-01

    A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…

  4. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  5. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  6. APSY-NMR for protein backbone assignment in high-throughput structural biology

    PubMed Central

    Dutta, Samit Kumar; Serrano, Pedro; Proudfoot, Andrew; Geralt, Michael; Pedrini, Bill; Herrmann, Torsten; Wüthrich, Kurt

    2014-01-01

    A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90% of the residues. For most proteins the APSY data acquisition was completed in less than 30 hours. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [1H,1H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination. PMID:25428764

  7. Use of NMR-Based Metabolomics To Chemically Characterize the Roasting Process of Chicory Root.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Zhang, Mimin; Miyakawa, Takuya; Tanokura, Masaru

    2016-08-16

    Roasted chicory root (Cichorium intybus) has been widely accepted as the most important coffee substitute. In this study, a nuclear magnetic resonance (NMR)-based comprehensive analysis was performed to monitor the substantial changes in the composition of chicory root during the roasting process. A detailed signal assignment of dried raw and roasted chicory roots was carried out using (1)H, (13)C, (1)H-(1)H DQF-COSY, (1)H-(13)C edited-HSQC, (1)H-(13)C CT-HMBC, and (1)H-(13)C HSQC-TOCSY NMR spectra. On the basis of the signal assignments, 36 NMR-visible components were monitored simultaneously during roasting. Inulins, sucrose, and most of the amino acids were largely degraded during the roasting process, whereas monosaccharides decreased at the beginning and then increased until the dark roasting stage. Acetamide, 5-hydroxymethylfurfural, di-d-fructose dianhydride, and norfuraneol were newly formed during roasting. Furthermore, a principal component analysis score plot indicated that similar chemical composition profiles could be achieved by roasting the chicory root either at a higher firepower for a shorter time or at a lower firepower for a longer time.

  8. A study of dipolar interactions and dynamic processes of water molecules in tendon by 1H and 2H homonuclear and heteronuclear multiple-quantum-filtered NMR spectroscopy.

    PubMed

    Eliav, U; Navon, G

    1999-04-01

    The effect of proton exchange on the measurement of 1H-1H, 1H-2H, and 2H-2H residual dipolar interactions in water molecules in bovine Achilles tendons was investigated using double-quantum-filtered (DQF) NMR and new pulse sequences based on heteronuclear and homonuclear multiple-quantum filtering (MQF). Derivation of theoretical expressions for these techniques allowed evaluation of the 1H-1H and 1H-2H residual dipolar interactions and the proton exchange rate at a temperature of 24 degrees C and above, where no dipolar splitting is evident. The values obtained for these parameters at 24 degrees C were 300 and 50 Hz and 3000 s-1, respectively. The results for the residual dipolar interactions were verified by repeating the above measurements at a temperature of 1.5 degrees C, where the spectra of the H2O molecules were well resolved, so that the 1H-1H dipolar interaction could be determined directly from the observed splitting. Analysis of the MQF experiments at 1.5 degrees C, where the proton exchange was in the intermediate regime for the 1H-2H dipolar interaction, confirmed the result obtained at 24 degrees C for this interaction. A strong dependence of the intensities of the MQF signals on the proton exchange rate, in the intermediate and the fast exchange regimes, was observed and theoretically interpreted. This leads to the conclusion that the MQF techniques are mostly useful for tissues where the residual dipolar interaction is not significantly smaller than the proton exchange rate. Dependence of the relaxation times and signal intensities of the MQF experiments on the orientation of the tendon with respect to the magnetic field was observed and analyzed. One of the results of the theoretical analysis is that, in the fast exchange regime, the signal decay rates in the MQF experiments as well as in the spin echo or CPMG pulse sequences (T2) depend on the orientation as the square of the second-rank Legendre polynomial.

  9. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  10. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  11. Two new pentacyclic triterpenoids from Lantana camara LINN.

    PubMed

    Begum, Sabira; Zehra, Syeda Qamar; Siddiqui, Bina Shaheen

    2008-09-01

    Two new pentacyclic triterpenoids, namely lantanoic acid (1) and camaranoic acid (2), and six known compounds such as lantic acid, camarinic acid, camangeloyl acid, camarinin, oleanonic acid, and ursonic acid were isolated from the aerial parts of Lantana camara LINN. Structures of the new constituents were elucidated by chemical transformation and spectral studies including 1D ((1)H- and (13)C-NMR) and 2D ((1)H-(1)H correlation spectroscopy (COSY), nuclear Overhauser effect spectroscopy (NOESY), (1)H-(1)H total correlation spectroscopy (TOCSY), J-resolved, (1)H-detected heteronuclear multiple quantum coherence (HMQC), and heteronuclear multiple bond connectivity (HMBC)) NMR spectroscopy.

  12. Alkaloids from Hippeastrum morelianum Lem. (Amaryllidaceae).

    PubMed

    Giordani, Raquel B; de Andrade, Jean P; Verli, Hugo; Dutilh, Julie H; Henriques, Amélia T; Berkov, Strahil; Bastida, Jaume; Zuanazzi, José Angelo S

    2011-10-01

    The Amaryllidaceae family has proven to be a rich source of active molecules. As part of an ongoing project, we report a phytochemical study of Hippeastrum morelianum (Amaryllidaceae), from which we have isolated two homolycorine-type alkaloids, the new 2α,7-dimethoxyhomolycorine (1) and the poorly described candimine (2), as well as six known alkaloids: tazettine, pretazettine, 3-epimacronine, haemanthamine, hamayne and trisphaeridine. For reference purposes, the NMR of the isolated compounds was unequivocally described, based on 2D NMR measurements including (1)H-(1)H COSY, (1)H-(1)H NOESY, HSQC and HMBC.

  13. Synthesis, NMR spectroscopic characterization and structure of a divinyldisilazane-(triphenylphosphine)platinum(0) complex: observation of isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt).

    PubMed

    Wrackmeyer, Bernd; Klimkina, Elena V; Schmalz, Thomas; Milius, Wolfgang

    2013-05-01

    Tetramethyldivinyldisilazane-(triphenylphosphine)platinum(0) was prepared, characterized in solid state by X-ray crystallography and in solution by multinuclear magnetic resonance spectroscopy ((1)H, (13)C, (15)N, (29)Si, (31)P and (195)Pt NMR). Numerous signs of spin-spin coupling constants were determined by two-dimensional heteronuclear shift correlations (HETCOR) and two-dimensional (1)H/(1)H COSY experiments. Isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt) were measured from (195)Pt NMR spectra of the title compound as well as of other Pt(0), Pt(II) and Pt(IV) compounds for comparison. In contrast to other heavy nuclei such as (199)Hg or (207)Pb, the "normal" shifts of the heavy isotopomers to low frequencies are found, covering a range of >500 ppb.

  14. Fast, accurate 2D-MR relaxation exchange spectroscopy (REXSY): Beyond compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Benjamini, Dan; Cheng, Jian; Basser, Peter J.

    2016-10-01

    Previously, we showed that compressive or compressed sensing (CS) can be used to reduce significantly the data required to obtain 2D-NMR relaxation and diffusion spectra when they are sparse or well localized. In some cases, an order of magnitude fewer uniformly sampled data were required to reconstruct 2D-MR spectra of comparable quality. Nonetheless, this acceleration may still not be sufficient to make 2D-MR spectroscopy practicable for many important applications, such as studying time-varying exchange processes in swelling gels or drying paints, in living tissue in response to various biological or biochemical challenges, and particularly for in vivo MRI applications. A recently introduced framework, marginal distributions constrained optimization (MADCO), tremendously accelerates such 2D acquisitions by using a priori obtained 1D marginal distribution as powerful constraints when 2D spectra are reconstructed. Here we exploit one important intrinsic property of the 2D-MR relaxation exchange spectra: the fact that the 1D marginal distributions of each 2D-MR relaxation exchange spectrum in both dimensions are equal and can be rapidly estimated from a single Carr-Purcell-Meiboom-Gill (CPMG) or inversion recovery prepared CPMG measurement. We extend the MADCO framework by further proposing to use the 1D marginal distributions to inform the subsequent 2D data-sampling scheme, concentrating measurements where spectral peaks are present and reducing them where they are not. In this way we achieve compression or acceleration that is an order of magnitude greater than that in our previous CS method while providing data in reconstructed 2D-MR spectral maps of comparable quality, demonstrated using several simulated and real 2D T2 - T2 experimental data. This method, which can be called "informed compressed sensing," is extendable to other 2D- and even ND-MR exchange spectroscopy.

  15. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  16. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  17. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  18. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  19. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  20. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  1. Complementarity of DFT Calculations, NMR Anisotropy, and ECD for the Configurational Analysis of Brevipolides K-O from Hyptis brevipes.

    PubMed

    Suárez-Ortiz, G Alejandra; Cerda-García-Rojas, Carlos M; Fragoso-Serrano, Mabel; Pereda-Miranda, Rogelio

    2017-01-27

    Brevipolides K-O (1-5), five new cytotoxic 6-(6'-cinnamoyloxy-2',5'-epoxy-1'-hydroxyheptyl)-5,6-dihydro-2H-pyran-2-ones (IC50 values against six cancer cell lines, 1.7-10 μM), were purified by recycling HPLC from Hyptis brevipes. The structures, containing a distinctive tetrahydrofuran ring, were established by comprehensive quantum mechanical calculations and experimental spectroscopic analysis of their NMR and ECD data. Detailed analysis of the experimental NMR (1)H-(1)H vicinal coupling constants in comparison with the corresponding DFT-calculated values at the B3LYP/DGDZVP level confirmed the absolute configuration of 3 and revealed its conformational preferences, which were further strengthened by NOESY correlations. NMR anisotropy experiments by the application of Mosher's ester methodology and chemical correlations were also used to conclude that this novel brevipolide series (1-5) share the same absolute configuration corresponding to C-6(R), C-1'(S), C-2'(R), C-5'(S), and C-6'(S).

  2. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  3. The IDOL–UBE2D complex mediates sterol-dependent degradation of the LDL receptor

    PubMed Central

    Zhang, Li; Fairall, Louise; Goult, Benjamin T.; Calkin, Anna C.; Hong, Cynthia; Millard, Christopher J.; Tontonoz, Peter; Schwabe, John W.R.

    2011-01-01

    We previously identified the E3 ubiquitin ligase IDOL as a sterol-dependent regulator of the LDL receptor (LDLR). The molecular pathway underlying IDOL action, however, remains to be determined. Here we report the identification and biochemical and structural characterization of an E2–E3 ubiquitin ligase complex for LDLR degradation. We identified the UBE2D family (UBE2D1–4) as E2 partners for IDOL that support both autoubiquitination and IDOL-dependent ubiquitination of the LDLR in a cell-free system. NMR chemical shift mapping and a 2.1 Å crystal structure of the IDOL RING domain–UBE2D1 complex revealed key interactions between the dimeric IDOL protein and the E2 enzyme. Analysis of the IDOL–UBE2D1 interface also defined the stereochemical basis for the selectivity of IDOL for UBE2Ds over other E2 ligases. Structure-based mutations that inhibit IDOL dimerization or IDOL–UBE2D interaction block IDOL-dependent LDLR ubiquitination and degradation. Furthermore, expression of a dominant-negative UBE2D enzyme inhibits the ability of IDOL to degrade the LDLR in cells. These results identify the IDOL–UBE2D complex as an important determinant of LDLR activity, and provide insight into molecular mechanisms underlying the regulation of cholesterol uptake. PMID:21685362

  4. Review of NMR characterization of pyrolysis oils

    SciTech Connect

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterization and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.

  5. Review of NMR characterization of pyrolysis oils

    DOE PAGES

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; ...

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  6. Combining insights from solid-state NMR and first principles calculation: applications to the 19F NMR of octafluoronaphthalene.

    PubMed

    Robbins, Andrew J; Ng, William T K; Jochym, Dominik; Keal, Thomas W; Clark, Stewart J; Tozer, David J; Hodgkinson, Paul

    2007-05-21

    Advances in solid-state NMR methodology and computational chemistry are applied to the (19)F NMR of solid octafluoronaphthalene. It is demonstrated experimentally, and confirmed by density functional theory (DFT) calculations, that the spectral resolution in the magic-angle spinning spectrum is limited by the anisotropy of the bulk magnetic susceptibility (ABMS). This leads to the unusual observation that the resolution improves as the sample is diluted. DFT calculations provide assignments of each of the peaks in the (19)F spectrum, but the predictions are close to the limits of accuracy and correlation information from 2-D NMR is invaluable in confirming the assignments. The effects of non-Gaussian lineshapes on the use of 2-D NMR for mapping correlations of spectral frequencies (e.g. due to the ABMS) are also discussed.

  7. On-line NMR detection of microgram quantities of heparin-derived oligosaccharides and their structure elucidation by microcoil NMR.

    PubMed

    Korir, Albert K; Larive, Cynthia K

    2007-08-01

    The isolation and purification of sufficient quantities of heparin-derived oligosaccharides for characterization by NMR is a tedious and time-consuming process. In addition, the structural complexity and microheterogeneity of heparin makes its characterization a challenging task. The improved mass-sensitivity of microcoil NMR probe technology makes this technique well suited for characterization of mass-limited heparin-derived oligosaccharides. Although microcoil probes have poorer concentration sensitivity than conventional NMR probes, this limitation can be overcome by coupling capillary isotachophoresis (cITP) with on-line microcoil NMR detection (cITP-NMR). Strategies to improve the sensitivity of on-line NMR detection through changes in probe design and in the cITP-NMR experimental protocol are discussed. These improvements in sensitivity allow acquisition of cITP-NMR survey spectra facilitating tentative identification of unknown oligosaccharides. Complete structure elucidation for microgram quantities of the purified material can be carried out through acquisition of 2D NMR spectra using a CapNMR microcoil probe.

  8. Monoterpene Unknowns Identified Using IR, [to the first power]H-NMR, [to the thirteenth power]C-NMR, DEPT, COSY, and HETCOR

    ERIC Educational Resources Information Center

    Alty, Lisa T.

    2005-01-01

    A study identifies a compound from a set of monoterpenes using infrared (IR) and one-dimensional (1D) nuclear magnetic resonance (NMR) techniques. After identifying the unknown, each carbon and proton signal can be interpreted and assigned to the structure using the information in the two-dimensional (2D) NMR spectra, correlation spectroscopy…

  9. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  10. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  11. Orthotropic Piezoelectricity in 2D Nanocellulose.

    PubMed

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  12. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  13. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  14. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  15. 2D Distributed Sensing Via TDR

    DTIC Science & Technology

    2007-11-02

    plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC

  16. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  17. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.

  18. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  19. The basics of 2D DIGE.

    PubMed

    Beckett, Phil

    2012-01-01

    The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).

  20. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  1. High-resolution, high-pressure NMR studies of proteins.

    PubMed Central

    Jonas, J; Ballard, L; Nash, D

    1998-01-01

    Advanced high-resolution NMR spectroscopy, including two-dimensional NMR techniques, combined with high pressure capability, represents a powerful new tool in the study of proteins. This contribution is organized in the following way. First, the specialized instrumentation needed for high-pressure NMR experiments is discussed, with specific emphasis on the design features and performance characteristics of a high-sensitivity, high-resolution, variable-temperature NMR probe operating at 500 MHz and at pressures of up to 500 MPa. An overview of several recent studies using 1D and 2D high-resolution, high-pressure NMR spectroscopy to investigate the pressure-induced reversible unfolding and pressure-assisted cold denaturation of lysozyme, ribonuclease A, and ubiquitin is presented. Specifically, the relationship between the residual secondary structure of pressure-assisted, cold-denatured states and the structure of early folding intermediates is discussed. PMID:9649405

  2. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  3. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  4. Increasing the sensitivity of 2D high-resolution NMR methods applied to quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Amoureux, J. P.; Delevoye, L.; Steuernagel, S.; Gan, Z.; Ganapathy, S.; Montagne, L.

    2005-02-01

    Gan and Kwak recently proposed a soft-pulse added mixing (SPAM) idea in the classical two-pulse multiple-quantum magic-angle spinning scheme. In the SPAM method, a soft π/2 pulse is added after the second hard-pulse (conversion pulse) and all coherence orders in between them are constructively used to obtain the signal. We, here, further extend this idea to distributed samples where the signal mainly results from echo pathways and that from anti-echo pathways dies out after a few t1 increments. We show that, with a combination of SPAM and collection of fewer anti-echoes, an enhancement of the signal to noise ratio by a factor of ca. 3 may be obtained over the z-filtered version. This may prove to be useful even for samples with long T2' relaxation times.

  5. Increasing the sensitivity of 2D high-resolution NMR methods applied to quadrupolar nuclei.

    PubMed

    Amoureux, J P; Delevoye, L; Steuernagel, S; Gan, Z; Ganapathy, S; Montagne, L

    2005-02-01

    Gan and Kwak recently proposed a soft-pulse added mixing (SPAM) idea in the classical two-pulse multiple-quantum magic-angle spinning scheme. In the SPAM method, a soft pi/2 pulse is added after the second hard-pulse (conversion pulse) and all coherence orders in between them are constructively used to obtain the signal. We, here, further extend this idea to distributed samples where the signal mainly results from echo pathways and that from anti-echo pathways dies out after a few t1 increments. We show that, with a combination of SPAM and collection of fewer anti-echoes, an enhancement of the signal to noise ratio by a factor of ca. 3 may be obtained over the z-filtered version. This may prove to be useful even for samples with long T2' relaxation times.

  6. Synthesis and Characterization of 9-Hydroxyphenalenone Using 2D NMR Techniques

    ERIC Educational Resources Information Center

    Caes, Benjamin; Jensen, Dell, Jr.

    2008-01-01

    9-Hydroxyphenalenone is a planar multicyclic [beta]-keto-enol, which is synthesized via a Friedel-Crafts acylation followed by acid-catalyzed intramolecular Michael addition with the loss of a phenyl group in a one-pot reaction during a four-hour lab period. Tautomerization of the [beta]-keto-enol results in C[subscript 2v] symmetry on the NMR…

  7. DFT studies of the conformational/structural dependencies of geminal 1H,1H scalar coupling 2J(H,H') in substituted methanes.

    PubMed

    Barfield, Michael

    2007-08-01

    A study is presented of the structural dependencies for scalar, interproton J-coupling across two bonds in a series of substituted methanes. The coupled perturbed, density functional theory method with a B3PW91 functional and aug-cc-pVTZ-J basis sets is used to examine coupling between geminal protons (2)J(H,H') in methane and a series of substituted compounds CH(3)X (X = CH3, CH(2)CH(3), CH=CH2, CH=O, and NH2) as functions of the dihedral angle phi measured about the C1-X2 bonds. All four contributions are obtained but all conformational effects are dominated by the Fermi contact term. Simple linear combination of atomic orbitals (LCAO)-molecular orbital (MO) sum-over-states methods are used to examine the relationships of the coupling constants with dihedral angles as well as internal H-C-H and H-C1-X2 angles. This study explores some novel aspects of geminal H-H coupling including an analysis of the asymmetry in the conformational dependencies arising from non-next-nearest neighbor interactions. For each of the substituted methanes, explicit trigonometric/exponential expressions are given and these accurately reproduce the (2)J(H,H') structural dependencies with standard deviations usually less than 0.03 Hz. The molecular structures for representative bicyclic molecules were fully optimized, and DFT results for (2)J(H,H') reproduce all the trends in the experimental data. A discussion is given on the applicability of the equations for H--H coupling in the substituted methanes to coupling in the bicyclic molecules.

