Science.gov

Sample records for 2d nmr methods

  1. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  2. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  3. Increasing the sensitivity of 2D high-resolution NMR methods applied to quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Amoureux, J. P.; Delevoye, L.; Steuernagel, S.; Gan, Z.; Ganapathy, S.; Montagne, L.

    2005-02-01

    Gan and Kwak recently proposed a soft-pulse added mixing (SPAM) idea in the classical two-pulse multiple-quantum magic-angle spinning scheme. In the SPAM method, a soft π/2 pulse is added after the second hard-pulse (conversion pulse) and all coherence orders in between them are constructively used to obtain the signal. We, here, further extend this idea to distributed samples where the signal mainly results from echo pathways and that from anti-echo pathways dies out after a few t1 increments. We show that, with a combination of SPAM and collection of fewer anti-echoes, an enhancement of the signal to noise ratio by a factor of ca. 3 may be obtained over the z-filtered version. This may prove to be useful even for samples with long T2' relaxation times.

  4. Experimental identification of diffusive coupling using 2D NMR.

    PubMed

    Song, Y-Q; Carneiro, G; Schwartz, L M; Johnson, D L

    2014-12-01

    Spin relaxation based nuclear magnetic resonance (NMR) methods have been used extensively to determine pore size distributions in a variety of materials. This approach is based on the assumption that each pore is in the fast diffusion limit but that diffusion between pores can be neglected. However, in complex materials these assumptions may be violated and the relaxation time distribution is not easily interpreted. We present a 2D NMR technique and an associated data analysis that allow us to work directly with the time dependent experimental data without Laplace inversion to identify the signature of diffusive coupling between different pores. Measurements on microporous glass beads and numerical simulations are used to illustrate the technique. PMID:25526135

  5. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  6. High-resolution 2D NMR spectra in inhomogeneous fields via 3D acquisition

    NASA Astrophysics Data System (ADS)

    Lin, Yanqin; Wei, Zhiliang; Zhang, Liandi; Lin, Liangjie; Chen, Zhong

    2014-04-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical studies. Here, a pulse sequence, based on coherence transfer module of tracking differences of precession frequencies of two spins and spin echo module, is proposed to obtain two dimension (2D) high-resolution NMR spectra via 3D acquisition under large field inhomogeneity. The proposed scheme composes of simple hard pulses and rectangle gradients. Resulting 2D spectra exhibit chemical shift differences and J coupling splittings in two orthogonal dimensions. The method developed here may offer a promising way for in situ high-resolution NMR studies on combinatorial chemistry.

  7. In-Cell Protein Structures from 2D NMR Experiments.

    PubMed

    Müntener, Thomas; Häussinger, Daniel; Selenko, Philipp; Theillet, Francois-Xavier

    2016-07-21

    In-cell NMR spectroscopy provides atomic resolution insights into the structural properties of proteins in cells, but it is rarely used to solve entire protein structures de novo. Here, we introduce a paramagnetic lanthanide-tag to simultaneously measure protein pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) to be used as input for structure calculation routines within the Rosetta program. We employ this approach to determine the structure of the protein G B1 domain (GB1) in intact Xenopus laevis oocytes from a single set of 2D in-cell NMR experiments. Specifically, we derive well-defined GB1 ensembles from low concentration in-cell NMR samples (∼50 μM) measured at moderate magnetic field strengths (600 MHz), thus offering an easily accessible alternative for determining intracellular protein structures. PMID:27379949

  8. 2D NMR-spectroscopic screening reveals polyketides in ladybugs

    PubMed Central

    Deyrup, Stephen T.; Eckman, Laura E.; McCarthy, Patrick H.; Smedley, Scott R.; Meinwald, Jerrold; Schroeder, Frank C.

    2011-01-01

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature’s cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature’s structure space and suggests that insect metabolomes remain vastly underexplored. PMID:21646540

  9. 2D NMR-spectroscopic screening reveals polyketides in ladybugs.

    PubMed

    Deyrup, Stephen T; Eckman, Laura E; McCarthy, Patrick H; Smedley, Scott R; Meinwald, Jerrold; Schroeder, Frank C

    2011-06-14

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature's cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature's structure space and suggests that insect metabolomes remain vastly underexplored. PMID:21646540

  10. Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses

    NASA Astrophysics Data System (ADS)

    Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin

    2012-12-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.

  11. Peak width issues with generalised 2D correlation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kirwan, Gemma M.; Adams, Michael J.

    2008-12-01

    Two-dimensional spectral correlation analysis is shown to be sensitive to fluctuations in spectral peak width as a function of perturbation variable. This is particularly significant where peak width fluctuations are of similar order of magnitude as the peak width values themselves and where changes in peak width are not random but are, for example, proportional to intensity. In such cases these trends appear in the asynchronous matrix as false peaks that serve to interfere with interpretation of the data. Complex, narrow band spectra such as provided by 1H NMR spectroscopy are demonstrated to be prone to such interference. 2D correlation analysis was applied to a series of NMR spectra corresponding to a commercial wine fermentation, in which the samples collected over a period of several days exhibit dramatic changes in concentration of minor and major components. The interference due to changing peak width effects is eliminated by synthesizing the recorded spectra using a constant peak width value prior to performing 2D correlation analysis.

  12. (13)C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy.

    PubMed

    Idström, Alexander; Schantz, Staffan; Sundberg, Johan; Chmelka, Bradley F; Gatenholm, Paul; Nordstierna, Lars

    2016-10-20

    From the assignment of the solid-state (13)C NMR signals in the C4 region, distinct types of crystalline cellulose, cellulose at crystalline surfaces, and disordered cellulose can be identified and quantified. For regenerated cellulose, complete (13)C assignments of the other carbon regions have not previously been attainable, due to signal overlap. In this study, two-dimensional (2D) NMR correlation methods were used to resolve and assign (13)C signals for all carbon atoms in regenerated cellulose. (13)C-enriched bacterial nanocellulose was biosynthesized, dissolved, and coagulated as highly crystalline cellulose II. Specifically, four distinct (13)C signals were observed corresponding to conformationally different anhydroglucose units: two signals assigned to crystalline moieties and two signals assigned to non-crystalline species. The C1, C4 and C6 regions for cellulose II were fully examined by global spectral deconvolution, which yielded qualitative trends of the relative populations of the different cellulose moieties, as a function of wetting and drying treatments. PMID:27474592

  13. Non-linear effects in quantitative 2D NMR of polysaccharides: pitfalls and how to avoid them.

    PubMed

    Martineau, Estelle; El Khantache, Kamel; Pupier, Marion; Sepulcri, Patricia; Akoka, Serge; Giraudeau, Patrick

    2015-04-10

    Quantitative 2D NMR is a powerful analytical tool which is widely used to determine the concentration of small molecules in complex samples. Due to the site-specific response of the 2D NMR signal, the determination of absolute concentrations requires the use of a calibration or standard addition approach, where the analyte acts as its own reference. Standard addition methods, where the targeted sample is gradually spiked with known amounts of the targeted analyte, are particularly well-suited for quantitative 2D NMR of small molecules. This paper explores the potential of such quantitative 2D NMR approaches for the quantitative analysis of a high molecular weight polysaccharide. The results highlight that the standard addition method leads to a strong under-estimation of the target concentration, whatever the 2D NMR pulse sequence. Diffusion measurements show that a change in the macromolecular organization of the studied polysaccharide is the most probable hypothesis to explain the non-linear evolution of the 2D NMR signal with concentration. In spite of this non-linearity--the detailed explanation of which is out of the scope of this paper--we demonstrate that accurate quantitative results can still be obtained provided that an external calibration is performed with a wide range of concentrations surrounding the target value. This study opens the way to a number of studies where 2D NMR is needed for the quantitative analysis of macromolecules.

  14. In situ fluid typing and quantification with 1D and 2D NMR logging.

    PubMed

    Sun, Boqin

    2007-05-01

    In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples. PMID:17466778

  15. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  16. Compressed Sensing Reconstruction of Ultrafast 2D NMR Data: Principles and Biomolecular Applications

    PubMed Central

    Shrot, Yoav; Frydman, Lucio

    2016-01-01

    A topic of active investigation in 2D NMR relates to the minimum number of scans required for acquiring this kind of spectra, particularly when these are dictated by sampling rather than by sensitivity considerations. Reductions in this minimum number of scans have been achieved by departing from the regular sampling used to monitor the indirect domain, and relying instead on non-uniform sampling and iterative reconstruction algorithms. Alternatively, so-called “ultrafast” methods can compress the minimum number of scans involved in 2D NMR all the way to a minimum number of one, by spatially encoding the indirect domain information and subsequently recovering it via oscillating field gradients. Given ultrafast NMR’s simultaneous recording of the indirect- and direct-domain data, this experiment couples the spectral constraints of these orthogonal domains –often calling for the use of strong acquisition gradients and large filter widths to fulfill the desired bandwidth and resolution demands along all spectral dimensions. This study discusses a way to alleviate these demands, and thereby enhance the method’s performance and applicability, by combining spatial encoding with iterative reconstruction approaches. Examples of these new principles are given based on the compressed-sensed reconstruction of biomolecular 2D HSQC ultrafast NMR data, an approach that we show enables a decrease of the gradient strengths demanded in this type of experiments by up to 80%. PMID:21316276

  17. Real-time separation of natural products by ultrafast 2D NMR coupled to on-line HPLC.

    PubMed

    Queiroz, Luiz H K; Queiroz, Darlene P K; Dhooghe, Liene; Ferreira, Antonio G; Giraudeau, Patrick

    2012-05-21

    Hyphenated HPLC-NMR is an extremely efficient analytical tool, which makes it possible to perform on-flow experiments where 1D NMR spectra are obtained in real time as the analytes are separated and eluted from the chromatographic column. However, it is incompatible with multidimensional NMR methods that form an indispensible tool for the study of complex mixtures. Recently, Frydman and co-workers have proposed an ultrafast 2D NMR approach, where a complete 2D NMR correlation can be recorded in a single scan, thus providing a solution to the irreversibility of hyphenated techniques. This paper presents the first implementation of on-line ultrafast HPLC-NMR. Ultrafast COSY spectra are acquired every 12 s in the course of a chromatographic run performed on a mixture of natural aromatic compounds. The results, obtained on a commercial HPLC-NMR setup, highlight the generality of the ultrafast HPLC-NMR methodology, thus opening the way to a number of applications in the numerous fields in which HPLC-NMR forms a routine analytical tool.

  18. Quantitative Analysis of Metabolic Mixtures by 2D 13C-Constant-Time TOCSY NMR Spectroscopy

    PubMed Central

    Bingol, Kerem; Zhang, Fengli; Bruschweiler-Li, Lei; Brüschweiler, Rafael

    2013-01-01

    An increasing number of organisms can be fully 13C-labeled, which has the advantage that their metabolomes can be studied by high-resolution 2D NMR 13C–13C constant-time (CT) TOCSY experiments. Individual metabolites can be identified via database searching or, in the case of novel compounds, through the reconstruction of their backbone-carbon topology. Determination of quantitative metabolite concentrations is another key task. Because significant peak overlaps in 1D NMR spectra prevents straightforward quantification through 1D peak integrals, we demonstrate here the direct use of 13C–13C CT-TOCSY spectra for metabolite quantification. This is accomplished through the quantum-mechanical treatment of the TOCSY magnetization transfer at short and long mixing times or by the use of analytical approximations, which are solely based on the knowledge of the carbon-backbone topologies. The methods are demonstrated for carbohydrate and amino-acid mixtures. PMID:23773204

  19. Single-scan 2D NMR: An Emerging Tool in Analytical Spectroscopy

    PubMed Central

    Giraudeau, Patrick; Frydman, Lucio

    2016-01-01

    Two-dimensional Nuclear Magnetic Resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing an increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago a so-called “ultrafast” (UF) approach was proposed, capable to deliver arbitrary 2D NMR spectra involving any kind of homo- or hetero-nuclear correlations, in a single scan. During the intervening years the performance of this sub-second 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool witnessing an expanded scope of applications. The present reviews summarizes the principles and the main developments which have contributed to the success of this approach, and focuses on applications which have been recently demonstrated in various areas of analytical chemistry –from the real time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  20. Single Scan 2D NMR Spectroscopy on a 25 T Bitter Magnet.

    PubMed

    Shapira, Boaz; Shetty, Kiran; Brey, William W; Gan, Zhehong; Frydman, Lucio

    2007-07-16

    2D NMR relies on monitoring systematic changes in the phases incurred by spin coherences as a function of an encoding time t(1), whose value changes over the course of independent experiments. The intrinsic multiscan nature of such protocols implies that resistive and/or hybrid magnets, capable of delivering the highest magnetic field strengths but possessing poor temporal stabilities, become unsuitable for 2D NMR acquisitions. It is here shown with a series of homo- and hetero-nuclear examples that such limitations can be bypassed using recently proposed 2D "ultrafast" acquisition schemes, which correlate interactions along all spectral dimensions within a single scan.

  1. Single Scan 2D NMR Spectroscopy on a 25 T Bitter Magnet

    PubMed Central

    Shapira, Boaz; Shetty, Kiran; Brey, William W.; Gan, Zhehong; Frydman, Lucio

    2007-01-01

    2D NMR relies on monitoring systematic changes in the phases incurred by spin coherences as a function of an encoding time t1, whose value changes over the course of independent experiments. The intrinsic multiscan nature of such protocols implies that resistive and/or hybrid magnets, capable of delivering the highest magnetic field strengths but possessing poor temporal stabilities, become unsuitable for 2D NMR acquisitions. It is here shown with a series of homo- and hetero-nuclear examples that such limitations can be bypassed using recently proposed 2D “ultrafast” acquisition schemes, which correlate interactions along all spectral dimensions within a single scan. PMID:18037970

  2. 2D-Cosy NMR Spectroscopy as a Quantitative Tool in Biological Matrix: Application to Cyclodextrins.

    PubMed

    Dufour, Gilles; Evrard, Brigitte; de Tullio, Pascal

    2015-11-01

    Classical analytical quantifications in biological matrices require time-consuming sample pre-treatments and extractions. Nuclear magnetic resonance (NMR) analysis does not require heavy sample treatments or extractions which therefore increases its accuracy in quantification. In this study, even if quantitative (q)NMR could not be applied to 2D spectra, we demonstrated that cross-correlations and diagonal peak intensities have a linear relationship with the analyzed pharmaceutical compound concentration. This work presents the validation process of a 2D-correlation spectroscopy (COSY) NMR quantification of 2-hydroxypropyl-β-cyclodextrin in plasma. Specificity, linearity, precision (repeatability and intermediate precision), trueness, limits of quantification (LOQs), and accuracy were used as validation criteria. 2D-NMR could therefore be used as a valuable and accurate analytical technique for the quantification of pharmaceutical compounds, including hardly detectable compounds such as cyclodextrins or poloxamers, in complex biological matrices based on a calibration curve approach.

  3. 1D and 2D NMR studies of isobornyl acrylate - Methyl methacrylate copolymers

    NASA Astrophysics Data System (ADS)

    Khandelwal, Deepika; Hooda, Sunita; Brar, A. S.; Shankar, Ravi

    2011-10-01

    Isobornyl acrylate - methyl methacrylate (B/M) copolymers of different compositions were synthesized by atom transfer radical polymerization (ATRP) using methyl-2-bromopropionate as an initiator and PMDETA copper complex as catalyst under nitrogen atmosphere at 70 °C. 1H NMR spectrum was used to determine the compositions of copolymer. The copolymer compositions were then used to determine the reactivity ratios of monomers. Reactivity ratios of co-monomers in B/M copolymer, determined from linear Kelen-Tudos method (KT) and non linear Error-in-Variable Method (EVM), are rB = 0.41 ± 0.11, rM = 1.11 ± 0.33 and rB = 0.52, rM = 1.31 respectively. The complete resonance assignments of 1H and 13C{ 1H} NMR spectra were carried out with the help of Distortion less Enhancement by Polarization Transfer (DEPT), two-dimensional Heteronuclear Single Quantum Coherence (HSQC). 2D HSQC assignments were further confirmed by 2D Total Correlation Spectroscopy (TOCSY). The carbonyl carbon of B and M units and methyl carbon of M unit were assigned up to triad compositional and configurational sequences whereas β-methylene carbons were assigned up to tetrad compositional and configurational sequences. Similarly the methine carbon of B unit was assigned up to pentad level. 1,3 and 1,4 bond order couplings of carbonyl carbon and quaternary carbon resonances with methine, methylene and methyl protons were studied in detail using 2D Hetero Nuclear Multiple Bond Correlation (HMBC) spectra.

  4. NMR methods in combinatorial chemistry.

    PubMed

    Shapiro, M J; Wareing, J R

    1998-06-01

    The use of NMR spectroscopy in combinatorial chemistry has provided a versatile tool for monitoring combinatorial chemistry reactions and for assessing ligand-receptor interactions. The application of magic angle spinning NMR is widespread and has allowed structure determination to be performed on compounds attached to solid supports. A variety of two-dimensional NMR techniques have been applied to enhance the usability of the magic angle spinning NMR data. New developments for solution NMR analysis include high performance liquid chromatography, NMR, mass spectroscopy and flow NMR. NMR based methods currently being investigated may prove valuable as compound screening tools.

  5. Chemical Shifts to Metabolic Pathways: Identifying Metabolic Pathways Directly from a Single 2D NMR Spectrum.

    PubMed

    Dubey, Abhinav; Rangarajan, Annapoorni; Pal, Debnath; Atreya, Hanudatta S

    2015-12-15

    Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) [(13)C-(1)H] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a "uniqueness score" and a "coverage score". Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of decluttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMR-based metabolomics data by reducing existing impediments.

  6. 2D NMR spectroscopic analyses of archangelicin from the seeds of Angelica archangelica.

    PubMed

    Muller, Melanie; Byres, Maureenx; Jaspars, Marcel; Kumarasamy, Yashodharan; Middleton, Moira; Nahar, Lutfun; Shoeb, Mohammad; Sarker, Satyajit D

    2004-12-01

    A total of six coumarins, bergapten (1), xanthotoxin (2), imperatorin (3), isoimperatorin (4), phellopterin (5) and archangelicin (6), have been isolated from an n-hexane extract of the seeds of Angelica archangelica. The results of comprehensive 2D NMR analyses of archangelicin are discussed. PMID:15634612

  7. Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy.

    PubMed

    Stintzing, Florian C; Conrad, Jürgen; Klaiber, Iris; Beifuss, Uwe; Carle, Reinhold

    2004-02-01

    Four betacyanin pigments were analysed by LC NMR and subjected to extensive NMR characterisation after isolation. Previously, low pH values were applied for NMR investigations of betalains resulting in rapid degradation of the purified substances thus preventing extensive NMR studies. Consequently, up to now only one single (13)C NMR spectrum of a betalain pigment, namely that of neobetanin (=14,15-dehydrobetanin), was available. Because of its sufficient stability under highly acidic conditions otherwise detrimental for betacyanins, this pigment remained an exemption. Since betalains are most stable in the pH range of 5-7, a new solvent system has been developed allowing improved data acquisition through improved pigment stability at near neutral pH. Thus, not only (1)H, but for the first time also partial (13)C data of betanin, isobetanin, phyllocactin and hylocerenin isolated from red-purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose, Cactaceae] could be indirectly obtained by gHSQC- and gHMQC-NMR experiments.

  8. Optimizing water hyperpolarization and dissolution for sensitivity-enhanced 2D biomolecular NMR.

    PubMed

    Olsen, Greg; Markhasin, Evgeny; Szekely, Or; Bretschneider, Christian; Frydman, Lucio

    2016-03-01

    A recent study explored the use of hyperpolarized water, to enhance the sensitivity of nuclei in biomolecules thanks to rapid proton exchanges with labile amide backbone and sidechain groups. Further optimizations of this approach have now allowed us to achieve proton polarizations approaching 25% in the water transferred into the NMR spectrometer, effective water T1 times approaching 40s, and a reduction in the dilution demanded for the cryogenic dissolution process. Further hardware developments have allowed us to perform these experiments, repeatedly and reliably, in 5mm NMR tubes. All these ingredients--particularly the ⩾ 3000× (1)H polarization enhancements over 11.7T thermal counterparts, long T1 times and a compatibility with high-resolution biomolecular NMR setups - augur well for hyperpolarized 2D NMR studies of peptides, unfolded proteins and intrinsically disordered systems undergoing fast exchanges of their protons with the solvent. This hypothesis is here explored by detailing the provisions that lead to these significant improvements over previous reports, and demonstrating 1D coherence transfer experiments and 2D biomolecular HMQC acquisitions delivering NMR spectral enhancements of 100-500× over their optimized, thermally-polarized, counterparts. PMID:26920830

  9. GEL-STATE NMR OF BALL-MILLED WHOLE CELL WALLS IN DMSO-d6 USING 2D SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls were used for obtaining 2D solution-state NMR spectra without actual solubilization or structural modification. Ball-milled whole cell walls were swelled directly in the NMR tube with DMSO-d6 where they formed a gel. There are relatively few gel-state NMR studies. Most have involved...

  10. Gint2D-T2 correlation NMR of porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Blümich, Bernhard

    2015-03-01

    The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient Gint can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T2 in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of Gint2D and T2 by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between Gint and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz 1H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint2D-T2 maps were obtained to study the sample heterogeneity.

  11. Gint2D-T2 correlation NMR of porous media.

    PubMed

    Zhang, Yan; Blümich, Bernhard

    2015-03-01

    The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient G(int) can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T(2) in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of G(int)(2)D and T(2) by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between G(int) and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz (1)H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint(2)D-T(2) maps were obtained to study the sample heterogeneity. PMID:25723135

  12. A novel improved method for analysis of 2D diffusion-relaxation data--2D PARAFAC-Laplace decomposition.

    PubMed

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T; Engelsen, Søren B

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T(2)-D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T(2)-D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T(2)-D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D=3 x 10(-12) m(2) s(-1) and T(2)=180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D=10(-9) m(2) s(-1), T(2)=10 ms and D=3 x 10(-13) m(2) s(-1), T(2)=13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  13. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  14. A high-resolution 2D J-resolved NMR detection technique for metabolite analyses of biological samples

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Zhang, Zhiyong; Chen, Hao; Feng, Jianghua; Cai, Shuhui; Chen, Zhong

    2015-02-01

    NMR spectroscopy is a commonly used technique for metabolite analyses. Due to the observed macroscopic magnetic susceptibility in biological tissues, current NMR acquisitions in measurements of biological tissues are generally performed on tissue extracts using liquid NMR or on tissues using magic-angle spinning techniques. In this study, we propose an NMR method to achieve high-resolution J-resolved information for metabolite analyses directly from intact biological samples. A dramatic improvement in spectral resolution is evident in our contrastive demonstrations on a sample of pig brain tissue. Metabolite analyses for a postmortem fish from fresh to decayed statuses are presented to further reveal the capability of the proposed method. This method is a previously-unreported high-resolution 2D J-resolved spectroscopy for biological applications without specialised hardware requirements or complicated sample pretreatments. It provides a significant contribution to metabolite analyses of biological samples, and may be potentially applicable to in vivo samples. Furthermore, this method also can be applied to measurements of semisolid and viscous samples.

  15. Real-time reaction monitoring by ultrafast 2D NMR on a benchtop spectrometer.

    PubMed

    Gouilleux, Boris; Charrier, Benoît; Danieli, Ernesto; Dumez, Jean-Nicolas; Akoka, Serge; Felpin, François-Xavier; Rodriguez-Zubiri, Mireia; Giraudeau, Patrick

    2015-12-01

    Reaction monitoring is widely used to follow chemical processes in a broad range of application fields. Recently, the development of robust benchtop NMR spectrometers has brought NMR under the fume hood, making it possible to monitor chemical reactions in a safe and accessible environment. However, these low-field NMR approaches suffer from limited resolution leading to strong peak overlaps, which can limit their application range. Here, we propose an approach capable of recording ultrafast 2D NMR spectra on a compact spectrometer and of following in real time reactions in the synthetic chemistry laboratory. This approach--whose potential is shown here on a Heck-Matsuda reaction--is highly versatile; the duration of the measurement can be optimized to follow reactions whose time scale ranges from between a few tens of seconds to a few hours. It makes it possible to monitor complex reactions in non-deuterated solvents, and to confirm in real time the molecular structure of the compounds involved in the reaction while giving access to relevant kinetic parameters.

  16. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  17. Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies.

    PubMed

    Zhang, Tianqi O; Grechko, Maksim; Moran, Sean D; Zanni, Martin T

    2016-01-01

    This chapter provides protocols for isotope-labeling the human islet amyloid polypeptide (hIAPP or amylin) involved in type II diabetes and γD-crystallin involved in cataract formation. Because isotope labeling improves the structural resolution, these protocols are useful for experiments using Fourier transform infrared (FTIR), two-dimensional infrared (2D IR), and NMR spectroscopies. Our research group specializes in using 2D IR spectroscopy and isotope labeling. 2D IR spectroscopy provides structural information by measuring solvation from 2D diagonal lineshapes and vibrational couplings from cross peaks. Infrared spectroscopy can be used to study kinetics, membrane proteins, and aggregated proteins. Isotope labeling provides greater certainty in the spectral assignment, which enables new structural insights that are difficult to obtain with other methods. For amylin, we provide a protocol for (13)C/(18)O labeling backbone carbonyls at one or more desired amino acids in order to obtain residue-specific structural resolution. We also provide a protocol for expressing and purifying amylin from E. coli, which enables uniform (13)C or (13)C/(15)N labeling. Uniform labeling is useful for measuring the monomer infrared spectrum in an amyloid oligomer or fiber as well as amyloid protein bound to another polypeptide or protein, such as a chaperone or an inhibitor. In addition, our expression protocol results in 2-2.5 mg of amylin peptide per 1 L cell culture, which is a high enough yield to straightforwardly obtain the 2-10 mg needed for high resolution and solid-state NMR experiments. Finally, we provide a protocol to isotope-label either of the two domains of γD-crystallin using expressed protein ligation. Domain labeling makes it possible to resolve the structures of the two halves of the protein in FTIR and 2D IR spectra. With modifications, these strategies and protocols for isotope labeling can be applied to other amyloid polypeptides and proteins.

  18. Differential Analysis of 2D NMR Spectra: New Natural Products from a Pilot-Scale Fungal Extract Library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a newly developed protocol for the differential analysis of arrays of 2D NMR spectra, we were able to rapidly identify two previously unreported indole alkaloids from a library of unfractionated fungal extracts. Differential analyses of NMR spectra thus constitute an effective tool for the non...

  19. Study of aging in oil paintings by 1D and 2D NMR spectroscopy.

    PubMed

    Spyros, Apostolos; Anglos, Demetrios

    2004-09-01

    Nuclear magnetic resonance spectroscopy is proposed as an efficient analytical tool in the study of painted artworks. The binding medium from two original oil paintings, dated from the early 20th and the late 17th century, was studied via high-resolution 1D and 2D NMR, establishing the advanced state of hydrolysis and oxidation of the oil paint. Studies of the solvent-extractable component from model samples of various drying oils, raw oil paints, and aged oil paints allowed the definition of several markers based on the integral ratios of various chemical species present in the 1H and 13C NMR spectra. These markers are sensitive to hydrolytic and oxidative processes that reflect the extent of aging in oil paintings. The rapidity, simplicity, and nondestructive nature of the proposed analytical NMR methodology represents a great advantage, since the usually minute sample quantities available from original artwork can be subsequently analyzed further by other analytical techniques, if necessary. PMID:15373425

  20. Measuring JHH values with a selective constant-time 2D NMR protocol

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Lin, Yanqin; Chen, Zhong

    2016-11-01

    Proton-proton scalar couplings play important roles in molecule structure elucidation. However, measurements of JHH values in complex coupled spin systems remain challenging. In this study, we develop a selective constant-time (SECT) 2D NMR protocol with which scalar coupling networks involving chosen protons can be revealed, and corresponding JHH values can be measured through doublets along the F1 dimension. All JHH values within a network of n fully coupled protons can be separately determined with (n - 1) SECT experiments. Additionally, the proposed pulse sequence possesses satisfactory sensitivity and handy implementation. Therefore, it will interest scientists who intend to address structural analyzes of molecules with overcrowded spectra, and may greatly facilitate the applications of scalar-coupling constants in molecule structure studies.

  1. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    SciTech Connect

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.

  2. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    DOE PAGES

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulkmore » IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less

  3. High-resolution 2D NMR spectroscopy of bicelles to measure the membrane interaction of ligands.

    PubMed

    Dvinskikh, Sergey V; Dürr, Ulrich H N; Yamamoto, Kazutoshi; Ramamoorthy, Ayyalusamy

    2007-01-31

    Magnetically aligned bicelles are increasingly being used as model membranes in solution- and solid-state NMR studies of the structure, dynamics, topology, and interaction of membrane-associated peptides and proteins. These studies commonly utilize the PISEMA pulse sequence to measure dipolar coupling and chemical shift, the two key parameters used in subsequent structural analysis. In the present study, we demonstrate that the PISEMA and other rotating-frame pulse sequences are not suitable for the measurement of long-range heteronuclear dipolar couplings, and that they provide inaccurate values when multiple protons are coupled to a 13C nucleus. Furthermore, we demonstrate that a laboratory-frame separated-local-field experiment is capable of overcoming these difficulties in magnetically aligned bicelles. An extension of this approach to accurately measure 13C-31P and 1H-31P couplings from phospholipids, which are useful to understand the interaction of molecules with the membrane, is also described. In these 2D experiments, natural abundance 13C was observed from bicelles containing DMPC and DHPC lipid molecules. As a first application, these solid-state NMR approaches were utilized to probe the membrane interaction of an antidepressant molecule, desipramine, and its location in the membrane.

  4. Isolation, LC-MS/MS and 2D-NMR characterization of alkaline degradants of tenofovir disoproxil fumarate.

    PubMed

    Anandgaonkar, Vaibhav; Gupta, Abhishek; Kona, Srinivas; Talluri, M V N Kumar

    2015-03-25

    The present work describes the preparative isolation and characterization of two alkaline degradation products of tenofovir disoproxil fumarate (TDF). Tenofovir disoproxil is a prodrug of tenofovir (antiviral agent) and co-crystal form of this prodrug with fumaric acid is tenofovir disoproxil fumarate. The drug is subjected to alkaline degradation with 0.1N sodium hydroxide for 2 min at room temperature. The two degradants were detected by high performance liquid chromatography (HPLC) at relative retention of 0.26 and 0.73 with respect to the drug. HPLC method involves gradient elution on Kromasil Eternity column (150 mm × 2.1 mm, 2.5 μm) using ammonium acetate (10mM) - acetonitrile as mobile phase at flow rate of 0.3 mL/min and UV detection at 260 nm. Two degradation products were isolated by preparative HPLC and further characterized by LC-MS, (1)H NMR, (13)C NMR and 2D-NMR. On the basis of this spectral data, the structure of two DPs are confirmed as methyl hydrogen ({[1-(6-amino-9H-purin-9-yl)propan-2-yl]oxy}methyl)phosphonate for DP-I and dimethyl ({[1-(6-amino-9H-purin-9-yl)propan-2-yl]oxy}methyl)phosphonate for DP-II. PMID:25594895

  5. MATCAKE: a flexible toolbox for 2D NMR spectra integration by CAKE algorithm

    NASA Astrophysics Data System (ADS)

    Romano, Rocco; Acernese, Fausto; Vilasi, Silvia; Paris, Debora; Motta, Andrea; Barone, Fabrizio

    2011-04-01

    MatCAKE (www.cake.unisa.it) is a toolbox for integrating 2D NMR spectra by the CAKE (Monte CArlo peaK volume Estimation)1 algorithm within the Matlab environment (www.mathworks.com). Quantitative information from multidimensional NMR experiments can be obtained by peak volume integration. The standard procedure (selection of a region around the chosen peak and addition of all values) is often biased by poor peak definition because of peak overlap. CAKE is a simple algorithm designed for volume integration of (partially) overlapping peaks. Assuming the axial symmetry of two-dimensional NMR peaks, as it occurs in NOESY and TOCSY when Lorentz-Gauss transformation of the signals is carried out, CAKE estimates the peak volume by multiplying a volume fraction by a factor R. It represents a proportionality ratio between the total and the fractional volume, which is identified as a slice in an exposed region of the overlapping peaks. The volume fraction is obtained via Monte Carlo Hit-or-Miss technique, which proved to be the most efficient because of the small region and the limited number of points within the selected area. Due to the large number of software packages available for processing nuclear magnetic resonance data, MatCAKE is designed just for implementing the new CAKE algorithm. In MatCAKe, in fact, only already processed bidimensional spectra are imported and, at the moment, the only volume integration (by CAKE and by the most simple standard procedure) are allowed. MatCAKE is a free software at disposal for the scientific community and can be obtained on line at the web address cake.unisa.it.

  6. HyperSPASM NMR: A New Approach to Single-Shot 2D Correlations on DNP-Enhanced Samples

    PubMed Central

    Donovan, Kevin J.; Frydman, Lucio

    2016-01-01

    Dissolution DNP experiments are limited to a single or at most a few scan, before the non-Boltzmann magnetization has been. This makes it impractical to record 2D NMR data by conventional, t1-incremented schemes. Here a new approach termed HyperSPASM to establish 2D heteronuclear correlations in a single scan is reported, aimed at dealing with this kind of challenge. The HyperSPASM experiment relies on imposing an amplitude-modulation of the data by a single Δt1 indirect-domain evolution time, and subsequently monitoring the imparted encoding on separate echo and the anti-echo pathway signals within a single continuous acquisition. This is implemented via the use of alternating, switching, coherence selection gradients. As a result of these manipulations the phase imparted by a heteronucleus over its indirect domain evolution can be accurately extracted, and 2D data unambiguously reconstructed with a single-shot excitation. The nature of this sequence makes the resulting experiment particularly well suited for the collecting indirectly-detected HSQC data on hyperpolarized samples. The potential of the ensuing “HyperSPASM” method is exemplified with natural-abundance hyperpolarized correlations on model systems. PMID:23159821

  7. On 2D bisection method for double eigenvalue problems

    SciTech Connect

    Ji, X.

    1996-06-01

    The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.

  8. CVMAC 2D Program: A method of converting 3D to 2D

    SciTech Connect

    Lown, J.

    1990-06-20

    This paper presents the user with a method of converting a three- dimensional wire frame model into a technical illustration, detail, or assembly drawing. By using the 2D Program, entities can be mapped from three-dimensional model space into two-dimensional model space, as if they are being traced. Selected entities to be mapped can include circles, arcs, lines, and points. This program prompts the user to digitize the view to be mapped, specify the layers in which the new two-dimensional entities will reside, and select the entities, either by digitizing or windowing. The new two-dimensional entities are displayed in a small view which the program creates in the lower left corner of the drawing. 9 figs.

  9. Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques

    NASA Astrophysics Data System (ADS)

    Topcu, Gulacti; Ulubelen, Ayhan

    2007-05-01

    In our continuing studies on Lamiaceae family plants including Salvia, Teucrium, Ajuga, Sideritis, Nepeta and Lavandula growing in Anatolia, many terpenoids, consisting of over 50 distinct triterpenoids and steroids, and over 200 diterpenoids, several sesterterpenoids and sesquiterpenoids along with many flavonoids and other phenolic compounds have been isolated. For Salvia species abietanes, for Teucrium and Ajuga species neo-clerodanes for Sideritis species ent-kaurane diterpenes are characteristic while nepetalactones are specific for Nepeta species. In this review article, only some interesting and different type of skeleton having constituents, namely rearranged, nor- or rare diterpenes, isolated from these species will be presented. For structure elucidation of these natural diterpenoids intensive one- and two-dimensional NMR techniques ( 1H, 13C, APT, DEPT, NOE/NOESY, 1H- 1H COSY, HETCOR, COLOC, HMQC/HSQC, HMBC, SINEPT) were used besides mass and some other spectroscopic methods.

  10. An inverse design method for 2D airfoil

    NASA Astrophysics Data System (ADS)

    Liang, Zhi-Yong; Cui, Peng; Zhang, Gen-Bao

    2010-03-01

    The computational method for aerodynamic design of aircraft is applied more universally than before, in which the design of an airfoil is a hot problem. The forward problem is discussed by most relative papers, but inverse method is more useful in practical designs. In this paper, the inverse design of 2D airfoil was investigated. A finite element method based on the variational principle was used for carrying out. Through the simulation, it was shown that the method was fit for the design.

  11. 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability.

    PubMed Central

    Richie, K. A.; Teng, Q.; Elkin, C. J.; Kurtz, D. M.

    1996-01-01

    Based on 2D 1H-1H and 2D and 3D 1H-15N NMR spectroscopies, complete 1H NMR assignments are reported for zinc-containing Clostridium pasteurianum rubredoxin (Cp ZnRd). Complete 1H NMR assignments are also reported for a mutated Cp ZnRd, in which residues near the N-terminus, namely, Met 1, Lys 2, and Pro 15, have been changed to their counterparts, (-), Ala and Glu, respectively, in rubredoxin from the hyperthermophilic archaeon, Pyrococcus furiosus (Pf Rd). The secondary structure of both wild-type and mutated Cp ZnRds, as determined by NMR methods, is essentially the same. However, the NMR data indicate an extension of the three-stranded beta-sheet in the mutated Cp ZnRd to include the N-terminal Ala residue and Glu 15, as occurs in Pf Rd. The mutated Cp Rd also shows more intense NOE cross peaks, indicating stronger interactions between the strands of the beta-sheet and, in fact, throughout the mutated Rd. However, these stronger interactions do not lead to any significant increase in thermostability, and both the mutated and wild-type Cp Rds are much less thermostable than Pf Rd. These correlations strongly suggest that, contrary to a previous proposal [Blake PR et al., 1992, Protein Sci 1:1508-1521], the thermostabilization mechanism of Pf Rd is not dominated by a unique set of hydrogen bonds or electrostatic interactions involving the N-terminal strand of the beta-sheet. The NMR results also suggest that an overall tighter protein structure does not necessarily lead to increased thermostability. PMID:8732760

  12. Automated compound verification using 2D-NMR HSQC data in an open-access environment.

    PubMed

    Keyes, Philip; Hernandez, Gonzalo; Cianchetta, Giovanni; Robinson, James; Lefebvre, Brent

    2009-01-01

    Since the introduction of NMR prediction software, medicinal chemists have imagined submitting their compounds to corporate compound registration systems that would ultimately display a simplified pass/fail result. We initially implemented such a system based on HPLC and liquid chromatography mass spectrometry (LCMS) data that is embedded within our industry standard sample submission and registration process. By using gradient-heteronuclear single quantum coherence (HSQC) experiments, we have extended this concept to NMR data through a comparison of experimentally acquired data against predicted (1)H and (13)C NMR data. Integration of our compound registration system with our analytical instruments now provides our chemists unattended and automated NMR verification for collections of submitted compounds. The benefits achieved from automated processing and interpretation of results produced enhanced confidence in our compound library and released the chemists from the tedium of manipulating large amounts of data. This allows scientists to focus more of their attention to the drug discovery process.

  13. Structure and Coordination Determination of Peptide-metal Complexes Using 1D and 2D 1H NMR

    PubMed Central

    Shoshan, Michal S.; Tshuva, Edit Y.; Shalev, Deborah E.

    2013-01-01

    Copper (I) binding by metallochaperone transport proteins prevents copper oxidation and release of the toxic ions that may participate in harmful redox reactions. The Cu (I) complex of the peptide model of a Cu (I) binding metallochaperone protein, which includes the sequence MTCSGCSRPG (underlined is conserved), was determined in solution under inert conditions by NMR spectroscopy. NMR is a widely accepted technique for the determination of solution structures of proteins and peptides. Due to difficulty in crystallization to provide single crystals suitable for X-ray crystallography, the NMR technique is extremely valuable, especially as it provides information on the solution state rather than the solid state. Herein we describe all steps that are required for full three-dimensional structure determinations by NMR. The protocol includes sample preparation in an NMR tube, 1D and 2D data collection and processing, peak assignment and integration, molecular mechanics calculations, and structure analysis. Importantly, the analysis was first conducted without any preset metal-ligand bonds, to assure a reliable structure determination in an unbiased manner. PMID:24378924

  14. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    PubMed Central

    Gopinath, T.; Veglia, Gianluigi

    2013-01-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils. PMID:23676036

  15. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  16. Elucidating structural characteristics of biomass using solution-state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide

    DOE PAGES

    Pu, Yunqiao; Ragauskas, Arthur J.; Yoo, Chang Geun; Li, Mi

    2016-04-26

    In recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO-d6) and hexamethylphosphoramide (HMPA-d18). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. Moreover, the structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO-d6/HMPA-d18; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass, facilitating a facile sample preparation and involvingmore » with no signals overlapping with biomass peaks. Furthermore, it also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities.« less

  17. Influence of anthraquinone scaffold on E/Z isomer distribution of two thiosemicarbazone derivatives. 2D NMR and DFT studies

    NASA Astrophysics Data System (ADS)

    Marković, Violeta; Joksović, Milan D.; Marković, Svetlana; Jakovljević, Ivan

    2014-01-01

    A distribution of possible isomeric and tautomeric forms of two tautomerizable anthraquinone-thiosemicarbazones with pronounced cytotoxic potential was investigated using 2D NMR and DFT studies. Conformational analysis of the E and Z isomers of both thiosemicarbazones was performed to find out the most stable conformation for each molecule. It was found that superior stability of E-isomers results from ten-membered intramolecular hydrogen bond between thiosemicarbazone N2H and anthraquinone carbonyl group. This hydrogen bond is stronger than that between thiosemicarbazone N2H and ester oxygen, owing to the large partial negative charge on the anthraquinone oxygen.

  18. Unraveling the heterogeneity in N butyl-N-methylpiperidinium trifluromethanesulfonimide ionic liquid by 1D and 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tripathi, Neha; Saha, Satyen

    2014-06-01

    Room temperature ionic liquids are one of the most exciting classes of materials in the last decade. In particular piperidinium (PIP) cation based ionic liquid (IL) (such as PIP14NTf2) have found application in electrochemistry/batteries. In this Letter, 2D NMR (NOESY and HOESY) is employed for studying the interactions present between cations and anions. HOESY spectrum shows that fluorine of NTf2 unusually interacts with all proton of the cation (PIP14). Combined HOESY and NOESY indicate that NTf2 anion is distributed heterogeneously in liquid. Existence of micro heterogeneity in this important class of IL is proposed.

  19. 2D multinuclear NMR, hyperpolarized xenon and gas storage in organosilica nanochannels with crystalline order in the walls.

    PubMed

    Comotti, Angiolina; Bracco, Silvia; Valsesia, Patrizia; Ferretti, Lisa; Sozzani, Piero

    2007-07-11

    The combination of 2D 1H-13C and 1H-29Si solid state NMR, hyperpolarized 129Xe NMR, synchrotron X-ray diffraction, together with adsorption measurements of vapors and gases for environmental and energetic relevance, was used to investigate the structure and the properties of periodic mesoporous hybrid p-phenylenesilica endowed with crystalline order in the walls. The interplay of 1H, 13C, and 29Si in the 2D heteronuclear correlation NMR measurements, together with the application of Lee-Goldburg homonuclear decoupling, revealed the spatial relationships (<5 angstroms) among various spin-active nuclei of the framework. Indeed, the through-space correlations in the 2D experiments evidenced, for the first time, the interfaces of the matrix walls with guest molecules confined in the nanochannels. Organic-inorganic and organic-organic heterogeneous interfaces between the matrix and the guests were identified. The open-pore structure and the easy accessibility of the nanochannels to the gas phase have been demonstrated by highly sensitive hyperpolarized (HP) xenon NMR, under extreme xenon dilution. Two-dimensional exchange experiments showed the exchange time to be as short as 2 ms. Through variable-temperature HP 129Xe NMR experiments we were able to achieve an unprecedented description of the nanochannel space and surface, a physisorption energy of 13.9 kJ mol-1, and the chemical shift value of xenon probing the internal surfaces. These results prompted us to measure the high storage capacity of the matrix towards benzene, hexafluorobenzene, ethanol, and carbon dioxide. Both host-guest, CH...pi, and OH...pi interactions contribute to the stabilization of the aromatic guests (benzene and hexafluorobenzene) on the extended surfaces. The full carbon dioxide loading in the channels could be detected by synchrotron radiation X-ray diffraction experiments. The selective adsorption of carbon dioxide (ca. 90 wt %) vs that of oxygen and hydrogen, together with the permanent

  20. SAR imaging via modern 2-D spectral estimation methods.

    PubMed

    DeGraaf, S R

    1998-01-01

    This paper discusses the use of modern 2D spectral estimation algorithms for synthetic aperture radar (SAR) imaging. The motivation for applying power spectrum estimation methods to SAR imaging is to improve resolution, remove sidelobe artifacts, and reduce speckle compared to what is possible with conventional Fourier transform SAR imaging techniques. This paper makes two principal contributions to the field of adaptive SAR imaging. First, it is a comprehensive comparison of 2D spectral estimation methods for SAR imaging. It provides a synopsis of the algorithms available, discusses their relative merits for SAR imaging, and illustrates their performance on simulated and collected SAR imagery. Some of the algorithms presented or their derivations are new, as are some of the insights into or analyses of the algorithms. Second, this work develops multichannel variants of four related algorithms, minimum variance method (MVM), reduced-rank MVM (RRMVM), adaptive sidelobe reduction (ASR) and space variant apodization (SVA) to estimate both reflectivity intensity and interferometric height from polarimetric displaced-aperture interferometric data. All of these interferometric variants are new. In the interferometric contest, adaptive spectral estimation can improve the height estimates through a combination of adaptive nulling and averaging. Examples illustrate that MVM, ASR, and SVA offer significant advantages over Fourier methods for estimating both scattering intensity and interferometric height, and allow empirical comparison of the accuracies of Fourier, MVM, ASR, and SVA interferometric height estimates.

  1. 2D exchange 31P NMR spectroscopy of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1995-01-01

    Two-dimensional (2D) exchange 31P nuclear magnetic resonance spectroscopy is used to study the slow overall motion of the rod-shaped viruses M13 and tobacco mosaic virus in concentrated gels. Even for short mixing times, observed diagonal spectra differ remarkably from projection spectra and one-dimensional spectra. Our model readily explains this to be a consequence of the T2e anisotropy caused by slow overall rotation of the viruses about their length axis. 2D exchange spectra recorded for 30% (w/w) tobacco mosaic virus with mixing times < 1 s do not show any off-diagonal broadening, indicating that its overall motion occurs in the sub-Hz frequency range. In contrast, the exchange spectra obtained for 30% M13 show significant off-diagonal intensity for mixing times of 0.01 s and higher. A log-gaussian distribution around 25 Hz of overall diffusion coefficients mainly spread between 1 and 10(3) Hz faithfully reproduces the 2D exchange spectra of 30% M13 recorded at various mixing times in a consistent way. A small but notable change in diagonal spectra at increasing mixing time is not well accounted for by our model and is probably caused by 31P spin diffusion. PMID:7756532

  2. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae—A 2D NMR Metabolomics Study

    PubMed Central

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-01-01

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of 1H-13C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae. PMID:27598144

  3. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae-A 2D NMR Metabolomics Study.

    PubMed

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-01-01

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of ¹H-(13)C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae. PMID:27598144

  4. 1-D and 2-D NMR-based metabolomics of earthworms exposed to endosulfan and endosulfan sulfate in soil.

    PubMed

    Yuk, Jimmy; Simpson, Myrna J; Simpson, André J

    2013-04-01

    One-dimensional (1-D) and two-dimensional (2-D) nuclear magnetic resonance (NMR)-based metabolomics was used to investigate the toxic mode of action (MOA) of endosulfan, an organochlorine pesticide, and its degradation product, endosulfan sulfate, to Eisenia fetida earthworms in soil. Three soil concentrations (0.1, 1.0 and 10.0 mg/kg) were used for both endosulfan and endosulfan sulfate. Both earthworm coelomic fluid (CF) and tissues were extracted and then analyzed using (1)H and (1)H-(13)C NMR techniques. A similar separation trajectory was observed for endosulfan and endosulfan sulfate-exposed earthworms in the mean principal component analysis (PCA) scores plot for both the earthworm CF and tissue extracts. A neurotoxic and apoptotic MOA was postulated for both endosulfan and endosulfan sulfate exposed earthworms as significant fluctuations in glutamine/GABA-glutamate cycle metabolites and spermidine were detected respectively. This study highlights the application of NMR-based metabolomics to understand molecular-level toxicity of persistent organochlorine pesticides and their degradation products directly in soil.

  5. Fast and high-resolution stereochemical analysis by nonuniform sampling and covariance processing of anisotropic natural abundance 2D 2H NMR datasets.

    PubMed

    Lafon, Olivier; Hu, Bingwen; Amoureux, Jean-Paul; Lesot, Philippe

    2011-06-01

    Natural abundance deuterium (NAD) 2D NMR spectroscopy using chiral or achiral liquid crystals is an efficient analytical tool for the stereochemical analysis of enantio- or diastereomers by the virtue of proton-to-deuterium substitution. In particular, it allows the measurement of enantiopurity of organic synthetic molecules or the determination of the natural isotopic (1)H/(2)H fractionation in biological molecules, such as fatty acid methyl esters (FAME). So far, the NAD 2D spectra of solutes were acquired by using uniform sampling (US) and processed by conventional 2D Fourier transform (FT), which could result in long measurement times for medium-sized analytes or low solute concentrations. Herein, we demonstrate that this conventional approach can be advantageously replaced by nonuniform sampling (NUS) processed by covariance (Cov) transform. This original spectral reconstruction provides a significant enhancement of spectral resolution, as well as a reduction of measurement times. The application of Cov to NUS data has required the introduction of a regularization procedure in the time domain for the indirect dimension. The analytical potential of combining Cov and NUS is demonstrated by measuring the enantiomeric excess of a scalemic mixture of 2-ethyloxirane and by determining the diastereomeric excess of methyl vernoleate, a natural FAME. These two organic compounds were aligned in a polypeptide (poly(γ-benzyl-L-glutamate)) mesophase. In the case of NAD 2D NMR spectroscopy, we show that Cov and NUS methods allow a decrease in measurement time by a factor of two compared with Cov applied to US data and a factor of four compared with FT applied to US data.

  6. Characterization of the isomeric configuration and impurities of (Z)-endoxifen by 2D NMR, high resolution LC–MS, and quantitative HPLC analysis

    PubMed Central

    Elkins, Phyllis; Coleman, Donna; Burgess, Jason; Gardner, Michael; Hines, John; Scott, Brendan; Kroenke, Michelle; Larson, Jami; Lightner, Melissa; Turner, Gregory; White, Jonathan; Liu, Paul

    2014-01-01

    (Z)-Endoxifen (4-hydroxy-N-desmethyltamoxifen), an active metabolite generated via actions of CYP3A4/5 and CYP2D6, is a more potent selective estrogen receptor modulator (SERM) than tamoxifen. In the MCF-7 human mammary tumor xenograft model with female athymic mice, (Z)-endoxifen, at an oral dose of 4– 8 mg/kg, significantly inhibits tumor growth. (Z)-Endoxifen's potential as an alternative therapeutic agent independent of CYP2D6 activities, which can vary widely in ER+ breast cancer patients, is being actively evaluated. This paper describes confirmation of the configuration of the active (Z)-isomer through 2D NMR experiments, including NOE (ROESY) to establish spatial proton–proton correlations, and identification of the major impurity as the (E)-isomer in endoxifen drug substance by HPLC/HRMS (HPLC/MS-TOF). Stability of NMR solutions was confirmed by HPLC/UV analysis. For pre-clinical studies, a reverse-phase HPLC–UV method, with methanol/water mobile phases containing 10 mM ammonium formate at pH 4.3, was developed and validated for the accurate quantitation and impurity profiling of drug substance and drug product. Validation included demonstration of linearity, method precision, accuracy, and specificity in the presence of impurities, excipients (for the drug product), and degradation products. Ruggedness and reproducibility of the method were confirmed by collaborative studies between two independent laboratories. The method is being applied for quality control of the API and oral drug product. Kinetic parameters of Z- to E-isomerization were also delineated in drug substance and in aqueous formulation, showing conversion at temperatures above 25 °C. PMID:24055701

  7. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5†

    PubMed Central

    Ralph, John

    2014-01-01

    NMR fingerprinting of the components of finely divided plant cell walls swelled in DMSO has been recently described. Cell wall gels, produced directly in the NMR tube with perdeutero-dimethylsulfoxide, allowed the acquisition of well resolved/dispersed 2D 13C–1H correlated solution-state NMR spectra of the entire array of wall polymers, without the need for component fractionation. That is, without actual solubilization, and without apparent structural modification beyond that inflicted by the ball milling and ultrasonication steps, satisfactorily interpretable spectra can be acquired that reveal compositional and structural details regarding the polysaccharide and lignin components in the wall. Here, the profiling method has been improved by using a mixture of perdeuterated DMSO and pyridine (4:1, v/v). Adding pyridine provided not only easier sample handling because of the better mobility compared to the DMSO-d6-only system but also considerably elevated intensities and improved resolution of the NMR spectra due to the enhanced swelling of the cell walls. This modification therefore provides a more rapid method for comparative structural evaluation of plant cell walls than is currently available. We examined loblolly pine (Pinus taeda, a gymnosperm), aspen (Populus tremuloides, an angiosperm), kenaf (Hibiscus cannabinus, an herbaceous plant), and corn (Zea mays L., a grass, i.e., from the Poaceae family). In principle, lignin composition (notably, the syringyl : guaiacyl : p-hydroxyphenyl ratio) can be quantified without the need for lignin isolation. Correlations for p-coumarate units in the corn sample are readily seen, and a variety of the ferulate correlations are also well resolved; ferulates are important components responsible for cell wall cross-linking in grasses. Polysaccharide anomeric correlations were tentatively assigned for each plant sample based on standard samples and various literature data. With the new potential for chemometric analysis

  8. Dihydrofolate reductase: Sequential resonance assignments using 2D and 3D NMR and secondary structure determination in solution

    SciTech Connect

    Carr, M.D.; Birdsall, B.; Jimenez-Barbero, J.; Polshakov, V.I.; McCormick, J.E.; Feeney, J.; Frenkiel, T.A.; Bauer, C.J. ); Roberts, G.C.K. )

    1991-06-25

    Three-dimensional (3D) heteronuclear NMR techniques have been used to make sequential {sup 1}H and {sup 15}H resonance assignments for most of the residues of Lactobacillus casei dihydrofolate reductase (DHFR), a monomeric protein of molecular mass 18,300 Da. A uniformly {sup 15}N-labeled sample of the protein was prepared and its complex with methotrexate (MTX) studied by 3D {sup 15}N/{sup 1}H nuclear Overhauserheteronuclear multiple quantum coherence (NOESY-HMQC), Harmann-Hahn-heteronuclear multiple quantum coherence (HOHAHA-HMQC), and HMQC-NOESY-HMQC experiments. These experiments overcame most of the spectral overlap problems caused by chemical shift degeneracies in 2D spectra and allowed the {sup 1}H-{sup 1}H through-space and through-bond connectivities to be identified unambiguously, leading to the resonance assignments. The novel HMQC-NOESY-HMQC experiment allows NOE cross peaks to be detected between NH protons even when their {sup 1}H chemical shifts are degenerate as long as the amide {sup 15}N chemical shifts are nondegenerate. The 3D experiments, in combination with conventional 2D NOESY, COSY, and HOHAHA experiments on unlabelled and selectively deuterated DHFR, provide backbone assignments for 146 of the 162 residues and side-chain assignments for 104 residues of the protein. Data from the NOE-based experiments and identification of the slowly exchanging amide protons provide detailed information about the secondary structure of the binary complex of the protein with methotrexate.