  8. Compatible embedding for 2D shape animation.

    PubMed

    Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi

    2009-01-01

    We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.

  9. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  10. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  11. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  12. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  13. Complete Assignment of (1)H-NMR Resonances of the King Cobra Neurotoxin CM-11.

    PubMed

    Pang, Yu-Xi; Liu, Wei-Dong; Liu, Ai-Zhuo; Pei, Feng-Kui

    1997-01-01

    The king cobra (Ophiophagus Hannah) neurotoxin CM-Il is long-chain peptide with 72 amino acid residues. Its complete assignment of (1)H-NMR resonances was obtained using various 2D-NMR technologies, including DQF-COSY, clean-TOCSY and NOESY.

  14. Quasiparticle interference in unconventional 2D systems

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  15. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  16. 2D Metals by Repeated Size Reduction.

    PubMed

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  17. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  18. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  19. Irreversibility-inversions in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  20. In vivo NMR for ¹³C Metabolic Flux Analysis.

    PubMed

    Roscher, Albrecht; Troufflard, Stéphanie; Taghki, Abdelghani Idrissi

    2014-01-01

    The use of in vivo NMR within the framework of Metabolic Flux Analysis in plants is presented. In vivo NMR allows to visualize the active metabolic network, to determine metabolic and isotopic steady state and to measure metabolic fluxes which are not necessarily accessible by isotopic steady state (stationary) Metabolic Flux Analysis. The kinetic data can be used as input for dynamic (nonstationary) Metabolic Flux Analysis. Both 1D and 2D NMR methods are employed.

  1. 1H and 13C NMR assignments for two new angular furanocoumarin glycosides from Peucedanum praeruptorum.

    PubMed

    Chang, Haitao; Okada, Yoshihito; Okuyama, Toru; Tu, Pengfei

    2007-07-01

    Two novel angular-type furanocoumarin glycosides, peucedanoside A (1) and peucedanoside B (2), along with a known compound apterin (3), were isolated from the roots of Peucedanum praeruptorum Dunn. Their chemical structures were determined by MS, NMR spectroscopy and chemical analysis. Complete assignments of the 1H and 13C NMR spectroscopic data were achieved by 1D and 2D NMR experiments including DEPT, HSQC, HMBC and ROESY.

  2. Three-Dimensional Maximum-Quantum Correlation HMQC NMR Spectroscopy (3D MAXY-HMQC)

    NASA Astrophysics Data System (ADS)

    Liu, Maili; Mao, Xi-An; Ye, Chaohui; Nicholson, Jeremy K.; Lindon, John C.

    1997-11-01

    The extension of two-dimensional maximum-quantum correlation spectroscopy (2D MAXY NMR), which can be used to simplify complex NMR spectra, to three dimensions (3D) is described. A new pulse sequence for 3D MAXY-HMQC is presented and exemplified using the steroid drug dexamethasone. The sensitivity and coherence transfer efficiency of the MAXY NMR approach has also been assessed in relation to other HMQC- and HSQC-based 3D methods.

  3. Use of marginal distributions constrained optimization (MADCO) for accelerated 2D MRI relaxometry and diffusometry

    NASA Astrophysics Data System (ADS)

    Benjamini, Dan; Basser, Peter J.

    2016-10-01

    Measuring multidimensional (e.g., 2D) relaxation spectra in NMR and MRI clinical applications is a holy grail of the porous media and biomedical MR communities. The main bottleneck is the inversion of Fredholm integrals of the first kind, an ill-conditioned problem requiring large amounts of data to stabilize a solution. We suggest a novel experimental design and processing framework to accelerate and improve the reconstruction of such 2D spectra that uses a priori information from the 1D projections of spectra, or marginal distributions. These 1D marginal distributions provide powerful constraints when 2D spectra are reconstructed, and their estimation requires an order of magnitude less data than a conventional 2D approach. This marginal distributions constrained optimization (MADCO) methodology is demonstrated here with a polyvinylpyrrolidone-water phantom that has 3 distinct peaks in the 2D D-T1 space. The stability, sensitivity to experimental parameters, and accuracy of this new approach are compared with conventional methods by serially subsampling the full data set. While the conventional, unconstrained approach performed poorly, the new method had proven to be highly accurate and robust, only requiring a fraction of the data. Additionally, synthetic T1 -T2 data are presented to explore the effects of noise on the estimations, and the performance of the proposed method with a smooth and realistic 2D spectrum. The proposed framework is quite general and can also be used with a variety of 2D MRI experiments (D-T2,T1 -T2, D -D, etc.), making these potentially feasible for preclinical and even clinical applications for the first time.

  4. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  5. Rotary echo nutation NMR

    NASA Astrophysics Data System (ADS)

    Janssen, R.; Tijink, G. A. H.; Veeman, W. S.

    1988-01-01

    A two-dimensional solid state NMR experiment which combines rotary echoes and nutation NMR is investigated and used to study different sodium sites in zeolite NaA. It is shown that with this technique sodium ions with different relaxation rates in the rotating frame can be distinguished.

  6. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  7. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  8. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  9. Structure of fully protonated proteins by proton-detected magic-angle spinning NMR.

    PubMed

    Andreas, Loren B; Jaudzems, Kristaps; Stanek, Jan; Lalli, Daniela; Bertarello, Andrea; Le Marchand, Tanguy; Cala-De Paepe, Diane; Kotelovica, Svetlana; Akopjana, Inara; Knott, Benno; Wegner, Sebastian; Engelke, Frank; Lesage, Anne; Emsley, Lyndon; Tars, Kaspars; Herrmann, Torsten; Pintacuda, Guido

    2016-08-16

    Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.

  10. Structure of fully protonated proteins by proton-detected magic-angle spinning NMR

    PubMed Central

    Jaudzems, Kristaps; Stanek, Jan; Lalli, Daniela; Bertarello, Andrea; Le Marchand, Tanguy; Cala-De Paepe, Diane; Kotelovica, Svetlana; Akopjana, Inara; Knott, Benno; Wegner, Sebastian; Engelke, Frank; Lesage, Anne; Emsley, Lyndon; Tars, Kaspars; Herrmann, Torsten; Pintacuda, Guido

    2016-01-01

    Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of 1H-1H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins. PMID:27489348

  11. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR

    PubMed Central

    Knight, Michael J.; Pell, Andrew J.; Bertini, Ivano; Felli, Isabella C.; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido

    2012-01-01

    We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with 1H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of 15N and 13C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu+ (diamagnetic) or Cu2+ (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to 1H-1H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a Gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable. PMID:22723345

  12. Chemical exchange spectroscopy based on carbon-13 NMR. Applications to enzymology and protein folding

    NASA Astrophysics Data System (ADS)

    Alexandrescu, Andrei T.; Loh, Stewart N.; Markley, John L.

    We explore how 13C-based two-dimensional chemical exchange spectroscopy (EXSY) can be used to investigate exchange processes that are slow on the NMR time scale. Results are shown for the mutarotase-catalyzed α →← β isomerization of [1- 13C]glucose using experiments that detect carbon spins: homonuclear 13C exchange spectroscopy [ 13C { 13C} EXSY] and heteronuclear exchange spectroscopy [ 13C { 1H} EXSY]; and inverse experiments that select for proton spins attached to 13C: 1H- 13C single-bond correlation exchange spectroscopy [ 1H { 13C} SBC-EXSY] and 13C-filtered 1H exchange spectroscopy [ 1H{ 1H}- 13Cƒ- EXSY] . The main advantage of 13C-based exchange experiments is the simplification of complex spectra afforded by incorporation of selective labels. The inherent power of this approach is illustrated with a 1H { 13C} SBC-EXSY spectrum showing the native →← denatured interconversion of [ 13Cδ1] Trp-staphylococcal nuclease. Certain 13C-based EXSY experiments are useful for discriminating exchange connectivities from dipole-dipole connectivities.

  13. D2d(23)-C84 versus Sc2C2@D2d(23)-C84: Impact of Endohedral Sc2C2 Doping on Chemical Reactivity in the Photolysis of Diazirine.

    PubMed

    Yamada, Michio; Tanabe, Yukiko; Dang, Jing-Shuang; Sato, Satoru; Mizorogi, Naomi; Hachiya, Makoto; Suzuki, Mitsuaki; Abe, Tsuneyuki; Kurihara, Hiroki; Maeda, Yutaka; Zhao, Xiang; Lian, Yongfu; Nagase, Shigeru; Akasaka, Takeshi

    2016-12-21

    We compared the chemical reactivity of D2d(23)-C84 and that of Sc2C2@D2d(23)-C84, both having the same carbon cage geometry, in the photolysis of 2-adamantane-2,3'-[3H]-diazirine, to clarify metal-atom doping effects on the chemical reactivity of the carbon cage. Experimental and computational studies have revealed that the chemical reactivity of the D2d(23)-C84 carbon cage is altered drastically by endohedral Sc2C2 doping. The reaction of empty D2d(23)-C84 with the diazirine under photoirradiation yields two adamantylidene (Ad) adducts. NMR spectroscopic studies revealed that the major Ad monoadduct (C84(Ad)-A) has a fulleroid structure and that the minor Ad monoadduct (C84(Ad)-B) has a methanofullerene structure. The latter was also characterized using X-ray crystallography. C84(Ad)-A is stable under photoirradiation, but it interconverted to C84(Ad)-B by heating at 80 °C. In contrast, the reaction of endohedral Sc2C2@D2d(23)-C84 with diazirine under photoirradiation affords four Ad monoadducts (Sc2C2@C84(Ad)-A, Sc2C2@C84(Ad)-B, Sc2C2@C84(Ad)-C, and Sc2C2@C84(Ad)-D). The structure of Sc2C2@C84(Ad)-C was characterized using X-ray crystallography. Thermal interconversion of Sc2C2@C84(Ad)-A and Sc2C2@C84(Ad)-B to Sc2C2@C84(Ad)-C was also observed. The reaction mechanisms of the Ad addition and thermal interconversion were elucidated from theoretical calculations. Calculation results suggest that C84(Ad)-B and Sc2C2@C84(Ad)-C are thermodynamically favorable products. Their different chemical reactivities derive from Sc2C2 doping, which raises the HOMO and LUMO levels of the D2d(23)-C84 carbon cage.

  14. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  15. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  16. Codon Constraints on Closed 2D Shapes,

    DTIC Science & Technology

    2014-09-26

    19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure

  17. Identification of endogenous metabolites in human sperm cells using proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Paiva, C; Amaral, A; Rodriguez, M; Canyellas, N; Correig, X; Ballescà, J L; Ramalho-Santos, J; Oliva, R

    2015-05-01

    The objective of this study was to contribute to the first comprehensive metabolomic characterization of the human sperm cell through the application of two untargeted platforms based on proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography coupled to mass spectrometry (GC-MS). Using these two complementary strategies, we were able to identify a total of 69 metabolites, of which 42 were identified using NMR, 27 using GC-MS and 4 by both techniques. The identity of some of these metabolites was further confirmed by two-dimensional (1) H-(1) H homonuclear correlation spectroscopy (COSY) and (1) H-(13) C heteronuclear single-quantum correlation (HSQC) spectroscopy. Most of the metabolites identified are reported here for the first time in mature human spermatozoa. The relationship between the metabolites identified and the previously reported sperm proteome was also explored. Interestingly, overrepresented pathways included not only the metabolism of carbohydrates, but also of lipids and lipoproteins. Of note, a large number of the metabolites identified belonged to the amino acids, peptides and analogues super class. The identification of this initial set of metabolites represents an important first step to further study their function in male gamete physiology and to explore potential reasons for dysfunction in future studies. We also demonstrate that the application of NMR and MS provides complementary results, thus constituting a promising strategy towards the completion of the human sperm cell metabolome.

  18. Hydrogen-bonding and the dissolution mechanism of uracil in an acetate ionic liquid: new insights from NMR spectroscopy and quantum chemical calculations.

    PubMed

    Araújo, João M M; Pereiro, Ana B; Canongia Lopes, José N; Rebelo, Luís P N; Marrucho, Isabel M

    2013-04-18

    The dissolution of uracil-a pyrimidine nucleic acid base-in the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][CH3COO]) has been investigated by methods of (1)H and (13)C NMR spectroscopy, (1)H-(1)H NOESY NMR spectroscopy, and quantum chemical calculations. The uracil-[C2mim][CH3COO] interactions that define the dissolution mechanism comprise the hydrogen bonds between the oxygen atoms of the acetate anion and the hydrogen atoms of the N1-H and N3-H groups of uracil and also the hydrogen bonds between the most acidic aromatic hydrogen atom (H2) of the imidazolium cation and the oxygen atoms of the carbonyl groups of uracil. The bifunctional solvation nature of the ionic liquid can be inferred from the presence of interactions between both ions of the ionic liquid and the uracil molecule. The location of such interaction sites was revealed using NMR data ((1)H and (13)C chemical shifts both in the IL and in the uracil molecule), complemented by DFT calculations. NOESY experiments provided additional evidence concerning the cation-uracil interactions.

  19. Remarks on thermalization in 2D CFT

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  20. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  1. (129)Xe NMR of Mesoporous Silicas

    SciTech Connect

    Anderson, M.T.; Asink, R.A.; Kneller, J.M.; Pietrass, T.

    1999-04-23

    The porosities of three mesoporous silica materials were characterized with {sup 129}Xe NMR spectroscopy. The materials were synthesized by a sol-gel process with r = 0, 25, and 70% methanol by weight in an aqueous cetyltrimethylammonium bromide solution. Temperature dependent chemical shifts and spin lattice relaxation times reveal that xenon does not penetrate the pores of the largely disordered (r= 70%) silica. For both r = 0 and 25%, temperature dependent resonances corresponding to physisorbed xenon were observed. An additional resonance for the r = 25% sample was attributed to xenon between the disordered cylindrical pores. 2D NMR exchange experiments corroborate the spin lattice relaxation data which show that xenon is in rapid exchange between the adsorbed and the gas phase.

  2. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  3. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    PubMed Central

    Huang, Yuanpeng Janet; Mao, Binchen; Xu, Fei; Montelione, Gaetano

    2016-01-01

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD-NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases 15N-1H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD-NMR data. These algorithmic improvements include 1) using a global metric of structural accuracy, the Discriminating Power (DP) score, for guiding model selection during the iterative NOE interpretation process, and 2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta. PMID:26081575

  4. High-resolution proton-detected NMR of proteins at very fast MAS

    NASA Astrophysics Data System (ADS)

    Andreas, Loren B.; Le Marchand, Tanguy; Jaudzems, Kristaps; Pintacuda, Guido

    2015-04-01

    When combined with high-frequency (currently ∼60 kHz) magic-angle spinning (MAS), proton detection boosts sensitivity and increases coherence lifetimes, resulting in narrow 1H lines. Herein, we review methods for efficient proton detected techniques and applications in highly deuterated proteins, with an emphasis on 100% selected 1H site concentration for the purpose of sensitivity. We discuss the factors affecting resolution and sensitivity that have resulted in higher and higher frequency MAS. Next we describe the various methods that have been used for backbone and side-chain assignment with proton detection, highlighting the efficient use of scalar-based 13C-13C transfers. Additionally, we show new spectra making use of these schemes for side-chain assignment of methyl 13C-1H resonances. The rapid acquisition of resolved 2D spectra with proton detection allows efficient measurement of relaxation parameters used as a measure of dynamic processes. Under rapid MAS, relaxation times can be measured in a site-specific manner in medium-sized proteins, enabling the investigation of molecular motions at high resolution. Additionally, we discuss methods for measurement of structural parameters, including measurement of internuclear 1H-1H contacts and the use of paramagnetic effects in the determination of global structure.

  5. High-resolution proton-detected NMR of proteins at very fast MAS.

    PubMed

    Andreas, Loren B; Le Marchand, Tanguy; Jaudzems, Kristaps; Pintacuda, Guido

    2015-04-01

    When combined with high-frequency (currently ∼60 kHz) magic-angle spinning (MAS), proton detection boosts sensitivity and increases coherence lifetimes, resulting in narrow ((1))H lines. Herein, we review methods for efficient proton detected techniques and applications in highly deuterated proteins, with an emphasis on 100% selected ((1))H site concentration for the purpose of sensitivity. We discuss the factors affecting resolution and sensitivity that have resulted in higher and higher frequency MAS. Next we describe the various methods that have been used for backbone and side-chain assignment with proton detection, highlighting the efficient use of scalar-based ((13))C-((13))C transfers. Additionally, we show new spectra making use of these schemes for side-chain assignment of methyl ((13))C-((1))H resonances. The rapid acquisition of resolved 2D spectra with proton detection allows efficient measurement of relaxation parameters used as a measure of dynamic processes. Under rapid MAS, relaxation times can be measured in a site-specific manner in medium-sized proteins, enabling the investigation of molecular motions at high resolution. Additionally, we discuss methods for measurement of structural parameters, including measurement of internuclear ((1))H-((1))H contacts and the use of paramagnetic effects in the determination of global structure.

  6. Transition to turbulence: 2D directed percolation

    NASA Astrophysics Data System (ADS)

    Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight

    2016-11-01

    The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.

  7. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  8. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.

  9. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  10. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  11. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  12. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  13. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  14. Enhancing NMR of insensitive nuclei by transfer of SABRE spin hyperpolarization

    NASA Astrophysics Data System (ADS)

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L.

    2016-09-01

    We describe the performance of methods for enhancing NMR (Nuclear Magnetic Resonance) signals of "insensitive", but important NMR nuclei, which are based on the SABRE (Signal Amplification By Reversible Exchange) technique, i.e., on spin order transfer from parahydrogen (H2 molecule in its nuclear singlet spin state) to a substrate in a transient organometallic complex. Here such transfer is performed at high magnetic fields by INEPT-type NMR pulse sequences, modified for SABRE. Signal enhancements up to three orders of magnitude are obtained for 15N nuclei; the possibility of sensitive detection of 2D-NMR 1H-15N spectra of SABRE complexes and substrates is demonstrated.

  15. Direct Self-Assembly of a 2D and 3D Star of David.

    PubMed

    Song, Bo; Zhang, Zhe; Wang, Kun; Hsu, Chih-Hao; Bolarinwa, Olapeju; Wang, Jing; Li, Yiming; Yin, Guang-Qiang; Rivera, Edwin; Yang, Hai-Bo; Liu, Changlin; Xu, Bingqian; Li, Xiaopeng

    2017-04-06

    Two- and three-dimensional metallosupramolecules shaped like a Star of David were synthesized by the self-assembly of a tetratopic pyridyl ligand with a 180° diplatinum(II) motif and Pd(II) ions, respectively. In contrast to other strategies, such as template-directed synthesis and stepwise self-assembly, this design enables the formation of 2D and 3D structures in one step and high yield. The structures were characterized by both one-dimensional ((1) H, (13) C, (31) P) and two-dimensional (COSY, NOESY, DOSY) NMR spectroscopy, ESI-MS, ion-mobility mass spectrometry (IM-MS), AFM, and TEM. The stabilities of the 2D and 3D structures were measured and compared by gradient tandem mass spectrometry (gMS(2) ). The high stability of the 3D Star of David was correlated to its high density of coordination sites (DOCS).

  16. NMR data visualization, processing, and analysis on mobile devices.

    PubMed

    Cobas, Carlos; Iglesias, Isaac; Seoane, Felipe

    2015-08-01

    Touch-screen computers are emerging as a popular platform for many applications, including those in chemistry and analytical sciences. In this work, we present our implementation of a new NMR 'app' designed for hand-held and portable touch-controlled devices, such as smartphones and tablets. It features a flexible architecture formed by a powerful NMR processing and analysis kernel and an intuitive user interface that makes full use of the smart devices haptic capabilities. Routine 1D and 2D NMR spectra acquired in most NMR instruments can be processed in a fully unattended way. More advanced experiments such as non-uniform sampled NMR spectra are also supported through a very efficient parallelized Modified Iterative Soft Thresholding algorithm. Specific technical development features as well as the overall feasibility of using NMR software apps will also be discussed. All aspects considered the functionalities of the app allowing it to work as a stand-alone tool or as a 'companion' to more advanced desktop applications such as Mnova NMR.

  17. Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy

    ERIC Educational Resources Information Center

    Ruhayel, Rasha A.; Berners-Price, Susan J.

    2010-01-01

    2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…

  18. Persistence Measures for 2d Soap Froth

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Ruskin, H. J.; Zhu, B.

    Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.

  19. SEM signal emulation for 2D patterns

    NASA Astrophysics Data System (ADS)

    Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya

    2016-03-01

    The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.

  20. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  1. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  2. Flavonoids from Curcuma longa leaves and their NMR assignments.

    PubMed

    Jiang, Chia-Ling; Tsai, Sheng-Fa; Lee, Shoei-Sheng

    2015-01-01

    Chemical investigation of the n-BuOH-soluble fraction of the EtOH extract of the aerial part of Curcuma longa led to the isolation of 11 flavonol glycosides and one dihydroflavonol glucoside (1) via chromatography over Sephadex LH-20 and Lobar RP-18 columns. Although they are known, the 1H and 13C NMR data recorded in CD3OD rather than the common DMSO-d6 are doubly checked via extensive 2D NMR spectroscopic analyses, leading to some revisions of the reported data, especially for the glycon part.

  3. 2D discrete Fourier transform on sliding windows.

    PubMed

    Park, Chun-Su

    2015-03-01

    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

  4. Protein folding and unfolding studied at atomic resolution by fast two-dimensional NMR spectroscopy.

    PubMed

    Schanda, Paul; Forge, Vincent; Brutscher, Bernhard

    2007-07-03

    Atom-resolved real-time studies of kinetic processes in proteins have been hampered in the past by the lack of experimental techniques that yield sufficient temporal and atomic resolution. Here we present band-selective optimized flip-angle short transient (SOFAST) real-time 2D NMR spectroscopy, a method that allows simultaneous observation of reaction kinetics for a large number of nuclear sites along the polypeptide chain of a protein with an unprecedented time resolution of a few seconds. SOFAST real-time 2D NMR spectroscopy combines fast NMR data acquisition techniques with rapid sample mixing inside the NMR magnet to initiate the kinetic event. We demonstrate the use of SOFAST real-time 2D NMR to monitor the conformational transition of alpha-lactalbumin from a molten globular to the native state for a large number of amide sites along the polypeptide chain. The kinetic behavior observed for the disappearance of the molten globule and the appearance of the native state is monoexponential and uniform along the polypeptide chain. This observation confirms previous findings that a single transition state ensemble controls folding of alpha-lactalbumin from the molten globule to the native state. In a second application, the spontaneous unfolding of native ubiquitin under nondenaturing conditions is characterized by amide hydrogen exchange rate constants measured at high pH by using SOFAST real-time 2D NMR. Our data reveal that ubiquitin unfolds in a gradual manner with distinct unfolding regimes.

  5. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1989-03-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  6. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1988-08-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  7. NMR ANALYSIS OF MALE FATHEAD MINNOW URINARY METABOLITES: A POTENTIAL APPROACH FOR STUDYING IMPACTS OF CHEMICAL EXPOSURES

    EPA Science Inventory

    The potential for profiling endogenous metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one dimensional (1D) and two dimensional (2D) NMR spectroscopy w...

  8. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  9. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  10. NIKE2D96. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Raboin, P.; Engelmann, B.; Halquist, J.O.

    1992-01-24

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  11. 2D Larkin-Imry-Ma state of deformed ABM phase of superfluid 3He in ``ordered'' aerogel

    NASA Astrophysics Data System (ADS)

    Dmitriev, Vladimir; Senin, Andrey; Yudin, Alexey

    2014-03-01

    We report NMR studies of high temperature superfluid phase of 3He in so called ``ordered'' aerogel1 which strands are almost parallel to each other. Previously, it was found that the NMR properties of this phase depend on whether it is obtained on cooling from the normal phase or on warming from the low temperature phase2. These two types of high temperature phase (called as ESP1 and ESP2) correspond to Anderson-Brinkman-Morel (ABM) phase with large polar distortion and with orbital vector being in 2D Larkin-Imry-Ma (LIM) state. Here we present results which show that the observed difference in NMR signatures of the ESP1 and the ESP2 states is due to that the corresponding 2D LIM states can be anisotropic. In the ESP1 phase the anisotropy is absent or small, while in the ESP2 phase the anisotropy is large. NMR data have allowed us to estimate values of these anisotropies.

  12. Optimizing Adiabaticity in NMR

    NASA Astrophysics Data System (ADS)

    Vandermause, Jonathan; Ramanathan, Chandrasekhar

    We demonstrate the utility of Berry's superadiabatic formalism for numerically finding control sequences that implement quasi-adiabatic unitary transformations. Using an iterative interaction picture, we design a shortcut to adiabaticity that reduces the time required to perform an adiabatic inversion pulse in liquid state NMR. We also show that it is possible to extend our scheme to two or more qubits to find adiabatic quantum transformations that are allowed by the control algebra, and demonstrate a two-qubit entangling operation in liquid state NMR. We examine the pulse lengths at which the fidelity of these adiabatic transitions break down and compare with the quantum speed limit.

  13. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    NASA Astrophysics Data System (ADS)

    Ahola, Susanna; Zhivonitko, Vladimir V.; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-09-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

  14. The use of a selective saturation pulse to suppress t1 noise in two-dimensional 1H fast magic angle spinning solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Robertson, Aiden J.; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P.

    2015-11-01

    A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+ kHz) suppresses t1 noise in the indirect dimension of two-dimensional 1H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl 1H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion - this is quantified by comparing two-dimensional 1H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear 1H-1H double quantum (DQ)/single quantum (SQ) MAS and 14N-1H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments.

  15. The use of a selective saturation pulse to suppress t1 noise in two-dimensional (1)H fast magic angle spinning solid-state NMR spectroscopy.

    PubMed

    Robertson, Aiden J; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P

    2015-11-01

    A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+kHz) suppresses t1 noise in the indirect dimension of two-dimensional (1)H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl (1)H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion--this is quantified by comparing two-dimensional (1)H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear (1)H-(1)H double quantum (DQ)/single quantum (SQ) MAS and (14)N-(1)H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments.

  16. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  17. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  18. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  19. Autonomous driving in NMR.

    PubMed

    Perez, Manuel

    2017-01-01

    The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Fabrication of 2D nanosheet through self assembly behavior of sulfamethoxypyridazine inclusion complexes with α- and β-cyclodextrins.

    PubMed

    Rajendiran, N; Venkatesh, G; Mohandass, T

    2014-04-05

    A 2D nanosheet was fabricated through the supramolecular self assembly of sulfamethoxypyridazine (SMP) and β-cyclodextrin (β-CD) inclusion complexes. HRTEM image exhibited 2D nanosheet morphology with a length of 1200mm and the sheet thickness of 60mm. It is noted that the nanosheet did not form a single layer aggregation but a bulk aggregation of SMP/β-CD inclusion complex. The formation of this multilayer 2D nanosheet based on the self assembly of SMP/β-CD inclusion complexes is proposed by the topological transformation as well as molecular modeling calculations. But, nanorods are formed in SMP/α-CD inclusion complex indicated that the nature of the CD determined the shape of the self assembled supramolecular architecture. The formation of nanomaterial was characterized by using FT-IR, DSC, PXRD, (1)H NMR, absorption, fluorescence and lifetime measurements.

  1. Two dimensional NMR spectroscopic approaches for exploring plant metabolome: A review

    PubMed Central

    Mahrous, Engy A.; Farag, Mohamed A.

    2014-01-01

    Today, most investigations of the plant metabolome tend to be based on either nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry (MS), with or without hyphenation with chromatography. Although less sensitive than MS, NMR provides a powerful complementary technique for the identification and quantification of metabolites in plant extracts. NMR spectroscopy, well appreciated by phytochemists as a particularly information-rich method, showed recent paradigm shift for the improving of metabolome(s) structural and functional characterization and for advancing the understanding of many biological processes. Furthermore, two dimensional NMR (2D NMR) experiments and the use of chemometric data analysis of NMR spectra have proven highly effective at identifying novel and known metabolites that correlate with changes in genotype or phenotype. In this review, we provide an overview of the development of NMR in the field of metabolomics with special focus on 2D NMR spectroscopic techniques and their applications in phytomedicines quality control analysis and drug discovery from natural sources, raising more attention at its potential to reduce the gap between the pace of natural products research and modern drug discovery demand. PMID:25685540

  2. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  3. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  4. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    NASA Astrophysics Data System (ADS)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  5. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics.

    PubMed

    Potter, Brittney M J; Xie, Lisa H; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T; Bandara Herath, H M T; Dhammika Nanayakkara, N P; Tekwani, Babu L; Walker, Larry A; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Marcsisin, Sean R

    2015-04-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.

  6. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  7. T2-Filtered T2 - T2 Exchange NMR

    NASA Astrophysics Data System (ADS)

    d'Eurydice, Marcel Nogueira; Montrazi, Elton Tadeu; Fortulan, Carlos Alberto; Bonagamba, Tito José

    2016-05-01

    This work introduces an alternative way to perform the T2 - T2 Exchange NMR experiment. Rather than varying the number of π pulses in the first CPMG cycle of the T2 - T2 Exchange NMR pulse sequence, as used to obtain the 2D correlation maps, it is fixed and small enough to act as a short T2-filter. By varying the storage time, a set of 1D measurements of T2 distributions can be obtained to reveal the effects of the migration dynamics combined with relaxation effects. This significantly reduces the required time to perform the experiment, allowing a more in-depth study of exchange dynamics and relaxation processes with improved signal-to-noise ratio. These aspects stand as basis of this novel experiment, T2-Filtered T2 - T2 Exchange NMR or simply T2 F-TREx.

  8. The 2DX robot: a membrane protein 2D crystallization Swiss Army knife.

    PubMed

    Iacovache, Ioan; Biasini, Marco; Kowal, Julia; Kukulski, Wanda; Chami, Mohamed; van der Goot, F Gisou; Engel, Andreas; Rémigy, Hervé-W

    2010-03-01

    Among the state-of-the-art techniques that provide experimental information at atomic scale for membrane proteins, electron crystallography, atomic force microscopy and solid state NMR make use of two-dimensional crystals. We present a cyclodextrin-driven method for detergent removal implemented in a fully automated robot. The kinetics of the reconstitution processes is precisely controlled, because the detergent complexation by cyclodextrin is of stoichiometric nature. The method requires smaller volumes and lower protein concentrations than established 2D crystallization methods, making it possible to explore more conditions with the same amount of protein. The method yielded highly ordered 2D crystals diffracting to high resolution from the pore-forming toxin Aeromonas hydrophila aerolysin (2.9A), the plant aquaporin SoPIP2;1 (3.1A) and the human aquaporin-8 (hAQP8; 3.3A). This new method outperforms traditional 2D crystallization approaches in terms of accuracy, flexibility, throughput, and allows the usage of detergents having low critical micelle concentration (CMC), which stabilize the structure of membrane proteins in solution.

  9. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    PubMed Central

    Swisher, Christine Leon; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-01-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate–lactate, pyruvate–alanine, and pyruvate–hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines. PMID:26117655

  10. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Leon Swisher, Christine; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-08-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.

  11. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  12. TLC and 31P-NMR analysis of low polarity phospholipids.

    PubMed

    Vyssotski, Mikhail; MacKenzie, Andrew; Scott, Dawn

    2009-04-01

    High-performance TLC and (31)P-NMR were assessed as methods of observing the presence of numerous low polarity phospholipids: bis-phosphatidic acid (BPA), semi-lyso bis-phosphatidic acid (SLBPA), N-acyl phosphatidylethanolamine (NAPE), N-(1,1-dimethyl-3-oxo-butyl)-phosphatidylethanolamine (diacetone adduct of PE, DOBPE), N-acetyl PE, phosphatidylmethanol (PM), phosphatidylethanol (PEt), phosphatidyl-n-propanol (PP), phosphatidyl-n-butanol (PB). Both techniques are non-discriminative and do not require the prior isolation of individual lipids. It appears that 2D TLC is superior to (31)P NMR in the analysis of low polarity phospholipids. All phosphatidylalcohols were well separated by 2D TLC. However, some compounds which can present difficulty in separation by 2D-TLC (e.g., SLBPA and NAPE; or DOBPE and N-acetyl PE) were easily distinguished using (31)P NMR so the methods are complimentary. A disadvantage of 2D TLC is that Rf values can vary with different brands and batches of TLC plates. The chemical shifts of (31)P NMR were less variable, and so a library of standards may not be necessary for peak identification. Another advantage of (31)P NMR is the ease of quantification of phospholipids. The applicability of the methods was tested on natural extracts of fish brain and cabbage stem.

  13. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  14. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  15. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  16. β-NMR

    NASA Astrophysics Data System (ADS)

    Morris, Gerald D.

    2014-01-01

    The β-NMR facility at ISAC is constructed specifically for experiments in condensed matter physics with radioactive ion beams. Using co-linear optical pumping, a 8Li + ion beam having a large nuclear spin polarisation and low energy (nominally 30 keV) can be generated. When implanted into materials these ions penetrate to shallow depths comparable to length scales of interest in the physics of surfaces and interfaces between materials. Such low-energy ions can be decelerated with simple electrostatic optics to enable depth-resolved studies of near-surface phenomena over the range of about 2-200 nm. Since the β-NMR signal is extracted from the asymmetry intrinsic to beta-decay and therefore monitors the polarisation of the radioactive probe nuclear magnetic moments, this technique is fundamentally a probe of local magnetism. More generally though, any phenomena which affects the polarisation of the implanted spins by, for example, a change in resonance frequency, line width or relaxation rate can be studied. The β-NMR program at ISAC currently supports a number of experiments in magnetism and superconductivity as well as novel ultra-thin heterostructures exhibiting properties that cannot occur in bulk materials. The general purpose zero/low field and high field spectrometers are configured to perform CW and pulsed RF nuclear magnetic resonance and spin relaxation experiments over a range of temperatures (3-300 K) and magnetic fields (0-9 T).

  17. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-07

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs.

  18. Structural determination of two new steroidal saponins from Smilax china.

    PubMed

    Huang, Hui-Lian; Liu, Rong-Hua; Shao, Feng

    2009-09-01

    Two new steroidal saponins (1 and 2) were isolated from the BuOH fraction of the 70% EtOH extract of the tubes of Smilax china, together with four known analogues, 3-6. The structures of the new compounds were elucidated by means of chemical evidence and spectroscopic analyses, including HR-MS, IR, (1)H- and (13)C-NMR, and 2D experiments ((1)H-(1)H COSY, HSQC and HMBC).

  19. A new lyoniresinol derivative from Smilax microphylla.

    PubMed

    Liu, Li-Sha; Huang, Hui-Lian; Liu, Rong-Hua; Ren, Gang; Shao, Feng; Ye, Yao-Hui; Lin, Tao

    2013-01-01

    A new lignan, lyoniresinol-9-O-8"-syringylglycerol ether (1), together with five known compounds, piceatannol (2), resveratrol (3), oxyresveratrol (4), quercetin-3'-glucoside (5) and diosgenin (6) were isolated from the rhizomes of Smilax microphylla. The structure of the new compound was determined by means of chemical evidence and 1D-and 2D-NMR (1H, 13C, HSQC, HMBC, 1H-1H COSY and NOESY) spectroscopic analysis and HR-ESI-MS.

  20. The calyxolanes: new 1,3-diphenylbutanoid metabolites isolated from the Caribbean marine sponge Calyx podatypa.

    PubMed

    Rodríguez, A D; Cóbar, O M; Padilla, O L

    1997-09-01

    Calyxolanes A (1) and B (2) are rare 1,3-diphenylbutanoid compounds isolated from the marine sponge Calyx podatypa collected in Puerto Rico. Their structures, including relative stereochemistry, have been determined by spectroscopic methods. The unique 2,4-diphenyloxolane function in 1 and 2 was established by 2D 1H-1H and 1H-13C NMR correlation experiments and confirmed by mass spectral analysis. A suggestion is made as to their biogenetic origin.

  1. Circular photogalvanic effect caused by the transitions between edge and 2D states in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Magarill, L. I.; Entin, M. V.

    2016-12-01

    The electron absorption and the edge photocurrent of a 2D topological insulator are studied for transitions between edge states to 2D states. The circular polarized light is found to produce the edge photocurrent, the direction of which is determined by light polarization and edge orientation. It is shown that the edge-state current is found to exceed the 2D current owing to the topological protection of the edge states.

  2. Access to experimentally infeasible spectra by pure-shift NMR covariance

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments.

  3. NMR Methods, Applications and Trends for Groundwater Evaluation and Management

    NASA Astrophysics Data System (ADS)

    Walsh, D. O.; Grunewald, E. D.

    2011-12-01

    Nuclear magnetic resonance (NMR) measurements have a tremendous potential for improving groundwater characterization, as they provide direct detection and measurement of groundwater and unique information about pore-scale properties. NMR measurements, commonly used in chemistry and medicine, are utilized in geophysical investigations through non-invasive surface NMR (SNMR) or downhole NMR logging measurements. Our recent and ongoing research has focused on improving the performance and interpretation of NMR field measurements for groundwater characterization. Engineering advancements have addressed several key technical challenges associated with SNMR measurements. Susceptibility of SNMR measurements to environmental noise has been dramatically reduced through the development of multi-channel acquisition hardware and noise-cancellation software. Multi-channel instrumentation (up to 12 channels) has also enabled more efficient 2D and 3D imaging. Previous limitations in measuring NMR signals from water in silt, clay and magnetic geology have been addressed by shortening the instrument dead-time from 40 ms to 4 ms, and increasing the power output. Improved pulse sequences have been developed to more accurately estimate NMR relaxation times and their distributions, which are sensitive to pore size distributions. Cumulatively, these advancements have vastly expanded the range of environments in which SNMR measurements can be obtained, enabling detection of groundwater in smaller pores, in magnetic geology, in the unsaturated zone, and nearby to infrastructure (presented here in case studies). NMR logging can provide high-resolution estimates of bound and mobile water content and pore size distributions. While NMR logging has been utilized in oil and gas applications for decades, its use in groundwater investigations has been limited by the large size and high cost of oilfield NMR logging tools and services. Recently, engineering efforts funded by the US Department of

  4. Energy Efficiency of D2D Multi-User Cooperation.

    PubMed

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-03-28

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  5. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  6. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  7. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  8. Diffusion measurements by microscopic NMR imaging

    NASA Astrophysics Data System (ADS)

    Meyer, Ronald A.; Brown, Truman R.