  9. Large structure rearrangement of colicin ia channel domain after membrane binding from 2D 13C spin diffusion NMR.

    PubMed

    Luo, Wenbin; Yao, Xiaolan; Hong, Mei

    2005-05-01

    One of the main mechanisms of membrane protein folding is by spontaneous insertion into the lipid bilayer from the aqueous environment. The bacterial toxin, colicin Ia, is one such protein. To shed light on the conformational changes involved in this dramatic transfer from the polar to the hydrophobic milieu, we carried out 2D magic-angle spinning (13)C NMR experiments on the water-soluble and membrane-bound states of the channel-forming domain of colicin Ia. Proton-driven (13)C spin diffusion spectra of selectively (13)C-labeled protein show unequivocal attenuation of cross-peaks after membrane binding. This attenuation can be assigned to distance increases but not reduction of the diffusion coefficient. Analysis of the statistics of the interhelical and intrahelical (13)C-(13)C distances in the soluble protein structure indicates that the observed cross-peak reduction is well correlated with a high percentage of short interhelical contacts in the soluble protein. This suggests that colicin Ia channel domain becomes open and extended upon membrane binding, thus lengthening interhelical distances. In comparison, cross-peaks with similar intensities between the two states are dominated by intrahelical contacts in the soluble state. This suggests that the membrane-bound structure of colicin Ia channel domain may be described as a "molten globule", in which the helical secondary structure is retained while the tertiary structure is unfolded. This study demonstrates that (13)C spin diffusion NMR is a valuable tool for obtaining qualitative long-range distance constraints on membrane protein folding. PMID:15853348

  10. Hetero Diels-Alder Reaction with Aqueous Glyoxylic Acid: An Experiment in Organic Synthesis and 2-D NMR Analysis for Advanced Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Augé, Jacques; Lubin-Germain, Nadège

    1998-10-01

    As an application of the use of water as solvent in organic synthesis, a convenient synthesis of a-hydroxy-g-lactones from an aqueous solution of glyoxylic acid is described. The mechanism of the reaction leading to the lactones goes through cycloadducts which rearrange in situ. The NMR analysis of the diastereomeric lactones is particularly interesting; such an analysis illustrates the importance of modern techniques including 2-D NMR spectroscopy. Complete assignments of the signals are mentioned and NOESY spectra are enclosed. The full experiment is addressed to advanced undergraduate students who are trained in organic synthesis and NMR spectroscopy.

  11. Proton zero-quantum 2D NMR of 2-propenenitrile aligned by an electric field. Determination of the 2H and 14N quadrupole coupling constants

    NASA Astrophysics Data System (ADS)

    Ruessink, B. H.; De Kanter, F. J. J.; MaClean, C.

    Zero-quantum NMR, selectively detected by 2D NMR, is applied to observe small 1H- 1H dipolar couplings in a polar liquid partially oriented by a strong electric field. The normal (single-quantum) 1H spectrum is severely broadened, which prevents the observation of small couplings. The results from the zero-quantum proton spectrum are used to calculate the 2H and 14N quadrupole coupling constants of 2-deutero-2-propenenitrile from the 2H and 14N NMR spectra.

  12. An omics approach to rational feed: Enhancing growth in CHO cultures with NMR metabolomics and 2D-DIGE proteomics.

    PubMed

    Blondeel, Eric J M; Ho, Raymond; Schulze, Steffen; Sokolenko, Stanislav; Guillemette, Simon R; Slivac, Igor; Durocher, Yves; Guillemette, J Guy; McConkey, Brendan J; Chang, David; Aucoin, Marc G

    2016-09-20

    Expression of recombinant proteins exerts stress on cell culture systems, affecting the expression of endogenous proteins, and contributing to the depletion of nutrients and accumulation of waste metabolites. In this work, 2D-DIGE proteomics was employed to analyze differential expression of proteins following stable transfection of a Chinese Hamster Ovary (CHO) cell line to constitutively express a heavy-chain monoclonal antibody. Thirty-four proteins of significant differential expression were identified and cross-referenced with cellular functions and metabolic pathways to identify points of cell stress. Subsequently, 1D-(1)H NMR metabolomics experiments analyzed cultures to observe nutrient depletion and waste metabolite accumulations to further examine these cell stresses and pathways. From among fifty metabolites tracked in time-course, eight were observed to be completely depleted from the production media, including: glucose, glutamine, proline, serine, cystine, asparagine, choline, and hypoxanthine, while twenty-three excreted metabolites were also observed to accumulate. The differentially expressed proteins, as well as the nutrient depletion and accumulation of these metabolites corresponded with upregulated pathways and cell systems related to anaplerotic TCA-replenishment, NADH/NADPH replenishment, tetrahydrofolate cycle C1 cofactor conversions, limitations to lipid synthesis, and redox modulation. A nutrient cocktail was assembled to improve the growth medium and alleviate these cell stresses to achieve a ∼75% improvement to peak cell densities. PMID:27496566

  13. A parallel splitting wavelet method for 2D conservation laws

    NASA Astrophysics Data System (ADS)

    Schmidt, Alex A.; Kozakevicius, Alice J.; Jakobsson, Stefan

    2016-06-01

    The current work presents a parallel formulation using the MPI protocol for an adaptive high order finite difference scheme to solve 2D conservation laws. Adaptivity is achieved at each time iteration by the application of an interpolating wavelet transform in each space dimension. High order approximations for the numerical fluxes are computed by ENO and WENO schemes. Since time evolution is made by a TVD Runge-Kutta space splitting scheme, the problem is naturally suitable for parallelization. Numerical simulations and speedup results are presented for Euler equations in gas dynamics problems.

  14. NMR blood vessel imaging method and apparatus

    SciTech Connect

    Riederer, S.J.

    1988-04-26

    A high speed method of forming computed images of blood vessels based on measurements of characteristics of a body is described comprising the steps of: subjecting a predetermined body area containing blood vessels of interest to, successively, applications of a short repetition time (TR) NMR pulse sequence during the period of high blood velocity and then to corresponding applications during the period of low blood velocity for successive heart beat cycles; weighting the collected imaging data from each application of the NMR pulse sequence according to whether the data was acquired during the period of high blood velocity or a period of low blood velocity of the corresponding heart beat cycle; accumulating weighted imaging data from a plurality of NMR pulse sequences corresponding to high blood velocity periods and from a plurality of NMR pulse sequences corresponding to low blood velocity periods; subtracting the weighted imaging data corresponding to each specific phase encoding acquired during the high blood velocity periods from the weighted imaging data for the same phase encoding corresponding to low blood velocity periods in order to compute blood vessel imaging data; and forming an image of the blood vessels of interest from the blood vessel imaging data.

  15. 13C and 1H chemical shift assignments and conformation confirmation of trimedlure-Y via 2-D NMR

    NASA Astrophysics Data System (ADS)

    Warthen, J. D.; Waters, R. M.; McGovern, T. P.

    The conformation of 1,1-dimethylethyl 5-chloro- cis-2-methylcyclohexane-1-carboxylate (trimedlure-Y) was confirmed as 1,2,5 equatorial, axial, equatorial via 13C, 1H, APT, CSCM and COSY NMR analyses. The carbon and proton nuclei in trimedlure-Y and the previously unassigned eight cyclohexyl protons (1.50-2.60 ppm) in 1,1-dimethylethyl 5-chloro- trans-2-methylcyclohexane-1-carboxylate (trimedlure-B 1; 1,2,5 equatorial, equatorial, equatorial) were also characterized by these methods. The effects of the 2-CH 3 in the axial or equatorial conformation upon the chemical shifts of the other nuclei in the molecule are discussed.

  16. Understanding API-polymer proximities in amorphous stabilized composite drug products using fluorine-carbon 2D HETCOR solid-state NMR.

    PubMed

    Abraham, Anuji; Crull, George

    2014-10-01

    A simple and robust method for obtaining fluorine-carbon proximities was established using a (19)F-(13)C heteronuclear correlation (HETCOR) two-dimensional (2D) solid-state nuclear magnetic resonance (ssNMR) experiment under magic-angle spinning (MAS). The method was applied to study a crystalline active pharmaceutical ingredient (API), avagacestat, containing two types of fluorine atoms and its API-polymer composite drug product. These results provide insight into the molecular structure, aid with assigning the carbon resonances, and probe API-polymer proximities in amorphous spray dried dispersions (SDD). This method has an advantage over the commonly used (1)H-(13)C HETCOR because of the large chemical shift dispersion in the fluorine dimension. In the present study, fluorine-carbon distances up to 8 Å were probed, giving insight into the API structure, crystal packing, and assignments. Most importantly, the study demonstrates a method for probing an intimate molecular level contact between an amorphous API and a polymer in an SDD, giving insights into molecular association and understanding of the role of the polymer in API stability (such as recrystallization, degradation, etc.) in such novel composite drug products.

  17. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The

  18. THE CONTOUR METHOD: SIMPLE 2-D MAPPING OF RESIDUAL STRESSES

    SciTech Connect

    M. PRIME; A. GONZALES

    2000-06-01

    We present an entirely new method for measuring residual stress that is extremely simple to apply yet more powerful than existing techniques. In this method, a part is carefully cut in two. The contour of the resulting new surface is measured to determine the displacements normal to the surface caused by the release of the residual stresses. Analytically, the opposite of these measured displacements are applied as boundary conditions to the surface in a finite element model. By Bueckner's superposition principle, this gives the original residual stresses normal to the plane of the cut. Unlike other relaxation methods for measuring residual stress, the measured data can be used to solve directly for the stresses without a tedious inversion technique. At the same time, an arbitrary two-dimensional variation in stresses can be determined. We demonstrate the method on a steel specimen with a known residual stress profile.

  19. Microwave assisted regioselective synthesis and 2D-NMR studies of novel azoles and azoloazines utilizing fluorine-containing building blocks

    NASA Astrophysics Data System (ADS)

    Al-Bogami, Abdullah S.; Saleh, Tamer S.; Mekky, Ahmed E. M.; Shaaban, Mohamed R.

    2016-10-01

    An efficient regioselective synthesis of novel azoles containing a trifluoromethyl moiety via the 1,3-dipolar cycloaddition reaction under microwave irradiation, using fluorine-containing building blocks methodology was achieved. Furthermore, these novel azoles scaffolds have been employed as the starting material in the synthesis of new azoloazines containing a trifluoromethyl group. An unambiguous structural assignment of the obtained regioisomers was determined using the 2D HMBC NMR techniques as a valuable tool.

  20. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    NASA Astrophysics Data System (ADS)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons

  1. Analysis of NAD 2D-NMR spectra of saturated fatty acids in polypeptide aligning media by experimental and modeling approaches.

    PubMed

    Serhan, Zeinab; Borgogno, Andrea; Billault, Isabelle; Ferrarini, Alberta; Lesot, Philippe

    2012-01-01

    The overall and detailed elucidation (including the stereochemical aspects) of enzymatic mechanisms requires the access to all reliable information related to the natural isotopic fractionation of both precursors and products. Natural abundance deuterium (NAD) 2D-NMR experiments in polypeptide liquid-crystalline solutions are a new, suitable tool for analyzing site-specific deuterium isotopic distribution profiles. Here this method is utilized for analyzing saturated C14 to C18 fatty acid methyl esters (FAMEs), which are challenging because of the crowding of signals in a narrow spectral region. Experiments in achiral and chiral oriented solutions were performed. The spectral analysis is supplemented by the theoretical prediction of quadrupolar splittings as a function of the geometry and flexibility of FAMEs, based on a novel computational methodology. This allows us to confirm the spectral assignments, while providing insights into the mechanism of solute ordering in liquid-crystalline polypeptide solutions. This is found to be dominated by steric repulsions between FAMEs and polypeptides.

  2. Synthesis and structure elucidation of a series of pyranochromene chalcones and flavanones using 1D and 2D NMR spectroscopy and X-ray crystallography.

    PubMed

    Pawar, Sunayna S; Koorbanally, Neil A

    2014-06-01

    A series of novel pyranochromene chalcones and corresponding flavanones were synthesized. This is the first report on the confirmation of the absolute configuration of chromene-based flavanones using X-ray crystallography. These compounds were characterized by 2D NMR spectroscopy, and their assignments are reported herein. The 3D structure of the chalcone 3b and flavanone 4g was determined by X-ray crystallography, and the structure of the flavanone was confirmed to be in the S configuration at C-2.

  3. Contribution of NAD 2D-NMR in liquid crystals to the determination of hydrogen isotope profile of methyl groups in miliacin

    NASA Astrophysics Data System (ADS)

    Berdagué, Philippe; Lesot, Philippe; Jacob, Jérémy; Terwilliger, Valery J.; Le Milbeau, Claude

    2016-01-01

    The hydrogen isotopic composition (δD or (D/H) value) of molecular biomarkers preserved in sedimentary archives is increasingly used to provide clues about the evolution of past climatic conditions. The rationale is that intact biomarkers retain isotopic information related to the climatic conditions that prevailed at the time of their synthesis. Some of these biomarkers may be degraded during diagenesis, however. The extent to which these degradations alter the original δD value of the source biomarker is presently debated and the capacity to resolve this question by determination of compound-specific δD values alone is limited. The "bulk" or "global" δD value of any molecule is in fact a composite of δD values at each site within this molecule (δDi or (D/H)i with i = number of hydrogen/deuterium atoms in the considered molecule). Determination of this site-specific δDi value in biomarkers could not only yield outstanding paleoenvironmental information but also help forecast the impacts of diagenesis and define essential steps in biosynthetic pathways. This task is analytically challenging. Here, we examined the capabilities of natural abundance deuterium 2D-NMR (NAD 2D-NMR) using homopolypeptide liquid crystals as an NMR solvent to: (i) analyze the NAD spectra of biomakers; (ii) determine the site-specific distribution of hydrogen in the nine methyl groups (δDMei with i = 23-31) of miliacin, a pentacyclic triterpene of the amyrin family and key biomarker for broomcorn millet in sedimentary archives. Relative (D/H)Mei values were established by anisotropic NAD 2D-NMR. Then absolute δDMei values were obtained by determining δDMei value of the methoxy group of miliacin using two independent approaches: isotropic NAD NMR (SNIF-NMR™) and GC-irMS. The resulting isotope profile for miliacin shows, for the first time, large variations in δDMei values that can directly be explained by biosynthetic processes. This approach has also the potential to permit

  4. Genetic mechanisms for duplication and multiduplication of the human CYP2D6 gene and methods for detection of duplicated CYP2D6 genes.

    PubMed

    Lundqvist, E; Johansson, I; Ingelman-Sundberg, M

    1999-01-21

    The polymorphic CYP2D6 gene determines the rates at which several different classes of clinically important drugs are metabolized in vivo. A specific phenotype whereby a subject metabolizes drugs very rapidly (ultrarapid metabolizer, UM) has been shown to be caused by the presence of multiple active CYP2D6 genes on one allele. Hitherto, individuals with 1, 2, 3, 4, 5, or 13 CYP2D6 genes in tandem have been described for various ethnic groups. In the present investigation, we present results from restriction mapping of the CYP2D loci of individuals with two or more consecutive CYP2D6 genes, along with sequence analysis of this gene (CYP2D6*2). Our results indicate that alleles with duplicated or multiduplicated genes have occurred through unequal crossover at a specific breakpoint in the 3'-flanking region of the CYP2D6*2B allele with a specific repetitive sequence. In contrast, alleles with 13 copies of the gene are proposed to have been formed by unequal segregation and extrachromosomal replication of the acentric DNA. We present a rapid and efficient PCR-based allele-specific method for the detection of duplicated, multiduplicated, or amplified CYP2D6 genes.

  5. Device and methods for "gold standard" registration of clinical 3D and 2D cerebral angiograms

    NASA Astrophysics Data System (ADS)

    Madan, Hennadii; Likar, Boštjan; Pernuš, Franjo; Å piclin, Žiga

    2015-03-01

    Translation of any novel and existing 3D-2D image registration methods into clinical image-guidance systems is limited due to lack of their objective validation on clinical image datasets. The main reason is that, besides the calibration of the 2D imaging system, a reference or "gold standard" registration is very difficult to obtain on clinical image datasets. In the context of cerebral endovascular image-guided interventions (EIGIs), we present a calibration device in the form of a headband with integrated fiducial markers and, secondly, propose an automated pipeline comprising 3D and 2D image processing, analysis and annotation steps, the result of which is a retrospective calibration of the 2D imaging system and an optimal, i.e., "gold standard" registration of 3D and 2D images. The device and methods were used to create the "gold standard" on 15 datasets of 3D and 2D cerebral angiograms, whereas each dataset was acquired on a patient undergoing EIGI for either aneurysm coiling or embolization of arteriovenous malformation. The use of the device integrated seamlessly in the clinical workflow of EIGI. While the automated pipeline eliminated all manual input or interactive image processing, analysis or annotation. In this way, the time to obtain the "gold standard" was reduced from 30 to less than one minute and the "gold standard" of 3D-2D registration on all 15 datasets of cerebral angiograms was obtained with a sub-0.1 mm accuracy.

  6. High resolution 2D-NMR studies indicating complete assignments and conformational characteristics of the NF-kappa B binding enhancer element of HIV-LTR.

    PubMed

    Singh, M P; Fregeau, N L; Pon, R T; Lown, J W

    1995-10-01

    The asymmetrical DNA duplex [5'd(AAGGGACTTTCC)].[5'-d(GGAAAGTCCCTT)] has been studied by one- and two-dimensional NMR techniques. The sequence is comprised of the actual 10 base-pair long binding site for the transcription factor NF-kappa B in the enhancer sequence of the long term repeat (LTR) region of HIV and SIV types of retroviruses associated with the AIDS syndrome. Two additional A.T base-pairs are also included on one end for an added interest in the 12-bp duplex sequence with a pseudo dyad-symmetric disposition of the oligopurine and oligopyrimidine segments, as it appears in the HIV-1 genome. Phase-sensitive two-dimensional spectra (NOESY, ROESY, COSY and TOCSY) were obtained at three different temperatures (5, 15 and 25 degrees C) for a complete assignment of the non-exchangeable protons by tracing through sequence specific intra- and internucleotide connectivities. 2D-NOESY spectra were also acquired in aqueous (90% H2O-D2O) solutions, with two different methods of water signal suppression, to assign the exchangeable protons from specific NOE correlations. Adenine H2 protons were assigned by the use of NOE correlations and from T1 relaxation time measurements. The general spectral features and semi-quantitative interproton distance estimates indicate a B-DNA type conformation. However, some distinctly unusual features associated with the nucleotides at and immediately adjacent to both the 5'-and 3'-ends of AAA/TTT and GGG/CCC segments were noted. The complete assignments, and the observed characteristics, will be of significant value in studying the complexes of this transcriptionally active DNA domain with the protein and other rationally designed DNA binding agents.

  7. NMR and MRI apparatus and method

    DOEpatents

    Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas

    2007-03-06

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  8. 2H NMR study of 2D melting and dynamic behaviour of CDCl3 confined in ACF nanospace.

    PubMed

    Ueda, Takahiro; Omichi, Hiroaki; Chen, Yu; Kobayashi, Hirokazu; Kubota, Osamu; Miyakubo, Keisuke; Eguchi, Taro

    2010-08-28

    Two-dimensional melting of trichloromethane (chloroform) confined in activated carbon fibre was investigated using differential thermal analysis and (2)H NMR techniques. Differential thermal analysis revealed a thermal anomaly with an endothermic peak at 269 K, which was distributed from 250 K to 287 K on the heating direction. This anomaly was also observed upon cooling at the same temperature. Furthermore, (2)H NMR revealed that slow motion such as molecular hopping and/or diffusion of CDCl(3) in ACF affected the spectral line width. The temperature dependence (Arrhenius plot) of the spectral line width showed an inflection point at 227 K. The activation energy of molecular motion of CDCl(3) in ACF was 4 kJ mol(-1) at temperatures greater than 227 K and 7.7 kJ mol(-1) at temperatures less than 227 K. Reduction of the activation energy suggests that the average intermolecular distance between CDCl(3) molecules enlarges above the inflection point. The difference of activation energy (3.7 kJ mol(-1)) is close to the enthalpy of fusion in typical plastic crystals. These results reveal that the thermal anomaly and the transition of dynamic process correspond respectively to melting of CHCl(3) in ACF and the pre-melting phenomenon.

  9. A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS

    EPA Science Inventory

    In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...

  10. 2D ESR image reconstruction from 1D projections using the modulated field gradient method

    NASA Astrophysics Data System (ADS)

    Páli, T.; Sass, L.; Horvat, L. I.; Ebert, B.

    A method for the reconstruction of 2D ESR images from 1 D projections which is based on the modulated field gradient method has been explored. The 2D distribution of spin-labeled stearic acid in oriented and unoriented dimyristoyl phosphatidylcholine multilayers on a flat quartz support was determined. Such samples are potentially useful for the determination of lipid lateral diffusion in oriented multilayers by monitoring the spreading of a sharp concentration profile in one or two dimensions. The limitations of the method are discussed and the improvements which are needed for dynamic measurements are outlined.

  11. Solution structure of GCCAAT recognition motif by 2D NMR, spectral simulation, molecular modeling, and distance geometry calculations.

    PubMed

    Nibedita, R; Kumar, R A; Majumdar, A; Hosur, R V; Govil, G; Majumder, K; Chauhan, V S

    1993-09-01

    Solution conformation of a self-complementary 14-mer DNA duplex (d-GGATTGGCCAATCC) containing the GCCAAT recognition motif of several transcription factors has been investigated by NMR spectroscopy. Complete resonance assignment of all the protons (except H5',H5'' protons) has been obtained following standard procedures based on two-dimensional NMR techniques. Three-bond coupling constants have been determined by spectral simulation procedures. New strategies have been described and employed for quantifying NOE intensities from the structural point of view. Approximate ranges of gamma torsion angles have been obtained from a selective NOESY experiment, by estimating the J(4'-5'), J(4'-5''), or their sum in the H1'-H4' cross peaks of the spectrum. Likewise, ranges of epsilon torsion angles have been obtained by monitoring the H3' multiplicities in the H8/H6-H3' cross peaks in selective NOESY spectra. With the help of such a total of 73 coupling constraints, 79 NOE intensity constraints, and 108 H-bond constraints, model building has been carried out to obtain a structure which satisfies the constraints. Starting from such a structure, an expanded distance constraint set has been created which has been used for the distance geometry calculations using the program TANDY. In the best structure thus derived, interesting irregularities similar to a BI-BII transition have been observed in the center. The molecule exhibits a bend. The overall base stacking is different from that in either B- or A-DNA models. The base pairs are tilted with respect to the local helix axes. The observed structural features are likely to have important implications for the recognition mechanism of the GCCAAT motif.

  12. NMR Stark Spectroscopy: New Methods to Calibrate NMR Sensitivity to Electric Fields

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.

    The influence of electrostatics on NMR parameters is well accepted. Thus, NMR is a promising route to probe electrical features within molecules and materials. However, applications of NMR Stark effects (E-field induced changes in spin energy levels) have been elusive. I have developed new approaches to resolve NMR Stark effects from an applied E field. This calibrates nuclear probes whose spectral response might later be used to evaluate internal E fields that are critical to function, such as those due to local charge distributions or sample structure. I will present two novel experimental approaches for direct calibration of NMR quadrupolar Stark effects (QSEs). In the first, steady-state (few-second) excitation by an E field at twice the NMR frequency (2ω 0) is used to saturate spin magnetization. The extent of saturation vs. E-field amplitude calibrates the QSE response rate, while measurements vs sample orientation determine tensorial character. The second method instead synchronizes short (few µs) pulses of the 2ω0 E field with a multiple-pulse NMR sequence. This, “POWER” (Perturbations Observed With Enhanced Resolution) approach enables more accurate measure of small QSEs (i.e. few Hz spectral changes). A 2nd key advantage is the ability to define tensorial response without reorienting the sample, but instead varying the phase of the 2ω0 field. I will describe these experiments and my home-built NMR “Stark probe”, employed on a conventional wide-bore solid-state NMR system. Results with GaAs demonstrate each method, while extensions to a wider array of molecular and material systems may now be possible using these methods.

  13. A Cartesian grid finite-difference method for 2D incompressible viscous flows in irregular geometries

    NASA Astrophysics Data System (ADS)

    Sanmiguel-Rojas, Enrique; Ortega-Casanova, Joaquin; del Pino, Carlos; Fernandez-Feria, Ramon

    2004-11-01

    A method for generating a non-uniform cartesian grid for irregular two-dimensional (2D) geometries such that all the boundary points are regular mesh points is given. The resulting non-uniform grid is used to discretize the Navier-Stokes equations for 2D incompressible viscous flows using finite difference approximations. To that end, finite-difference approximations of the derivatives on a non-uniform mesh are given. We test the method with two different examples: the shallow water flow on a lake with irregular contour, and the pressure driven flow through an irregular array of circular cylinders.

  14. Assessment and improvement of the 2D/1D method stability in DeCART

    SciTech Connect

    Stimpson, S.; Young, M.; Collins, B.; Kelley, B.; Downar, T.

    2013-07-01

    As part of ongoing work with Consortium for Advanced Simulation of Light Water Reactors (CASL), the 2D/1D code, DeCART, has demonstrated some of the advantages of the 2D/1D method with respect to realistic, full-core analysis, particularly over explicit 3D transport methods, which generally have higher memory and computation requirements. The 2D/1D method performs 2D-radial transport sweeps coupled with ID-axial diffusion calculations to provide a full 3D simulation. DeCART employs the 2D method of characteristics for the radial sweeps and ID one-node nodal diffusion for the axial sweeps, coupling the two methods with transverse leakages to ensure a more consistent representation of the transport equation. It has been observed that refinement of the axial plane thickness leads to instabilities in the calculation scheme. This work assesses the sources of these instabilities and the approaches to improve them, especially with respect to negative scattering cross sections and the tightness of the 2D-radial/ID-axial coupling schemes. Fourier analyses show that the existing iteration scheme is not unconditionally stable, suggesting a tighter coupling scheme is required. For this reason 3D-CMFD has been implemented, among other developments, to ensure more stable calculation. A matrix of test cases has been used to assess the convergence, with the primary parameter being the axial plane thickness, which has been refined down to 1 cm. These cases demonstrate the issues observed and how the modification improve the stability. However, it is apparent that more work is necessary to ensure unconditional stability. (authors)

  15. Tritiation methods and tritium NMR spectroscopy

    SciTech Connect

    Jaiswal, D.K.; Morimoto, H.; Salijoughian, M.; Williams, P.G.

    1991-09-01

    We have used a simple process for the production of highly tritiated water and characterized the product species by {sup 1}H and {sup 3}H NMR spectroscopy. The water is readily manipulated and used in subsequent reactions either as T{sub 2}O, CH{sub 3}COOT or CF{sub 3}COOT. Development of tritiated diimide has progressed to the point where cis-hydrogenated products at 1-20 Ci/mmole S.A. are possible. Tri-n-butyl tin tritide has been produced at >95% tritium content and well characterized by multinuclear NMR techniques. 27 refs., 3 figs.

  16. The novel acid degradation products of losartan: Isolation and characterization using Q-TOF, 2D-NMR and FTIR.

    PubMed

    Kumar Pandey, Avadhesh; Rapolu, Ravi; Raju, Ch Krishnam; Sasalamari, Gururaj; Kumar Goud, Sanath; Awasthi, Atul; Navalgund, Sameer G; Surendranath, Koduru V

    2016-02-20

    Forced degradation of losartan potassium in acidic condition resulted into three potential unknown impurities. These unknown degradation products marked as LD-I, LD-II and LD-III were analyzed using a new reverse-phase high performance liquid chromatography (HPLC), eluting at 3.63, 3.73 and 3.91 relative retention times with respect to losartan potassium (LOS) peak. All three were isolated from reaction mass using preparative HPLC and their structures were elucidated using LC-MS/MS, multidimensional NMR and FTIR spectroscopic techniques, as 5(2),11(2)-dibutyl-5(4),11(4)-dichloro-1(1)H,5(1)H,7(1)H,11(1)H-1(5,1),7(1,5)-ditetrazola-5,11(1,5)-diimidazola-2,8(1,2),3,9(1,4)-tetrabenzenacyclododecaphane,(Z)-5(2),11(2)-dibutyl-5(4),11(4)-dichloro-1(1)H,5(1)H,7(2)H,11(1)H-1(5,1),7(2,5)-ditetrazola-5,11(1,5)-diimidazola-2,8(1,2),3,9(1,4)-tetrabenzenacyclododecaphane, and 5(2),11(2)-dibutyl-5(4),11(4)-dichloro-1(2)H,5(1)H,7(2)H,11(1)H-1(5,2),7(2,5)-ditetrazola-5,11(1,5)-diimidazola-2,8(1,2),3,9(1,4)-tetrabenzenacyclododecaphane, respectively. To best of our knowledge, all three degradation products are novel impurities which are not discussed at any form of publication yet. PMID:26704631

  17. Proton 2D NMR and distance geometry study of the folding of Ecballium elaterium trypsin inhibitor, a member of the squash inhibitors family

    SciTech Connect

    Heitz, A.; Chiche, L.; Le-Nguyen, D.; Castro, B. )

    1989-03-21

    The solution conformation of synthetic Ecballium elaterium trypsin inhibitor II, a 28-residue peptide with 3 disulfide bridges, has been studied by {sup 1}H 2D NMR measurements. Secondary structure elements were determined: a miniantiparallel {beta}-sheet Met 7-Cys 9 and Gly 25-Cys 27, a {beta}-hairpin 20-28 with {beta}-turn 22-25, and two tight turns Asp 12-Cys 15 and Leu 16-Cys 19. A set of interproton distance restraints deduced from two-dimensional nuclear Overhauser enhancement spectra and 13 {phi} backbone torsion angles restraints were used as the basis of three-dimensional structure computations including disulfide bridges arrangement by using distance geometry calculations. Computations for the 15 possible S-S linkage combinations lead to the proposal of the array 2-19, 9-21, 15-27 as the most probably structure for EETI II.

  18. An efficient simulation method of a cyclotron sector-focusing magnet using 2D Poisson code

    NASA Astrophysics Data System (ADS)

    Gad Elmowla, Khaled Mohamed M.; Chai, Jong Seo; Yeon, Yeong H.; Kim, Sangbum; Ghergherehchi, Mitra

    2016-10-01

    In this paper we discuss design simulations of a spiral magnet using 2D Poisson code. The Independent Layers Method (ILM) is a new technique that was developed to enable the use of two-dimensional simulation code to calculate a non-symmetric 3-dimensional magnetic field. In ILM, the magnet pole is divided into successive independent layers, and the hill and valley shape around the azimuthal direction is implemented using a reference magnet. The normalization of the magnetic field in the reference magnet produces a profile that can be multiplied by the maximum magnetic field in the hill magnet, which is a dipole magnet made of the hills at the same radius. Both magnets are then calculated using the 2D Poisson SUPERFISH code. Then a fully three-dimensional magnetic field is produced using TOSCA for the original spiral magnet, and the comparison of the 2D and 3D results shows a good agreement between both.

  19. 2D and 3D Method of Characteristic Tools for Complex Nozzle Development

    NASA Technical Reports Server (NTRS)

    Rice, Tharen

    2003-01-01

    This report details the development of a 2D and 3D Method of Characteristic (MOC) tool for the design of complex nozzle geometries. These tools are GUI driven and can be run on most Windows-based platforms. The report provides a user's manual for these tools as well as explains the mathematical algorithms used in the MOC solutions.

  20. Global synthetic seismograms using a 2-D finite-difference method

    NASA Astrophysics Data System (ADS)

    Li, Dunzhu; Helmberger, Don; Clayton, Robert W.; Sun, Daoyuan

    2014-05-01

    Two-dimensional (2-D) finite-difference (FD) synthetics, which fill the gap between fast 1-D analytic synthetics and time-consuming full 3-D synthetics in our ability to model seismograms, have been used in many studies. We address several issues involving 2-D FD methods in generating global synthetic seismograms. These include: (1) interfacing point source excitation for earthquakes with 2-D FD methods; (2) out-of-plane spreading corrections and (3) reducing the spherical Earth to the flattened models. The first issue is tackled using two methods, a `transparent source box' approach and a moment tensor excitation approach, where each has its own advantages. Moreover, our `source box' excitation does not have the late-time drift problem that occurred in previous studies. The out-of-plane geometric spreading correction is accounted for by estimating the ray parameter and applying a post-simulation filter to 2-D synthetics. Finally, parameters of the Earth-flattening transformation are discussed and validated. The effectiveness of this method is demonstrated by comparing our synthetics with frequency-wavenumber summation, normal-mode and 3-D spectral-element synthetics.

  1. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  2. NMR Methods, Applications and Trends for Groundwater Evaluation and Management

    NASA Astrophysics Data System (ADS)

    Walsh, D. O.; Grunewald, E. D.

    2011-12-01

    Nuclear magnetic resonance (NMR) measurements have a tremendous potential for improving groundwater characterization, as they provide direct detection and measurement of groundwater and unique information about pore-scale properties. NMR measurements, commonly used in chemistry and medicine, are utilized in geophysical investigations through non-invasive surface NMR (SNMR) or downhole NMR logging measurements. Our recent and ongoing research has focused on improving the performance and interpretation of NMR field measurements for groundwater characterization. Engineering advancements have addressed several key technical challenges associated with SNMR measurements. Susceptibility of SNMR measurements to environmental noise has been dramatically reduced through the development of multi-channel acquisition hardware and noise-cancellation software. Multi-channel instrumentation (up to 12 channels) has also enabled more efficient 2D and 3D imaging. Previous limitations in measuring NMR signals from water in silt, clay and magnetic geology have been addressed by shortening the instrument dead-time from 40 ms to 4 ms, and increasing the power output. Improved pulse sequences have been developed to more accurately estimate NMR relaxation times and their distributions, which are sensitive to pore size distributions. Cumulatively, these advancements have vastly expanded the range of environments in which SNMR measurements can be obtained, enabling detection of groundwater in smaller pores, in magnetic geology, in the unsaturated zone, and nearby to infrastructure (presented here in case studies). NMR logging can provide high-resolution estimates of bound and mobile water content and pore size distributions. While NMR logging has been utilized in oil and gas applications for decades, its use in groundwater investigations has been limited by the large size and high cost of oilfield NMR logging tools and services. Recently, engineering efforts funded by the US Department of

  3. High-Order Spectral Volume Method for 2D Euler Equations

    NASA Technical Reports Server (NTRS)

    Wang, Z. J.; Zhang, Laiping; Liu, Yen; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The Spectral Volume (SV) method is extended to the 2D Euler equations. The focus of this paper is to study the performance of the SV method on multidimensional non-linear systems. Implementation details including total variation diminishing (TVD) and total variation bounded (TVB) limiters are presented. Solutions with both smooth features and discontinuities are utilized to demonstrate the overall capability of the SV method.

  4. Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: Sequential resonance assignment and implications for protein dynamics and receptor recognition

    SciTech Connect

    Hua, Qingxin ); Weiss, M.A. Massachusetts General Hospital, Boston, MA )

    1991-06-04

    The solution structure and dynamics of human insulin are ivestigated by 2D {sup 1}H NMR spectroscopy in reference to a previously analyzed analogue, des-pentapeptide (B26-B30) insulin. This spectroscopic comparison is of interest since (i) the structure of the C-terminal region of the B-chain has not been determined in the monomeric state and (ii) the role of this region in binding to the insulin receptor has been the subject of long-standing speculation. The present NMR studies are conducted in the presence of an organic cosolvent (20% acetic acid), under which conditions both proteins are monomeric and stably folded. Complete sequential assignment of human insulin is obtained and leads to the following conclusions. (1) The secondary structure of the insulin monomer (three {alpha}-helices and B-chain {beta}-turn) is similar to that observed in the 2-Zn crustal state. (2) The folding of DPI is essentially the same as the corresponding portion of intact insulin, in accord with the similarities between their respective crystal structues. (3) residues B24-B28 adopt an extended configuration in the monomer and pack against the hydrophobic core as in crystallographic dimers; residues B29 and B30 are largely disordered. (4) The insulin fold is shown to provide a model for collective motions in a protein with implications for the mechanism of protein-protein recognition. To their knowledge, this paper describes the first detailed analysis of a protein NMR spectrum under conditions of extensive conformational broadening.

  5. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  6. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of

  7. A New Curb Detection Method for Unmanned Ground Vehicles Using 2D Sequential Laser Data

    PubMed Central

    Liu, Zhao; Wang, Jinling; Liu, Daxue

    2013-01-01

    Curb detection is an important research topic in environment perception, which is an essential part of unmanned ground vehicle (UGV) operations. In this paper, a new curb detection method using a 2D laser range finder in a semi-structured environment is presented. In the proposed method, firstly, a local Digital Elevation Map (DEM) is built using 2D sequential laser rangefinder data and vehicle state data in a dynamic environment and a probabilistic moving object deletion approach is proposed to cope with the effect of moving objects. Secondly, the curb candidate points are extracted based on the moving direction of the vehicle in the local DEM. Finally, the straight and curved curbs are detected by the Hough transform and the multi-model RANSAC algorithm, respectively. The proposed method can detect the curbs robustly in both static and typical dynamic environments. The proposed method has been verified in real vehicle experiments. PMID:23325170

  8. A new curb detection method for unmanned ground vehicles using 2D sequential laser data.

    PubMed

    Liu, Zhao; Wang, Jinling; Liu, Daxue

    2013-01-01

    Curb detection is an important research topic in environment perception, which is an essential part of unmanned ground vehicle (UGV) operations. In this paper, a new curb detection method using a 2D laser range finder in a semi-structured environment is presented. In the proposed method, firstly, a local Digital Elevation Map (DEM) is built using 2D sequential laser rangefinder data and vehicle state data in a dynamic environment and a probabilistic moving object deletion approach is proposed to cope with the effect of moving objects. Secondly, the curb candidate points are extracted based on the moving direction of the vehicle in the local DEM. Finally, the straight and curved curbs are detected by the Hough transform and the multi-model RANSAC algorithm, respectively. The proposed method can detect the curbs robustly in both static and typical dynamic environments. The proposed method has been verified in real vehicle experiments. PMID:23325170

  9. A method to calibrate a camera using perpendicularity of 2D lines in the target observations

    PubMed Central

    Xu, Guan; Zheng, Anqi; Li, Xiaotao; Su, Jian

    2016-01-01

    Camera calibration based on point features leads the main trends in vision-based measurement systems for both fundamental researches and potential applications. However, the calibration results tend to be affected by the precision of the feature point extraction in the camera images. As the point features are noise sensitive, line features are more appropriate to provide a stable calibration due to the noise immunity of line features. We propose a calibration method using the perpendicularity of the lines on a 2D target. The objective function of the camera internal parameters is theoretically constructed by the reverse projections of the image lines on a 2D target in the world coordinate system. We experimentally explore the performances of the perpendicularity method and compare them with the point feature methods at different distances. By the perpendicularity and the noise immunity of the lines, our work achieves a relatively higher calibration precision. PMID:27713566

  10. A method to calibrate a camera using perpendicularity of 2D lines in the target observations

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Zheng, Anqi; Li, Xiaotao; Su, Jian

    2016-10-01

    Camera calibration based on point features leads the main trends in vision-based measurement systems for both fundamental researches and potential applications. However, the calibration results tend to be affected by the precision of the feature point extraction in the camera images. As the point features are noise sensitive, line features are more appropriate to provide a stable calibration due to the noise immunity of line features. We propose a calibration method using the perpendicularity of the lines on a 2D target. The objective function of the camera internal parameters is theoretically constructed by the reverse projections of the image lines on a 2D target in the world coordinate system. We experimentally explore the performances of the perpendicularity method and compare them with the point feature methods at different distances. By the perpendicularity and the noise immunity of the lines, our work achieves a relatively higher calibration precision.

  11. Application of 2D graphic representation of protein sequence based on Huffman tree method.

    PubMed

    Qi, Zhao-Hui; Feng, Jun; Qi, Xiao-Qin; Li, Ling

    2012-05-01

    Based on Huffman tree method, we propose a new 2D graphic representation of protein sequence. This representation can completely avoid loss of information in the transfer of data from a protein sequence to its graphic representation. The method consists of two parts. One is about the 0-1 codes of 20 amino acids by Huffman tree with amino acid frequency. The amino acid frequency is defined as the statistical number of an amino acid in the analyzed protein sequences. The other is about the 2D graphic representation of protein sequence based on the 0-1 codes. Then the applications of the method on ten ND5 genes and seven Escherichia coli strains are presented in detail. The results show that the proposed model may provide us with some new sights to understand the evolution patterns determined from protein sequences and complete genomes.

  12. Simulation of 2D Brain's Potential Distribution Based on Two Electrodes ECVT Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Sirait, S. H.; Edison, R. E.; Baidillah, M. R.; Taruno, W. P.; Haryanto, F.

    2016-08-01

    The aim of this study is to simulate the potential distribution of 2D brain geometry based on two electrodes ECVT. ECVT (electrical capacitance tomography) is a tomography modality which produces dielectric distribution image of a subject from several capacitance electrodes measurements. This study begins by producing the geometry of 2D brain based on MRI image and then setting the boundary conditions on the boundaries of the geometry. The values of boundary conditions follow the potential values used in two electrodes brain ECVT, and for this reason the first boundary is set to 20 volt and 2.5 MHz signal and another boundary is set to ground. Poisson equation is implemented as the governing equation in the 2D brain geometry and finite element method is used to solve the equation. Simulated Hodgkin-Huxley action potential is applied as disturbance potential in the geometry. We divide this study into two which comprises simulation without disturbance potential and simulation with disturbance potential. From this study, each of time dependent potential distributions from non-disturbance and disturbance potential of the 2D brain geometry has been generated.

  13. 2D/3D registration with the CMA-ES method

    NASA Astrophysics Data System (ADS)

    Gong, Ren Hui; Abolmaesumi, Purang

    2008-03-01

    In this paper, we propose a new method for 2D/3D registration and report its experimental results. The method employs the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm to search for an optimal transformation that aligns the 2D and 3D data. The similarity calculation is based on Digitally Reconstructed Radiographs (DRRs), which are dynamically generated from the 3D data using a hardware-accelerated technique - Adaptive Slice Geometry Texture Mapping (ASGTM). Three bone phantoms of different sizes and shapes were used to test our method: a long femur, a large pelvis, and a small scaphoid. A collection of experiments were performed to register CT to fluoroscope and DRRs of these phantoms using the proposed method and two prior work, i.e. our previously proposed Unscented Kalman Filter (UKF) based method and a commonly used simplex-based method. The experimental results showed that: 1) with slightly more computation overhead, the proposed method was significantly more robust to local minima than the simplex-based method; 2) while as robust as the UKF-based method in terms of capture range, the new method was not sensitive to the initial values of its exposed control parameters, and has also no special requirement about the cost function; 3) the proposed method was fast and consistently achieved the best accuracies in all compared methods.

  14. Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods.

    PubMed

    Duan, Jianxin; Dixon, Steven L; Lowrie, Jeffrey F; Sherman, Woody

    2010-09-01

    Virtual screening is a widely used strategy in modern drug discovery and 2D fingerprint similarity is an important tool that has been successfully applied to retrieve active compounds from large datasets. However, it is not always straightforward to select an appropriate fingerprint method and associated settings for a given problem. Here, we applied eight different fingerprint methods, as implemented in the new cheminformatics package Canvas, on a well-validated dataset covering five targets. The fingerprint methods include Linear, Dendritic, Radial, MACCS, MOLPRINT2D, Pairwise, Triplet, and Torsion. We find that most fingerprints have similar retrieval rates on average; however, each has special characteristics that distinguish its performance on different query molecules and ligand sets. For example, some fingerprints exhibit a significant ligand size dependency whereas others are more robust with respect to variations in the query or active compounds. In cases where little information is known about the active ligands, MOLPRINT2D fingerprints produce the highest average retrieval actives. When multiple queries are available, we find that a fingerprint averaged over all query molecules is generally superior to fingerprints derived from single queries. Finally, a complementarity metric is proposed to determine which fingerprint methods can be combined to improve screening results.

  15. Investigations of spectral resolution and angle dependency in a 2-D tracking Doppler method.

    PubMed

    Fredriksen, Tonje D; Avdal, Jorgen; Ekroll, Ingvild K; Dahl, Torbjorn; Lovstakken, Lasse; Torp, Hans

    2014-07-01

    An important source of error in velocity measurements from conventional pulsed wave (PW) Doppler is the angle used for velocity calibration. Because there are great uncertainties and interobserver variability in the methods used for Doppler angle correction in the clinic today, it is desirable to develop new and more robust methods. In this work, we have investigated how a previously presented method, 2-D tracking Doppler, depends on the tracking angle. A signal model was further developed to include tracking along any angle, providing velocity spectra which showed good agreement with both experimental data and simulations. The full-width at half-maximum (FWHM) bandwidth and the peak value of predicted power spectra were calculated for varying tracking angles. It was shown that the spectra have lowest bandwidth and maximum power when the tracking angle is equal to the beam-to-flow angle. This may facilitate new techniques for velocity calibration, e.g., by manually adjusting the tracking angle, while observing the effect on the spectral display. An in vitro study was performed in which the Doppler angles were predicted by the minimum FWHM and the maximum power of the 2-D tracking Doppler spectra for 3 different flow angles. The estimated Doppler angles had an overall error of 0.24° ± 0.75° when using the minimum FWHM. With an in vivo example, it was demonstrated that the 2-D tracking Doppler method is suited for measurements in a patient with carotid stenosis.

  16. Precise and rapid isotopomic analysis by (1)H-(13)C 2D NMR: Application to triacylglycerol matrices.

    PubMed

    Merchak, Noelle; Silvestre, Virginie; Rouger, Laetitia; Giraudeau, Patrick; Rizk, Toufic; Bejjani, Joseph; Akoka, Serge

    2016-08-15

    An optimized HSQC sequence was tested and applied to triacylglycerol matrices to determine their isotopic and metabolomic profiles. Spectral aliasing and non-uniform sampling approaches were used to decrease the experimental time and to improve the resolution, respectively. An excellent long-term repeatability of signal integrals was achieved enabling to perform isotopic measurements. Thirty-two commercial vegetable oils were analyzed by this methodology. The results show that this method can be used to classify oil samples according to their geographical and botanical origins. PMID:27260459

  17. Precise and rapid isotopomic analysis by (1)H-(13)C 2D NMR: Application to triacylglycerol matrices.

    PubMed

    Merchak, Noelle; Silvestre, Virginie; Rouger, Laetitia; Giraudeau, Patrick; Rizk, Toufic; Bejjani, Joseph; Akoka, Serge

    2016-08-15

    An optimized HSQC sequence was tested and applied to triacylglycerol matrices to determine their isotopic and metabolomic profiles. Spectral aliasing and non-uniform sampling approaches were used to decrease the experimental time and to improve the resolution, respectively. An excellent long-term repeatability of signal integrals was achieved enabling to perform isotopic measurements. Thirty-two commercial vegetable oils were analyzed by this methodology. The results show that this method can be used to classify oil samples according to their geographical and botanical origins.

  18. A TVD-type method for 2D scalar Hamilton-Jacobi equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Tang, Lingyan; Song, Songhe

    2006-10-01

    In this paper, a TVD-type difference scheme which satisfies maximum principle is developed for 2D scalar Hamilton-Jacobi equations on unstructured triangular meshes. The main ideas are node-based approximations and derivative-limited reconstruction with quadratic interpolation polynomial. The solution's slope satisfies maximum principle. Numerical experiments are performed to demonstrate high-order accuracy in smooth fields and good resolution of derivative singularities. The new method is simpler than WENO.

  19. Proton-detected 2D radio frequency driven recoupling solid-state NMR studies on micelle-associated cytochrome-b5

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Vivekanandan, Subramanian; Yamamoto, Kazutoshi; Im, Sangchoul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2014-05-01

    Solid-state NMR spectroscopy is increasingly used in the high-resolution structural studies of membrane-associated proteins and peptides. Most such studies necessitate isotopically labeled (13C, 15N and 2H) proteins/peptides, which is a limiting factor for some of the exciting membrane-bound proteins and aggregating peptides. In this study, we report the use of a proton-based slow magic angle spinning (MAS) solid-state NMR experiment that exploits the unaveraged 1H-1H dipolar couplings from a membrane-bound protein. We have shown that the difference in the buildup rates of cross-peak intensities against the mixing time - obtained from 2D 1H-1H radio frequency-driven recoupling (RFDR) and nuclear Overhauser effect spectroscopy (NOESY) experiments on a 16.7-kDa micelle-associated full-length rabbit cytochrome-b5 (cytb5) - can provide insights into protein dynamics and could be useful to measure 1H-1H dipolar couplings. The experimental buildup curves compare well with theoretical simulations and are used to extract relaxation parameters. Our results show that due to fast exchange of amide protons with water in the soluble heme-containing domain of cyb5, coherent 1H-1H dipolar interactions are averaged out for these protons while alpha and side chain protons show residual dipolar couplings that can be obtained from 1H-1H RFDR experiments. The appearance of resonances with distinct chemical shift values in 1H-1H RFDR spectra enabled the identification of residues (mostly from the transmembrane region) of cytb5 that interact with micelles.

  20. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  1. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  2. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods.

    PubMed

    Maximov, Ivan I; Vinding, Mads S; Tse, Desmond H Y; Nielsen, Niels Chr; Shah, N Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.

  3. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods

    NASA Astrophysics Data System (ADS)

    Maximov, Ivan I.; Vinding, Mads S.; Tse, Desmond H. Y.; Nielsen, Niels Chr.; Shah, N. Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.

  4. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods.

    PubMed

    Maximov, Ivan I; Vinding, Mads S; Tse, Desmond H Y; Nielsen, Niels Chr; Shah, N Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community. PMID:25863895

  5. Evaporative thinning: a facile synthesis method for high quality ultrathin layers of 2D crystals.

    PubMed

    Huang, Yi-Kai; Cain, Jeffrey D; Peng, Lintao; Hao, Shiqiang; Chasapis, Thomas; Kanatzidis, Mercouri G; Wolverton, Christopher; Grayson, Matthew; Dravid, Vinayak P

    2014-10-28

    The palette of two-dimensional materials has expanded beyond graphene in recent years to include the chalcogenides among other systems. However, there is a considerable paucity of methods for controlled synthesis of mono- and/or few-layer two-dimensional materials with desirable quality, reproducibility, and generality. Here we show a facile top-down synthesis approach for ultrathin layers of 2D materials down to monolayer. Our method is based on controlled evaporative thinning of initially large sheets, as deposited by vapor mass-transport. Rather than optimizing conditions for monolayer deposition, our approach makes use of selective evaporation of thick sheets to control the eventual thickness, down to a monolayer, a process which appears to be self-stopping. As a result, 2D sheets with high yield, high reproducibility, and excellent quality can be generated with large (>10 μm) and thin (∼ 1-2 nm) dimensions. Evaporative thinning promises to greatly reduce the difficulty involved in isolating large, mono- and few-layers of 2D materials for subsequent studies.

  6. Methods for defect characterisation in thin film materials by depth-selective 2D-ACAR

    NASA Astrophysics Data System (ADS)

    Eijt, S. W. H.; Falub, C. V.; van Veen, A.; Schut, H.; Mijnarends, P. E.

    2002-06-01

    The advent of intense positron beams makes it possible to perform depth-selective 2D-ACAR (two-dimensional angular correlation of annihilation radiation) studies. The Delft POSH-ACAR setup employs a strong permanent magnet for focusing of the POSH beam on the sample, which leads to a ˜15% spread in implantation energy. The effects of this spread on positron depth-profiling data are discussed, and are shown to be consistent with Doppler experiments on Si(1 0 0) with a subsurface layer of nanocavities. A method is presented to decompose depth-selective 2D-ACAR spectra reliably into their various (layer) components. This is used to reveal strong positron trapping in the nanocavities in Si(1 0 0).

  7. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  8. Localized 2D COSY sequences: Method and experimental evaluation for a whole metabolite quantification approach

    NASA Astrophysics Data System (ADS)

    Martel, Dimitri; Tse Ve Koon, K.; Le Fur, Yann; Ratiney, Hélène

    2015-11-01

    Two-dimensional spectroscopy offers the possibility to unambiguously distinguish metabolites by spreading out the multiplet structure of J-coupled spin systems into a second dimension. Quantification methods that perform parametric fitting of the 2D MRS signal have recently been proposed for resolved PRESS (JPRESS) but not explicitly for Localized Correlation Spectroscopy (LCOSY). Here, through a whole metabolite quantification approach, correlation spectroscopy quantification performances are studied. The ability to quantify metabolite relaxation constant times is studied for three localized 2D MRS sequences (LCOSY, LCTCOSY and the JPRESS) in vitro on preclinical MR systems. The issues encountered during implementation and quantification strategies are discussed with the help of the Fisher matrix formalism. The described parameterized models enable the computation of the lower bound for error variance - generally known as the Cramér Rao bounds (CRBs), a standard of precision - on the parameters estimated from these 2D MRS signal fittings. LCOSY has a theoretical net signal loss of two per unit of acquisition time compared to JPRESS. A rapid analysis could point that the relative CRBs of LCOSY compared to JPRESS (expressed as a percentage of the concentration values) should be doubled but we show that this is not necessarily true. Finally, the LCOSY quantification procedure has been applied on data acquired in vivo on a mouse brain.

  9. Medical anatomy segmentation kit: combining 2D and 3D segmentation methods to enhance functionality

    NASA Astrophysics Data System (ADS)

    Tracton, Gregg S.; Chaney, Edward L.; Rosenman, Julian G.; Pizer, Stephen M.

    1994-07-01

    Image segmentation, in particular, defining normal anatomic structures and diseased or malformed tissue from tomographic images, is common in medical applications. Defining tumors or arterio-venous malformation from computed tomography or magnetic resonance images are typical examples. This paper describes a program, Medical Anatomy Segmentation Kit (MASK), whose design acknowledges that no single segmentation technique has proven to be successful or optimal for all object definition tasks associated with medical images. A practical solution is offered through a suite of complementary user-guided segmentation techniques and extensive manual editing functions to reach the final object definition goal. Manual editing can also be used to define objects which are abstract or otherwise not well represented in the image data and so require direct human definition - e.g., a radiotherapy target volume which requires human knowledge and judgement regarding image interpretation and tumor spread characteristics. Results are either in the form of 2D boundaries or regions of labeled pixels or voxels. MASK currently uses thresholding and edge detection to form contours, and 2D or 3D scale-sensitive fill and region algebra to form regions. In addition to these proven techniques, MASK's architecture anticipates clinically practical automatic 2D and 3D segmentation methods of the future.

  10. Comparison of lifetime-based methods for 2D phosphor thermometry in high-temperature environment

    NASA Astrophysics Data System (ADS)

    Peng, Di; Liu, Yingzheng; Zhao, Xiaofeng; Kim, Kyung Chun

    2016-09-01

    This paper discusses the currently available techniques for 2D phosphor thermometry, and compares the performance of two lifetime-based methods: high-speed imaging and the dual-gate. High-speed imaging resolves luminescent decay with a fast frame rate, and has become a popular method for phosphor thermometry in recent years. But it has disadvantages such as high equipment cost and long data processing time, and it would fail at sufficiently high temperature due to a low signal-to-noise ratio and short lifetime. The dual-gate method only requires two images on the decay curve and therefore greatly reduces cost in hardware and processing time. A dual-gate method for phosphor thermometry has been developed and compared with the high-speed imaging method through both calibration and a jet impingement experiment. Measurement uncertainty has been evaluated for a temperature range of 473–833 K. The effects of several key factors on uncertainty have been discussed, including the luminescent signal level, the decay lifetime and temperature sensitivity. The results show that both methods are valid for 2D temperature sensing within the given range. The high-speed imaging method shows less uncertainty at low temperatures where the signal level and the lifetime are both sufficient, but its performance is degraded at higher temperatures due to a rapidly reduced signal and lifetime. For T  >  750 K, the dual-gate method outperforms the high-speed imaging method thanks to its superiority in signal-to-noise ratio and temperature sensitivity. The dual-gate method has great potential for applications in high-temperature environments where the high-speed imaging method is not applicable.

  11. Comparison of lifetime-based methods for 2D phosphor thermometry in high-temperature environment

    NASA Astrophysics Data System (ADS)

    Peng, Di; Liu, Yingzheng; Zhao, Xiaofeng; Kim, Kyung Chun

    2016-09-01

    This paper discusses the currently available techniques for 2D phosphor thermometry, and compares the performance of two lifetime-based methods: high-speed imaging and the dual-gate. High-speed imaging resolves luminescent decay with a fast frame rate, and has become a popular method for phosphor thermometry in recent years. But it has disadvantages such as high equipment cost and long data processing time, and it would fail at sufficiently high temperature due to a low signal-to-noise ratio and short lifetime. The dual-gate method only requires two images on the decay curve and therefore greatly reduces cost in hardware and processing time. A dual-gate method for phosphor thermometry has been developed and compared with the high-speed imaging method through both calibration and a jet impingement experiment. Measurement uncertainty has been evaluated for a temperature range of 473-833 K. The effects of several key factors on uncertainty have been discussed, including the luminescent signal level, the decay lifetime and temperature sensitivity. The results show that both methods are valid for 2D temperature sensing within the given range. The high-speed imaging method shows less uncertainty at low temperatures where the signal level and the lifetime are both sufficient, but its performance is degraded at higher temperatures due to a rapidly reduced signal and lifetime. For T  >  750 K, the dual-gate method outperforms the high-speed imaging method thanks to its superiority in signal-to-noise ratio and temperature sensitivity. The dual-gate method has great potential for applications in high-temperature environments where the high-speed imaging method is not applicable.

  12. A nearly analytic symplectically partitioned Runge-Kutta method for 2-D seismic wave equations

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Yang, Dinghui; Liu, Faqi

    2011-10-01

    In this paper, we develop a new nearly analytic symplectically partitioned Runge-Kutta (NSPRK) method for numerically solving elastic wave equations. In this method, we first transform the elastic wave equations into a Hamiltonian system, and use the nearly analytic discrete operator to approximate the high-order spatial differential operators, and then we employ the partitioned second-order symplectic Runge-Kutta method to numerically solve the resulted semi-discrete Hamiltonian ordinary differential equations (ODEs). We investigate in great detail on the properties of the NSPRK method that includes the stability condition for the P-SV wave in a 2-D homogeneous isotropic medium, the computational efficiency, and the numerical dispersion relation for the 2-D acoustic case. Meanwhile, we apply the NSPRK to simulate the elastic wave propagating in several multilayer models with both strong velocity contrasts and fluctuating interfaces. Both theoretical analysis and numerical results show that the NSPRK can effectively suppress the numerical dispersion resulted from the discretization of the wave equations, and more importantly, it preserves the symplecticity structure for long-time computation. In addition, numerical experiments demonstrate that the NSPRK is effective to combine the split perfectly matched layer boundary conditions to take care of the reflections from the artificial boundaries.

  13. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform

    SciTech Connect

    Tang, Hui; Tong, Dan; Dong Bao, Xu; Dillenseger, Jean-Louis

    2015-04-15

    Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimages using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.

  14. Theoretical investigation on a general class of 2D quasicrystals with the rectangular projection method

    NASA Astrophysics Data System (ADS)

    Yue, Yang-Yang; Lu, Rong-er; Yang, Bo; Huang, Huang; Hong, Xu-Hao; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2016-10-01

    We take a theoretical investigation on the reciprocal property of a class of 2D nonlinear photonic quasicrystal proposed by Lifshitz et al. in PRL 95, 133901 (2005). Using the rectangular projection method, the analytical expression for the Fourier spectrum of the quasicrystal structure is obtained explicitly. It is interesting to find that the result has a similar form to the corresponding expression of the well-known 1D Fibonacci lattice. In addition, we predict a further extension of the result to higher dimensions. This work is of practical importance for the photonic device design in nonlinear optical conversion progresses.

  15. Canonical vs. micro-canonical sampling methods in a 2D Ising model

    SciTech Connect

    Kepner, J.

    1990-12-01

    Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs.

  16. Multiple Frequency Contrast Source Inversion Method for Vertical Electromagnetic Profiling: 2D Simulation Results and Analyses

    NASA Astrophysics Data System (ADS)

    Li, Jinghe; Song, Linping; Liu, Qing Huo

    2016-02-01

    A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.

  17. Comparison of 2D transmon coherence for different capacitive shunt fabrication methods

    NASA Astrophysics Data System (ADS)

    Yoder, Jonilyn; Kamal, Archana; Yan, Fei; Gudmundsen, Theodore; Welander, Paul; Gustavsson, Simon; Hover, David; Kerman, Andrew; Sears, Adam; Oliver, William

    2015-03-01

    Improvements in superconducting qubit coherence times and reproducibility have been demonstrated using capacitive shunting. In this study, we present a side-by-side comparison of two distinct methods for preparing the aluminum shunt capacitor material for 2D transmon superconducting qubit devices. The first method involved in situ wafer outgassing prior to molecular beam epitaxy aluminum evaporation. The second method involved ex situ wafer annealing prior to electron gun aluminum evaporation. Materials analysis for each process will be detailed. Experimental results, including qubit coherence times and superconducting coplanar waveguide resonator internal quality factors, will be presented for representative devices prepared using both methods. This work is sponsored by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract FA8721-05-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

  18. Comparison of numerical methods for 2D crystals under anisotropic surface free energy and through evolution

    NASA Astrophysics Data System (ADS)

    Lolla, Madhuri Udayanjani

    In this dissertation first, we compute the equilibrium shapes of 2D crystals under anisotropic surface free energies. An equilibrium shape minimizes the total surface free energy. The governing equation in polar coordinates is a nonlinear ordinary differential equation. Two numerical methods, finite difference and the finite element are used and compared. We investigate the accuracy, order of convergence and efficiency of the two methods in computing the equilibrium shapes. Secondly, we consider the surface of the crystal evolving under surface diffusion and compute the final shape in the evolution which is the equilibrium shape. The surface diffusion equation in polar coordinates is a time-dependent nonlinear 4th order partial differential equation. Again we apply the two methods finite difference and finite element. The results are observed at different stages of evolution of the crystal for the isotropy case. Then we compare the accuracy, order of convergence and efficiency of the two methods.

  19. Solution structure of the 45-residue MgATP-binding peptide of adenylate kinase as examined by 2-D NMR, FTIR, and CD spectroscopy.

    PubMed

    Fry, D C; Byler, D M; Susi, H; Brown, E M; Kuby, S A; Mildvan, A S

    1988-05-17

    The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme [Fry, D.C., Kuby, S.A., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694], appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase [Sachsenheimer, W., & Schulz, G.E. (1977) J. Mol. Biol. 114, 23-26], with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of beta-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% alpha-helix, 38% beta-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possibly due to disorder, it can be fit by using methods developed on well-characterized globular proteins. On this basis, the peptide consists of 35 +/- 10% beta-structure, 60 +/- 12% turns and aperiodic structure, and not more than 10% alpha-helix. The CD spectrum is best fit by assuming the presence of at most 13% alpha-helix in the peptide, 24 +/- 2% beta-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformational changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assessed by CD. Detailed assignments of resonances in the peptide spectrum and intermolecular NOEs between protons of bound MgATP and

  20. Use of continuous optimization methods to find carbon links in 2D INADEQUATE spectra

    NASA Astrophysics Data System (ADS)

    Anand, Christopher Kumar; Bain, Alex D.; Watson, Sean C.

    2011-05-01

    The 2-D INADEQUATE experiment is a useful experiment for determining carbon structures of organic molecules, which is known for having low signal-to-noise ratios. A non-linear optimization method for solving low-signal spectra resulting from this experiment is introduced to compensate. The method relies on the peak locations defined by the INADEQUATE experiment to create boxes around these areas and measure the signal in each. By measuring pairs of these boxes and applying penalty functions that represent a priori information, we are able to quickly and reliably solve spectra with an acquisition time approximately a quarter of that required by traditional methods. Examples are shown using the spectrum of sucrose.

  1. Fast 2D DOA Estimation Algorithm by an Array Manifold Matching Method with Parallel Linear Arrays

    PubMed Central

    Yang, Lisheng; Liu, Sheng; Li, Dong; Jiang, Qingping; Cao, Hailin

    2016-01-01

    In this paper, the problem of two-dimensional (2D) direction-of-arrival (DOA) estimation with parallel linear arrays is addressed. Two array manifold matching (AMM) approaches, in this work, are developed for the incoherent and coherent signals, respectively. The proposed AMM methods estimate the azimuth angle only with the assumption that the elevation angles are known or estimated. The proposed methods are time efficient since they do not require eigenvalue decomposition (EVD) or peak searching. In addition, the complexity analysis shows the proposed AMM approaches have lower computational complexity than many current state-of-the-art algorithms. The estimated azimuth angles produced by the AMM approaches are automatically paired with the elevation angles. More importantly, for estimating the azimuth angles of coherent signals, the aperture loss issue is avoided since a decorrelation procedure is not required for the proposed AMM method. Numerical studies demonstrate the effectiveness of the proposed approaches. PMID:26907301

  2. SMARTCyp: A 2D Method for Prediction of Cytochrome P450-Mediated Drug Metabolism.

    PubMed

    Rydberg, Patrik; Gloriam, David E; Zaretzki, Jed; Breneman, Curt; Olsen, Lars

    2010-06-10

    SMARTCyp is an in silico method that predicts the sites of cytochrome P450-mediated metabolism of druglike molecules. The method is foremost a reactivity model, and as such, it shows a preference for predicting sites that are metabolized by the cytochrome P450 3A4 isoform. SMARTCyp predicts the site of metabolism directly from the 2D structure of a molecule, without requiring calculation of electronic properties or generation of 3D structures. This is a major advantage, because it makes SMARTCyp very fast. Other advantages are that experimental data are not a prerequisite to create the model, and it can easily be integrated with other methods to create models for other cytochrome P450 isoforms. Benchmarking tests on a database of 394 3A4 substrates show that SMARTCyp successfully identifies at least one metabolic site in the top two ranked positions 76% of the time. SMARTCyp is available for download at http://www.farma.ku.dk/p450.

  3. Fast 2D DOA Estimation Algorithm by an Array Manifold Matching Method with Parallel Linear Arrays.

    PubMed

    Yang, Lisheng; Liu, Sheng; Li, Dong; Jiang, Qingping; Cao, Hailin

    2016-01-01

    In this paper, the problem of two-dimensional (2D) direction-of-arrival (DOA) estimation with parallel linear arrays is addressed. Two array manifold matching (AMM) approaches, in this work, are developed for the incoherent and coherent signals, respectively. The proposed AMM methods estimate the azimuth angle only with the assumption that the elevation angles are known or estimated. The proposed methods are time efficient since they do not require eigenvalue decomposition (EVD) or peak searching. In addition, the complexity analysis shows the proposed AMM approaches have lower computational complexity than many current state-of-the-art algorithms. The estimated azimuth angles produced by the AMM approaches are automatically paired with the elevation angles. More importantly, for estimating the azimuth angles of coherent signals, the aperture loss issue is avoided since a decorrelation procedure is not required for the proposed AMM method. Numerical studies demonstrate the effectiveness of the proposed approaches. PMID:26907301

  4. Observation of 2D Ising criticality of liquid-gas transition by the flowgram method

    NASA Astrophysics Data System (ADS)

    Yarmolinsky, Max; Kuklov, Anatoly

    We study the critical properties of the transition in 2D liquid-gas system with the square-well potential interaction by Monte Carlo simulations in the grand canonical ensemble. Due to lack of the underlying Ising symmetry, the analysis cannot be done reliably by the standard methods applicable to lattice systems. In contrast, the analysis based on the flowgram method allowed us to find the critical point to significantly higher (and controllable) accuracy than in previous studies by other authors. Simulations were performed in a progression of sizes L up to size L = 84 , with the particle numbers varying over 3 orders of magnitude and the subcritical behavior not extending beyond L = 10 - 15 . The finite size scaling analysis of the critical exponents and their ratio, μ and γ / ν , gives values consistent with the 2D Ising universality class within 1-2% of errors. Our result essentially closes proposals that the nature of the liquid-gas transition might be different from the Ising model in systems with short-range interactions. This work was supported by the NSF Grant PHY1314469.

  5. Research on 2D representation method of wireless Micro-Ball endoscopic images.

    PubMed

    Wang, Dan; Xie, Xiang; Li, Guolin; Gu, Yingke; Yin, Zheng; Wang, Zhihua

    2012-01-01

    Nowadays the interpretation of the images acquired by wireless endoscopy system is a tedious job for doctors. A viable solution is to construct a map, which is the 2D representation of gastrointestinal (GI) tract to reduce the redundancy of images and improve the understandability of them. The work reported in this paper addresses the problem of the 2D representation of GI tract based on a new wireless Micro-Ball endoscopy system with multiple image sensors. This paper firstly models the problem of constructing the map, and then discusses mainly on the issues of perspective distortion correction, image preprocessing and image registration, which lie in the whole problem. The perspective distortion correction algorithm is realized based on attitude angles, while the image registration is based on phase correlation method (PCM) and scale invariant feature transform (SIFT) combined with particular image preprocessing methods. Based on R channels of images, the algorithm can deal with 26.3% to 100% of image registration when the ratio of overlap varies from 25% to 80%. The performance and effectiveness of the algorithms are verified by experiments.

  6. ARC2D - EFFICIENT SOLUTION METHODS FOR THE NAVIER-STOKES EQUATIONS (DEC RISC ULTRIX VERSION)

    NASA Technical Reports Server (NTRS)

    Biyabani, S. R.

    1994-01-01

    ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX

  7. ARC2D - EFFICIENT SOLUTION METHODS FOR THE NAVIER-STOKES EQUATIONS (CRAY VERSION)

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.

    1994-01-01

    ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX

  8. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    NASA Astrophysics Data System (ADS)

    Simmons, Daniel; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.

  9. The general 2-D moments via integral transform method for acoustic radiation and scattering

    NASA Astrophysics Data System (ADS)

    Smith, Jerry R.; Mirotznik, Mark S.

    2001-05-01

    The moments via integral transform method (MITM) is a technique to analytically reduce the 2-D method of moments (MoM) impedance double integrals into single integrals. By using a special integral representation of the Green's function, the impedance integral can be analytically simplified to a single integral in terms of transformed shape and weight functions. The reduced expression requires fewer computations and reduces the fill times of the MoM impedance matrix. Furthermore, the resulting integral is analytic for nearly arbitrary shape and weight function sets. The MITM technique is developed for mixed boundary conditions and predictions with basic shape and weight function sets are presented. Comparisons of accuracy and speed between MITM and brute force are presented. [Work sponsored by ONR and NSWCCD ILIR Board.

  10. NMR Methods for Characterization of RNA Secondary Structure.

    PubMed

    Kennedy, Scott D

    2016-01-01

    Knowledge of RNA secondary structure is often sufficient to identify relationships between the structure of RNA and processing pathways, and the design of therapeutics. Nuclear magnetic resonance (NMR) can identify types of nucleotide base pairs and the sequence, thus limiting possible secondary structures. Because NMR experiments, like chemical mapping, are performed in solution, not in single crystals, experiments can be initiated as soon as the biomolecule is expressed and purified. This chapter summarizes NMR methods that permit rapid identification of RNA secondary structure, information that can be used as supplements to chemical mapping, and/or as preliminary steps required for 3D structure determination. The primary aim is to provide guidelines to enable a researcher with minimal knowledge of NMR to quickly extract secondary structure information from basic datasets. Instrumental and sample considerations that can maximize data quality are discussed along with some details for optimal data acquisition and processing parameters. Approaches for identifying base pair types in both unlabeled and isotopically labeled RNA are covered. Common problems, such as missing signals and overlaps, and approaches to address them are considered. Programs under development for merging NMR data with structure prediction algorithms are briefly discussed. PMID:27665604

  11. NMR Tube Degradation Method for Sugar Analysis of Glycosides.

    PubMed

    Giner, José-Luis; Feng, Ju; Kiemle, David J

    2016-09-23

    The sugar subunits of natural glycosides can be conveniently determined by acid hydrolysis and (1)H NMR spectroscopy without isolation or derivatization. The chemical shifts, coupling constants, and integral ratios of the anomeric signals allow each monosaccharide to be identified and its molar ratio to other monosaccharides to be quantified. The NMR data for the anomeric signals of 28 monosaccharides and three disaccharides are reported. Application of the method is demonstrated with the flavonoid glycoside naringin (1), the aminoglycoside antibiotics kanamycin (2) and tobramycin (3), and the saponin digitonin (4). PMID:27603739

  12. High Pressure NMR Methods for Characterizing Functional Substates of Proteins.

    PubMed

    Kalbitzer, Hans Robert

    2015-01-01

    Proteins usually exist in multiple conformational states in solution. High pressure NMR spectroscopy is a well-suited method to identify these states. In addition, these states can be characterized by their thermodynamic parameters, the free enthalpies at ambient pressure, the partial molar volumes, and the partial molar compressibility that can be obtained from the analysis of the high pressure NMR data. Two main types of states of proteins exist, functional states and folding states. There is a strong link between these two types, the functional states represent essential folding states (intermediates), other folding states may have no functional meaning (optional folding states). In this chapter, this concept is tested on the Ras protein, an important proto-oncogen in humans where all substates required by theory can be identified experimentally by high pressure NMR spectroscopy. Finally, we show how these data can be used to develop allosteric inhibitors of proteins. PMID:26174382

  13. Efficiency of Pareto joint inversion of 2D geophysical data using global optimization methods

    NASA Astrophysics Data System (ADS)

    Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek

    2016-04-01

    Pareto joint inversion of two or more sets of data is a promising new tool of modern geophysical exploration. In the first stage of our investigation we created software enabling execution of forward solvers of two geophysical methods (2D magnetotelluric and gravity) as well as inversion with possibility of constraining solution with seismic data. In the algorithm solving MT forward solver Helmholtz's equations, finite element method and Dirichlet's boundary conditions were applied. Gravity forward solver was based on Talwani's algorithm. To limit dimensionality of solution space we decided to describe model as sets of polygons, using Sharp Boundary Interface (SBI) approach. The main inversion engine was created using Particle Swarm Optimization (PSO) algorithm adapted to handle two or more target functions and to prevent acceptance of solutions which are non - realistic or incompatible with Pareto scheme. Each inversion run generates single Pareto solution, which can be added to Pareto Front. The PSO inversion engine was parallelized using OpenMP standard, what enabled execution code for practically unlimited amount of threads at once. Thereby computing time of inversion process was significantly decreased. Furthermore, computing efficiency increases with number of PSO iterations. In this contribution we analyze the efficiency of created software solution taking under consideration details of chosen global optimization engine used as a main joint minimization engine. Additionally we study the scale of possible decrease of computational time caused by different methods of parallelization applied for both forward solvers and inversion algorithm. All tests were done for 2D magnetotelluric and gravity data based on real geological media. Obtained results show that even for relatively simple mid end computational infrastructure proposed solution of inversion problem can be applied in practice and used for real life problems of geophysical inversion and interpretation.

  14. A framework for grand scale parallelization of the combined finite discrete element method in 2d

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Rougier, E.; Knight, E. E.; Munjiza, A.

    2014-09-01

    Within the context of rock mechanics, the Combined Finite-Discrete Element Method (FDEM) has been applied to many complex industrial problems such as block caving, deep mining techniques (tunneling, pillar strength, etc.), rock blasting, seismic wave propagation, packing problems, dam stability, rock slope stability, rock mass strength characterization problems, etc. The reality is that most of these were accomplished in a 2D and/or single processor realm. In this work a hardware independent FDEM parallelization framework has been developed using the Virtual Parallel Machine for FDEM, (V-FDEM). With V-FDEM, a parallel FDEM software can be adapted to different parallel architecture systems ranging from just a few to thousands of cores.

  15. A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method

    SciTech Connect

    McPherson, Allen L.; Knoll, Dana A.; Cieren, Emmanuel B.; Feltman, Nicolas; Leibs, Christopher A.; McCarthy, Colleen; Murthy, Karthik S.; Wang, Yijie

    2012-09-10

    Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.

  16. A New Method for Detecting Goaf Area of Coal Mine :2D Microtremor Profiling Technique

    NASA Astrophysics Data System (ADS)

    Xu, P.; Ling, S.; Guo, H.; Shi, W.; Li, S.; Tian, B.

    2012-12-01

    A goaf area is referred to as a cavity where coal has been removed or mined out. These cavities will change the original geostress equilibrium of stratigraphic system and cause local geostress focusing or concentration. Consequently, the surrounding rock of a goaf may be deformed, fractured, displaced and caved resulting from the combined effect of gravity and geostress. In the cases of little or no effective mining control, widespread cracks, fractures and even subsidence of the rock mass above the goaf will not only lead to groundwater depletion, farmland destruction and deterioration of ecological environment, but also present a serious threat to the mining safety, engineering construction, and even people's lives and property. So, it is important to locate the boundary of the goaf and to evaluate its stability in order to provide the basis for comprehensive control in the latter period of mining. This article attempts to explore a new geophysical method - 2D microtremor profiling technique for goaf detection and mapping. 2D microtremor profiling technique is based on the microtremor array theory (Aki, 1957; Ling, 1994; Okada, 2003) utilizing spatial autocorrelation analysis to obtain Rayleigh-wave dispersion curves for apparent S-wave velocity (Vx) calculation (Ling & Miwa, 2006;Xu et al.,2012). A laterally continuous S-wave velocity section can then be obtained through data interpolation. The final result will be used for interpreting lateral changes in lithology and geological structures. Let's take a case study in Henan Province of China as an example. The coal seams in the survey area were about 150 ~ 250m deep. A triple-circular array was adopted for acquiring microtremor data, with the observation radius in 20, 40 and 80m, respectively, and a sampling the interval of 50m. We observed the following characteristics of the goaf area from the microtremor Vx section: (1) obvious low pseudo velocity anomaly corresponding to limestone layer below the goaf; (2

  17. Holographic method for site-resolved detection of a 2D array of ultracold atoms

    NASA Astrophysics Data System (ADS)

    Hoffmann, Daniel Kai; Deissler, Benjamin; Limmer, Wolfgang; Hecker Denschlag, Johannes

    2016-08-01

    We propose a novel approach to site-resolved detection of a 2D gas of ultracold atoms in an optical lattice. A near-resonant laser beam is coherently scattered by the atomic array, and after passing a lens its interference pattern is holographically recorded by superimposing it with a reference laser beam on a CCD chip. Fourier transformation of the recorded intensity pattern reconstructs the atomic distribution in the lattice with single-site resolution. The holographic detection method requires only about two hundred scattered photons per atom in order to achieve a high reconstruction fidelity of 99.9 %. Therefore, additional cooling during detection might not be necessary even for light atomic elements such as lithium. Furthermore, first investigations suggest that small aberrations of the lens can be post-corrected in imaging processing.

  18. The Wavelet Element Method. Part 2; Realization and Additional Features in 2D and 3D

    NASA Technical Reports Server (NTRS)

    Canuto, Claudio; Tabacco, Anita; Urban, Karsten

    1998-01-01

    The Wavelet Element Method (WEM) provides a construction of multiresolution systems and biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used on the reference domain. By introducing appropriate matching conditions across the interelement boundaries, a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features. In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases. We address additional features such as symmetry, vanishing moments and minimal support of the wavelet functions in each particular dimension. The construction is illustrated by using biorthogonal spline wavelets on the interval.

  19. Numerical method of crack analysis in 2D finite magnetoelectroelastic media

    NASA Astrophysics Data System (ADS)

    Zhao, Minghao; Xu, Guangtao; Fan, Cuiying

    2010-04-01

    The present paper extends the hybrid extended displacement discontinuity fundamental solution method (HEDD-FSM) (Eng Anal Bound Elem 33:592-600, 2009) to analysis of cracks in 2D finite magnetoelectroelastic media. The solution of the crack is expressed approximately by a linear combination of fundamental solutions of the governing equations, which includes the extended point force fundamental solutions with sources placed at chosen points outside the domain of the problem under consideration, and the extended Crouch fundamental solutions with extended displacement discontinuities placed on the crack. The coefficients of the fundamental solutions are determined by letting the approximated solution satisfy the prescribed boundary conditions on the boundary of the domain and on the crack face. The Crouch fundamental solution for a parabolic element at the crack tip is derived to model the square root variations of near tip fields. The extended stress intensity factors are calculated under different electric and magnetic boundary conditions.

  20. Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods

    NASA Astrophysics Data System (ADS)

    Mikulka, J.; Gescheidtova, E.; Bartusek, K.

    2012-01-01

    The paper deals with modern methods of image processing, especially image segmentation, classification and evaluation of parameters. It focuses primarily on processing medical images of soft tissues obtained by magnetic resonance tomography (MR). It is easy to describe edges of the sought objects using segmented images. The edges found can be useful for further processing of monitored object such as calculating the perimeter, surface and volume evaluation or even three-dimensional shape reconstruction. The proposed solutions can be used for the classification of healthy/unhealthy tissues in MR or other imaging. Application examples of the proposed segmentation methods are shown. Research in the area of image segmentation focuses on methods based on solving partial differential equations. This is a modern method for image processing, often called the active contour method. It is of great advantage in the segmentation of real images degraded by noise with fuzzy edges and transitions between objects. In the paper, results of the segmentation of medical images by the active contour method are compared with results of the segmentation by other existing methods. Experimental applications which demonstrate the very good properties of the active contour method are given.

  1. Quasi-simultaneous interaction method for solving 2D boundary layer flows over plates and airfoils

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2012-11-01

    This paper studies unsteady 2D boundary layer flows over dented plates and a NACA 0012 airfoil. An inviscid flow is assumed to exist outside the boundary layer and is solved iteratively with the boundary layer flow together with the interaction method until a matching solution is achieved. Hereto a quasi-simultaneous interaction method is applied, in which the integral boundary layer equations are solved together with an interaction-law equation. The interaction-law equation is an approximation of the external flow and based on thin-airfoil theory. It is an algebraic relation between the velocity and displacement thickness. The interaction-law equation ensures that the eigenvalues of the system of equations do not have a sign change and that no singularities occur. Three numerical schemes are used to solve the boundary layer flow with the interaction method. These are: a standard scheme, a splitting method and a characteristics solver. All schemes use a finite difference discretization. The three schemes yield comparable results for the simulations carried out. The standard scheme is deviating most from the splitting and characteristics solvers. The results show that the eigenvalues remain positive, even in separation. As expected, the addition of the interaction-law equation prevents a sign change of the eigenvalues. The quasi-simultaneous interaction scheme is applicable to the three numerical schemes tested.

  2. Synthesis and Resolution of the Atropisomeric 1,1'-Bi-2-Naphthol: An Experiment in Organic Synthesis and 2-D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.

    2004-01-01

    NMR spectroscopy is presented. It is seen that the experiment regarding the synthesis and resolution of 1,1'-Bi-2-naphtol presents a good experiment for teaching organic synthesis and NMR spectroscopy and provides a strategy for obtaining enantiopure compounds from achiral starting materials.

  3. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    SciTech Connect

    Zhang, H.; Zheng, Y.; Wu, H.; Cao, L.

    2013-07-01

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  4. NMR Shielding in Metals Using the Augmented Plane Wave Method

    PubMed Central

    2015-01-01

    We present calculations of solid state NMR magnetic shielding in metals, which includes both the orbital and the complete spin response of the system in a consistent way. The latter contains an induced spin-polarization of the core states and needs an all-electron self-consistent treatment. In particular, for transition metals, the spin hyperfine field originates not only from the polarization of the valence s-electrons, but the induced magnetic moment of the d-electrons polarizes the core s-states in opposite direction. The method is based on DFT and the augmented plane wave approach as implemented in the WIEN2k code. A comparison between calculated and measured NMR shifts indicates that first-principle calculations can obtain converged results and are more reliable than initially concluded based on previous publications. Nevertheless large k-meshes (up to 2 000 000 k-points in the full Brillouin-zone) and some Fermi-broadening are necessary. Our results show that, in general, both spin and orbital components of the NMR shielding must be evaluated in order to reproduce experimental shifts, because the orbital part cancels the shift of the usually highly ionic reference compound only for simple sp-elements but not for transition metals. This development paves the way for routine NMR calculations of metallic systems. PMID:26322148

  5. Product operator descriptions of the 2D DEPT J-resolved NMR experiment for weakly coupled ISn (I=\\frac{1}{2}, S=\\frac{3}{2}; n=1, 2, 3) spin systems

    NASA Astrophysics Data System (ADS)

    Tokatlı, Ahmet; Bahçeli, Semiha

    2010-02-01

    There are a variety of multi-pulse nuclear magnetic resonance (NMR) experiments for spectral assignment of complex molecules in a solution. The two-dimensional (2D) distortionless enhancement by polarization transfer (DEPT) J-resolved NMR experiment is a 13C-detected, spectral editing polarization transfer technique. The product operator theory is widely used for an analytical description of the multi-pulse NMR experiment for weakly coupled spin systems. In this study, analytical descriptions of the 2D DEPT J-resolved NMR experiment for weakly coupled ISn (I=\\textstyle{\\frac{1}{2}}, S=\\textstyle{\\frac{3}{2}} ; n=1, 2, 3) spin systems using the product operator theory have been introduced for the first time. The calculated intensities and positions of the observable signals are simulated for molecules containing [13C (I=\\textstyle{\\frac{1}{2}}) , 81Br (S=\\textstyle{\\frac{3}{2}})] nuclei by using a MAPLE program on a computer. Finally, we present a theoretical discussion and experimental suggestions.

  6. Imaging geological contact utilizing 2D resistivity method for light rail transit (LRT) track alignment

    NASA Astrophysics Data System (ADS)

    Ali, Nisa'; Saad, Rosli; Muztaza, Nordiana M.; Ismail, Noer E. H.

    2013-05-01

    The purpose of this study was to locate the geological contact using 2D resistivity method for Light Rail Transit (LRT) track alignment. The resistivity method was conducted on eight survey lines with the length of line 1 was 600m. The length of line 2, 3, 4, 5, 6, and 7 were 200m each while line 8 is 115m. All the survey used minimum electrode spacing of 5m and using Pole-dipole array with minimum current is 2mA and maximum was 20mA. The result obtained from the pseudosection showed that the area generally divided into three main zones, fill materials/residual soil with a resistivity value of <500 Ωm, saturated zone with a resistivity value of 30-100 Ωm and bedrock with a resistivity value of >2000 Ωm. Three fractured zones were detected along line L1 and a lot of boulders were detected at L1, L3, L4, L5 and L6. The geological contact was between the residual soil and granite bedrock.

  7. A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method

    PubMed Central

    Brocklehurst, Paul; Adeniran, Ismail; Yang, Dongmin; Sheng, Yong; Zhang, Henggui; Ye, Jianqiao

    2015-01-01

    Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechanics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM). In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular Ca2+ concentration, the DEM model successfully simulates the conduction of cardiac electrical waves and the tissue's corresponding mechanical contractions. The developed DEM model is numerically stable and provides a powerful method for studying the electromechanical coupling problem in the heart. PMID:26583141

  8. 31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy

    PubMed Central

    Gao, Ling; Cui, Weina; Zhang, Pengyuan; Jang, Albert; Zhu, Wuqiang; Zhang, Jianyi

    2016-01-01

    Utilizing a fast 31P magnetic resonance spectroscopy (MRS) 2-dimensional chemical shift imaging (2D-CSI) method, this study examined the heterogeneity of creatine kinase (CK) forward flux rate of hearts with postinfarction left ventricular (LV) remodeling. Immunosuppressed Yorkshire pigs were assigned to 4 groups: 1) A sham-operated normal group (SHAM, n = 6); 2) A 60 minutes distal left anterior descending coronary artery ligation and reperfusion (MI, n = 6); 3) Open patch group; ligation injury plus open fibrin patch over the site of injury (Patch, n = 6); and 4) Cell group, hiPSCs-cardiomyocytes, -endothelial cells, and -smooth muscle cells (2 million, each) were injected into the injured myocardium pass through a fibrin patch (Cell+Patch, n = 5). At 4 weeks, the creatine phosphate (PCr)/ATP ratio, CK forward flux rate (Flux PCr→ATP), and k constant of CK forward flux rate (kPCr→ATP) were severely decreased at border zone myocardium (BZ) adjacent to MI. Cell treatment results in significantly increase of PCr/ATP ratio and improve the value of kPCr→ATP and Flux PCr→ATP in BZ myocardium. Moreover, the BZ myocardial CK total activity and protein expression of CK mitochondria isozyme and CK myocardial isozyme were significantly reduced, but recovered in response to cell treatment. Thus, cell therapy results in improvement of BZ bioenergetic abnormality in hearts with postinfarction LV remodeling, which is accompanied by significantly improvements in BZ CK activity and CK isozyme expression. The fast 2D 31P MR CSI mapping can reliably measure the heterogeneity of bioenergetics in hearts with post infarction LV remodeling. PMID:27606901

  9. 31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy.

    PubMed

    Gao, Ling; Cui, Weina; Zhang, Pengyuan; Jang, Albert; Zhu, Wuqiang; Zhang, Jianyi

    2016-01-01

    Utilizing a fast 31P magnetic resonance spectroscopy (MRS) 2-dimensional chemical shift imaging (2D-CSI) method, this study examined the heterogeneity of creatine kinase (CK) forward flux rate of hearts with postinfarction left ventricular (LV) remodeling. Immunosuppressed Yorkshire pigs were assigned to 4 groups: 1) A sham-operated normal group (SHAM, n = 6); 2) A 60 minutes distal left anterior descending coronary artery ligation and reperfusion (MI, n = 6); 3) Open patch group; ligation injury plus open fibrin patch over the site of injury (Patch, n = 6); and 4) Cell group, hiPSCs-cardiomyocytes, -endothelial cells, and -smooth muscle cells (2 million, each) were injected into the injured myocardium pass through a fibrin patch (Cell+Patch, n = 5). At 4 weeks, the creatine phosphate (PCr)/ATP ratio, CK forward flux rate (Flux PCr→ATP), and k constant of CK forward flux rate (kPCr→ATP) were severely decreased at border zone myocardium (BZ) adjacent to MI. Cell treatment results in significantly increase of PCr/ATP ratio and improve the value of kPCr→ATP and Flux PCr→ATP in BZ myocardium. Moreover, the BZ myocardial CK total activity and protein expression of CK mitochondria isozyme and CK myocardial isozyme were significantly reduced, but recovered in response to cell treatment. Thus, cell therapy results in improvement of BZ bioenergetic abnormality in hearts with postinfarction LV remodeling, which is accompanied by significantly improvements in BZ CK activity and CK isozyme expression. The fast 2D 31P MR CSI mapping can reliably measure the heterogeneity of bioenergetics in hearts with post infarction LV remodeling. PMID:27606901

  10. Simulation of growth normal fault sandbox tests using the 2D discrete element method

    NASA Astrophysics Data System (ADS)

    Chu, Sheng-Shin; Lin, Ming-Lang; Huang, Wen-Chao; Nien, Wei-Tung; Liu, Huan-Chi; Chan, Pei-Chen

    2015-01-01

    A fault slip can cause the deformation of shallow soil layers and destroy infrastructures. The Shanchiao Fault on the west side of the Taipei Basin is one such fault. The activities of the Shanchiao Fault have caused the quaternary sediment beneath the Taipei Basin to become deformed, damaging structures, traffic construction, and utility lines in the area. Data on geological drilling and dating have been used to determine that a growth fault exists in the Shanchiao Fault. In an experiment, a sandbox model was built using noncohesive sandy soil to simulate the existence of a growth fault in the Shanchiao Fault and forecast the effect of the growth fault on shear-band development and ground differential deformation. The experimental results indicated that when a normal fault contains a growth fault at the offset of the base rock, the shear band develops upward beside the weak side of the shear band of the original-topped soil layer, and surfaces considerably faster than that of the single-topped layer. The offset ratio required is approximately one-third that of the single-cover soil layer. In this study, a numerical simulation of the sandbox experiment was conducted using a discrete element method program, PFC2D, to simulate the upper-covering sand layer shear-band development pace and the scope of a growth normal fault slip. The simulation results indicated an outcome similar to that of the sandbox experiment, which can be applied to the design of construction projects near fault zones.

  11. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research

    PubMed Central

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2013-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131

  12. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research.

    PubMed

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2012-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists' demands for qualitative analysis of confocal microscopy data.

  13. Calculating tissue shear modulus and pressure by 2D Log-Elastographic methods

    PubMed Central

    McLaughlin, Joyce R; Zhang, Ning; Manduca, Armando

    2010-01-01

    Shear modulus imaging, often called elastography, enables detection and characterization of tissue abnormalities. In this paper the data is two displacement components obtained from successive MR or ultrasound data sets acquired while the tissue is excited mechanically. A 2D plane strain elastic model is assumed to govern the 2D displacement, u. The shear modulus, μ, is unknown and whether or not the first Lamé parameter, λ, is known the pressure p = λ∇ · u which is present in the plane strain model cannot be measured and is unreliably computed from measured data and can be shown to be an order one quantity in the units kPa. So here we present a 2D Log-Elastographic inverse algorithm that: (1) simultaneously reconstructs the shear modulus, μ, and p, which together satisfy a first order partial differential equation system, with the goal of imaging μ; (2) controls potential exponential growth in the numerical error; and (3) reliably reconstructs the quantity p in the inverse algorithm as compared to the same quantity computed with a forward algorithm. This work generalizes the Log-Elastographic algorithm in [20] which uses one displacement component, is derived assuming the component satisfies the wave equation, and is tested on synthetic data computed with the wave equation model. The 2D Log-Elastographic algorithm is tested on 2D synthetic data and 2D in-vivo data from Mayo Clinic. We also exhibit examples to show that the 2D Log-Elastographic algorithm improves the quality of the recovered images as compared to the Log-Elastographic and Direct Inversion algorithms. PMID:21822349

  14. Development of an ab-initio calculation method for 2D layered materials-based optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Kim, Han Seul; Kim, Yong-Hoon

    We report on the development of a novel first-principles method for the calculation of non-equilibrium nanoscale device operation process. Based on region-dependent Δ self-consistent field method beyond the standard density functional theory (DFT), we will introduce a novel method to describe non-equilibrium situations such as external bias and simultaneous optical excitations. In particular, we will discuss the limitation of conventional method and advantage of our scheme in describing 2D layered materials-based devices operations. Then, we investigate atomistic mechanism of optoelectronic effects from 2D layered materials-based devices and suggest the optimal material and architecture for such devices.

  15. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    DOE PAGES

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew

    2016-08-25

    We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less

  16. 2D-DOA estimation of noncircular signals for uniform rectangular array via NC-PARAFAC method

    NASA Astrophysics Data System (ADS)

    Zhang, Licen; Lv, Weihua; Zhang, Xiaofei; Li, Shu

    2016-11-01

    In this paper, we propose a two-dimensional direction of arrival (2D-DOA) estimation algorithm for uniform rectangular array via noncircular-parallel factor (NC-PARAFAC) method. Compared to the conventional parallel factor (PARAFAC) algorithm, the proposed algorithm exploits the property of noncircular signals to double the array aperture. Therefore, the angle estimation performance of the proposed algorithm is better than the conventional PARAFAC method. The proposed algorithm achieves automatically paired two-dimensional angle estimates, and has better 2D-DOA estimation performance than some conventional algorithms, which include estimation of signal parameters via rotational invariance technique (ESPRIT), propagator method (PM), PARAFAC algorithm, noncircular-ESPRIT (NC-ESPRIT) and noncircular-PM (NC-PM). We also derive the Cramér-Rao bound for the 2D-DOA estimation of noncircular signals with uniform rectangular array. Simulation results verify the effectiveness and improvement of the proposed algorithm.

  17. SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)

    EPA Science Inventory

    Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...

  18. Analysis of noise properties of a class of exact methods of inverting the 2-D exponential radon transform

    SciTech Connect

    Pan, X.; Metz, C.E.

    1995-12-01

    A general approach that the authors proposed elsewhere reveals the intrinsic relationship among methods for inversion of the 2-D exponential Radon transform described by Bellini et al., by Tretiak and Metz, by Hawkins et al., and by Inouye et al. Moreover, the approach provides an infinite class of linear methods for inverting the 2-D exponential Radon transform. In the work reported here, they systematically investigated the noise characteristics of the methods in this class, obtaining analytical forms for the autocovariance and the variance of the images reconstructed by use of various methods. The noise properties of a new quasi-optimal method were then compared theoretically to those of other methods of the class. The analysis demonstrates that the quasi-optimal method achieves smaller global variance in the reconstructed images than do the other methods of the class. Extensive numerical simulation studies confirm this prediction.

  19. Isolation and characterization of a potential process related impurity of phenazopyridine HCl by preparative HPLC followed by MS-MS and 2D-NMR spectroscopy.

    PubMed

    Rao, R Nageswara; Maurya, Pawan K; Raju, A Narasa

    2009-07-12

    During the process development of phenazopyridine HCl bulk drug, a potential impurity was detected in the routine impurity profiles by HPLC. Using MS-MS and multidimensional NMR techniques, the trace level impurity was unambiguously identified to be 3-phenyl-5-phenylazo-pyridine-2,6-diamine after its isolation from phenazopyridine HCl by semi-preparative HPLC. The formation of the impurity was discussed. To our knowledge, it is a novel impurity not reported elsewhere.

  20. Hydrogen bonding induced distortion of CO3 units and kinetic stabilization of amorphous calcium carbonate: results from 2D (13)C NMR spectroscopy.

    PubMed

    Sen, Sabyasachi; Kaseman, Derrick C; Colas, Bruno; Jacob, Dorrit E; Clark, Simon M

    2016-07-27

    Systematic correlation in alkaline-earth carbonate compounds between the deviation of the CO3 units from the perfect D3h symmetry and their (13)C nuclear magnetic resonance (NMR) chemical shift anisotropy (CSA) parameters is established. The (13)C NMR CSA parameters of amorphous calcium carbonate (ACC) are measured using two-dimensional (13)C phase adjusted spinning sidebands (PASS) NMR spectroscopy and are analyzed on the basis of this correlation. The results indicate a distortion of the CO3 units in ACC in the form of an in-plane displacement of the C atom away from the centroid of the O3 triangle, resulting from hydrogen bonding with the surrounding H2O molecules, without significant out-of-plane displacement. Similar distortion for all C atoms in the structure of ACC suggests a uniform spatial disposition of H2O molecules around the CO3 units forming a hydrogen-bonded amorphous network. This amorphous network is stabilized against crystallization by steric frustration, while additives such as Mg presumably provide further stabilization by increasing the energy of dehydration. PMID:27276013

  1. Structural studies of an arabinan from the stems of Ephedra sinica by methylation analysis and 1D and 2D NMR spectroscopy.

    PubMed

    Xia, Yong-Gang; Liang, Jun; Yang, Bing-You; Wang, Qiu-Hong; Kuang, Hai-Xue

    2015-05-01

    Plant arabinan has important biological activity. In this study, a water-soluble arabinan (Mw∼6.15kDa) isolated from the stems of Ephedra sinica was found to consist of (1→5)-Araƒ, (1→3,5)-Araƒ, T-Araƒ, (1→3)-Araƒ and (1→2,5)-Araƒ residues at proportions of 10:2:3:2:1. A tentative structure was proposed by methylation analysis, nuclear magnetic resonance (NMR) spectroscopy ((1)H NMR, (13)C NMR, DEPT-135, (1)H-(1)H COSY, HSQC, HMBC and ROESY) and literature. The structure proposed includes a branched (1→5)-α-Araf backbone where branching occurs at the O-2 and O-3 positions of the residues with 7.7% and 15.4% of the 1,5-linked α-Araf substituted at the O-2 and O-3 positions. The presence of a branched structure was further observed by atomic force microscopy. This polymer was characterized as having a much longer linear (1→5)-α-Araf backbone as a repeating unit. In particular, the presence of α-Araf→3)-α-Araf-(1→3)-α-Araf-(1→ attached at the O-2 is a new finding. This study may facilitate a deeper understanding of structure-activity relationships of biological polysaccharides from the stems of E. sinica.

  2. A Novel 2-D Coherent DOA Estimation Method Based on Dimension Reduction Sparse Reconstruction for Orthogonal Arrays

    PubMed Central

    Wang, Xiuhong; Mao, Xingpeng; Wang, Yiming; Zhang, Naitong; Li, Bo

    2016-01-01

    Based on sparse representations, the problem of two-dimensional (2-D) direction of arrival (DOA) estimation is addressed in this paper. A novel sparse 2-D DOA estimation method, called Dimension Reduction Sparse Reconstruction (DRSR), is proposed with pairing by Spatial Spectrum Reconstruction of Sub-Dictionary (SSRSD). By utilizing the angle decoupling method, which transforms a 2-D estimation into two independent one-dimensional (1-D) estimations, the high computational complexity induced by a large 2-D redundant dictionary is greatly reduced. Furthermore, a new angle matching scheme, SSRSD, which is less sensitive to the sparse reconstruction error with higher pair-matching probability, is introduced. The proposed method can be applied to any type of orthogonal array without requirement of a large number of snapshots and a priori knowledge of the number of signals. The theoretical analyses and simulation results show that the DRSR-SSRSD method performs well for coherent signals, which performance approaches Cramer–Rao bound (CRB), even under a single snapshot and low signal-to-noise ratio (SNR) condition. PMID:27649191

  3. A Novel 2-D Coherent DOA Estimation Method Based on Dimension Reduction Sparse Reconstruction for Orthogonal Arrays.

    PubMed

    Wang, Xiuhong; Mao, Xingpeng; Wang, Yiming; Zhang, Naitong; Li, Bo

    2016-01-01

    Based on sparse representations, the problem of two-dimensional (2-D) direction of arrival (DOA) estimation is addressed in this paper. A novel sparse 2-D DOA estimation method, called Dimension Reduction Sparse Reconstruction (DRSR), is proposed with pairing by Spatial Spectrum Reconstruction of Sub-Dictionary (SSRSD). By utilizing the angle decoupling method, which transforms a 2-D estimation into two independent one-dimensional (1-D) estimations, the high computational complexity induced by a large 2-D redundant dictionary is greatly reduced. Furthermore, a new angle matching scheme, SSRSD, which is less sensitive to the sparse reconstruction error with higher pair-matching probability, is introduced. The proposed method can be applied to any type of orthogonal array without requirement of a large number of snapshots and a priori knowledge of the number of signals. The theoretical analyses and simulation results show that the DRSR-SSRSD method performs well for coherent signals, which performance approaches Cramer-Rao bound (CRB), even under a single snapshot and low signal-to-noise ratio (SNR) condition. PMID:27649191

  4. Study of carbohydrate structure and reactivity by modern NMR methods and isotopic labeling

    SciTech Connect

    Snyder, J.R.

    1987-01-01

    Chemical methods are described for preparing unenriched and (1-/sup 13/C)-enriched 5-deoxy- and 5-O-methylpentoses in the D or L configuration. The /sup 1/H and /sup 13/C NMR spectra of these compounds have been interpreted and the carbon spectra assigned with the aid of 2D /sup 13/C-/sup 1/H chemical-shift correlation spectroscopy. The tautomeric composition in /sup 2/H/sub 2/O has been quantitated with the aid of (1-/sup 13/C)-enriched derivatives. The branched-chain pentose, DL-apiose has been synthesized in good yield by a new and simple chemical method that can be adapted to prepare (1-/sup 13/C)-, (2-/sup 13/C)-, (1-/sup 2/H)- and/or (2-/sup 2/H)-enriched derivatives. The solution composition of D-idose in D/sup 2/O has been examined by /sup 13/C NMR spectroscopy using (/sup 13/C)-enriched compounds. In addition to two furanoses and two pyranoses, aldehyde and hydrate forms have been detected and quantified. The solution composition of D-talose has been investigated by /sup 13/C NMR spectroscopy using (1-/sup 13/C)talose. The tautomeric composition has been determined at 28/sup 0/, and the results show equivalent amounts of the acyclic aldehyde and hydrate. Several structurally modified furanose sugars were synthesized to assess the extent the Thorpe-Ingold effect promotes rings formation and enhances rates of ring-closure.

  5. Line relaxation methods for the solution of 2D and 3D compressible flows

    NASA Technical Reports Server (NTRS)

    Hassan, O.; Probert, E. J.; Morgan, K.; Peraire, J.

    1993-01-01

    An implicit finite element based algorithm for the compressible Navier-Stokes equations is outlined, and the solution of the resulting equation by a line relaxation on general meshes of triangles or tetrahedra is described. The problem of generating and adapting unstructured meshes for viscous flows is reexamined, and an approach for both 2D and 3D simulations is proposed. An efficient approach appears to be the use of an implicit/explicit procedure, with the implicit treatment being restricted to those regions of the mesh where viscous effects are known to be dominant. Numerical examples demonstrating the computational performance of the proposed techniques are given.

  6. Identifying Key Structural Features and Spatial Relationships in Archean Microbialites Using 2D and 3D Visualization Methods

    NASA Astrophysics Data System (ADS)

    Stevens, E. W.; Sumner, D. Y.

    2009-12-01

    Microbialites in the 2521 ± 3 Ma Gamohaan Formation, South Africa, have several different end-member morphologies which show distinct growth structures and spatial relationships. We characterized several growth structures and spatial relationships in two samples (DK20 and 2_06) using a combination of 2D and 3D analytical techniques. There are two main goals in studying complicated microbialites with a combination of 2D and 3D methods. First, one can better understand microbialite growth by identifying important structures and structural relationships. Once structures are identified, the order in which the structures formed and how they are related can be inferred from observations of crosscutting relationships. Second, it is important to use both 2D and 3D methods to correlate 3D observations with those in 2D that are more common in the field. Combining analysis provides significantly more insight into the 3D morphology of microbial structures. In our studies, 2D analysis consisted of describing polished slabs and serial sections created by grinding down the rock 100 microns at a time. 3D analysis was performed on serial sections visualized in 3D using Vrui and 3DVisualizer software developed at KeckCAVES, UCD (http://keckcaves.org). Data were visualized on a laptop and in an immersive cave system. Both samples contain microbial laminae and more vertically orients microbial "walls" called supports. The relationships between these features created voids now filled with herringbone and blocky calcite crystals. DK20, a classic plumose structure, contains two types of support structures. Both are 1st order structures (1st order structures with organic inclusions and 1st without organic inclusions) interpreted as planar features based on 2D analysis. In the 2D analysis the 1st order structures show v branching relationships as well as single cuspate relationships (two 1st order structures with inclusions merging upward), and single tented relationships (three supports

  7. Characterization of porous media structure by non linear NMR methods.

    PubMed

    Capuani, S; Alesiani, M; Alessandri, F M; Maraviglia, B

    2001-01-01

    In this paper we discuss the possibility of modifying the multiple spin echoes existing theory, developed for a homogeneous system, to describe also an inhomogeneous system such as a porous medium. We report here the first experimental application of MSE methods to materials like travertine. The ratio A(2)/A(1) from water in travertine presents minima for characteristic values of the delay time tau, like what was previously observed in the trabecular bone. By a judicious choice of the delay time tau and of the G gradient strength, the MSE sequence can be made sensitive to a specific length-scale of the sample heterogeneity. Furthermore the MSE image shows a particular new contrast that makes the non linear NMR method very attractive for the assessment of variations of the porous structure in porous systems. PMID:11445306

  8. Novel stilbene-based Fischer base analog of leuco-TAM - (2E,2'Z)-{2-(4-(E)-styrylphenyl)propane-1,3-diylidene}bis(1,3,3-trimethylindoline) - derivatives: synthesis and structural consideration by 1D NMR and 2D NMR spectroscopy.

    PubMed

    Keum, Sam-Rok; Lim, Hyun-Woo

    2016-02-01

    We report the synthesis of a series of novel stilbene-based (St) Fischer base analogs of leuco-triarylmethane (LTAM) dyes by treating Fischer base with (E)-4-styrylbenzaldehyde derivatives. All St-LTAM molecules examined herein are characterized by 1D and 2D NMR. They were found to exhibit ZE configuration and isomerize to their diastereomers EE and ZZ in 2-3 h. They exhibit type I behavior of diastereomeric isomerization. PMID:26448377

  9. Application of the 2-D discrete-ordinates method to multiple scattering of laser radiation

    SciTech Connect

    Zardecki, A.; Gerstl, S.A.W.; Embury, J.F.

    1983-05-01

    The discrete-ordinates finite-element radiation transport code twotran is applied to describe the multiple scattering of a laser beam from a reflecting target. For a model scenario involving a 99% relative humidity rural aerosol we compute the average intensity of the scattered radiation and correction factors to the Beer-Lambert law arising from multiple scattering. As our results indicate, 2-D x-y and r-z geometry modeling can reliably describe a realistic 3-D scenario. Specific results are presented for the two visual ranges of 1.52 and 0.76 km which show that, for sufficiently high aerosol concentrations (e.g., equivalent to V = 0.76 km), the target signature in a distant detector becomes dominated by multiply scattered radiation from interactions of the laser light with the aerosol environment. The merits of the scaling group and the delta-M approximation for the transfer equation are also explored.

  10. Modeling of 2D photonic bandgap structures using a triangular mesh finite difference method

    NASA Astrophysics Data System (ADS)

    Hadley, G. Ronald

    2001-10-01

    A numerical model is presented for computing the out-of- plane losses of a general class of row-defect waveguides formed by the superposition of a 2D photonic crystal onto a slab confinement structure. The usefulness of this model is demonstrated here by calculating the propagation loss of a single-row-defect waveguide composed of hexagonal air holes etched into two different slab structures. The results are interpreted in terms of a simple coupled-mode-theory picture in which loss is due to coupling by the waveguide corrugation between the fundamental and certain radiative slab modes. These calculations show that low-loss photonic crystal waveguides should be possible by carefully engineering the radiation modes of the slab waveguide.

  11. Fluorine detected 2D NMR experiments for the practical determination of size and sign of homonuclear F-F and heteronuclear C-F multiple bond J-coupling constants in multiple fluorinated compounds

    NASA Astrophysics Data System (ADS)

    Aspers, Ruud L. E. G.; Ampt, Kirsten A. M.; Dvortsak, Peter; Jaeger, Martin; Wijmenga, Sybren S.

    2013-06-01

    The use of fluorine in molecules obtained from chemical synthesis has become increasingly important within the pharmaceutical and agricultural industry. NMR characterization of these compounds is of great value with respect to their structure elucidation, their screening in metabolomics investigations and binding studies. The favorable NMR properties of the fluorine nucleus make NMR with fluorine detection of great value in this respect. A suite of NMR 2D F-F- and F-C-correlation experiments with fluorine detection was applied to the assignment of resonances, nJCF- and nJFF-couplings as well as the determination of their size and sign. The utilization of this experiment suite was exemplarily demonstrated for a highly fluorinated vinyl alkyl ether. Especially F-C HSQC and J-scaled F-C HMBC experiments allowed determining the size of the J-couplings of this compound. The relative sign of its homo- and heteronuclear couplings was achieved by different combinations of 2D NMR experiments, including non-selective and F2-selective F-C XLOC, F2-selective F-C HMQC, and F-F COSY. The F2-one/two-site selective F-C XLOC versions were found highly useful, as they led to simplifications of the common E.COSY patterns and resulted in a higher confidence level of the assignment by using selective excitation. The combination of F2-one/two-site selective F-C XLOC experiments with a F2-one-site selective F-C HMQC experiment provided the signs of all nJCF- and nJFF-couplings in the vinyl moiety of the test compound. Other combinations of experiments were found useful as well for special purposes when focusing for example on homonuclear couplings a combination of F-F COSY-10 with a F2-one-site selective F-C HMQC could be used. The E.COSY patterns in the spectra demonstrated were analyzed by use of the spin-selective displacement vectors, and in case of the XLOC also by use of the DQ- and ZQ-displacement vectors. The variety of experiments presented shall contribute to facilitate the

  12. A Comparative Study of 2D PCA Face Recognition Method with Other Statistically Based Face Recognition Methods

    NASA Astrophysics Data System (ADS)

    Senthilkumar, R.; Gnanamurthy, R. K.