    Proton NMR images of the brains of living mice with voxel sizes as small as 80 × 80 × 500 μm were acquired at 9.3 T by the 2D FT spin-echo method. Using gradients of 3.75 G/cm, images with pixel dimensions below 50 μm were of low sensitivity because of degradation of the echo due to diffusion and flow. In the absence of bulk flow, this decrease in image intensity as image pixel size is decreased can be used to measure the local self-diffusion coefficient of water ( DH 2O ) in small samples. By this method, DH 2O at 22°C was estimated to be 2.59, 2.13, 1.59, and 0.84 × 10 -5 cm 2/s in pure water, 10% gelatin, mouse skeletal muscle, and rat liver, respectively.

  9. NMR-based analysis of the chemical composition of Japanese persimmon aqueous extracts.

    PubMed

    Ryu, Shoraku; Furihata, Kazuo; Koda, Masanori; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru

    2016-03-01

    Japanese persimmon (Diospyros kaki L.) is recognized as an outstanding source of biologically active compounds relating to many health benefits. In the present study, NMR spectroscopy provided a comprehensive metabolic overview of Japanese persimmon juice. Detailed signal assignments of Japanese persimmon juice were carried out using various 2D NMR techniques incorporated with broadband water suppression enhanced through T1 effects (BB-WET) or WET sequences, and 26 components, including minor components, were identified. In addition, most components were quantitatively evaluated by the integration of signals using conventional (1) H NMR and BB-WET NMR. This is the first detailed analysis combined with quantitative characterization of chemical components using NMR for Japanese persimmon. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Digital NMR profiles as building blocks: assembling ¹H fingerprints of steviol glycosides.

    PubMed

    Napolitano, José G; Simmler, Charlotte; McAlpine, James B; Lankin, David C; Chen, Shao-Nong; Pauli, Guido F

    2015-04-24

    This report describes a fragment-based approach to the examination of congeneric organic compounds by NMR spectroscopy. The method combines the classic interpretation of 1D- and 2D-NMR data sets with contemporary computer-assisted NMR analysis. Characteristic NMR profiles of key structural motifs were generated by (1)H iterative full spin analysis and then joined together as building blocks to recreate the (1)H NMR spectra of increasingly complex molecules. To illustrate the methodology described, a comprehensive analysis of steviol (1), seven steviol glycosides (2-8) and two structurally related isosteviol compounds (9, 10) was carried out. The study also assessed the potential impact of this method on relevant aspects of natural product research including structural verification, chemical dereplication, and mixture analysis.

  11. Digital NMR Profiles as Building Blocks: Assembling 1H Fingerprints of Steviol Glycosides

    PubMed Central

    Napolitano, José G.; Simmler, Charlotte; McAlpine, James B.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2015-01-01

    This report describes a fragment-based approach to the examination of congeneric organic compounds by NMR spectroscopy. The method combines the classic interpretation of 1D- and 2D-NMR data sets with contemporary computer-assisted NMR analysis. Characteristic NMR profiles of key structural motifs were generated by 1H iterative full spin analysis and then joined together as building blocks to recreate the 1H NMR spectra of increasingly complex molecules. To illustrate the methodology described, a comprehensive analysis of steviol (1), seven steviol glycosides (2–8) and two structurally related isosteviol compounds (9, 10) was carried out. The study also assessed the potential impact of this method on relevant aspects of natural product research including structural verification, chemical dereplication, and mixture analysis. PMID:25714117

  12. Regulation of ligands for the NKG2D activating receptor

    PubMed Central

    Raulet, David H.; Gasser, Stephan; Gowen, Benjamin G.; Deng, Weiwen; Jung, Heiyoun

    2014-01-01

    NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection. PMID:23298206

  13. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  14. New generation transistor technologies enabled by 2D crystals

    NASA Astrophysics Data System (ADS)

    Jena, D.

    2013-05-01

    The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.

  15. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice.

    PubMed

    Pan, Xian; Jeong, Hyunyoung

    2015-07-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼ 50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter.

  16. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-04

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  17. Magic Angle Spinning NMR Metabolomics

    SciTech Connect

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  18. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  19. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    PubMed

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd.

  20. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  1. NKG2D Receptor and Its Ligands in Host Defense.

    PubMed

    Lanier, Lewis L

    2015-06-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.

  2. 2-D Versus 3-D Magnetotelluric Data Interpretation

    NASA Astrophysics Data System (ADS)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  3. 1H and 13C NMR signal assignment of cucurbitacin derivatives from Citrullus colocynthis (L.) Schrader and Ecballium elaterium L. (Cucurbitaceae).

    PubMed

    Seger, Christoph; Sturm, Sonja; Mair, Maria-Elisabeth; Ellmerer, Ernst P; Stuppner, Hermann

    2005-06-01

    2D NMR-derived 1H and 13C NMR signal assignments of six structurally closely related cucurbitacin derivatives are presented. The investigated 2-O-beta-D-glucopyranosylcucurbitacins I, J, K, and L were obtained from Citrullus colocynthis (L.) Schrader whereas the aglyca cucurbitacin E and I were isolated from Ecballium elaterium L.

  4. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-07

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  5. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  6. Identification, isolation and characterization of a new degradation product in sultamicillin drug substance.

    PubMed

    Kumar, Vundavilli Jagadeesh; Gupta, P Badarinadh; Kumar, K S R Pavan; Ray, Uttam Kumar; Sreenivasulu, B; Kumar, G S Siva; Rao, K Ranga; Sharma, Hemant Kumar; Mukkanti, K

    2011-02-20

    A new degradant of sultamicillin drug substance was found during the gradient reverse phase HPLC analysis of stability storage samples. The level of this degradant impurity was observed up to 1.0%. The impurity (formaldehyde adduct with 5-oxo-4-phenylimidazolidin-1-yl moiety) was identified by LC/MS and was characterized by ((1)H NMR, (13)C NMR, 2D-NMR ((1)H-(1)H COSY, NOESY, HSQC and HMBC), LC/MS/MS, MS/TOF, elemental analysis and IR. This impurity was prepared by isolation and co-injected into HPLC system to confirm the retention time.

  7. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  8. Recovering 3D particle size distributions from 2D sections

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Olson, Daniel M.

    2017-03-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.

  9. Phonon thermal conduction in novel 2D materials

    NASA Astrophysics Data System (ADS)

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-01

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  10. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  11. Phonon thermal conduction in novel 2D materials.

    PubMed

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-07

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  12. Exact Solution of Ising Model in 2d Shortcut Network

    NASA Astrophysics Data System (ADS)

    Shanker, O.

    We give the exact solution to the Ising model in the shortcut network in the 2D limit. The solution is found by mapping the model to the square lattice model with Brascamp and Kunz boundary conditions.

  13. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  14. Reconstruction-based 3D/2D image registration.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).

  15. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-09

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  16. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  17. Studying Zeolite Catalysts with a 2D Model System

    SciTech Connect

    Boscoboinik, Anibal

    2016-12-07

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  18. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  19. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  20. NMR metabolic fingerprints of murine melanocyte and melanoma cell lines: application to biomarker discovery.

    PubMed

    Santana-Filho, Arquimedes Paixão de; Jacomasso, Thiago; Riter, Daniel Suss; Barison, Andersson; Iacomini, Marcello; Winnischofer, Sheila Maria Brochado; Sassaki, Guilherme Lanzi

    2017-02-15

    Melanoma is the most aggressive type of skin cancer and efforts to improve the diagnosis of this neoplasia are largely based on the use of cell lines. Metabolomics is currently undergoing great advancements towards its use to screening for disease biomarkers. Although NMR metabolomics includes both 1D and 2D methodologies, there is a lack of data in the literature regarding heteronuclear 2D NMR assignments of the metabolome from eukaryotic cell lines. The present study applied NMR-based metabolomics strategies to characterize aqueous and lipid extracts from murine melanocytes and melanoma cell lines with distinct tumorigenic potential, successfully obtaining fingerprints of the metabolites from the extracts of the cell lines by means of 2D NMR HSQC correlation maps. Relative amounts of the identified metabolites were compared between the 4 cell lines. Multivariate analysis of (1)H NMR data was able not only to differentiate the melanocyte cell line from the tumorigenic ones but also distinguish among the 3 tumorigenic cell lines. We also investigated the effects of mitogenic agents, and found that they can markedly influence the metabolome of the melanocyte cell line, resembling the pattern of most proliferative cell lines.

  1. NMR metabolic fingerprints of murine melanocyte and melanoma cell lines: application to biomarker discovery

    PubMed Central

    Santana-Filho, Arquimedes Paixão de; Jacomasso, Thiago; Riter, Daniel Suss; Barison, Andersson; Iacomini, Marcello; Winnischofer, Sheila Maria Brochado; Sassaki, Guilherme Lanzi

    2017-01-01

    Melanoma is the most aggressive type of skin cancer and efforts to improve the diagnosis of this neoplasia are largely based on the use of cell lines. Metabolomics is currently undergoing great advancements towards its use to screening for disease biomarkers. Although NMR metabolomics includes both 1D and 2D methodologies, there is a lack of data in the literature regarding heteronuclear 2D NMR assignments of the metabolome from eukaryotic cell lines. The present study applied NMR-based metabolomics strategies to characterize aqueous and lipid extracts from murine melanocytes and melanoma cell lines with distinct tumorigenic potential, successfully obtaining fingerprints of the metabolites from the extracts of the cell lines by means of 2D NMR HSQC correlation maps. Relative amounts of the identified metabolites were compared between the 4 cell lines. Multivariate analysis of 1H NMR data was able not only to differentiate the melanocyte cell line from the tumorigenic ones but also distinguish among the 3 tumorigenic cell lines. We also investigated the effects of mitogenic agents, and found that they can markedly influence the metabolome of the melanocyte cell line, resembling the pattern of most proliferative cell lines. PMID:28198377

  2. Structure elucidation and NMR assignments of two unusual monoterpene indole alkaloids from Psychotria stachyoides.

    PubMed

    Pimenta, Antonia Torres Avila; Braz-Filho, Raimundo; Delprete, Piero Giuseppe; de Souza, Elnatan Bezerra; Silveira, Edilberto Rocha; Lima, Mary Anne Sousa

    2010-09-01

    Two unusual monoterpene indole alkaloids, stachyoside (1) and nor-methyl-23-oxo-correantoside (2), have been isolated from the aerial parts of Psychotria stachyoides. The structural elucidation of both compounds was performed by the aid of HRESIMS, FT-IR, and 1D- and 2D-NMR techniques including COSY, HSQC, HMBC, and NOESY.

  3. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  4. RNA folding pathways and kinetics using 2D energy landscapes.

    PubMed

    Senter, Evan; Dotu, Ivan; Clote, Peter

    2015-01-01

    RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.

  5. Supported and Free-Standing 2D Semimetals

    DTIC Science & Technology

    2015-01-15

    of this effort on focusing on rare- earth arsenides (RE-A), although not a van der Waals 2D solid, nonetheless, exhibits substantial 2D quantum size...this effort on focusing on rare- earth arsenides (RE- A), although not a van der Waals 20 solid, nonetheless, exhibits substantial 20 quantum size...Brongersma and S.R. Bank, "Rare- earth monopnictide alloys for tunable, epitaxial metals" in preparation. iii. S. Rahimi, E. M. Krivoy, J. Lee, M. E

  6. Application of 2-D graphical representation of DNA sequence

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Tan, Mingshu; Ding, Kequan

    2005-10-01

    Recently, we proposed a 2-D graphical representation of DNA sequence [Bo Liao, A 2-D graphical representation of DNA sequence, Chem. Phys. Lett. 401 (2005) 196-199]. Based on this representation, we consider properties of mutations and compute the similarities among 11 mitochondrial sequences belonging to different species. The elements of the similarity matrix are used to construct phylogenic tree. Unlike most existing phylogeny construction methods, the proposed method does not require multiple alignment.

  7. phase_space_cosmo_fisher: Fisher matrix 2D contours

    NASA Astrophysics Data System (ADS)

    Stark, Alejo

    2016-11-01

    phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.

  8. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  9. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  10. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  11. Regulation of NKG2D ligand gene expression.

    PubMed

    Eagle, Robert A; Traherne, James A; Ashiru, Omodele; Wills, Mark R; Trowsdale, John

    2006-03-01

    The activating immunoreceptor NKG2D has seven known host ligands encoded by the MHC class I chain-related MIC and ULBP/RAET genes. Why there is such diversity of NKG2D ligands is not known but one hypothesis is that they are differentially expressed in different tissues in response to different stresses. To explore this, we compared expression patterns and promoters of NKG2D ligand genes. ULBP/RAET genes were transcribed independent of each other in a panel of cell lines. ULBP/RAET gene expression was upregulated on infection with human cytomegalovirus; however, a clinical strain, Toledo, induced expression more slowly than did a laboratory strain, AD169. ULBP4/RAET1E was not induced by infection with either strain. To investigate the mechanisms behind the similarities and differences in NKG2D ligand gene expression a comparative sequence analysis of NKG2D ligand gene putative promoter regions was conducted. Sequence alignments demonstrated that there was significant sequence diversity; however, one region of high similarity between most of the genes is evident. This region contains a number of potential transcription factor binding sites, including those involved in shock responses and sites for retinoic acid-induced factors. Promoters of some NKG2D ligand genes are polymorphic and several sequence alterations in these alleles abolished putative transcription factor binding.

  12. CYP2D6 variability in populations from Venezuela.

    PubMed

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  13. 2D microscopic model of graphene fracture properties

    NASA Astrophysics Data System (ADS)

    Hess, Peter

    2015-05-01

    An analytical two-dimensional (2D) microscopic fracture model based on Morse-type interaction is derived containing no adjustable parameter. From the 2D Young’s moduli and 2D intrinsic strengths of graphene measured by nanoindentation based on biaxial tension and calculated by density functional theory for uniaxial tension the widely unknown breaking force, line or edge energy, surface energy, fracture toughness, and strain energy release rate were determined. The simulated line energy agrees well with ab initio calculations and the fracture toughness of perfect graphene sheets is in good agreement with molecular dynamics simulations and the fracture toughness evaluated for defective graphene using the Griffith relation. Similarly, the estimated critical strain energy release rate agrees well with result of various theoretical approaches based on the J-integral and surface energy. The 2D microscopic model, connecting 2D and three-dimensional mechanical properties in a consistent way, provides a versatile relationship to easily access all relevant fracture properties of pristine 2D solids.

  14. Simultaneous measurement of J(HH) and two different (n)J(CH) coupling constants from a single multiply edited 2D cross-peak.

    PubMed

    Saurí, Josep; Parella, Teodor

    2013-07-01

    Three different J-editing methods (IPAP, E.COSY and J-resolved) are implemented in a single NMR experiment to provide spin-state-edited 2D cross-peaks from which a simultaneous measurement of different homonuclear and heteronuclear coupling constants can be performed. A new J-selHSQMBC-IPAP experiment is proposed for the independent measurement of two different (n)J(CH) coupling constants along the F2 and F1 dimensions of the same 2D cross-peak. In addition, the E.COSY pattern provides additional information about the magnitude and relative sign between J(HH) and (n)J(CH) coupling constants.

  15. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    SciTech Connect

    Zhang, Zhiyong; Cai, Shuhui; Zheng, Zhenyao; Lin, Yulan E-mail: lylfj2005@xmu.edu.cn; Chen, Zhong E-mail: lylfj2005@xmu.edu.cn; Smith, Pieter E. S.

    2015-12-28

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials’ structure and dynamics. Because 2D NMR relies on systematic changes in coherences’ phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, “ultrafast” NMR has been developed into an effective and widely applicable methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.

  16. 2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine.

    PubMed

    Khan, Aamar F; Brownson, Dale A C; Randviir, Edward P; Smith, Graham C; Banks, Craig E

    2016-10-04

    Crystalline 2D hexagonal boron nitride (2D-hBN) nanosheets are explored as a potential electrocatalyst toward the electroanalytical sensing of dopamine (DA). The 2D-hBN nanosheets are electrically wired via a drop-casting modification process onto a range of commercially available carbon supporting electrodes, including glassy carbon (GC), boron-doped diamond (BDD), and screen-printed graphitic electrodes (SPEs). 2D-hBN has not previously been explored toward the electrochemical detection/electrochemical sensing of DA. We critically evaluate the potential electrocatalytic performance of 2D-hBN modified electrodes, the effect of supporting carbon electrode platforms, and the effect of "mass coverage" (which is commonly neglected in the 2D material literature) toward the detection of DA. The response of 2D-hBN modified electrodes is found to be largely dependent upon the interaction between 2D-hBN and the underlying supporting electrode material. For example, in the case of SPEs, modification with 2D-hBN (324 ng) improves the electrochemical response, decreasing the electrochemical oxidation potential of DA by ∼90 mV compared to an unmodified SPE. Conversely, modification of a GC electrode with 2D-hBN (324 ng) resulted in an increased oxidation potential of DA by ∼80 mV when compared to the unmodified electrode. We explore the underlying mechanisms of the aforementioned examples and infer that electrode surface interactions and roughness factors are critical considerations. 2D-hBN is utilized toward the sensing of DA in the presence of the common interferents ascorbic acid (AA) and uric acid (UA). 2D-hBN is found to be an effective electrocatalyst in the simultaneous detection of DA and UA at both pH 5.0 and 7.4. The peak separations/resolution between DA and UA increases by ∼70 and 50 mV (at pH 5.0 and 7.4, respectively, when utilizing 108 ng of 2D-hBN) compared to unmodified SPEs, with a particularly favorable response evident in pH 5.0, giving rise to a

  17. Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm.

    PubMed

    Zhang, Zhiyong; Smith, Pieter E S; Frydman, Lucio

    2014-11-21

    Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. By porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.

  18. Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm

    SciTech Connect

    Zhang, Zhiyong; Smith, Pieter E. S.; Frydman, Lucio

    2014-11-21

    Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. By porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.

  19. Towards miniaturization of a structural genomics pipeline using micro-expression and microcoil NMR.

    PubMed

    Peti, Wolfgang; Page, Rebecca; Moy, Kin; O'Neil-Johnson, Mark; Wilson, Ian A; Stevens, Raymond C; Wüthrich, Kurt

    2005-12-01

    In structural genomics centers, nuclear magnetic resonance (NMR) screening is in increasing use as a tool to identify folded proteins that are promising targets for three-dimensional structure determination by X-ray crystallography or NMR spectroscopy. The use of 1D 1H NMR spectra or 2D [1H,15N]-correlation spectroscopy (COSY) typically requires milligram quantities of unlabeled or isotope-labeled protein, respectively. Here, we outline ways towards miniaturization of a structural genomics pipeline with NMR screening for folded globular proteins, using a high-density micro-fermentation device and a microcoil NMR probe. The proteins are micro-expressed in unlabeled or isotope-labeled media, purified, and then subjected to 1D 1H NMR and/or 2D [1H,15N]-COSY screening. To demonstrate that the miniaturization is functioning effectively, we processed nine mouse homologue protein targets and compared the results with those from the "macro-scale" Joint Center of Structural Genomics (JCSG) high-throughput pipeline. The results from the two pipelines were comparable, illustrating that the data were not compromised in the miniaturized approach.

  20. NMR at the Picomole Level of a DNA Adduct

    PubMed Central

    Kautz, Roger; Wang, Poguang; Giese, Roger W.