    2016-09-01

    In this paper, two-dimensional principal component analysis (2D PCA) is compared with other algorithms like 1D PCA, Fisher discriminant analysis (FDA), independent component analysis (ICA) and Kernel PCA (KPCA) which are used for image representation and face recognition. As opposed to PCA, 2D PCA is based on 2D image matrices rather than 1D vectors, so the image matrix does not need to be transformed into a vector prior to feature extraction. Instead, an image covariance matrix is constructed directly using the original image matrices and its Eigen vectors are derived for image feature extraction. To test 2D PCA and evaluate its performance, a series of experiments are performed on three face image databases: ORL, Senthil, and Yale face databases. The recognition rate across all trials higher using 2D PCA than PCA, FDA, ICA and KPCA. The experimental results also indicated that the extraction of image features is computationally more efficient using 2D PCA than PCA.

  13. A Comparison of 1D and 2D (Unbiased) Experimental Methods for Measuring CSAsolarDD Cross-Correlated Relaxation

    NASA Astrophysics Data System (ADS)

    Batta, Gy.; Kövér, K. E.; Kowalewski, J.

    1999-01-01

    Conventional and enhanced 1D experiments and different NOESY experiments (the 2D unbiased method) were performed for measuring CSA/DD cross-correlated relaxation on trehalose, a compound which could be approximated as a spherical top, and on simple model compounds comprisingC3vsymmetry (CHCl3, triphenylsilane (TPSi)). The comparison gives experimental evidence for the equivalence of the methods within the limits of the two-spin approach. 1D data are evaluated with both the simple initial rate and the Redfield relaxation matrix approach. The 2D data are obtained from the so-called transfer matrix using the Perrin-Gipe eigenvalue/eigenvector method. For the improved performance of the 2D method, anX-filtered (HHH) NOESY is suggested at the natural abundance of13C (or other dilute, low γ species). Also, experimental parameters crucial for reliable CSA data are tested (e.g., the impact of insufficient relaxation delay). Error estimation is carried out for fair comparison of methods. Revised liquid state1H and13C (29Si) CSA data are presented for chloroform and TPSi.

  14. Methods for Solving Gas Damping Problems in Perforated Microstructures Using a 2D Finite-Element Solver

    PubMed Central

    Veijola, Timo; Råback, Peter

    2007-01-01

    We present a straightforward method to solve gas damping problems for perforated structures in two dimensions (2D) utilising a Perforation Profile Reynolds (PPR) solver. The PPR equation is an extended Reynolds equation that includes additional terms modelling the leakage flow through the perforations, and variable diffusivity and compressibility profiles. The solution method consists of two phases: 1) determination of the specific admittance profile and relative diffusivity (and relative compressibility) profiles due to the perforation, and 2) solution of the PPR equation with a FEM solver in 2D. Rarefied gas corrections in the slip-flow region are also included. Analytic profiles for circular and square holes with slip conditions are presented in the paper. To verify the method, square perforated dampers with 16–64 holes were simulated with a three-dimensional (3D) Navier-Stokes solver, a homogenised extended Reynolds solver, and a 2D PPR solver. Cases for both translational (in normal to the surfaces) and torsional motion were simulated. The presented method extends the region of accurate simulation of perforated structures to cases where the homogenisation method is inaccurate and the full 3D Navier-Stokes simulation is too time-consuming.

  15. 13C and 15N—Chemical Shift Anisotropy of Ampicillin and Penicillin-V Studied by 2D-PASS and CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Antzutkin, Oleg N.; Lee, Young K.; Levitt, Malcolm H.

    1998-11-01

    The principal values of the chemical shift tensors of all13C and15N sites in two antibiotics, ampicillin and penicillin-V, were determined by 2-dimensionalphaseadjustedspinningsideband (2D-PASS) and conventional CP/MAS experiments. The13C and15N chemical shift anisotropies (CSA), and their confidence limits, were evaluated using a Mathematica program. The CSA values suggest a revised assignment of the 2-methyl13C sites in the case of ampicillin. We speculate on a relationship between the chemical shift principal values of many of the13C and15N sites and the β-lactam ring conformation.

  16. Generation and Radiation of Acoustic Waves from a 2-D Shear Layer using the CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.

    2000-01-01

    In the present work, the generation and radiation of acoustic waves from a 2-D shear layer problem is considered. An acoustic source inside of a 2-D jet excites an instability wave in the shear layer, resulting in sound Mach radiation. The numerical solution is obtained by solving the Euler equations using the space time conservation element and solution element (CE/SE) method. Linearization is achieved through choosing a small acoustic source amplitude. The Euler equations are nondimensionalized as instructed in the problem statement. All other conditions are the same except that the Crocco's relation has a slightly different form. In the following, after a brief sketch of the CE/SE method, the numerical results for this problem are presented.

  17. 2D-QSAR study of some 2,5-diaminobenzophenone farnesyltransferase inhibitors by different chemometric methods

    PubMed Central

    Ghanbarzadeh, Saeed; Ghasemi, Saeed; Shayanfar, Ali; Ebrahimi-Najafabadi, Heshmatollah

    2015-01-01

    Quantitative structure activity relationship (QSAR) models can be used to predict the activity of new drug candidates in early stages of drug discovery. In the present study, the information of the ninety two 2,5-diaminobenzophenone-containing farnesyltranaferase inhibitors (FTIs) were taken from the literature. Subsequently, the structures of the molecules were optimized using Hyperchem software and molecular descriptors were obtained using Dragon software. The most suitable descriptors were selected using genetic algorithms-partial least squares and stepwise regression, where exhibited that the volume, shape and polarity of the FTIs are important for their activities. The two-dimensional QSAR models (2D-QSAR) were obtained using both linear methods (multiple linear regression) and non-linear methods (artificial neural networks and support vector machines). The proposed QSAR models were validated using internal validation method. The results showed that the proposed 2D-QSAR models were valid and they can be used for prediction of the activities of the 2,5-diaminobenzophenone-containing FTIs. In conclusion, the 2D-QSAR models (both linear and non-linear) showed good prediction capability and the non-linear models were exhibited more accuracy than the linear models. PMID:26600747

  18. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information.

    PubMed

    Fritzsching, K J; Yang, Y; Schmidt-Rohr, K; Hong, Mei

    2013-06-01

    We introduce a Python-based program that utilizes the large database of (13)C and (15)N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D (13)C-(13)C, (15)N-(13)C, or 3D (15)N-(13)C-(13)C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D (13)C-(13)C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40-60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO-Cα-Cβ or N-Cα-Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  19. The arithmetic mean iterative method for solving 2D Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Muthuvalu, Mohana Sundaram; Akhir, Mohd Kamalrulzaman Md; Sulaiman, Jumat; Suleiman, Mohamed; Dass, Sarat Chandra; Singh, Narinderjit Singh Sawaran

    2014-10-01

    In this paper, application of the Arithmetic Mean (AM) iterative method is extended by solving second order finite difference algebraic equations. The performance of AM method in solving second order finite difference algebraic equations is comparatively studied by their application on two-dimensional Helmholtz equation. Numerical results of AM method in solving two test problems are included and compared with the standard Gauss-Seidel (GS) method. Based on the numerical results obtained, the results show that AM method is better than GS method in the sense of number of iterations and CPU time.

  20. J-integral evaluation for 2D mixed-mode crack problems employing a meshfree stabilized conforming nodal integration method

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoyuki; Suzuki, Hirotaka; Sadamoto, Shota; Sannomaru, Shogo; Yu, Tiantang; Bui, Tinh Quoc

    2016-08-01

    Two-dimensional (2D) in-plane mixed-mode fracture mechanics problems are analyzed employing an efficient meshfree Galerkin method based on stabilized conforming nodal integration (SCNI). In this setting, the reproducing kernel function as meshfree interpolant is taken, while employing the SCNI for numerical integration of stiffness matrix in the Galerkin formulation. The strain components are smoothed and stabilized employing Gauss divergence theorem. The path-independent integral ( J-integral) is solved based on the nodal integration by summing the smoothed physical quantities and the segments of the contour integrals. In addition, mixed-mode stress intensity factors (SIFs) are extracted from the J-integral by decomposing the displacement and stress fields into symmetric and antisymmetric parts. The advantages and features of the present formulation and discretization in evaluation of the J-integral of in-plane 2D fracture problems are demonstrated through several representative numerical examples. The mixed-mode SIFs are evaluated and compared with reference solutions. The obtained results reveal high accuracy and good performance of the proposed meshfree method in the analysis of 2D fracture problems.

  1. Identification of the epitopes of calcitonin gene-related peptide (CGRP) for two anti-CGRP monoclonal antibodies by 2D NMR.

    PubMed Central

    Hubbard, J. A.; Raleigh, D. P.; Bonnerjea, J. R.; Dobson, C. M.

    1997-01-01

    The interactions between calcitonin gene-related peptide and FAB fragments prepared from two different high-affinity anti-CGRP monoclonal antibodies (CB3 and CD1) have been studied at physiological pH using the ability of 1H NMR to detect selectively regions of dynamic flexibility. The 37-residue peptide retains considerable flexibility in regions of its sequence when bound to both antibodies; in each case, more than half of the residues can be seen to have linewidths little perturbed from those of the free peptide. However the regions where substantial broadening of resonances occur, attributed to substantially reduced motional freedom of the peptide resulting from interactions within the antibody combining site, differ greatly in the two cases. In the complex with CB3 the results indicate that the restricted residues lie exclusively within the C-terminal half of the peptide, and include residues 25 to 32 and the terminal two residues (36 and 37). By contrast, in the complex with CD1, the conformationally restricted residues appear to lie predominantly within the N-terminal half of the CGRP molecule, particularly residues 4-16, although several residues in the middle section of the sequence (22-31) have reduced conformational freedom. These findings, consistent with the results from immunological assays, add considerably to our knowledge of the epitopes. PMID:9300494

  2. Magnetic structure and domain conversion of the quasi-2D frustrated antiferromagnet CuCrO{sub 2} probed by NMR

    SciTech Connect

    Sakhratov, Yu. A.; Svistov, L. E.; Kuhns, P. L.; Zhou, H. D.; Reyes, A. P.

    2014-11-15

    We have carried out {sup 63,65}Cu NMR spectra measurements in a magnetic field up to about 15.5 T on a single crystal of the multiferroic triangular-lattice antiferromagnet CuCrO{sub 2}. The measurements were performed for perpendicular and parallel orientations of the magnetic field with respect to the c axis of the crystal, and the detailed angle dependence of the spectra on the magnetic field direction in the ab plane was studied. The shape of the spectra can be well described in the model of spiral spin structure proposed by recent neutron diffraction experiments. When the field is rotated perpendicular to the crystal c axis, we observed, directly for the first time, a remarkable reorientation of the spin plane simultaneous with rotation of the incommensurate wavevector, by quantitatively deducing the conversion of the energetically less favorable domain to a more favorable one. At high enough fields parallel to the c axis, the data are consistent with either a field-induced commensurate spiral magnetic structure or an incommensurate spiral magnetic structure with a disorder in the c direction, suggesting that high fields may have influence on interplanar ordering.

  3. Advanced solid-state NMR characterization of marine dissolved organic matter isolated using the coupled reverse osmosis/electrodialysis method.

    PubMed

    Mao, Jingdong; Kong, Xueqian; Schmidt-Rohr, Klaus; Pignatello, Joseph J; Perdue, E Michael

    2012-06-01

    Advanced (13)C solid-state techniques were employed to investigate the major structural characteristics of two surface-seawater dissolved organic matter (DOM) samples isolated using the novel coupled reverse osmosis/electrodialysis method. The NMR techniques included quantitative (13)C direct polarization/magic angle spinning (DP/MAS) and DP/MAS with recoupled dipolar dephasing, (13)C cross-polarization/total sideband suppression (CP/TOSS), (13)C chemical shift anisotropy filter, CH, CH(2), and CH(n) selection, two-dimensional (1)H-(13)C heteronuclear correlation NMR (2D HETCOR), 2D HETCOR combined with dipolar dephasing, and (15)N cross-polarization/magic angle spinning (CP/MAS). The two samples (Coastal and Marine DOM) were collected at the mouth of the Ogeechee River and in the Gulf Stream, respectively. The NMR results indicated that they were structurally distinct. Coastal DOM contained significantly more aromatic and carbonyl carbons whereas Marine DOM was markedly enriched in alkoxy carbon (e.g., carbohydrate-like moieties). Both samples contained significant amide N, but Coastal DOM had nitrogen bonded to aromatic carbons. Our dipolar-dephased spectra indicated that a large fraction of alkoxy carbons were not protonated. For Coastal DOM, our NMR results were consistent with the presence of the major structural units of (1) carbohydrate-like moieties, (2) lignin residues, (3) peptides or amino sugars, and (4) COO-bonded alkyls. For Marine DOM, they were (1) carbohydrate-like moieties, (2) peptides or amino sugars, and (3) COO-bonded alkyls. In addition, both samples contained significant amounts of nonpolar alkyl groups. The potential sources of the major structural units of DOM were discussed in detail. Nonprotonated O-alkyl carbon content was proposed as a possible index of humification. PMID:22553962

  4. Iterative and FEM methods to solve the 2-D Radiative Transfer Equation with specular reflexion

    NASA Astrophysics Data System (ADS)

    Le Hardy, David; Favennec, Yann; Rousseau, Benoît

    2016-01-01

    The present paper deals with iterative algorithms coupled with finite element methods (FEM) to solve the Radiative Transfer Equation (RTE) within semi-transparent heterogenous materials where specular reflexions occur on their boundaries. As our intention is to use such solution for inversion, the forward model should be solved as fastly as possible. This communication compares, in terms of both accuracy and CPU, the Discontinuous Galerkin (DG) method with the Streamline Upwind Petrov-Galerkin (SUPG) method, both being coupled with the Discrete Ordinate Method. Next, several iteratives methods used to accelerate the convergence are compared. These methods are the Gauss-Siedel (GS), the Source-Iteration (SI) and the Successive Over-Relaxation (SOR) methods.

  5. Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation

    DOE PAGES

    Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; Shu, Chi-Wang

    1995-01-01

    In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less

  6. Coupling finite and boundary element methods for 2-D elasticity problems

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, T.; Raju, I. S.; Sistla, R.

    1993-01-01

    A finite element-boundary element (FE-BE) coupling method for two-dimensional elasticity problems is developed based on a weighted residual variational method in which a portion of the domain of interest is modeled by FEs and the remainder of the region by BEs. The performance of the FE-BE coupling method is demonstrated via applications to a simple 'patch test' problem and three-crack problems. The method passed the patch tests for various modeling configurations and yielded accurate strain energy release rates for the crack problems studied.

  7. Proteus-MOC: A 3D deterministic solver incorporating 2D method of characteristics

    SciTech Connect

    Marin-Lafleche, A.; Smith, M. A.; Lee, C.

    2013-07-01

    A new transport solution methodology was developed by combining the two-dimensional method of characteristics with the discontinuous Galerkin method for the treatment of the axial variable. The method, which can be applied to arbitrary extruded geometries, was implemented in PROTEUS-MOC and includes parallelization in group, angle, plane, and space using a top level GMRES linear algebra solver. Verification tests were performed to show accuracy and stability of the method with the increased number of angular directions and mesh elements. Good scalability with parallelism in angle and axial planes is displayed. (authors)

  8. Analytical source-target mapping method for the design of freeform mirrors generating prescribed 2D intensity distributions.

    PubMed

    Doskolovich, Leonid L; Bezus, Evgeni A; Moiseev, Mikhail A; Bykov, Dmitry A; Kazanskiy, Nikolay L

    2016-05-16

    A new source-target mapping for the design of mirrors generating prescribed 2D intensity distributions is proposed. The surface of the mirror implementing the obtained mapping is expressed in an analytical form. Presented simulation results demonstrate high performance of the proposed method. In the case of generation of rectangular and elliptical intensity distributions with angular dimensions from 80° x 20° to 40° x 20°, relative standard error does not exceed 8.5%. The method can be extended to the calculation of refractive optical elements.

  9. 2D-NMR, X-ray crystallography and theoretical studies of the reaction mechanism for the synthesis of 1,5-benzodiazepines from dehydroacetic acid derivatives and o-phenylenediamines

    NASA Astrophysics Data System (ADS)

    Rabahi, Amal; Hamdi, Safouane M.; Rachedi, Yahia; Hamdi, Maamar; Talhi, Oualid; Almeida Paz, Filipe A.; Silva, Artur S. M.; Fadila, Balegroune; Malika, Hamadène; Kamel, Taïbi

    2014-03-01

    The synthesis of 1,5-benzodiazepines by the reaction of o-phenylenediamines (o-PDAs) with dehydroacetic acid DHAA [3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one] or conjugate analogues is largely reported in the literature, but still with uncontrolled stereochemistry. In this work, a comprehensive mechanistic study on the formation of some synthesized 1,5-benzodiazepine models following different organic routes is established based on liquid-state 2D NMR, single-crystal X-ray diffraction and theoretical calculations allowing the classification of two prototropic forms A (enaminopyran-2,4-dione) and B (imino-4-hydroxypyran-2-one). Evidences are presented to show that most of the reported 1,5-benzodiazepine structures arising from DHAA and derivatives preferentially adopt the (E)-enaminopyran-2,4-diones A.

  10. 2D Quantum Simulation of MOSFET Using the Non Equilibrium Green's Function Method

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexel; Anantram, M. P.; Govindan, T. R.; Yan, Jerry (Technical Monitor)

    2000-01-01

    The objectives this viewgraph presentation summarizes include: (1) the development of a quantum mechanical simulator for ultra short channel MOSFET simulation, including theory, physical approximations, and computer code; (2) explore physics that is not accessible by semiclassical methods; (3) benchmarking of semiclassical and classical methods; and (4) study other two-dimensional devices and molecular structure, from discretized Hamiltonian to tight-binding Hamiltonian.

  11. Numerical solution of 2D-vector tomography problem using the method of approximate inverse

    NASA Astrophysics Data System (ADS)

    Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna

    2016-08-01

    We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.

  12. A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Zhang, Chuanzeng; Wang, Yuesheng; Sladek, Jan; Sladek, Vladimir

    2016-01-01

    In this paper, a meshfree or meshless local radial basis function (RBF) collocation method is proposed to calculate the band structures of two-dimensional (2D) anti-plane transverse elastic waves in phononic crystals. Three new techniques are developed for calculating the normal derivative of the field quantity required by the treatment of the boundary conditions, which improve the stability of the local RBF collocation method significantly. The general form of the local RBF collocation method for a unit-cell with periodic boundary conditions is proposed, where the continuity conditions on the interface between the matrix and the scatterer are taken into account. The band structures or dispersion relations can be obtained by solving the eigenvalue problem and sweeping the boundary of the irreducible first Brillouin zone. The proposed local RBF collocation method is verified by using the corresponding results obtained with the finite element method. For different acoustic impedance ratios, various scatterer shapes, scatterer arrangements (lattice forms) and material properties, numerical examples are presented and discussed to show the performance and the efficiency of the developed local RBF collocation method compared to the FEM for computing the band structures of 2D phononic crystals.

  13. Method to Rapidly Collect Thousands of Velocity Observations to Validate Million-Element 2D Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Barker, J. R.; Pasternack, G. B.; Bratovich, P.; Massa, D.; Reedy, G.; Johnson, T.

    2010-12-01

    Two-dimensional (depth-averaged) hydrodynamic models have existed for decades and are used to study a variety of hydrogeomorphic processes as well as to design river rehabilitation projects. Rapid computer and coding advances are revolutionizing the size and detail of 2D models. Meanwhile, advances in topo mapping and environmental informatics are providing the data inputs to drive large, detailed simulations. Million-element computational meshes are in hand. With simulations of this size and detail, the primary challenge has shifted to finding rapid and inexpensive means for testing model predictions against observations. Standard methods for collecting velocity data include boat-mounted ADCP and point-based sensors on boats or wading rods. These methods are labor intensive and often limited to a narrow flow range. Also, they generate small datasets at a few cross-sections, which is inadequate to characterize the statistical structure of the relation between predictions and observations. Drawing on the long-standing oceanographic method of using drogues to track water currents, previous studies have demonstrated the potential of small dGPS units to obtain surface velocity in rivers. However, dGPS is too inaccurate to test 2D models. Also, there is financial risk in losing drogues in rough currents. In this study, an RTK GPS unit was mounted onto a manned whitewater kayak. The boater positioned himself into the current and used floating debris to maintain a speed and heading consistent with the ambient surface flow field. RTK GPS measurements were taken ever 5 sec. From these positions, a 2D velocity vector was obtained. The method was tested over ~20 km of the lower Yuba River in California in flows ranging from 500-5000 cfs, yielding 5816 observations. To compare velocity magnitude against the 2D model-predicted depth-averaged value, kayak-based surface values were scaled down by an optimized constant (0.72), which had no negative effect on regression analysis

  14. Lattice Boltzmann methods for some 2-D nonlinear diffusion equations:Computational results

    SciTech Connect

    Elton, B.H.; Rodrigue, G.H. . Dept. of Applied Science Lawrence Livermore National Lab., CA ); Levermore, C.D. . Dept. of Mathematics)

    1990-01-01

    In this paper we examine two lattice Boltzmann methods (that are a derivative of lattice gas methods) for computing solutions to two two-dimensional nonlinear diffusion equations of the form {partial derivative}/{partial derivative}t u = v ({partial derivative}/{partial derivative}x D(u){partial derivative}/{partial derivative}x u + {partial derivative}/{partial derivative}y D(u){partial derivative}/{partial derivative}y u), where u = u({rvec x},t), {rvec x} {element of} R{sup 2}, v is a constant, and D(u) is a nonlinear term that arises from a Chapman-Enskog asymptotic expansion. In particular, we provide computational evidence supporting recent results showing that the methods are second order convergent (in the L{sub 1}-norm), conservative, conditionally monotone finite difference methods. Solutions computed via the lattice Boltzmann methods are compared with those computed by other explicit, second order, conservative, monotone finite difference methods. Results are reported for both the L{sub 1}- and L{sub {infinity}}-norms.

  15. Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-06-01

    The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative terms and quadrature. The Euler equations used here are in a flux form based on the hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate is implemented in this model. We verified the model by conducting widely used standard benchmark tests: the inertia-gravity wave, rising thermal bubble, density current wave, and linear hydrostatic mountain wave. The results from those tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust. By using the 2-D slice model, we effectively show that the combined spatial discretization method of the spectral element and finite difference method in the horizontal and vertical directions, respectively, offers a viable method for the development of a NH dynamical core.

  16. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    PubMed Central

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  17. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-20

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.

  18. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  19. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; Xu, Chun; Gronwall, Caryl; Koekemoer, Anton M.; Walsh, Jeremy; diSeregoAlighieri, Sperello

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  20. Precise Evaluation of Anthropometric 2D Software Processing of Hand in Comparison with Direct Method.

    PubMed

    Habibi, Ehsanollah; Soury, Shiva; Zadeh, Akbar Hasan

    2013-10-01

    Various studies carried out on different photo anthropometry, but each one had some deficiencies which during the years they have been resolved. The objective of this paper is to test the efficiency of two-dimensional image processing software in photo anthropometry of hand. In this applied research, 204 office workers and industrial workers were selected. Their hands were measured by manual with photo anthropometric methods. In this study, designing the "Hand Photo Anthropometry Set," we tried to fix the angle and distance of the camera in all of the photos. Thus, some of the common mistakes in photo anthropometric method got controlled. The taken photos were analyzed by Digimizer software, version 4.1.1.0 and Digital Caliper (Model: Mitutoyo Corp., Tokyo, Japan) was used via manual method. t-test statistical test on data revealed that there is no significant difference between the manual and photo anthropometric results (P > 0.05) and the correlation coefficients for hand dimensions are similar in both methods illustrated in the range of 0.71-0.95. The statistical analyses showed that photo anthropometry can be replaced with manual methods. Furthermore, it can provide a great help to develop an anthropometric database for work gloves manufacturers. Since the hand anthropometry is a necessary input for tool design, this survey can be used to determine the percentiles of workers' hands. PMID:24696802

  1. Precise Evaluation of Anthropometric 2D Software Processing of Hand in Comparison with Direct Method.

    PubMed

    Habibi, Ehsanollah; Soury, Shiva; Zadeh, Akbar Hasan

    2013-10-01

    Various studies carried out on different photo anthropometry, but each one had some deficiencies which during the years they have been resolved. The objective of this paper is to test the efficiency of two-dimensional image processing software in photo anthropometry of hand. In this applied research, 204 office workers and industrial workers were selected. Their hands were measured by manual with photo anthropometric methods. In this study, designing the "Hand Photo Anthropometry Set," we tried to fix the angle and distance of the camera in all of the photos. Thus, some of the common mistakes in photo anthropometric method got controlled. The taken photos were analyzed by Digimizer software, version 4.1.1.0 and Digital Caliper (Model: Mitutoyo Corp., Tokyo, Japan) was used via manual method. t-test statistical test on data revealed that there is no significant difference between the manual and photo anthropometric results (P > 0.05) and the correlation coefficients for hand dimensions are similar in both methods illustrated in the range of 0.71-0.95. The statistical analyses showed that photo anthropometry can be replaced with manual methods. Furthermore, it can provide a great help to develop an anthropometric database for work gloves manufacturers. Since the hand anthropometry is a necessary input for tool design, this survey can be used to determine the percentiles of workers' hands.

  2. Precise Evaluation of Anthropometric 2D Software Processing of Hand in Comparison with Direct Method

    PubMed Central

    Habibi, Ehsanollah; Soury, Shiva; Zadeh, Akbar Hasan

    2013-01-01

    Various studies carried out on different photo anthropometry, but each one had some deficiencies which during the years they have been resolved. The objective of this paper is to test the efficiency of two-dimensional image processing software in photo anthropometry of hand. In this applied research, 204 office workers and industrial workers were selected. Their hands were measured by manual with photo anthropometric methods. In this study, designing the “Hand Photo Anthropometry Set,” we tried to fix the angle and distance of the camera in all of the photos. Thus, some of the common mistakes in photo anthropometric method got controlled. The taken photos were analyzed by Digimizer software, version 4.1.1.0 and Digital Caliper (Model: Mitutoyo Corp., Tokyo, Japan) was used via manual method. t-test statistical test on data revealed that there is no significant difference between the manual and photo anthropometric results (P > 0.05) and the correlation coefficients for hand dimensions are similar in both methods illustrated in the range of 0.71-0.95. The statistical analyses showed that photo anthropometry can be replaced with manual methods. Furthermore, it can provide a great help to develop an anthropometric database for work gloves manufacturers. Since the hand anthropometry is a necessary input for tool design, this survey can be used to determine the percentiles of workers’ hands. PMID:24696802

  3. A High Order Discontinuous Galerkin Method for 2D Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Liu, Jia-Guo; Shu, Chi-Wang

    1999-01-01

    In this paper we introduce a high order discontinuous Galerkin method for two dimensional incompressible flow in vorticity streamfunction formulation. The momentum equation is treated explicitly, utilizing the efficiency of the discontinuous Galerkin method The streamfunction is obtained by a standard Poisson solver using continuous finite elements. There is a natural matching between these two finite element spaces, since the normal component of the velocity field is continuous across element boundaries. This allows for a correct upwinding gluing in the discontinuous Galerkin framework, while still maintaining total energy conservation with no numerical dissipation and total enstrophy stability The method is suitable for inviscid or high Reynolds number flows. Optimal error estimates are proven and verified by numerical experiments.

  4. A spectral boundary integral equation method for the 2-D Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1994-01-01

    In this paper, we present a new numerical formulation of solving the boundary integral equations reformulated from the Helmholtz equation. The boundaries of the problems are assumed to be smooth closed contours. The solution on the boundary is treated as a periodic function, which is in turn approximated by a truncated Fourier series. A Fourier collocation method is followed in which the boundary integral equation is transformed into a system of algebraic equations. It is shown that in order to achieve spectral accuracy for the numerical formulation, the nonsmoothness of the integral kernels, associated with the Helmholtz equation, must be carefully removed. The emphasis of the paper is on investigating the essential elements of removing the nonsmoothness of the integral kernels in the spectral implementation. The present method is robust for a general boundary contour. Aspects of efficient implementation of the method using FFT are also discussed. A numerical example of wave scattering is given in which the exponential accuracy of the present numerical method is demonstrated.

  5. Edge gradients evaluation for 2D hybrid finite volume method model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a two-dimensional depth-integrated hydrodynamic model was developed using FVM on a hybrid unstructured collocated mesh system. To alleviate the negative effects of mesh irregularity and non-uniformity, a conservative evaluation method for edge gradients based on the second-order Tayl...

  6. Toward a 2D vector map with a feature nodes-based watermarking method

    NASA Astrophysics Data System (ADS)

    Zhang, Hongsheng; Li, Yan

    2009-10-01

    With a wide use of vector maps, the copyright issue is educing an increasing importance and attracting focus on the transmission and the exchange of the vector maps through a network environment. This paper discusses a feature nodes based watermarking method (FNBW) towards keeping robustness and high accuracy of digital map based on SVG and GML format. The digital map treats as a set of curves in the embedding algorithm, and each curve was divided up into several shorter curves under two given thresholds. And then a watermark bit combined with user certificate was embedded into each segment around the feature nodes with the maximum curvature in the segment series nodes. To extract the watermark, all watermark nodes were calculated and searched for in the watermarked map with the Watermark node Searching Algorithm by using the original map. Finally the method calculates the similarity between the original watermark bits and the extracted ones, and determines whether the watermark exists or not. As the experiment result shown, the method not only guarantees the accuracy of vector map but also possesses the good robustness, such as it gives 1.00 similarity under no attack or only geometric transformation with the map; And the anticopping ability is also good enough to give a more than 0.87 similarity for the map cropped 80%. In addition, the method has the full ability of anti-compression lossless methods and good ability to the loss approaches. And an experiment curve of the similarity threshold was given in the paper, which helped to control the anti-attack ability of the watermark and set parameters for an automatic procedure of watermark detection.

  7. PZIM: a method for similarity searching using atom environments and 2D alignment.

    PubMed

    Berglund, Anders E; Head, Richard D

    2010-10-25

    The advent of extensive small molecule databases has brought with it the problem of searching these repositories for entities with desired properties. A multitude of similarity-searching algorithms, based on different underlying methods, currently exist for this purpose. However, due to the somewhat nebulous definition of "similar", all such approaches maintain different strengths and weaknesses. Presented here is PZIM, a new approach fundamentally based on a description of the atom environment that includes multiple adjustable features allowing for searches to be tailored on the basis of the user definition of similarity. In addition to flexible atom environment size, PZIM allows for the use of an atom-substitution matrix to identify similar pharmacophoric recognition elements. Finally, PZIM produces 2-dimensional alignments of all compared molecules that pass a user-defined threshold for similarity. To determine the usefulness of the approach, PZIM was compared to seven other similarity-searching methods on nine data sets recently published. PZIM achieved a rank of first or second in the majority of cases tested and obtained the highest average rank score across all methods tested. These results demonstrate the effectiveness of the PZIM approach across diverse search conditions.

  8. Coordinate transformation method for the solution of inverse problem in 2D and 3D scatterometry

    NASA Astrophysics Data System (ADS)

    Ponnusamy, Sekar

    2005-05-01

    For scatterometry applications, diffraction analysis of gratings is carried out by using Rigorous Coupled Wave Analysis (RCWA). Though RCWA method is originally developed for lamellar gratings, arbitrary profiles can be analyzed using staircase approximation with S-Matrix propagation of field components. For improved accuracy, more number of Fourier waves need to be included in Floquet-Bloch expansion of the field components and also more number of slices are to be made in staircase approximation. These requirements increase the time required for the analysis. A coordinate transformation method (CTM) developed by Chandezon et. al renders the arbitrary grating profile into a plane surface in the new coordinate system and hence it does not require slicing. This method is extended to 3D structures by several authors notably, by Harris et al for non-orthogonal unit cells and by Granet for correct Fourier expansion. Also extended is to handle sharp-edged gratings through adaptive spatial resolution. In this paper, an attempt is made to employ CTM with correct Fourier expansion in conjunction with adaptive spatial resolution, for scatterometry applications. A MATLAB program is developed, and thereby, demonstrated that CTM can be used for diffraction analysis of trapezoidal profiles that are typically encountered in scatterometry applications.

  9. Application of 2D-Nonlinear Shallow Water Model of Tsunami by using Adomian Decomposition Method

    SciTech Connect

    Waewcharoen, Sribudh; Boonyapibanwong, Supachai; Koonprasert, Sanoe

    2008-09-01

    One of the most important questions in tsunami modeling is the estimation of tsunami run-up heights at different points along a coastline. Methods for numerical simulation of tsunami wave propagation in deep and shallow seas are well developed and have been widely used by many scientists (2001-2008). In this paper, we consider a two-dimensional nonlinear shallow water model of tsunami given by Tivon Jacobson is work [1]. u{sub t}+uu{sub x}+{nu}u{sub y} -c{sup 2}(h{sub x}+(h{sub b}){sub x}) {nu}{sub t}+u{nu}{sub x}+{nu}{nu}{sub y} = -c{sup 2}(h{sub y}+(h{sub b}){sub y}) h{sub t}+(hu){sub x}+(h{nu}){sub y} = 0 g-shore, h is surface elevation and s, t is time, u is velocity of cross-shore, {nu} is velocity of along-shore, h is surface elevation and h{sub b} is function of shore. This is a nondimensionalized model with the gravity g and constant reference depth H factored into c = {radical}(gH). We apply the Adomian Decompostion Method (ADM) to solve the tsunami model. This powerful method has been used to obtain explicit and numerical solutions of three types of diffusion-convection-reaction (DECR) equations. The ADM results for the tsunami model yield analytical solutions in terms of a rapidly convergent infinite power series. Symbolic computation, numerical results and graphs of solutions are obtained by Maple program.

  10. Solution of the stationary 2D inverse heat conduction problem by Treffetz method

    NASA Astrophysics Data System (ADS)

    Cialkowski, Michael J.; Frąckowiak, Andrzej

    2002-05-01

    The paper presents analysis of a solution of Laplace equation with the use of FEM harmonic basic functions. The essence of the problem is aimed at presenting an approximate solution based on possibly large finite element. Introduction of harmonic functions allows to reduce the order of numerical integration as compared to a classical Finite Element Method. Numerical calculations conform good efficiency of the use of basic harmonic functions for resolving direct and inverse problems of stationary heat conduction. Further part of the paper shows the use of basic harmonic functions for solving Poisson’s equation and for drawing up a complete system of biharmonic and polyharmonic basic functions

  11. [Novel methods for studies of testicular development and spermatogenesis: From 2D to 3D culture].

    PubMed

    Zhang, Lian-dong; Li, He-cheng; Zhang, Tong-dian; Wang, Zi-ming

    2016-03-01

    The two-dimensional model of cell culture is an important method in the study of testicular development and spermatogenesis but can not effectively mimic and regulate the testicular microenvironment and the whole process of spermatogenesis due to the lack of relevant cell factors and the disruption of a three-dimensional spatial structure. In the past 20 years, the development and optimization of the in vitro model such as testis organotypic culture and in vivo model such as testis transplantation achieved a transformation from two- to three-dimension. The maintenance and optimization of the testicular niche structure could mimic the testicular microenvironment and cell types including Leydig, Sertoli and germ cells, which showed similar biological behaviors to those in vivo. Besides, the cell suspension or tissue fragment floats in the gas-liquid interface so that the development of somatic and germ cells is well maintained in vitro whilst the feedback linkage between grafted testis tissue and hypothalamus-pituitary of the host rebuilt in the in vitro model provides an endocrinological basis for spermatogenesis, which serves as an effective methodology to better understand the organogenesis and development of the testis as well as testicular function regulation, advancing the concept of treatment of male infertility. Al- though each of the methods may have its limitations, the progress in the processing, freezing, thawing, and transplantation of cells and tissues will surely promote their clinical application and present their value in translational medicine. PMID:27172668

  12. New methods to estimate 2D water level distributions of dynamic rivers.

    PubMed

    Diem, Samuel; Renard, Philippe; Schirmer, Mario

    2013-01-01

    River restoration measures are becoming increasingly popular and are leading to dynamic river bed morphologies that in turn result in complex water level distributions in a river. Disconnected river branches, nonlinear longitudinal water level profiles and morphologically induced lateral water level gradients can evolve rapidly. The modeling of such river-groundwater systems is of high practical relevance in order to assess the impact of restoration measures on the exchange flux between a river and groundwater or on the residence times between a river and a pumping well. However, the model input includes a proper definition of the river boundary condition, which requires a detailed spatial and temporal river water level distribution. In this study, we present two new methods to estimate river water level distributions that are based directly on measured data. Comparing generated time series of water levels with those obtained by a hydraulic model as a reference, the new methods proved to offer an accurate and faster alternative with a simpler implementation.

  13. On the use of rational-function fitting methods for the solution of 2D Laplace boundary-value problems

    NASA Astrophysics Data System (ADS)

    Hochman, Amit; Leviatan, Yehuda; White, Jacob K.

    2013-04-01

    A computational scheme for solving 2D Laplace boundary-value problems using rational functions as the basis functions is described. The scheme belongs to the class of desingularized methods, for which the location of singularities and testing points is a major issue that is addressed by the proposed scheme, in the context he 2D Laplace equation. Well-established rational-function fitting techniques are used to set the poles, while residues are determined by enforcing the boundary conditions in the least-squares sense at the nodes of rational Gauss-Chebyshev quadrature rules. Numerical results show that errors approaching the machine epsilon can be obtained for sharp and almost sharp corners, nearly-touching boundaries, and almost-singular boundary data. We show various examples of these cases in which the method yields compact solutions, requiring fewer basis functions than the Nyström method, for the same accuracy. A scheme for solving fairly large-scale problems is also presented.

  14. Detecting 2D symmetry-protected topological phases with the tensor-network method

    NASA Astrophysics Data System (ADS)

    Huang, Ching-Yu; Wei, Tzu-Chieh

    Symmetry-protected topological (SPT) phases exhibit nontrivial order if symmetry is respected but are adiabatically connected to the trivial product phase if symmetry is not respected. However, unlike the symmetry breaking phase, there is no local order parameter for SPT phases. Here we employ a tensor-network method to compute the topological invariants characterized by the simulated modular S and T matrices proposed by Hung and Wen to study a transition in a one-parameter family of wavefunctions which are Z2 symmetric. The studied wavefunctions are in some sense the SPT analog of Z2 topological states under a string tension. The numerically obtained S and T matrices are able to characterize the two different phases and identify the transition point.

  15. A Monte Carlo Method for Projecting Uncertainty in 2D Lagrangian Trajectories

    NASA Astrophysics Data System (ADS)

    Robel, A.; Lozier, S.; Gary, S. F.

    2009-12-01

    In this study, a novel method is proposed for modeling the propagation of uncertainty due to subgrid-scale processes through a Lagrangian trajectory advected by ocean surface velocities. The primary motivation and application is differentiating between active and passive trajectories for sea turtles as observed through satellite telemetry. A spatiotemporal launch box is centered on the time and place of actual launch and populated with launch points. Synthetic drifters are launched at each of these locations, adding, at each time step along the trajectory, Monte Carlo perturbations in velocity scaled to the natural variability of the velocity field. The resulting trajectory cloud provides a dynamically evolving density field of synthetic drifter locations that represent the projection of subgrid-scale uncertainty out in time. Subsequently, by relaunching synthetic drifters at points along the trajectory, plots are generated in a daisy chain configuration of the “most likely passive pathways” for the drifter.

  16. NMR system and method having a permanent magnet providing a rotating magnetic field

    DOEpatents

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  17. Method and sample spinning apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR apparatus and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus spins the sample about an axis. The angle of the axis is mechanically varied such that the time average of two or more Legendre polynomials are zero.

  18. Method and apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise oreintationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions is zero.

  19. Development of 2D deconvolution method to repair blurred MTSAT-1R visible imagery

    NASA Astrophysics Data System (ADS)

    Khlopenkov, Konstantin V.; Doelling, David R.; Okuyama, Arata

    2014-09-01

    Spatial cross-talk has been discovered in the visible channel data of the Multi-functional Transport Satellite (MTSAT)-1R. The slight image blurring is attributed to an imperfection in the mirror surface caused either by flawed polishing or a dust contaminant. An image processing methodology is described that employs a two-dimensional deconvolution routine to recover the original undistorted MTSAT-1R data counts. The methodology assumes that the dispersed portion of the signal is small and distributed randomly around the optical axis, which allows the image blurring to be described by a point spread function (PSF) based on the Gaussian profile. The PSF is described by 4 parameters, which are solved using a maximum likelihood estimator using coincident collocated MTSAT-2 images as truth. A subpixel image matching technique is used to align the MTSAT-2 pixels into the MTSAT-1R projection and to correct for navigation errors and cloud displacement due to the time and viewing geometry differences between the two satellite observations. An optimal set of the PSF parameters is derived by an iterative routine based on the 4-dimensional Powell's conjugate direction method that minimizes the difference between PSF-corrected MTSAT-1R and collocated MTSAT-2 images. This iterative approach is computationally intensive and was optimized analytically as well as by coding in assembly language incorporating parallel processing. The PSF parameters were found to be consistent over the 5-days of available daytime coincident MTSAT-1R and MTSAT-2 images, and can easily be applied to the MTSAT-1R imager pixel level counts to restore the original quality of the entire MTSAT-1R record.

  20. Assessing Methods for Mapping 2D Field Concentrations of CO2 Over Large Spatial Areas for Monitoring Time Varying Fluctuations

    NASA Astrophysics Data System (ADS)

    Zaccheo, T. S.; Pernini, T.; Botos, C.; Dobler, J. T.; Blume, N.; Braun, M.; Levine, Z. H.; Pintar, A. L.

    2014-12-01

    This work presents a methodology for constructing 2D estimates of CO2 field concentrations from integrated open path measurements of CO2 concentrations. It provides a description of the methodology, an assessment based on simulated data and results from preliminary field trials. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system, currently under development by Exelis and AER, consists of a set of laser-based transceivers and a number of retro-reflectors coupled with a cloud-based compute environment to enable real-time monitoring of integrated CO2 path concentrations, and provides 2D maps of estimated concentrations over an extended area of interest. The GreenLITE transceiver-reflector pairs provide laser absorption spectroscopy (LAS) measurements of differential absorption due to CO2 along intersecting chords within the field of interest. These differential absorption values for the intersecting chords of horizontal path are not only used to construct estimated values of integrated concentration, but also employed in an optimal estimation technique to derive 2D maps of underlying concentration fields. This optimal estimation technique combines these sparse data with in situ measurements of wind speed/direction and an analytic plume model to provide tomographic-like reconstruction of the field of interest. This work provides an assessment of this reconstruction method and preliminary results from the Fall 2014 testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, Montana. This work is funded in part under the GreenLITE program developed under a cooperative agreement between Exelis and the National Energy and Technology Laboratory (NETL) under the Department of Energy (DOE), contract # DE-FE0012574. Atmospheric and Environmental Research, Inc. is a major partner in this development.

  1. Characterizing 3D grain size distributions from 2D sections in mylonites using a modified version of the Saltykov method

    NASA Astrophysics Data System (ADS)

    Lopez-Sanchez, Marco; Llana-Fúnez, Sergio

    2016-04-01

    The understanding of creep behaviour in rocks requires knowledge of 3D grain size distributions (GSD) that result from dynamic recrystallization processes during deformation. The methods to estimate directly the 3D grain size distribution -serial sectioning, synchrotron or X-ray-based tomography- are expensive, time-consuming and, in most cases and at best, challenging. This means that in practice grain size distributions are mostly derived from 2D sections. Although there are a number of methods in the literature to derive the actual 3D grain size distributions from 2D sections, the most popular in highly deformed rocks is the so-called Saltykov method. It has though two major drawbacks: the method assumes no interaction between grains, which is not true in the case of recrystallised mylonites; and uses histograms to describe distributions, which limits the quantification of the GSD. The first aim of this contribution is to test whether the interaction between grains in mylonites, i.e. random grain packing, affects significantly the GSDs estimated by the Saltykov method. We test this using the random resampling technique in a large data set (n = 12298). The full data set is built from several parallel thin sections that cut a completely dynamically recrystallized quartz aggregate in a rock sample from a Variscan shear zone in NW Spain. The results proved that the Saltykov method is reliable as long as the number of grains is large (n > 1000). Assuming that a lognormal distribution is an optimal approximation for the GSD in a completely dynamically recrystallized rock, we introduce an additional step to the Saltykov method, which allows estimating a continuous probability distribution function of the 3D grain size population. The additional step takes the midpoints of the classes obtained by the Saltykov method and fits a lognormal distribution with a trust region using a non-linear least squares algorithm. The new protocol is named the two-step method. The

  2. Coupled 2D-3D finite element method for analysis of a skin panel with a discontinuous stiffener

    NASA Technical Reports Server (NTRS)

    Wang, J. T.; Lotts, C. G.; Davis, D. D., Jr.; Krishnamurthy, T.

    1992-01-01

    This paper describes a computationally efficient analysis method which was used to predict detailed stress states in a typical composite compression panel with a discontinuous hat stiffener. A global-local approach was used. The global model incorporated both 2D shell and 3D brick elements connected by newly developed transition elements. Most of the panel was modeled with 2D elements, while 3D elements were employed to model the stiffener flange and the adjacent skin. Both linear and geometrically nonlinear analyses were performed on the global model. The effect of geometric nonlinearity induced by the eccentric load path due to the discontinuous hat stiffener was significant. The local model used a fine mesh of 3D brick elements to model the region at the end of the stiffener. Boundary conditions of the local 3D model were obtained by spline interpolation of the nodal displacements from the global analysis. Detailed in-plane and through-the-thickness stresses were calculated in the flange-skin interface near the end of the stiffener.

  3. AC Loss Calculation of REBCO Cables by the Combination of Electric Circuit Model and 2D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Noji, H.

    This study investigates the losses in a two conducting-layer REBCO cable fabricated by researchers at Furukawa Electric Co. Ltd. The losses were calculated using a combination of my electric circuit (EC) model with a two-dimensional finite element method (2D FEM). The helical pitches of the tapes in each layer, P1 and P2, were adjusted to equalize the current in both cable layers, although the loss calculation assumed infinite helical pitches and the same current in each layer at first. The results showed that the losses depended on the relative tape-position angle between the layers (θ/θ'), because the vertical field between adjacent tapes in the same layer varied with θ/θ'. When simulating the real cable, the helical pitches were adjusted and the layer currents were calculated by the EC model. These currents were input to the 2D FEM to compute the losses. The losses changed along the cable length because the difference between P1 and P2 altered the θ/θ' along this direction. The average angle-dependent and position-dependent losses were equal and closely approximated the measured losses. As an example to reduce the loss in this cable, the angle and the helical pitches were fixed at θ/θ' = 0.5 and P1 = P2 = 100 mm (S-direction). The calculation with these conditions indicated that the loss is about one order of magnitude lower than the measurement.

  4. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar.

    PubMed

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-12-14

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results.

  5. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar.

    PubMed

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-01-01

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385

  6. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar

    PubMed Central

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-01-01

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters’ outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385

  7. Computation of self-field hysteresis losses in conductors with helicoidal structure using a 2D finite element method

    NASA Astrophysics Data System (ADS)

    Stenvall, A.; Siahrang, M.; Grilli, F.; Sirois, F.

    2013-04-01

    It is well known that twisting current-carrying conductors helps to reduce their coupling losses. However, the impact of twisting on self-field hysteresis losses has not been as extensively investigated as that on the reduction of coupling losses. This is mostly because the reduction of coupling losses has been an important issue to tackle in the past, and it is not possible to consider twisting within the classical two-dimensional (2D) approaches for the computation of self-field hysteresis losses. Recently, numerical codes considering the effect of twisting in continuous symmetries have appeared. For general three-dimensional (3D) simulations, one issue is that no robust, widely accepted and easy to obtain model for expressing the relationship between the current density and the electric field is available. On the other hand, we can consider that in these helicoidal structures currents flow only along the helicoidal trajectories. This approach allows one to use the scalar power-law for superconductor resistivity and makes the eddy current approach to a solution of a hysteresis loss problem feasible. In this paper we use the finite element method to solve the eddy current model in helicoidal structures in 2D domains utilizing the helicoidal symmetry. The developed tool uses the full 3D geometry but allows discretization which takes advantage of the helicoidal symmetry to reduce the computational domain to a 2D one. We utilize in this tool the non-linear power law for modelling the resistivity in the superconducting regions and study how the self-field losses are influenced by the twisting of a 10-filament wire. Additionally, in the case of high aspect ratio tapes, we compare the results computed with the new tool and a one-dimensional program based on the integral equation method and developed for simulating single layer power cables made of ReBCO coated conductors. Finally, we discuss modelling issues and present open questions related to helicoidal structures

  8. Versatile Method for Producing 2D and 3D Conductive Biomaterial Composites Using Sequential Chemical and Electrochemical Polymerization.

    PubMed

    Severt, Sean Y; Ostrovsky-Snider, Nicholas A; Leger, Janelle M; Murphy, Amanda R

    2015-11-18

    Flexible and conductive biocompatible materials are attractive candidates for a wide range of biomedical applications including implantable electrodes, tissue engineering, and controlled drug delivery. Here, we demonstrate that chemical and electrochemical polymerization techniques can be combined to create highly versatile silk-conducting polymer (silk-CP) composites with enhanced conductivity and electrochemical stability. Interpenetrating silk-CP composites were first generated via in situ deposition of polypyrrole during chemical polymerization of pyrrole. These composites were sufficiently conductive to serve as working electrodes for electropolymerization, which allowed an additional layer of CP to be deposited on the surface. This sequential method was applied to both 2D films and 3D sponge-like silk scaffolds, producing conductive materials with biomimetic architectures. Overall, this two-step technique expanded the range of available polymers and dopants suitable for the synthesis of mechanically robust, biocompatible, and highly conductive silk-based materials.

  9. New methods of structure refinement for macromolecular structure determination by NMR

    PubMed Central

    Clore, G. Marius; Gronenborn, Angela M.

    1998-01-01

    Recent advances in multidimensional NMR methodology have permitted solution structures of proteins in excess of 250 residues to be solved. In this paper, we discuss several methods of structure refinement that promise to increase the accuracy of macromolecular structures determined by NMR. These methods include the use of a conformational database potential and direct refinement against three-bond coupling constants, secondary 13C shifts, 1H shifts, T1/T2 ratios, and residual dipolar couplings. The latter two measurements provide long range restraints that are not accessible by other solution NMR parameters. PMID:9600889

  10. A shape-based statistical method to retrieve 2D TRUS-MR slice correspondence for prostate biopsy

    NASA Astrophysics Data System (ADS)

    Mitra, Jhimli; Srikantha, Abhilash; Sidibé, Désiré; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Ghose, Soumya; Vilanova, Joan C.; Comet, Josep; Meriaudeau, Fabrice

    2012-02-01

    This paper presents a method based on shape-context and statistical measures to match interventional 2D Trans Rectal Ultrasound (TRUS) slice during prostate biopsy to a 2D Magnetic Resonance (MR) slice of a pre-acquired prostate volume. Accurate biopsy tissue sampling requires translation of the MR slice information on the TRUS guided biopsy slice. However, this translation or fusion requires the knowledge of the spatial position of the TRUS slice and this is only possible with the use of an electro-magnetic (EM) tracker attached to the TRUS probe. Since, the use of EM tracker is not common in clinical practice and 3D TRUS is not used during biopsy, we propose to perform an analysis based on shape and information theory to reach close enough to the actual MR slice as validated by experts. The Bhattacharyya distance is used to find point correspondences between shape-context representations of the prostate contours. Thereafter, Chi-square distance is used to find out those MR slices where the prostates closely match with that of the TRUS slice. Normalized Mutual Information (NMI) values of the TRUS slice with each of the axial MR slices are computed after rigid alignment and consecutively a strategic elimination based on a set of rules between the Chi-square distances and the NMI leads to the required MR slice. We validated our method for TRUS axial slices of 15 patients, of which 11 results matched at least one experts validation and the remaining 4 are at most one slice away from the expert validations.

  11. Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists

    PubMed Central

    Dastmalchi, Siavoush; Hamzeh-Mivehroud, Maryam; Asadpour-Zeynali, Karim

    2012-01-01

    Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression (MLR), artificial neural network (ANN), and HASL as a 3D QSAR method, in predicting the receptor binding affinities of arylbenzofuran histamine H3 receptor antagonists. Genetic algorithm coupled partial least square as well as stepwise multiple regression methods were used to select a number of calculated molecular descriptors to be used in MLR and ANN-based QSAR studies. Using the leave-group-out cross-validation technique, the performances of the MLR and ANN methods were evaluated. The calculated values for the mean absolute percentage error (MAPE), ranging from 2.9 to 3.6, and standard deviation of error of prediction (SDEP), ranging from 0.31 to 0.36, for both MLR and ANN methods were statistically comparable, indicating that both methods perform equally well in predicting the binding affinities of the studied compounds toward the H3 receptors. On the other hand, the results from 3D-QSAR studies using HASL method were not as good as those obtained by 2D methods. It can be concluded that simple traditional approaches such as MLR method can be as reliable as those of more advanced and sophisticated methods like ANN and 3D-QSAR analyses. PMID:25317190

  12. Effective finite-difference modelling methods with 2-D acoustic wave equation using a combination of cross and rhombus stencils

    NASA Astrophysics Data System (ADS)

    Wang, Enjiang; Liu, Yang; Sen, Mrinal K.

    2016-09-01

    The 2-D acoustic wave equation is commonly solved numerically by finite-difference (FD) methods in which the accuracy of solution is significantly affected by the FD stencils. The commonly used cross stencil can reach either only second-order accuracy for space domain dispersion-relation-based FD method or (2M)th-order accuracy along eight specific propagation directions for time-space domain dispersion-relation-based FD method, if the conventional (2M)th-order spatial FD and second-order temporal FD are used to discretize the equation. One other newly developed rhombus stencil can reach arbitrary even-order accuracy. However, this stencil adds significantly to computational cost when the operator length is large. To achieve a balance between the solution accuracy and efficiency, we develop a new FD stencil to solve the 2-D acoustic wave equation. This stencil is a combination of the cross stencil and rhombus stencil. A cross stencil with an operator length parameter M is used to approximate the spatial partial derivatives while a rhombus stencil with an operator length parameter N together with the conventional second-order temporal FD is employed in approximating the temporal partial derivatives. Using this stencil, a new FD scheme is developed; we demonstrate that this scheme can reach (2M)th-order accuracy in space and (2N)th-order accuracy in time when spatial FD coefficients and temporal FD coefficients are derived from respective dispersion relation using Taylor-series expansion (TE) method. To further increase the accuracy, we derive the FD coefficients by employing the time-space domain dispersion relation of this FD scheme using TE. We also use least-squares (LS) optimization method to reduce dispersion at high wavenumbers. Dispersion analysis, stability analysis and modelling examples demonstrate that our new scheme has greater accuracy and better stability than conventional FD schemes, and thus can adopt large time steps. To reduce the extra

  13. Effective finite-difference modelling methods with 2D acoustic wave equation using a combination of cross and rhombus stencils

    NASA Astrophysics Data System (ADS)

    Wang, Enjiang; Liu, Yang; Sen, Mrinal K.

    2016-07-01

    The 2D acoustic wave equation is commonly solved numerically by finite-difference (FD) methods in which the accuracy of solution is significantly affected by the FD stencils. The commonly used cross stencil can reach either only second-order accuracy for space domain dispersion-relation-based FD method or (2 M)th-order accuracy along eight specific propagation directions for time-space domain dispersion-relation-based FD method, if the conventional (2 M)th-order spatial FD and second-order temporal FD are used to discretize the equation. One other newly developed rhombus stencil can reach arbitrary even-order accuracy. However, this stencil adds significantly computational cost when the operator length is large. To achieve a balance between the solution accuracy and efficiency, we develop a new FD stencil to solve the 2D acoustic wave equation. This stencil is a combination of the cross stencil and rhombus stencil. A cross stencil with an operator length parameter M is used to approximate the spatial partial derivatives while a rhombus stencil with an operator length parameter N together with the conventional 2nd-order temporal FD is employed in approximating the temporal partial derivatives. Using this stencil, a new FD scheme is developed; we demonstrate that this scheme can reach (2 M)th-order accuracy in space and (2 N)th-order accuracy in time when spatial FD coefficients and temporal FD coefficients are derived from respective dispersion relation using Taylor-series expansion (TE) method. To further increase the accuracy, we derive the FD coefficients by employing the time-space domain dispersion relation of this FD scheme using TE. We also use least-squares (LS) optimization method to reduce dispersion at high wavenumbers. Dispersion analysis, stability analysis and modelling examples demonstrate that our new scheme has greater accuracy and better stability than conventional FD schemes, and thus can adopt large time steps. To reduce the extra computational

  14. Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid Pretreatment as Studied by Solution-State 2D 1H-13C NMR.

    PubMed

    Teramura, Hiroshi; Sasaki, Kengo; Oshima, Tomoko; Aikawa, Shimpei; Matsuda, Fumio; Okamoto, Mami; Shirai, Tomokazu; Kawaguchi, Hideo; Ogino, Chiaki; Yamasaki, Masanori; Kikuchi, Jun; Kondo, Akihiko

    2015-01-01

    A renewable raw material, rice straw is pretreated for biorefinery usage. Solution-state two-dimensional (2D) 1H-13 C hetero-nuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, was used to analyze 13 cultivars of rice straw before and after dilute acid pretreatment, to characterize general changes in the lignin and polysaccharide components. Intensities of most (15 of 16) peaks related to lignin aromatic regions, such as p-coumarate, guaiacyl, syringyl, p-hydroxyphenyl, and cinnamyl alcohol, and methoxyl, increased or remained unchanged after pretreatment. In contrast, intensities of most (11 of 13) peaks related to lignin aliphatic linkages or ferulate decreased. Decreased heterogeneity in the intensities of three peaks related to cellulose components in acid-insoluble residues resulted in similar glucose yield (0.45-0.59 g/g-dry biomass). Starch-derived components showed positive correlations (r = 0.71 to 0.96) with glucose, 5-hydroxymethylfurfural (5-HMF), and formate concentrations in the liquid hydrolysates, and negative correlations (r = -0.95 to -0.97) with xylose concentration and acid-insoluble residue yield. These results showed the fate of lignin and polysaccharide components by pretreatment, suggesting that lignin aromatic regions and cellulose components were retained in the acid insoluble residues and starch-derived components were transformed into glucose, 5-HMF, and formate in the liquid hydrolysate.

  15. Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid Pretreatment as Studied by Solution-State 2D 1H-13C NMR

    PubMed Central

    Teramura, Hiroshi; Sasaki, Kengo; Oshima, Tomoko; Aikawa, Shimpei; Matsuda, Fumio; Okamoto, Mami; Shirai, Tomokazu; Kawaguchi, Hideo; Ogino, Chiaki; Yamasaki, Masanori; Kikuchi, Jun; Kondo, Akihiko

    2015-01-01

    A renewable raw material, rice straw is pretreated for biorefinery usage. Solution-state two-dimensional (2D) 1H-13 C hetero-nuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, was used to analyze 13 cultivars of rice straw before and after dilute acid pretreatment, to characterize general changes in the lignin and polysaccharide components. Intensities of most (15 of 16) peaks related to lignin aromatic regions, such as p-coumarate, guaiacyl, syringyl, p-hydroxyphenyl, and cinnamyl alcohol, and methoxyl, increased or remained unchanged after pretreatment. In contrast, intensities of most (11 of 13) peaks related to lignin aliphatic linkages or ferulate decreased. Decreased heterogeneity in the intensities of three peaks related to cellulose components in acid-insoluble residues resulted in similar glucose yield (0.45–0.59 g/g-dry biomass). Starch-derived components showed positive correlations (r = 0.71 to 0.96) with glucose, 5-hydroxymethylfurfural (5-HMF), and formate concentrations in the liquid hydrolysates, and negative correlations (r = –0.95 to –0.97) with xylose concentration and acid-insoluble residue yield. These results showed the fate of lignin and polysaccharide components by pretreatment, suggesting that lignin aromatic regions and cellulose components were retained in the acid insoluble residues and starch-derived components were transformed into glucose, 5-HMF, and formate in the liquid hydrolysate. PMID:26083431

  16. NMR methods for in-situ biofilm metabolism studies: spatial and temporal resolved measurements

    SciTech Connect

    Majors, Paul D.; Mclean, Jeffrey S.; Fredrickson, Jim K.; Wind, Robert A.

    2005-11-01

    We are developing nuclear magnetic resonance (NMR) microscopy, spectroscopy and combined NMR/optical techniques to the study of biofilms. Objectives include: time and depth-resolved metabolite concentrations with isotropic spatial resolution on the order of 10 microns, metabolic pathways and flux rates, mass transport and ultimately their correlation with gene expression by optical microscopy in biofilms. These methods are being developed with Shewanella oneidensis MR-1 as a model system, but are equally applicable to other biofilm systems of interest. Thus, spatially resolved NMR of biofilms is expected to contribute significantly to the understanding of adherent cell metabolism.

  17. Simultaneous 2D imaging of dissolved iron and reactive phosphorus in sediment porewaters by thin-film and hyperspectral methods.

    PubMed

    Cesbron, Florian; Metzger, Edouard; Launeau, Patrick; Deflandre, Bruno; Delgard, Marie-Lise; Thibault de Chanvalon, Aubin; Geslin, Emmanuelle; Anschutz, Pierre; Jézéquel, Didier

    2014-01-01

    This study presents a new approach combining diffusive equilibrium in thin-film (DET) and spectrophotometric methods to determine the spatial variability of dissolved iron and dissolved reactive phosphorus (DRP) with a single gel probe. Its originality is (1) to postpone up to three months the colorimetric reaction of DET by freezing and (2) to measure simultaneously dissolved iron and DRP by hyperspectral imaging at a submillimeter resolution. After a few minutes at room temperature, the thawed gel is sandwiched between two monospecific reagent DET gels, leading to magenta and blue coloration for iron and phosphate, respectively. Spatial distribution of the resulting colors is obtained using a hyperspectral camera. Reflectance spectra analysis enables deconvolution of specific colorations by the unmixing method applied to the logarithmic reflectance, leading to an accurate quantification of iron and DRP. This method was applied in the Arcachon lagoon (France) on muddy sediments colonized by eelgrass (Zostera noltei) meadows. The 2D gel probes highlighted microstructures in the spatial distribution of dissolved iron and phosphorus, which are most likely associated with the occurrence of benthic fauna burrows and seagrass roots.

  18. 2D and 3D registration methods for dual-energy contrast-enhanced digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Lau, Kristen C.; Roth, Susan; Maidment, Andrew D. A.

    2014-03-01

    Contrast-enhanced digital breast tomosynthesis (CE-DBT) uses an iodinated contrast agent to image the threedimensional breast vasculature. The University of Pennsylvania is conducting a CE-DBT clinical study in patients with known breast cancers. The breast is compressed continuously and imaged at four time points (1 pre-contrast; 3 postcontrast). A hybrid subtraction scheme is proposed. First, dual-energy (DE) images are obtained by a weighted logarithmic subtraction of the high-energy and low-energy image pairs. Then, post-contrast DE images are subtracted from the pre-contrast DE image. This hybrid temporal subtraction of DE images is performed to analyze iodine uptake, but suffers from motion artifacts. Employing image registration further helps to correct for motion, enhancing the evaluation of vascular kinetics. Registration using ANTS (Advanced Normalization Tools) is performed in an iterative manner. Mutual information optimization first corrects large-scale motions. Normalized cross-correlation optimization then iteratively corrects fine-scale misalignment. Two methods have been evaluated: a 2D method using a slice-by-slice approach, and a 3D method using a volumetric approach to account for out-of-plane breast motion. Our results demonstrate that iterative registration qualitatively improves with each iteration (five iterations total). Motion artifacts near the edge of the breast are corrected effectively and structures within the breast (e.g. blood vessels, surgical clip) are better visualized. Statistical and clinical evaluations of registration accuracy in the CE-DBT images are ongoing.

  19. Simultaneous 2D imaging of dissolved iron and reactive phosphorus in sediment porewaters by thin-film and hyperspectral methods.

    PubMed

    Cesbron, Florian; Metzger, Edouard; Launeau, Patrick; Deflandre, Bruno; Delgard, Marie-Lise; Thibault de Chanvalon, Aubin; Geslin, Emmanuelle; Anschutz, Pierre; Jézéquel, Didier

    2014-01-01

    This study presents a new approach combining diffusive equilibrium in thin-film (DET) and spectrophotometric methods to determine the spatial variability of dissolved iron and dissolved reactive phosphorus (DRP) with a single gel probe. Its originality is (1) to postpone up to three months the colorimetric reaction of DET by freezing and (2) to measure simultaneously dissolved iron and DRP by hyperspectral imaging at a submillimeter resolution. After a few minutes at room temperature, the thawed gel is sandwiched between two monospecific reagent DET gels, leading to magenta and blue coloration for iron and phosphate, respectively. Spatial distribution of the resulting colors is obtained using a hyperspectral camera. Reflectance spectra analysis enables deconvolution of specific colorations by the unmixing method applied to the logarithmic reflectance, leading to an accurate quantification of iron and DRP. This method was applied in the Arcachon lagoon (France) on muddy sediments colonized by eelgrass (Zostera noltei) meadows. The 2D gel probes highlighted microstructures in the spatial distribution of dissolved iron and phosphorus, which are most likely associated with the occurrence of benthic fauna burrows and seagrass roots. PMID:24502458

  20. Fenofibrate raw materials: HPLC methods for assay and purity and an NMR method for purity.

    PubMed

    Lacroix, P M; Dawson, B A; Sears, R W; Black, D B; Cyr, T D; Ethier, J C

    1998-11-01

    HPLC methods for drug content and HPLC and NMR methods for related compounds in fenofibrate raw materials were developed. The HPLC methods resolved 11 known and six unknown impurities from the drug. The HPLC system was comprised of a Waters Symmetry ODS column (100 x 4.6 mm, 3.5 microm), a mobile phase consisting of acetonitrile water trifluoroacetic acid 700/300/l (v/v/v) at a flow rate of 1 ml min(-1). and a UV detector set at 280 nm. Minimum quantifiable amounts were about 0.1% for three of the compounds and less than 0.05% for the other eight. Individual impurities in 14 raw materials ranged from trace levels to 0.25%, and total impurities from 0.04 to 0.53% (w/w). Six unknown impurities were detected by HPLC, all at levels below 0.10%, assuming the same relative response as fenofibrate. An NMR method for related compounds was also developed and it was suitable for 12 known and several unknown impurities. It requires an NMR of 400 MHz, or greater, field strength. Individual impurities in the raw materials analyzed ranged from trace levels to 0.24%, and total impurities from trace levels to 0.59%. Several lots contained small amounts of unknown impurities at trace levels. Three lots, all from the same manufacturer, contained an unknown impurity, not detectable by HPLC, which was not present in the other raw materials. It was estimated to be present at a level greater than 0.2%. The results for related compounds by the two techniques were consistent. The main differences stem from the low sensitivity of the HPLC method for some of the related compounds at 280 nm, or from the higher limits of quantitation by the NMR method for several other impurities using the conditions specified. A fifteenth raw material was not homogeneous in its content of impurity VI, a synthetic intermediate and possible degradation product. The HPLC/MS results provided information on the peak purity (number of components) for minor HPLC peaks, as well as structural data such as the

  1. MTA index: a simple 2D-method for assessing atrophy of the medial temporal lobe using clinically available neuroimaging

    PubMed Central

    Menéndez-González, Manuel; López-Muñiz, Alfonso; Vega, José A.; Salas-Pacheco, José M.; Arias-Carrión, Oscar

    2014-01-01

    Background and purpose: Despite a strong correlation to severity of AD pathology, the measurement of medial temporal lobe atrophy (MTA) is not being widely used in daily clinical practice as a criterion in the diagnosis of prodromal and probable AD. This is mainly because the methods available to date are sophisticated and difficult to implement for routine use in most hospitals—volumetric methods—or lack objectivity—visual rating scales. In this pilot study we aim to describe a new, simple and objective method for measuring the rate of MTA in relation to the global atrophy using clinically available neuroimaging and describe the rationale behind this method. Description: This method consists of calculating a ratio with the area of 3 regions traced manually on one single coronal MRI slide at the level of the interpeduncular fossa: (1) the medial temporal lobe (MTL) region (A); (2) the parenchima within the medial temporal region, that includes the hippocampus and the parahippocampal gyrus—the fimbria taenia and plexus choroideus are excluded—(B); and (3) the body of the ipsilateral lateral ventricle (C). Therefrom we can compute the ratio “Medial Temporal Atrophy index” at both sides as follows: MTAi = (A − B)× 10/C. Conclusions: The MTAi is a simple 2D-method for measuring the relative extent of atrophy in the MTL in relation to the global brain atrophy. This method can be useful for a more accurate diagnosis of AD in routine clinical practice. Further studies are needed to assess the usefulness of MTAi in the diagnosis of early AD, in tracking the progression of AD and in the differential diagnosis of AD with other dementias. PMID:24715861

  2. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.

    PubMed

    Lewis, Ian A; Schommer, Seth C; Hodis, Brendan; Robb, Kate A; Tonelli, Marco; Westler, William M; Sussman, Michael R; Markley, John L

    2007-12-15

    One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained. PMID:17985927

  3. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.

    PubMed

    Lewis, Ian A; Schommer, Seth C; Hodis, Brendan; Robb, Kate A; Tonelli, Marco; Westler, William M; Sussman, Michael R; Markley, John L

    2007-12-15

    One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained.

  4. Developing a 2D vertical flow and sediment transport model for open channels using the Youngs-VOF method

    NASA Astrophysics Data System (ADS)

    Zhao, Dongmiao; Tang, Jun; Wu, Xiuguang; Lin, Changning; Liu, Lijun; Chen, Jian

    2016-05-01

    A 2D vertical (2DV) numerical model, without σ-coordinate transformation in the vertical direction, is developed for the simulation of fl ow and sediment transport in open channels. In the model, time-averaged Reynolds equations are closed by the k-ɛ nonlinear turbulence model. The modifi ed Youngs-VOF method is introduced to capture free surface dynamics, and the free surface slope is simulated using the ELVIRA method. Based on the power-law scheme, the k-ɛ model and the suspended-load transport model are solved numerically with an implicit scheme applied in the vertical plane and an explicit scheme applied in the horizontal plane. Bedload transport is modeled using the Euler-WENO scheme, and the grid-closing skill is adopted to deal with the moving channel bed boundary. Verifi cation of the model using laboratory data shows that the model is able to adequately simulate fl ow and sediment transport in open channels, and is a good starting point for the study of sediment transport dynamics in strong nonlinear fl ow scenarios.

  5. Configuration space method for calculating binding energies of exciton complexes in quasi-1D/2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bondarev, Igor

    A configuration space method, pioneered by Landau and Herring in studies of molecular binding and magnetism, is developed to obtain universal asymptotic relations for lowest energy exciton complexes (trion, biexciton) in confined semiconductor nanostructures such as nanowires and nanotubes, as well as coupled quantum wells. Trions are shown to be more stable (have greater binding energy) than biexcitons in strongly confined quasi-1D structures with small reduced electron-hole masses. Biexcitons are more stable in less confined quasi-1D structures with large reduced electron-hole masses. The theory predicts a crossover behavior, whereby trions become less stable than biexcitons as the transverse size of the quasi-1D nanostructure increases, which might be observed on semiconducting carbon nanotubes of increasing diameters. This method is also efficient in calculating binding energies for trion-type electron-hole complexes formed by indirect excitons in double coupled quantum wells, quasi-2D nanostructures that show new interesting electroabsorption/refraction phenomena. Supported by DOE-DE-SC0007117.

  6. Proton and deuterium NMR experiments in zero field. [Perdeuterated p-demethoxybenzene, perdeuterated malonic acid, diethyl terephthalate-d4, nonadecane-2,2'-D2, sodium propionate-D2

    SciTech Connect

    Millar, J.M.

    1986-02-01

    High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution /sup 2/H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs.

  7. PC2D simulation and optimization of the selective emitter solar cells fabricated by screen printing phosphoric paste method

    NASA Astrophysics Data System (ADS)

    Jia, Xiaojie; Ai, Bin; Deng, Youjun; Xu, Xinxiang; Peng, Hua; Shen, Hui

    2015-08-01

    On the basis of perfect PC2D simulation to the measured current density vs voltage (J-V) curve of the best selective emitter (SE) solar cell fabricated by the CSG Company using the screen printing phosphoric paste method, we systematically investigated the effect of the parameters of gridline, base, selective emitter, back surface field (BSF) layer and surface recombination rate on performance of the SE solar cell. Among these parameters, we identified that the base minority carrier lifetime, the front and back surface recombination rate and the ratio of the sheet-resistance of heavily and lightly doped region are the four largest efficiency-affecting factors. If all the parameters have ideal values, the SE solar cell fabricated on a p-type monocrystalline silicon wafer can even obtain the efficiency of 20.45%. In addition, the simulation also shows that fine gridline combining dense gridline and increasing bus bar number while keeping the lower area ratio can offer the other ways to improve the efficiency.

  8. The 2D Hyperlink/Geocaching hybrid as a New Method for Improving Communication and Educational Delivery in Environmental Science

    NASA Astrophysics Data System (ADS)

    Graham, J.; Byrne, J. M.

    2009-12-01

    Geocaching is a game of hiding and locating caches (treasures), usually with the aid of a GPS-enabled device, and then posting the locations online for others to discover. Its remarkable success as a cultural phenomenon - transcending the traditional boundaries of age, gender, race and culture, while seamlessly combining the elements of technology, mental challenge, travel, geography, orienteering and entertainment - has been well documented. One would expect, therefore, that something so accessible and so physically, mentally and technologically engaging could also have great potential as an educational tool; specifically for the teaching of environmental science in situ. The attempts to date, however, have been disappointing. It will be the purpose of this poster to demonstrate a new and effective approach to educational environmental science-based geocaching; one which treats discreet elements of the living landscape as caches (rather than obstacles), and which combines several commonly available technologies so as to create a rich, immersive experience for viewers of many ages and backgrounds. Specifically, our poster will demonstrate how traditional geocaching methods can be dramatically improved, for the purposes of education, by combining it with 2D hyperlinking technologies in such a way as to allow the viewer to access a variety of different online and/or offline media elements - documentaries, texts, websites, animations, and images, while immersed in the physical environment to which they relate. It will be shown that this site-specific approach to environmental education has considerable potential for improving the meaningful dialogue between environmental scientists and the general public.

  9. Review of Methods to Assign the NMR Peaks of Reductively Methylated Proteins

    PubMed Central

    Roberson, Kevin J.; Macnaughtan, Megan A.

    2014-01-01

    Reductive methylation of lysyl side-chain amines has been a successful tool in the advancement of high resolution structural biology. The utility of this method has continuously gained ground as a protein chemical modification; first, as a tool to aid protein crystallization and later, as a probe in protein nuclear magnetic resonance (NMR) spectroscopy. As an isotope-labeling strategy for NMR studies, reductive methylation has contributed to the study of protein-protein interactions and global conformational changes. While more detailed structural studies using this labeling strategy are possible, the hurdle of assigning the NMR peaks to the corresponding reductively methylated amine hinders its use. In this review, we discuss and compare strategies used to assign the NMR peaks of reductively methylated protein-amines. PMID:25175010

  10. Numerical study on spatially varying bottom friction coefficient of a 2D tidal model with adjoint method

    NASA Astrophysics Data System (ADS)

    Lu, Xianqing; Zhang, Jicai

    2006-10-01

    Based on the simulation of M2 tide in the Bohai Sea, the Yellow Sea and the East China Sea, TOPEX/Poseidon altimeter data are assimilated into a 2D tidal model to study the spatially varying bottom friction coefficient (BFC) by using the adjoint method. In this study, the BFC at some grid points are selected as the independent BFC, while the BFC at other grid points can be obtained through linear interpolation with the independent BFC. Two strategies for selecting the independent BFC are discussed. In the first strategy, one independent BFC is uniformly selected from each 1°×1° area. In the second one, the independent BFC are selected based on the spatial distribution of water depth. Twin and practical experiments are carried out to compare the two strategies. In the twin experiments, the adjoint method has a strong ability of inverting the prescribed BFC distributions combined with the spatially varying BFC. In the practical experiments, reasonable simulation results can be obtained by optimizing the spatially varying independent BFC. In both twin and practical experiments, the simulation results with the second strategy are better than those with the first one. The BFC distribution obtained from the practical experiment indicates that the BFC in shallow water are larger than those in deep water in the Bohai Sea, the North Yellow Sea, the South Yellow Sea and the East China Sea individually. However, the BFC in the East China Sea are larger than those in the other areas perhaps because of the large difference of water depth or bottom roughness. The sensitivity analysis indicates that the model results are more sensitive to the independent BFC near the land.

  11. Moving object tracking by using a novel real-time 2D local-polar-edge-detection method

    NASA Astrophysics Data System (ADS)

    Hu, Chialun John

    2011-04-01

    The LPED (local polar edge detection) method is a newly developed 2D image processing method that automatically utilizes the center-of-mass polar coordinate to represent, in a unique way by a 36-dimension analog vector, the boundary of each object embedded in a picture frame. This 36D vector is the object ID for the particular object it represents. This ID vector is independent of the position of the object and independent of the orientation of the object, but it is a characteristic property from object to object. The background noises are automatically filtered out if the background objects are much smaller and much more randomly distributed than the objects of interest. This concise ID vector will not only identify the object precisely in a large picture frame where multiple-shaped objects lie, it will also track the object automatically when the object moves and it will record the data of movement periodically. I.e., it can measure automatically the distance of movement, the angular change of object-orientation, and the new locations of the central of mass of the moving object between successive sampling time intervals. In other words, it can automatically predict the near future movement of the tracked object. The applications of this novel image processing technique, to name a few, may be (1) automatic satellite-tracking and targeting of ground moving vehicles, (2) robotic identification of surrounding environment by some shape selected scenic part in the environment (e.g., the cross-section of an underground tunnel) with self guidance for the robot to go along a desired path through the whole tunnel without hitting the tunnel wall. This paper describes the principle of LPED and some extensive experimental results, regarding the application (1) described above, by utilizing a real-time soft-ware program designed by the author.

  12. Diffusion NMR methods applied to xenon gas for materials study.

    PubMed

    Mair, R W; Rosen, M S; Wang, R; Cory, D G; Walsworth, R L

    2002-12-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. PMID:12807139

  13. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  14. NMR quantum computing: applying theoretical methods to designing enhanced systems.

    PubMed

    Mawhinney, Robert C; Schreckenbach, Georg

    2004-10-01

    Density functional theory results for chemical shifts and spin-spin coupling constants are presented for compounds currently used in NMR quantum computing experiments. Specific design criteria were examined and numerical guidelines were assessed. Using a field strength of 7.0 T, protons require a coupling constant of 4 Hz with a chemical shift separation of 0.3 ppm, whereas carbon needs a coupling constant of 25 Hz for a chemical shift difference of 10 ppm, based on the minimal coupling approximation. Using these guidelines, it was determined that 2,3-dibromothiophene is limited to only two qubits; the three qubit system bromotrifluoroethene could be expanded to five qubits and the three qubit system 2,3-dibromopropanoic acid could also be used as a six qubit system. An examination of substituent effects showed that judiciously choosing specific groups could increase the number of available qubits by removing rotational degeneracies in addition to introducing specific conformational preferences that could increase (or decrease) the magnitude of the couplings. The introduction of one site of unsaturation can lead to a marked improvement in spectroscopic properties, even increasing the number of active nuclei.

  15. Colloids in Flatland: a perspective on 2D phase-separated systems, characterisation methods, and lineactant design.

    PubMed

    Bernardini, C; Stoyanov, S D; Arnaudov, L N; Cohen Stuart, M A

    2013-03-01

    In 1861 Thomas Graham gave birth to a new field of science, today known as colloid science. Nowadays, the notion "colloid" is often used referring to systems consisting of two immiscible phases, one of which is finely dispersed into the other. Research on colloids deals mostly with sols (solids dispersed in a liquid), emulsions (liquids dispersed in liquid), and foams (gas dispersed in a liquid). Because the dispersed particles are small, there is a lot of interface per unit mass. Not surprisingly, therefore, the properties of the interface have often a decisive effect on the behaviour of colloids. Water-air interfaces have a special relevance in this field: many water-insoluble molecules can be spread on water and, given the right spreading conditions and enough available surface area, their spreading proceeds until a monolayer (a one-molecule thick layer) eventually remains. Several 2D phases have been identified for such monolayers, like "gas", "liquid expanded", "liquid condensed", and "solid". The central question of this review is whether these 2D phases can also exist as colloidal systems, and what stabilizes the dispersed state in such systems. We shall present several systems capable of yielding 2D phase separation, from those based on either natural or fluorinated amphiphiles, to polymer-based ones. We shall seek for analogies in 3D and we shall try to clarify if the lines between these 2D objects play a similar role as the interfaces between 3D colloidal systems. In particular, we shall consider the special role of molecules that tend to accumulate at the phase boundaries, that is, at the contact lines, which will therefore be denoted "line-actants" (molecules that adsorb at a 1D interface, separating two 2D colloidal entities), by analogy to the term "surfactant" (which indicates a molecule that adsorbs at a 2D interface separating two 3D colloidal entities).

  16. 63,65Cu NMR Method in a Local Field for Investigation of Copper Ore Concentrates

    NASA Astrophysics Data System (ADS)

    Gavrilenko, A. N.; Starykh, R. V.; Khabibullin, I. Kh.; Matukhin, V. L.

    2015-01-01

    To choose the most efficient method and ore beneficiation flow diagram, it is important to know physical and chemical properties of ore concentrates. The feasibility of application of the 63,65Cu nuclear magnetic resonance (NMR) method in a local field aimed at studying the properties of copper ore concentrates in the copper-iron-sulfur system is demonstrated. 63,65Cu NMR spectrum is measured in a local field for a copper concentrate sample and relaxation parameters (times T1 and T2) are obtained. The spectrum obtained was used to identify a mineral (chalcopyrite) contained in the concentrate. Based on the experimental data, comparative characteristics of natural chalcopyrite and beneficiated copper concentrate are given. The feasibility of application of the NMR method in a local field to explore mineral deposits is analyzed.

  17. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  18. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no

  19. Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method.

    PubMed

    Li, Juan; Guo, Li-Xin; Jiao, Yong-Chang; Li, Ke

    2011-01-17

    Finite-difference time-domain (FDTD) algorithm with a pulse wave excitation is used to investigate the wide-band composite scattering from a two-dimensional(2-D) infinitely long target with arbitrary cross section located above a one-dimensional(1-D) randomly rough surface. The FDTD calculation is performed with a pulse wave incidence, and the 2-D representative time-domain scattered field in the far zone is obtained directly by extrapolating the currently calculated data on the output boundary. Then the 2-D wide-band scattering result is acquired by transforming the representative time-domain field to the frequency domain with a Fourier transform. Taking the composite scattering of an infinitely long cylinder above rough surface as an example, the wide-band response in the far zone by FDTD with the pulsed excitation is computed and it shows a good agreement with the numerical result by FDTD with the sinusoidal illumination. Finally, the normalized radar cross section (NRCS) from a 2-D target above 1-D rough surface versus the incident frequency, and the representative scattered fields in the far zone versus the time are analyzed in detail.

  20. KPG Index versus OPG Measurements: A Comparison between 3D and 2D Methods in Predicting Treatment Duration and Difficulty Level for Patients with Impacted Maxillary Canines

    PubMed Central

    Visconti, Luca

    2014-01-01

    Aim. The aim of this study was to test the agreement between orthopantomography (OPG) based 2D measurements and the KPG index, a new index based on 3D Cone Beam Computed Tomography (CBCT) images, in predicting orthodontic treatment duration and difficulty level of impacted maxillary canines. Materials and Methods. OPG and CBCT images of 105 impacted canines were independently scored by three orthodontists at t0 and after 1 month (t1), using the KPG index and the following 2D methods: distance from cusp tip and occlusal plane, cusp tip position in relation to the lateral incisor, and canine inclination. Pearson's coefficients were used to evaluate the degree of agreement and the χ2 with Yates correction test was used to assess the independence between them. Results. Inter- and intrarater reliability were higher with KPG compared to 2D methods. Pearson's coefficients showed a statistically significant association between all the indexes, while the χ2 with Yates correction test resulted in a statistically significant rejection of independency only for one 2D index. Conclusions. 2D indexes for predicting impacted maxillary canines treatment duration and difficulty sometimes are discordant; a 3D index like the KPG index could be useful in solving these conflicts. PMID:25126566

  1. Quantum calculation of protein NMR chemical shifts based on the automated fragmentation method.

    PubMed

    Zhu, Tong; Zhang, John Z H; He, Xiao

    2015-01-01

    The performance of quantum mechanical methods on the calculation of protein NMR chemical shifts is reviewed based on the recently developed automatic fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach. By using the Poisson-Boltzmann (PB) model and first solvation water molecules, the influence of solvent effect is also discussed. Benefiting from the fragmentation algorithm, the AF-QM/MM approach is computationally efficient, linear-scaling with a low pre-factor, and thus can be applied to routinely calculate the ab initio NMR chemical shifts for proteins of any size. The results calculated using Density Functional Theory (DFT) show that when the solvent effect is included, this method can accurately reproduce the experimental ¹H NMR chemical shifts, while the ¹³C NMR chemical shifts are less affected by the solvent. However, although the inclusion of solvent effect shows significant improvement for ¹⁵N chemical shifts, the calculated values still have large deviations from the experimental observations. Our study further demonstrates that AF-QM/MM calculated results accurately reflect the dependence of ¹³C(α) NMR chemical shifts on the secondary structure of proteins, and the calculated ¹H chemical shift can be utilized to discriminate the native structure of proteins from decoys.

  2. Experimental and numerical investigation of DNAPL infiltration and spreading in a 2-D sandbox by means of light transmission method

    NASA Astrophysics Data System (ADS)

    Zheng, F.; Shi, X.; Wu, J.; Gao, Y. W.

    2013-12-01

    Chlorinated solvents such as trichloroethene (TCE) and tetrachloroethene (PCE) are widespread groundwater contaminants often referred to as dense non-aqueous phase liquids (DNAPLs). Accuracy description of the spreading behavior and configuration for subsurface DNAPL migration is important, especially favourable for design effective remediation strategies. In this study, a 2-D experiment was conducted to investigate the infiltration behavior and spatial distribution of PCE in saturated porous media. Accusand 20/30 mesh sand (Unimin, Le Sueur, MN) was used as the background medium with two 70/80 and 60/70 mesh lenses embedded to simulate heterogeneous conditions. Dyed PCE of 100 ml was released into the flow cell at a constant rate of 2ml/min using a Harvard Apparatus syringe pump with a 50 ml glass syringe for two times, and 5 ml/min water was continuously injected through the inlet at the left side of the sandbox, while kept the same effluent rate at right side to create hydrodynamic condition. A light transmission (LT) system was used to record the migration of PCE and determine the saturation distribution of PCE in the sandbox experiment with a thermoelectrically air-cooled charged-coupled device (CCD) camera. All images were processed using MATLAB to calculate thickness-averaged PCE saturation for each pixel. Mass balance was checked through comparing injected known mounts of PCE with that calculated from LT analysis. Results showed that LT method is effective to delineate PCE migration pathways and quantify the saturation distribution. The relative errors of total PCE volumes calculated by LT analysis at different times were within 15% of the injected PCE volumes. The simulation are conducted using the multiphase modeling software T2VOC, which calibrated by the LT analysis results of three recorded time steps to fit with the complete spatial-temporal distribution of the PCE saturation. Model verification was then performed using the other eight recorded time

  3. Comparative study of inversion methods of three-dimensional NMR and sensitivity to fluids

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Wang, Peng; Mao, Keyu

    2014-04-01

    Three-dimensional nuclear magnetic resonance (3D NMR) logging can simultaneously measure transverse relaxation time (T2), longitudinal relaxation time (T1), and diffusion coefficient (D). These parameters can be used to distinguish fluids in the porous reservoirs. For 3D NMR logging, the relaxation mechanism and mathematical model, Fredholm equation, are introduced, and the inversion methods including Singular Value Decomposition (SVD), Butler-Reeds-Dawson (BRD), and Global Inversion (GI) methods are studied in detail, respectively. During one simulation test, multi-echo CPMG sequence activation is designed firstly, echo trains of the ideal fluid models are synthesized, then an inversion algorithm is carried on these synthetic echo trains, and finally T2-T1-D map is built. Futhermore, SVD, BRD, and GI methods are respectively applied into a same fluid model, and the computing speed and inversion accuracy are compared and analyzed. When the optimal inversion method and matrix dimention are applied, the inversion results are in good aggreement with the supposed fluid model, which indicates that the inversion method of 3D NMR is applieable for fluid typing of oil and gas reservoirs. Additionally, the forward modeling and inversion tests are made in oil-water and gas-water models, respectively, the sensitivity to the fluids in different magnetic field gradients is also examined in detail. The effect of magnetic gradient on fluid typing in 3D NMR logging is stuied and the optimal manetic gradient is choosen.

  4. The use of 2D fingerprint methods to support the assessment of structural similarity in orphan drug legislation

    PubMed Central

    2014-01-01

    Background In the European Union, medicines are authorised for some rare disease only if they are judged to be dissimilar to authorised orphan drugs for that disease. This paper describes the use of 2D fingerprints to show the extent of the relationship between computed levels of structural similarity for pairs of molecules and expert judgments of the similarities of those pairs. The resulting relationship can be used to provide input to the assessment of new active compounds for which orphan drug authorisation is being sought. Results 143 experts provided judgments of the similarity or dissimilarity of 100 pairs of drug-like molecules from the DrugBank 3.0 database. The similarities of these pairs were also computed using BCI, Daylight, ECFC4, ECFP4, MDL and Unity 2D fingerprints. Logistic regression analyses demonstrated a strong relationship between the human and computed similarity assessments, with the resulting regression models having significant predictive power in experiments using data from submissions of orphan drug medicines to the European Medicines Agency. The BCI fingerprints performed best overall on the DrugBank dataset while the BCI, Daylight, ECFP4 and Unity fingerprints performed comparably on the European Medicines Agency dataset. Conclusions Measures of structural similarity based on 2D fingerprints can provide a useful source of information for the assessment of orphan drug status by regulatory authorities. PMID:24485002

  5. An NMR method towards the routine chiral determination of natural products.

    PubMed

    Jaki, Birgit; Franzblau, Scott; Pauli, Guido F

    2004-01-01

    State-of-the-art structure elucidation and dereplication of natural products is incomplete without the determination of enantiomeric purity, especially when compounds are to be biologically evaluated. An NMR procedure is presented in order to distinguish and determine enantiomers in natural product samples. The method is also of value in the structure elucidation process by providing information, which is otherwise of a non-routine nature. Using enantiomeric 1-acetoxychavicol acetates and carvones as model compounds, this study presents a chiral NMR procedure that allows distinction and determination of chiral antipodes of natural products in a routine set-up.

  6. Method development in quantitative NMR towards metrologically traceable organic certified reference materials used as (31)P qNMR standards.

    PubMed

    Weber, Michael; Hellriegel, Christine; Rueck, Alexander; Wuethrich, Juerg; Jenks, Peter; Obkircher, Markus

    2015-04-01

    Quantitative nuclear magnetic resonance (qNMR) spectroscopy is employed by an increasing number of analytical and industrial laboratories for the assignment of content and quantitative determination of impurities. Within the last few years, it was demonstrated that (1)H qNMR can be performed with high accuracy leading to measurement uncertainties below 1 % relative. It was even demonstrated that the combination of (1)H qNMR with metrological weighing can lead to measurement uncertainties below 0.1 % when highly pure substances are used. Although qNMR reference standards are already available as certified reference materials (CRM) providing traceability on the basis of (1)H qNMR experiments, there is an increasing demand for purity assays on phosphorylated organic compounds and metabolites requiring CRM for quantification by (31)P qNMR. Unfortunately, the number of available primary phosphorus standards is limited to a few inorganic CRM which only can be used for the analysis of water-soluble analytes but fail when organic solvents must be employed. This paper presents the concept of value assignment by (31)P qNMR measurements for the development of CRM and describes different approaches to establish traceability to primary Standard Reference Material from the National Institute of Standards and Technology (NIST SRM). Phosphonoacetic acid is analyzed as a water-soluble CRM candidate, whereas triphenyl phosphate is a good candidate for the use as qNMR reference material in organic solvents. These substances contain both nuclei, (1)H and (31)P, and the concept is to show that it is possible to indirectly quantify a potential phosphorus standard via its protons using (1)H qNMR. The same standard with its assigned purity can then be used for the quantification of an analyte via its phosphorus using (31)P qNMR. For the validation of the concept, triphenyl phosphate and phosphonoacetic acid have been used as (31)P qNMR standards to determine the purity of the analyte

  7. Method development in quantitative NMR towards metrologically traceable organic certified reference materials used as (31)P qNMR standards.

    PubMed

    Weber, Michael; Hellriegel, Christine; Rueck, Alexander; Wuethrich, Juerg; Jenks, Peter; Obkircher, Markus

    2015-04-01

    Quantitative nuclear magnetic resonance (qNMR) spectroscopy is employed by an increasing number of analytical and industrial laboratories for the assignment of content and quantitative determination of impurities. Within the last few years, it was demonstrated that (1)H qNMR can be performed with high accuracy leading to measurement uncertainties below 1 % relative. It was even demonstrated that the combination of (1)H qNMR with metrological weighing can lead to measurement uncertainties below 0.1 % when highly pure substances are used. Although qNMR reference standards are already available as certified reference materials (CRM) providing traceability on the basis of (1)H qNMR experiments, there is an increasing demand for purity assays on phosphorylated organic compounds and metabolites requiring CRM for quantification by (31)P qNMR. Unfortunately, the number of available primary phosphorus standards is limited to a few inorganic CRM which only can be used for the analysis of water-soluble analytes but fail when organic solvents must be employed. This paper presents the concept of value assignment by (31)P qNMR measurements for the development of CRM and describes different approaches to establish traceability to primary Standard Reference Material from the National Institute of Standards and Technology (NIST SRM). Phosphonoacetic acid is analyzed as a water-soluble CRM candidate, whereas triphenyl phosphate is a good candidate for the use as qNMR reference material in organic solvents. These substances contain both nuclei, (1)H and (31)P, and the concept is to show that it is possible to indirectly quantify a potential phosphorus standard via its protons using (1)H qNMR. The same standard with its assigned purity can then be used for the quantification of an analyte via its phosphorus using (31)P qNMR. For the validation of the concept, triphenyl phosphate and phosphonoacetic acid have been used as (31)P qNMR standards to determine the purity of the analyte

  8. Fast acquisition of multidimensional NMR spectra of solids and mesophases using alternative sampling methods.

    PubMed

    Lesot, Philippe; Kazimierczuk, Krzysztof; Trébosc, Julien; Amoureux, Jean-Paul; Lafon, Olivier

    2015-11-01

    Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years.

  9. An efficient spectra processing method for metabolite identification from 1H-NMR metabolomics data.

    PubMed

    Jacob, Daniel; Deborde, Catherine; Moing, Annick

    2013-06-01

    The spectra processing step is crucial in metabolomics approaches, especially for proton NMR metabolomics profiling. During this step, noise reduction, baseline correction, peak alignment and reduction of the 1D (1)H-NMR spectral data are required in order to allow biological information to be highlighted through further statistical analyses. Above all, data reduction (binning or bucketing) strongly impacts subsequent statistical data analysis and potential biomarker discovery. Here, we propose an efficient spectra processing method which also provides helpful support for compound identification using a new data reduction algorithm that produces relevant variables, called buckets. These buckets are the result of the extraction of all relevant peaks contained in the complex mixture spectra, rid of any non-significant signal. Taking advantage of the concentration variability of each compound in a series of samples and based on significant correlations that link these buckets together into clusters, the method further proposes automatic assignment of metabolites by matching these clusters with the spectra of reference compounds from the Human Metabolome Database or a home-made database. This new method is applied to a set of simulated (1)H-NMR spectra to determine the effect of some processing parameters and, as a proof of concept, to a tomato (1)H-NMR dataset to test its ability to recover the fruit extract compositions. The implementation code for both clustering and matching steps is available upon request to the corresponding author. PMID:23525538

  10. Measurement and Imaging of Planar Electromagnetic Phantoms Based on NMR Imaging Methods

    NASA Astrophysics Data System (ADS)

    Frollo, I.; Andris, P.; Přibil, J.; Vojtíšek, L.; Dermek, T.; Valkovič, L.

    2010-01-01

    Planar electromagnetic phantom design for measurement and imaging using NMR has been performed. Electromagnetic phantom computation and testing on a NMR 0.178 Tesla Esaote Opera imager were accomplished. The classical geometrical and chemical phantoms are generally used for testing of NMR imaging systems. They are simple cylindrical or rectangular objects with different dimensions and shapes with holes filled with specially prepared water solutions. In our experiments a homogeneous phantom (reference medium) - a container filled with water - was used. The resultant image represents the magnetic field distribution in the homogeneous phantom. An image acquired by this method is actually a projection of the sample properties onto the homogeneous phantom. The goal of the paper is to map and image the magnetic field deformation using NMR imaging methods. We are using a double slender rectangular vessel with constant thickness filled with specially prepared water solution in our experiments. For detection a carefully tailored gradient-echo imaging method, susceptible to magnetic field homogeneity, was used.

  11. High-accuracy 2D digital image correlation measurements using low-cost imaging lenses: implementation of a generalized compensation method

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Yu, Liping; Wu, Dafang

    2014-02-01

    The ideal pinhole imaging model commonly assumed for an ordinary two-dimensional digital image correlation (2D-DIC) system is neither perfect nor stable because of the existence of small out-of-plane motion of the test sample surface that occurred after loading, small out-of-plane motion of the sensor target due to temperature variation of a camera and unavoidable geometric distortion of an imaging lens. In certain cases, these disadvantages can lead to significant errors in the measured displacements and strains. Although a high-quality bilateral telecentric lens has been strongly recommended to be used in the 2D-DIC system as an essential optical component to achieve high-accuracy measurement, it is not generally applicable due to its fixed field of view, limited depth of focus and high cost. To minimize the errors associated with the imperfectness and instability of a common 2D-DIC system using a low-cost imaging lens, a generalized compensation method using a non-deformable reference sample is proposed in this work. With the proposed method, the displacement of the reference sample rigidly attached behind the test sample is first measured using 2D-DIC, and then it is fitted using a parametric model. The fitted parametric model is then used to correct the displacements of the deformed sample to remove the influences of these unfavorable factors. The validity of the proposed compensation method is first verified using out-of-plane translation, out-of-plane rotation, in-plane translation tests and their combinations. Uniaxial tensile tests of an aluminum specimen were also performed to quantitatively examine the strain accuracy of the proposed compensation method. Experiments show that the proposed compensation method is an easy-to-implement yet effective technique for achieving high-accuracy deformation measurement using an ordinary 2D-DIC system.

  12. Simple NMR methods for evaluating higher order structures of monoclonal antibody therapeutics with quinary structure.

    PubMed

    Chen, Kang; Long, Dianna S; Lute, Scott C; Levy, Michaella J; Brorson, Kurt A; Keire, David A

    2016-09-01

    Monoclonal antibody (mAb) drugs constitute the largest class of protein therapeutics currently on the market. Correctly folded protein higher order structure (HOS), including quinary structure, is crucial for mAb drug quality. The quinary structure is defined as the association of quaternary structures (e.g., oligomerized mAb). Here, several commonly available analytical methods, i.e., size-exclusion-chromatography (SEC) FPLC, multi-angle light scattering (MALS), circular dichroism (CD), NMR and multivariate analysis, were combined and modified to yield a complete profile of HOS and comparable metrics. Rituximab and infliximab were chosen for method evaluation because both IgG1 molecules are known to be homologous in sequence, superimposable in Fab crystal structure and identical in Fc structure. However, herein the two are identified to be significantly different in quinary structure in addition to minor secondary structure differences. All data collectively showed rituximab was mostly monomeric while infliximab was in mono-oligomer equilibrium driven by its Fab fragment. The quinary structure differences were qualitatively inferred from the less used but more reproducible dilution-injection-SEC-FPLC curve method. Quantitative principal component analysis (PCA) was performed on NMR spectra of either the intact or the in-situ enzymatic-digested mAb samples. The cleavage reactions happened directly in NMR tubes without further separation, which greatly enhanced NMR spectra quality and resulted in larger inter- and intra-lot variations based on PCA. The new in-situ enzymatic digestion method holds potential in identifying structural differences on larger therapeutic molecules using NMR.

  13. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes

    NASA Astrophysics Data System (ADS)

    Anastasiou, K.; Chan, C. T.

    1997-06-01

    A 2D, depth-integrated, free surface flow solver for the shallow water equations is developed and tested. The solver is implemented on unstructured triangular meshes and the solution methodology is based upon a Godunov-type second-order upwind finite volume formulation, whereby the inviscid fluxes of the system of equations are obtained using Roes flux function. The eigensystem of the 2D shallow water equations is derived and is used for the construction of Roes matrix on an unstructured mesh. The viscous terms of the shallow water equations are computed using a finite volume formulation which is second-order-accurate. Verification of the solution technique for the inviscid form of the governing equations as well as for the full system of equations is carried out by comparing the model output with documented published results and very good agreement is obtained. A numerical experiment is also conducted in order to evaluate the performance of the solution technique as applied to linear convection problems. The presented results show that the solution technique is robust.

  14. Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-11-01

    The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial

  15. Imaging 2D structures by the CSAMT method: application to the Pantano di S. Gregorio Magno faulted basin (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Troiano, Antonio; Di Giuseppe, Maria Giulia; Petrillo, Zaccaria; Patella, Domenico

    2009-06-01

    A controlled source audiofrequency magnetotelluric (CSAMT) survey has been undertaken in the Pantano di San Gregorio Magno faulted basin, an earthquake prone area of Southern Apennines in Italy. A dataset from 11 soundings, distributed along a nearly N-S 780 m long profile, was acquired in the basin's easternmost area, where the fewest data are available as to the faulting shallow features. A preliminary skew analysis allowed a prevailing 2D nature of the dataset to be ascertained. Then, using a single-site multi-frequency approach, Dantzig's simplex algorithm was introduced for the first time to estimate the CSAMT decomposition parameters. The simplex algorithm, freely available online, proved to be fast and efficient. By this approach, the TM and TE mode field diagrams were obtained and a N35°W ± 10° 2D strike mean direction was estimated along the profile, in substantial agreement with the fault traces within the basin. A 2D inversion of the apparent resistivity and phase curves at seven almost noise-free sites distributed along the central portion of the profile was finally elaborated, reinforced by a sensitivity analysis, which allowed the best resolved portion of the model to be imaged from the first few meters of depth down to a mean depth of 300 m b.g.l. From the inverted section, the following features have been outlined: (i) a cover layer with resistivity in the range 3-30 Ω m ascribed to the Quaternary lacustrine clayey deposits filling the basin, down to an average depth of about 35 m b.g.l., underlain by a structure with resistivity over 50 Ω m up to about 600 Ω m, ascribed to the Mesozoic carbonate bedrock; (ii) a system of two normal faults within the carbonate basement, extending down to the maximum best resolved depth of the order of 300 m b.g.l.; (iii) two wedge-shaped domains separating the opposite blocks of the faults with resistivity ranging between 30 Ω m and 50 Ω m and horizontal extent of the order of some tens of metres, likely

  16. In Vivo potassium-39 NMR spectra by the burg maximum-entropy method

    NASA Astrophysics Data System (ADS)

    Uchiyama, Takanori; Minamitani, Haruyuki

    The Burg maximum-entropy method was applied to estimate 39K NMR spectra of mung bean root tips. The maximum-entropy spectra have as good a linearity between peak areas and potassium concentrations as those obtained by fast Fourier transform and give a better estimation of intracellular potassium concentrations. Therefore potassium uptake and loss processes of mung bean root tips are shown to be more clearly traced by the maximum-entropy method.

  17. A unified analysis of exact methods of inverting the 2-D exponential radon transform, with implications for noise control in SPECT

    SciTech Connect

    Metz, C.E.; Pan, X.

    1995-12-01

    Exact methods of inverting the two-dimensional (2-D) exponential Radon transform have been proposed by Bellini et al. and by Inouye et al., both of whom worked in the spatial-frequency domain to estimate the 2-D Fourier transform of the unattenuated sinogram; by Hawkins et al., who worked with circularly harmonic Bessel transforms; and by Tretiak and Metz, who followed filtering of appropriately-modified projections by exponentially-weighted backprojection. With perfect sampling, all four of these methods are exact in the absence of projection-data noise, but empirical studies have shown that they propagate noise differently, and no underlying theoretical relationship among the methods has been evident. In this paper, an analysis of the 2-D Fourier transform of the modified sinogram reveals that all previously-proposed linear methods can be interpreted as special cases of a broad class of methods, and that each method in the class can be implemented, in principle, by any one of four distinct techniques. Moreover, the analysis suggests a new member of the class that is predicted to have noise properties better than those of previously proposed members.

  18. Automated analysis of protein NMR assignments using methods from artificial intelligence.

    PubMed

    Zimmerman, D E; Kulikowski, C A; Huang, Y; Feng, W; Tashiro, M; Shimotakahara, S; Chien, C; Powers, R; Montelione, G T

    1997-06-20

    An expert system for determining resonance assignments from NMR spectra of proteins is described. Given the amino acid sequence, a two-dimensional 15N-1H heteronuclear correlation spectrum and seven to eight three-dimensional triple-resonance NMR spectra for seven proteins, AUTOASSIGN obtained an average of 98% of sequence-specific spin-system assignments with an error rate of less than 0.5%. Execution times on a Sparc 10 workstation varied from 16 seconds for smaller proteins with simple spectra to one to nine minutes for medium size proteins exhibiting numerous extra spin systems attributed to conformational isomerization. AUTOASSIGN combines symbolic constraint satisfaction methods with a domain-specific knowledge base to exploit the logical structure of the sequential assignment problem, the specific features of the various NMR experiments, and the expected chemical shift frequencies of different amino acids. The current implementation specializes in the analysis of data derived from the most sensitive of the currently available triple-resonance experiments. Potential extensions of the system for analysis of additional types of protein NMR data are also discussed.

  19. ABACUS, a direct method for protein NMR structure computation via assembly of fragments.

    PubMed

    Grishaev, A; Steren, C A; Wu, B; Pineda-Lucena, A; Arrowsmith, C; Llinás, M

    2005-10-01

    The ABACUS algorithm obtains the protein NMR structure from unassigned NOESY distance restraints. ABACUS works as an integrated approach that uses the complete set of available NMR experimental information in parallel and yields spin system typing, NOE spin pair identities, sequence specific resonance assignments, and protein structure, all at once. The protocol starts from unassigned molecular fragments (including single amino acid spin systems) derived from triple-resonance (1)H/(13)C/(15)N NMR experiments. Identifications of connected spin systems and NOEs precede the full sequence specific resonance assignments. The latter are obtained iteratively via Monte Carlo-Metropolis and/or probabilistic sequence selections, molecular dynamics structure computation and BACUS filtering (A. Grishaev and M. Llinás, J Biomol NMR 2004;28:1-10). ABACUS starts from scratch, without the requirement of an initial approximate structure, and improves iteratively the NOE identities in a self-consistent fashion. The procedure was run as a blind test on data recorded on mth1743, a 70-amino acid genomic protein from M. thermoautotrophicum. It converges to a structure in ca. 15 cycles of computation on a 3-GHz processor PC. The calculated structures are very similar to the ones obtained via conventional methods (1.22 A backbone RMSD). The success of ABACUS on mth1743 further validates BACUS as a NOESY identification protocol.

  20. A Method for Solution NMR Structural Studies of Large Integral Membrane Proteins: Reverse Micelle Encapsulation

    PubMed Central

    Kielec, Joseph M.; Valentine, Kathleen G.; Wand, A. Joshua

    2009-01-01

    The structural study of membrane proteins perhaps represents one of the greatest challenges of the post-genomic era. While membrane proteins comprise over 50% of current and potential drug targets, their structural characterization lags far behind that of soluble proteins. Nuclear magnetic resonance (NMR) offers great potential not only with respect to structural characterization of integral membrane proteins but may also provide the ability to study the details of small ligand interactions. However, the size limitations of solution NMR have restricted comprehensive structural characterization of membrane protein NMR structures to the relatively small β-barrel proteins or helical proteins of relatively simple topology. In an effort to escape the barriers presented by slow molecular reorientation of large integral membrane proteins solubilized by detergent micelles in water, we have adapted the reverse micelle encapsulation strategy originally developed for the study of large soluble proteins by solution NMR methods. Here we review a novel approach to the solubilization of large integral membrane proteins in reverse micelle surfactants dissolved in low viscosity alkane solvents. The procedure is illustrated with a 54 kDa construct of the homotetrameric KcsA potassium channel. PMID:19665988

  1. The generalized Phillips-Twomey method for NMR relaxation time inversion

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Xiao, Lizhi; Zhang, Yi; Xie, Qingming

    2016-10-01

    The inversion of NMR relaxation time involves the Fredholm integral equation of the first kind. Due to its ill-posedness, numerical solutions to this type of equations are often found much less accurate and bear little resemblance to the true solution. There has been a strong interest in finding a well-posed method for this ill-posed problem since 1950s. In this paper, we prove the existence, the uniqueness, the stability and the convergence of the generalized Phillips-Twomey regularization method for solving this type of equations. Numerical simulations and core analyses arising from NMR transverse relaxation time inversion are conducted to show the effectiveness of the generalized Phillips-Twomey method. Both the simulation results and the core analyses agree well with the model and the realities.

  2. Development of 2D band-target entropy minimization and application to the deconvolution of multicomponent 2D nuclear magnetic resonance spectra.