    2014-01-01

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the pmol level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene 5′-monophosphate (AAF-dGMP), in 1.5 μL of D2O with 10% methanol-d4, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid, and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a several-fold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample into the observed volume realizes the full theoretical mass sensitivity of a microcoil, comparable to a micro-cryo probe. With 80 ng, an NMR spectrum acquired over 40 hr showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a S/N of at least 10, despite broadening due to previously-noted effects of conformational exchange. Also a 2D TOCSY spectrum (total correlation spectroscopy) was acquired on 1.6 μg in 18 hr. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct. PMID:24028148

  1. Hierarchical folding mechanism of apomyoglobin revealed by ultra-fast H/D exchange coupled with 2D NMR.

    PubMed

    Uzawa, Takanori; Nishimura, Chiaki; Akiyama, Shuji; Ishimori, Koichiro; Takahashi, Satoshi; Dyson, H Jane; Wright, Peter E

    2008-09-16

    The earliest steps in the folding of proteins are complete on an extremely rapid time scale that is difficult to access experimentally. We have used rapid-mixing quench-flow methods to extend the time resolution of folding studies on apomyoglobin and elucidate the structural and dynamic features of members of the ensemble of intermediate states that are populated on a submillisecond time scale during this process. The picture that emerges is of a continuum of rapidly interconverting states. Even after only 0.4 ms of refolding time a compact state is formed that contains major parts of the A, G, and H helices, which are sufficiently well folded to protect amides from exchange. The B, C, and E helix regions fold more slowly and fluctuate rapidly between open and closed states as they search docking sites on this core; the secondary structure in these regions becomes stabilized as the refolding time is increased from 0.4 to 6 ms. No further stabilization occurs in the A, G, H core at 6 ms of folding time. These studies begin to time-resolve a progression of compact states between the fully unfolded and native folded states and confirm the presence an ensemble of intermediates that interconvert in a hierarchical sequence as the protein searches conformational space on its folding trajectory.

  2. Versatile 1H-31P-31P COSY 2D NMR Techniques for the Characterization of Polyphosphorylated Small Molecules

    PubMed Central

    Majumdar, Ananya; Sun, Yan; Shah, Meha; Freel Meyers, Caren L.

    2010-01-01

    Di- and triphosphorylated small molecules represent key intermediates in a wide range of biological and chemical processes. The importance of polyphosphorylated species in biology and medicine underscores the need to develop methods for the detection and characterization of this compound class. We have reported two-dimensional HPP-COSY spectroscopy techniques to identify diphosphate-containing metabolic intermediates at sub-millimolar concentrations in the methylerythritol phosphate (MEP) isoprenoid biosynthetic pathway.1 In this work, we explore the scope of HPP-COSY based techniques to characterize a diverse group of small organic molecules bearing di- and tri-phosphorylated moieties. These include molecules containing P–O–P and P–C–P connectivities, multivalent P(III)–O–P(V) phosphorus nuclei with widely separated chemical shifts, as well as virtually overlapping 31P resonances exhibiting strong coupling effects. We also demonstrate the utility of these experiments to rapidly distinguish between mono- and diphosphates. A detailed protocol for optimizing these experiments to achieve best performance is presented. PMID:20408590

  3. RAPID 2D NMR METHOD FOR DETERMINING P-COUMARATE AND FERULATE LEVELS IN CORN (AND OTHER GRASS) CELL WALLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass cell wall components are acylated by the hydroxycinnamates p-coumarate and ferulate. p-Coumarates largely acylate lignin sidechains, exclusively at the gamma-position, whereas ferulates primarily acylate the arabinosyl C5-position of arabinoxylans. Such components can be quantified as the corr...

  4. Solid state 1D and 2D NMR spectroscopic investigations of conformational changes of metal phytate compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytate (myo-inositol-1,2,3,4,5,6-hexakisphosphate) (IP6) is the major organic phosphorus component in ceral grains, legumes and seeds high in oil. The high chelating ability of phytate decreases the nutritional availabilty of dietary metal ions (e.g., Ca2+, Fe3+ and Zn2+). Phytate could also decrea...

  5. Regulation of ligands for the activating receptor NKG2D

    PubMed Central

    Mistry, Anita R; O'Callaghan, Chris A

    2007-01-01

    The outcome of an encounter between a cytotoxic cell and a potential target cell depends on the balance of signals from inhibitory and activating receptors. Natural Killer group 2D (NKG2D) has recently emerged as a major activating receptor on T lymphocytes and natural killer cells. In both humans and mice, multiple different genes encode ligands for NKG2D, and these ligands are non-classical major histocompatibility complex class I molecules. The NKG2D–ligand interaction triggers an activating signal in the cell expressing NKG2D and this promotes cytotoxic lysis of the cell expressing the ligand. Most normal tissues do not express ligands for NKG2D, but ligand expression has been documented in tumour and virus-infected cells, leading to lysis of these cells. Tight regulation of ligand expression is important. If there is inappropriate expression in normal tissues, this will favour autoimmune processes, whilst failure to up-regulate the ligands in pathological conditions would favour cancer development or dissemination of intracellular infection. PMID:17614877

  6. Rotation invariance principles in 2D/3D registration

    NASA Astrophysics Data System (ADS)

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels C.; Jacob, Augustinus L.; Regazzoni, Pietro; Messmer, Peter

    2003-05-01

    2D/3D patient-to-computed tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 2D/3D registration is the fast that finding a registration includes sovling a minimization problem in six degrees-of-freedom in motion. This results in considerable time expenses since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations aroudn a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of its original value. The method was implemented and extensively tested on simulated x-ray images of a pelvis. We conclude that this hardware-indepenent optimization of 2D/3D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  7. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  8. 2D Materials for Optical Modulation: Challenges and Opportunities.

    PubMed

    Yu, Shaoliang; Wu, Xiaoqin; Wang, Yipei; Guo, Xin; Tong, Limin

    2017-02-21

    Owing to their atomic layer thickness, strong light-material interaction, high nonlinearity, broadband optical response, fast relaxation, controllable optoelectronic properties, and high compatibility with other photonic structures, 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, have been attracting increasing attention for photonic applications. By tuning the carrier density via electrical or optical means that modifies their physical properties (e.g., Fermi level or nonlinear absorption), optical response of the 2D materials can be instantly changed, making them versatile nanostructures for optical modulation. Here, up-to-date 2D material-based optical modulation in three categories is reviewed: free-space, fiber-based, and on-chip configurations. By analysing cons and pros of different modulation approaches from material and mechanism aspects, the challenges faced by using these materials for device applications are presented. In addition, thermal effects (e.g., laser induced damage) in 2D materials, which are critical to practical applications, are also discussed. Finally, the outlook for future opportunities of these 2D materials for optical modulation is given.

  9. 2D DIGE saturation labeling for minute sample amounts.

    PubMed

    Arnold, Georg J; Fröhlich, Thomas

    2012-01-01

    The 2D DIGE technique, based on fluorophores covalently linked to amino acid side chain residues and the concept of an internal standard, has significantly improved reproducibility, sensitivity, and the dynamic range of protein quantification. In saturation DIGE, sulfhydryl groups of cysteines are labeled with cyanine dyes to completion, providing a so far unraveled sensitivity for protein detection and quantification in 2D gel-based proteomic experiments. Only a few micrograms of protein per 2D gel facilitate the analysis of about 2,000 analytes from complex mammalian cell or tissue samples. As a consequence, 2D saturation DIGE is the method of choice when only minute sample amounts are available for quantitative proteome analysis at the level of proteins rather than peptides. Since very low amounts of samples have to be handled in a reproducible manner, saturation DIGE-based proteomic experiments are technically demanding. Moreover, successful saturation DIGE approaches require a strict adherence to adequate reaction conditions at each step. This chapter is dedicated to colleagues already experienced in 2D PAGE protein separation and intends to support the establishment of this ultrasensitive technique in proteomic workgroups. We provide basic guidelines for the experimental design and discuss crucial aspects concerning labeling chemistry, sample preparation, and pitfalls caused by labeling artifacts. A detailed step-by-step protocol comprises all aspects from initial sample preparation to image analysis and statistical evaluation. Furthermore, we describe the generation of preparative saturation DIGE gels necessary for mass spectrometry-based spot identification.

  10. Mermin–Wagner fluctuations in 2D amorphous solids

    PubMed Central

    Illing, Bernd; Fritschi, Sebastian; Kaiser, Herbert; Klix, Christian L.; Maret, Georg; Keim, Peter

    2017-01-01

    In a recent commentary, J. M. Kosterlitz described how D. Thouless and he got motivated to investigate melting and suprafluidity in two dimensions [Kosterlitz JM (2016) J Phys Condens Matter 28:481001]. It was due to the lack of broken translational symmetry in two dimensions—doubting the existence of 2D crystals—and the first computer simulations foretelling 2D crystals (at least in tiny systems). The lack of broken symmetries proposed by D. Mermin and H. Wagner is caused by long wavelength density fluctuations. Those fluctuations do not only have structural impact, but additionally a dynamical one: They cause the Lindemann criterion to fail in 2D in the sense that the mean squared displacement of atoms is not limited. Comparing experimental data from 3D and 2D amorphous solids with 2D crystals, we disentangle Mermin–Wagner fluctuations from glassy structural relaxations. Furthermore, we demonstrate with computer simulations the logarithmic increase of displacements with system size: Periodicity is not a requirement for Mermin–Wagner fluctuations, which conserve the homogeneity of space on long scales. PMID:28137872

  11. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  12. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  13. 2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Xugang; Krause, Lars; Görög, Mark; Schüler, Oliver; Hauslage, Jens; Hemmersbach, Ruth; Kircher, Stefan; Lasok, Hanna; Haser, Thomas; Rapp, Katja; Schmidt, Jürgen; Yu, Xin; Pasternak, Taras; Aubry-Hivet, Dorothée; Tietz, Olaf; Dovzhenko, Alexander; Palme, Klaus; Ditengou, Franck Anicet

    2016-04-01

    Ground-based simulators of microgravity such as fast rotating 2-D clinostats are valuable tools to study gravity related processes. We describe here a versatile g-value-adjustable 2-D clinostat that is suitable for plant analysis. To avoid seedling adaptation to 1 g after clinorotation, we designed chambers that allow rapid fixation. A detailed protocol for fixation, RNA isolation and the analysis of selected genes is described. Using this clinostat we show that mRNA levels of LONG HYPOCOTYL 5 (HY5), MIZU-KUSSEI 1 (MIZ1) and microRNA MIR163 are down-regulated in 5-day-old Arabidopsis thaliana roots after 3 min and 6 min of clinorotation using a maximal reduced g-force of 0.02 g, hence demonstrating that this 2-D clinostat enables the characterization of early transcriptomic events during root response to microgravity. We further show that this 2-D clinostat is able to compensate the action of gravitational force as both gravitropic-dependent statolith sedimentation and subsequent auxin redistribution (monitoring D R5 r e v :: G F P reporter) are abolished when plants are clinorotated. Our results demonstrate that 2-D clinostats equipped with interchangeable growth chambers and tunable rotation velocity are suitable for studying how plants perceive and respond to simulated microgravity.

  14. Faster and cleaner real-time pure shift NMR experiments.

    PubMed

    Mauhart, Johannes; Glanzer, Simon; Sakhaii, Peyman; Bermel, Wolfgang; Zangger, Klaus

    2015-10-01

    Real-time pure shift experiments provide highly resolved proton NMR spectra which do not require any special processing. Although being more sensitive than their pseudo 2D counterparts, their signal intensities per unit time are still far below regular NMR spectra. In addition, scalar coupling evolution during the individual data chunks produces decoupling sidebands. Here we show that faster and cleaner real-time pure shift spectra can be obtained through the implementation of two parameter alterations. Variation of the FID chunk lengths between individual transients significantly suppresses decoupling sidebands for any kind of real-time pure shift spectra and thus allows for example the analysis of minor components in compound mixtures. Shifting the excitation frequency between individual scans of real-time slice-selective pure shift spectra increases their sensitivity obtainable in unit time by allowing faster repetitions of acquisitions.

  15. Complete assignments of 1H and 13C NMR data for three new arylnaphthalene lignan from Justicia procumbens.

    PubMed

    Liu, Guorui; Wu, Jun; Si, Jianyong; Wang, Junmei; Yang, Meihua

    2008-03-01

    Three new arylnaphthalene lignans, named neojusticin C (1), procumbenoside C (2) and procumbenoside D (3), have been isolated from the whole plant of Justicia procumbens, together with three known ones, justicidinoside B (4), justicidinoside C (5), and diphyllin-1-O-beta-D-apiofuranoside (6). The complete assignments of 1H and 13C NMR data for three new lignans were first obtained by means of 2D NMR techniques, including HSQC and HMBC.

  16. Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Martin, Gary E.; Parella, Teodor

    2016-05-01

    The current Pros and Cons of a processing protocol to generate pure chemical shift NMR spectra using Generalized Indirect Covariance are presented and discussed. The transformation of any standard 2D homonuclear and heteronuclear spectrum to its pure shift counterpart by using a reference DIAG spectrum is described. Reconstructed pure shift NMR spectra of NOESY, HSQC, HSQC-TOCSY and HSQMBC experiments are reported for the target molecule strychnine.

  17. Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons.

    PubMed

    Fredi, André; Nolis, Pau; Cobas, Carlos; Martin, Gary E; Parella, Teodor

    2016-05-01

    The current Pros and Cons of a processing protocol to generate pure chemical shift NMR spectra using Generalized Indirect Covariance are presented and discussed. The transformation of any standard 2D homonuclear and heteronuclear spectrum to its pure shift counterpart by using a reference DIAG spectrum is described. Reconstructed pure shift NMR spectra of NOESY, HSQC, HSQC-TOCSY and HSQMBC experiments are reported for the target molecule strychnine.

  18. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project during the past reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have been reinvestigating the prospects of using zero field NMR types of techniques for two dimensional NMR structural analysis of complex organic solids such as coals. Currently MAS spin rates are not sufficiently high to permit zero field in high field NMR for protons in typical organic solids, however they are compatible with {sup 13}C-{sup 13}C dipolar couplings. In collaboration with Dr. Robert Tycko of AT T Bell Laboratories, inventor of the zero field in high field NMR method, the authors have performed the first zero field in high field {sup 13}C NMR experiments. These results are described. 9 refs., 2 figs.

  19. NMR Structural Studies of Antimicrobial Peptides: LPcin Analogs

    PubMed Central

    Jeong, Ji-Ho; Kim, Ji-Sun; Choi, Sung-Sub; Kim, Yongae

    2016-01-01

    Lactophoricin (LPcin), a component of proteose peptone (113–135) isolated from bovine milk, is a cationic amphipathic antimicrobial peptide consisting of 23 amino acids. We designed a series of N- or C-terminal truncated variants, mutated analogs, and truncated mutated analogs using peptide-engineering techniques. Then, we selected three LPcin analogs of LPcin-C8 (LPcin-YK1), LPcin-T2WT6W (LPcin-YK2), and LPcin-T2WT6W-C8 (LPcin-YK3), which may have better antimicrobial activities than LPcin, and successfully expressed them in E. coli with high yield. We elucidated the 3D structures and topologies of the three LPcin analogs in membrane environments by conducting NMR structural studies. We investigated the purity of the LPcin analogs and the α-helical secondary structures by performing 1H-15N 2D HSQC and HMQC-NOESY liquid-state NMR spectroscopy using protein-containing micelle samples. We measured the 3D structures and tilt angles in membranes by conducting 15N 1D and 2D 1H-15N SAMMY type solid-state NMR spectroscopy with an 800 MHz in-house-built 1H-15N double-resonance solid-state NMR probe with a strip-shield coil, using protein-containing large bicelle samples aligned and confirmed by molecular-dynamics simulations. The three LPcin analogs were found to be curved α-helical structures, with tilt angles of 55–75° for normal membrane bilayers, and their enhanced activities may be correlated with these topologies. PMID:26789765

  20. Secretory pathways generating immunosuppressive NKG2D ligands

    PubMed Central

    Baragaño Raneros, Aroa; Suarez-Álvarez, Beatriz; López-Larrea, Carlos

    2014-01-01

    Natural Killer Group 2 member D (NKG2D) activating receptor, present on the surface of various immune cells, plays an important role in activating the anticancer immune response by their interaction with stress-inducible NKG2D ligands (NKG2DL) on transformed cells. However, cancer cells have developed numerous mechanisms to evade the immune system via the downregulation of NKG2DL from the cell surface, including the release of NKG2DL from the cell surface in a soluble form. Here, we review the mechanisms involved in the production of soluble NKG2DL (sNKG2DL) and the potential therapeutic strategies aiming to block the release of these immunosuppressive ligands. Therapeutically enabling the NKG2D-NKG2DL interaction would promote immunorecognition of malignant cells, thus abrogating disease progression. PMID:25050215

  1. Splashing transients of 2D plasmons launched by swift electrons

    PubMed Central

    Lin, Xiao; Kaminer, Ido; Shi, Xihang; Gao, Fei; Yang, Zhaoju; Gao, Zhen; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Zhang, Baile

    2017-01-01

    Launching of plasmons by swift electrons has long been used in electron energy–loss spectroscopy (EELS) to investigate the plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, the question of how a swift electron generates plasmons in space and time has never been answered. We address this issue by calculating and demonstrating the spatial-temporal dynamics of 2D plasmon generation in graphene. We predict a jet-like rise of excessive charge concentration that delays the generation of 2D plasmons in EELS, exhibiting an analog to the hydrodynamic Rayleigh jet in a splashing phenomenon before the launching of ripples. The photon radiation, analogous to the splashing sound, accompanies the plasmon emission and can be understood as being shaken off by the Rayleigh jet–like charge concentration. Considering this newly revealed process, we argue that previous estimates on the yields of graphene plasmons in EELS need to be reevaluated. PMID:28138546

  2. Available information in 2D motional Stark effect imaging.

    PubMed

    Creese, Mathew; Howard, John

    2010-10-01

    Recent advances in imaging techniques have allowed the extension of the standard polarimetric 1D motional Stark effect (MSE) diagnostic to 2D imaging of the internal magnetic field of fusion devices [J. Howard, Plasma Phys. Controlled Fusion 50, 125003 (2008)]. This development is met with the challenge of identifying and extracting the new information, which can then be used to increase the accuracy of plasma equilibrium and current density profile determinations. This paper develops a 2D analysis of the projected MSE polarization orientation and Doppler phase shift. It is found that, for a standard viewing position, the 2D MSE imaging system captures sufficient information to allow imaging of the internal vertical magnetic field component B(Z)(r,z) in a tokamak.

  3. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  4. Microscale 2D separation systems for proteomic analysis

    PubMed Central

    Xu, Xin; Liu, Ke; Fan, Z. Hugh

    2012-01-01

    Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786

  5. 2D materials for photon conversion and nanophotonics

    NASA Astrophysics Data System (ADS)

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  6. Rapid-scan coherent 2D fluorescence spectroscopy.

    PubMed

    Draeger, Simon; Roeding, Sebastian; Brixner, Tobias

    2017-02-20

    We developed pulse-shaper-assisted coherent two-dimensional (2D) electronic spectroscopy in liquids using fluorescence detection. A customized pulse shaper facilitates shot-to-shot modulation at 1 kHz and is employed for rapid scanning over all time delays. A full 2D spectrum with 15 × 15 pixels is obtained in approximately 6 s of measurement time (plus further averaging if needed). Coherent information is extracted from the incoherent fluorescence signal via 27-step phase cycling. We exemplify the technique on cresyl violet in ethanol and recover literature-known oscillations as a function of population time. Signal-to-noise behavior is analyzed as a function of the amount of averaging. Rapid scanning provides a 2D spectrum with a root-mean-square error of < 0.05 after 1 min of measurement time.