    PubMed

    Guo, Liangfeng; Wiesmath, Anette; Sprenger, Peter; Garland, Marc

    2005-03-15

    Spectral reconstruction from multicomponent spectroscopic data is the frequent primary goal in chemical system identification and exploratory chemometric studies. Various methods and techniques have been reported in the literature. However, few algorithms/methods have been devised for spectral recovery without the use of any a priori information. In the present studies, a higher dimensional entropy minimization method based on the BTEM algorithm (Widjaja, E.; Li, C.; Garland, M. Organometallics 2002, 21, 1991-1997.) and related techniques were extended to large-scale arrays, namely, 2D NMR spectroscopy. The performance of this novel method had been successfully verified on various real experimental mixture spectra from a series of randomized 2D NMR mixtures (COSY NMR and HSQC NMR). With the new algorithm and raw multicomponent NMR alone, it was possible to reconstruct the pure spectroscopic patterns and calculate the relative concentration of each species without recourse to any libraries or any other a priori information. The potential advantages of this novel algorithm and its implications for general chemical system identification of unknown mixtures are discussed. PMID:15762569

  3. Comparison of two label-free global quantitation methods, APEX and 2D gel electrophoresis, applied to the Shigella dysenteriae proteome

    PubMed Central

    2009-01-01

    The in vitro stationary phase proteome of the human pathogen Shigella dysenteriae serotype 1 (SD1) was quantitatively analyzed in Coomassie Blue G250 (CBB)-stained 2D gels. More than four hundred and fifty proteins, of which 271 were associated with distinct gel spots, were identified. In parallel, we employed 2D-LC-MS/MS followed by the label-free computationally modified spectral counting method APEX for absolute protein expression measurements. Of the 4502 genome-predicted SD1 proteins, 1148 proteins were identified with a false positive discovery rate of 5% and quantitated using 2D-LC-MS/MS and APEX. The dynamic range of the APEX method was approximately one order of magnitude higher than that of CBB-stained spot intensity quantitation. A squared Pearson correlation analysis revealed a reasonably good correlation (R2 = 0.67) for protein quantities surveyed by both methods. The correlation was decreased for protein subsets with specific physicochemical properties, such as low Mr values and high hydropathy scores. Stoichiometric ratios of subunits of protein complexes characterized in E. coli were compared with APEX quantitative ratios of orthologous SD1 protein complexes. A high correlation was observed for subunits of soluble cellular protein complexes in several cases, demonstrating versatile applications of the APEX method in quantitative proteomics. PMID:19563668

  4. A new approach to NMR chemical shift additivity parameters using simultaneous linear equation method.

    PubMed

    Shahab, Yosif A; Khalil, Rabah A

    2006-10-01

    A new approach to NMR chemical shift additivity parameters using simultaneous linear equation method has been introduced. Three general nitrogen-15 NMR chemical shift additivity parameters with physical significance for aliphatic amines in methanol and cyclohexane and their hydrochlorides in methanol have been derived. A characteristic feature of these additivity parameters is the individual equation can be applied to both open-chain and rigid systems. The factors that influence the (15)N chemical shift of these substances have been determined. A new method for evaluating conformational equilibria at nitrogen in these compounds using the derived additivity parameters has been developed. Conformational analyses of these substances have been worked out. In general, the results indicate that there are four factors affecting the (15)N chemical shift of aliphatic amines; paramagnetic term (p-character), lone pair-proton interactions, proton-proton interactions, symmetry of alkyl substituents and molecular association.

  5. NMR methods for studying the structure and dynamics of oncogenic and antihistaminic peptides in biomembranes.

    PubMed

    Sizun, Christina; Aussenac, Fabien; Grelard, Axelle; Dufourc, Erick J

    2004-02-01

    We present several applications of both wide-line and magic angle spinning (MAS) solid-state NMR of bicelles in which are embedded fragments of a tyrosine kinase receptor or enkephalins. The magnetically orientable bicelle membranes are shown to be of particular interest for studying the functional properties of lipids and proteins in a state that is very close to their natural environment. Quadrupolar, dipolar and chemical shielding interactions can be used to determine minute alterations of internal membrane dynamics and the orientation of peptides with respect to the membrane plane. MAS of bicelles can in turn lead to high-resolution proton spectra of hydrated membranes. Using deuterium-proton contrast methods one can then obtain pseudo-high-resolution proton spectra of peptides or proteins embedded in deuterated membranes and determine their atomic 3D structure using quasi-conventional liquid-state NMR methods. PMID:14745798

  6. Fabrication method and microstructural characteristics of coal-tar-pitch-based 2D carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Esmaeeli, Mohammad; Khosravi, Hamed; Mirhabibi, Alireza

    2015-02-01

    The lignin-cellulosic texture of wood was used to produce two-dimensional (2D) carbon/carbon (C/C) composites using coal tar pitch. Ash content tests were conducted to select two samples among the different kinds of woods present in Iran, including walnut, white poplar, cherry, willow, buttonwood, apricots, berry, and blue wood. Walnut and white poplar with ash contents of 1.994wt% and 0.351wt%, respectively, were selected. The behavior of these woods during pyrolysis was investigated by differential thermal analysis (DTA) and thermo gravimetric (TG) analysis. The bulk density and open porosity were measured after carbonization and densification. The microstructural characteristics of samples were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy. The results indicate that the density of both the walnut and white poplar is increased, and the open porosity is decreased with the increasing number of carbonization cycles. The XRD patterns of the wood charcoal change gradually with increasing pyrolysis temperature, possibly as a result of the ultra-structural changes in the charcoal or the presence of carbonized coal tar pitch in the composite's body.

  7. Pure & crystallized 2D Boron Nitride sheets synthesized via a novel process coupling both PDCs and SPS methods

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Linas, Sébastien; Journet, Catherine; Steyer, Philippe; Garnier, Vincent; Bonnefont, Guillaume; Brioude, Arnaud; Toury, Bérangère

    2016-02-01

    Within the context of emergent researches linked to graphene, it is well known that h-BN nanosheets (BNNSs), also referred as 2D BN, are considered as the best candidate for replacing SiO2 as dielectric support or capping layers for graphene. As a consequence, the development of a novel alternative source for highly crystallized h-BN crystals, suitable for a further exfoliation, is a prime scientific issue. This paper proposes a promising approach to synthesize pure and well-crystallized h-BN flakes, which can be easily exfoliated into BNNSs. This new accessible production process represents a relevant alternative source of supply in response to the increasing need of high quality BNNSs. The synthesis strategy to prepare pure h-BN is based on a unique combination of the Polymer Derived Ceramics (PDCs) route with the Spark Plasma Sintering (SPS) process. Through a multi-scale chemical and structural investigation, it is clearly shown that obtained flakes are large (up to 30 μm), defect-free and well crystallized, which are key-characteristics for a subsequent exfoliation into relevant BNNSs.

  8. Users manual for AUTOMESH-2D: A program of automatic mesh generation for two-dimensional scattering analysis by the finite element method

    NASA Technical Reports Server (NTRS)

    Hua, Chongyu; Volakis, John L.

    1990-01-01

    AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.

  9. A new NMR method for directly monitoring and quantifying the dissolution kinetics of starch in DMSO.

    PubMed

    Dona, Anthony; Yuen, Chun-Wai Wayne; Peate, Jonathan; Gilbert, Robert G; Castignolles, Patrice; Gaborieau, Marianne

    2007-12-10

    The kinetics of dissolution of starch is needed for (i) understanding digestive processes; (ii) providing data that could correlate with higher levels of starch structure; (iii) improving techniques for starch characterization in solution. A novel method is presented here to directly monitor these dissolution kinetics by time-resolved (1)H solution-state nuclear magnetic resonance (NMR); studies were carried out in deuterated dimethyl sulfoxide (DMSO-d(6)). By assuming pseudo-first-order kinetics with respect to starch concentration, the data for various starch samples yield values of the apparent rate coefficients for the rate of appearance of completely dissolved anhydroglucose units, results which have not been obtained hitherto. The presence of a limited amount of water in DMSO had a drastic effect on dissolution kinetics (slowing it down at high temperatures), indicating multiple pathways for the dissolution mechanism. Dynamic light scattering (DLS) appears to be more limited than the NMR method to monitor the kinetics of dissolution. The newly developed NMR method can be extended to other solvents and polysaccharides. PMID:17892866

  10. A new method of evaluating tight gas sands pore structure from nuclear magnetic resonance (NMR) logs

    NASA Astrophysics Data System (ADS)

    Xiao, Liang; Mao, Zhi-qiang; Xie, Xiu-hong

    2016-04-01

    Tight gas sands always display such characteristics of ultra-low porosity, permeability, high irreducible water, low resistivity contrast, complicated pore structure and strong heterogeneity, these make that the conventional methods are invalid. Many effective gas bearing formations are considered as dry zones or water saturated layers, and cannot be identified and exploited. To improve tight gas sands evaluation, the best method is quantitative characterizing rock pore structure. The mercury injection capillary pressure (MICP) curves are advantageous in predicting formation pore structure. However, the MICP experimental measurements are limited due to the environment and economy factors, this leads formation pore structure cannot be consecutively evaluated. Nuclear magnetic resonance (NMR) logs are considered to be promising in evaluating rock pore structure. Generally, to consecutively quantitatively evaluate tight gas sands pore structure, the best method is constructing pseudo Pc curves from NMR logs. In this paper, based on the analysis of lab experimental results for 20 core samples, which were drilled from tight gas sandstone reservoirs of Sichuan basin, and simultaneously applied for lab MICP and NMR measurements, the relationships of piecewise power function between nuclear magnetic resonance (NMR) transverse relaxation T2 time and pore-throat radius Rc are established. A novel method, which is used to transform NMR reverse cumulative curve as pseudo capillary pressure (Pc) curve is proposed, and the corresponding model is established based on formation classification. By using this model, formation pseudo Pc curves can be consecutively synthesized. The pore throat radius distribution, and pore structure evaluation parameters, such as the average pore throat radius (Rm), the threshold pressure (Pd), the maximum pore throat radius (Rmax) and so on, can also be precisely extracted. After this method is extended into field applications, several tight gas

  11. A finite analytic method for solving the 2-D time-dependent advection diffusion equation with time-invariant coefficients

    NASA Astrophysics Data System (ADS)

    Lowry, Thomas; Li, Shu-Guang

    2005-02-01

    Difficulty in solving the transient advection-diffusion equation (ADE) stems from the relationship between the advection derivatives and the time derivative. For a solution method to be viable, it must account for this relationship by being accurate in both space and time. This research presents a unique method for solving the time-dependent ADE that does not discretize the derivative terms but rather solves the equation analytically in the space-time domain. The method is computationally efficient and numerically accurate and addresses the common limitations of numerical dispersion and spurious oscillations that can be prevalent in other solution methods. The method is based on the improved finite analytic (IFA) solution method [Lowry TS, Li S-G. A characteristic based finite analytic method for solving the two-dimensional steady-state advection-diffusion equation. Water Resour Res 38 (7), 10.1029/2001WR000518] in space coupled with a Laplace transformation in time. In this way, the method has no Courant condition and maintains accuracy in space and time, performing well even at high Peclet numbers. The method is compared to a hybrid method of characteristics, a random walk particle tracking method, and an Eulerian-Lagrangian Localized Adjoint Method using various degrees of flow-field heterogeneity across multiple Peclet numbers. Results show the IFALT method to be computationally more efficient while producing similar or better accuracy than the other methods.

  12. SEMICONDUCTOR DEVICES: Simulation of carrier transport in heterostructures using the 2D self-consistent full-band ensemble Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Kangliang, Wei; Xiaoyan, Liu; Gang, Du; Ruqi, Han

    2010-08-01

    We demonstrate a two-dimensional (2D) full-band ensemble Monte-Carlo simulator for heterostructures, which deals with carrier transport in two different semiconductor materials simultaneously as well as at the boundary by solving self-consistently the 2D Poisson and Boltzmann transport equations (BTE). The infrastructure of this simulator, including the energy bands obtained from the empirical pseudo potential method, various scattering mechanics employed, and the appropriate treatment of the carrier transport at the boundary between two different semiconductor materials, is also described. As verification and calibration, we have performed a simulation on two types of silicon-germanium (Si-Ge) heterojunctions with different doping profiles—the p-p homogeneous type and the n-p inhomogeneous type. The current-voltage characteristics are simulated, and the distributions of potential and carrier density are also plotted, which show the validity of our simulator.

  13. A novel alternative method for 3D visualisation in Parasitology: the construction of a 3D model of a parasite from 2D illustrations.

    PubMed

    Teo, B G; Sarinder, K K S; Lim, L H S

    2010-08-01

    Three-dimensional (3D) models of the marginal hooks, dorsal and ventral anchors, bars and haptoral reservoirs of a parasite, Sundatrema langkawiense Lim & Gibson, 2009 (Monogenea) were developed using the polygonal modelling method in Autodesk 3ds Max (Version 9) based on two-dimensional (2D) illustrations. Maxscripts were written to rotate the modelled 3D structures. Appropriately orientated 3D haptoral hard-parts were then selected and positioned within the transparent 3D outline of the haptor and grouped together to form a complete 3D haptoral entity. This technique is an inexpensive tool for constructing 3D models from 2D illustrations for 3D visualisation of the spatial relationships between the different structural parts within organisms. PMID:20962723

  14. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR.

    PubMed

    Mobli, Mehdi; Hoch, Jeffrey C

    2014-11-01

    Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records using the DFT were already well understood, however. Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of non-Fourier methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. The first part of this review discusses the many approaches to data sampling in multidimensional NMR, the second part highlights commonly used methods for signal processing of such data, and the review concludes with a discussion of other approaches to speeding up data acquisition in NMR.

  15. Using Neural Networks for 13C NMR Chemical Shift Prediction-Comparison with Traditional Methods

    NASA Astrophysics Data System (ADS)

    Meiler, Jens; Maier, Walter; Will, Martin; Meusinger, Reinhard

    2002-08-01

    Interpretation of 13C chemical shifts is essential for structure elucidation of organic molecules by NMR. In this article, we present an improved neural network approach and compare its performance to that of commonly used approaches. Specifically, our recently proposed neural network ( J. Chem. Inf. Comput. Sci. 2000, 40, 1169-1176) is improved by introducing an extended hybrid numerical description of the carbon atom environment, resulting in a standard deviation (std. dev.) of 2.4 ppm for an independent test data set of ˜42,500 carbons. Thus, this neural network allows fast and accurate 13C NMR chemical shift prediction without the necessity of access to molecule or fragment databases. For an unbiased test dataset containing 100 organic structures the accuracy of the improved neural network was compared to that of a prediction method based on the HOSE code ( hierarchically ordered spherical description of environment) using S PECI NFO. The results show the neural network predictions to be of quality (std. dev.=2.7 ppm) comparable to that of the HOSE code prediction (std. dev.=2.6 ppm). Further we compare the neural network predictions to those of a wide variety of other 13C chemical shift prediction tools including incremental methods (C HEMD RAW, S PECT OOL), quantum chemical calculation (G AUSSIAN, C OSMOS), and HOSE code fragment-based prediction (S PECI NFO, ACD/CNMR, P REDICTI T NMR) for the 47 13C-NMR shifts of Taxol, a natural product including many structural features of organic substances. The smallest standard deviations were achieved here with the neural network (1.3 ppm) and S PECI NFO (1.0 ppm).

  16. A Computer Code for 2-D Transport Calculations in x-y Geometry Using the Interface Current Method.

    1990-12-01

    Version 00 RICANT performs 2-dimensional neutron transport calculations in x-y geometry using the interface current method. In the interface current method, the angular neutron currents crossing region surfaces are expanded in terms of the Legendre polynomials in the two half-spaces made by the region surfaces.

  17. A Structure-Activity Relationship Study of Imidazole-5-Carboxylic Acid Derivatives as Angiotensin II Receptor Antagonists Combining 2D and 3D QSAR Methods.

    PubMed

    Sharma, Mukesh C

    2016-03-01

    Two-dimensional (2D) and three-dimensional (3D) quantitative structure-activity relationship (QSAR) studies were performed for correlating the chemical composition of imidazole-5-carboxylic acid analogs and their angiotensin II [Formula: see text] receptor antagonist activity using partial least squares and k-nearest neighbor, respectively. For comparing the three different feature selection methods of 2D-QSAR, k-nearest neighbor models were used in conjunction with simulated annealing (SA), genetic algorithm and stepwise coupled with partial least square (PLS) showed variation in biological activity. The statistically significant best 2D-QSAR model having good predictive ability with statistical values of [Formula: see text] and [Formula: see text] was developed by SA-partial least square with the descriptors like [Formula: see text]count, 5Chain count, SdsCHE-index, and H-acceptor count, showing that increase in the values of these descriptors is beneficial to the activity. The 3D-QSAR studies were performed using the SA-PLS. A leave-one-out cross-validated correlation coefficient [Formula: see text] and predicate activity [Formula: see text] = 0.7226 were obtained. The information rendered by QSAR models may lead to a better understanding of structural requirements of substituted imidazole-5-carboxylic acid derivatives and also aid in designing novel potent antihypertensive molecules.

  18. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector.

    PubMed

    Hayashi, Kokoro; Kojima, Chojiro

    2010-11-01

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in ¹H-¹⁵N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  19. Characterization of mitotane (o,p'-DDD)--cyclodextrin inclusion complexes: phase-solubility method and NMR.

    PubMed

    Alfonsi, R; Attivi, D; Astier, A; Socha, M; Morice, S; Gibaud, S

    2013-05-01

    Mitotane (o,p'-dichlorodimethyl dichloroethane [o,p'-DDD]) is used for the treatment of adrenocortical cancer and occasionally Cushing's syndrome. This drug is very poorly soluble in water, and following oral administration, approximately 60% of the dose is recovered in the feces unaltered. The preparation of a soluble formulation (i.e. by complexation with cyclodextrins) with improved bioavailability is the aim of this work. The inclusion of mitotane in methyl-ß-cyclodextrins was studied using both phase-solubility methods and NMR experiments. To elucidate the inclusion mechanism, o,p'-DDD was compared to its regioisomer (i.e. p,p'-DDD). It was demonstrated that two dimethyl-ß-cyclodextrins (DMßCD) can complex with the aromatic rings. From the phase-solubility diagrams, we observe that both cases are very different: K(1:1) is between 37 000 and 85 000 mol.l(-1), whereas K(1:2) is between 5.3 and 32 mol.l(-1). The NMR experiments confirmed the inclusion but it also gave an insight into the kinetics of the dissociation: the ortho-chloro moiety is in slow exchange on the NMR time scale, whereas the para-chloro moiety is in fast exchange rate.

  20. The influence of the IMRT QA set-up error on the 2D and 3D gamma evaluation method as obtained by using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Kim, Kyeong-Hyeon; Kim, Dong-Su; Kim, Tae-Ho; Kang, Seong-Hee; Cho, Min-Seok; Suh, Tae Suk

    2015-11-01

    The phantom-alignment error is one of the factors affecting delivery quality assurance (QA) accuracy in intensity-modulated radiation therapy (IMRT). Accordingly, a possibility of inadequate use of spatial information in gamma evaluation may exist for patient-specific IMRT QA. The influence of the phantom-alignment error on gamma evaluation can be demonstrated experimentally by using the gamma passing rate and the gamma value. However, such experimental methods have a limitation regarding the intrinsic verification of the influence of the phantom set-up error because experimentally measuring the phantom-alignment error accurately is impossible. To overcome this limitation, we aimed to verify the effect of the phantom set-up error within the gamma evaluation formula by using a Monte Carlo simulation. Artificial phantom set-up errors were simulated, and the concept of the true point (TP) was used to represent the actual coordinates of the measurement point for the mathematical modeling of these effects on the gamma. Using dose distributions acquired from the Monte Carlo simulation, performed gamma evaluations in 2D and 3D. The results of the gamma evaluations and the dose difference at the TP were classified to verify the degrees of dose reflection at the TP. The 2D and the 3D gamma errors were defined by comparing gamma values between the case of the imposed phantom set-up error and the TP in order to investigate the effect of the set-up error on the gamma value. According to the results for gamma errors, the 3D gamma evaluation reflected the dose at the TP better than the 2D one. Moreover, the gamma passing rates were higher for 3D than for 2D, as is widely known. Thus, the 3D gamma evaluation can increase the precision of patient-specific IMRT QA by applying stringent acceptance criteria and setting a reasonable action level for the 3D gamma passing rate.

  1. Comparison of 2D fingerprint types and hierarchy level selection methods for structural grouping using Ward's clustering

    PubMed

    Wild; Blankley

    2000-01-01

    Four different two-dimensional fingerprint types (MACCS, Unity, BCI, and Daylight) and nine methods of selecting optimal cluster levels from the output of a hierarchical clustering algorithm were evaluated for their ability to select clusters that represent chemical series present in some typical examples of chemical compound data sets. The methods were evaluated using a Ward's clustering algorithm on subsets of the publicly available National Cancer Institute HIV data set, as well as with compounds from our corporate data set. We make a number of observations and recommendations about the choice of fingerprint type and cluster level selection methods for use in this type of clustering

  2. A reporter ligand NMR screening method for 2-oxoglutarate oxygenase inhibitors

    PubMed Central

    Leung, Ivanhoe K. H.; Demetriades, Marina; Hardy, Adam P.; Lejeune, Clarisse; Smart, Tristan J.; Szöllössi, Andrea; Kawamura, Akane; Schofield, Christopher J.; Claridge, Timothy D. W.

    2015-01-01

    The human 2-oxoglutarate (2OG) dependent oxygenases belong to a family of structurally related enzymes that play important roles in many biological processes. We report that competition-based NMR methods, using 2OG as a reporter ligand, can be used for quantitative and site-specific screening of ligand binding to 2OG oxygenases. The method was demonstrated using hypoxia inducible factor (HIF) hydroxylases and histone demethylases, and KD values were determined for inhibitors that compete with 2OG at the metal centre. This technique is also useful as a screening or validation tool for inhibitor discovery, as exemplified by work with protein-directed dynamic combinatorial chemistry (DCC). PMID:23234607

  3. Development of Direct and Optical Polarized Nuclear Magnetic Resonance (NMR) Methods for Characterization and Engineering of Mesophased Molecular Structures

    SciTech Connect

    Maxwell, R; Baumann, T; Taylor, B

    2002-01-29

    The development of NMR methods for the characterization of structure and dynamics in mesophase composite systems was originally proposed in this LDRD. Mesophase systems are organic/inorganic hybrid materials whose size and motional properties span the definition of liquids and solids, such as highly viscous gels or colloidal suspensions. They are often composite, ill defined, macromolecular structures that prove difficult to characterize. Mesophase materials are of broad scientific and programmatic interest and include composite load bearing foams, aerogels, optical coatings, silicate oligomers, porous heterogeneous catalysts, and nanostructured materials such as semiconductor quantum dot superlattices. Since mesophased materials and precursors generally lack long-range order they have proven to be difficult to characterize beyond local, shortrange order. NMR methods are optimal for such a task since NMR observables are sensitive to wide ranges of length (0-30{angstrom}) and time (10{sup -9}-10{sup 0}sec) scales. We have developed a suit of NMR methods to measure local, intermediate, and long range structure in a series of mesophase systems and have constructed correlations between NMR observables and molecular size, topology, and network structure. The goal of this research was the development of a strong LLNL capability in the characterization of mesophased materials by NMR spectroscopy that will lead to a capability in rational synthesis of such materials and a fundamental understanding of their structure-property relationships. We demonstrate our progress towards attaining this goal by presenting NMR results on four mesophased model systems.

  4. Development of an 19F NMR method for the analysis of fluorinated acids in environmental water samples.

    PubMed

    Ellis, D A; Martin, J W; Muir, D C; Mabury, S A

    2000-02-15

    This investigation was carried out to evaluate 19F NMR as an analytical tool for the measurement of trifluoroacetic acid (TFA) and other fluorinated acids in the aquatic environment. A method based upon strong anionic exchange (SAX) chromatography was also optimized for the concentration of the fluoro acids prior to NMR analysis. Extraction of the analyte from the SAX column was carried out directly in the NMR solvent in the presence of the strong organic base, DBU. The method allowed the analysis of the acid without any prior cleanup steps being involved. Optimal NMR sensitivity based upon T1 relaxation times was investigated for seven fluorinated compounds in four different NMR solvents. The use of the relaxation agent chromium acetylacetonate, Cr(acac)3, within these solvent systems was also evaluated. Results show that the optimal NMR solvent differs for each fluorinated analyte. Cr(acac)3 was shown to have pronounced effects on the limits of detection of the analyte. Generally, the optimal sensitivity condition appears to be methanol-d4/2M DBU in the presence of 4 mg/mL of Cr-(acac)3. The method was validated through spike and recovery for five fluoro acids from environmentally relevant waters. Results are presented for the analysis of TFA in Toronto rainwater, which ranged from < 16 to 850 ng/L. The NMR results were confirmed by GC-MS selected-ion monitoring of the fluoroanalide derivative.

  5. A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography.

    PubMed

    Timp, Sheila; Karssemeijer, Nico

    2004-05-01

    Mass segmentation plays a crucial role in computer-aided diagnosis (CAD) systems for classification of suspicious regions as normal, benign, or malignant. In this article we present a robust and automated segmentation technique--based on dynamic programming--to segment mass lesions from surrounding tissue. In addition, we propose an efficient algorithm to guarantee resulting contours to be closed. The segmentation method based on dynamic programming was quantitatively compared with two other automated segmentation methods (region growing and the discrete contour model) on a dataset of 1210 masses. For each mass an overlap criterion was calculated to determine the similarity with manual segmentation. The mean overlap percentage for dynamic programming was 0.69, for the other two methods 0.60 and 0.59, respectively. The difference in overlap percentage was statistically significant. To study the influence of the segmentation method on the performance of a CAD system two additional experiments were carried out. The first experiment studied the detection performance of the CAD system for the different segmentation methods. Free-response receiver operating characteristics analysis showed that the detection performance was nearly identical for the three segmentation methods. In the second experiment the ability of the classifier to discriminate between malignant and benign lesions was studied. For region based evaluation the area Az under the receiver operating characteristics curve was 0.74 for dynamic programming, 0.72 for the discrete contour model, and 0.67 for region growing. The difference in Az values obtained by the dynamic programming method and region growing was statistically significant. The differences between other methods were not significant.

  6. A method based on covariance and pattern recognition for improving resolutions of spatially encoded NMR spectra.

    PubMed

    Qiu, Wenqi; Chen, Youhe; Wei, Zhiliang; Yang, Jian; Lin, Yulan; Chen, Zhong

    2015-11-01

    The spatially encoded technique enables the fast acquisition of two-dimensional (2D) nuclear magnetic resonance spectrum within a single scan, serving as a powerful tool for studying various systems and phenomena in short time scales. In spatially encoded spectroscopy, the resolution in the direct dimension can be enhanced by increasing effective acquisition times. However, spectral widths and resolutions in indirect dimensions are no longer independent of each other with wider spectral widths yielding lower resolution. The covariance method, which has achieved success in enhancing resolutions in the indirect dimensions of conventional 2D spectroscopy, is employed here to improve resolutions in the spatially encoded dimension. Moreover, an algorithm is developed based on pattern recognition to eliminate artifacts arising from the employment of the covariance method and experimental imperfections in recording the spatially encoded spectra. Therefore, high-resolution homonuclear 2D correlated spectra are obtained. Experiments are performed to show the feasibility and effectiveness of this proposed method in providing high-resolution spectra within greatly shortened times.

  7. High-order compact ADI method using predictor-corrector scheme for 2D complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Shokri, Ali; Afshari, Fatemeh

    2015-12-01

    In this article, a high-order compact alternating direction implicit (HOC-ADI) finite difference scheme is applied to numerical solution of the complex Ginzburg-Landau (GL) equation in two spatial dimensions with periodical boundary conditions. The GL equation has been used as a mathematical model for various pattern formation systems in mechanics, physics, and chemistry. The proposed HOC-ADI method has fourth-order accuracy in space and second-order accuracy in time. To avoid solving the nonlinear system and to increase the accuracy and efficiency of the method, we proposed the predictor-corrector scheme. Validation of the present numerical solutions has been conducted by comparing with the exact and other methods results and evidenced a good agreement.

  8. An estimation method for echo signal energy of pipe inner surface longitudinal crack detection by 2-D energy coefficients integration

    SciTech Connect

    Zhou, Shiyuan Sun, Haoyu Xu, Chunguang Cao, Xiandong Cui, Liming Xiao, Dingguo

    2015-03-31

    The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of “energy coefficient” in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energy coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.

  9. Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods

    PubMed Central

    Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev

    2013-01-01

    Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L2-norm regularization. However, sparse representation methods via L1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72–88, 2013. PMID:23847452

  10. Modified Prony Method to Resolve and Quantify in Vivo31P NMR Spectra of Tumors

    NASA Astrophysics Data System (ADS)

    Barone, P.; Guidoni, L.; Ragona, R.; Viti, V.; Furman, E.; Degani, H.

    Prony's method, successfully used in processing NMR signals, performs poorly at low signal-to-noise ratios. To overcome this problem, a statistical approach has been adopted by using Prony's method as a sampling device from the distribution associated with the true spectrum. Specifically, Prony's method is applied for each regression order p and number of data points n, both considered in a suitable range, and the estimates of frequencies, amplitudes, and decay factors are pooled separately. A histogram of the pooled frequencies is computed and, looking at the histogram, a lower and an upper frequency bound for each line of interest is determined. All frequency estimates in each of the determined intervals as well as associated decay factors and amplitudes are considered to be independent normal variates. A mean value and a corresponding 95% confidence interval are computed for each parameter. 31P NMR signals from MCF7 human breast cancer cells, inoculated into athymic mice and which developed into tumors, have been processed with traditional methods and with this modified Prony's method. The main components of the phosphomonoester peak, namely those deriving from phosphorylcholine and phosphorylethanolamine, are always well resolved with this new approach and their relative amplitudes can be consequently evaluated. Peak intensities of these two signals show different behavior during treatment of tumors with the antiestrogenic drug tamoxifen. The results of this new approach are compared with those obtainable with traditional techniques.

  11. Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods.

    PubMed

    Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev

    2013-05-01

    Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L2-norm regularization. However, sparse representation methods via L1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72-88, 2013.

  12. A pseudo-spectral method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates using domain decomposition

    SciTech Connect

    Sidler, Rolf; Carcione, José M.; Holliger, Klaus

    2013-02-15

    We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.

  13. A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy

    SciTech Connect

    Tsai, Tsung-Yuan; Lu, Tung-Wu; Chen, Chung-Ming; Kuo, Mei-Ying; Hsu, Horng-Chaung

    2010-03-15

    Purpose: Accurate measurement of the three-dimensional (3D) rigid body and surface kinematics of the natural human knee is essential for many clinical applications. Existing techniques are limited either in their accuracy or lack more realistic experimental evaluation of the measurement errors. The purposes of the study were to develop a volumetric model-based 2D to 3D registration method, called the weighted edge-matching score (WEMS) method, for measuring natural knee kinematics with single-plane fluoroscopy to determine experimentally the measurement errors and to compare its performance with that of pattern intensity (PI) and gradient difference (GD) methods. Methods: The WEMS method gives higher priority to matching of longer edges of the digitally reconstructed radiograph and fluoroscopic images. The measurement errors of the methods were evaluated based on a human cadaveric knee at 11 flexion positions. Results: The accuracy of the WEMS method was determined experimentally to be less than 0.77 mm for the in-plane translations, 3.06 mm for out-of-plane translation, and 1.13 deg. for all rotations, which is better than that of the PI and GD methods. Conclusions: A new volumetric model-based 2D to 3D registration method has been developed for measuring 3D in vivo kinematics of natural knee joints with single-plane fluoroscopy. With the equipment used in the current study, the accuracy of the WEMS method is considered acceptable for the measurement of the 3D kinematics of the natural knee in clinical applications.

  14. Finite Element Method for Analysis of Band Structures of 2D Phononic Crystals with Archimedean-like tilings

    NASA Astrophysics Data System (ADS)

    Li, Jianbao; Wang, Yue-Sheng; Zhang, Chuanzeng

    2010-05-01

    In this paper, a finite element method based on the ABAQUS code and user subroutine is presented to evaluate the propagation of acoustic waves in the two-dimensional phononic crystals with Archimedean-like tilings. Two systems composed of cylinder scatters embedded in a host in Ladybug and Bathroom lattices are considered. Complete and accurate band structures and transmission spectra are obtained to identify the band gaps and eigenmodes. We found that Archimedean-like structures can have some advantages over the traditional square lattice regarding the completeness of the gap and its position and width. Also, due to the same square primitive unit cell and the first Brillouin zone, the two square-like lattices have similar acoustic response in lower bands. The results indicate that the finite element method is precise for the band structure computation of the complex phononic crystals with Archimedean tilings.

  15. Metric-Resolution 2D River Modeling at the Macroscale: Computational Methods and Applications in a Braided River

    NASA Astrophysics Data System (ADS)

    Schubert, Jochen; Monsen, Wade; Sanders, Brett

    2015-11-01

    Metric resolution digital terrain models (DTMs) of rivers now make it possible for multi-dimensional fluid mechanics models to be applied to characterize flow at fine scales that are relevant to studies of river morphology and ecological habitat, or microscales. These developments are important for managing rivers because of the potential to better understand system dynamics, anthropogenic impacts, and the consequences of proposed interventions. However, the data volumes and computational demands of microscale river modeling have largely constrained applications to small multiples of the channel width, or the mesoscale. This report presents computational methods to extend a microscale river model beyond the mesoscale to the macroscale, defined as large multiples of the channel width. A method of automated unstructured grid generation is presented that automatically clusters fine resolution cells in areas of curvature (e.g., channel banks), and places relatively coarse cells in areas lacking topographic variability. This overcomes the need to manually generate breaklines to constrain the grid, which is painstaking at the mesoscale and virtually impossible at the macroscale. The method is applied to a braided river with an extremely complex channel network configuration and shown to yield an efficient fine resolution model. The sensitivity of model output to grid design and resistance parameters is also examined as it relates to analysis of hydrology, hydraulic geometry and river habitats and the findings reiterate the importance of model calibration and validation.

  16. Blind test of methods for obtaining 2-D near-surface seismic velocity models from first-arrival traveltimes

    USGS Publications Warehouse

    Zelt, Colin A.; Haines, Seth; Powers, Michael H.; Sheehan, Jacob; Rohdewald, Siegfried; Link, Curtis; Hayashi, Koichi; Zhao, Don; Zhou, Hua-wei; Burton, Bethany L.; Petersen, Uni K.; Bonal, Nedra D.; Doll, William E.

    2013-01-01

    Seismic refraction methods are used in environmental and engineering studies to image the shallow subsurface. We present a blind test of inversion and tomographic refraction analysis methods using a synthetic first-arrival-time dataset that was made available to the community in 2010. The data are realistic in terms of the near-surface velocity model, shot-receiver geometry and the data's frequency and added noise. Fourteen estimated models were determined by ten participants using eight different inversion algorithms, with the true model unknown to the participants until it was revealed at a session at the 2011 SAGEEP meeting. The estimated models are generally consistent in terms of their large-scale features, demonstrating the robustness of refraction data inversion in general, and the eight inversion algorithms in particular. When compared to the true model, all of the estimated models contain a smooth expression of its two main features: a large offset in the bedrock and the top of a steeply dipping low-velocity fault zone. The estimated models do not contain a subtle low-velocity zone and other fine-scale features, in accord with conventional wisdom. Together, the results support confidence in the reliability and robustness of modern refraction inversion and tomographic methods.

  17. A novel method to acquire 3D data from serial 2D images of a dental cast

    NASA Astrophysics Data System (ADS)

    Yi, Yaxing; Li, Zhongke; Chen, Qi; Shao, Jun; Li, Xinshe; Liu, Zhiqin

    2007-05-01

    This paper introduced a newly developed method to acquire three-dimensional data from serial two-dimensional images of a dental cast. The system consists of a computer and a set of data acquiring device. The data acquiring device is used to take serial pictures of the a dental cast; an artificial neural network works to translate two-dimensional pictures to three-dimensional data; then three-dimensional image can reconstruct by the computer. The three-dimensional data acquiring of dental casts is the foundation of computer-aided diagnosis and treatment planning in orthodontics.

  18. Chalcogen analogues of nicotine lactam studied by NMR, FTIR, DFT and X-ray methods

    NASA Astrophysics Data System (ADS)

    Jasiewicz, Beata; Malczewska-Jaskóła, Karolina; Kowalczyk, Iwona; Warżajtis, Beata; Rychlewska, Urszula

    2014-07-01

    The selenoanalogue of nicotine has been synthesized and characterized by spectroscopic and X-ray diffraction methods. The crystals of selenonicotine are isomorphic with the thionicotine homologue and consist of molecules engaged in columnar π⋯π stacking interactions between antiparallely arranged pyridine moieties. These interactions, absent in other crystals containing nicotine fragments, seem to be induced by the presence of a lactam group. The molecular structures in the vacuum of the oxo-, thio- and selenonicotine homologues have been calculated by the DFT method and compared with the available X-ray data. The delocalized structure of thionicotine is stabilized by intramolecular Csbnd H⋯S hydrogen bond, which becomes weaker in the partial zwitterionic resonance structure of selenonicotine in favor of multiple Csbnd H⋯Se intermolecular hydrogen-bonds. The calculated data allow a complete assignment of vibration modes in the solid state FTIR spectra. The 1H and 13C NMR chemical shifts were calculated by the GIAO method with B3LYP/6-311G(3df) level. A comparison between experimental and calculated theoretical results indicates that the density functional B3LYP method provided satisfactory results for predicting FTIR, 1H, 13C NMR spectra properties.

  19. A 2D Gaussian-Beam-Based Method for Modeling the Dichroic Surfaces of Quasi-Optical Systems

    NASA Astrophysics Data System (ADS)

    Elis, Kevin; Chabory, Alexandre; Sokoloff, Jérôme; Bolioli, Sylvain

    2016-08-01

    In this article, we propose an approach in the spectral domain to treat the interaction of a field with a dichroic surface in two dimensions. For a Gaussian beam illumination of the surface, the reflected and transmitted fields are approximated by one reflected and one transmitted Gaussian beams. Their characteristics are determined by means of a matching in the spectral domain, which requires a second-order approximation of the dichroic surface response when excited by plane waves. This approximation is of the same order as the one used in Gaussian beam shooting algorithm to model curved interfaces associated with lenses, reflector, etc. The method uses general analytical formulations for the GBs that depend either on a paraxial or far-field approximation. Numerical experiments are led to test the efficiency of the method in terms of accuracy and computation time. They include a parametric study and a case for which the illumination is provided by a horn antenna. For the latter, the incident field is firstly expressed as a sum of Gaussian beams by means of Gabor frames.

  20. Global approach for transient shear wave inversion based on the adjoint method: a comprehensive 2D simulation study.

    PubMed

    Arnal, B; Pinton, G; Garapon, P; Pernot, M; Fink, M; Tanter, M

    2013-10-01

    Shear wave imaging (SWI) maps soft tissue elasticity by measuring shear wave propagation with ultrafast ultrasound acquisitions (10 000 frames s(-1)). This spatiotemporal data can be used as an input for an inverse problem that determines a shear modulus map. Common inversion methods are local: the shear modulus at each point is calculated based on the values of its neighbour (e.g. time-of-flight, wave equation inversion). However, these approaches are sensitive to the information loss such as noise or the lack of the backscattered signal. In this paper, we evaluate the benefits of a global approach for elasticity inversion using a least-squares formulation, which is derived from full waveform inversion in geophysics known as the adjoint method. We simulate an acoustic waveform in a medium with a soft and a hard lesion. For this initial application, full elastic propagation and viscosity are ignored. We demonstrate that the reconstruction of the shear modulus map is robust with a non-uniform background or in the presence of noise with regularization. Compared to regular local inversions, the global approach leads to an increase of contrast (∼+3 dB) and a decrease of the quantification error (∼+2%). We demonstrate that the inversion is reliable in the case when there is no signal measured within the inclusions like hypoechoic lesions which could have an impact on medical diagnosis.

  1. Investigation of enhanced 2D field-stitching method as a simulation-tool for line-edge roughness in scatterometry

    NASA Astrophysics Data System (ADS)

    Bilski, Bartosz; Frenner, Karsten; Osten, Wolfgang

    2010-05-01

    Scatterometry is a method commonly used in semiconductor metrology for measuring critical dimension (CD). It relies on measurement of light diffracted on a periodic structure and using it to derive the actual profile by running complex simulations. As CD is getting smaller with next lithography nodes, the Line-Edge Roughness/Line Width Roughness (LER/LWR) are becoming significant fraction of its overall size - therefore there is a need to include them in the simulations. Simulation of the LER/LWR's influence, in its random nature, calls for simulating relatively large fields. These large fields, if treated with rigorous electromagnetic simulations, are either very time-extensive or impossible to conduct, therefore computationally bearable, approximate approach needs to be applied. Our approximate method is "Field-Stitching Method" (FSM). We present its 2D version with varying parameter called "overlap region". We simulate the line grating structure with CD disturbed by LER/LWR and apply Rigorous Coupled Wave Analysis (RCWA) supported by the 2D FSM. We also generate the results obtained exclusively by RCWA, to which we compare the results of the approximate approach. Based on the comparison we discuss the benefits FSM brings and its limitations.

  2. 2-D and 3-D Difraction Stake Migration Method Using GPR: A Case Study in Canakkale (Turkey)

    NASA Astrophysics Data System (ADS)

    Çaǧlar Yalçiner, Cahit

    In this study, ground-penetrating radar (GPR) method was applied for Clandestine cemetery detection in Ηanakkale (Dardanelles), west Turkey. Investigated area was a historical area which was used as tent hospitals during the World War I. The study area was also used to bury soldiers who died during the treatment process in tent hospitals. Because of agricultural activity grave stones were used by local people, thus, most of the graves were lost in the field. 45 GPR profiles were applied with a GPR system (RAMAC) equipped with 250 MHz central frequency shielded antenna. After main processing steps on raw data, migration was applied to improve section resolution and develop the realism of the subsurface images. Although the GPR in results before migration the anomalous zones are visible, after migration the results became much more visible both in the profiles and 3D illustrations, thus, migrated GPR data were preferred to locate the buried martyrdoms.

  3. Global SH-wave propagation in a 2D whole Moon model using the parallel hybrid PSM/FDM method

    NASA Astrophysics Data System (ADS)

    Jiang, Xianghua; Wang, Yanbin; Qin, Yanfang; Takenaka, Hiroshi

    2015-06-01

    We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids to solve the wave equations and implement the calculation on a parallel PC cluster to improve the computing efficiency. Features of global SH-wave propagation are firstly discussed for a 100-km shallow and 900-km deep moonquakes, respectively. Effects of frequency range and lateral variation of crust thickness are then investigated with various models. Our synthetic waveforms are finally compared with observed Apollo data to show the features of wave propagation that were produced by our model and those not reproduced by our models. Our numerical modeling show that the low-velocity upper crust plays significant role in the development of reverberating wave trains. Increasing frequency enhances the strength and duration of the reverberations. Surface multiples dominate wavefields for shallow event. Core-mantle reflections can be clearly identified for deep event at low frequency. The layered whole Moon model and the low-velocity upper crust produce the reverberating wave trains following each phases consistent with observation. However, more realistic Moon model should be considered in order to explain the strong and slow decay scattering between various phases shown on observation data.

  4. Dialkylthio Substitution: An Effective Method to Modulate the Molecular Energy Levels of 2D-BDT Photovoltaic Polymers.

    PubMed

    Yao, Huifeng; Zhang, Hao; Ye, Long; Zhao, Wenchao; Zhang, Shaoqing; Hou, Jianhui

    2016-02-17

    Dialkylthio-substituted thienyl-benzodithiophene (BDT-DST) was designed and synthesized as a building block to modulate the molecular levels of the conjugated polymers, and three copolymers named PDST-BDD, PDST-TT and PDST-DPP were prepared and applied in polymer solar cells (PSCs). Theoretical calculations and electrochemical cyclic voltammetry (CV) measurement suggested that the dialkylthio group could decrease the molecular energy levels of the resulting polymers distinctly. The open-circuit voltage (VOC) of PSC devices based on PDST-BDD, PDST-TT, and PDST-DPP are as high as 1.0, 0.98, and 0.88 V, respectively, which are ∼0.15 V higher than those of the corresponding alky-substituted analogues. Moreover, the influence of the dialkylthio group on the absorption spectra, crystalline properties, hole mobilities, and blend morphologies of the polymers was also investigated. The results indicate that the dialkythio substitution is an effective method to modulate the molecular energy levels and that the BDT-DST unit has potential for constructing high-efficiency photovoltaic polymers.

  5. Neuronal Tracing with Magnetic Labels: NMR Imaging Methods, Preliminary Results, and New Optimized Coils.

    NASA Astrophysics Data System (ADS)

    Ghosh, Pratik

    1992-01-01

    The investigations focussed on in vivo NMR imaging studies of magnetic particles with and within neural cells. NMR imaging methods, both Fourier transform and projection reconstruction, were implemented and new protocols were developed to perform "Neuronal Tracing with Magnetic Labels" on small animal brains. Having performed the preliminary experiments with neuronal tracing, new optimized coils and experimental set-up were devised. A novel gradient coil technology along with new rf-coils were implemented, and optimized for future use with small animals in them. A new magnetic labelling procedure was developed that allowed labelling of billions of cells with ultra -small magnetite particles in a short time. The relationships among the viability of such cells, the amount of label and the contrast in the images were studied as quantitatively as possible. Intracerebral grafting of magnetite labelled fetal rat brain cells made it possible for the first time to attempt monitoring in vivo the survival, differentiation, and possible migration of both host and grafted cells in the host rat brain. This constituted the early steps toward future experiments that may lead to the monitoring of human brain grafts of fetal brain cells. Preliminary experiments with direct injection of horse radish peroxidase-conjugated magnetite particles into neurons, followed by NMR imaging, revealed a possible non-invasive alternative, allowing serial study of the dynamic transport pattern of tracers in single living animals. New gradient coils were built by using parallel solid-conductor ribbon cables that could be wrapped easily and quickly. Rapid rise times provided by these coils allowed implementation of fast imaging methods. Optimized rf-coil circuit development made it possible to understand better the sample-coil properties and the associated trade -offs in cases of small but conducting samples.

  6. A time series generalized functional model based method for vibration-based damage precise localization in structures consisting of 1D, 2D, and 3D elements

    NASA Astrophysics Data System (ADS)

    Sakaris, C. S.; Sakellariou, J. S.; Fassois, S. D.

    2016-06-01

    This study focuses on the problem of vibration-based damage precise localization via data-based, time series type, methods for structures consisting of 1D, 2D, or 3D elements. A Generalized Functional Model Based method is postulated based on an expanded Vector-dependent Functionally Pooled ARX (VFP-ARX) model form, capable of accounting for an arbitrary structural topology. The FP model's operating parameter vector elements are properly constrained to reflect any given topology. Damage localization is based on operating parameter vector estimation within the specified topology, so that the location estimate and its uncertainty bounds are statistically optimal. The method's effectiveness is experimentally demonstrated through damage precise localization on a laboratory spatial truss structure using various damage scenarios and a single pair of random excitation - vibration response signals in a low and limited frequency bandwidth.

  7. 2D NMR analysis of highly restricted internal rotation in 2-methylthio-3H-4- p-bromophenyl)-7-[( ortho- and para-substituted)-phenylthio]-1,5-benzodiazepines

    NASA Astrophysics Data System (ADS)

    Cortes C., E.; Becerra L., M. I.; Osornio P., Y. M.; Díaz T., E.; Jankowski, K.

    2000-08-01

    The complete assignments of twelve 4-ary1-7-thioary1-1,5-benzodiazepines 1H and 13C spectra, performed with the use of high resolution variable solvent and temperature 1D and 2D techniques (e.g. HOMOCOSY, NOESY, HMQC and HMBC), lead to the determination of conformational equilibria between two rotamers having the aromatic ring of the thioaryl oriented in a perpendicular or helical orientation toward the benzodiazepine ring. The restricted rotation was evaluated from the population of these conformers.

  8. A rapid and automated low resolution NMR method to analyze oil quality in intact oilseeds.

    PubMed

    Prestes, Rosilene Aparecida; Colnago, Luiz Alberto; Forato, Lucimara Aparecida; Vizzotto, Lucinéia; Novotny, Etelvino Henrique; Carrilho, Emanuel

    2007-07-23

    Oilseeds with modified fatty acid profiles have been the genetic alternative for high quality vegetable oil for food and biodiesel applications. They can provide stable, functional oils for the food industry, without the hydrogenation process that produces trans-fatty acid, which has been linked to cardiovascular disease. High yield and high quality oilseeds are also necessary for the success of biodiesel programs, as polyunsaturated or saturated fatty acid oil produces biofuel with undesirable properties. In this paper, a rapid and automated low resolution NMR method to select intact oilseeds with a modified fatty acid profile is introduced, based on 1H transverse relaxation time (T2). The T2 weighted NMR signal, obtained by a CPMG pulse sequence and processed by chemometric methods was able to determine the oil quality in intact seeds by its fatty composition, cetane number, iodine value and kinematic viscosity with a correlation coefficient r > 0.9. The automated system has the potential to analyze more than 1000 samples per hour and is a powerful tool to speed up the selection of high quality oilseeds for food and biodiesel applications.

  9. Nuclei-selected NMR shielding calculations: a sublinear-scaling quantum-chemical method.

    PubMed

    Beer, Matthias; Kussmann, Jörg; Ochsenfeld, Christian

    2011-02-21

    An ab initio method for the direct calculation of NMR shieldings for selected nuclei at the Hartree-Fock and density-functional theory level is presented. Our method shows a computational effort scaling only sublinearly with molecular size, as it is motivated by the physical consideration that the chemical shielding is dominated by its local environment. The key feature of our method is to avoid the conventionally performed calculation of all NMR shieldings but instead to solve directly for specific nuclear shieldings. This has important implications not only for the study of large molecules, but also for the simulation of solvent effects and molecular dynamics, since often just a few shieldings are of interest. Our theory relies on two major aspects both necessary to provide a sublinear scaling behavior: First, an alternative expression for the shielding tensor is derived, which involves the response density matrix with respect to the nuclear magnetic moment instead of the response to the external magnetic field. Second, as unphysical long-range contributions occur within the description of distributed gauge origin methods that do not influence the final expectation value, we present a screening procedure to truncate the B-field dependent basis set, which is crucial in order to ensure an early onset of the sublinear scaling. The screening is in line with the r(-2) distance decay of Biot-Savarts law for induced magnetic fields. Our present truncation relies on the introduced concept of "individual gauge shielding contributions" applied to a reformulated shielding tensor, the latter consisting of gauge-invariant terms. The presented method is generally applicable and shows typical speed-ups of about one order of magnitude; moreover, due to the reduced scaling behavior of O(1) as compared to O(N), the wins become larger with increasing system size. We illustrate the validity of our method for several test systems, including ring-current dominated systems and

  10. Solid state NMR method development and studies of biological and biomimetic nanocomposites

    SciTech Connect

    Hu, Yanyan

    2011-01-01

    . Meanwhile, we have developed new methods to achieve broadband high resolution NMR and improve the accuracy of inter-nuclear distance measurements involving quadrupolar spins. Broadband high resolution NMR of spin-1/2 nuclei has been accomplished by the adaptation of the magic angle turning (MAT) method to fast magic angle spinning, termed fast MAT, by solving technical problems such as off resonance effects. Fast MAT separates chemical shift anisotropy and isotropic chemical shifts over a spectral range of ~1.8 γB1 without significant distortions. Fast MAT 125Te NMR has been applied to study technologically important telluride materials with spectra spreading up to 190 kHz. The signal-to-noise ratio of the spectra is significantly improved by using echo-matched Gaussian filtering in offline data processing. The accuracy of the measured distances between spin-1/2 and quadrupolar nuclei with methods such as SPIDER and REAPDOR has been improved by compensating for the fast longitudinal quadrupolar relaxation on the sub-millisecond with a modified S0 pulse sequence. Also, the T1Q effect on the spin coherence and its spinning speed dependency has been explored and documented with analytical and numerical simulations as well as experimental measurements.

  11. A solid-state NMR method to determine domain sizes in multi-component polymer formulations

    NASA Astrophysics Data System (ADS)

    Schlagnitweit, Judith; Tang, Mingxue; Baias, Maria; Richardson, Sara; Schantz, Staffan; Emsley, Lyndon

    2015-12-01

    Polymer domain sizes are related to many of the physical properties of polymers. Here we present a solid-state NMR experiment that is capable of measuring domain sizes in multi-component mixtures. The method combines selective excitation of carbon magnetization to isolate a specific component with proton spin diffusion to report on domain size. We demonstrate the method in the context of controlled release formulations, which represents one of today's challenges in pharmaceutical science. We show that we can measure domain sizes of interest in the different components of industrial pharmaceutical formulations at natural isotopic abundance containing various (modified) cellulose derivatives, such as microcrystalline cellulose matrixes that are film-coated with a mixture of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC).

  12. Structural Characterization of Humic Materials Using ^13C NMR Techniques: A Comparison of Solution- and Solid-State Methods

    NASA Astrophysics Data System (ADS)

    Clewett, Catherine; Alam, Todd; Osantowski, Eric; Pullin, Michael

    2011-10-01

    The analysis of the carbon type distribution and chemical structure of natural organic matter (NOM) by ^13C NMR spectroscopy is an important technique for understanding its origins and reactivity. While prior work has used solution-state NMR techniques, solid-state NMR has the potential to provide this information using less instrument time and sample manipulation, while providing an array of advanced filtering techniques. Analyses of four isolated humic materials with ^13C solid-state magic angle spinning (MAS) NMR techniques are described, including three commercially available samples and one fulvic acid sample isolated from the Rio Grande in New Mexico. This study demonstrates the utility of solid-state ^13C NMR for aquatic NOM structural characterization, comparing these results to the existing solution-state determinations. The solid-state ^13C MAS NMR results are used to determine % carbon distribution, estimates of elemental composition (%C, %H, %(O+N)), aromatic fraction (fa), nonprotonated aromatic fraction (faN), an estimate of aromatic cluster size, and ratio of sp^2 to sp^3 carbons. A Gaussian deconvolution method is introduced that allows for a detailed analysis of carbon type.

  13. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  14. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  15. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  16. Effect of random structure on permeability and heat transfer characteristics for flow in 2D porous medium based on MRT lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Yang, PeiPei; Wen, Zhi; Dou, RuiFeng; Liu, Xunliang

    2016-08-01

    Flow and heat transfer through a 2D random porous medium are studied by using the lattice Boltzmann method (LBM). For the random porous medium, the influence of disordered cylinder arrangement on permeability and Nusselt number are investigated. Results indicate that the permeability and Nusselt number for different cylinder locations are unequal even with the same number and size of cylinders. New correlations for the permeability and coefficient b‧Den of the Forchheimer equation are proposed for random porous medium composed of Gaussian distributed circular cylinders. Furthermore, a general set of heat transfer correlations is proposed and compared with existing experimental data and empirical correlations. Our results show that the Nu number increases with the increase of the porosity, hence heat transfer is found to be accurate considering the effect of porosity.

  17. ANALYTICAL METHOD FOR MEASURING TOTAL PROTIUM AND TOTAL DEUTERIUM IN A GAS MIXTURE CONTAINING H2, D2,AND HD VIA GAS CHAROMATOGRAPHY

    SciTech Connect

    Sessions, H

    2007-08-07

    The most common analytical method of identifying and quantifying non-radioactive isotopic species of hydrogen is mass spectrometry. A low mass, high resolution mass spectrometer with adequate sensitivity and stability to identify and quantify hydrogen isotopes in the low ppm range is an expensive, complex instrument. A new analytical technique has been developed that measures both total protium (H) and total deuterium (D) in a gas mixture containing H{sub 2}, D{sub 2}, and HD using an inexpensive micro gas chromatograph (GC) with two molecular sieve columns. One column uses D{sub 2} as the carrier gas and the other uses H{sub 2} as the carrier gas. Laboratory tests have shown that when used in this configuration the GC can measure both total protium and total deuterium each with a detection and quantification limit of less than 20 ppm.

  18. Liquid- and solid-state high-resolution NMR methods for the investigation of aging processes of silicone breast implants.