  7. 2D-3D transition of gold cluster anions resolved

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael P.; Lechtken, Anne; Schooss, Detlef; Kappes, Manfred M.; Furche, Filipp

    2008-05-01

    Small gold cluster anions Aun- are known for their unusual two-dimensional (2D) structures, giving rise to properties very different from those of bulk gold. Previous experiments and calculations disagree about the number of gold atoms nc where the transition to 3D structures occurs. We combine trapped ion electron diffraction and state of the art electronic structure calculations to resolve this puzzle and establish nc=12 . It is shown that theoretical studies using traditional generalized gradient functionals are heavily biased towards 2D structures. For a correct prediction of the 2D-3D crossover point it is crucial to use density functionals yielding accurate jellium surface energies, such as the Tao-Perdew-Staroverov-Scuseria (TPSS) functional or the Perdew-Burke-Ernzerhof functional modified for solids (PBEsol). Further, spin-orbit effects have to be included, and large, flexible basis sets employed. This combined theoretical-experimental approach is promising for larger gold and other metal clusters.

  8. IUPAP Award: Ion transport in 2D materials

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    Intercalation in 2D materials drastically influences both physical and chemical properties, which leads to a new degree of freedom for fundamental studies and expands the potential applications of 2D materials. In this talk, I will discuss our work in the past two years related to ion intercalation of 2D materials, including insertion of Li and Na ions in graphene and MoS2. We focused on both fundamental mechanism and potential application, e.g. we measured in-situ optical transmittance spectra and electrical transport properties of few-layer graphene (FLG) nanostructures upon electrochemical lithiation/delithiation. By observing a simultaneous increase of both optical transmittance and DC conductivity, strikingly different from other materials, we proposed its application as a next generation transparent electrode.

  9. 2d-retrieval For Mipas-envisat

    NASA Astrophysics Data System (ADS)

    Steck, T.; von Clarmann, T.; Grabowski, U.; Höpfner, M.

    Limb sounding of the Earth's atmosphere provides vertically high resolved profiles of geophysical parameters. The long ray path through the atmosphere makes limb sounders sensitive to even little abundant species. On the other hand, horizontal in- homogeneities, if not taken into account properly, can cause systematic errors within the retrieval process. Especially for limb emission measurements in the mid IR, at- mopheric temperature gradients result in considerable vmr retrieval errors if they are neglected. We present a dedicated method of taking full 2D fields of state parameters (indepen- dent of tangent points) into account in the forward model and in the retrieval. The basic idea is that the 2D state vector is updated sequentially for each limb scan. This method is applied to the 2D retrieval of temperature and vmr for simulated radiances as expected from MIPAS-ENVISAT.

  10. Genetics, genomics, and evolutionary biology of NKG2D ligands.

    PubMed

    Carapito, Raphael; Bahram, Seiamak

    2015-09-01

    Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.

  11. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  12. Chemical vapour deposition: Transition metal carbides go 2D

    DOE PAGES

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a highmore » crystallinity and very low defect concentration.« less

  13. Optoelectronics based on 2D TMDs and heterostructures

    NASA Astrophysics Data System (ADS)

    Huo, Nengjie; Yang, Yujue; Li, Jingbo

    2017-03-01

    2D materials including graphene and TMDs have proven interesting physical properties and promising optoelectronic applications. We reviewed the growth, characterization and optoelectronics based on 2D TMDs and their heterostructures, and demonstrated their unique and high quality of performances. For example, we observed the large mobility, fast response and high photo-responsivity in MoS2, WS2 and WSe2 phototransistors, as well as the novel performances in vdW heterostructures such as the strong interlayer coupling, am-bipolar and rectifying behaviour, and the obvious photovoltaic effect. It is being possible that 2D family materials could play an increasingly important role in the future nano- and opto-electronics, more even than traditional semiconductors such as silicon.

  14. Applications of Doppler Tomography in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.

    2010-12-01

    Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.

  15. Chemical vapour deposition: Transition metal carbides go 2D

    SciTech Connect

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a high crystallinity and very low defect concentration.

  16. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  17. Understanding NMR Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.

    1996-10-01

    The NMR chemical shift serves as a paradigm for molecular electronic properties. We consider the factors that determine the general magnitudes of the shifts, the state of the art in theoretical calculations, the nature of the shielding tensor, and the multidimensional shielding surface that describes the variation of the shielding with nuclear positions. We also examine the nature of the intermolecular shielding surface as a general example of a supermolecule property surface. The observed chemical shift in the zero-pressure limit is determined not only by the value of the shielding at the equilibrium geometry, but the dynamic average over the multidimensional shielding surface during rotation and vibration of the molecule. In the gas, solution, or adsorbed phase it is an average of the intermolecular shielding surface over all the configurations of the molecule with its neighbors. The temperature dependence of the chemical shift in the isolated molecule, the changes upon isotopic substitution, the changes with environment, are well characterized experimentally so that quantum mechanical descriptions of electronic structure and theories related to dynamics averaging of any electronic property can be subjected to stringent test.

  18. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy.

  19. Towards functional assembly of 3D and 2D nanomaterials

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher B.; Wang, Kai; Ievlev, Anton V.; Muckley, Eric S.; Ivanov, Ilia N.

    2016-09-01

    Functional assemblies of materials can be realized by tuning the work function and band gap of nanomaterials by rational material selection and design. Here we demonstrate the structural assembly of 2D and 3D nanomaterials and show that layering a 2D material monolayer on a 3D metal oxide leads to substantial alteration of both the surface potential and optical properties of the 3D material. A 40 nm thick film of polycrystalline NiO was produced by room temperature rf-sputtering, resulting in a 3D nanoparticle assembly. Chemical vapor deposition (CVD) grown 10-30 μm WS2 flakes (2D material) were placed on the NiO surface using a PDMS stamp transfer technique. The 2D/3D WS2/NiO assembly was characterized using confocal micro Raman spectroscopy to evaluate the vibrational properties and using Kelvin probe force microscopy (KPFM) to evaluate the surface potential. Raman maps of the 2D/3D assembly show spatial non-uniformity of the A1g mode ( 418 cm-1) and the disorder-enhanced longitudinal acoustic mode, 2LA(M) ( 350 cm-1), suggesting that the WS2 exists in a strained condition on when transferred onto 3D polycrystalline NiO. KPFM measurements show that single layer WS2 on SiO2 has a surface potential 75 mV lower than that of SiO2, whereas the surface potential of WS2 on NiO is 15 mV higher than NiO, indicating that WS2 could act as electron donor or acceptor depending on the 3D material it is interfaced with. Thus 2D and 3D materials can be organized into functional assemblies with electron flow controlled by the WS2 either as the electron donor or acceptor.

  20. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  1. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  2. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  3. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  4. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-03

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  5. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  6. Radiative heat transfer in 2D Dirac materials

    DOE PAGES

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  7. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  8. Scale Invariance in 2D BCS-BEC Crossover

    NASA Astrophysics Data System (ADS)

    Sensarma, Rajdeep; Taylor, Edward; Randeria, Mohit

    2013-03-01

    In 2D BCS-BEC crossover, the frequency of the breathing mode in a harmonic trap, as well as the lower edge of the radio frequency spectroscopy response, show remarkable scale-invariance throughout the crossover regime, i.e. they are independent of the coupling constant. Using functional integral methods, we study the behaviour of these quantities in the 2D BCS-BEC crossover and comment on the possible reasons for this scale independence. RS was supported by DAE, Govt. of India. MR was supported by NSF Grant No. DMR-1006532. ET was supported by NSERC and the Canadian Institute for Advanced Research.

  9. Closed-shell and open-shell 2D nanographenes.

    PubMed

    Sun, Zhe; Wu, Jishan

    2014-01-01

    This chapter describes a series of two-dimensional (2D) expanded arene networks, also known as nanographenes, with either closed-shell or open-shell electronic structure in the ground state. These systems are further categorized into three classes on a basis of different edge structures: those with zigzag edges only, those with armchair edges only, and those possessing both. Distinctive physical properties of these 2D aromatic systems are closely related to their structural characteristics and provide great potential for them as materials for different applications.

  10. 2D Log-Gabor Wavelet Based Action Recognition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xu, De

    The frequency response of log-Gabor function matches well the frequency response of primate visual neurons. In this letter, motion-salient regions are extracted based on the 2D log-Gabor wavelet transform of the spatio-temporal form of actions. A supervised classification technique is then used to classify the actions. The proposed method is robust to the irregular segmentation of actors. Moreover, the 2D log-Gabor wavelet permits more compact representation of actions than the recent neurobiological models using Gabor wavelet.

  11. NMR study of seven coumarins from mammea siamensis.

    PubMed

    Prachyawarakorn, V; Mahidol, C; Ruchirawat, S

    2000-01-01

    Seven known mammea coumarins, mammea A/AA cyclo D ( 1 ), mammea A/AD cyclo D ( 2 ), mammea A/AB cyclo D ( 3 ), mammea A/AC cyclo F ( 4 ), mam-mea A/AB cyclo F ( 5 ), mammea A/AA cyclo F ( 6 ), mammea B/AC cyclo F ( 7 ), were isolated for the first time from the hexane extract of Mammea siamensis . A detailed analysis of both 1D and 2D NMR spectral data of these compounds was made.

  12. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.

  13. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  14. Integrative NMR for biomolecular research.

    PubMed

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ).

  15. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  16. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  17. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  18. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  19. NMR Imaging of Elastomeric Materials

    DTIC Science & Technology

    1990-11-30

    on ’everse if necessary and identify by block number) FIELD GROUP SUB-GROUP nuclear magnetic resonance , imaging, elastomers, tires, composites, porous...correspondence should be addressed 1i ABSTRACT Nuclear magnetic resonance images have been obtained for four porous glass disks of different porosities...INDEX HEADINGS: NMR imaging Porous materials Spin relaxation 2. I0J INTRODUCTION Nuclear magnetic resonance (NMR) imaging has seen increasing use in the

  20. Protein structure determination with paramagnetic solid-state NMR spectroscopy.

    PubMed

    Sengupta, Ishita; Nadaud, Philippe S; Jaroniec, Christopher P

    2013-09-17

    +)-tagged GB1 mutants to rapidly determine the global protein fold in a de novo fashion. Remarkably, these studies required quantitative measurements of only approximately four or five backbone amide (15)N longitudinal paramagnetic relaxation enhancements per residue, in the complete absence of the usual internuclear distance restraints. Importantly, this paramagnetic solid-state NMR methodology is general and can be directly applied to larger proteins and protein complexes for which a significant fraction of the signals can be assigned in standard 2D and 3D MAS NMR chemical shift correlation spectra.

  1. Phase Cycling Schemes for finite-pulse-RFDR MAS Solid State NMR Experiments

    PubMed Central

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-01-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY414, for the fp-RFDR pulse sequence employed in 2D 1H/1H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY412, XY413, XY414, and XY814 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T10T2,±2, T1,±1T2,±1, etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field in homogeneity effects revealed that XY414 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp-RFDR are also analyzed

  2. Phase cycling schemes for finite-pulse-RFDR MAS solid state NMR experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-03-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY414, for the fp-RFDR pulse sequence employed in 2D 1H/1H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY412, XY413, XY414, and XY814 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T10T2,±2, T1,±1T2,±1, etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field inhomogeneity effects revealed that XY414 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp-RFDR are also analyzed

  3. Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy.

    PubMed

    Akbey, Umit; Lange, Sascha; Trent Franks, W; Linser, Rasmus; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan; Reif, Bernd; Oschkinat, Hartmut

    2010-01-01

    We present a systematic study of the effect of the level of exchangeable protons on the observed amide proton linewidth obtained in perdeuterated proteins. Decreasing the amount of D(2)O employed in the crystallization buffer from 90 to 0%, we observe a fourfold increase in linewidth for both (1)H and (15)N resonances. At the same time, we find a gradual increase in the signal-to-noise ratio (SNR) for (1)H-(15)N correlations in dipolar coupling based experiments for H(2)O concentrations of up to 40%. Beyond 40%, a significant reduction in SNR is observed. Scalar-coupling based (1)H-(15)N correlation experiments yield a nearly constant SNR for samples prepared with < or =30% H(2)O. Samples in which more H(2)O is employed for crystallization show a significantly reduced NMR intensity. Calculation of the SNR by taking into account the reduction in (1)H T (1) in samples containing more protons (SNR per unit time), yields a maximum SNR for samples crystallized using 30 and 40% H(2)O for scalar and dipolar coupling based experiments, respectively. A sensitivity gain of 3.8 is obtained by increasing the H(2)O concentration from 10 to 40% in the CP based experiment, whereas the linewidth only becomes 1.5 times broader. In general, we find that CP is more favorable compared to INEPT based transfer when the number of possible (1)H,(1)H interactions increases. At low levels of deuteration (> or =60% H(2)O in the crystallization buffer), resonances from rigid residues are broadened beyond detection. All experiments are carried out at MAS frequency of 24 kHz employing perdeuterated samples of the chicken alpha-spectrin SH3 domain.

  4. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR.

    PubMed

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water (1)H polarization to polysaccharides through distance- and mobility-dependent (1)H-(1)H dipolar couplings and detecting it through polysaccharide (13)C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water-cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water-pectin spin diffusion precedes water-cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  5. Desktop NMR for structure elucidation and identification of strychnine adulteration.

    PubMed

    Singh, Kawarpal; Blümich, Bernhard

    2017-03-27

    Elucidating the structure of complex molecules is difficult at low magnetic fields due to the overlap of different peak multiplets and second-order coupling effects. This is even more challenging for rigid molecules with small chemical shift differences and with prochiral centers. Since low-field NMR spectroscopy is sometimes presumed as restricted to the analysis of only small and simple molecules, this paper aims at countering this misconception: it demonstrates the use of low-field NMR spectroscopy in chemical forensics for identifying strychnine and its counterions by exploring the chemical shift as a signature in different 1D (1)H and (13)C experiments. Hereby the applied methodologies combine various 1D and 2D experiments such as 1D (1)H, (13)C, DEPT, and 2D COSY, HETCOR, HSQC, HMBC and J-resolved spectroscopy to elucidate the molecular structure and skeleton of strychnine at 1 Tesla. Strychnine is exemplified here, because it is a basic precursor in the chemistry of natural products and is employed as a chemical weapon and as a doping agent in sports including the Olympics. In our study, the molecular structure of the compound could be identified either with a 1D experiment at high magnetic field or with HMBC and HSQC experiments at 1 T. In conclusion, low-field NMR spectroscopy enables the chemical elucidation of the strychnine structure through a simple click with a computer mouse. In situations where a high-field NMR spectrometer is unavailable, compact NMR spectrometers can nevertheless generate knowledge of the structure, important for identifying the different chemical reaction mechanisms associated with the molecule. Desktop NMR is a cost-effective viable option in chemical forensics. It can prove adulteration and identify the origin of different strychnine salts, in particular, the strychnine free base, strychnine hemisulphate and strychnine hydrochloride. The chemical shift signatures report the chemical structure of the molecules due to the impact

  6. Discrepant Results in a 2-D Marble Collision

    ERIC Educational Resources Information Center

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  7. 2-D Finite Element Cable and Box IEMP Analysis

    SciTech Connect

    Scivner, G.J.; Turner, C.D.

    1998-12-17

    A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.

  8. 2D Orthogonal Locality Preserving Projection for Image Denoising.

    PubMed

    Shikkenawis, Gitam; Mitra, Suman K

    2016-01-01

    Sparse representations using transform-domain techniques are widely used for better interpretation of the raw data. Orthogonal locality preserving projection (OLPP) is a linear technique that tries to preserve local structure of data in the transform domain as well. Vectorized nature of OLPP requires high-dimensional data to be converted to vector format, hence may lose spatial neighborhood information of raw data. On the other hand, processing 2D data directly, not only preserves spatial information, but also improves the computational efficiency considerably. The 2D OLPP is expected to learn the transformation from 2D data itself. This paper derives mathematical foundation for 2D OLPP. The proposed technique is used for image denoising task. Recent state-of-the-art approaches for image denoising work on two major hypotheses, i.e., non-local self-similarity and sparse linear approximations of the data. Locality preserving nature of the proposed approach automatically takes care of self-similarity present in the image while inferring sparse basis. A global basis is adequate for the entire image. The proposed approach outperforms several state-of-the-art image denoising approaches for gray-scale, color, and texture images.

  9. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  10. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  11. Graphene band structure and its 2D Raman mode

    NASA Astrophysics Data System (ADS)

    Narula, Rohit; Reich, Stephanie

    2014-08-01

    High-precision simulations are used to generate the 2D Raman mode of graphene under a range of screening conditions and laser energies EL. We reproduce the decreasing trend of the 2D mode FWHM vs EL and the nearly linearly increasing dispersion ∂ω2D/∂EL seen experimentally in freestanding (unscreened) graphene, and propose relations between these experimentally accessible quantities and the local, two-dimensional gradients |∇ | of the electronic and TO phonon bands. In light of state-of-the-art electronic structure calculations that acutely treat the long-range e-e interactions of isolated graphene and its experimentally observed 2D Raman mode, our calculations determine a 40% greater slope of the TO phonons about K than given by explicit phonon measurements performed in graphite or GW phonon calculations in graphene. We also deduce the variation of the broadening energy γ [EL] for freestanding graphene and find a nominal value γ ˜140 meV, showing a gradually increasing trend for the range of frequencies available experimentally.

  12. Development of a MEMS 2D separations device

    NASA Astrophysics Data System (ADS)

    Bloschock, Kristen P.; Flyer, Jonathan N.; Schneider, Thomas W.; Hussam, Abul; Van Keuren, Edward R.

    2004-12-01

    A polymer based biochip for rapid 2D separations of peptides, proteins, and other biomedically relevant molecules was designed and fabricated. Like traditional 2D polyacrylamide gel electrophoresis (2D-PAGE) methods, the device will allow molecules to separate based on isoelectric point (pI) and molecular weight (MW). Our design, however, integrates both an initial capillary isoelectric focusing (cIEF) step followed by capillary electrophoresis (CE) in multiple parallel channels, all on a single microfluidic chip. Not only is the "lab-on-a-chip" design easier to use and less expensive, but the miniaturization of the device produces very rapid separations. Compared to traditional 2D-PAGE, which can take hours to complete, we estimate separation times on the order of seconds. Fluorescence detection will be used in the preliminary stages of testing, but the device also is equipped with integrated electrodes in the electrophoresis channels to perform multiplexed electrochemical detection for quantitative analysis. We will present preliminary results of the chip development and testing.

  13. The 2dF Galaxy Redshift Survey: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Maddox, Steve; 2DF Galaxy Redshift Survey Team; Bland-Hawthorn, Joss; Cannon, Russell; Cole, Shaun; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; Driver, Simon; Ellis, Richard; Efstathiou, George; Folkes, Simon; Frenk, Carlos; Glazebrook, Karl; Kaiser, Nick; Lahav, Ofer; Lumsden, Stuart; Peterson, Bruce; Peacock, John; Sutherland, Will; Taylor, Keith

    Spectroscopic observations for a new survey of 250 000 galaxy redshifts are underway, using the 2dF instrument at the AAT. The input galaxy catalogue and commissioning data are described. The first result from the preliminary data is a new estimate of the galaxy luminosity function at = 0.1.