    PubMed

    Birkefeld, Anja Britta; Bertermann, Rüdiger; Eckert, Hellmut; Pfleiderer, Bettina

    2003-01-01

    To investigate aging processes of silicone gel breast implants, which may include migration of free unreacted material from the gel and rubber to local (e.g. connective tissue capsule) or distant sites in the body, chemical alteration of the polymer and infiltration of body compounds, various approaches of multinuclear nuclear magnetic resonance (NMR) experiments (29Si, 13C, 1H) were evaluated. While 29Si, 13C, and 1H solid-state magic angle spinning (MAS) NMR techniques performed on virgin and explanted envelopes of silicone prostheses provided only limited information, high-resolution liquid-state NMR techniques of CDCl(3) extracts were highly sensitive analytical tools for the detection of aging related changes in the materials. Using 2D 1H, 1H correlation spectroscopy (COSY) and 29Si, 1H heteronuclear multiple bond coherence (HMBC) experiments with gradient selection, it was possible to detect lipids (mainly phospholipids) as well as silicone oligomer species in explanted envelopes and gels. Silicone oligomers were also found in connective tissue capsules, indicating that cyclic polysiloxanes can migrate from intact implants to adjacent and distant sites. Furthermore, lipids can permeate the implant and modify its chemical composition.

  19. Inclusion complexes of PBN-type nitrone spin traps and their superoxide spin adducts with cyclodextrin derivatives: parallel determination of the association constants by NMR titrations and 2D-EPR simulations.

    PubMed

    Bardelang, David; Rockenbauer, Antal; Karoui, Hakim; Finet, Jean-Pierre; Tordo, Paul

    2005-05-26

    (1)H NMR and electron paramagnetic resonance (EPR) titrations were used to determine the association constants of the complexes of alpha-phenyl-N-tert-butylnitrone (PBN) analogues and their superoxide spin adducts, respectively, with methylated beta-cyclodextrins. A 1:1 stoichiometry for the nitrones with randomly methylated beta-cyclodextrin and 2,6-di-O-methyl-beta-cyclodextrin and 1:1 and 1:2 stoichiometries for the corresponding cyclodextrin-nitroxide complexes were observed. After the superoxide radical spin trapping reaction, EPR titrations afforded the association constants of the corresponding cyclodextrin-nitroxide complexes. Two-dimensional EPR simulations indicated a bimodal inclusion of the nitroxide free radical spin adducts into the cyclodextrins. For all the nitrone-cyclodextrin and nitroxide-cyclodextrin complexes, the association constants were always higher for the nitroxide complexes than for the nitrone complexes. A cooperative system concerning the complexation of the nitroxide spin adduct with a cyclodextrin was evidenced by EPR titrations. The efficiency of the cyclodextrin inclusion technique to trap superoxide and to resist bioreduction by sodium l-ascorbate was also investigated.

  20. Synthesis and structural analysis using 2-D NMR of Sialyl Lewis X (SLe{sup x}) and Lewis X (Le{sup x}) oligosaccharides: Ligands related to E-selectin [ELAM-1] binding

    SciTech Connect

    Ball, G.E.; Nagy, J.O.; Brown, E.G.

    1992-06-17

    The sialyl Lewis X (SLe{sup x}) determinant (NeuAc-{alpha}-2,3-Gal-{beta}-1,4-[Fuc-{alpha}-1,3]-GlcNAc), compound 1, is a ligand for E-selectin (endothelial leucocyte adhesion molecule 1, or ELAM-1), a member of the selectin family of cell adhesion molecules. Interactions between E-selectin and leucocyte-bound SLe{sup x} or closely related oligosaccharides are thought to be important early events in the inflammation process. Binding analysis has shown that the sialic acid (NeuAc) and the fucose (Fuc) moieties are essential for high affinity. The related desialylated trisaccharide Le{sup x} (Gas-{beta}-1,4-[Fuc-{alpha}-1,3]-GlcNAc), for example, is not a high-affinity ligand for E-selectin. In this communication, the authors describe the syntheses of SLe{sup x} 1 and the {beta}-O-allyl glycoside of Le{sup x} 2 using a cloned fucosyltransferase and their complete NMR spectral assignments including ROESY and NOESY experiments in order to investigate the conformation of these compounds in solution. 25 refs., 2 figs.

  1. A General Method for Extracting Individual Coupling Constants from Crowded (1)H NMR Spectra.

    PubMed

    Sinnaeve, Davy; Foroozandeh, Mohammadali; Nilsson, Mathias; Morris, Gareth A

    2016-01-18

    Couplings between protons, whether scalar or dipolar, provide a wealth of structural information. Unfortunately, the high number of (1)H-(1)H couplings gives rise to complex multiplets and severe overlap in crowded spectra, greatly complicating their measurement. Many different methods exist for disentangling couplings, but none approaches optimum resolution. Here, we present a general new 2D J-resolved method, PSYCHEDELIC, in which all homonuclear couplings are suppressed in F2, and only the couplings to chosen spins appear, as simple doublets, in F1. This approaches the theoretical limit for resolving (1)H-(1)H couplings, with close to natural linewidths and with only chemical shifts in F2. With the same high sensitivity and spectral purity as the parent PSYCHE pure shift experiment, PSYCHEDELIC offers a robust method for chemists seeking to exploit couplings for structural, conformational, or stereochemical analyses.

  2. A General Method for Extracting Individual Coupling Constants from Crowded 1H NMR Spectra

    PubMed Central

    Foroozandeh, Mohammadali; Nilsson, Mathias; Morris, Gareth A.

    2015-01-01

    Abstract Couplings between protons, whether scalar or dipolar, provide a wealth of structural information. Unfortunately, the high number of 1H‐1H couplings gives rise to complex multiplets and severe overlap in crowded spectra, greatly complicating their measurement. Many different methods exist for disentangling couplings, but none approaches optimum resolution. Here, we present a general new 2D J‐resolved method, PSYCHEDELIC, in which all homonuclear couplings are suppressed in F 2, and only the couplings to chosen spins appear, as simple doublets, in F 1. This approaches the theoretical limit for resolving 1H‐1H couplings, with close to natural linewidths and with only chemical shifts in F 2. With the same high sensitivity and spectral purity as the parent PSYCHE pure shift experiment, PSYCHEDELIC offers a robust method for chemists seeking to exploit couplings for structural, conformational, or stereochemical analyses. PMID:26636773

  3. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    PubMed Central

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  4. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity.

    PubMed

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  5. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity.

    PubMed

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-07-03

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

  6. Evaluation of the User Strategy on 2d and 3d City Maps Based on Novel Scanpath Comparison Method and Graph Visualization

    NASA Astrophysics Data System (ADS)

    Dolezalova, J.; Popelka, S.

    2016-06-01

    The paper is dealing with scanpath comparison of eye-tracking data recorded during case study focused on the evaluation of 2D and 3D city maps. The experiment contained screenshots from three map portals. Two types of maps were used - standard map and 3D visualization. Respondents' task was to find particular point symbol on the map as fast as possible. Scanpath comparison is one group of the eye-tracking data analyses methods used for revealing the strategy of the respondents. In cartographic studies, the most commonly used application for scanpath comparison is eyePatterns that output is hierarchical clustering and a tree graph representing the relationships between analysed sequences. During an analysis of the algorithm generating a tree graph, it was found that the outputs do not correspond to the reality. We proceeded to the creation of a new tool called ScanGraph. This tool uses visualization of cliques in simple graphs and is freely available at www.eyetracking.upol.cz/scangraph. Results of the study proved the functionality of the tool and its suitability for analyses of different strategies of map readers. Based on the results of the tool, similar scanpaths were selected, and groups of respondents with similar strategies were identified. With this knowledge, it is possible to analyse the relationship between belonging to the group with similar strategy and data gathered from the questionnaire (age, sex, cartographic knowledge, etc.) or type of stimuli (2D, 3D map).

  7. Changes in the Capillarity of the Rat Extensor Digitorum Longus Muscle 4 Weeks after Nerve Injury Studied by 2D Measurement Methods.

    PubMed

    Čebašek, Vita; Ribarič, Samo

    2016-01-01

    We have previously shown by 3D study that 2 weeks after nerve injury there was no change in the length of capillaries per muscle fibre length in rat extensor digitorum longus muscle (EDL). The primary goal of the present 2D study was to determine the capillarity of rat EDL 4 weeks after various modes of nerve injury. Additionally, we wished to calculate the same capillary/fibre parameters that were used in our 3D stereological study. EDL muscles derived from denervated (4 weeks after nerve injury), re-innervated (4 weeks after two successive nerve crushes) and age-matched controls from the beginning (CON-1) and the end (CON-2) of the experiment were analysed in two ways. Global indices of capillarity, such as capillary density (CD) and capillary/fibre (C/F) ratio, were determined by automatic analysis, local indices as the number (CAF) and the length of capillaries around individual muscle fibres (Lcap) in relation to muscle fibre size were estimated manually by tracing the muscle fibre outlines and the transversally and longitudinally cut segments of capillaries seen in 5-µm-thin muscle cross sections. Four weeks after both types of nerve injury, CD increased in comparison to the CON-2 group (p < 0.001) due to atrophied muscle fibres in denervated muscles and probably proliferation of capillaries in re-innervated ones. Higher C/F, CAF (both p < 0.001) and Lcap (p < 0.01) in re-innervated than denervated EDL confirmed this assumption. Calculated capillary/fibre parameters were comparable to our previous 3D study, which strengthens the practical value to the adapted 2D method used in this study.

  8. Changes in the Capillarity of the Rat Extensor Digitorum Longus Muscle 4 Weeks after Nerve Injury Studied by 2D Measurement Methods.

    PubMed

    Čebašek, Vita; Ribarič, Samo

    2016-01-01

    We have previously shown by 3D study that 2 weeks after nerve injury there was no change in the length of capillaries per muscle fibre length in rat extensor digitorum longus muscle (EDL). The primary goal of the present 2D study was to determine the capillarity of rat EDL 4 weeks after various modes of nerve injury. Additionally, we wished to calculate the same capillary/fibre parameters that were used in our 3D stereological study. EDL muscles derived from denervated (4 weeks after nerve injury), re-innervated (4 weeks after two successive nerve crushes) and age-matched controls from the beginning (CON-1) and the end (CON-2) of the experiment were analysed in two ways. Global indices of capillarity, such as capillary density (CD) and capillary/fibre (C/F) ratio, were determined by automatic analysis, local indices as the number (CAF) and the length of capillaries around individual muscle fibres (Lcap) in relation to muscle fibre size were estimated manually by tracing the muscle fibre outlines and the transversally and longitudinally cut segments of capillaries seen in 5-µm-thin muscle cross sections. Four weeks after both types of nerve injury, CD increased in comparison to the CON-2 group (p < 0.001) due to atrophied muscle fibres in denervated muscles and probably proliferation of capillaries in re-innervated ones. Higher C/F, CAF (both p < 0.001) and Lcap (p < 0.01) in re-innervated than denervated EDL confirmed this assumption. Calculated capillary/fibre parameters were comparable to our previous 3D study, which strengthens the practical value to the adapted 2D method used in this study. PMID:27023720

  9. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  10. Review of NMR characterization of pyrolysis oils

    DOE PAGES

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  11. Enhancing NMR of insensitive nuclei by transfer of SABRE spin hyperpolarization

    NASA Astrophysics Data System (ADS)

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L.

    2016-09-01

    We describe the performance of methods for enhancing NMR (Nuclear Magnetic Resonance) signals of "insensitive", but important NMR nuclei, which are based on the SABRE (Signal Amplification By Reversible Exchange) technique, i.e., on spin order transfer from parahydrogen (H2 molecule in its nuclear singlet spin state) to a substrate in a transient organometallic complex. Here such transfer is performed at high magnetic fields by INEPT-type NMR pulse sequences, modified for SABRE. Signal enhancements up to three orders of magnitude are obtained for 15N nuclei; the possibility of sensitive detection of 2D-NMR 1H-15N spectra of SABRE complexes and substrates is demonstrated.

  12. Push-through direct injection NMR: an optimized automation method applied to metabolomics

    EPA Science Inventory

    There is a pressing need to increase the throughput of NMR analysis in fields such as metabolomics and drug discovery. Direct injection (DI) NMR automation is recognized to have the potential to meet this need due to its suitability for integration with the 96-well plate format. ...

  13. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements. PMID:27100169

  14. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van't Veld, A. A.; Korevaar, E. W.

    2016-05-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU’s for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  15. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van’t Veld, A. A.; Korevaar, E. W.

    2016-05-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  ‑10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU’s for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  16. Form finding and analysis of extensible membranes attached to 2-D and 3-D frames intended for micro air vehicles via experimentally validated finite element methods

    NASA Astrophysics Data System (ADS)

    Abudaram, Yaakov Jack

    This work is concerned with a new method to apply consistent and known pretension to silicone rubber membranes intended for micro air vehicles as well as an understanding in the science of developed pre-tension in membranes constrained by 2- D and 3-D frames and structures. Pre-tension has a marked effect on the static and dynamic response of membrane wings and controls the overall deflections, as such control and measurement of the membrane pre-tension is important. Two different 2-D frame geometries were fabricated to evaluate the technique. For open-cell frames, the pretension was not uniform, whereas it was for closed-cell frames. Results show developed full-field stress and strain fields as a function of membrane attachment temperature and frame geometry along with experimental iterations to prove repeatability. The membranes can be stretched to a specific pretension according to the temperature at which it adheres to frames. Strain fields in membranes attached to 3-D frames at various temperatures are modeled through FEA utilizing Abaqus to be able to predict the developed membrane deformations, stresses, and strains. Rigid frames with various curvatures are built via appropriate molds and then adhered to silicone rubber membranes and elevated to various temperatures to achieve different pre-strains for experimental validation. Additional experiments are conducted for more complex frame geometries involving both convex and concave topologies embedded within frames. Results are then compared with the Abaqus outputs to validate the accuracy of the FEA model. Highly compliant wings have been used for MAV platforms, where the wing structure is determined by some combination of carbon fiber composites and a membrane skin, adhered in between the layers of composite material. Another new technique of attaching membranes firmly on wing structures is introduced, which involves the application of a technology known as corona treatment coupled with another method of

  17. Solid-state NMR as an effective method of polymorphic analysis: solid dosage forms of clopidogrel hydrogensulfate.

    PubMed

    Pindelska, Edyta; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Mazurek, Andrzej; Kolodziejski, Waclaw

    2015-01-01

    Clopidogrel hydrogensulfate (HSCL) is an antiplatelet agent, one of top-selling drugs in the world. In this paper, we have described a rapid and convenient method of verification which polymorph of HSCL is present in its final solid dosage form. Our methodology based on solid-state NMR spectroscopy and ab initio gauge-including projector-augmented wave calculations of NMR shielding constants is appropriate for currently available commercial solid dosage forms of HSCL. Furthermore, such structural characterization can assist with the development of new pharmaceutical products containing HSCL and also be useful in the identification of counterfeit drugs.

  18. Solid-state NMR as an effective method of polymorphic analysis: solid dosage forms of clopidogrel hydrogensulfate.

    PubMed

    Pindelska, Edyta; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Mazurek, Andrzej; Kolodziejski, Waclaw

    2015-01-01

    Clopidogrel hydrogensulfate (HSCL) is an antiplatelet agent, one of top-selling drugs in the world. In this paper, we have described a rapid and convenient method of verification which polymorph of HSCL is present in its final solid dosage form. Our methodology based on solid-state NMR spectroscopy and ab initio gauge-including projector-augmented wave calculations of NMR shielding constants is appropriate for currently available commercial solid dosage forms of HSCL. Furthermore, such structural characterization can assist with the development of new pharmaceutical products containing HSCL and also be useful in the identification of counterfeit drugs. PMID:25393324

  19. Composition and Quantitation of Microalgal Lipids by ERETIC 1H NMR Method

    PubMed Central

    Nuzzo, Genoveffa; Gallo, Carmela; d’Ippolito, Giuliana; Cutignano, Adele; Sardo, Angela; Fontana, Angelo

    2013-01-01

    Accurate characterization of biomass constituents is a crucial aspect of research in the biotechnological application of natural products. Here we report an efficient, fast and reproducible method for the identification and quantitation of fatty acids and complex lipids (triacylglycerols, glycolipids, phospholipids) in microalgae under investigation for the development of functional health products (probiotics, food ingredients, drugs, etc.) or third generation biofuels. The procedure consists of extraction of the biological matrix by modified Folch method and direct analysis of the resulting material by proton nuclear magnetic resonance (1H NMR). The protocol uses a reference electronic signal as external standard (ERETIC method) and allows assessment of total lipid content, saturation degree and class distribution in both high throughput screening of algal collection and metabolic analysis during genetic or culturing studies. As proof of concept, the methodology was applied to the analysis of three microalgal species (Thalassiosira weissflogii, Cyclotella cryptica and Nannochloropsis salina) which drastically differ for the qualitative and quantitative composition of their fatty acid-based lipids. PMID:24084790

  20. Optimization of cell disruption methods for efficient recovery of bioactive metabolites via NMR of three freshwater microalgae (chlorophyta).

    PubMed

    Ma, Nyuk Ling; Teh, Kit Yinn; Lam, Su Shiung; Kaben, Anne Marie; Cha, Thye San

    2015-08-01

    This study demonstrates the use of NMR techniques coupled with chemometric analysis as a high throughput data mining method to identify and examine the efficiency of different disruption techniques tested on microalgae (Chlorella variabilis, Scenedesmus regularis and Ankistrodesmus gracilis). The yield and chemical diversity from the disruptions together with the effects of pre-oven and pre-freeze drying prior to disruption techniques were discussed. HCl extraction showed the highest recovery of oil compounds from the disrupted microalgae (up to 90%). In contrast, NMR analysis showed the highest intensity of bioactive metabolites obtained for homogenized extracts pre-treated with freeze-drying, indicating that homogenizing is a more favorable approach to recover bioactive substances from the disrupted microalgae. The results show the potential of NMR as a useful metabolic fingerprinting tool for assessing compound diversity in complex microalgae extracts. PMID:25812996

  1. Comparison of Flow Injection MS, NMR, and DNA Sequencing: Methods for Identification and Authentication of Black Cohosh (Actaea racemosa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow injection mass spectrometry (FIMS) and proton nuclear magnetic resonance spectrometry (1H-NMR), two metabolic fingerprinting methods, and DNA sequencing were used to identify and authenticate Actaea species. Initially, samples of Actaea racemosa L. from a single source were distinguished from ...

  2. An optimized and validated (1)H NMR method for the quantification of α-pinene in essentials oils.

    PubMed

    Cerceau, Cristiane I; Barbosa, Luiz C A; Filomeno, Claudinei A; Alvarenga, Elson S; Demuner, Antônio J; Fidencio, Paulo H

    2016-04-01

    The authenticity and composition of commercial essential oils requires strict quality control. Due to the importance of α-pinene containing essential oils, a rapid and efficient method for quantification of this terpene in oils of eucalyptus, pink pepper and turpentine using (1)H NMR was developed and validated. All evaluated parameters (selectivity, linearity, accuracy/precision, repeatability, robustness, stability of analyte and internal standard in solutions) showed satisfactory results. The limit of detection (LOD) and limit of quantification (LOQ) were 0.1 and 2.5mg respectively. These values indicated that α-pinene was detected in 35 mg samples containing at least 0.3% of this compound. In addition, a minimum of 8% of α-pinene in the sample was required for quantification. Furthermore, the standard deviations found in the (1)H NMR methodology were less than 1% and were lower than those obtained by gas chromatographic analysis. Statistical tests have shown that the results obtained by (1)H NMR methodology are similar to those obtained by GC-FID technique using external and internal standardization and normalization within 95% confidence. R&R values lower than 10% have shown that all the methods are appropriate and the (1)H NMR method is suitable for quantification of α-pinene in samples of essential oils since this method possessed the smallest R&R (1.81) value. PMID:26838386

  3. pySeismicFMM: Python based travel time calculation in regular 2D and 3D grids in Cartesian and geographic coordinates using Fast Marching Method

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin

    2016-04-01

    Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  4. Carbon-13 NMR of glycogen: Hydration response studied by using solids methods

    SciTech Connect

    Jackson, C.L.; Bryant, R.G. )

    1989-06-13

    The carbon-13 NMR spectra of glycogen are reported by using the methods of magic-angle sample spinning and high-power proton decoupling to provide a dynamic report on the glucose monomer behavior as a function of hydration. Although the glycogen behaves as a typical polymer in the dry state, addition of water makes a significant difference in the spectral appearance. Water addition decreases the carbon spin-lattice relaxation times by 2 orders of magnitude over the range from 7% to 70% water by weight. The proton-carbon dipole-dipole coupling, which broadens the carbon spectrum and permits cross-polarization spectroscopy, is lost with increasing hydration over this range. By 60% water by weight, scalar decoupling methods are sufficient to achieve a reasonably high-resolution spectrum. Further, at this concentration, the carbon spin-lattice relaxation times are near their minimum values at a resonance frequency of 50.3 MHz, making acquisition of carbon spectra relatively insensitive to intensity distortions associated with saturation effects. Though motional averaging places the spectrum in the solution phase limit, the static spectrum shows a residual broader component that would not necessarily be detected readily by using high-resolution liquid-state experiments.

  5. Rapid method for monitoring chitosan coagulation using low-field NMR relaxometry.

    PubMed

    Kock, Flávio Vinicius Crizóstomo; Colnago, Luiz Alberto

    2016-10-01

    Time-domain NMR relaxometry was proposed as a simple, rapid method to monitor chitosan (CS) coagulation as a function of pH. The longitudinal (T1) and transverse (T2) relaxation times of three CS concentrations (0.022, 0.22, and 2.2gL(-1)) were simultaneously measured by CP-CWFPx-x pulse sequences in a 0.47T spectrometer. T1 and T2 were shown to be independent of pH as well as to assume values similar to the relaxation time of water (2.7s) at the lowest tested CS concentration. At the highest concentration, T1 increased whereas T2 decreased as pH varied from 6.0 to 7.0. This indicates a remarkable effect of CS on water relaxation at pH values higher than the pKa of CS amino groups (6.5). Therefore, CS reduced the water mobility at the highest CS concentration and greatest pH values, suggesting a CS supramolecular structure (gel) that entraps the solvent in confined regions. The method proposed here can be further used to study the coagulation of other polysaccharides. PMID:27312606

  6. Efficacy of very fast simulated annealing global optimization method for interpretation of self-potential anomaly by different forward formulation over 2D inclined sheet type structure

    NASA Astrophysics Data System (ADS)

    Biswas, A.; Sharma, S. P.

    2012-12-01

    best result without any ambiguity and smaller uncertainty. Keywords: SP anomaly, inclined sheet, 2D structure, forward problems, VFSA Optimization,

  7. Development of a rapid method for the quantification of cellulose in tobacco by (13)C CP/MAS NMR.

    PubMed

    Jiang, Jinhui; Hu, Yonghua; Tian, Zhenfeng; Chen, Kaibo; Ge, Shaolin; Xu, Yingbo; Tian, Dong; Yang, Jun

    2016-01-01

    A method was developed for rapid quantitative determination of cellulose in tobacco by utilizing (13)C cross polarization magic angle spinning NMR spectroscopy ((13)C CP/MAS NMR). Sample powder was loaded into NMR rotor, which was customized rotor containing a matched silicon tube as an intensity reference. (13)C CP/MAS NMR spectra of tobacco samples were processed with spectral deconvolution to obtain the area of the C-1 resonance at 105.5ppm and the internal standard at 0ppm. The ratio between the area of 105.5ppm and 0ppm of a set of standard cellulose samples was used to construct a calibration curve. The cellulose content of a tobacco sample was determined by comparison of the ratio between the area of 105.5ppm and 0ppm to the calibration curve. Results of this developed method showed good agreement with those obtained from chemical analysis. The proposed method has such advantages of accuracy, quickness and efficiency, and could be an alternative to chemical analyses of cellulose.

  8. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis.

    PubMed

    Ahola, Susanna; Zhivonitko, Vladimir V; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V; Telkki, Ville-Veikko

    2015-09-18

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

  9. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    PubMed Central

    Ahola, Susanna; Zhivonitko, Vladimir V; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-01-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR. PMID:26381101

  10. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    NASA Astrophysics Data System (ADS)

    Ahola, Susanna; Zhivonitko, Vladimir V.; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-09-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

  11. The yearly rate of Relative Thalamic Atrophy (yrRTA): a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis

    PubMed Central

    Menéndez-González, Manuel; Salas-Pacheco, José M.; Arias-Carrión, Oscar

    2014-01-01

    Despite a strong correlation to outcome, the measurement of gray matter (GM) atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS). This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meanings of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the “yearly rate of Relative Thalamic Atrophy” (yrRTA). In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications. PMID:25206331

  12. The yearly rate of Relative Thalamic Atrophy (yrRTA): a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis.

    PubMed

    Menéndez-González, Manuel; Salas-Pacheco, José M; Arias-Carrión, Oscar

    2014-01-01

    Despite a strong correlation to outcome, the measurement of gray matter (GM) atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS). This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meanings of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the "yearly rate of Relative Thalamic Atrophy" (yrRTA). In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications.

  13. The yearly rate of Relative Thalamic Atrophy (yrRTA): a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis.

    PubMed

    Menéndez-González, Manuel; Salas-Pacheco, José M; Arias-Carrión, Oscar

    2014-01-01

    Despite a strong correlation to outcome, the measurement of gray matter (GM) atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS). This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meanings of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the "yearly rate of Relative Thalamic Atrophy" (yrRTA). In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications. PMID:25206331

  14. Propagator-resolved 2D exchange in porous media in the inhomogeneous magnetic field.

    PubMed

    Burcaw, Lauren M; Hunter, Mark W; Callaghan, Paul T

    2010-08-01

    We present a propagator-resolved 2D exchange spectroscopy technique for observing fluid motion in a porous medium. The susceptibility difference between the matrix and the fluid is exploited to produce an inhomogeneous internal magnetic field, causing the Larmor frequency to change as molecules migrate. We test our method using a randomly packed monodisperse 100 microm diameter glass bead matrix saturated with distilled water. Building upon previous 2D exchange spectroscopy work we add a displacement dimension which allows us to obtain 2D exchange spectra that are defined by both mixing time and spatial displacement rather than by mixing time alone. We also simulate our system using a Monte Carlo process in a random nonpenetrating monodisperse bead pack, finding good agreement with experiment. A simple analytic model is used to interpret the NMR data in terms of a characteristic length scale over which molecules must diffuse to sample the inhomogeneous field distribution. PMID:20554230

  15. TH-C-19A-01: Analytic Design Method to Make a 2D Planar, Segmented Ion Chamber Water-Equivalent for Proton Dose Measurements

    SciTech Connect

    Harris, W; Hollebeek, R; Teo, B; Maughan, R; Dolney, D

    2014-06-15

    Purpose: Quality Assurance (QA) measurements of proton therapy fields must accurately measure steep longitudinal dose gradients as well as characterize the dose distribution laterally. Currently, available devices for two-dimensional field measurements perturb the dose distribution such that routine QA measurements performed at multiple depths require multiple field deliveries and are time consuming. Methods: A design procedure for a two-dimensional detector array is introduced whereby the proton energy loss and scatter are adjusted so that the downstream dose distribution is maintained to be equivalent to that which would occur in uniform water. Starting with the design for an existing, functional two-dimensional segmented ion chamber prototype, a compensating material is introduced downstream of the detector to simultaneously equate the energy loss and lateral scatter in the detector assembly to the values in water. An analytic formalism and procedure is demonstrated to calculate the properties of the compensating material in the general case of multiple layers of arbitrary material. The resulting design is validated with Monte Carlo simulations. Results: With respect to the specific prototype design considered, the results indicate that a graphite compensating layer of the proper dimensions can yield proton beam range perturbation less than 0.1mm and beam sigma perturbation less than 2% across the energy range of therapeutic proton beams. Conclusion: We have shown that, for a 2D gas-filled detector array, a graphite-compensating layer can balance the energy loss and multiple Coulomb scattering relative to uniform water. We have demonstrated an analytic formalism and procedure to determine a compensating material in the general case of multiple layers of arbitrary material. This work was supported by the US Army Medical Research and Materiel Command under Contract Agreement No. DAMD17-W81XWH-04-2-0022. Opinions, interpretations, conclusions and recommendations

  16. Application of a quantitative (1)H-NMR method for the determination of paeonol in Moutan cortex, Hachimijiogan and Keishibukuryogan.

    PubMed

    Tanaka, Rie; Shibata, Hikari; Sugimoto, Naoki; Akiyama, Hiroshi; Nagatsu, Akito

    2016-10-01

    Quantitative (1)H-NMR ((1)H-qNMR) was applied to the determination of paeonol concentration in Moutan cortex, Hachimijiogan, and Keishibukuryogan. Paeonol is a major component of Moutan cortex, and its purity was calculated from the ratio of the intensity of the paeonol H-3' signal at δ 6.41 ppm in methanol-d 4 or 6.40 ppm in methanol-d 4 + TFA-d to that of a hexamethyldisilane (HMD) signal at 0 ppm. The concentration of HMD was corrected with SI traceability by using potassium hydrogen phthalate of certified reference material grade. As a result, the paeonol content in two lots of Moutan cortex as determined by (1)H-qNMR was found to be 1.59 % and 1.62 %, respectively, while the paeonol content in Hachimijiogan and Keishibukuryogan was 0.15 % and 0.22 %, respectively. The present study demonstrated that the (1)H-NMR method is useful for the quantitative analysis of crude drugs and Kampo formulas. PMID:27164909

  17. N- versus O-alkylation: utilizing NMR methods to establish reliable primary structure determinations for drug discovery.

    PubMed

    LaPlante, Steven R; Bilodeau, François; Aubry, Norman; Gillard, James R; O'Meara, Jeff; Coulombe, René

    2013-08-15

    A classic synthetic issue that remains unresolved is the reaction that involves the control of N- versus O-alkylation of ambident anions. This common chemical transformation is important for medicinal chemists, who require predictable and reliable protocols for the rapid synthesis of inhibitors. The uncertainty of whether the product(s) are N- and/or O-alkylated is common and can be costly if undetermined. Herein, we report an NMR-based strategy that focuses on distinguishing inhibitors and intermediates that are N- or O-alkylated. The NMR strategy involves three independent and complementary methods. However, any combination of two of the methods can be reliable if the third were compromised due to resonance overlap or other issues. The timely nature of these methods (HSQC/HMQC, HMBC. ROESY, and (13)C shift predictions) allows for contemporaneous determination of regioselective alkylation as needed during the optimization of synthetic routes.

  18. Determination of substitution positions in hyaluronic acid hydrogels using NMR and MS based methods.

    PubMed

    Wende, Frida J; Gohil, Suresh; Mojarradi, Hotan; Gerfaud, Thibaud; Nord, Lars I; Karlsson, Anders; Boiteau, Jean-Guy; Kenne, Anne Helander; Sandström, Corine

    2016-01-20

    In hydrogels of cross-linked polysaccharides, the total amount of cross-linker and the degree of cross-linking influence the properties of the hydrogel. The substitution position of the cross-linker on the polysaccharide is another parameter that can influence hydrogel properties; hence methods for detailed structural analysis of the substitution pattern are required. NMR and LC-MS methods were developed to determine the positions and amounts of substitution of 1,4-butanediol diglycidyl ether (BDDE) on hyaluronic acid (HA), and for the first time it is shown that BDDE can react with any of the four available hydroxyl groups of the HA disaccharide repeating unit. This was achieved by studying di-, tetra-, and hexasaccharides obtained from degradation of BDDE cross-linked HA hydrogel by chondroitinase. Furthermore, amount of linker substitution at each position was shown to be dependent on the size of the oligosaccharides. For the disaccharide, substitutions were predominantly at ΔGlcA-OH2 and GlcNAc-OH6 while in the tetra- and hexasaccharides, it was mainly at the reducing end GlcNAc-OH4. In the disaccharide there was no substitution at this position. Since chondroitinase is able to completely hydrolyse non-substituted HA into unsaturated disaccharides, these results indicate that the enzyme is prevented to cleave on the non-reducing side of an oligosaccharide substituted at the reducing end GlcNAc-OH4. The procedure can be adopted for the determination of substitution positions in other types of polymers. PMID:26572480

  19. Use of marginal distributions constrained optimization (MADCO) for accelerated 2D MRI relaxometry and diffusometry

    NASA Astrophysics Data System (ADS)

    Benjamini, Dan; Basser, Peter J.

    2016-10-01

    Measuring multidimensional (e.g., 2D) relaxation spectra in NMR and MRI clinical applications is a holy grail of the porous media and biomedical MR communities. The main bottleneck is the inversion of Fredholm integrals of the first kind, an ill-conditioned problem requiring large amounts of data to stabilize a solution. We suggest a novel experimental design and processing framework to accelerate and improve the reconstruction of such 2D spectra that uses a priori information from the 1D projections of spectra, or marginal distributions. These 1D marginal distributions provide powerful constraints when 2D spectra are reconstructed, and their estimation requires an order of magnitude less data than a conventional 2D approach. This marginal distributions constrained optimization (MADCO) methodology is demonstrated here with a polyvinylpyrrolidone-water phantom that has 3 distinct peaks in the 2D D-T1 space. The stability, sensitivity to experimental parameters, and accuracy of this new approach are compared with conventional methods by serially subsampling the full data set. While the conventional, unconstrained approach performed poorly, the new method had proven to be highly accurate and robust, only requiring a fraction of the data. Additionally, synthetic T1 -T2 data are presented to explore the effects of noise on the estimations, and the performance of the proposed method with a smooth and realistic 2D spectrum. The proposed framework is quite general and can also be used with a variety of 2D MRI experiments (D-T2,T1 -T2, D -D, etc.), making these potentially feasible for preclinical and even clinical applications for the first time.

  20. Use of marginal distributions constrained optimization (MADCO) for accelerated 2D MRI relaxometry and diffusometry.

    PubMed

    Benjamini, Dan; Basser, Peter J

    2016-10-01

    Measuring multidimensional (e.g., 2D) relaxation spectra in NMR and MRI clinical applications is a holy grail of the porous media and biomedical MR communities. The main bottleneck is the inversion of Fredholm integrals of the first kind, an ill-conditioned problem requiring large amounts of data to stabilize a solution. We suggest a novel experimental design and processing framework to accelerate and improve the reconstruction of such 2D spectra that uses a priori information from the 1D projections of spectra, or marginal distributions. These 1D marginal distributions provide powerful constraints when 2D spectra are reconstructed, and their estimation requires an order of magnitude less data than a conventional 2D approach. This marginal distributions constrained optimization (MADCO) methodology is demonstrated here with a polyvinylpyrrolidone-water phantom that has 3 distinct peaks in the 2D D-T1 space. The stability, sensitivity to experimental parameters, and accuracy of this new approach are compared with conventional methods by serially subsampling the full data set. While the conventional, unconstrained approach performed poorly, the new method had proven to be highly accurate and robust, only requiring a fraction of the data. Additionally, synthetic T1-T2 data are presented to explore the effects of noise on the estimations, and the performance of the proposed method with a smooth and realistic 2D spectrum. The proposed framework is quite general and can also be used with a variety of 2D MRI experiments (D-T2,T1-T2,D-D, etc.), making these potentially feasible for preclinical and even clinical applications for the first time. PMID:27543810

  1. Method of Continuous Variation: Characterization of Alkali Metal Enolates Using 1H and 19F NMR Spectroscopies

    PubMed Central

    2015-01-01

    The method of continuous variation in conjunction with 1H and 19F NMR spectroscopies was used to characterize lithium and sodium enolates solvated by N,N,N′,N′-tetramethylethyldiamine (TMEDA) and tetrahydrofuran (THF). A strategy developed using lithium enolates was then applied to the more challenging sodium enolates. A number of sodium enolates solvated by TMEDA or THF afford exclusively tetramers. Evidence suggests that TMEDA chelates sodium on cubic tetramers. PMID:24915602

  2. A Rapid and Efficient 2D/3D Nuclear Segmentation Method for Analysis of Early Mouse Embryo and Stem Cell Image Data

    PubMed Central

    Lou, Xinghua; Kang, Minjung; Xenopoulos, Panagiotis; Muñoz-Descalzo, Silvia; Hadjantonakis, Anna-Katerina

    2014-01-01

    Summary Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses. PMID:24672759

  3. Structural determination of oligosaccharides derived from lipooligosaccharide of Neisseria gonorrhoeae F62 by chemical, enzymatic, and two-dimensional NMR methods

    SciTech Connect

    Yamasaki, Ryohei; Nasholds, W.; Griffiss, J.M. Veterans Administration Medical Center, San Francisco, CA ); Bacon, B.E. ); Schneider, H. )

    1991-10-29

    F62 LOS of Neisseria gonorrhoeae consists of two major LOS components; the higher and smaller molecular weight (MW) components were recognized by MAbs 1-1-M and 3F11 respectively. Base-line separation of the two major oligosaccharide (OS) components from F62 LOS was achieved by Bio-Gel P-4 chromatography after dephosphorylation of the OS mixture. The structures of the two major OSs were studied by chemical, enzymatic, and 2D NMR methods as well as methylation followed by GC/MS analysis. The OS component derived from the MAb 1-1-M defined LOS component was determined to have a V{sup 3}-({beta}-N-acetylgalactosaminyl)neolactotetraose structure at one of its nonreducing termini. The OS component derived from the MAb 3F11 defined LOS component did not have a GalNAc residue. The rest of its structure was identical to that of the OS-1, and a neolactotetraose is exposed at its nonreducing terminus.

  4. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  5. Large Area 2D and 3D Colloidal Photonic Crystals Fabricated by a Roll-to-Roll Langmuir-Blodgett Method.

    PubMed

    Parchine, Mikhail; McGrath, Joe; Bardosova, Maria; Pemble, Martyn E

    2016-06-14

    We present our results on the fabrication of large area colloidal photonic crystals on flexible poly(ethylene terephthalate) (PET) film using a roll-to-roll Langmuir-Blodgett technique. Two-dimensional (2D) and three-dimensional (3D) colloidal photonic crystals from silica nanospheres (250 and 550 nm diameter) with a total area of up to 340 cm(2) have been fabricated in a continuous manner compatible with high volume manufacturing. In addition, the antireflective properties and structural integrity of the films have been enhanced via the use of a second roll-to-roll process, employing a slot-die coating of an optical adhesive over the photonic crystal films. Scanning electron microscopy images, atomic force microscopy images, and UV-vis optical transmission and reflection spectra of the fabricated photonic crystals are analyzed. This analysis confirms the high quality of the 2D and 3D photonic crystals fabricated by the roll-to-roll LB technique. Potential device applications of the large area 2D and 3D colloidal photonic crystals on flexible PET film are briefly reviewed. PMID:27218474

  6. Large Area 2D and 3D Colloidal Photonic Crystals Fabricated by a Roll-to-Roll Langmuir-Blodgett Method.

    PubMed

    Parchine, Mikhail; McGrath, Joe; Bardosova, Maria; Pemble, Martyn E

    2016-06-14

    We present our results on the fabrication of large area colloidal photonic crystals on flexible poly(ethylene terephthalate) (PET) film using a roll-to-roll Langmuir-Blodgett technique. Two-dimensional (2D) and three-dimensional (3D) colloidal photonic crystals from silica nanospheres (250 and 550 nm diameter) with a total area of up to 340 cm(2) have been fabricated in a continuous manner compatible with high volume manufacturing. In addition, the antireflective properties and structural integrity of the films have been enhanced via the use of a second roll-to-roll process, employing a slot-die coating of an optical adhesive over the photonic crystal films. Scanning electron microscopy images, atomic force microscopy images, and UV-vis optical transmission and reflection spectra of the fabricated photonic crystals are analyzed. This analysis confirms the high quality of the 2D and 3D photonic crystals fabricated by the roll-to-roll LB technique. Potential device applications of the large area 2D and 3D colloidal photonic crystals on flexible PET film are briefly reviewed.

  7. 2D materials: to graphene and beyond.

    PubMed

    Mas-Ballesté, Rubén; Gómez-Navarro, Cristina; Gómez-Herrero, Julio; Zamora, Félix

    2011-01-01

    This review is an attempt to illustrate the different alternatives in the field of 2D materials. Graphene seems to be just the tip of the iceberg and we show how the discovery of alternative 2D materials is starting to show the rest of this iceberg. The review comprises the current state-of-the-art of the vast literature in concepts and methods already known for isolation and characterization of graphene, and rationalizes the quite disperse literature in other 2D materials such as metal oxides, hydroxides and chalcogenides, and metal-organic frameworks.

  8. Cancellous bone lamellae strongly affect microcrack propagation and apparent mechanical properties: Separation of patients with osteoporotic fracture from normal controls using a 2D nonlinear finite element method (biomechanical stereology)

    PubMed Central

    Wang, Xiang; Zauel, Roger R.; Rao, D. Sudhaker; Fyhrie, David P.

    2009-01-01

    Biomechanical stereology is proposed as a two-dimensional (2D) finite element (FE) method to estimate the ability of bone tissue to sustain damage and to separate patients with osteoporotic fracture from normal controls. Briefly, 2D nonlinear compact tension FE models were created from quantitative back scattered electron images taken of iliac crest bone specimens collected from the individuals with or without osteoporotic fracture history. The effects of bone mineral microstructure on predicted bone fracture toughness and microcrack propagation were examined. The 2D FE models were used as surrogates for the real bone tissues. The calculated microcrack propagation results and bone mechanical properties were examined as surrogates for measurements from mechanical testing of actual specimens. The results for the 2D FE simulation separated patients with osteoporotic fracture from normal controls even though only the variability in tissue mineral microstructure was used to build the models. The models were deliberately created to ignore all differences in mean mineralization. Hence, the current results support the following hypotheses: (1) that material heterogeneity is important to the separation of patients with osteoporotic fracture from normal controls and; and (2) that 2D nonlinear finite element modeling can produce surrogate mechanical parameters that separate patients with fracture from normal controls. PMID:18378204

  9. Two dimensional NMR spectroscopic approaches for exploring plant metabolome: A review

    PubMed Central

    Mahrous, Engy A.; Farag, Mohamed A.

    2014-01-01

    Today, most investigations of the plant metabolome tend to be based on either nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry (MS), with or without hyphenation with chromatography. Although less sensitive than MS, NMR provides a powerful complementary technique for the identification and quantification of metabolites in plant extracts. NMR spectroscopy, well appreciated by phytochemists as a particularly information-rich method, showed recent paradigm shift for the improving of metabolome(s) structural and functional characterization and for advancing the understanding of many biological processes. Furthermore, two dimensional NMR (2D NMR) experiments and the use of chemometric data analysis of NMR spectra have proven highly effective at identifying novel and known metabolites that correlate with changes in genotype or phenotype. In this review, we provide an overview of the development of NMR in the field of metabolomics with special focus on 2D NMR spectroscopic techniques and their applications in phytomedicines quality control analysis and drug discovery from natural sources, raising more attention at its potential to reduce the gap between the pace of natural products research and modern drug discovery demand. PMID:25685540

  10. NMR Mechanisms and Fluid Typing Based on Numerical Simulation in Gas-Bearing Shale

    NASA Astrophysics Data System (ADS)

    Tan, M.; Xu, J.; Wang, X.

    2013-12-01

    In Nuclear Magnetic Resonance (NMR) survey of oil- or gas-bearing shales, the relaxation is so fast and the diffusion is so low, and oil or gas typing is difficult to distinguish from each other using the previous analysis method. To study the NMR responses in gas-bearing shale, we supposed an ideal shale model including incredible water, free and adsorbed gas, and kerogen. Firstly, we supposed a series of ideal shale models with incredible water, free and adsorbed gas, and kerogen. Then, some simulations are performed for two-dimensional T2-D plots, and NMR characteristics are summarized successfully. Then, a series of simulations of different models with different adsorbed gas fractions are made, and the NMR responses are analyzed, from which we can identify the adsorbed gas and free gas. In inversion, a hybrid method with LSQR and TSVD is proved suitable for D-T2 NMR of gas shale with slow and fast diffusion, and short and long relaxation. It is noticed that the activation sequence of NMR is also important for accurate fluid typing in gas-bearing shale. We design a series of activation sequences, and simulate the corresponding NMR echo decays, and invert the fluid properties to search for an optimal activation sequence for fluid typing purpose. Figure 1 SEM picture and petrophysical model of organic shale. (a) 2D SEM shows pore and kerogen within shale. Black deposits pore, and dark gray is kerogen, light grey is matrix including clay and silica; (b) Petrophysical model Figure 2 Comparison of 2D-NMR simulations with different adsorbed gas fractions, (a) ɛ =0.0, (b) ɛ =0.2, (c) ɛ=0.4, t (d) ɛ =0.6, (e) ɛ =0.8, and (f) ɛ=1.0. From D-T2 plots, the position and amplitude of signals in T2-D plots indicate the fluid typing and fraction of the gas or adsorbed gas.

  11. N-15 NMR Spectroscopy as a Method for Comparing the Rates of Imidization of Several Diamines

    NASA Technical Reports Server (NTRS)

    Johnson, J. Christopher; Kuczmarski, Maria A.

    2006-01-01

    The relative rates of the conversion of amide-acid to imide was measured for a series or aromatic diamines that have been identified as potential replacements for 4,4'-methylene dianiline (MDA) in high-temperature polyimides and polymer composites. These rates were compared with the N-15 NMR resonances of the unreacted amines. The initial rates of imidization track with the difference in chemical shift between the amine nitrogens in MDA and those in the subject diamines. This comparison demonstrated that N-15 NMR spectroscopy is appropriate for the rapid screening of candidate diamines to determine their reactivity relative to MDA, and can serve to provide guidance to the process of creating the time-temperature profiles used in processing these materials into polymer matrix composites.

  12. Application of NMR Methods to Identify Detection Reagents for Use in the Development of Robust Nanosensors

    SciTech Connect

    Cosman, M; Krishnan, V V; Balhorn, R

    2004-04-29

    Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique for studying bi-molecular interactions at the atomic scale. Our NMR lab is involved in the identification of small molecules, or ligands that bind to target protein receptors, such as tetanus (TeNT) and botulinum (BoNT) neurotoxins, anthrax proteins and HLA-DR10 receptors on non-Hodgkin's lymphoma cancer cells. Once low affinity binders are identified, they can be linked together to produce multidentate synthetic high affinity ligands (SHALs) that have very high specificity for their target protein receptors. An important nanotechnology application for SHALs is their use in the development of robust chemical sensors or biochips for the detection of pathogen proteins in environmental samples or body fluids. Here, we describe a recently developed NMR competition assay based on transferred nuclear Overhauser effect spectroscopy (trNOESY) that enables the identification of sets of ligands that bind to the same site, or a different site, on the surface of TeNT fragment C (TetC) than a known ''marker'' ligand, doxorubicin. Using this assay, we can identify the optimal pairs of ligands to be linked together for creating detection reagents, as well as estimate the relative binding constants for ligands competing for the same site.

  13. Digital NMR Profiles as Building Blocks: Assembling 1H Fingerprints of Steviol Glycosides

    PubMed Central

    Napolitano, José G.; Simmler, Charlotte; McAlpine, James B.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2015-01-01

    This report describes a fragment-based approach to the examination of congeneric organic compounds by NMR spectroscopy. The method combines the classic interpretation of 1D- and 2D-NMR data sets with contemporary computer-assisted NMR analysis. Characteristic NMR profiles of key structural motifs were generated by 1H iterative full spin analysis and then joined together as building blocks to recreate the 1H NMR spectra of increasingly complex molecules. To illustrate the methodology described, a comprehensive analysis of steviol (1), seven steviol glycosides (2–8) and two structurally related isosteviol compounds (9, 10) was carried out. The study also assessed the potential impact of this method on relevant aspects of natural product research including structural verification, chemical dereplication, and mixture analysis. PMID:25714117

  14. Digital NMR profiles as building blocks: assembling ¹H fingerprints of steviol glycosides.

    PubMed

    Napolitano, José G; Simmler, Charlotte; McAlpine, James B; Lankin, David C; Chen, Shao-Nong; Pauli, Guido F

    2015-04-24

    This report describes a fragment-based approach to the examination of congeneric organic compounds by NMR spectroscopy. The method combines the classic interpretation of 1D- and 2D-NMR data sets with contemporary computer-assisted NMR analysis. Characteristic NMR profiles of key structural motifs were generated by (1)H iterative full spin analysis and then joined together as building blocks to recreate the (1)H NMR spectra of increasingly complex molecules. To illustrate the methodology described, a comprehensive analysis of steviol (1), seven steviol glycosides (2-8) and two structurally related isosteviol compounds (9, 10) was carried out. The study also assessed the potential impact of this method on relevant aspects of natural product research including structural verification, chemical dereplication, and mixture analysis. PMID:25714117

  15. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  16. Rough Set Theory as an Interpretable Method for Predicting the Inhibition of Cytochrome P450 1A2 and 2D6.

    PubMed

    Burton, Julien; Petit, Joachim; Danloy, Emeric; Maggiora, Gerald M; Vercauteren, Daniel P

    2013-07-01

    Early prediction of ADME properties such as the cytochrome P450 (CYP) mediated drug-drug interactions is an important challenge in the drug discovery area. In this study, we propose to couple an original data mining approach based on Rough Set Theory (RST) to a structural description of molecules. The latter was achieved by using two types of structural keys: (1) the MACCS keys and (2) a set of five in-house fingerprints based on properties of the electron density distributions of chemical groups. The compounds considered are involved in the inhibition of CYP1A2 and CYP2D6. RST allowed the extraction of rules further used as classifiers to predict the inhibitory profile of an independent set of molecules. The results reached prediction accuracies of 90.6 and 88.2 % for CYP1A2 and CYP2D6, respectively. In addition, these classifiers were analyzed to determine which structural fragments were most used for building the rules, revealing relationships between the occurrence of particular molecular fragments and CYP inhibition. The results assessed RST as a suitable tool to build strongly predictive models and infer structure-activity rules associated with potency.

  17. Quantitation of Compounds in Wine Using (1)H NMR Spectroscopy: Description of the Method and Collaborative Study.

    PubMed

    Godelmann, Rolf; Kost, Christian; Patz, Claus-Dieter; Ristow, Reinhard; Wachter, Helmut

    2016-09-01

    To examine whether NMR analysis is a suitable method for the quantitative determination of wine components, an international collaborative trial was organized to evaluate the method according to the international regulations and guidelines of the German Institute for Standardization/International Organization for Standardization, AOAC INTERNATIONAL, the International Union of Pure and Applied Chemistry, and the International Organization of Vine and Wine. Sugars such as glucose; acids such as malic, acetic, fumaric, and shikimic acids (the latter two as minor components); and sorbic acid, a preservative, were selected for the exemplary quantitative determination of substances in wine. Selection criteria for the examination of sample material included different NMR spectral signal types (singlet and multiplet), as well as the suitability of the proposed substances for manual integration at different levels of challenge (e.g., interference as a result of the necessary suppression of a water signal or the coverage of different typical wine concentration ranges for a selection of major components, minor components, and additives). To show that this method can be universally applied, NMR measurement and the method of evaluation were not strictly elucidated. Fifteen international laboratories participated in the collaborative trial and determined six parameters in 10 samples. The values, in particular the reproducibility SD (SR), were compared with the expected Horwitz SD (SH) by forming the quotient SR/SH (i.e., the HorRat value). The resulting HorRat values of most parameters were predominantly between 0.6 and 1.5, and thus of an acceptable range. PMID:27436715

  18. Nonlinear 2D-IR spectroscopy as a tool to study peptide dynamics

    NASA Astrophysics Data System (ADS)

    Hamm, Peter

    2000-03-01

    The structure of bio-macromolecules (peptides, proteins, enzymes and DNA) crucially defines their function and it is the enormous progress in structure-sensitive methods (NMR, x-ray) which has lead to an extremely detailed microscopic understanding of reactions in biological systems. Our knowledge on the dynamics of these structures, which presumably is as important for the function as the structure itself, is essentially based on computer simulations with essentially no or very indirect experimental feedback. Nonlinear 2D vibrational spectroscopy (2D-IR) on the amide I mode of small globular peptides has been demonstrated recently and a detailed relationship between the static 3D structure and the strength of cross peaks has been established (in analogy to COSY in 2D-NMR spectroscopy). An extension of this technique allows to observe equilibrium fluctuations of model helices by incorporating an additional population period (i.e. 'mixing time'), giving rise to spectral diffusion of the diagonal peaks and incoherent population transfer between excitonic states (the latter being equivalent to the nuclear Overhauser effect, NOESY). In contrast to spin transitions, however, the processes are not in the 'motional narrowing limit' (i. e. τ_c>=T_2) so that the timescales of protein fluctuation can be measured directly on a picosecond timescale and in a site specific manner.

  19. Study of comparative transmission capacity of C-N bond by /sup 19/F NMR method

    SciTech Connect

    Pombrik, S.I.; Polunkin, E.V.; Peregudov, A.S.; Kravtsov, D.N.; Fedin, E.I.

    1982-04-20

    A study was made of the /sup 19/F NMR spectra of a number of free and N-substituted benzylanilines ArCH/sub 2/NHC/sub 6/H/sub 4/F-4 and ArCH/sub 2/N(SO/sub 2/Ph)C/sub 6/H/sub 4/F, respectively. Results indicated that the binuclear bridge grouping CH/sub 2/-N has a high transmission capacity (TC). The addition of an acidic grouping the nitrogen atom has no effect on the TC of the C-N bond.

  20. Integrating Diffraction, Advanced Microscopy and NMR Methods to Explore NOM-Mineral-Cation Interactions

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, R. J.; Bowers, G.; Ferguson, B.; Argersinger, H.; Venkateswara, U.; Arey, B.; Bowden, M. E.

    2014-12-01

    Combined 43Ca nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and helium ion microscopy (HeIM) results provide novel insight into the interactions among NOM mineral (smectite) surfaces, dissolved ions, and water; and the effect of hydration state and pH on these interactions. The molecular-scale 43Ca NMR results for a Ca-smectite-Suwannee River NOM-H2O system suggests that Ca2+ in smectite-NOM composites behaves more like Ca2+ in smectites without NOM than Ca2+ in NOM alone also support the idea that much of the Ca2+ in the composites bridges between the NOM and the mineral surface. The NMR results also show that the NOM protonation state (pH) during composite synthesis has little effect on the local molecular-scale coordination environment and dynamics of Ca2+ and that H2O activity is the most important control of composite basal spacing and ion dynamics. XRD results corroborate the formation of smectite-NOM composites and suggest significant cation-NOM association. With NOM present, there is loss of the (005) smectite reflection; no evidence of amorphous NOM; and growth of a broad peak near 3.5 Å, similar to the spacing observed in the benzene ring stacking of graphene. The XRD results also show that the composite materials expand upon exposure to H2O, suggesting that H2O has access to the interlayer spaces and cations. HeIM images offer an explanation as to why there is no pH-dependence in the Ca2+ molecular-scale behavior. Ca-smectite-NOM composites formed at pH 12 appear to be a relatively homogeneous on the <~100 nm scale, whereas composites formed by rapidly decreasing the pH from 12 to 2 show both composites and separate NOM aggregates with little porosity at scales >10 nm. It is likely the formation of NOM aggregates is dominated by hydrophobic interactions that exclude Ca2+ and thus that 43Ca NMR observes bridging Ca2+ similar to that in the pH 12 samples.

  1. Exploration of structure and function in biomolecules through solid-state NMR and computational methods

    NASA Astrophysics Data System (ADS)

    Heider, Elizabeth M.