  14. Volume Calculation of Venous Thrombosis Using 2D Ultrasound Images.

    PubMed

    Dhibi, M; Puentes, J; Bressollette, L; Guias, B; Solaiman, B

    2005-01-01

    Venous thrombosis screening exams use 2D ultrasound images, from which medical experts obtain a rough idea of the thrombosis aspect and infer an approximate volume. Such estimation is essential to follow up the thrombosis evolution. This paper proposes a method to calculate venous thrombosis volume from non-parallel 2D ultrasound images, taking advantage of a priori knowledge about the thrombosis shape. An interactive ellipse fitting contour segmentation extracts the 2D thrombosis contours. Then, a Delaunay triangulation is applied to the set of 2D segmented contours positioned in 3D, and the area that each contour defines, to obtain a global thrombosis 3D surface reconstruction, with a dense triangulation inside the contours. Volume is calculated from the obtained surface and contours triangulation, using a maximum unit normal component approach. Preliminary results obtained on 3 plastic phantoms and 3 in vitro venous thromboses, as well as one in vivo case are presented and discussed. An error rate of volume estimation inferior to 4,5% for the plastic phantoms, and 3,5% for the in vitro venous thromboses was obtained.

  15. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  16. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  17. Validation and testing of the VAM2D computer code

    SciTech Connect

    Kool, J.B.; Wu, Y.S. )

    1991-10-01

    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.

  18. NKG2D ligands mediate immunosurveillance of senescent cells

    PubMed Central

    Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-01-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  19. Studying Zeolite Catalysts with a 2D Model System

    ScienceCinema

    Boscoboinik, Anibal

    2016-12-14

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  20. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    PubMed

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area.

  1. Insight into hydrogen bonding of uranyl hydroxide layers and capsules by use of 1H magic-angle spinning NMR spectroscopy [Insight into the hydrogen bonding for uranyl hydroxides using 1H MAS NMR spectroscopy

    DOE PAGES

    Alam, Todd M.; Liao, Zuolei; Nyman, May; ...

    2016-04-27

    Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO2(OH)2] (α-UOH) and hydrated uranyl hydroxide [(UO2)4O(OH)6·5H2O (metaschoepite). For the metaschoepite material, proton resonances of the μ2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H–1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization of local hydrogen-bond environments in uranyl U24 capsules andmore » of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less

  2. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  3. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    SciTech Connect

    Giaddui, T; Yu, J; Xiao, Y; Jacobs, P; Manfredi, D; Linnemann, N

    2015-06-15

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  4. Complete assignments of 1H and 13C NMR data for seven arylnaphthalide lignans from Justicia procumbens.

    PubMed

    Yang, Meihua; Wu, Jun; Cheng, Fan; Zhou, Yuan

    2006-07-01

    Three new arylnaphthalide lignans named 6'-hydroxy justicidin A (1), 6'-hydroxy justicidin B (2) and 6'-hydroxy justicidin C (3) have been isolated from the whole plant of Justicia procumbens, together with four known ones, neojusticin A (4), chinensinaphthol methyl ester (5), isodiphyllin (6) and taiwanin C (7). The complete assignments of 1H and 13C NMR chemical shifts for the new lignans and the 13C NMR chemical shifts for the known lignans were obtained for the first time by means of 2D NMR techniques, including HSQC and HMBC.

  5. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  6. 2d-LCA - an alternative to x-wires

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  7. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  8. Half-metallicity in 2D organometallic honeycomb frameworks

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  9. Design and construction of a versatile dual volume heteronuclear double resonance microcoil NMR probe

    NASA Astrophysics Data System (ADS)

    Kc, Ravi; Henry, Ian D.; Park, Gregory H. J.; Raftery, Daniel

    2009-04-01

    Improved NMR detection of mass limited samples can be obtained by taking advantage of the mass sensitivity of microcoil NMR, while throughput issues can be addressed using multiple, parallel sample detection coils. We present the design and construction of a double resonance 300-MHz dual volume microcoil NMR probe with thermally etched 440-nL detection volumes and fused silica transfer lines for high-throughput stopped-flow or flow-through sample analysis. Two orthogonal solenoidal detection coils and the novel use of shielded inductors allowed the construction of a probe with negligible radio-frequency cross talk. The probe was resonated at 1H- 2D (upper coil) and 1H- 13C (lower coil) frequencies such that it could perform 1D and 2D experiments with active locking frequency. The coils exhibited line widths of 0.8-1.1 Hz with good mass sensitivity for both 1H and 13C NMR detection. 13C-directly detected 2D HETCOR spectra of 5% v/v 13C labeled acetic acid were obtained in less than 5 min. Demonstration of the probe characteristics as well as applications of the versatile two-coil double resonance probe are discussed.

  10. Design and construction of a versatile dual volume heteronuclear double resonance microcoil NMR probe.

    PubMed

    Kc, Ravi; Henry, Ian D; Park, Gregory H J; Raftery, Daniel

    2009-04-01

    Improved NMR detection of mass limited samples can be obtained by taking advantage of the mass sensitivity of microcoil NMR, while throughput issues can be addressed using multiple, parallel sample detection coils. We present the design and construction of a double resonance 300-MHz dual volume microcoil NMR probe with thermally etched 440-nL detection volumes and fused silica transfer lines for high-throughput stopped-flow or flow-through sample analysis. Two orthogonal solenoidal detection coils and the novel use of shielded inductors allowed the construction of a probe with negligible radio-frequency cross talk. The probe was resonated at (1)H-(2)D (upper coil) and (1)H-(13)C (lower coil) frequencies such that it could perform 1D and 2D experiments with active locking frequency. The coils exhibited line widths of 0.8-1.1 Hz with good mass sensitivity for both (1)H and (13)C NMR detection. (13)C-directly detected (2)D HETCOR spectra of 5% v/v (13)C labeled acetic acid were obtained in less than 5 min. Demonstration of the probe characteristics as well as applications of the versatile two-coil double resonance probe are discussed.

  11. Solid state NMR methods for coal science. Progress report, October 1, 1983-December 31, 1984

    SciTech Connect

    Zilm, K.W.

    1984-12-01

    This report covers the progress made on the title project during the last quarter. While a good deal of our time has been spent setting up our new NMR laboratory, we have made several significant advances in solid state NMR techniques development that will have important applications in structure determination of coal, coal products and other fossil fuels. We have developed a CP/MAS probe that is routinely capable of producing decoupling fields in excess of 100 KHz without excessive power consumption and that has a very homogeneous frequency field. This piece of equipment has proven crucial to the success of a number of new techniques we are developing. In addition to increasing our sensitivity, the intensity, and homogeneity of the R.F. field, this probe now makes a number of multiple pulse techniques feasible. One avenue has been pursued this quarter is to use multiple pulse decoupling to make 2-D spectroscopy feasible in solids and this has resulted in the first proton-carbon chemical shift correlation spectrum of coal. The homogeneity of the R.F. field has also been helpful in some relaxation studies of coals aimed at an improved understanding of the quantitative aspects of /sup 13/C CP/MAS of coals, i.e., are all the carbons observed. Other techniques being investigated include high field /sup 2/D NMR and /sup 2/D zero field NMR. 8 figures, 1 table.

  12. Understanding the NMR properties and conformational behavior of indole vs. azaindole group in protoberberines: NICS and NCS analysis

    NASA Astrophysics Data System (ADS)

    Kadam, Shivaji S.; Toušek, Jaromír; Maier, Lukáš; Pipíška, Matej; Sklenář, Vladimír; Marek, Radek

    2012-11-01

    We report here the preparation and the structural investigation into a series of 8-(indol-1-yl)-7,8-dihydroprotoberberine derivatives derived from berberine, palmatine, and coptisine. Structures of these new compounds were characterized mainly by 2D NMR spectroscopy and the conformational behavior was investigated by using methods of density-functional theory (DFT). PBE0/6-311+G** calculated NMR chemical shifts for selected derivatives correlate excellently with the experimental NMR data and support the structural conclusions drawn from the NMR experiments. An interesting role of the nitrogen atom in position N7' of the indole moiety in 8-(7-azaindol-1-yl)-7,8-dihydroprotoberberines as compared to other 8-indolyl derivatives is investigated in detail. The experimentally observed trends in NMR chemical shifts are rationalized by DFT calculations and analysis based on the nucleus-independent chemical shifts (NICS) and natural localized molecular orbitals (NLMOs).

  13. Residue-Specific Structural Kinetics of Proteins through the Union of Isotope Labeling, Mid-IR Pulse Shaping, and Coherent 2D IR Spectroscopy

    PubMed Central

    Middleton, Chris T.; Woys, Ann Marie; Mukherjee, Sudipta S.; Zanni, Martin T.

    2010-01-01

    We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for 13C=18O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide form type 2 diabetes. PMID:20472067

  14. Water Solvent Effect on Theoretical Evaluation of (1)H NMR Chemical Shifts: o-Methyl-Inositol Isomer.

    PubMed

    Dos Santos, Hélio F; Chagas, Marcelo A; De Souza, Leonardo A; Rocha, Willian R; De Almeida, Mauro V; Anconi, Cleber P A; De Almeida, Wagner B

    2017-04-13

    In this paper, density functional theory calculations of nuclear magnetic resonance (NMR) chemical shifts for l-quebrachitol isomer, previously studied in our group, are reported with the aim of investigating in more detail the water solvent effect on the prediction of (1)H NMR spectra. In order to include explicit water molecules, 20 water-l-quebrachitol configurations obtained from Monte Carlo simulation were selected to perform geometry optimizations using the effective fragment potential method encompassing 60 water molecules around the solute. The solvated solute optimized geometries were then used in B3LYP/6-311+G(2d,p) NMR calculations with PCM-water. The inclusion of explicit solvent in the B3LYP NMR calculations resulted in large changes in the (1)H NMR profiles. We found a remarkable improvement in the agreement with experimental NMR profiles when the explicit hydrated l-quebrachitol structure is used in B3LYP (1)H NMR calculations, yielding a mean absolute error (MAE) of only 0.07 ppm, much lower than reported previously for the gas phase optimized structure (MAE = 0.11 ppm). In addition, a very improved match between theoretical and experimental (1)H NMR spectrum measured in D2O was achieved with the new hydrated optimized l-quebrachitol structure, showing that a fine-tuning of the theoretical NMR spectra can be accomplished once solvent effects are properly considered.

  15. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners.

  16. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  17. Response to CYP2D6 substrate antidepressants is predicted by a CYP2D6 composite phenotype based on genotype and comedications with CYP2D6 inhibitors.

    PubMed

    Gressier, F; Verstuyft, C; Hardy, P; Becquemont, L; Corruble, E

    2015-01-01

    The cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of most antidepressants. Comedication with a potent CYP2D6 inhibitor can convert patients with extensive metabolizer (EM) or ultra-rapid metabolizer (UM) genotypes into poor metabolizer (PM) phenotypes. Since comedication is frequent in depressed patients treated with antidepressants, we investigated the effect of the CYP2D6 composite phenotype on antidepressant efficacy, taking into account both the CYP2D6 genotype and comedication with CYP2D6 inhibitors. 87 Caucasian in patients with a major depressive episode were prospectively treated with flexible doses of antidepressant monotherapy as well as comedications and genotyped for the major CYP2D6 alleles (CYP2D6*3 rs35742686, *4 rs3892097, *5 del, *6 rs5030655, and *2xN). They were classified for CYP2D6 composite phenotype and assessed for antidepressant response after 4 weeks. In terms of genotypes (g), 6 subjects were UMg, 6 PMg, and 75 EMg. Ten patients were coprescribed a CYP2D6 inhibitor, resulting in the following composite phenotypes (cp): 5 UMcp, 16 PMcp, and 66 EMcp. Whereas none of the CYP2D6 genotypes were significantly associated with antidepressant response, UMcp had a lower antidepressant response than PMcp or EMcp (respectively: 39.0 ± 17.9, 50.0 ± 26.0, and 61.6 ± 23.4, p = 0.02). Despite small sample size, this study suggests that a CYP2D6 composite phenotype, taking into account both genotype and comedications with CYP2D6 inhibitors, could predict CYP2D6 substrate antidepressants response. Thus, to optimize antidepressant response, CYP2D6 genotype could be performed and comedications with CYP2D6 inhibitors should be avoided, when prescribing CYP2D6 substrate antidepressants.

  18. 2-D linear motion system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology

  19. Gold-standard performance for 2D hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; MacVicar, B. J.

    2013-12-01

    Two-dimensional, depth-averaged hydrodynamic (2D) models are emerging as an increasingly useful tool for environmental water resources engineering. One of the remaining technical hurdles to the wider adoption and acceptance of 2D modeling is the lack of standards for 2D model performance evaluation when the riverbed undulates, causing lateral flow divergence and convergence. The goal of this study was to establish a gold-standard that quantifies the upper limit of model performance for 2D models of undulating riverbeds when topography is perfectly known and surface roughness is well constrained. A review was conducted of published model performance metrics and the value ranges exhibited by models thus far for each one. Typically predicted velocity differs from observed by 20 to 30 % and the coefficient of determination between the two ranges from 0.5 to 0.8, though there tends to be a bias toward overpredicting low velocity and underpredicting high velocity. To establish a gold standard as to the best performance possible for a 2D model of an undulating bed, two straight, rectangular-walled flume experiments were done with no bed slope and only different bed undulations and water surface slopes. One flume tested model performance in the presence of a porous, homogenous gravel bed with a long flat section, then a linear slope down to a flat pool bottom, and then the same linear slope back up to the flat bed. The other flume had a PVC plastic solid bed with a long flat section followed by a sequence of five identical riffle-pool pairs in close proximity, so it tested model performance given frequent undulations. Detailed water surface elevation and velocity measurements were made for both flumes. Comparing predicted versus observed velocity magnitude for 3 discharges with the gravel-bed flume and 1 discharge for the PVC-bed flume, the coefficient of determination ranged from 0.952 to 0.987 and the slope for the regression line was 0.957 to 1.02. Unsigned velocity

  20. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focused on variable temperature spin lattice relaxation measurements for several of the Argonne coals. 5 figs.

  1. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focussed on spin lattice relaxation measurements for several of the Argonne coals. 2 figs., 1 tab.

  2. Instantons in 2D U(1) Higgs model and 2D CP(N-1) sigma models

    NASA Astrophysics Data System (ADS)

    Lian, Yaogang

    2007-12-01

    In this thesis I present the results of a study of the topological structures of 2D U(1) Higgs model and 2D CP N-1 sigma models. Both models have been studied using the overlap Dirac operator construction of topological charge density. The overlap operator provides a more incisive probe into the local topological structure of gauge field configurations than the traditional plaquette-based operator. In the 2D U(1) Higgs model, we show that classical instantons with finite sizes violate the negativity of topological charge correlator by giving a positive contribution to the correlator at non-zero separation. We argue that instantons in 2D U(1) Higgs model must be accompanied by large quantum fluctuations in order to solve this contradiction. In 2D CPN-1 sigma models, we observe the anomalous scaling behavior of the topological susceptibility chi t for N ≤ 3. The divergence of chi t in these models is traced to the presence of small instantons with a radius of order a (= lattice spacing), which are directly observed on the lattice. The observation of these small instantons provides detailed confirmation of Luscher's argument that such short-distance excitations, with quantized topological charge, should be the dominant topological fluctuations in CP1 and CP 2, leading to a divergent topological susceptibility in the continuum limit. For the CPN-1 models with N > 3 the topological susceptibility is observed to scale properly with the mass gap. Another topic presented in this thesis is an implementation of the Zolotarev optimal rational approximation for the overlap Dirac operator. This new implementation has reduced the time complexity of the overlap routine from O(N3 ) to O(N), where N is the total number of sites on the lattice. This opens up a door to more accurate lattice measurements in the future.

  3. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites.

  4. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  5. Use of diffusion-ordered NMR spectroscopy and HPLC-UV-SPE-NMR to identify undeclared synthetic drugs in medicines illegally sold as phytotherapies.

    PubMed

    Silva, Lorena M A; Filho, Elenilson G A; Thomasi, Sérgio S; Silva, Bianca F; Ferreira, Antonio G; Venâncio, Tiago

    2013-09-01

    The informal (and/or illegal) e-commerce of pharmaceutical formulations causes problems that governmental health agencies find hard to control, one of which concerns formulas sold as natural products. The purpose of this work was to explore the advantages and limitations of DOSY and HPLC-UV-SPE-NMR. These techniques were used to identify the components of a formula illegally marketed in Brazil as an herbal medicine possessing anti-inflammatory and analgesic properties. DOSY was able to detect the major components present at higher concentrations. Complete characterization was achieved using HPLC-UV-SPE-NMR, and 1D and 2D NMR analyses enabled the identification of known synthetic drugs. These were ranitidine and a mixture of orphenadrine citrate, piroxicam, and dexamethasone, which are co-formulated in a remedy called Rheumazim that is used to relieve severe pain, but it is prohibited in Brazil because of a lack of sufficient pharmacokinetic and pharmacodynamic information.

  6. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  7. Improvements in Technique of NMR Imaging and NMR Diffusion Measurements in the Presence of Background Gradients.

    NASA Astrophysics Data System (ADS)

    Lian, Jianyu

    In this work, modification of the cosine current distribution rf coil, PCOS, has been introduced and tested. The coil produces a very homogeneous rf magnetic field, and it is inexpensive to build and easy to tune for multiple resonance frequency. The geometrical parameters of the coil are optimized to produce the most homogeneous rf field over a large volume. To avoid rf field distortion when the coil length is comparable to a quarter wavelength, a parallel PCOS coil is proposed and discussed. For testing rf coils and correcting B _1 in NMR experiments, a simple, rugged and accurate NMR rf field mapping technique has been developed. The method has been tested and used in 1D, 2D, 3D and in vivo rf mapping experiments. The method has been proven to be very useful in the design of rf coils. To preserve the linear relation between rf output applied on an rf coil and modulating input for an rf modulating -amplifying system of NMR imaging spectrometer, a quadrature feedback loop is employed in an rf modulator with two orthogonal rf channels to correct the amplitude and phase non-linearities caused by the rf components in the rf system. The modulator is very linear over a large range and it can generate an arbitrary rf shape. A diffusion imaging sequence has been developed for measuring and imaging diffusion in the presence of background gradients. Cross terms between the diffusion sensitizing gradients and background gradients or imaging gradients can complicate diffusion measurement and make the interpretation of NMR diffusion data ambiguous, but these have been eliminated in this method. Further, the background gradients has been measured and imaged. A dipole random distribution model has been established to study background magnetic fields Delta B and background magnetic gradients G_0 produced by small particles in a sample when it is in a B_0 field. From this model, the minimum distance that a spin can approach a particle can be determined by measuring

  8. Synthesis, characterization and dynamic NMR studies of a novel chalcone based N-substituted morpholine derivative

    NASA Astrophysics Data System (ADS)

    Baskar, R.; Baby, C.; Moni, M. S.; Subramanian, K.

    2013-05-01

    The synthesis of a novel chalcone based N-substituted morpholine derivative namely, (E)-1-(biphenyl-4-yl)-3-(4-(5-morpholinopentyloxy) phenyl) prop-2-en-1-one (BMPP), using a two step protocol is reported. The compound is characterized by FTIR, GC-MS and FTNMR spectroscopy techniques. Advanced 2D NMR techniques such as gradient enhanced COSY, HSQC, HMBC and NOESY were employed to establish through-bond and through-space correlations. Dynamic NMR measurements were carried out to obtain the energy barrier to ring inversion of the morpholine moiety.

  9. Optimizing sparse sampling for 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Roeding, Sebastian; Klimovich, Nikita; Brixner, Tobias

    2017-02-01

    We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points.

  10. D2-D1 phase transition of columnar liquid crystals

    NASA Astrophysics Data System (ADS)

    Sun, Y. F.; Swift, J.

    1986-04-01

    The D2-D1 phase transition in columnar liquid crystals of the HAT series [e.g., HAT11 (triphenelene hexa-n-dodecanoate)] is discussed within the framework of Landau theory. The order parameters which describe the transition are abstracted from a tensor density function, and are associated with two irreducible representations of the symmetry group of the high-temperature D2 phase. A mechanism for a first-order transition is then suggested in accordance with both theoretical considerations and the experimental result for the D2-D1 transition. Two possible arrangements of the herringbone structure of the D1 phase are obtained, each of which gives six orientational states in the low-temperature D1 phase.

  11. Extreme Growth of Enstrophy on 2D Bounded Domains

    NASA Astrophysics Data System (ADS)

    Protas, Bartosz; Sliwiak, Adam

    2016-11-01

    We study the vortex states responsible for the largest instantaneous growth of enstrophy possible in viscous incompressible flow on 2D bounded domain. The goal is to compare these results with estimates obtained using mathematical analysis. This problem is closely related to analogous questions recently considered in the periodic setting on 1D, 2D and 3D domains. In addition to systematically characterizing the most extreme behavior, these problems are also closely related to the open question of the finite-time singularity formation in the 3D Navier-Stokes system. We demonstrate how such extreme vortex states can be found as solutions of constrained variational optimization problems which in the limit of small enstrophy reduce to eigenvalue problems. Computational results will be presented for circular and square domains emphasizing the effect of geometric singularities (corners of the domain) on the structure of the extreme vortex states. Supported by an NSERC (Canada) Discovery Grant.

  12. Strength design with 2-d triaxial braid textile composites

    SciTech Connect

    Smith, L.V.; Swanson, S.R.

    1994-12-31

    Textile preforms are currently being considered as a possible means for reducing the cost of advanced fiber composites. This paper presents a methodology for strength design of carbon/epoxy 2-d braid fiber composites under general conditions of biaxial stress loading. A comprehensive investigation into the in-plane strength properties of 2-d braids has been carried out, using tubular specimens of AS4/1895 carbon fiber/epoxy made with the RTM process. The biaxial loadings involved both compression-compression and tension-tension biaxial tests. The results showed that failure under biaxial loading could be based on procedures similar to those developed for laminates, using critical strain values in the axial and braid direction fibers, but with degraded strength properties because of the undulating nature of -the fiber paths. A significant loss of strength was observed in the braid directions.

  13. Band-structure engineering in conjugated 2D polymers.

    PubMed

    Gutzler, Rico

    2016-10-26

    Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.

  14. Enhanced automated platform for 2D characterization of RFID communications

    NASA Astrophysics Data System (ADS)

    Vuza, Dan Tudor; Vlǎdescu, Marian

    2016-12-01

    The characterization of the quality of communication between an RFID reader and a transponder at all expected positions of the latter on the reader antenna is of primal importance for the evaluation of performance of an RFID system. Continuing the line of instruments developed for this purpose by the authors, the present work proposes an enhanced version of a previously introduced automated platform for 2D evaluation. By featuring higher performance in terms of mechanical speed, the new version allows to obtain 2D maps of communication with a higher resolution that would have been prohibitive in terms of test duration with the previous version. The list of measurement procedures that can be executed with the platform is now enlarged with additional ones, such as the determination of the variation of the magnetic coupling between transponder and antenna across the antenna surface and the utilization of transponder simulators for evaluation of the quality of communication.

  15. Transition to chaos in an open unforced 2D flow

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.; Vastano, John A.

    1993-01-01

    The present numerical study of unsteady, low Reynolds number flow past a 2D airfoil attempts to ascertain the bifurcation sequence leading from simple periodic to complex aperiodic flow with rising Reynolds number, as well as to characterize the degree of chaos present in the aperiodic flow and assess the role of numerics in the modification and control of the observed bifurcation scenario. The ARC2D Navier-Stokes code is used in an unsteady time-accurate mode for most of these computations. The system undergoes a period-doubling bifurcation to chaos as the Reynolds number is increased from 800 to 1600; its chaotic attractors are characterized by estimates of the fractal dimension and partial Liapunov exponent spectra.

  16. Hard and Soft Physics with 2D Materials

    NASA Astrophysics Data System (ADS)

    McEuen, Paul

    With their remarkable structural, thermal, mechanical, optical, chemical, and electronic properties, 2D materials are truly special. For example, a graphene sheet can be made into a high-performance transistor, but it is also the ultimate realization of a thin mechanical sheet. Such sheets, first studied in detail by August Föppl over a hundred years ago, are notoriously complex, since they can bend, buckle, and crumple in a variety of ways. In this talk, I will discuss a number of experiments to probe these unusual materials, from the effects of ripples on the mechanical properties of a graphene sheet, to folding with atomically thin bimorphs, to the electronic properties of bilayer graphene solitons. Finally, I discuss how the Japanese paper art of kirigami (kiru = `to cut', kami = `paper') applied to 2D materials offers a route to mechanical metamaterials and the construction of nanoscale machines.

  17. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  18. Controlling avalanche criticality in 2D nano arrays

    PubMed Central

    Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments. PMID:23677142

  19. FPCAS2D user's guide, version 1.0

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    1994-01-01

    The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.

  20. Structural Complexity and Phonon Physics in 2D Arsenenes.

    PubMed

    Carrete, Jesús; Gallego, Luis J; Mingo, Natalio

    2017-03-15

    In the quest for stable 2D arsenic phases, four different structures have been recently claimed to be stable. We show that, due to phonon contributions, the relative stability of those structures differs from previous reports and depends crucially on temperature. We also show that one of those four phases is in fact mechanically unstable. Furthermore, our results challenge the common assumption of an inverse correlation between structural complexity and thermal conductivity. Instead, a richer picture emerges from our results, showing how harmonic interactions, anharmonicity, and symmetries all play a role in modulating thermal conduction in arsenenes. More generally, our conclusions highlight how vibrational properties are an essential element to be carefully taken into account in theoretical searches for new 2D materials.

  1. Controlling avalanche criticality in 2D nano arrays.

    PubMed

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  2. Micro-structural Fluctuations in 2D Dusty Plasma Liquids

    SciTech Connect

    I Lin; Huang, Y.-H.; Teng, L.-W.

    2007-07-13

    We address structural fluctuations in a cold 2D dusty plasma liquid which is self-organized through the strong Coulomb coupling of the negatively charged micro-meter sized dust particles suspending in weakly ionized discharges. The 2D liquids consist of triangular type ordered domains surrounded by defect clusters, which can be reorganized through avalanche type hopping under the interplay of strong Coulomb coupling and thermal fluctuations. The spatio-temporal evolutions of the local bond-orientational order are directly tracked through digital optical microscopy. The power law scaling of the temporal persistence length of fluctuations is obtained for the cold liquid. The measurement of the conditional probability of the persistence lengths of the successive fluctuating cycles suggests certain types of the persistence length combinations are more preferred. The memory of persistence lasts a few fluctuating cycles.

  3. 2D FEM Heat Transfer & E&M Field Code

    SciTech Connect

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  4. Absolute state-selected total cross sections for the ion-molecule reactions O + (4S,2D,2P)+H2(D2)

    NASA Astrophysics Data System (ADS)

    Li, X.; Huang, Y.-L.; Flesch, G. D.; Ng, C. Y.

    1997-01-01

    Absolute total cross sections for the state-selected reactions of O+(4S,2D,2P)+H2 (D2) have been measured in the center-of-mass collision energy (Ec.m.) range of 0.02-12 eV. The cross sections for OH+ (OD+) from O+(2D)+H2 (D2) are slightly higher than those from O+(4S)+H2 (D2), whereas the OH+ (OD+) cross sections from O+ (2P)+H2 (D2) are ≈40% lower than those from O+(4S)+H2 (D2) and O+ (2D)+H2 (D2). At Ec.m.<0.5 eV, the total cross sections for OH+ (OD+) from O+ (4S)+H2 (D2) and O+(2D)+H2 (D2) are in accord with those predicted by the Langevin-Gioumousis-Stevenson model. Significantly higher cross sections are observed for H+ (D+) and H2+ (D2+) from O+(2D)+H2 (D2) and O+(2P)+H2 (D2), as compared to those from O+(4S)+H2 (D2). The exothermic nature of the O+(2D,2P)+H2 (D2) charge transfer collisions accounts for the high cross sections observed for H2+ (D2+). While the H+ (D+) ions observed in the O+(4S)+H2 (D2) reaction are identified with the H+ (D+)+O+H channel, the H+ (D+) ions from the reactions involving O+(2D) and O+(2P) are associated mostly with the H+ (D+)+OH (OD) channel, the formation of which obeys the spin-conservation rule. The comparison of the sum (σT) of cross sections for OH+ (OD+), H2+ (D2+), and H+ (D+) from O+(4S)+H2 (D2) to those from O+(2D)+H2 (D2) and O+(2P)+H2 (D2) shows that the σTs for O+(4S)+H2 (D2), O+(2D)+H2 (D2), and O+(2P)+H2 (D2) at Ec.m.<0.5 eV are comparable. At Ec.m.>0.5 eV, the σTs for O+(2P)+H2 (D2) are greater than those for O+(2D)+H2 (D2), which in turn are greater than those for O+(4S)+H2 (D2). This observation is attributed to the increase in the number of accessible product channels for reactions involving the excited O+(2D) and O+(2P) reactant ions.

  5. Protein Motions and Folding Investigated by NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palmer, Arthur

    2002-03-01

    NMR spin relaxation spectroscopy is a powerful experimental approach for globally characterizing conformational dynamics of proteins in solution. Laboratory frame relaxation measurements are sensitive to overall rotational diffusion and internal motions on picosecond-nanosecond time scales, while rotating frame relaxation measurements are sensitive to chemical exchange processes on microsecond-millisecond time scales. The former approach is illustrated by ^15N laboratory-frame relaxation experiments as a function of temperature for the helical subdomain HP36 of the F-actin-binding headpiece domain of chicken villin. The data are analyzed using the model-free formalism to characterize order parameters and effective correlation times for intramolecular motions of individual ^15N sites. The latter approach is illustrated by ^13C Carr-Purcell-Meiboom-Gill relaxation measurements for the de novo designed α_2D protein and by ^15N rotating-frame relaxation measurements for the peripheral subunit-binding domain (PSBD) from the dihydrolopoamide acetyltransferase component of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus. These experiments are used to determine the folding and unfolding kinetic rate constants for the two proteins. The results for HP36, α_2D, and PSBD illustrate the capability of current NMR methods for characterizing dynamic processes on multiple time scales in proteins.

  6. Local Topological Order Inhibits Thermal Stability in 2D

    NASA Astrophysics Data System (ADS)

    Landon-Cardinal, Olivier; Poulin, David

    2013-03-01

    We study the robustness of quantum information stored in the degenerate ground space of a local, frustration-free Hamiltonian with commuting terms on a 2D spin lattice. On one hand, a macroscopic energy barrier separating the distinct ground states under local transformations would protect the information from thermal fluctuations. On the other hand, local topological order would shield the ground space from static perturbations. Here we demonstrate that local topological order implies a constant energy barrier, thus inhibiting thermal stability.

  7. Synchronization of semiconductor laser arrays with 2D Bragg structures

    NASA Astrophysics Data System (ADS)

    Baryshev, V. R.; Ginzburg, N. S.

    2016-08-01

    A model of a planar semiconductor multi-channel laser is developed. In this model two-dimensional (2D) Bragg mirror structures are used for synchronizing radiation of multiple laser channels. Coupling of longitudinal and transverse waves can be mentioned as the distinguishing feature of these structures. Synchronization of 20 laser channels is demonstrated with a semi-classical approach based on Maxwell-Bloch equations.

  8. Statistical analysis of quiet stance sway in 2-D.

    PubMed

    Bakshi, Avijit; DiZio, Paul; Lackner, James R

    2014-04-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909-912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model's ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior-posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation.

  9. Flow transitions in a 2D directional solidification model

    NASA Technical Reports Server (NTRS)

    Larroude, Philippe; Ouazzani, Jalil; Alexander, J. Iwan D.

    1992-01-01

    Flow transitions in a Two Dimensional (2D) model of crystal growth were examined using the Bridgman-Stockbarger me thod. Using a pseudo-spectral Chebyshev collocation method, the governing equations yield solutions which exhibit a symmetry breaking flow tansition and oscillatory behavior indicative of a Hopf bifurcation at higher values of Ra. The results are discussed from fluid dynamic viewpoint, and broader implications for process models are also addressed.

  10. Vertical heterostructures based on graphene and other 2D materials

    SciTech Connect

    Antonova, I. V.

    2016-01-15

    Recent advances in the fabrication of vertical heterostructures based on graphene and other dielectric and semiconductor single-layer materials, including hexagonal boron nitride and transition-metal dichalcogenides, are reviewed. Significant progress in this field is discussed together with the great prospects for the development of vertical heterostructures for various applications, which are associated, first of all, with reconsideration of the physical principles of the design and operation of device structures based on graphene combined with other 2D materials.

  11. Fully automated 2D-3D registration and verification.

    PubMed

    Varnavas, Andreas; Carrell, Tom; Penney, Graeme

    2015-12-01

    Clinical application of 2D-3D registration technology often requires a significant amount of human interaction during initialisation and result verification. This is one of the main barriers to more widespread clinical use of this technology. We propose novel techniques for automated initial pose estimation of the 3D data and verification of the registration result, and show how these techniques can be combined to enable fully automated 2D-3D registration, particularly in the case of a vertebra based system. The initialisation method is based on preoperative computation of 2D templates over a wide range of 3D poses. These templates are used to apply the Generalised Hough Transform to the intraoperative 2D image and the sought 3D pose is selected with the combined use of the generated accumulator arrays and a Gradient Difference Similarity Measure. On the verification side, two algorithms are proposed: one using normalised features based on the similarity value and the other based on the pose agreement between multiple vertebra based registrations. The proposed methods are employed here for CT to fluoroscopy registration and are trained and tested with data from 31 clinical procedures with 417 low dose, i.e. low quality, high noise interventional fluoroscopy images. When similarity value based verification is used, the fully automated system achieves a 95.73% correct registration rate, whereas a no registration result is produced for the remaining 4.27% of cases (i.e. incorrect registration rate is 0%). The system also automatically detects input images outside its operating range.

  12. Report of the 1988 2-D Intercomparison Workshop, chapter 3

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar

    1989-01-01

    Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.

  13. 2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes.

    PubMed

    Guo, Yunfan; Lin, Li; Zhao, Shuli; Deng, Bing; Chen, Hongliang; Ma, Bangjun; Wu, Jinxiong; Yin, Jianbo; Liu, Zhongfan; Peng, Hailin

    2015-08-05

    Broadband transparent electrodes based on 2D hybrid nanostructured Dirac materials between Bi2 Se3 and graphene are synthesized using a chemical vapor deposition (CVD) method. Bi2 Se3 nanoplates are preferentially grown along graphene grain boundaries as "smart" conductive patches to bridge the graphene boundary. These hybrid films increase by one- to threefold in conductivity while remaining highly transparent over broadband wavelength. They also display outstanding chemical stability and mechanical flexibility.

  14. Parallel-pipeline 2-D DCT/IDCT processor chip

    NASA Astrophysics Data System (ADS)

    Ruiz, G. A.; Michell, J. A.; Buron, A.

    2005-06-01

    This paper describes the architecture of an 8x8 2-D DCT/IDCT processor with high throughput and a cost-effective architecture. The 2D DCT/IDCT is calculated using the separability property, so that its architecture is made up of two 1-D processors and a transpose buffer (TB) as intermediate memory. This transpose buffer presents a regular structure based on D-type flip-flops with a double serial input/output data-flow very adequate for pipeline architectures. The processor has been designed with parallel and pipeline architecture to attain high throughput, reduced hardware and maximum efficiency in all arithmetic elements. This architecture allows that the processing elements and arithmetic units work in parallel at half the frequency of the data input rate, except for normalization of transform which it is done in a multiplier operating at maximum frequency. Moreover, it has been verified that the precision analysis of the proposed processor meets the demands of IEEE Std. 1180-1990 used in video codecs ITU-T H.261 and ITU-T H.263. This processor has been conceived using a standard cell design methodology and manufactured in a 0.35-μm CMOS CSD 3M/2P 3.3V process. It has an area of 6.25 mm2 (the core is 3mm2) and contains a total of 11.7k gates, of which 5.8k gates are flip-flops. A data input rate frequency of 300MHz has been established with a latency of 172 cycles for the 2-D DCT and 178 cycles for the 2-D IDCT. The computing time of a block is close to 580ns. Its performances in computing speed as well as hardware complexity indicate that the proposed design is suitable for HDTV applications.

  15. FASTWO - A 2-D interactive algebraic grid generator

    NASA Technical Reports Server (NTRS)

    Luh, Raymond Ching-Chung; Lombard, C. K.

    1988-01-01

    This paper presents a very simple and effective computational procedure, FASTWO, for generating patched composite finite difference grids in 2-D for any geometry. Major components of the interactive graphics based method that is closely akin to and borrows many tools from transfinite interpolation are highlighted. Several grids produced by FASTWO are shown to illustrate its powerful capability. Comments about extending the methodology to 3-D are also given.

  16. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  17. 2D Lattices of Ferromagnetic Nanoparticles as Supermagnetics

    DTIC Science & Technology

    1999-06-18

    Supermagnetics DISTRIBUTION: Approved for public release, distribution unlimited Availability: Hard copy only. This paper is part of the following report: TITLE...Technology" OAN.01 i St Petersburg, Russia, June 14-18, 1999 © 1999 loffe Institute 2D lattices of ferromagnetic nanoparticles as supermagnetics A. A...temperature the system became ordered due to the dipole interaction of particles. Such a state of the system was defined as supermagnetic [ ]. The critical

  18. 2D and 3D Traveling Salesman Problem

    ERIC Educational Resources Information Center

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt

    2011-01-01

    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  19. Numerical 2D-modeling of multiroll leveling

    NASA Astrophysics Data System (ADS)

    Mathieu, N.; Potier-Ferry, M.; Zahrouni, H.

    2016-10-01

    Multiroll leveling is a forming process used in the metals industries (aluminum, steel, …) in order to correct flatness defects and minimize residual stresses in strips thanks to alternating bending. This work proposes a Finite Element 2D model to simulate the metal sheet conveying through the machine. Obtained results (plastic strain and residual stress distributions through thickness) are analysed. Strip deformation, after elastic springback and potential buckling, is also predicted (residual curvatures).

  20. 2-D Signal Generation Using State-Space Formulation.

    DTIC Science & Technology

    1985-12-01

    published that have established nonoptical .~ -~ Iimage processing as a viable area of research. A large portion of this research emphasizes the linear...research and the study of time-discrete linear systems. This thesis develops the discrete model of Roesser [Ref. 5] for linear image processing which... THESIS 2-D SIGNAL GENERATION USING STATE-SPACE FORMULATION - • by (.) Evangelos Theofilou December 1985 • Thesis Advisor: Sydney R. Parker Approved