    Solid-State Nuclear Magnetic Resonance (SSNMR) spectroscopy and quantum mechanical calculations are powerful analysis tools. Leveraged independently, each method yields important nuclear and molecular information. Used in concert, SSNMR and computational techniques provide complementary data about the structure of solids. These methods are particularly useful in characterizing the structures of microcrystalline organic compounds and revealing mechanisms of biological activity. Such applications may possess special relevance in analysis of pharmaceutical products; 90% of all pharmaceuticals are marketed as solids and bioactivity is strongly linked with molecular conformation. Accordingly, this dissertation employs both SSNMR and quantum mechanical computation to study three bioactive molecules: citrinin, two forms of Atrasentan (Abt-627), and paclitaxel (Taxol RTM). First, a computational study is utilized to determine the mechanism for unusual antioxidant activity in citrinin. Here, molecular geometries and bond dissociation enthalpies (BDE) of the citrinin O--H groups are calculated from first principles (ab initio). The total molecular Hamiltonian is determined by approximating the individual contributors to energy including electronic energy and contributions from modes of molecular vibration. This study of citrinin clearly identifies specific reaction sites in the active form, establishing the central role of intramolecular hydrogen bonding in this activity. Notably, it is discovered that citrinin itself is not the active species. Instead, a pair of hydrated Michael addition products of citrinin act as radical scavengers via O--H bond dissociation. Next, two separate compounds of the anticancer drug Abt-627 (form I and form II) are examined via SSNMR. The three principal values of the 13C diagonalized chemical shift tensor are acquired through the high resolution 2D experiment, FIREMAT. Isotropic chemical shift assignments are made utilizing both dipolar

  2. Preparation of RNA samples with narrow line widths for solid state NMR investigations

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Bardaro, Michael F.; Varani, Gabriele; Drobny, Gary P.

    2012-10-01

    Solid state NMR can provide detailed structural and dynamic information on biological systems that cannot be studied under solution conditions, and can investigate motions which occur with rates that cannot be fully studied by solution NMR. This approach has successfully been used to study proteins, but the application of multidimensional solid state NMR to RNA has been limited because reported line widths have been too broad to execute most multidimensional experiments successfully. A reliable method to generate spectra with narrow line widths is necessary to apply the full range of solid state NMR spectroscopic approaches to RNA. Using the HIV-1 transactivation response (TAR) RNA as a model, we present an approach based on precipitation with polyethylene glycol that improves the line width of 13C signals in TAR from >6 ppm to about 1 ppm, making solid state 2D NMR studies of selectively enriched RNAs feasible at ambient temperature.

  3. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.

    PubMed

    Shen, Yang; Delaglio, Frank; Cornilescu, Gabriel; Bax, Ad

    2009-08-01

    NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between 13C, 15N and 1H chemical shifts and backbone torsion angles phi and psi (Cornilescu et al. J Biomol NMR 13 289-302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5%. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS+ makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted phi and psi angles, equals +/-13 degrees . Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy.

  4. Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm

    SciTech Connect

    Zhang, Zhiyong; Smith, Pieter E. S.; Frydman, Lucio

    2014-11-21

    Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. By porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.

  5. Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm.

    PubMed

    Zhang, Zhiyong; Smith, Pieter E S; Frydman, Lucio

    2014-11-21

    Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. By porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns. PMID:25416883

  6. Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm

    PubMed Central

    Zhang, Zhiyong; Frydman, Lucio

    2014-01-01

    Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. By porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns. PMID:25416883

  7. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  8. Application of reductive ¹³C-methylation of lysines to enhance the sensitivity of conventional NMR methods.

    PubMed

    Chavan, Tanmay S; Abraham, Sherwin; Gaponenko, Vadim

    2013-06-18

    NMR is commonly used to investigate macromolecular interactions. However, sensitivity problems hamper its use for studying such interactions at low physiologically relevant concentrations. At high concentrations, proteins or peptides tend to aggregate. In order to overcome this problem, we make use of reductive ¹³C-methylation to study protein interactions at low micromolar concentrations. Methyl groups in dimethyl lysines are degenerate with one ¹³CH₃ signal arising from two carbons and six protons, as compared to one carbon and three protons in aliphatic amino acids. The improved sensitivity allows us to study protein-protein or protein-peptide interactions at very low micromolar concentrations. We demonstrate the utility of this method by studying the interaction between the post-translationally lipidated hypervariable region of a human proto-oncogenic GTPase K-Ras and a calcium sensor protein calmodulin. Calmodulin specifically binds K-Ras and modulates its downstream signaling. This binding specificity is attributed to the unique lipidated hypervariable region of K-Ras. At low micromolar concentrations, the post-translationally modified hypervariable region of K-Ras aggregates and binds calmodulin in a non-specific manner, hence conventional NMR techniques cannot be used for studying this interaction, however, upon reductively methylating the lysines of calmodulin, we detected signals of the lipidated hypervariable region of K-Ras at physiologically relevant nanomolar concentrations. Thus, we utilize ¹³C-reductive methylation of lysines to enhance the sensitivity of conventional NMR methods for studying protein interactions at low concentrations.

  9. Independent components analysis to increase efficiency of discriminant analysis methods (FDA and LDA): Application to NMR fingerprinting of wine.

    PubMed

    Monakhova, Yulia B; Godelmann, Rolf; Kuballa, Thomas; Mushtakova, Svetlana P; Rutledge, Douglas N

    2015-08-15

    Discriminant analysis (DA) methods, such as linear discriminant analysis (LDA) or factorial discriminant analysis (FDA), are well-known chemometric approaches for solving classification problems in chemistry. In most applications, principle components analysis (PCA) is used as the first step to generate orthogonal eigenvectors and the corresponding sample scores are utilized to generate discriminant features for the discrimination. Independent components analysis (ICA) based on the minimization of mutual information can be used as an alternative to PCA as a preprocessing tool for LDA and FDA classification. To illustrate the performance of this ICA/DA methodology, four representative nuclear magnetic resonance (NMR) data sets of wine samples were used. The classification was performed regarding grape variety, year of vintage and geographical origin. The average increase for ICA/DA in comparison with PCA/DA in the percentage of correct classification varied between 6±1% and 8±2%. The maximum increase in classification efficiency of 11±2% was observed for discrimination of the year of vintage (ICA/FDA) and geographical origin (ICA/LDA). The procedure to determine the number of extracted features (PCs, ICs) for the optimum DA models was discussed. The use of independent components (ICs) instead of principle components (PCs) resulted in improved classification performance of DA methods. The ICA/LDA method is preferable to ICA/FDA for recognition tasks based on NMR spectroscopic measurements.

  10. NBO, conformational, NLO, HOMO-LUMO, NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods.

    PubMed

    Xavier, S; Periandy, S; Ramalingam, S

    2015-02-25

    In this study, FT-IR, FT-Raman, NMR and UV spectra of 1-phenyl-1-propanol, an intermediate of anti-depressant drug fluoxetine, has been investigated. The theoretical vibrational frequencies and optimized geometric parameters have been calculated by using HF and density functional theory with the hybrid methods B3LYP, B3PW91 and 6-311+G(d,p)/6-311++G(d,p) basis sets. The theoretical vibrational frequencies have been found in good agreement with the corresponding experimental data. (1)H and (13)C NMR spectra were recorded and chemical shifts of the molecule were compared to TMS by using the Gauge-Independent Atomic Orbital (GIAO) method. A study on the electronic and optical properties, absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies are performed using HF and DFT methods. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures are also calculated. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. The local reactivity of the molecule has been studied using the Fukui function. NLO properties related to polarizability and hyperpolarizability are also discussed.

  11. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  12. Saturation-Transfer Difference (STD) NMR: A Simple and Fast Method for Ligand Screening and Characterization of Protein Binding

    ERIC Educational Resources Information Center

    Viegas, Aldino; Manso, Joao; Nobrega, Franklin L.; Cabrita, Eurico J.

    2011-01-01

    Saturation transfer difference (STD) NMR has emerged as one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. The success of this technique is a consequence of its robustness and the fact that it is focused on the signals of the ligand, without any need of processing NMR information about the receptor…

  13. Evaluating the structural identifiability of the parameters of the EBPR sub-model in ASM2d by the differential algebra method.

    PubMed

    Zhang, Tian; Zhang, Daijun; Li, Zhenliang; Cai, Qing

    2010-05-01

    The calibration of ASMs is a prerequisite for their application to simulation of a wastewater treatment plant. This work should be made based on the evaluation of structural identifiability of model parameters. An EBPR sub-model including denitrification phosphorus removal has been incorporated in ASM2d. Yet no report is presented on the structural identifiability of the parameters in the EBPR sub-model. In this paper, the differential algebra approach was used to address this issue. The results showed that the structural identifiability of parameters in the EBPR sub-model could be improved by increasing the measured variables. The reduction factor eta(NO)(3) was identifiable when combined data of aerobic process and anoxic process were assumed. For K(PP), X(PAO) and q(PHA) of the anaerobic process to be uniquely identifiable, one of them is needed to be determined by other ways. Likewise, if prior information on one of the parameters, K(PHA), X(PAO) and q(PP) of the aerobic process, is known, all the parameters are identifiable. The above results could be of interest to the parameter estimation of the EBPR sub-model. The algorithm proposed in the paper is also suitable for other sub-models of ASMs.

  14. A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles.

    PubMed

    Ihiawakrim, Dris; Ersen, Ovidiu; Melin, Frédéric; Hellwig, Petra; Janowska, Izabela; Begin, Dominique; Baaziz, Walid; Begin-Colin, Sylvie; Pham-Huu, Cuong; Baati, Rachid

    2013-10-01

    A practically simple top-down process for the exfoliation of graphene (GN) and few-layer graphene (FLG) from graphite is described. We have discovered that a biocompatible amphiphilic pyrene-based hexahistidine peptide is able to exfoliate, functionalize, and dissolve few layer graphene flakes in pure water under exceptionally mild, sustainable and virtually innocuous low intensity cavitation conditions. Large area functionalized graphene flakes with the hexahistidine oligopeptide (His₆-TagGN = His₆@GN) have been produced efficiently at room temperature and characterized by TEM, Raman, and UV spectroscopy. Conductivity experiments carried out on His₆-TagGN samples revealed superior electric performances as compared to reduced graphene oxide (rGO) and non-functionalized graphene, demonstrating the non-invasive features of our non-covalent functionalization process. We postulated a rational exfoliation mechanism based on the intercalation of the peptide amphiphile under cavitational chemistry. We also demonstrated the ability of His6-TagGN nanoassemblies to self-assemble spontaneously with inorganic iron oxide nanoparticles generating magnetic two-dimensional (2D) His₆-TagGN/Fe₃O₄ nanocomposites under mild and non-hydrothermal conditions. The set of original experiments described here open novel perspectives in the facile production of water dispersible high quality GN and FLG sheets that will improve and facilitate the interfacing, processing and manipulation of graphene for promising applications in catalysis, nanocomposite construction, integrated nanoelectronic devices and bionanotechnology.

  15. Quantitative 1H NMR: Development and Potential of an Analytical Method – an Update

    PubMed Central

    Pauli, Guido F.; Gödecke, Tanja; Jaki, Birgit U.; Lankin, David C.

    2012-01-01

    Covering the literature from mid-2004 until the end of 2011, this review continues a previous literature overview on quantitative 1H NMR (qHNMR) methodology and its applications in the analysis of natural products (NPs). Among the foremost advantages of qHNMR is its accurate function with external calibration, the lack of any requirement for identical reference materials, a high precision and accuracy when properly validated, and an ability to quantitate multiple analytes simultaneously. As a result of the inclusion of over 170 new references, this updated review summarizes a wealth of detailed experiential evidence and newly developed methodology that supports qHNMR as a valuable and unbiased analytical tool for natural product and other areas of research. PMID:22482996

  16. Estimation of Permeability from NMR Logs Based on Formation Classification Method in Tight Gas Sands

    NASA Astrophysics Data System (ADS)

    Wei, Deng-Feng; Liu, Xiao-Peng; Hu, Xiao-Xin; Xu, Rui; Zhu, Ling-Ling

    2015-10-01

    The Schlumberger Doll Research (SDR) model and cross plot of porosity versus permeability cannot be directly used in tight gas sands. In this study, the HFU approach is introduced to classify rocks, and determine the involved parameters in the SDR model. Based on the difference of FZI, 87 core samples, drilled from tight gas sandstones reservoirs of E basin in northwest China and applied for laboratory NMR measurements, were classified into three types, and the involved parameters in the SDR model are calibrated separately. Meanwhile, relationships of porosity versus permeability are also established. The statistical model is used to calculate consecutive FZI from conventional logs. Field examples illustrate that the calibrated SDR models are applicable in permeability estimation; models established from routine core analyzed results are effective in reservoirs with permeability lower than 0.3 mD, while the unified SDR model is only valid in reservoirs with permeability ranges from 0.1 to 0.3 mD.

  17. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  18. NMR signal for particles diffusing under potentials: From path integrals and numerical methods to a model of diffusion anisotropy

    NASA Astrophysics Data System (ADS)

    Yolcu, Cem; Memiç, Muhammet; Şimşek, Kadir; Westin, Carl-Fredrik; Özarslan, Evren

    2016-05-01

    We study the influence of diffusion on NMR experiments when the molecules undergo random motion under the influence of a force field and place special emphasis on parabolic (Hookean) potentials. To this end, the problem is studied using path integral methods. Explicit relationships are derived for commonly employed gradient waveforms involving pulsed and oscillating gradients. The Bloch-Torrey equation, describing the temporal evolution of magnetization, is modified by incorporating potentials. A general solution to this equation is obtained for the case of parabolic potential by adopting the multiple correlation function (MCF) formalism, which has been used in the past to quantify the effects of restricted diffusion. Both analytical and MCF results were found to be in agreement with random walk simulations. A multidimensional formulation of the problem is introduced that leads to a new characterization of diffusion anisotropy. Unlike the case of traditional methods that employ a diffusion tensor, anisotropy originates from the tensorial force constant, and bulk diffusivity is retained in the formulation. Our findings suggest that some features of the NMR signal that have traditionally been attributed to restricted diffusion are accommodated by the Hookean model. Under certain conditions, the formalism can be envisioned to provide a viable approximation to the mathematically more challenging restricted diffusion problems.

  19. NMR signal for particles diffusing under potentials: From path integrals and numerical methods to a model of diffusion anisotropy.

    PubMed

    Yolcu, Cem; Memiç, Muhammet; Şimşek, Kadir; Westin, Carl-Fredrik; Özarslan, Evren

    2016-05-01

    We study the influence of diffusion on NMR experiments when the molecules undergo random motion under the influence of a force field and place special emphasis on parabolic (Hookean) potentials. To this end, the problem is studied using path integral methods. Explicit relationships are derived for commonly employed gradient waveforms involving pulsed and oscillating gradients. The Bloch-Torrey equation, describing the temporal evolution of magnetization, is modified by incorporating potentials. A general solution to this equation is obtained for the case of parabolic potential by adopting the multiple correlation function (MCF) formalism, which has been used in the past to quantify the effects of restricted diffusion. Both analytical and MCF results were found to be in agreement with random walk simulations. A multidimensional formulation of the problem is introduced that leads to a new characterization of diffusion anisotropy. Unlike the case of traditional methods that employ a diffusion tensor, anisotropy originates from the tensorial force constant, and bulk diffusivity is retained in the formulation. Our findings suggest that some features of the NMR signal that have traditionally been attributed to restricted diffusion are accommodated by the Hookean model. Under certain conditions, the formalism can be envisioned to provide a viable approximation to the mathematically more challenging restricted diffusion problems. PMID:27300946

  20. A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ihiawakrim, Dris; Ersen, Ovidiu; Melin, Frédéric; Hellwig, Petra; Janowska, Izabela; Begin, Dominique; Baaziz, Walid; Begin-Colin, Sylvie; Pham-Huu, Cuong; Baati, Rachid

    2013-09-01

    A practically simple top-down process for the exfoliation of graphene (GN) and few-layer graphene (FLG) from graphite is described. We have discovered that a biocompatible amphiphilic pyrene-based hexahistidine peptide is able to exfoliate, functionalize, and dissolve few layer graphene flakes in pure water under exceptionally mild, sustainable and virtually innocuous low intensity cavitation conditions. Large area functionalized graphene flakes with the hexahistidine oligopeptide (His6-TagGN = His6@GN) have been produced efficiently at room temperature and characterized by TEM, Raman, and UV spectroscopy. Conductivity experiments carried out on His6-TagGN samples revealed superior electric performances as compared to reduced graphene oxide (rGO) and non-functionalized graphene, demonstrating the non-invasive features of our non-covalent functionalization process. We postulated a rational exfoliation mechanism based on the intercalation of the peptide amphiphile under cavitational chemistry. We also demonstrated the ability of His6-TagGN nanoassemblies to self-assemble spontaneously with inorganic iron oxide nanoparticles generating magnetic two-dimensional (2D) His6-TagGN/Fe3O4 nanocomposites under mild and non-hydrothermal conditions. The set of original experiments described here open novel perspectives in the facile production of water dispersible high quality GN and FLG sheets that will improve and facilitate the interfacing, processing and manipulation of graphene for promising applications in catalysis, nanocomposite construction, integrated nanoelectronic devices and bionanotechnology.A practically simple top-down process for the exfoliation of graphene (GN) and few-layer graphene (FLG) from graphite is described. We have discovered that a biocompatible amphiphilic pyrene-based hexahistidine peptide is able to exfoliate, functionalize, and dissolve few layer graphene flakes in pure water under exceptionally mild, sustainable and virtually innocuous low

  1. Evaluation of standard and advanced preprocessing methods for the univariate analysis of blood serum 1H-NMR spectra.

    PubMed

    De Meyer, Tim; Sinnaeve, Davy; Van Gasse, Bjorn; Rietzschel, Ernst-R; De Buyzere, Marc L; Langlois, Michel R; Bekaert, Sofie; Martins, José C; Van Criekinge, Wim

    2010-10-01

    Proton nuclear magnetic resonance ((1)H-NMR)-based metabolomics enables the high-resolution and high-throughput assessment of a broad spectrum of metabolites in biofluids. Despite the straightforward character of the experimental methodology, the analysis of spectral profiles is rather complex, particularly due to the requirement of numerous data preprocessing steps. Here, we evaluate how several of the most common preprocessing procedures affect the subsequent univariate analyses of blood serum spectra, with a particular focus on how the standard methods perform compared to more advanced examples. Carr-Purcell-Meiboom-Gill 1D (1)H spectra were obtained for 240 serum samples from healthy subjects of the Asklepios study. We studied the impact of different preprocessing steps--integral (standard method) and probabilistic quotient normalization; no, equidistant (standard), and adaptive-intelligent binning; mean (standard) and maximum bin intensity data summation--on the resonance intensities of three different types of metabolites: triglycerides, glucose, and creatinine. The effects were evaluated by correlating the differently preprocessed NMR data with the independently measured metabolite concentrations. The analyses revealed that the standard methods performed inferiorly and that a combination of probabilistic quotient normalization after adaptive-intelligent binning and maximum intensity variable definition yielded the best overall results (triglycerides, R = 0.98; glucose, R = 0.76; creatinine, R = 0.70). Therefore, at least in the case of serum metabolomics, these or equivalent methods should be preferred above the standard preprocessing methods, particularly for univariate analyses. Additional optimization of the normalization procedure might further improve the analyses.

  2. NMR/MS Translator for the Enhanced Simultaneous Analysis of Metabolomics Mixtures by NMR Spectroscopy and Mass Spectrometry: Application to Human Urine.

    PubMed

    Bingol, Kerem; Brüschweiler, Rafael

    2015-06-01

    A novel metabolite identification strategy is presented for the combined NMR/MS analysis of complex metabolite mixtures. The approach first identifies metabolite candidates from 1D or 2D NMR spectra by NMR database query, which is followed by the determination of the masses (m/z) of their possible ions, adducts, fragments, and characteristic isotope distributions. The expected m/z ratios are then compared with the MS(1) spectrum for the direct assignment of those signals of the mass spectrum that contain information about the same metabolites as the NMR spectra. In this way, the mass spectrum can be assigned with very high confidence, and it provides at the same time validation of the NMR-derived metabolites. The method was first demonstrated on a model mixture, and it was then applied to human urine collected from a pool of healthy individuals. A number of metabolites could be detected that had not been reported previously, further extending the list of known urine metabolites. The new analysis approach, which is termed NMR/MS Translator, is fully automated and takes only a few seconds on a computer workstation. NMR/MS Translator synergistically uses the power of NMR and MS, enhancing the accuracy and efficiency of the identification of those metabolites compiled in databases. PMID:25881480

  3. Emulsion droplet sizing using low-field NMR with chemical shift resolution and the block gradient pulse method

    NASA Astrophysics Data System (ADS)

    Lingwood, I. A.; Chandrasekera, T. C.; Kolz, J.; Fridjonsson, E. O.; Johns, M. L.

    2012-01-01

    Pulsed Field Gradient (PFG) measurements are commonly used to determine emulsion droplet size distributions based on restricted self-diffusion within the emulsion droplets. Such measurement capability is readily available on commercial NMR bench-top apparatus. A significant limitation is the requirement to selectively detect signal from the liquid phase within the emulsion droplets; this is currently achieved using either relaxation or self-diffusion contrast. Here we demonstrate the use of a 1.1 T bench-top NMR magnet, which when coupled with an rf micro-coil, is able to provide sufficient chemical shift resolution such that unambiguous signal selection is achieved from the dispersed droplet phase. We also improve the accuracy of the numerical inversion process required to produce the emulsion droplet size distribution, by employing the Block Gradient Pulse (bgp) method, which partially relaxes the assumptions of a Gaussian phase distribution or infinitely short gradient pulse application inherent in current application. The techniques are successfully applied to size 3 different emulsions.

  4. Single-laboratory validation of an NMR method for the determination of aloe vera polysaccharide in pharmaceutical formulations.

    PubMed

    Davis, Bryce; Goux, Warren J

    2009-01-01

    This report presents a single-laboratory-validated NMR method for determining the quantity of aloe vera polysaccharide in product formulations. The ratio of signal intensities of the acetyl methyl protons to methyl protons of an internal reference varied linearly with concentration (r2 > 0.99) with a lower LOQ of 0.2 g/100 mL for two commercial aloe polysaccharide standards, Acemannan Hydrogel (AH) and Immuno-10 (I-10). The assay was used to quantify these standards in two nonacetylated polysaccharide matrices, dextrin and arabinogalactan, and in a pharmaceutical product. The concentrations of AH in samples containing the polysaccharide matrices agreed within 7% of values determined on the basis of weight and showed within- and between-run RSD values of < 3.5%. The assay of I-10 in the pharmaceutical product was within 7% of the expected values over a range from 50 to 125% of the targeted I-10 concentration, with a between-run RSD of < 7%. The assay showed no interference from other added polysaccharides or from other components of the pharmaceutical formulation and was independent of the molecular size distribution of the aloe polysaccharide present. The NMR assay can be used to validate aloe polysaccharide contained in a product and to follow any chemical degradation that may occur over time.

  5. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  6. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  7. Protein structure validation and identification from unassigned residual dipolar coupling data using 2D-PDPA.

    PubMed

    Fahim, Arjang; Mukhopadhyay, Rishi; Yandle, Ryan; Prestegard, James H; Valafar, Homayoun

    2013-08-22

    More than 90% of protein structures submitted to the PDB each year are homologous to some previously characterized protein structure. The extensive resources that are required for structural characterization of proteins can be justified for the 10% of the novel structures, but not for the remaining 90%. This report presents the 2D-PDPA method, which utilizes unassigned residual dipolar coupling in order to address the economics of structure determination of routine proteins by reducing the data acquisition and processing time. 2D-PDPA has been demonstrated to successfully identify the correct structure of an array of proteins that range from 46 to 445 residues in size from a library of 619 decoy structures by using unassigned simulated RDC data. When using experimental data, 2D-PDPA successfully identified the correct NMR structures from the same library of decoy structures. In addition, the most homologous X-ray structure was also identified as the second best structural candidate. Finally, success of 2D-PDPA in identifying and evaluating the most appropriate structure from a set of computationally predicted structures in the case of a previously uncharacterized protein Pf2048.1 has been demonstrated. This protein exhibits less than 20% sequence identity to any protein with known structure and therefore presents a compelling and practical application of our proposed work.

  8. Protein structure validation and identification from unassigned residual dipolar coupling data using 2D-PDPA.

    PubMed

    Fahim, Arjang; Mukhopadhyay, Rishi; Yandle, Ryan; Prestegard, James H; Valafar, Homayoun

    2013-01-01

    More than 90% of protein structures submitted to the PDB each year are homologous to some previously characterized protein structure. The extensive resources that are required for structural characterization of proteins can be justified for the 10% of the novel structures, but not for the remaining 90%. This report presents the 2D-PDPA method, which utilizes unassigned residual dipolar coupling in order to address the economics of structure determination of routine proteins by reducing the data acquisition and processing time. 2D-PDPA has been demonstrated to successfully identify the correct structure of an array of proteins that range from 46 to 445 residues in size from a library of 619 decoy structures by using unassigned simulated RDC data. When using experimental data, 2D-PDPA successfully identified the correct NMR structures from the same library of decoy structures. In addition, the most homologous X-ray structure was also identified as the second best structural candidate. Finally, success of 2D-PDPA in identifying and evaluating the most appropriate structure from a set of computationally predicted structures in the case of a previously uncharacterized protein Pf2048.1 has been demonstrated. This protein exhibits less than 20% sequence identity to any protein with known structure and therefore presents a compelling and practical application of our proposed work. PMID:23973992

  9. Protein Structure Validation and Identification from Unassigned Residual Dipolar Coupling Data Using 2D-PDPA

    PubMed Central

    Fahim, Arjang; Mukhopadhyay, Rishi; Yandle, Ryan; Prestegard, James H.; Valafar, Homayoun

    2014-01-01

    More than 90% of protein structures submitted to the PDB each year are homologous to some previously characterized protein structure. The extensive resources that are required for structural characterization of proteins can be justified for the 10% of the novel structures, but not for the remaining 90%. This report presents the 2D-PDPA method, which utilizes unassigned residual dipolar coupling in order to address the economics of structure determination of routine proteins by reducing the data acquisition and processing time. 2D-PDPA has been demonstrated to successfully identify the correct structure of an array of proteins that range from 46 to 445 residues in size from a library of 619 decoy structures by using unassigned simulated RDC data. When using experimental data, 2D-PDPA successfully identified the correct NMR structures from the same library of decoy structures. In addition, the most homologous X-ray structure was also identified as the second best structural candidate. Finally, success of 2D-PDPA in identifying and evaluating the most appropriate structure from a set of computationally predicted structures in the case of a previously uncharacterized protein Pf2048.1 has been demonstrated. This protein exhibits less than 20% sequence identity to any protein with known structure and therefore presents a compelling and practical application of our proposed work. PMID:23973992

  10. An NMR-Guided Screening Method for Selective Fragment Docking and Synthesis of a Warhead Inhibitor.

    PubMed

    Khattri, Ram B; Morris, Daniel L; Davis, Caroline M; Bilinovich, Stephanie M; Caras, Andrew J; Panzner, Matthew J; Debord, Michael A; Leeper, Thomas C

    2016-01-01

    Selective hits for the glutaredoxin ortholog of Brucella melitensis are determined using STD NMR and verified by trNOE and (15)N-HSQC titration. The most promising hit, RK207, was docked into the target molecule using a scoring function to compare simulated poses to experimental data. After elucidating possible poses, the hit was further optimized into the lead compound by extension with an electrophilic acrylamide warhead. We believe that focusing on selectivity in this early stage of drug discovery will limit cross-reactivity that might occur with the human ortholog as the lead compound is optimized. Kinetics studies revealed that lead compound 5 modified with an ester group results in higher reactivity than an acrylamide control; however, after modification this compound shows little selectivity for bacterial protein versus the human ortholog. In contrast, hydrolysis of compound 5 to the acid form results in a decrease in the activity of the compound. Together these results suggest that more optimization is warranted for this simple chemical scaffold, and opens the door for discovery of drugs targeted against glutaredoxin proteins-a heretofore untapped reservoir for antibiotic agents. PMID:27438815

  11. Macroscopic orientation effects in broadline NMR-spectra of model membranes at high magnetic field strength: A method preventing such effects.

    PubMed

    Brumm, T; Möps, A; Dolainsky, C; Brückner, S; Bayerl, T M

    1992-04-01

    The partial orientation of multilamellar vesicles (MLV) in high magnetic fields has been studied and a method to prevent such effects is herewith proposed. The orientation effect was measured with (2)H-, (31)P-NMR and electron microscopy on MLVs of dipalmitoyl phosphatidylcholine with 30 mol% cholesterol. We present the first freeze-etch electron microscopy data obtained from MLV samples that were frozen directly in the NMR magnet at a field strength of 9.4 Tesla. These experiments clearly show that the MLVs adopt an ellipsoidal (but not a cylindrical) shape in the magnetic field. Best fit (31)P-NMR lineshape calculations assuming an ellipsoidal distribution of molecular director axes to the experimentally obtained spectra provide a quantitative measure of the average semiaxis ratio of the ellipsoidal MLVs and its change with temperature. The application of so-called spherical supported vesicles (SSV) is found to prevent any partial orientation effects so that undistorted NMR powder pattern of the bilayer can be measured independently of magnetic field strength and temperature.The usefulness of SSVs is further demonstrated by a direct comparison of spectral data such as (31)P-and (2)H-NMR lineshapes and relaxation times as well as (2)H-NMR dePaked spectra obtained for both model systems. These experiments show that spectral data obtained from partially oriented MLVs are not unambiguous to interpret, in particular, if an external parameter such as temperature is varied.

  12. NBO, HOMO-LUMO, UV, NLO, NMR and vibrational analysis of veratrole using FT-IR, FT-Raman, FT-NMR spectra and HF-DFT computational methods.

    PubMed

    Suvitha, A; Periandy, S; Gayathri, P

    2015-03-01

    This work deals with FT-IR, FT-Raman and FT-NMR spectral analysis and NBO, NLO, HOMO-LUMO and electronic transitions studies on veratrole. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands were interpreted with the aid of structure optimizations and geometrical parameter calculations based on Hartree-Fock (HF) and density functional theory (DFT) method with 6-311++G(d, p) basis set. A study on the electronic properties, such as HOMO and LUMO energies were performed by time independent DFT approach. In addition, molecular electrostatic potential (MEP), Natural Bond-Orbital (NBO) analysis and thermodynamic properties were performed. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method and compared with experimental chemical shift.

  13. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations.

    PubMed

    Zhang, Zhiyong; Smith, Pieter E S; Cai, Shuhui; Zheng, Zhenyao; Lin, Yulan; Chen, Zhong

    2015-12-28

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials' structure and dynamics. Because 2D NMR relies on systematic changes in coherences' phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, "ultrafast" NMR has been developed into an effective and widely applicable methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets. PMID:26723664

  14. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Smith, Pieter E. S.; Cai, Shuhui; Zheng, Zhenyao; Lin, Yulan; Chen, Zhong

    2015-12-01

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials' structure and dynamics. Because 2D NMR relies on systematic changes in coherences' phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, "ultrafast" NMR has been developed into an effective and widely applicable methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.

  15. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    SciTech Connect

    Zhang, Zhiyong; Cai, Shuhui; Zheng, Zhenyao; Lin, Yulan E-mail: lylfj2005@xmu.edu.cn; Chen, Zhong E-mail: lylfj2005@xmu.edu.cn; Smith, Pieter E. S.

    2015-12-28

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials’ structure and dynamics. Because 2D NMR relies on systematic changes in coherences’ phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, “ultrafast” NMR has been developed into an effective and widely applicable methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.

  16. Solid-State NMR Studies of Fossil Fuels using One- and Two-Dimensional Methods at High Magnetic Field

    SciTech Connect

    Althaus, Stacey M.; Mao, Kanmi; Kennedy, Gordon J.; Pruski, Marek

    2012-06-24

    We examine the opportunities offered by advancements in solid-state NMR (SSNMR) methods, which increasingly rely on the use of high magnetic fields and fast magic angle spinning (MAS), in the studies of coals and other carbonaceous materials. The sensitivity of one- and two-dimensional experiments tested on several Argonne Premium coal samples is only slightly lower than that of traditional experiments performed at low magnetic fields in large MAS rotors, since higher receptivity per spin and the use of 1H detection of low-gamma nuclei can make up for most of the signal loss due to the small rotor size. The advantages of modern SSNMR methodology in these studies include improved resolution, simplicity of pulse sequences, and the possibility of using J-coupling during mixing.

  17. A general method for diagonal peak suppression in homonuclear correlated NMR spectra by spatially and frequency selective pulses☆

    PubMed Central

    Glanzer, Simon; Schrank, Evelyne; Zangger, Klaus

    2013-01-01

    Homonuclear two- and multidimensional NMR spectra are standard experiments for the structure determination of small to medium-sized molecules. In the large majority of homonuclear correlated spectra the diagonal contains the most intense peaks. Cross-peaks near the diagonal could overlap with huge tails of diagonal peaks and can therefore be easily overlooked. Here we present a general method for the suppression of peaks along the diagonal in homonuclear correlated spectra. It is based on a spatially selective excitation followed by the suppression of magnetization which has not changed the frequency during the mixing process. In addition to the auto correlation removal, these experiments are also less affected by magnetic field inhomogeneities due to the slice selective excitation, which on the other side leads to a reduced intensity compared to regular homonuclear correlated spectra. PMID:23665403

  18. An sup 15 N NMR method for the characterization of organic sulfur in coal and coal products via iminosulfurane formation

    SciTech Connect

    Franz, J.A.; Lamb, C.N.; Linehan, J.C.

    1991-09-01

    The indirect of organic sulfur by {sup 15}N NMR spectroscopy in the solid state is feasible by facile reactions providing the iminosulfurane structures. Unfortunately, nitrogen chemical shifts appear to be insufficiently sensitive to the nature of the sulfur substituent to be useful for structural studies. Further work is underway to determine the {sup 15}N chemical shifts of iminosulfuranes formed from dibenzothiophene, 4-4{prime}-dimethoxydiphenyl sulfide, and a sulfur-containing, methylated asphaltene to determine the sensitivity of {sup 15}N shifts to a broader variation of aromatic structure. Although double cross-polarization experiments or rotational echo experiments could make use of iminosulfurane formation for detection of carbon in proximity to sulfur, the difficulties in quantitation using these methods are not encouraging for coal product mixtures. 6 refs., 1 fig., 1 tab.

  19. Modal analysis of delaminated composite plates using the finite element method and damage detection via combined Ritz/2D-wavelet analysis

    NASA Astrophysics Data System (ADS)

    Gallego, A.; Moreno-García, P.; Casanova, Cesar F.

    2013-06-01

    Structural studies to find defects (in particular delaminations) in composite plates have been very prevalent in the Structural Health Monitoring field. The present work develops a new method to detect delaminations in CFRP (Carbon Fiber Reinforced Polymer) plates. In this paper the method is validated with numerical simulations, which come to support its adequacy for use with real acquisition data. This is done firstly through the implementation of a delaminated plate finite element. Using the classical lamination plate theory, delamination is considered in the kinematic equations through jump functions and additional degrees of freedom. The element allows the introduction of nd delaminations through its thickness. Classical QMITC (Quadrilateral Mixed Interpolation Tensorial Components) and DKQ (Discrete Kirchhoff Quadrilateral) elements are used for the membrane and bending FEM (Finite Element Method) formulation. Second, using the vibration modes obtained with the FEM, a damage location technique based on the variational Ritz method and Wavelet Analysis is proposed. The approach has the advantage of requiring only damaged modes and not the healthy ones. Both FEM simulations and Ritz/Wavelet damage detection schemes are applied in an orthotropic CFRP plate with the stacking sequence [0/90]3S. In addition, the influence of delamination thickness position, boundary conditions and added noise (in order to simulate experimental measures) was studied.

  20. DYNA2D96. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.

    1992-04-01

    DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  1. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  2. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  3. Finite difference time domain method for calculating the band structure of a 2D photonic crystal and simulating the lensing effect

    NASA Astrophysics Data System (ADS)

    Rafiee Dastjerdi, S.; Ghanaatshoar, M.

    2013-08-01

    A finite difference time domain method based on regular Yee's algorithm in an orthogonal coordinate system is utilized to calculate the band structure of a two-dimensional square-lattice photonic crystal comprising dielectric cylinders in air background and to simulate the image formation of mentioned structure incorporating the perfectly matched layer boundary condition. By analyzing the photonic band diagram of this system, we find that the frequency region of effective negative refraction exists in the second band in near-infrared domain. In this case, electromagnetic wave propagates with a negative phase velocity and the evanescent waves can be supported to perform higher image resolution.

  4. A novel 19F-NMR method for the investigation of the antioxidant capacity of biomolecules and biofluids.

    PubMed

    Aime, S; Calzoni, S; Digilio, G; Giraudo, S; Fasano, M; Maffeo, D

    1999-08-01

    A new assay for the measurement of the antioxidant capacity of biomolecules by high resolution 19F-NMR spectroscopy is presented here. This method is based on the use of trifluoroacetanilidic detectors, namely trifluoroacetanilide, N-(4-hydroxyphenyl)-trifluoroacetamide and 2-hydroxy-4-trifluoroacetamidobenzoic acid. Upon hydroxyl radical attack, such fluorinated detectors yield trifluoroacetamide and trifluoroacetic acid that can be quantitatively determined by 19F-NMR spectroscopy. Trifluoroacetamide was found to be a reliable reporter of hydroxyl radical attack on the fluorinated detectors, whereas N-(4-hydroxyphenyl)-trifluoroacetamide was found to be the most sensitive detector amongst the ones considered. Therefore, N-(4-hydroxyphenyl)-trifluoroacetamide has been used in competition experiments to assess the antioxidant capacity of a number of low and high molecular weight antioxidants. The antioxidant capacity of a given compound has been scaled in terms of an adimensional parameter, kF, that represents the ratio between the scavenger abilities of the fluorinated detector and the competitor. kF values obtained for low-molecular-mass compounds fall in the range 0.17 < kF < 1.5 and are in good agreement with second order rate constants (k2OH) for the reaction of the antioxidant with hydroxyl radicals. The kF value for serum albumin is much larger (46.9) than that predicted from the reported k2OH value. This finding supports the view that the protein can very effectively scavenge hydroxyl radicals as well as secondary radicals. Human blood serum showed that its antioxidant capacity is even higher than that shown by aqueous solutions of albumin at physiologic concentration suggesting a further contribution from other macromolecular serum components. PMID:10468209

  5. Understanding the NMR properties and conformational behavior of indole vs. azaindole group in protoberberines: NICS and NCS analysis

    NASA Astrophysics Data System (ADS)

    Kadam, Shivaji S.; Toušek, Jaromír; Maier, Lukáš; Pipíška, Matej; Sklenář, Vladimír; Marek, Radek

    2012-11-01

    We report here the preparation and the structural investigation into a series of 8-(indol-1-yl)-7,8-dihydroprotoberberine derivatives derived from berberine, palmatine, and coptisine. Structures of these new compounds were characterized mainly by 2D NMR spectroscopy and the conformational behavior was investigated by using methods of density-functional theory (DFT). PBE0/6-311+G** calculated NMR chemical shifts for selected derivatives correlate excellently with the experimental NMR data and support the structural conclusions drawn from the NMR experiments. An interesting role of the nitrogen atom in position N7' of the indole moiety in 8-(7-azaindol-1-yl)-7,8-dihydroprotoberberines as compared to other 8-indolyl derivatives is investigated in detail. The experimentally observed trends in NMR chemical shifts are rationalized by DFT calculations and analysis based on the nucleus-independent chemical shifts (NICS) and natural localized molecular orbitals (NLMOs).

  6. A new laser vibrometry-based 2D selective intensity method for source identification in reverberant fields: part II. Application to an aircraft cabin

    NASA Astrophysics Data System (ADS)

    Revel, G. M.; Martarelli, M.; Chiariotti, P.

    2010-07-01

    The selective intensity technique is a powerful tool for the localization of acoustic sources and for the identification of the structural contribution to the acoustic emission. In practice, the selective intensity method is based on simultaneous measurements of acoustic intensity, by means of a couple of matched microphones, and structural vibration of the emitting object. In this paper high spatial density multi-point vibration data, acquired by using a scanning laser Doppler vibrometer, have been used for the first time. Therefore, by applying the selective intensity algorithm, the contribution of a large number of structural sources to the acoustic field radiated by the vibrating object can be estimated. The selective intensity represents the distribution of the acoustic monopole sources on the emitting surface, as if each monopole acted separately from the others. This innovative selective intensity approach can be very helpful when the measurement is performed on large panels in highly reverberating environments, such as aircraft cabins. In this case the separation of the direct acoustic field (radiated by the vibrating panels of the fuselage) and the reverberant one is difficult by traditional techniques. The work shown in this paper is the application of part of the results of the European project CREDO (Cabin Noise Reduction by Experimental and Numerical Design Optimization) carried out within the framework of the EU. Therefore the aim of this paper is to illustrate a real application of the method to the interior acoustic characterization of an Alenia Aeronautica ATR42 ground test facility, Alenia Aeronautica being a partner of the CREDO project.

  7. A Method for Helical RNA Global Structure Determination in Solution Using Small Angle X-ray Scattering and NMR Measurements

    PubMed Central

    Wang, Jinbu; Zuo, Xiaobing; Yu, Ping; Xu, Huan; Starich, Mary R.; Tiede, David M.; Shapiro, Bruce A.; Schwieters, Charles D.; Wang, Yun-Xing

    2009-01-01

    We report a “top-down” method that uses mainly duplexes' global orientations and overall molecular dimension and shape restraints, which were extracted from experimental NMR and small angle X-ray scattering (SAXS) data respectively, to determine global architectures of RNA molecules consisting of mostly A-form like duplexes. The method is implemented in the G2G (from Global measurement to Global Structure) toolkit of programs. We demonstrate the efficiency and accuracy of the method by determining the global structure of a 71-nucleotide RNA using experimental data. The backbone root-mean-square-deviation (RMSD) of the ensemble of the calculated global structures relative to the X-ray crystal structure using the experimental data is 3.0 ± 0.3 Å, and the RMSD is only 2.5 ± 0.2 Å for the three duplexes that were orientation-restrained during the calculation. The global structure simplifies interpretation of multi-dimensional nuclear Overhauser spectra for high resolution structure determination. The potential general application of the method for RNA structure determination is discussed. PMID:19666030

  8. Communication: Proton NMR dipolar-correlation effect as a method for investigating segmental diffusion in polymer melts

    NASA Astrophysics Data System (ADS)

    Lozovoi, A.; Mattea, C.; Herrmann, A.; Rössler, E. A.; Stapf, S.; Fatkullin, N.

    2016-06-01

    A simple and fast method for the investigation of segmental diffusion in high molar mass polymer melts is presented. The method is based on a special function, called proton dipolar-correlation build-up function, which is constructed from Hahn Echo signals measured at times t and t/2. The initial rise of this function contains additive contributions from both inter- and intramolecular magnetic dipole-dipole interactions. The intermolecular contribution depends on the relative mean squared displacements (MSDs) of polymer segments from different macromolecules, while the intramolecular part reflects segmental reorientations. Separation of both contributions via isotope dilution provides access to segmental displacements in polymer melts at millisecond range, which is hardly accessible by other methods. The feasibility of the method is illustrated by investigating protonated and deuterated polybutadiene melts with molecular mass 196 000 g/mol at different temperatures. The observed exponent of the power law of the segmental MSD is close to 0.32 ± 0.03 at times when the root MSD is in between 45 Å and 75 Å, and the intermolecular proton dipole-dipole contribution to the total proton Hahn Echo NMR signal is larger than 50% and increases with time.

  9. Communication: Proton NMR dipolar-correlation effect as a method for investigating segmental diffusion in polymer melts.

    PubMed

    Lozovoi, A; Mattea, C; Herrmann, A; Rössler, E A; Stapf, S; Fatkullin, N

    2016-06-28

    A simple and fast method for the investigation of segmental diffusion in high molar mass polymer melts is presented. The method is based on a special function, called proton dipolar-correlation build-up function, which is constructed from Hahn Echo signals measured at times t and t/2. The initial rise of this function contains additive contributions from both inter- and intramolecular magnetic dipole-dipole interactions. The intermolecular contribution depends on the relative mean squared displacements (MSDs) of polymer segments from different macromolecules, while the intramolecular part reflects segmental reorientations. Separation of both contributions via isotope dilution provides access to segmental displacements in polymer melts at millisecond range, which is hardly accessible by other methods. The feasibility of the method is illustrated by investigating protonated and deuterated polybutadiene melts with molecular mass 196 000 g/mol at different temperatures. The observed exponent of the power law of the segmental MSD is close to 0.32 ± 0.03 at times when the root MSD is in between 45 Å and 75 Å, and the intermolecular proton dipole-dipole contribution to the total proton Hahn Echo NMR signal is larger than 50% and increases with time. PMID:27369489

  10. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  11. Design procedures for Strain Hardening Cement Composites (SHCC) and measurement of their shear properties by mechanical and 2-D Digital Image Correlation (DIC) method

    NASA Astrophysics Data System (ADS)

    Aswani, Karan

    The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in Arizona State University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property of moment-curvature response for SHCC was used to derive the relationship between applied load and deflection in a two-step process involving the limit state analysis and kinematically admissible displacements. For application of SHCC in structures such as shear walls, tensile and shear properties are necessary for design. Lot of research has already been done to study the tensile properties and therefore shear property study was undertaken to prepare a design guide. Shear response of textile reinforced concrete was investigated based on picture frame shear test method. The effects of orientation, volume of cement paste per layer, planar cross-section and volume fraction of textiles were investigated. Pultrusion was used for the production of textile reinforced concrete. It is an automated set-up with low equipment cost which provides uniform production and smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement technique of digital image correlation (DIC) was used to conduct the image analysis on the shear samples by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-field strain distribution, displacement and strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and gave a relation between shear angle and shear strain.

  12. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    PubMed Central

    Swisher, Christine Leon; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-01-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate–lactate, pyruvate–alanine, and pyruvate–hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines. PMID:26117655

  13. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Leon Swisher, Christine; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-08-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.

  14. JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

    SciTech Connect

    Biffle, J.H.; Blanford, M.L.

    1994-05-01

    JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

  15. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  16. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  17. Use of LC-MS/TOF, LC-MS(n), NMR and LC-NMR in characterization of stress degradation products: Application to cilazapril.

    PubMed

    Narayanam, Mallikarjun; Sahu, Archana; Singh, Saranjit

    2015-01-01

    Forced degradation studies on cilazapril were carried out according to ICH and WHO guidelines. Significant degradation of the drug was observed in acid and base conditions, resulting primarily in cilazaprilat. In neutral condition, five degradation products were formed, while under oxidative condition, two degradation products were generated. In total, seven degradation products were formed, which were separated on an Inertsil C-18 column using a stability-indicating HPLC method. Structure elucidation of the degradation products was done by using sophisticated and hyphenated tools like, LC-MS/TOF, LC-MS(n), on-line H/D exchange, LC-NMR and NMR. Initially, comprehensive mass fragmentation pathway of the drug was laid down. Critical comparison of mass fragmentation pathways of the drug and its hydrolytic degradation products allowed structure characterization of the latter. 1D and 2D proton LC-NMR studies further confirmed the proposed structures of hydrolytic degradation products. The oxidative degradation products could not be characterized using LC-MS and LC-NMR tools. Hence, these degradation products were isolated using preparative HPLC and extensive 1D ((1)H, (13)C, DEPT) and 2D (COSY, TOCSY, HETCOR and HMBC) NMR studies were performed to ascertain their structures. Finally, degradation pathways and mechanisms of degradation of the drug were outlined. PMID:25890215

  18. Optimized Linear Prediction for Radial Sampled Multidimensional NMR Experiments

    PubMed Central

    Gledhill, John M.; Kasinath, Vignesh; Wand, A. Joshua

    2011-01-01

    Radial sampling in multidimensional NMR experiments offers greatly decreased acquisition times while also providing an avenue for increased sensitivity. Digital resolution remains concern and depends strongly upon the extent of sampling of individual radial angles. Truncated time domain data leads to spurious peaks (artifacts) upon FT and 2D FT. Linear prediction is commonly employed to improve resolution in Cartesian sampled NMR experiments. Here, we adapt the linear prediction method to radial sampling. Significantly more accurate estimates of linear prediction coefficients are obtained by combining quadrature frequency components from the multiple angle spectra. This approach results in significant improvement in both resolution and removal of spurious peaks as compared to traditional linear prediction methods applied to radial sampled data. The ‘averaging linear prediction’ (ALP) method is demonstrated as a general tool for resolution improvement in multidimensional radial sampled experiments. PMID:21767968

  19. A method for dynamical characterization and high resolution 1H-NMR in dipolar coupled systems: Application to liquid crystals

    NASA Astrophysics Data System (ADS)

    Chattah, Ana K.; Levstein, Patricia R.

    2006-03-01

    We study the variation of C13 spectra as function of off-resonances in protons during decoupling, for continous wave (cw) and small phase incremental alternation with 64-step (SPINAL-64) schemes in the liquid crystals 4-n-octyl-4'-cyanobiphenyl (8CB) and 4-n-pentyl-4'-cyanobiphenyl (5CB). The self-decoupling mechanism induced by the strong homonuclear dipolar interactions provides a method to study the dynamics of the proton system through the C13 spectra. In the n-cyanobiphenyl (nCB) liquid crystals each nonquaternary carbon is coupled through dipolar interactions to more than one proton constituting a SIN group (with N ⩾2). We extend the analytical treatment of the variation of the C13 spectrum with the off-resonance, described for SI groups, to SIN under cw decoupling. The dependence of the maxima of the C13 spectra as a function of proton off-resonance follows a Lorentzian line that depends on the rate of exchange among proton spin states. From the fitting parameters of this curve and the heteronuclear interaction measured in cross-polarization experiments, we extract dynamical information of the intramolecular H1-H1 interactions. In the case of SPINAL-64 we experimentally observe the same behavior. Under both kinds of decouplings, we characterize the chemical shift of the protons through the NMR spectra of carbons. The resulting values are in very good agreement with those obtained by other methods.

  20. Evaluation of the reliability of the maximum entropy method for reconstructing 3D and 4D NOESY-type NMR spectra of proteins.

    PubMed

    Shigemitsu, Yoshiki; Ikeya, Teppei; Yamamoto, Akihiro; Tsuchie, Yuusuke; Mishima, Masaki; Smith, Brian O; Güntert, Peter; Ito, Yutaka

    2015-02-01

    Despite their advantages in analysis, 4D NMR experiments are still infrequently used as a routine tool in protein NMR projects due to the long duration of the measurement and limited digital resolution. Recently, new acquisition techniques for speeding up multidimensional NMR experiments, such as nonlinear sampling, in combination with non-Fourier transform data processing methods have been proposed to be beneficial for 4D NMR experiments. Maximum entropy (MaxEnt) methods have been utilised for reconstructing nonlinearly sampled multi-dimensional NMR data. However, the artefacts arising from MaxEnt processing, particularly, in NOESY spectra have not yet been clearly assessed in comparison with other methods, such as quantitative maximum entropy, multidimensional decomposition, and compressed sensing. We compared MaxEnt with other methods in reconstructing 3D NOESY data acquired with variously reduced sparse sampling schedules and found that MaxEnt is robust, quick and competitive with other methods. Next, nonlinear sampling and MaxEnt processing were applied to 4D NOESY experiments, and the effect of the artefacts of MaxEnt was evaluated by calculating 3D structures from the NOE-derived distance restraints. Our results demonstrated that sufficiently converged and accurate structures (RMSD of 0.91Å to the mean and 1.36Å to the reference structures) were obtained even with NOESY spectra reconstructed from 1.6% randomly selected sampling points for indirect dimensions. This suggests that 3D MaxEnt processing in combination with nonlinear sampling schedules is still a useful and advantageous option for rapid acquisition of high-resolution 4D NOESY spectra of proteins.

  1. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  2. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  3. Method And Apparatus For High Resolution Ex-Situ Nmr Spectroscopy

    DOEpatents

    Pines, Alexander; Meriles, Carlos A.; Heise, Henrike; Sakellariou, Dimitrios; Moule, Adam

    2004-01-06

    A method and apparatus for ex-situ nuclear magnetic resonance spectroscopy for use on samples outside the physical limits of the magnets in inhomogeneous static and radio-frequency fields. Chemical shift spectra can be resolved with the method using sequences of correlated, composite z-rotation pulses in the presence of spatially matched static and radio frequency field gradients producing nutation echoes. The amplitude of the echoes is modulated by the chemical shift interaction and an inhomogeneity free FID may be recovered by stroboscopically sampling the maxima of the echoes. In an alternative embodiment, full-passage adiabatic pulses are consecutively applied. One embodiment of the apparatus generates a static magnetic field that has a variable saddle point.

  4. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  5. (+)-Chenabinol (Revised NMR Data) and Two New Alkaloids from Berberis vulgaris and their Biological Activity.

    PubMed

    Novák, Zdenĕk; Hošt'álková, Anna; Opletal, Lubomír; Nováková, Lucie; Hrabinová, Martina; Kuneš, Jiří; Cahlíková, Lucie

    2015-10-01

    A known alkaloid (+)-chenabinol (1) and two new secobisbenzylisoquinoline alkaloids were isolated by standard chromatographic methods from the root bark of Berberis vulgaris L. The structures of the new alkaloids, named berkristine (2) and verfilline (3), were established by spectroscopic (including 2D NMR), and HRMS (ESI) methods. The alkaloids were tested for their inhibition activity of human cholinesterases and prolyl oligopeptidase. Compound 1 inhibited human butyrylcholinesterase with an IC50 value of 44.8 ± 5.4 μM.

  6. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. PMID:25218584

  7. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    NASA Astrophysics Data System (ADS)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  8. Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method

    PubMed Central

    Verardi, Raffaello; Shi, Lei; Traaseth, Nathaniel J.; Walsh, Naomi; Veglia, Gianluigi

    2011-01-01

    Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca2+-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels. Here, we report the T-state structure of pentameric PLN solved by a hybrid solution and solid-state NMR method. In lipid bilayers, PLN adopts a pinwheel topology with a narrow hydrophobic pore, which excludes ion transport. In the T state, the cytoplasmic amphipathic helices (domains Ia) are absorbed into the lipid bilayer with the transmembrane domains arranged in a left-handed coiled-coil configuration, crossing the bilayer with a tilt angle of approximately 11° with respect to the membrane normal. The tilt angle difference between the monomer and pentamer is approximately 13°, showing that intramembrane helix–helix association forces dominate over the hydrophobic mismatch, driving the overall topology of the transmembrane assembly. Our data reveal that both topology and function of PLN are shaped by the interactions with lipids, which fine-tune the regulation of SERCA. PMID:21576492

  9. Review of advances in coupling electrochemistry and liquid state NMR.

    PubMed

    Bussy, Ugo; Boujtita, Mohammed

    2015-05-01

    The coupling of electrochemistry and NMR spectroscopy (EC-NMR) may present an interesting approach in the environmental oxidative degradation or metabolism studies. This review presents experimental advances in the field of EC-NMR and highlights the main advantages and drawbacks of in situ and on line of NMR spectroelectrochemistry. The analysis of NMR spectra recorded in situ or on line EC-NMR permits to elucidate the reaction pathway of the electrochemical oxidation reactions and could constitute a fast way for monitoring unstable species as for instance quinone and quinone imine structures without using any coupling agents. The use of 1D and 2D NMR coupled with electrochemistry may leads to the elucidation of the major species produced from the electrochemical oxidation process. The present review gives an overview about the development of the electrochemical cells which can operate on line or in situ with NMR measurements. Future developments and potential applications of EC-NMR are also discussed.

  10. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  11. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR<