Science.gov

Sample records for 2d nuclear magnetic

  1. Development of 2D band-target entropy minimization and application to the deconvolution of multicomponent 2D nuclear magnetic resonance spectra.

    PubMed

    Guo, Liangfeng; Wiesmath, Anette; Sprenger, Peter; Garland, Marc

    2005-03-15

    Spectral reconstruction from multicomponent spectroscopic data is the frequent primary goal in chemical system identification and exploratory chemometric studies. Various methods and techniques have been reported in the literature. However, few algorithms/methods have been devised for spectral recovery without the use of any a priori information. In the present studies, a higher dimensional entropy minimization method based on the BTEM algorithm (Widjaja, E.; Li, C.; Garland, M. Organometallics 2002, 21, 1991-1997.) and related techniques were extended to large-scale arrays, namely, 2D NMR spectroscopy. The performance of this novel method had been successfully verified on various real experimental mixture spectra from a series of randomized 2D NMR mixtures (COSY NMR and HSQC NMR). With the new algorithm and raw multicomponent NMR alone, it was possible to reconstruct the pure spectroscopic patterns and calculate the relative concentration of each species without recourse to any libraries or any other a priori information. The potential advantages of this novel algorithm and its implications for general chemical system identification of unknown mixtures are discussed. PMID:15762569

  2. Studies on the mechanism of the peroxyoxalate chemiluminescence reaction: part 2. Further identification of intermediates using 2D EXSY 13C nuclear magnetic resonance spectroscopy.

    PubMed

    Tonkin, Sarah A; Bos, Richard; Dyson, Gail A; Lim, Kieran F; Russell, Richard A; Watson, Simon P; Hindson, Christopher M; Barnett, Neil W

    2008-05-01

    Further consideration has been given to the reaction pathway of a model peroxyoxalate chemiluminescence system. Again utilising doubly labelled oxalyl chloride and anhydrous hydrogen peroxide, 2D EXSY (13)C nuclear magnetic resonance (NMR) spectroscopy experiments allowed for the characterisation of unknown products and key intermediate species on the dark side of the peroxyoxalate chemiluminescence reaction. Exchange spectroscopy afforded elucidation of a scheme comprised of two distinct mechanistic pathways, one of which contributes to chemiluminescence. (13)C NMR experiments carried out at varied reagent molar ratios demonstrated that excess amounts of hydrogen peroxide favoured formation of 1,2-dioxetanedione: the intermediate that, upon thermolysis, has been long thought to interact with a fluorophore to produce light. PMID:18420048

  3. Single Scan 2D NMR Spectroscopy on a 25 T Bitter Magnet.

    PubMed

    Shapira, Boaz; Shetty, Kiran; Brey, William W; Gan, Zhehong; Frydman, Lucio

    2007-07-16

    2D NMR relies on monitoring systematic changes in the phases incurred by spin coherences as a function of an encoding time t(1), whose value changes over the course of independent experiments. The intrinsic multiscan nature of such protocols implies that resistive and/or hybrid magnets, capable of delivering the highest magnetic field strengths but possessing poor temporal stabilities, become unsuitable for 2D NMR acquisitions. It is here shown with a series of homo- and hetero-nuclear examples that such limitations can be bypassed using recently proposed 2D "ultrafast" acquisition schemes, which correlate interactions along all spectral dimensions within a single scan.

  4. Single Scan 2D NMR Spectroscopy on a 25 T Bitter Magnet

    PubMed Central

    Shapira, Boaz; Shetty, Kiran; Brey, William W.; Gan, Zhehong; Frydman, Lucio

    2007-01-01

    2D NMR relies on monitoring systematic changes in the phases incurred by spin coherences as a function of an encoding time t1, whose value changes over the course of independent experiments. The intrinsic multiscan nature of such protocols implies that resistive and/or hybrid magnets, capable of delivering the highest magnetic field strengths but possessing poor temporal stabilities, become unsuitable for 2D NMR acquisitions. It is here shown with a series of homo- and hetero-nuclear examples that such limitations can be bypassed using recently proposed 2D “ultrafast” acquisition schemes, which correlate interactions along all spectral dimensions within a single scan. PMID:18037970

  5. Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, M.

    2016-05-01

    In this study, phase angle (inverse tangent of the ratio of the horizontal to vertical gradients of magnetic anomalies) profile over two-dimensional tabular bodies has been subjected to detailed analysis for determining the source parameters. Distances between certain characteristic positions on this phase curve are related to the parameters of two-dimensional tabular magnetic sources. In this paper, I have derived the mathematical expressions for these relations. It has been demonstrated here that for locating the origin of the 2D tabular source, knowledge on the type of the model (contact, sheet, dyke, and fault) is not necessary. A procedure is evolved to determine the location, depth, width and magnetization angle of the 2D sources from the mathematical expressions. The method is tested on real field data. The effect of the overlapping bodies is also discussed with two synthetic examples. The interpretation technique is developed for contact, sheet, dike and inclined fault bodies.

  6. Chemically engineered graphene-based 2D organic molecular magnet.

    PubMed

    Hong, Jeongmin; Bekyarova, Elena; de Heer, Walt A; Haddon, Robert C; Khizroev, Sakhrat

    2013-11-26

    Carbon-based magnetic materials and structures of mesoscopic dimensions may offer unique opportunities for future nanomagnetoelectronic/spintronic devices. To achieve their potential, carbon nanosystems must have controllable magnetic properties. We demonstrate that nitrophenyl functionalized graphene can act as a room-temperature 2D magnet. We report a comprehensive study of low-temperature magnetotransport, vibrating sample magnetometry (VSM), and superconducting quantum interference (SQUID) measurements before and after radical functionalization. Following nitrophenyl (NP) functionalization, epitaxially grown graphene systems can become organic molecular magnets with ferromagnetic and antiferromagnetic ordering that persists at temperatures above 400 K. The field-dependent, surface magnetoelectric properties were studied using scanning probe microscopy (SPM) techniques. The results indicate that the NP-functionalization orientation and degree of coverage directly affect the magnetic properties of the graphene surface. In addition, graphene-based organic magnetic nanostructures were found to demonstrate a pronounced magneto-optical Kerr effect (MOKE). The results were consistent across different characterization techniques and indicate room-temperature magnetic ordering along preferred graphene orientations in the NP-functionalized samples. Chemically isolated graphene nanoribbons (CINs) were observed along the preferred functionality directions. These results pave the way for future magnetoelectronic/spintronic applications based on promising concepts such as current-induced magnetization switching, magnetoelectricity, half-metallicity, and quantum tunneling of magnetization.

  7. Magnetic gating of a 2D topological insulator.

    PubMed

    Dang, Xiaoqian; Burton, J D; Tsymbal, Evgeny Y

    2016-09-28

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic 'gate' representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate. PMID:27437829

  8. Magnetic gating of a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.

    2016-09-01

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.

  9. Three-bosons in 2D with a magnetic field

    NASA Astrophysics Data System (ADS)

    Rittenhouse, Seth; Johnson, Brad; Wray, Andrew; D'Incao, Jose

    2016-05-01

    Systems of interacting particles in reduced dimensions in the presence of external fields can exhibit a number of surprising behaviors, for instance the emergence of the fractional quantum Hall effect. Examining few-body interactions and effects can lead to significant insights within these systems. In this talk we examine a system of three bosons confined to two dimensions in the presence of a perpendicular magnetic field within the framework of the adiabatic hyperspherical method. For the case of zero-range, regularized pseudo-potential interactions, we find that the system is nearly separable in hyperspherical coordinates and that, away from a set of narrow avoided crossings, the full energy eigenspectrum as a function of the 2D s-wave scattering length is well described by ignoring coupling between adiabatic hyperradial potentials. In the case of weak attractive or repulsive interactions, we find the lowest three-body energy states exhibit even/odd parity oscillations as a function of total internal 2D angular momentum and that for weak repulsive interactions, the universal lowest energy interacting state has an internal angular momentum of M=3. We also discuss the effect of including finite range and higher partial-wave interactions.

  10. Characteristics of 2D magnetic field sensor based on magnetic sensitivity diodes

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Yang, Xianghong; Yu, Yang; Wu, Tong; Wen, Dianzhong

    2015-04-01

    A two-dimensional (2D) magnetic field sensor is proposed in this paper. It contains two Wheatstone bridges composed of four magnetic sensitivity diodes(MSDs)with similar characteristics and four loading resistances. In order to realize the axial symmetric distribution of four MSDs, two MSDs with opposite magnetic sensitive directions were located along the x and -x axes, and two with opposite magnetic sensitive directions were located along the y and -y axes. The experimental results indicate that when VDD = 5.0 V, the magnetic sensitivities of the 2D magnetic sensor can reach SxB = 544 mV/T and SyB = 498 mV/T in the x and y directions, respectively. Consequently, it is possible to measure the two-dimensional magnetic field.

  11. An efficient simulation method of a cyclotron sector-focusing magnet using 2D Poisson code

    NASA Astrophysics Data System (ADS)

    Gad Elmowla, Khaled Mohamed M.; Chai, Jong Seo; Yeon, Yeong H.; Kim, Sangbum; Ghergherehchi, Mitra

    2016-10-01

    In this paper we discuss design simulations of a spiral magnet using 2D Poisson code. The Independent Layers Method (ILM) is a new technique that was developed to enable the use of two-dimensional simulation code to calculate a non-symmetric 3-dimensional magnetic field. In ILM, the magnet pole is divided into successive independent layers, and the hill and valley shape around the azimuthal direction is implemented using a reference magnet. The normalization of the magnetic field in the reference magnet produces a profile that can be multiplied by the maximum magnetic field in the hill magnet, which is a dipole magnet made of the hills at the same radius. Both magnets are then calculated using the 2D Poisson SUPERFISH code. Then a fully three-dimensional magnetic field is produced using TOSCA for the original spiral magnet, and the comparison of the 2D and 3D results shows a good agreement between both.

  12. Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla

    SciTech Connect

    Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

    1998-11-08

    We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

  13. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  14. Magnetic anisotropy of metal functionalized phthalocyanine 2D networks

    NASA Astrophysics Data System (ADS)

    Zhu, Guojun; Zhang, Yun; Xiao, Huaping; Cao, Juexian

    2016-06-01

    The magnetic anisotropy of metal including Cr, Mn, Fe, Co, Mo, Tc, Ru, Rh, W, Re, Os, Ir atoms functionalized phthalocyanine networks have been investigated with first-principles calculations. The magnetic moments can be expressed as 8-n μB with n the electronic number of outmost d shell in the transition metals. The huge magnetocrystalline anisotropy energy (MAE) is obtained by torque method. Especially, the MAE of Re functionalized phthalocyanine network is about 20 meV with an easy axis perpendicular to the plane of phthalocyanine network. The MAE is further manipulated by applying the external biaxial strain. It is found that the MAE is linear increasing with the external strain in the range of -2% to 2%. Our results indicate an effective approach to modulate the MAE for practical application.

  15. Perfect 2-d quadrupole fields from permanent magnets

    SciTech Connect

    Lee, E.P.; Vella, M.

    1996-04-01

    Consider the 13-beam channel array shown in Figure 1. It is asserted that, under mathematically ideal assumptions, a pure quadrupole field is centered in each of the 13 beam channel boxes. An identical quadrupole field (for {bar H}, not {bar B}) is also centered in each of the 4 boxes containing 4 magnetic wedges located near the center of the system. An iron yoke ({mu} = {infinity}) with the displayed zig-zag shape provides a boundary condition (H{sub {parallel}} = 0) that makes the 13 channels equivalent to a portion of an infinite array. A similar array can be readily drawn for any number of beams. The quadrupole gradient in the beam channels is B{prime} = M{sub o}/2b, where M{sub o} is the remnant field of the magnetic wedges, and the channel diameter (wedge-to-wedge) is 2b. Note that a unit cell of the array, containing one beam, has diameter 2{radical}2 b (viewed from 45{degree} tilt) so its area is 8 b{sup 2}. A significant advantage of this design over those using dipolar blocks is the large fraction of cross section devoted to beam channels (50% vs 25%). Application to a heavy ion fusion driver is discussed.

  16. A Neural-FEM tool for the 2-D magnetic hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.

    2016-04-01

    The aim of this work is to present a new tool for the analysis of magnetic field problems considering 2-D magnetic hysteresis. In particular, this tool makes use of the Finite Element Method to solve the magnetic field problem in real device, and fruitfully exploits a neural network (NN) for the modeling of 2-D magnetic hysteresis of materials. The NS has as input the magnetic inductions components B at the k-th simulation step and returns as output the corresponding values of the magnetic field H corresponding to the input pattern. It is trained by vector measurements performed on the magnetic material to be modeled. This input/output scheme is directly implemented in a FEM code employing the magnetic potential vector A formulation. Validations through measurements on a real device have been performed.

  17. Nuclear magnetic resonance gyroscope

    SciTech Connect

    Grover, B.C.

    1984-02-07

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor.

  18. Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion

    PubMed Central

    Scheuer, Jochen; Stark, Alexander; Kost, Matthias; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2015-01-01

    Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. The signal to noise ratio of the recovered 2D spectrum is compared to the Fourier transform of randomly subsampled data, where we observe a strong suppression of the noise when the matrix completion algorithm is applied. We show that the peaks in the spectrum can be obtained with only 10% of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank. PMID:26631593

  19. Magnetic properties and the effect of non-magnetic impurities in the quasi-2D quantum magnet

    NASA Astrophysics Data System (ADS)

    Khuntia, P.; Dey, T.; Mahajan, A. V.

    2016-09-01

    We present synthesis, x-ray diffraction, magnetisation and specific heat studies on the quasi-two-dimensional (2D) S = 1/2 antiferromagnet (CuCl)LaNb2O7 and its doping analogues (Cu1-x Zn x Cl)LaNb2O7 (0 ≤ x ≤ 0.05), (Cu0.95Mg0.05Cl)LaNb2O7, and (CuCl)La1-y Ba y Nb2O7 (0 ≤ y ≤ 0.10). The magnetic susceptibility and specific heat of the parent compound and its isovalent or hetereovalent counterparts do not display any signature of magnetic ordering down to 1.8 K. The parent compound and its doping variants exhibit spin-singlet behaviour with a finite gap in the spin excitation spectrum due to dimerisation of the dominant intradimer interactions as evidenced from our magnetic susceptibility and specific heat data. The systematic increase of magnetic susceptibility at low temperature with non-magnetic Zn2+ and Mg2+ (S = 0) substitution at the Cu2+ site reflect that impurities induce local moments around the non-magnetic sites. While heterovalent Ba2+ substitution at the La3+ site do not result in mobile holes but rather give rise to a Curie term in the susceptibility due to localisation. The low value of spin S = 1/2, and absence of long range ordering or spin freezing, and the presence of competing exchange interactions hold special significance in hosting novel magnetic properties in this class of quasi-2D quantum material.

  20. Magnetic properties and the effect of non-magnetic impurities in the quasi-2D quantum magnet

    NASA Astrophysics Data System (ADS)

    Khuntia, P.; Dey, T.; Mahajan, A. V.

    2016-09-01

    We present synthesis, x-ray diffraction, magnetisation and specific heat studies on the quasi-two-dimensional (2D) S = 1/2 antiferromagnet (CuCl)LaNb2O7 and its doping analogues (Cu1‑x Zn x Cl)LaNb2O7 (0 ≤ x ≤ 0.05), (Cu0.95Mg0.05Cl)LaNb2O7, and (CuCl)La1‑y Ba y Nb2O7 (0 ≤ y ≤ 0.10). The magnetic susceptibility and specific heat of the parent compound and its isovalent or hetereovalent counterparts do not display any signature of magnetic ordering down to 1.8 K. The parent compound and its doping variants exhibit spin-singlet behaviour with a finite gap in the spin excitation spectrum due to dimerisation of the dominant intradimer interactions as evidenced from our magnetic susceptibility and specific heat data. The systematic increase of magnetic susceptibility at low temperature with non-magnetic Zn2+ and Mg2+ (S = 0) substitution at the Cu2+ site reflect that impurities induce local moments around the non-magnetic sites. While heterovalent Ba2+ substitution at the La3+ site do not result in mobile holes but rather give rise to a Curie term in the susceptibility due to localisation. The low value of spin S = 1/2, and absence of long range ordering or spin freezing, and the presence of competing exchange interactions hold special significance in hosting novel magnetic properties in this class of quasi-2D quantum material.

  1. Nuclear magics at explosive magnetization

    NASA Astrophysics Data System (ADS)

    Kondratyev, V. N.

    2016-05-01

    Effects of ultra-strong magnetization in creation of iron group nuclides are considered by employing arguments of nuclear statistical equilibrium. Nuclear magnetic reactivity is demonstrated to enhance the portion of titanium product due to magnetic modification of nuclear structure. The results are corroborated with an excess of 44Ti revealed from the Integral mission data.

  2. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  3. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  4. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is concluding the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, and design basics of the NMRG including an overview of the NSD designs developed and demonstrated in the DARPA gyro development program. General performance results from phases 3 and 4 will also be presented.

  5. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    SciTech Connect

    Osiry, H.; Cano, A.; Lemus-Santana, A.A.; Rodríguez, A.; Carbonio, R.E.; Reguera, E.

    2015-10-15

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π–π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting. - Highlights: • Intercalation of organic molecules in 2D copper (II) nitroprusside. • Molecular properties of intercalation compounds of 2D copper (II) nitroprusside. • Magnetic properties of hybrid inorganic–organic solids. • Hybrid inorganic–organic 3D framework.

  6. Nuclear Magnetic Conduits

    NASA Astrophysics Data System (ADS)

    Desantis, Rich

    2008-10-01

    Point charges are not conduits of magnetism. Vacuum gaps between charges prevent superconductivity. Magnetism occurs w/o charge velocity. A changing magnetic field can add magnetism, w/o magnetism's centripetal force adding speed. Voltage is not charge repulsion energy. Passing electrons through a stationary electron's field cannot reduce its field. Passing the external electrons through a charged capacitor's field discharges the capacitor. Chemical bonds extend between atoms. A superconductive magnet contains a superconductive molecule, the length of its wire. Superconductivity dictates that chemical bonding material is non-vacuum and non-point charge. Its unit is an electron/proton fusion called an ABION. Unpaired abions attract all other unpaired abions within or between atoms. Paired abions have reduced attraction for other abions. Helium is inert because its abions are paired. A lithium atom includes an unpaired abion. Superconductive abions are nuclear magnetic conduits. Equality of transference numbers in electrochemistry is evidence of conduits. In fuel cells and semiconductors, paired voltage-induced redox reactions convert lines of abions into conduits. This temporarily converts bulk insulators to conductors.

  7. Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.

    PubMed

    Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V

    2016-06-01

    Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model. PMID:27176463

  8. Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.

    PubMed

    Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V

    2016-06-01

    Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model.

  9. Propagator-resolved 2D exchange in porous media in the inhomogeneous magnetic field.

    PubMed

    Burcaw, Lauren M; Hunter, Mark W; Callaghan, Paul T

    2010-08-01

    We present a propagator-resolved 2D exchange spectroscopy technique for observing fluid motion in a porous medium. The susceptibility difference between the matrix and the fluid is exploited to produce an inhomogeneous internal magnetic field, causing the Larmor frequency to change as molecules migrate. We test our method using a randomly packed monodisperse 100 microm diameter glass bead matrix saturated with distilled water. Building upon previous 2D exchange spectroscopy work we add a displacement dimension which allows us to obtain 2D exchange spectra that are defined by both mixing time and spatial displacement rather than by mixing time alone. We also simulate our system using a Monte Carlo process in a random nonpenetrating monodisperse bead pack, finding good agreement with experiment. A simple analytic model is used to interpret the NMR data in terms of a characteristic length scale over which molecules must diffuse to sample the inhomogeneous field distribution. PMID:20554230

  10. Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3Nanosheets

    NASA Astrophysics Data System (ADS)

    Weber, Daniel; Schoop, Leslie M.; Duppel, Viola; Lippmann, Judith M.; Nuss, Jürgen; Lotsch, Bettina V.

    2016-06-01

    Spin $\\frac{1}{2}$ honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still of demand. Here, we report the exfoliation of the magnetic semiconductor $\\alpha$-RuCl$_3$ into the first halide monolayers and the magnetic characterization of the spin $\\frac{1}{2}$ honeycomb arrangement of turbostratically stacked RuCl$_3$ monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin $\\frac{1}{2}$ state by electron injection into the layers. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at T$_N$ = 7 K in the in-plane direction, while the magnetic properties in the out-of-plane direction vastly differ from bulk $\\alpha$-RuCl$_3$. The macroscopic pellets of RuCl$_3$ therefore behave like a stack of monolayers without any symmetry relation in the stacking direction. The deliberate introduction of turbostratic disorder to manipulate the spin structure of RuCl$_3$ is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model.

  11. Easy-plane anisotropy stabilizes skyrmions in 2D chiral magnets

    NASA Astrophysics Data System (ADS)

    Rowland, James; Banerjee, Sumilan; Randeria, Mohit

    2014-03-01

    Experiments on two-dimensional (2D) chiral magnetic materials, like thin films of non-centrosymmetric helimagnets and metallic magnetic layers, have revealed interesting spatially modulated spin textures such as spirals and skyrmions. Motivated by this we study the ground-state phase diagram for a 2D chiral magnet in a magnetic field using a Ginzburg-Landau model, with Dzyaloshinskii-Moriya (DM) term, anisotropic exchange and single-ion anisotropy. The easy-axis anisotropy region of the phase diagram has been well-studied, whereas the easy-plane region has not been discussed. In the easy-plane region, we find an unexpectedly large stable skyrmion crystal (SkX) phase in a perpendicular magnetic field. We find re-entrant transitions between ferromagnetic and SkX phases, and intriguing internal structure of the skyrmion core with two-length scales. We argue that such an easy-plane anisotropy arises naturally from the compass terms induced by spin-orbit coupling that is also responsible for the DM term, as proposed recently in the context of oxide interfaces. We also discuss the phase diagram in a tilted field configuration, relevant for torque magnetometry experiments. JR and MR supported by NSF MRSEC DMR-0820414 and SB by DOE-BES DE-SC0005035.

  12. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael

    2011-05-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is currently in phase 4 of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. The micro-NMRG technology is pushing the boundaries of size, weight, power, and performance allowing new small platform applications of navigation grade Inertial Navigation System (INS) technology. Information on the historical development of the technology, basics of operation, task performance goals, application opportunities, and a phase 2 sample of earth rate measurement data will be presented. Funding Provided by the Defense Advanced Research Projects Agency (DARPA)

  13. 2D PIC simulations for an EN discharge with magnetized electrons and unmagnetized ions

    NASA Astrophysics Data System (ADS)

    Lieberman, Michael A.; Kawamura, Emi; Lichtenberg, Allan J.

    2009-10-01

    We conducted 2D particle-in-cell (PIC) simulations for an electronegative (EN) discharge with magnetized electrons and unmagnetized ions, and compared the results to a previously developed 1D (radial) analytical model of an EN plasma with strongly magnetized electrons and weakly magnetized ions [1]. In both cases, there is a static uniform applied magnetic field in the axial direction. The 1D radial model mimics the wall losses of the particles in the axial direction by introducing a bulk loss frequency term νL. A special (desired) solution was found in which only positive and negative ions but no electrons escaped radially. The 2D PIC results show good agreement with the 1D model over a range of parameters and indicate that the analytical form of νL employed in [1] is reasonably accurate. However, for the PIC simulations, there is always a finite flux of electrons to the radial wall which is about 10 to 30% of the negative ion flux.[4pt] [1] G. Leray, P. Chabert, A.J. Lichtenberg and M.A. Lieberman, J. Phys. D, accepted for publication 2009.

  14. Two-dimensional nuclear magnetic resonance petrophysics.

    PubMed

    Sun, Boqin; Dunn, Keh-Jim

    2005-02-01

    Two-dimensional nuclear magnetic resonance (2D NMR) opens a wide area for exploration in petrophysics and has significant impact to petroleum logging technology. When there are multiple fluids with different diffusion coefficients saturated in a porous medium, this information can be extracted and clearly delineated from CPMG measurements of such a system either using regular pulsing sequences or modified two window sequences. The 2D NMR plot with independent variables of T2 relaxation time and diffusion coefficient allows clear separation of oil and water signals in the rocks. This 2D concept can be extended to general studies of fluid-saturated porous media involving other combinations of two or more independent variables, such as chemical shift and T1/T2 relaxation time (reflecting pore size), proton population and diffusion contrast, etc. PMID:15833623

  15. nuclear magnetic resonance gyroscope

    SciTech Connect

    Karwacki, F. A.; Griffin, J.

    1985-04-02

    A nuclear magnetic resonance gyroscope which derives angular rotation thereof from the phases of precessing nuclear moments utilizes a single-resonance cell situated in the center of a uniform DC magnetic field. The field is generated by current flow through a circular array of coils between parallel plates. It also utilizes a pump and read-out beam and associated electronics for signal processing and control. Encapsulated in the cell for sensing rotation are odd isotopes of Mercury Hg/sup 199/ and Hg/sup 201/. Unpolarized intensity modulated light from a pump lamp is directed by lenses to a linear polarizer, quarter wave plate combination producing circularly polarized light. The circularly polarized light is reflected by a mirror to the cell transverse to the field for optical pumping of the isotopes. Unpolarized light from a readout lamp is directed by lenses to another linear polarizer. The linearly polarized light is reflected by another mirror to the cell transverse to the field and orthogonal to the pump lamp light. The linear light after transversing the cell strikes an analyzer where it is converted to an intensity-modulated light. The modulated light is detected by a photodiode processed and utilized as feedback to control the field and pump lamp excitation and readout of angular displacement.

  16. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Mirijanian, James; Pavell, James

    2015-05-01

    The Nuclear Magnetic Resonance Gyroscope (NMRG) is being developed by the Northrop Grumman Corporation (NGC). Cold and hot atom interferometer based gyroscopes have suffered from Size, Weight, and Power (SWaP) challenges and limits in bandwidth, scale factor stability, dead time, high rotation rate, vibration, and acceleration. NMRG utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as a reference for determining rotation, providing continuous measurement, high bandwidth, stable scale factor, high rotation rate measurement, and low sensitivity to vibration and acceleration in a low SWaP package. The sensitivity to vibration has been partially tested and demonstrates no measured sensitivity within error bars. Real time closed loop implementation of the sensor significantly decreases environmental and systematic sensitivities and supports a compact and low power digital signal processing and control system. Therefore, the NMRG technology holds great promise for navigation grade performance in a low cost SWaP package. The poster will describe the history, operation, and design of the NMRG. General performance results will also be presented along with recent vibration test results.

  17. Nonlinear 2-D effects in the control of magnetic Islands by ECCD

    SciTech Connect

    Lazzaro, Enzo; Borgogno, Dario; Comisso, Luca; Grasso, Daniela

    2014-02-12

    The stabilization of tearing magnetic islands by means of localized current driven by electron cyclotron waves, requires optimizing the efficiency of the injected helical current. The problem is conventionally addressed using 0-D model of the (generalized) Rutherford equation to find the dependence in terms of the island width, wave beam width and deposition scale length, as well as phase tracking requirements. The use of a 2-D reconnection model shows that both the early time response of a tearing unstable system to ECCD and important nonlinear processes lead to irreversible modifications on the 2-D configuration, where 'phase' and 'width' of an island cease to be observable and controllable state variables. In particular the occurrence of a phase instability and of multiple axis and current sheets, may be a serious impediment for feedback control schemes.

  18. Dynamics of 2D Dust Clusters with a Perpendicular Magnetic Field

    SciTech Connect

    Greiner, Franko; Carstensen, Jan; Hou Lujing; Piel, Alexander

    2008-09-07

    The physics of two-dimensional (2D) dust clusters in an unmagnetized plasma sheath has been understood in dept. However, introduction of a perpendicular magnetic field into the dusty plasma sheath leads to some new effects, such as rotation and compression of dust clusters, whose mechanism is still unclear. It is found that even for a magnetic field as low as the earth magnetic field ({approx_equal}40 {mu}T), clusters rotate as rigid about their centers. It was proposed [U. Konopka, PRE 61, 1890 (2000)] that the ExB-induced ion flow drives the dust clusters into rotation. Simulations [L.-J. Hou, PoP 12, 042104 (2005)] based on the same hypothesis also reproduced the rotation of 2D clusters in a qualitative manner. However, this model cannot fully explain the experimental observations. We present detailed experimental investigations, which show that the rotation of a dust cluster critically depends on the detailed discharge geometry. In particular, the co-rotation of the background neutral gas and its role in driving dust-cluster rotation is proposed as a mechanism to set the dust cluster in rotation.

  19. 2D and 3D ordered arrays of Co magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Garcia, J.; Prida, V. M.; Vega, V.; Rosa, W. O.; Caballero-Flores, R.; Iglesias, L.; Hernando, B.

    2015-06-01

    Cobalt nanowire arrays spatially distributed in 2D and 3D arrangements have been performed by pulsed electrodeposition into the pores of planar and cylindrical nanoporous anodic alumina membranes, respectively. Morphological characterization points out the good filling factor reached by electroplated Co nanowires in both kinds of alumina membranes exhibiting hexagonally self-ordered porous structures. Co nanowires grown in both kinds of alumina templates exhibit the same crystalline phases. DC magnetometry and First Order Reversal Curve (FORC) analysis were carried out in order to determine the overall magnetic behavior for both nanowire array geometries. It is found that when the Co nanowires of two kinds of arrays are perpendicularly magnetized, both hysteresis loops are identical, suggesting that neither the intrinsic magnetic behavior of the nanowires nor the collective one depend on the arrays geometry. FORC analysis performed along the radial direction of the Co nanowire arrays embedded in the cylindrical alumina template reveals that the contribution of each nanowire to the magnetization reversal process involves its specific orientation with respect to the applied field direction. Furthermore, the comparison between the magnetic properties for both kinds of Co nanowire arrays allows discussing about the effect of the cylindrical geometry of the template on the magnetostatic interaction among nanowires.

  20. Field-induced magnetization jumps and quantum criticality in the 2D J-Q model

    NASA Astrophysics Data System (ADS)

    Iaizzi, Adam; Sandvik, Anders

    The J-Q model is a `designer hamiltonian' formed by adding a four spin `Q' term to the standard antiferromagnetic S = 1 / 2 Heisenberg model. The Q term drives a quantum phase transition to a valence-bond solid (VBS) state: a non-magnetic state with a pattern of local singlets which breaks lattice symmetries. The elementary excitations of the VBS are triplons, i.e. gapped S=1 quasiparticles. There is considerable interest in the quantum phase transition between the Néel and VBS states as an example of deconfined quantum criticality. Near the phase boundary, triplons deconfine into pairs of bosonic spin-1/2 excitations known as spinons. Using exact diagonalization and the stochastic series expansion quantum monte carlo method, we study the 2D J-Q model in the presence of an external magnetic field. We use the field to force a nonzero density of magnetic excitations at T=0 and look for signatures of Bose-Einstein condensation of spinons. At higher magnetic fields, there is a jump in the induced magnetization caused by the onset of an effective attractive interaction between magnons on a ferromagnetic background. We characterize the first order quantum phase transition and determine the minimum value of the coupling ratio q ≡ Q / J required to produce this jump. Funded by NSF DMR-1410126.

  1. Wavelet characterization of 2D turbulence and intermittency in magnetized electron plasmas

    NASA Astrophysics Data System (ADS)

    Romé, M.; Chen, S.; Maero, G.

    2016-06-01

    A study of the free relaxation of turbulence in a two-dimensional (2D) flow is presented, with a focus on the role of the initial vorticity conditions. Exploiting a well-known analogy with 2D inviscid incompressible fluids, the system investigated here is a magnetized pure electron plasma. The dynamics of this system are simulated by means of a 2D particle-in-cell code, starting from different spiral density (vorticity) distributions. A wavelet multiresolution analysis is adopted, which allows the coherent and incoherent parts of the flow to be separated. Comparison of the turbulent evolution in the different cases is based on the investigation of the time evolution of statistical properties, including the probability distribution functions and structure functions of the vorticity increments. It is also based on an analysis of the enstrophy evolution and its spectrum for the two components. In particular, while the statistical features assess the degree of flow intermittency, spectral analysis allows us not only to estimate the time required to reach a state of fully developed turbulence, but also estimate its dependence on the thickness of the initial spiral density distribution, accurately tracking the dynamics of both the coherent structures and the turbulent background. The results are compared with those relevant to annular initial vorticity distributions (Chen et al 2015 J. Plasma Phys. 81 495810511).

  2. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    NASA Astrophysics Data System (ADS)

    Osiry, H.; Cano, A.; Lemus-Santana, A. A.; Rodríguez, A.; Carbonio, R. E.; Reguera, E.

    2015-10-01

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π-π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting.

  3. Spin-orbit coupling, compass anisotropy and skyrmions in 2D chiral magnets

    NASA Astrophysics Data System (ADS)

    Banerjee, Sumilan; Erten, Onur; Rowland, James; Randeria, Mohit

    2014-03-01

    Spin-orbit coupling (SOC) gives rise to the chiral Dzyaloshinskii-Moriya (DM) interaction in systems that lack inversion symmetry like non-centrosymmetric helimagnets, and two-dimensional magnetism at surfaces and interfaces. We explore here the role of SOC in several microscopic exchange mechanisms - superexchange, double exchange and RKKY - in insulating and itinerant electron systems. We show that, in addition to giving rise to the DM interaction, SOC generically leads to compass anisotropy terms. Although seemingly negligible, the compass terms are energetically comparable to DM and play a crucial role in deciding the fate of the magnetic ground state. We demonstrate that the compass terms act as an effective easy-plane anisotropy in 2D chiral magnets and lead to extremely large region of stable skyrmion crystal (SkX) phase in a perpendicular magnetic field. We discuss the electronic properties of SkX in this hitherto unexplored region of the anisotropy-field plane for itinerant systems. We also comment on the possibility of realizing such SkX phase in the oxide interfaces. JR and MR supported by NSF MRSEC DMR-0820414 and SB by DOE-BES DE-SC0005035.

  4. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing–Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing–Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  5. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing-Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing-Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  6. Field lines and magnetic surfaces in a two-component slab/2D model of interplanetary magnetic fluctuations

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Pontius, D. H., Jr.; Gray, P. C.; Bieber, J. W.

    1995-01-01

    A two-component model for the spectrum of interplanetary magnetic fluctuations was proposed on the basis of ISEE observations, and has found an intriguing level of application in other solar wind studies. The model fluctuations consist of a fraction of 'slab' fluctuations, varying only in the direction parallel to the locally uniform mean magnetic field B(0) and a complement of 2D (two-dimensional) fluctuations that vary in the directions transverse to B(0). We have developed an spectral method computational algorithm for computing the magnetic flux surfaces (flux tubes) associated with the composite model, based upon a precise analogy with equations for ideal transport of a passive scalar in planar two dimensional geometry. Visualization of various composite models will be presented, including the 80 percent 2D/ 20 percent slab model with delta B/B(0) approximately equals 1 and a minus 5/3 spectral law, that is thought to approximately represent a snapshot of solar wind turbulence. Characteristically, the visualizations show that flux tubes, even when defined as regular on some plane, shred and disperse rapidly as they are viewed along the parallel direction. This diffusive process, which generalizes the standard picture of field line random walk, will be discussed in detail. Evidently, the traditional picture that flux tubes randomize like strands of spaghetti with a uniform tangle along the axial direction is in need of modification.

  7. Skyrmions in quasi-2D chiral magnets with broken bulk and surface inversion symmetry (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Randeria, Mohit; Banerjee, Sumilan; Rowland, James

    2015-09-01

    Most theoretical studies of chiral magnetism, and the resulting spin textures, have focused on 3D systems with broken bulk inversion symmetry, where skyrmions are stabilized by easy-axis anisotropy. In this talk I will describe our results on 2D and quasi-2D systems with broken surface inversion, where we find [1] that skyrmion crystals are much more stable than in 3D, especially for the case of easy-plane anisotropy. These results are of particular interest for thin films, surfaces, and oxide interfaces [2], where broken surface-inversion symmetry and Rashba spin-orbit coupling naturally lead to both the chiral Dzyaloshinskii-Moriya (DM) interaction and to easy-plane compass anisotropy. I will then turn to systems that break both bulk and surface inversion, resulting in two distinct DM terms arising from Dresselhaus and Rashba spin-orbit coupling. I will describe [3] the evolution of the skyrmion structure and of the phase diagram as a function of the ratio of Dresselhaus and Rashba terms, which can be tuned by varying film thickness and strain. [1] S. Banerjee, J. Rowland, O. Erten, and M. Randeria, PRX 4, 031045 (2014). [2] S. Banerjee, O. Erten, and M. Randeria, Nature Phys. 9, 626 (2013). [3] J. Rowland, S. Banerjee and M. Randeria, (unpublished).

  8. Measurement of 2D vector magnetic properties under the distorted flux density conditions

    NASA Astrophysics Data System (ADS)

    Urata, Shinya; Todaka, Takashi; Enokizono, Masato; Maeda, Yoshitaka; Shimoji, Hiroyasu

    2006-09-01

    Under distorted flux density condition, it is very difficult to evaluate the field intensity, because there is no criterion for the measurement. In the linear approximation, the measured field intensity waveform (MFI) is compared with the linear synthesis of field intensity waveform (LSFI) in each frequency, and it is shown that they are not in good agreement at higher induction. In this paper, we examined the 2D vector magnetic properties excited by distorted flux density, which consists of the 1st (fundamental frequency: 50 Hz), 3rd, and 5th harmonics. Improved linear synthesis of the field intensity waveform (ILSFI) is proposed as a new estimation method of the field intensity, instead of the conventional linear synthesis of field intensity waveform (LSFI). The usefulness of the proposed ILSFI is demonstrated in the comparison with the measured results.

  9. Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields

    2000-02-21

    SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut awaymore » to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.« less

  10. Observed and simulated power spectra of kinetic and magnetic energy retrieved with 2D inversions

    NASA Astrophysics Data System (ADS)

    Danilovic, S.; Rempel, M.; van Noort, M.; Cameron, R.

    2016-10-01

    Context. Information on the origin of internetwork magnetic field is hidden at the smallest spatial scales. Aims: We try to retrieve the power spectra with certainty to the highest spatial frequencies allowed by current instrumentation. Methods: To accomplish this, we use a 2D inversion code that is able to recover information up to the instrumental diffraction limit. Results: The retrieved power spectra have shallow slopes that extend further down to much smaller scales than has been found before. They do not seem to show any power law. The observed slopes at subgranular scales agree with those obtained from recent local dynamo simulations. Small differences are found for the vertical component of kinetic energy that suggest that observations suffer from an instrumental effect that is not taken into account. Conclusions: Local dynamo simulations quantitatively reproduce the observed magnetic energy power spectra on the scales of granulation down to the resolution limit of Hinode/SP, within the error bars inflicted by the method used and the instrumental effects replicated.

  11. GHz nuclear magnetic resonance

    SciTech Connect

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  12. Craniosynostosis: prenatal diagnosis by 2D/3D ultrasound, magnetic resonance imaging and computed tomography.

    PubMed

    Helfer, Talita Micheletti; Peixoto, Alberto Borges; Tonni, Gabriele; Araujo Júnior, Edward

    2016-09-01

    Craniosynostosis is defined as the process of premature fusion of one or more of the cranial sutures. It is a common condition that occurs in about 1 to 2,000 live births. Craniosynostosis may be classified in primary or secondary. It is also classified as nonsyndromic or syndromic. According to suture commitment, craniosynostosis may affect a single suture or multiple sutures. There is a wide range of syndromes involving craniosynostosis and the most common are Apert, Pffeifer, Crouzon, Shaethre-Chotzen and Muenke syndromes. The underlying etiology of nonsyndromic craniosynostosis is unknown. Mutations in the fibroblast growth factor (FGF) signalling pathway play a crucial role in the etiology of craniosynostosis syndromes. Prenatal ultrasound`s detection rate of craniosynostosis is low. Nowadays, different methods can be applied for prenatal diagnosis of craniosynostosis, such as two-dimensional (2D) and three-dimensional (3D) ultrasound, magnetic resonance imaging (MRI), computed tomography (CT) scan and, finally, molecular diagnosis. The presence of craniosynostosis may affect the birthing process. Fetuses with craniosynostosis also have higher rates of perinatal complications. In order to avoid the risks of untreated craniosynostosis, children are usually treated surgically soon after postnatal diagnosis. PMID:27622416

  13. Magnetic phase diagram of quasi-2D quantum Heisenberg antiferromagnets with XY anisotropy

    NASA Astrophysics Data System (ADS)

    Xiao, Fan; Landee, Christopher; Turnbull, Mark; Fortune, Nathanael; Hannahs, Scott

    2012-02-01

    The magnetic phase diagram of a quasi-2D quantum Heisenberg antiferromagnetic compound Cu(pz)2(ClO4)2 [1] has been determined by experimental measurements; TN shows a strong field dependence. The data reveal the presence of a small (0.5%) amount of XY anisotropy. QMC simulations have been performed to examine the role of the anisotropy and the interlayer exchange (') upon the phase diagram [2,3]. Comparison of the QMC results with the experimental phase diagram will be presented. [4pt] [1] F. Xiao, F. M. Woodward, C. P. Landee, M. M. Turnbull, C. Mielke, N. Harrison, T. Lancaster, S. J. Blundell, P. J. Baker, P. Babkevich, and F. L. Pratt. Phys. Rev. B, 79(13): 134412 (2009) [0pt] [2] A. Cuccoli, T. Roscilde, R. Vaia, and P. Verrucchi. Phys. Rev. B, 68(6):060402 (2003). [0pt] [3] A. Cuccoli, T. Roscilde, R. Vaia, and P. Verrucchi. Phys. Rev. Lett., 90(16): 167205 (2003).

  14. 2-D LSP Simulations of the Self Magnetic Pinch Radiographic Diode

    NASA Astrophysics Data System (ADS)

    Threadgold, J.; Crotch, I.; Rose, D. V.

    2003-10-01

    The Atomic Weapons Establishment (AWE) UK has a number of Pulsed Power driven flash X-ray machines which are used to take transmission radiographs of hydrodynamic experiments. Some of the lower voltage x-ray machines (< 2 MV) use the Self Magnetic (SM) Pinch diode for their source. The SM pinch diode has proved to be a reliable source for providing small diameter radiographic spot sizes. With an emphasis on reduction of the x-ray spot size at higher voltages, one part of the diode research project has been to field SM pinch diodes at higher voltages. The SM pinch diode relies upon the magnitude of its own electron current (> 50 kA) to pinch the electron beam to a small diameter onto a high Z converter target. An electromagnetic PIC code, LSP, has been used to carry out 2-D simulations of the diode to support this project. The code has been used to investigate the effect of different target materials within the diode and to investigate the resultant electron trajectories onto the target. Results of these code simulations will be compared to experimental data The simulations show good agreement with measured experimental data on diode performance. The simulations suggest further improvements in spot size reduction could be achieved with changes in the diode geometry.

  15. 2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals.

    PubMed

    Faure, Bertrand; Wetterskog, Erik; Gunnarsson, Klas; Josten, Elisabeth; Hermann, Raphaël P; Brückel, Thomas; Andreasen, Jens Wenzel; Meneau, Florian; Meyer, Mathias; Lyubartsev, Alexander; Bergström, Lennart; Salazar-Alvarez, German; Svedlindh, Peter

    2013-02-01

    The magnetic 2D to 3D crossover behavior of well-ordered arrays of monodomain γ-Fe(2)O(3) spherical nanoparticles with different thicknesses has been investigated by magnetometry and Monte Carlo (MC) simulations. Using the structural information of the arrays obtained from grazing incidence small-angle X-ray scattering and scanning electron microscopy together with the experimentally determined values for the saturation magnetization and magnetic anisotropy of the nanoparticles, we show that MC simulations can reproduce the thickness-dependent magnetic behavior. The magnetic dipolar particle interactions induce a ferromagnetic coupling that increases in strength with decreasing thickness of the array. The 2D to 3D transition in the magnetic properties is mainly driven by a change in the orientation of the magnetic vortex states with increasing thickness, becoming more isotropic as the thickness of the array increases. Magnetic anisotropy prevents long-range ferromagnetic order from being established at low temperature and the nanoparticle magnetic moments instead freeze along directions defined by the distribution of easy magnetization directions.

  16. Slow magnetic relaxation in a hydrogen-bonded 2D array of mononuclear dysprosium(III) oxamates.

    PubMed

    Fortea-Pérez, Francisco R; Vallejo, Julia; Julve, Miguel; Lloret, Francesc; De Munno, Giovanni; Armentano, Donatella; Pardo, Emilio

    2013-05-01

    The reaction of N-(2,6-dimethylphenyl)oxamic acid with dysprosium(III) ions in a controlled basic media afforded the first example of a mononuclear lanthanide oxamate complex exhibiting a field-induced slow magnetic relaxation behavior typical of single-ion magnets (SIMs). The hydrogen-bond-mediated self-assembly of this new bifunctional dysprosium(III) SIM in the solid state provides a unique example of 2D hydrogen-bonded polymer with a herringbone net topology.

  17. Destabilization of 2D magnetic current sheets by resonance with bouncing electron - a new theory

    NASA Astrophysics Data System (ADS)

    Fruit, Gabriel; Louarn, Philippe; Tur, Anatoly

    2016-07-01

    In the general context of understanding the possible destabilization of the magnetotail before a substorm, we propose a kinetic model for electromagnetic instabilities in resonant interaction with trapped bouncing electrons. The geometry is clearly 2D and uses Harris sheet profile. Fruit et al. 2013 already used this model to investigate the possibilities of electrostatic instabilities. Tur et al. 2014 generalizes the model for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period (a few seconds). The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasi neutrality condition and the Ampere's law for the current density. The present talk will focus on the main results of this theory. The electrostatic version of the model may be applied to the near-Earth environment (8-12 R_{E}) where beta is rather low. It is showed that inclusion of bouncing electron motion may enhance strongly the growth rate of the classical drift wave instability. This model could thus explain the generation of strong parallel electric fields in the ionosphere and the formation of aurora beads with wavelength of a few hundreds of km. In the electromagnetic version, it is found that for mildly stretched current sheet (B_{z} > 0.1 B _{lobes}) undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in B_{z}/B _{lobes}, the mode becomes explosive (pure imaginary frequency) with typical growing rate of a few

  18. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  19. Analytical description of 2D magnetic Freedericksz transition in a rectangular cell of a nematic liquid crystal.

    PubMed

    Burylov, S V; Zakhlevnykh, A N

    2016-06-01

    We study the Freedericksz transition induced by a magnetic field in a rectangular cell filled with a nematic liquid crystal. In the initial state the director of the nematic liquid crystal is uniformly aligned in the cross section plane of the cell with rigid anchoring of the director at cell walls: planar on the top and bottom walls, and homeotropic on the left and right ones. The magnetic field is directed perpendicular to the cell cross section plane. We consider two-dimensional (2D) orientational deformations of the nematic liquid crystal in the rectangular cell and determine the critical value of the Freedericksz transition field above which these orientational deformations occur. The 2D expression for the director alignment profile above the threshold of Freedericksz transition is analytically found and the profile shapes as functions of cell sizes, values of the Frank elastic constants of the nematic liquid crystal and the magnetic field are studied. PMID:27349554

  20. Long-lived nuclear spin states in rapidly rotating CH2D groups

    NASA Astrophysics Data System (ADS)

    Elliott, Stuart J.; Brown, Lynda J.; Dumez, Jean-Nicolas; Levitt, Malcolm H.

    2016-11-01

    Although monodeuterated methyl groups support proton long-lived states, hindering of the methyl rotation limits the singlet relaxation time. We demonstrate an experimental case in which the rapid rotation of the CH2D group extends the singlet lifetime but does not quench the chemical shift difference between the CH2D protons, induced by the chiral environment. Proton singlet order is accessed using Spin-Lock Induced Crossing (SLIC) experiments, showing that the singlet relaxation time TS is over 2 min, exceeding the longitudinal relaxation time T1 by a factor of more than 10. This result shows that proton singlet states may be accessible and long-lived in rapidly rotating CH2D groups.

  1. The Study on the Shape of 2-D Stator with Electromagnets and Permanent Magnets for 3-D Superconducting Actuator

    NASA Astrophysics Data System (ADS)

    Ozasa, S.; Kim, S. B.; Nakano, H.; Sawae, M.; Kobayashi, H.

    The electric device applications of a high temperature superconducting (HTS) bulk magnet having stable levitation and suspension properties due to their strong flux pinning force have been proposed and developed. We have been investigating the three-dimensional (3-D) superconducting actuator using HTS bulk to develop a non-contact transportation device. Probably, the cost of the manufactory will be increased to install the 2-D arranged electromagnets (EM) in a large area because many EMs are needed to cover the area. Therefore, we have been trying to find the method for reducing the number of EMs. In this study, all the EMs except for rotation were replaced in the 2-D arranged permanent magnets (PM), and gap length between PMs were experimentally investigated to improve the dynamic behavior of the mover and to reduce the cost of the manufacturing. As a result, we have succeeded in conveyance of the bulk and reduce the convergence time and maximum overshoot.

  2. FAST TRACK COMMUNICATION: Variational approach to the scaling function of the 2D Ising model in a magnetic field

    NASA Astrophysics Data System (ADS)

    Mangazeev, Vladimir V.; Batchelor, Murray T.; Bazhanov, Vladimir V.; Dudalev, Michael Yu

    2009-01-01

    The universal scaling function of the square lattice Ising model in a magnetic field is obtained numerically via Baxter's variational corner transfer matrix approach. The high precision numerical data are in perfect agreement with the remarkable field theory results obtained by Fonseca and Zamolodchikov, as well as with many previously known exact and numerical results for the 2D Ising model. This includes excellent agreement with analytic results for the magnetic susceptibility obtained by Orrick, Nickel, Guttmann and Perk. In general, the high precision of the numerical results underlines the potential and full power of the variational corner transfer matrix approach.

  3. 2D profile of poloidal magnetic field diagnosed by a laser-driven ion-beam trace probe (LITP)

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyi; Xiao, Chijie; Chen, Yihang; Xu, Tianchao; Lin, Chen; Wang, Long; Xu, Min; Yu, Yi

    2016-11-01

    Based on large energy spread of laser-driven ion beam (LIB), a new method, the Laser-driven Ion-beam Trace Probe (LITP), was suggested recently to diagnose the poloidal magnetic field (Bp) and radial electric field (Er) in toroidal devices. Based on another property of LIB, a wide angular distribution, here we suggested that LITP could be extended to get 2D Bp profile or 1D profile of both poloidal and radial magnetic fields at the same time. In this paper, we show the basic principle, some preliminary simulation results, and experimental preparation to test the basic principle of LITP.

  4. Takes Electric or Magnetic field data through Inversion process a 2D Distributon

    SciTech Connect

    Newman, Gregory

    2008-05-01

    Program images 2D distributions in electrical conductivity for geophysical applications. The program can treat surface based and cross well measurement geometries, including inductive and grounded source antennas in the quasi-static limit. The algorithm using Krylov iterative methods to solve for the predicted data and model sensitivities. The model update is achieved using a Gauss-newton optimization process for stability. A new line search capability is now included in the algorithm to insure global convergence of the inversion iteration.

  5. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  6. Comparison between a 1D and a 2D numerical model of an active magnetic regenerative refrigerator

    NASA Astrophysics Data System (ADS)

    Petersen, Thomas Frank; Engelbrecht, Kurt; Bahl, Christian R. H.; Elmegaard, Brian; Pryds, Nini; Smith, Anders

    2008-05-01

    The active magnetic regenerator (AMR) refrigeration system represents an environmentally attractive alternative to vapour-compression refrigeration. This paper compares the results of two numerical AMR models: (1) a 1D finite difference model and (2) a 2D finite element model. Both models simulate a reciprocating AMR and can determine the cyclical steady-state temperature profile of the system as well as performance parameters such as the refrigeration capacity, the work input and the coefficient of performance (COP). The models are used to analyse an AMR with a regenerator made of flat parallel plates of gadolinium operating in the presence of a 1 T magnetic field. The results are used to discuss under which circumstances a 1D model is insufficient and a 2D model is necessary. The results indicate that when the temperature gradients in the AMR perpendicular to the flow are small a 1D model obtains accurate results of overall results such as the refrigeration capacity but that a 2D model is required for a detailed analysis of the phenomena occurring inside the AMR.

  7. Introduction to Nuclear Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1985-01-01

    The purpose of this paper is to try to give a short overview of what the status is on nuclear magnetic resonance (NMR). It's a subject where one really has to spend some time to look at the physics in detail to develop a proper working understanding. I feel it's not appropriate to present to you density matrices, Hamiltonians of all sorts, and differential equations representing the motion of spins. I'm really going to present some history and status, and show a few very simple concepts involved in NMR. It is a form of radio frequency spectroscopy and there are a great number of nuclei that can be studied very usefully with the technique. NMR requires a magnet, a r.f. transmitter/receiver system, and a data acquisition system.

  8. Implementation and application of a novel 2D magnetic twisting cytometry based on multi-pole electromagnet.

    PubMed

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-06-01

    We implemented a novel 2D magnetic twisting cytometry (MTC) based on a previously reported multi-pole high permeability electromagnet, in which both the strength and direction of the twisting field can be controlled. Thanks to the high performance twisting electromagnet and the heterodyning technology, the measurement frequency has been extended to the 1 kHz range. In order to obtain high remanence of the ferromagnetic beads, a separate electromagnet with feedback control was adopted for the high magnetic field polarization. Our setup constitutes the first instrument which can be operated both in MTC mode and in magnetic tweezers (MT) mode. In this work, the mechanical properties of HL-1 cardiomyocytes were characterized in MTC mode. Both anisotropy and log-normal distribution of cell stiffness were observed, which agree with our previous results measured in MT mode. The response from these living cells at different frequencies can be fitted very well by the soft glassy rheology model. PMID:27370475

  9. Implementation and application of a novel 2D magnetic twisting cytometry based on multi-pole electromagnet

    NASA Astrophysics Data System (ADS)

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-06-01

    We implemented a novel 2D magnetic twisting cytometry (MTC) based on a previously reported multi-pole high permeability electromagnet, in which both the strength and direction of the twisting field can be controlled. Thanks to the high performance twisting electromagnet and the heterodyning technology, the measurement frequency has been extended to the 1 kHz range. In order to obtain high remanence of the ferromagnetic beads, a separate electromagnet with feedback control was adopted for the high magnetic field polarization. Our setup constitutes the first instrument which can be operated both in MTC mode and in magnetic tweezers (MT) mode. In this work, the mechanical properties of HL-1 cardiomyocytes were characterized in MTC mode. Both anisotropy and log-normal distribution of cell stiffness were observed, which agree with our previous results measured in MT mode. The response from these living cells at different frequencies can be fitted very well by the soft glassy rheology model.

  10. Implementation and application of a novel 2D magnetic twisting cytometry based on multi-pole electromagnet.

    PubMed

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-06-01

    We implemented a novel 2D magnetic twisting cytometry (MTC) based on a previously reported multi-pole high permeability electromagnet, in which both the strength and direction of the twisting field can be controlled. Thanks to the high performance twisting electromagnet and the heterodyning technology, the measurement frequency has been extended to the 1 kHz range. In order to obtain high remanence of the ferromagnetic beads, a separate electromagnet with feedback control was adopted for the high magnetic field polarization. Our setup constitutes the first instrument which can be operated both in MTC mode and in magnetic tweezers (MT) mode. In this work, the mechanical properties of HL-1 cardiomyocytes were characterized in MTC mode. Both anisotropy and log-normal distribution of cell stiffness were observed, which agree with our previous results measured in MT mode. The response from these living cells at different frequencies can be fitted very well by the soft glassy rheology model.

  11. Evanescent Waves Nuclear Magnetic Resonance

    PubMed Central

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging. PMID:26751800

  12. Evanescent Waves Nuclear Magnetic Resonance.

    PubMed

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging.

  13. Takes Electric or Magnetic field data through Inversion process a 2D Distributon

    2008-05-01

    Program images 2D distributions in electrical conductivity for geophysical applications. The program can treat surface based and cross well measurement geometries, including inductive and grounded source antennas in the quasi-static limit. The algorithm using Krylov iterative methods to solve for the predicted data and model sensitivities. The model update is achieved using a Gauss-newton optimization process for stability. A new line search capability is now included in the algorithm to insure global convergence of themore » inversion iteration.« less

  14. Protein dynamics from nuclear magnetic relaxation.

    PubMed

    Charlier, Cyril; Cousin, Samuel F; Ferrage, Fabien

    2016-05-01

    Nuclear magnetic resonance is a ubiquitous spectroscopic tool to explore molecules with atomic resolution. Nuclear magnetic relaxation is intimately connected to molecular motions. Many methods and models have been developed to measure and interpret the characteristic rates of nuclear magnetic relaxation in proteins. These approaches shed light on a rich and diverse range of motions covering timescales from picoseconds to seconds. Here, we introduce some of the basic concepts upon which these approaches are built and provide a series of illustrations.

  15. Monolithic integration of focused 2D GMR spin valve magnetic field sensor for high-sensitivity (compass) applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ueberschär, Olaf; Almeida, Maria J.; Matthes, Patrick; Müller, Mathias; Ecke, Ramona; Exner, Horst; Schulz, Stefan E.

    2015-09-01

    We have designed and fabricated 2D GMR spin valve sensors on the basis of IrMn/CoFe/Cu/CoFe/NiFe nanolayers in monolithic integration for high sensitivity applications. For a maximum signal-to-noise ratio, we realize a focused double full bridge layout featuring an antiparallel exchange bias pinning for neighbouring meanders and an orthogonal pinning for different bridges. This precise alignment is achieved with microscopic precision by laser heating and subsequent in-field cooling. Striving for maximum signal sensitivity and minimum hysteresis, we study in detail the impact of single meander geometry on the total magnetic structure and electronic transport properties. The investigated geometrical parameters include stripe width, stripe length, cross bar material and total meander length. In addition, the influence of the relative alignment between reference magnetization (pinned layer) and shape anisotropy (free layer) is studied. The experimentally obtained data are moreover compared to the predictions of tailored micromagnetic simulations. Using a set of optimum parameters, we demonstrate that our sensor may readily be employed to measure small magnetic fields, such as the ambient (geomagnetic) field, in terms of a 2D vector with high spatial (~200 μm) and temporal (~1 ms) resolution.

  16. 2D modeling and preliminary in vitro investigation of a prototype high gradient magnetic separator for biomedical applications.

    PubMed

    Chen, Haitao; Kaminski, Michael D; Rosengart, Axel J

    2008-01-01

    High gradient magnetic separation (HGMS) of magnetic materials from fluids or waste products has many established industrial applications. However, there is currently no technology employing HGMS for ex-vivo biomedical applications, such as for the removal of magnetic drug- or toxin-loaded spheres from the human blood stream. Importantly, human HGMS applications require special design modifications as, in contrast to conventional use where magnetic elements are permanently imbedded within the separation chambers, medical separators need to avoid direct contact between the magnetic materials and blood to reduce the risk of blood clotting and to facilitate convenient and safe treatment access for many individuals. We describe and investigate the performance of a magnetic separator prototype designed for biomedical applications. First, the capture efficiency of a prototype HGMS separator unit consisting of a short tubing segment and two opposing magnetizable fine wires along the outside of the tubing was investigated using 2D mathematical modeling. Second, the first-pass effectiveness to remove commercially available, magnetic polystyrene spheres from human blood using a single separator unit was experimentally verified. The theoretical and experimental data correlated well at low flow velocities (<5.0 cm/s) and high external magnetic fields (>0.05 T). This prototype separator unit removed >90% in a single pass of the magnetic spheres from water at mean flow velocity < or =8.0 cm/s and from blood mimic fluids (ethylene glycol-water solutions) at mean flow velocity < or =2.0 cm/s. In summary, we describe and prove the feasibility of a HGMS separator for biomedical applications.

  17. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles.

    PubMed

    Carreño, N L V; Escote, M T; Valentini, A; McCafferty, L; Stolojan, V; Beliatis, M; Mills, C A; Rhodes, R; Smith, C T G; Silva, S R P

    2015-11-01

    We report on the synthesis of two and three dimensional carbonaceous sponges produced directly from graphene oxide (GO) into which functionalized iron nanoparticles can be introduced to render it magnetic. This simple, low cost procedure, wherein an iron polymeric resin precursor is introduced into the carbon framework, results in carbon-based materials with specific surface areas of the order of 93 and 66 m(2) g(-1), compared to approx. 4 m(2) g(-1) for graphite, decorated with ferromagnetic iron nanoparticles giving coercivity fields postulated to be 216 and 98 Oe, values typical for ferrite magnets, for 3.2 and 13.5 wt% Fe respectively. The strongly magnetic iron nanoparticles are robustly anchored to the GO sheets by a layer of residual graphite, on the order of 5 nm, formed during the pyrolysis of the precursor material. The applicability of the carbon sponges is demonstrated in their ability to absorb, store and subsequently elute an organic dye, Rhodamine B, from water as required. It is possible to regenerate the carbon-iron hybrid material after adsorption by eluting the dye with a solvent to which it has a high affinity, such as ethanol. The use of a carbon framework opens the hybrid materials to further chemical functionalization, for enhanced chemical uptake of contaminants, or co-decoration with, for example, silver nanoparticles for bactericidal properties. Such analytical properties, combined with the material's magnetic character, offer solutions for environmental decontamination at land and sea, wastewater purification, solvent extraction, and for the concentration of dilute species. PMID:26441224

  18. Spin-current resonances in a magnetically inhomogeneous 2D conducting system

    NASA Astrophysics Data System (ADS)

    Charkina, O. V.; Kalinenko, A. N.; Kopeliovich, A. I.; Pyshkin, P. V.; Yanovsky, A. V.

    2016-10-01

    The high-frequency transport in a two-dimensional conducting ring having an inhomogeneous collinear magnetic structure has been considered in the hydrodynamic approximation. It is shown that the frequency dependence on the radial electric conductivity of the ring exhibits resonances corresponding to new hybrid oscillations in such systems. The oscillation frequencies are essentially dependent on the applied electromagnetic field and the spin state of the system.

  19. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles.

    PubMed

    Carreño, N L V; Escote, M T; Valentini, A; McCafferty, L; Stolojan, V; Beliatis, M; Mills, C A; Rhodes, R; Smith, C T G; Silva, S R P

    2015-11-01

    We report on the synthesis of two and three dimensional carbonaceous sponges produced directly from graphene oxide (GO) into which functionalized iron nanoparticles can be introduced to render it magnetic. This simple, low cost procedure, wherein an iron polymeric resin precursor is introduced into the carbon framework, results in carbon-based materials with specific surface areas of the order of 93 and 66 m(2) g(-1), compared to approx. 4 m(2) g(-1) for graphite, decorated with ferromagnetic iron nanoparticles giving coercivity fields postulated to be 216 and 98 Oe, values typical for ferrite magnets, for 3.2 and 13.5 wt% Fe respectively. The strongly magnetic iron nanoparticles are robustly anchored to the GO sheets by a layer of residual graphite, on the order of 5 nm, formed during the pyrolysis of the precursor material. The applicability of the carbon sponges is demonstrated in their ability to absorb, store and subsequently elute an organic dye, Rhodamine B, from water as required. It is possible to regenerate the carbon-iron hybrid material after adsorption by eluting the dye with a solvent to which it has a high affinity, such as ethanol. The use of a carbon framework opens the hybrid materials to further chemical functionalization, for enhanced chemical uptake of contaminants, or co-decoration with, for example, silver nanoparticles for bactericidal properties. Such analytical properties, combined with the material's magnetic character, offer solutions for environmental decontamination at land and sea, wastewater purification, solvent extraction, and for the concentration of dilute species.

  20. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Carreño, N. L. V.; Escote, M. T.; Valentini, A.; McCafferty, L.; Stolojan, V.; Beliatis, M.; Mills, C. A.; Rhodes, R.; Smith, C. T. G.; Silva, S. R. P.

    2015-10-01

    We report on the synthesis of two and three dimensional carbonaceous sponges produced directly from graphene oxide (GO) into which functionalized iron nanoparticles can be introduced to render it magnetic. This simple, low cost procedure, wherein an iron polymeric resin precursor is introduced into the carbon framework, results in carbon-based materials with specific surface areas of the order of 93 and 66 m2 g-1, compared to approx. 4 m2 g-1 for graphite, decorated with ferromagnetic iron nanoparticles giving coercivity fields postulated to be 216 and 98 Oe, values typical for ferrite magnets, for 3.2 and 13.5 wt% Fe respectively. The strongly magnetic iron nanoparticles are robustly anchored to the GO sheets by a layer of residual graphite, on the order of 5 nm, formed during the pyrolysis of the precursor material. The applicability of the carbon sponges is demonstrated in their ability to absorb, store and subsequently elute an organic dye, Rhodamine B, from water as required. It is possible to regenerate the carbon-iron hybrid material after adsorption by eluting the dye with a solvent to which it has a high affinity, such as ethanol. The use of a carbon framework opens the hybrid materials to further chemical functionalization, for enhanced chemical uptake of contaminants, or co-decoration with, for example, silver nanoparticles for bactericidal properties. Such analytical properties, combined with the material's magnetic character, offer solutions for environmental decontamination at land and sea, wastewater purification, solvent extraction, and for the concentration of dilute species.

  1. Probing Magnetism in 2D Molecular Networks after in Situ Metalation by Transition Metal Atoms.

    PubMed

    Schouteden, K; Ivanova, Ts; Li, Z; Iancu, V; Janssens, E; Van Haesendonck, C

    2015-03-19

    Metalated molecules are the ideal building blocks for the bottom-up fabrication of, e.g., two-dimensional arrays of magnetic particles for spintronics applications. Compared to chemical synthesis, metalation after network formation by an atom beam can yield a higher degree of control and flexibility and allows for mixing of different types of magnetic atoms. We report on successful metalation of tetrapyridyl-porphyrins (TPyP) by Co and Cr atoms, as demonstrated by scanning tunneling microscopy experiments. For the metalation, large periodic networks formed by the TPyP molecules on a Ag(111) substrate are exposed in situ to an atom beam. Voltage-induced dehydrogenation experiments support the conclusion that the porphyrin macrocycle of the TPyP molecule incorporates one transition metal atom. The newly synthesized Co-TPyP and Cr-TPyP complexes exhibit striking differences in their electronic behavior, leading to a magnetic character for Cr-TPyP only as evidenced by Kondo resonance measurements.

  2. A Gaseous Compton Camera using a 2D-sensitive gaseous photomultiplier for Nuclear Medical Imaging

    NASA Astrophysics Data System (ADS)

    Azevedo, C. D. R.; Pereira, F. A.; Lopes, T.; Correia, P. M. M.; Silva, A. L. M.; Carramate, L. F. N. D.; Covita, D. S.; Veloso, J. F. C. A.

    2013-12-01

    A new Compton Camera (CC) concept based on a High Pressure Scintillation Chamber coupled to a position-sensitive Gaseous PhotoMultiplier for Nuclear Medical Imaging applications is proposed. The main goal of this work is to describe the development of a ϕ25×12 cm3 cylindrical prototype, which will be suitable for scintimammography and for small-animal imaging applications. The possibility to scale it to an useful human size device is also in study. The idea is to develop a device capable to compete with the standard Anger Camera. Despite the large success of the Anger Camera, it still presents some limitations, such as: low position resolution and fair energy resolutions for 140 keV. The CC arises a different solution as it provides information about the incoming photon direction, avoiding the use of a collimator, which is responsible for a huge reduction (10-4) of the sensitivity. The main problem of the CC's is related with the Doppler Broadening which is responsible for the loss of angular resolution. In this work, calculations for the Doppler Broadening in Xe, Ar, Ne and their mixtures are presented. Simulations of the detector performance together with discussion about the gas choice are also included .

  3. Synchronously pumped nuclear magnetic oscillator

    NASA Astrophysics Data System (ADS)

    Korver, Anna; Thrasher, Daniel; Bulatowicz, Michael; Walker, Thad

    2015-05-01

    We present progress towards a synchronously pumped nuclear magnetic oscillator. Alkali frequency shifts and quadrupole shifts are the dominant systematic effects in dual Xe isotope co-magnetometers. By synchronously pumping the Xe nuclei using spin-exchange with an oscillating Rb polarization, the Rb and Xe spins precess transverse to the longitudinal bias field. This configuration is predicted to be insensitive to first order quadrupole interactions and alkali spin-exchange frequency shifts. A key feature that allows co-precession of the Rb and Xe spins, despite a ~ 1000 fold ratio of their gyromagnetic ratios, is to apply the bias field in the form of a sequence of Rb 2 π pulses whose repetition frequency is equal to the Rb Larmor frequency. The 2 π pulses result in an effective Rb magnetic moment of zero, while the Xe precession depends only on the time average of the pulsed field amplitude. Polarization modulation of the pumping light at the Xe NMR frequency allows co-precession of the Rb and Xe spins. We will present our preliminary experimental studies of this new approach to NMR of spin-exchange pumped Xe. Support by the NSF and Northrop Grumman Co.

  4. A novel 2-D transition metal cyanide membrane: Modeling, structural, magnetic, and functional characterization

    NASA Astrophysics Data System (ADS)

    Goss, Marcus

    A novel 2-dimensional crystalline material composed of cyanide-bridged metal nanosheets with a square planar framework has been prepared. This material, similar to Hofmann clathrates, has a variety of interesting properties. The material is crystalline and possesses characteristics that include magnetic properties, electronic properties and useful structural features. They have recently been exfoliated into individual crystalline sheets. These sheets show a strong potential for use as ion selective membranes. Performance improvements in water purification and desalination by reverse osmosis methods owing to their single atom thickness is possible. A series of dynamic molecular simulations has provided an understanding of the mechanism for water permeability and salt rejection. Energy profiles for the passage of water and ionic species through the porous areas of these nanosheets have been built and reported. Performance estimates of the efficacy of this novel material for use as an ion selective membrane such as an improved desalination RO membrane are presented. Experiments in synthesis and exfoliation of this class of cyanide-bridged transition metal complex were conducted and the results are presented. A preliminary investigation into the magnetic properties of these materials is included.

  5. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism.

    PubMed

    Manchanda, Priyanka; Skomski, Ralph

    2016-02-17

    Density-functional theory is used to investigate the phase-segregation behavior of two-dimensional transition-metal dichalcogenides, which are of current interest as beyond-graphene materials for optoelectronic and spintronic applications. Our focus is on the behavior of W1-x V x Se2 monolayers, whose end members are semiconducting WSe2 and ferromagnetic VSe2. The energetics favors phase segregation, but the spinodal decomposition temperature is rather low, about 420 K. The addition of V leads to a transition from a nonmagnetic semiconductor to a metallic ferromagnet, with a ferromagnetic moment of about 1.0 μ B per V atom. The transition is caused by a p-type doping mechanism, which shifts the Fermi level into the valence band. The finite-temperature structure and magnetism of the diselenide systems are discussed in terms of Onsager-type critical fluctuations and Bruggeman effective-medium behavior.

  6. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism

    NASA Astrophysics Data System (ADS)

    Manchanda, Priyanka; Skomski, Ralph

    2016-02-01

    Density-functional theory is used to investigate the phase-segregation behavior of two-dimensional transition-metal dichalcogenides, which are of current interest as beyond-graphene materials for optoelectronic and spintronic applications. Our focus is on the behavior of W1-x V x Se2 monolayers, whose end members are semiconducting WSe2 and ferromagnetic VSe2. The energetics favors phase segregation, but the spinodal decomposition temperature is rather low, about 420 K. The addition of V leads to a transition from a nonmagnetic semiconductor to a metallic ferromagnet, with a ferromagnetic moment of about 1.0 μ B per V atom. The transition is caused by a p-type doping mechanism, which shifts the Fermi level into the valence band. The finite-temperature structure and magnetism of the diselenide systems are discussed in terms of Onsager-type critical fluctuations and Bruggeman effective-medium behavior.

  7. Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null

    SciTech Connect

    Kim, J.S.

    1984-01-01

    Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null.

  8. Experimental Observation of a Metal-insulator Transition in 2D at Zero Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kravchenko, S. V.

    1996-03-01

    The scaling theory of Abrahams et al. ^1 has had considerable success in describing many features of metal-insulator transitions. Within this theory, which was developed for non-interacting electrons, no such transition is possible in two-dimensional electron systems (2DES) in the absence of a magnetic field. However, we show experimentally that an ultra-high-mobility 2DES on the surface of silicon does exhibit the signature of a true metal-insulator phase transition at zero magnetic field at a critical electron density n_c ~10^11 cm-2. The energy of electron-electron interactions, ignored in the scaling theory,^1 is the dominant parameter in this 2DES. The resistivity, ρ, is empirically found to scale near the critical point both with temperature T and electric field E so that it can be represented by the form ρ(T,n_s)=ρ(T/T_0(n_s)) as Earrow0 or ρ(E,n_s)=ρ(E/E_0(n_s)) as Tarrow0. At the transition, the resistivity is close to 3h/e^2. Both scaling parameters, T0 and E_0, show power law behavior at the critical point. This is characteristic of a true phase transition and strongly resembles, in particular, the superconductor-insulator transition in disordered thin films,^2 as well as the transition between quantum Hall liquid and insulator.^3 Many high-mobility samples from two different sources (Institute for Metrological Service, Russia, and Siemens AG, Germany) with different oxide thicknesses and gate materials have been studied and similar results were found. Work done in collaboration with J. E. Furneaux, Whitney Mason, V. M. Pudalov, and M. D'Iorio, supported by NSF. ^1 E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). ^2 Y. Liu, K. A. McGreer, B. Nease, D. B. Haviland, G. Martinez, J. W. Halley, and A. M. Goldman, Phys. Rev. Lett. 67, 2068 (1991). ^3 T. Wang, K. P. Clark, G. F. Spencer, A. M. Mack, and W. P. Kirk, Phys. Rev. Lett. 72, 709 (1994).

  9. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography

    PubMed Central

    Gabbour, Maya; Schnell, Susanne; Jarvis, Kelly; Robinson, Joshua D.; Markl, Michael

    2015-01-01

    Background Doppler echocardiography (echo) is the reference standard for blood flow velocity analysis, and two-dimensional (2-D) phase-contrast magnetic resonance imaging (MRI) is considered the reference standard for quantitative blood flow assessment. However, both clinical standard-of-care techniques are limited by 2-D acquisitions and single-direction velocity encoding and may make them inadequate to assess the complex three-dimensional hemodynamics seen in congenital heart disease. Four-dimensional flow MRI (4-D flow) enables qualitative and quantitative analysis of complex blood flow in the heart and great arteries. Objectives The objectives of this study are to compare 4-D flow with 2-D phase-contrast MRI for quantification of aortic and pulmonary flow and to evaluate the advantage of 4-D flow-based volumetric flow analysis compared to 2-D phase-contrast MRI and echo for peak velocity assessment in children and young adults. Materials and methods Two-dimensional phase-contrast MRI of the aortic root, main pulmonary artery (MPA), and right and left pulmonary arteries (RPA, LPA) and 4-D flow with volumetric coverage of the aorta and pulmonary arteries were performed in 50 patients (mean age: 13.1±6.4 years). Four-dimensional flow analyses included calculation of net flow and regurgitant fraction with 4-D flow analysis planes similarly positioned to 2-D planes. In addition, 4-D flow volumetric assessment of aortic root/ascending aorta and MPA peak velocities was performed and compared to 2-D phase-contrast MRI and echo. Results Excellent correlation and agreement were found between 2-D phase-contrast MRI and 4-D flow for net flow (r=0.97, P<0.001) and excellent correlation with good agreement was found for regurgitant fraction (r= 0.88, P<0.001) in all vessels. Two-dimensional phase-contrast MRI significantly underestimated aortic (P= 0.032) and MPA (P<0.001) peak velocities compared to echo, while volumetric 4-D flow analysis resulted in higher (aortic: P=0

  10. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    DOE PAGES

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; Taylor, G.; Thomas, D. A.

    2016-09-13

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI’s active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals aremore » directed perpendicular to the density fluctuations, SAMI’s 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. Lastly, the results demonstrate encouraging agreement between SAMI and other independent measurements.« less

  11. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    NASA Astrophysics Data System (ADS)

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; Taylor, G.; Thomas, D. A.

    2016-11-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI's active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals are directed perpendicular to the density fluctuations, SAMI's 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. The results demonstrate encouraging agreement between SAMI and other independent measurements.

  12. Nonlinear fast magnetoacoustic wave propagation in the neighbourhood of a 2D magnetic X-point: oscillatory reconnection

    NASA Astrophysics Data System (ADS)

    McLaughlin, J. A.; De Moortel, I.; Hood, A. W.; Brady, C. S.

    2009-01-01

    Context: This paper extends the models of Craig & McClymont (1991, ApJ, 371, L41) and McLaughlin & Hood (2004, A&A, 420, 1129) to include finite β and nonlinear effects. Aims: We investigate the nature of nonlinear fast magnetoacoustic waves about a 2D magnetic X-point. Methods: We solve the compressible and resistive MHD equations using a Lagrangian remap, shock capturing code (Arber et al. 2001, J. Comp. Phys., 171, 151) and consider an initial condition in {v}×{B} \\cdot {hat{z}} (a natural variable of the system). Results: We observe the formation of both fast and slow oblique magnetic shocks. The nonlinear wave deforms the X-point into a “cusp-like” point which in turn collapses to a current sheet. The system then evolves through a series of horizontal and vertical current sheets, with associated changes in connectivity, i.e. the system exhibits oscillatory reconnection. Our final state is non-potential (but in force balance) due to asymmetric heating from the shocks. Larger amplitudes in our initial condition correspond to larger values of the final current density left in the system. Conclusions: The inclusion of nonlinear terms introduces several new features to the system that were absent from the linear regime. A movie is available in electronic form at http://www.aanda.org

  13. Structure and Magnetic Ordering of a 2-D MnII(TCNE)I(OH2) (TCNE = tetracyanoethylene) Organic-based Magnet (Tc = 171 K)

    SciTech Connect

    S Lapidus; A McConnell; P Stephens; J Miller

    2011-12-31

    Mn{sup II}(TCNE)I(OH{sub 2}) was isolated from the reaction of tetracyanoethylene (TCNE) and MnI{sub 2}(THF){sub 3}, and has a 2-D structure possessing an unusual, asymmetric bonded {mu}{sub 4}-[TCNE]{sup {sm_bullet}-}. Direct antiferromagnetic coupling between the S = 5/2 Mn{sup II} and S = 1/2 [TCNE]{sup {sm_bullet}-} leads to magnetic ordering as a canted antiferromagnet at a T{sub c} of 171 K.

  14. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  15. Determination of size and sign of hetero-nuclear coupling constants from 2D 19F-13C correlation spectra

    NASA Astrophysics Data System (ADS)

    Ampt, Kirsten A. M.; Aspers, Ruud L. E. G.; Dvortsak, Peter; van der Werf, Ramon M.; Wijmenga, Sybren S.; Jaeger, Martin

    2012-02-01

    Fluorinated organic compounds have become increasingly important within the polymer and the pharmaceutical industry as well as for clinical applications. For the structural elucidation of such compounds, NMR experiments with fluorine detection are of great value due to the favorable NMR properties of the fluorine nucleus. For the investigation of three fluorinated compounds, triple resonance 2D HSQC and HMBC experiments were adopted to fluorine detection with carbon and/or proton decoupling to yield F-C, F-C{H}, F-C{Cacq} and F-C{H,Cacq} variants. Analysis of E.COSY type cross-peak patterns in the F-C correlation spectra led, apart from the chemical shift assignments, to determination of size and signs of the JCH, JCF, and JHF coupling constants. In addition, the fully coupled F-C HMQC spectrum of steroid 1 was interpreted in terms of E.COSY type patterns. This example shows how coupling constants due to different nuclei can be determined together with their relative signs from a single spectrum. The analysis of cross-peak patterns, as presented here, not only provides relatively straightforward routes to the determination of size and sign of hetero-nuclear J-couplings in fluorinated compounds, it also provides new and easy ways for the determination of residual dipolar couplings and thus for structure elucidation. The examples and results presented in this study may contribute to a better interpretation and understanding of various F-C correlation experiments and thereby stimulate their utilization.

  16. Magnetic properties of Ni(C 5H 5N) 2Ni(CN) 4 - 2d S = 1 Heisenberg magnet with easy-axis anisotropy

    NASA Astrophysics Data System (ADS)

    Čižmár, E.; Kačmár, M.; Orendáč, M.; Orendáčová, A.; Černák, J.; Feher, A.

    1999-05-01

    Specific heat studies of structurally layered powdered Ni(C 5H 5N) 2Ni(CN) 4 have been carried out from 100 mK to 2.5 K in zero magnetic field. A λ-like anomaly with a strong rounding-off observed at 0.9 K might be ascribed to the phase transition into the magnetically ordered state. Consequently, easy-axis type of anisotropy introduced by C 5H 5N enabled analysing the system using a 2d S = {1}/{2} Ising model for the square lattice and a Schottky anomaly yielding D/ kB = - 1.9 K and | J/ kB| = 0.35 K.

  17. Hepatocyte nuclear factor (HNF) 4α transactivation of cytochrome P450 (Cyp) 2d40 promoter is enhanced during pregnancy in mice

    PubMed Central

    Ning, Miaoran; Koh, Kwi Hye; Pan, Xian; Jeong, Hyunyoung

    2015-01-01

    We have recently reported that transactivation of cytochrome P450 (CYP) 2D6 promoter by hepatocyte nuclear factor (HNF) 4α is enhanced during pregnancy, and this is triggered in part by altered expression of small heterodimer partner (SHP) and Krüppel-like factor 9 (KLF9). The objective of this study is to determine whether this is conserved for mouse endogenous Cyp2d gene(s). Among the eight Cyp2d homologs of mouse we examined, only Cyp2d40 expression was found induced (by 6-fold) at term pregnancy as compared to pre-pregnancy level. In mice where hepatic Hnf4α was knocked-down, the pregnancy-mediated increase in Cyp2d40 expression was abrogated. Results from transient transfection, promoter reporter assays, and electrophoretic mobility shift assays indicated that HNF4α transactivates Cyp2d40 promoter via direct binding to −117/−105 of the gene. Chromatin immunoprecipitation assay showed a 2.3-fold increase in HNF4α recruitment to Cyp2d40 promoter during pregnancy. Results from mice treated with an SHP inducer (i.e., GW4064) and HepG2 cells co-transfected with KLF9 suggest that neither SHP nor KLF9 is involved in the increased HNF4α transactivation of Cyp2d40 promoter during pregnancy. Together, our results indicate that while the underlying molecular mechanism is different from that for CYP2D6, Cyp2d40 is induced during pregnancy through enhanced transactivation by HNF4α. PMID:25598084

  18. Hepatocyte nuclear factor (HNF) 4α transactivation of cytochrome P450 (Cyp) 2d40 promoter is enhanced during pregnancy in mice.

    PubMed

    Ning, Miaoran; Koh, Kwi Hye; Pan, Xian; Jeong, Hyunyoung

    2015-03-01

    We have recently reported that transactivation of cytochrome P450 (CYP) 2D6 promoter by hepatocyte nuclear factor (HNF) 4α is enhanced during pregnancy, and this is triggered in part by altered expression of small heterodimer partner (SHP) and Krüppel-like factor 9 (KLF9). The objective of this study is to determine whether this is conserved for mouse endogenous Cyp2d gene(s). Among the eight Cyp2d homologs of mouse we examined, only Cyp2d40 expression was found induced (by 6-fold) at term pregnancy as compared to pre-pregnancy level. In mice where hepatic Hnf4α was knocked-down, the pregnancy-mediated increase in Cyp2d40 expression was abrogated. Results from transient transfection, promoter reporter assays, and electrophoretic mobility shift assays indicated that HNF4α transactivates Cyp2d40 promoter via direct binding to -117/-105 of the gene. Chromatin immunoprecipitation assay showed a 2.3-fold increase in HNF4α recruitment to Cyp2d40 promoter during pregnancy. Results from mice treated with an SHP inducer (i.e., GW4064) and HepG2 cells co-transfected with KLF9 suggest that neither SHP nor KLF9 is involved in the increased HNF4α transactivation of Cyp2d40 promoter during pregnancy. Together, our results indicate that while the underlying molecular mechanism is different from that for CYP2D6, Cyp2d40 is induced during pregnancy through enhanced transactivation by HNF4α.

  19. Mapping and characterizing endometrial implants by registering 2D transvaginal ultrasound to 3D pelvic magnetic resonance images.

    PubMed

    Yavariabdi, Amir; Bartoli, Adrien; Samir, Chafik; Artigues, Maxime; Canis, Michel

    2015-10-01

    We propose a new deformable slice-to-volume registration method to register a 2D Transvaginal Ultrasound (TVUS) to a 3D Magnetic Resonance (MR) volume. Our main goal is to find a cross-section of the MR volume such that the endometrial implants and their depth of infiltration can be mapped from TVUS to MR. The proposed TVUS-MR registration method uses contour to surface correspondences through a novel variational one-step deformable Iterative Closest Point (ICP) method. Specifically, we find a smooth deformation field while establishing point correspondences automatically. We demonstrate the accuracy of the proposed method by quantitative and qualitative tests on both semi-synthetic and clinical data. To generate semi-synthetic data sets, 3D surfaces are deformed with 4-40% degrees of deformation and then various intersection curves are obtained at 0-20° cutting angles. Results show an average mean square error of 5.7934±0.4615mm, average Hausdorff distance of 2.493±0.14mm, and average Dice similarity coefficient of 0.9750±0.0030.

  20. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  1. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  2. Global existence and uniqueness theorem to 2-D incompressible non-resistive MHD system with non-equilibrium background magnetic field

    NASA Astrophysics Data System (ADS)

    Zhai, Cuili; Zhang, Ting

    2016-09-01

    In this article, we consider the global existence and uniqueness of the solution to the 2D incompressible non-resistive MHD system with non-equilibrium background magnetic field. Our result implies that a strong enough non-equilibrium background magnetic field will guarantee the stability of the nonlinear MHD system. Beside the classical energy method, the interpolation inequalities and the algebraic structure of the equations coming from the incompressibility of the fluid are crucial in our arguments.

  3. Synthesis, magnetic properties, and magnetic structure of a natrochalcite structural variant, KM(II)2D3O2(MoO4)2 (M = Mn, Fe, or Co).

    PubMed

    Maalej, Wassim; Vilminot, Serge; André, Gilles; Damay, Françoise; Elaoud, Zakaria; Mhiri, Tahar; Kurmoo, Mohamedally

    2011-04-18

    We report the syntheses, crystal structures, and magnetic properties of KMn(2)(H(3)O(2))(MoO(4))(2) (MnH), KMn(2)(D(3)O(2))(MoO(4))(2) (MnD), KFe(2)(H(3)O(2))(MoO(4))(2) (FeH), KFe(2)(D(3)O(2))(MoO(4))(2) (FeD), KCo(2)(H(3)O(2))(MoO(4))(2) (CoH), and KCo(2)(D(3)O(2))(MoO(4))(2) (CoD), and the magnetic structures of MnD and FeD. They belong to the structural variant (space group I2/m) of the mineral natrochalcite NaCu(2)(H(3)O(2))(SO(4))(2) (space group C2/m) where the diagonal within the ac-plane of the latter become one axis of the former. The structure of MnD, obtained from Rietveld refinement of a high-resolution neutron pattern taken at 300 K, consists of chains of edge-sharing octahedra bridged by MoO(4) and D(3)O(2) to form layers, which are connected to K through the oxygen atoms to form the three-dimensional (3D)-network. The X-ray powder diffraction patterns of the other two compounds were found to belong to the same space group with similar parameters. The magnetic susceptibilities of MnH and FeH exhibit long-range ordering of the moments at a Néel temperature of 8 and 11 K, respectively, which are accompanied by additional strong Bragg reflections in the neutron diffraction in the ordered state, consistent with antiferromagnetism. Analyses of the neutron data for MnD and FeD reveal the presence of both long- and short-range orderings and commensurate magnetic structures with a propagation vector of (½, 0, ½). The moments are antiferromagnetically ordered within the chains with alternation between chains to generate four nonequivalent nuclear unit cells. For MnD the moments are perpendicular to the chain axis (b-axis) while for FeD they are parallel to the b-axis. The overall total is a fully compensated magnetic structure with zero moment in each case. Surprisingly, for KCo(2)(D(3)O(2))(MoO(4))(2) neither additional peaks nor increase of the nuclear peaks' intensities were observed in the neutron diffraction patterns below the magnetic anomaly at 12

  4. Nuclear magnetic moment of sup 106 Rh

    SciTech Connect

    Ohya, S.; Ashworth, C.J.; Nawaz, Z.; Stone, N.J.; Back, P.J. )

    1990-01-01

    Nuclear orientation and nuclear magnetic resonance measurements have been performed for {sup 106}Rh oriented at low temperature in iron and nickel hosts. From the results of the temperature dependence measurements of nuclear orientation, the magnetic moment of {sup 106}Rh was deduced as {vert bar}{mu}({sup 106}Rh,1{sup +}){vert bar}=2.52(5){mu}{sub {ital N}}, which is very different from the value of 3.07(9) {mu}{sub {ital N}} reported previously. From the nuclear magnetic resonance on oriented nuclei measurements of {sup 106}Rh{ital Ni}, the magnetic hyperfine splitting frequency {vert bar}{ital g}{mu}{sub {ital N}}B{sub HF}/h{vert bar} was determined to be 441.5(7) MHz. Using the hyperfine field {ital B}{sub HF} (Rh{ital Ni}) of {minus}22.49(5) T, the precise value of the magnetic moment of {sup 106}Rh was deduced: {vert bar}{mu}({sup 106}Rh,1{sup +}){vert bar} =2.575(7) {mu}{sub {ital N}}. The electric quadrupole interaction has been measured using modulated adiabatic passage on oriented nuclei in a nickel single-crystal host. A broad distribution of the quadrupole splitting {Delta}{nu}{sub {ital Q}} is found, extending from 0 to 300 kHz.

  5. 2D segmentation of intervertebral discs and its degree of degeneration from T2-weighted magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, José Maria; Lazary, Aron; Frangi, Alejandro F.

    2014-03-01

    Low back pain (LBP) is a disorder suffered by a large population around the world. A key factor causing this illness is Intervertebral Disc (IVD) degeneration, whose early diagnosis could help in preventing this widespread condition. Clinicians base their diagnosis on visual inspection of 2D slices of Magnetic Resonance (MR) images, which is subject to large interobserver variability. In this work, an automatic classification method is presented, which provides the Pfirrmann degree of degeneration from a mid-sagittal MR slice. The proposed method utilizes Active Contour Models, with a new geometrical energy, to achieve an initial segmentation, which is further improved using fuzzy C-means. Then, IVDs are classified according to their degree of degeneration. This classification is attained by employing Adaboost on five specific features: the mean and the variance of the probability map of the nucleus using two different approaches and the eccentricity of the fitting ellipse to the contour of the IVD. The classification method was evaluated using a cohort of 150 intervertebral discs assessed by three experts, resulting in a mean specificity (93%) and sensitivity (83%) similar to the one provided by every expert with respect to the most voted value. The segmentation accuracy was evaluated using the Dice Similarity Index (DSI) and Root Mean Square Error (RMSE) of the point-to-contour distance. The mean DSI ± 2 standard deviation was 91:7% ±5:6%, the mean RMSE was 0:82mm and the 95 percentile was 1:36mm. These results were found accurate when compared to the state-of-the-art.

  6. Nuclear magnetic resonance in Kondo lattice systems.

    PubMed

    Curro, Nicholas J

    2016-06-01

    Nuclear magnetic resonance has emerged as a vital tool to explore the fundamental physics of Kondo lattice systems. Because nuclear spins experience two different hyperfine couplings to the itinerant conduction electrons and to the local f moments, the Knight shift can probe multiple types of spin correlations that are not accessible via other techniques. The Knight shift provides direct information about the onset of heavy electron coherence and the emergence of the heavy electron fluid.

  7. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  8. Sample spinner for nuclear magnetic resonance spectrometer

    SciTech Connect

    Stejskal, E.O.

    1984-05-01

    A sample spinner for a nuclear magnetic resonance spectrometer having improved operating characteristics is described comprising a rotor supported at both ends by support gas bearings and positioned by a thrust gas bearing. Improved support gas bearings are also described which result in a spinner exhibiting long-term stable operation characteristics.

  9. Phosphonate Based High Nuclearity Magnetic Cages.

    PubMed

    Sheikh, Javeed Ahmad; Jena, Himanshu Sekhar; Clearfield, Abraham; Konar, Sanjit

    2016-06-21

    Transition metal based high nuclearity molecular magnetic cages are a very important class of compounds owing to their potential applications in fabricating new generation molecular magnets such as single molecular magnets, magnetic refrigerants, etc. Most of the reported polynuclear cages contain carboxylates or alkoxides as ligands. However, the binding ability of phosphonates with transition metal ions is stronger than the carboxylates or alkoxides. The presence of three oxygen donor sites enables phosphonates to bridge up to nine metal centers simultaneously. But very few phosphonate based transition metal cages were reported in the literature until recently, mainly because of synthetic difficulties, propensity to result in layered compounds, and also their poor crystalline properties. Accordingly, various synthetic strategies have been followed by several groups in order to overcome such synthetic difficulties. These strategies mainly include use of small preformed metal precursors, proper choice of coligands along with the phosphonate ligands, and use of sterically hindered bulky phosphonate ligands. Currently, the phosphonate system offers a library of high nuclearity transition metal and mixed metal (3d-4f) cages with aesthetically pleasing structures and interesting magnetic properties. This Account is in the form of a research landscape on our efforts to synthesize and characterize new types of phosphonate based high nuclearity paramagnetic transition metal cages. We quite often experienced synthetic difficulties with such versatile systems in assembling high nuclearity metal cages. Few methods have been emphasized for the self-assembly of phosphonate systems with suitable transition metal ions in achieving high nuclearity. We highlighted our journey from 2005 until today for phosphonate based high nuclearity transition metal cages with V(IV/V), Mn(II/III), Fe(III), Co(II), Ni(II), and Cu(II) metal ions and their magnetic properties. We observed that

  10. Gradient elution capillary electrochromatography and hyphenation with nuclear magnetic resonance.

    PubMed

    Gfrörer, P; Schewitz, J; Pusecker, K; Tseng, L H; Albert, K; Bayer, E

    1999-01-01

    Coupling of gradient capillary electrochromatography (gradient CEC) and capillary zone electrophoresis (CZE) with nuclear magnetic resonance spectroscopy (NMR) was performed using a recently developed capillary NMR interface. This technique was applied for the analysis of pharmaceuticals and food. An analgesic was investigated using isocratic and gradient continuous-flow CEC-NMR. Comparison of the results demonstrated the superiority of gradient CEC over isocratic CEC. Aspartame and caffeine, both ingredients of soft beverages, were separated and analyzed by continuous flow CZE-NMR. The order of elution could be reversed by altering the pH. This reversal led to an increased sample concentration in the NMR detection cell, thus allowing the acquisition of a totally correlated spectroscopy (TOCSY) two-dimensional (2-D) spectrum of the synthetic peptide aspartame. PMID:10065951

  11. Gradient elution capillary electrochromatography and hyphenation with nuclear magnetic resonance.

    PubMed

    Gfrörer, P; Schewitz, J; Pusecker, K; Tseng, L H; Albert, K; Bayer, E

    1999-01-01

    Coupling of gradient capillary electrochromatography (gradient CEC) and capillary zone electrophoresis (CZE) with nuclear magnetic resonance spectroscopy (NMR) was performed using a recently developed capillary NMR interface. This technique was applied for the analysis of pharmaceuticals and food. An analgesic was investigated using isocratic and gradient continuous-flow CEC-NMR. Comparison of the results demonstrated the superiority of gradient CEC over isocratic CEC. Aspartame and caffeine, both ingredients of soft beverages, were separated and analyzed by continuous flow CZE-NMR. The order of elution could be reversed by altering the pH. This reversal led to an increased sample concentration in the NMR detection cell, thus allowing the acquisition of a totally correlated spectroscopy (TOCSY) two-dimensional (2-D) spectrum of the synthetic peptide aspartame.

  12. Nuclear magnetic resonance in magnets with a helicoidal magnetic structure in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Tankeyev, A. P.; Borich, M. A.; Smagin, V. V.

    2014-11-01

    In this review, the static and dynamic properties of a magnet with a helicoidal magnetic structure placed in an external magnetic field are discussed. The results of the investigation of its ground state and spectra, as well as the amplitudes of the spin excitations are presented. The temperature and field dependences of the basic thermodynamic characteristics (heat capacity, magnetization, and magnetic susceptibility) have been calculated in the spin-wave approximation. The results of calculating the local and integral dynamic magnetic susceptibility are given. This set of data represents a methodical basis for constructing a consistent (in the framework of unified approximations) picture of the NMR absorption in the magnet under consideration. Both local NMR characteristics (resonance frequency, line broadening, enhancement coefficient) and integral characteristics (resultant shape of the absorption line with its specific features) have been calculated. The effective Hamiltonian of the Suhl-Nakamura interaction of nuclear spins through spin waves has been constructed. The second moment and the local broadening of the line of the NMR absorption caused by this interaction have been calculated. The role of the basic local inhomogeneities in the formation of the integral line of the NMR absorption has been analyzed. The opportunities for the experimental NMR investigations in magnets with a chiral spin structure are discussed.

  13. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  14. 2D/3D quench simulation using ANSYS for epoxy impregnated Nb3Sn high field magnets

    SciTech Connect

    Ryuji Yamada et al.

    2002-09-19

    A quench program using ANSYS is developed for the high field collider magnet for three-dimensional analysis. Its computational procedure is explained. The quench program is applied to a one meter Nb{sub 3}Sn high field model magnet, which is epoxy impregnated. The quench simulation program is used to estimate the temperature and mechanical stress inside the coil as well as over the whole magnet. It is concluded that for the one meter magnet with the presented cross section and configuration, the thermal effects due to the quench is tolerable. But we need much more quench study and improvements in the design for longer magnets.

  15. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1978-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  16. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  17. Nuclear magnetic moments and related sum rules

    SciTech Connect

    Bentz, Wolfgang; Arima, Akito

    2011-05-06

    We first review the history and our present understanding of nuclear magnetic moments and Gamow-Teller transitions, with emphasis on the roles of configuration mixing and meson exchange currents. Then we discuss the renormalization of the orbital g-factor in nuclei, and its relation to the E1 sum rule for photoabsorption and the M1 sum rule for the scissors mode of deformed nuclei.

  18. Nuclear magnetic resonance quantum information processing

    PubMed Central

    Serra, R. M.; Oliveira, I. S.

    2012-01-01

    For the past decade, nuclear magnetic resonance (NMR) has been established as a main experimental technique for testing quantum protocols in small systems. This Theme Issue presents recent advances and major challenges of NMR quantum information possessing (QIP), including contributions by researchers from 10 different countries. In this introduction, after a short comment on NMR-QIP basics, we briefly anticipate the contents of this issue. PMID:22946031

  19. Magnetic-field cycling instrumentation for dynamic nuclear polarization-nuclear magnetic resonance using photoexcited triplets.

    PubMed

    Kagawa, Akinori; Negoro, Makoto; Takeda, Kazuyuki; Kitagawa, Masahiro

    2009-04-01

    To advance static solid-state NMR with hyperpolarized nuclear spins, a system has been developed enabling dynamic nuclear polarization (DNP) using electron spins in the photoexcited triplet state with X-band microwave apparatus, followed by static solid-state nuclear magnetic resonance (NMR) experiments using the polarized nuclear-spin system with a goniometer. In order to perform the DNP and NMR procedures in different magnetic fields, the DNP system and the NMR system are spatially separated, between which the sample can be shuttled while its orientation is controlled in a reproducible fashion. We demonstrate that the system developed in this work is operational for solid-state NMR with hyperpolarized nuclear-spin systems in static organic materials, and also discuss the application of our system.

  20. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    SciTech Connect

    Chai, Feng; Chen, YiPing; You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)₃]₃[CoW₁₂O₄₀]·9H₂O 1 (phen=1,10-phenanthroline) and [Fe(phen)₃]₂[FeW₁₂O₄₀]·H₃O·H₂O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)₃]²⁺ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm⁻¹, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

  1. Nuclear magnetic resonance properties of lunar samples.

    NASA Technical Reports Server (NTRS)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  2. Coaxial probe for nuclear magnetic resonance diffusion and relaxation correlation experiments

    NASA Astrophysics Data System (ADS)

    Tang, Yiqiao; Hürlimann, Martin; Mandal, Soumyajit; Paulsen, Jeffrey; Song, Yi-Qiao

    2014-02-01

    A coaxial nuclear magnetic resonance (NMR) probe is built to measure diffusion and relaxation properties of liquid samples. In particular, we demonstrate the acquisition of two-dimensional (2D) distribution functions (T1-T2 and diffusion-T2), essential for fluids characterization. The compact design holds promise for miniaturization, thus enabling the measurement of molecular diffusion that is inaccessible to conventional micro-NMR setups. Potential applications range from crude oil characterization to biomolecular screening and detections.

  3. A Rapid and Efficient 2D/3D Nuclear Segmentation Method for Analysis of Early Mouse Embryo and Stem Cell Image Data

    PubMed Central

    Lou, Xinghua; Kang, Minjung; Xenopoulos, Panagiotis; Muñoz-Descalzo, Silvia; Hadjantonakis, Anna-Katerina

    2014-01-01

    Summary Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses. PMID:24672759

  4. Band structure of a 2D photonic crystal based on ferrofluids of Co(1-x)Znx Fe2O4 nanoparticles under perpendicular applied magnetic field

    NASA Astrophysics Data System (ADS)

    Lopez, Javier; Gonzalez, Luz Esther; Quinonez, Mario; Porras, Nelson; Zambrano, Gustavo; Gomez, Maria Elena

    2014-03-01

    Using a ferrfluid of cobalt-zinc ferrite nanoparticles Co(1 - x)ZnxFe2O4 coated with oleic acid and suspended in ethanol, we have fabricated a 2D photonic crystal (PC) by the application of an external magnetic field perpendicular to the plane of the ferrofluid. The 2D PC is made by rods of nanoparticles organized in a hexagonal structure. By means of the plane-wave expansion method, we study its photonic band structure (PBS) which depends on the effective permittivity and on the area ratio of the liquid phase. Additionaly, taking into account the Maxwell-Garnett theory we calculated the effective permittivity of the rods. We have found that the effective refractive index of the ferrofluid increases with its magnetization. Using these results we calculate the band structure of the photonic crystal at different applied magnetic fields, finding that the increase of the applied magnetic field shifts the band structure to lower frequencies with the appearance of more band gaps. Departamento de Física, Universidad del Valle, A.A. 25360, Cali, Colombia

  5. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    DOE PAGES

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.

    2015-12-08

    In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ionsmore » on the spinel lattice.« less

  6. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    PubMed Central

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S.-W.; Ratcliff, W.

    2015-01-01

    We report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice. PMID:26644220

  7. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    SciTech Connect

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.

    2015-12-08

    In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice.

  8. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    NASA Astrophysics Data System (ADS)

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S.-W.; Ratcliff, W.

    2015-12-01

    We report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice.

  9. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  10. A 3D complex containing novel 2D Cu{sup II}-azido layers: Structure, magnetic properties and effects of 'Non-innocent' reagent

    SciTech Connect

    Gao, Xue-Miao; Guo, Qian; Zhao, Jiong-Peng; Liu, Fu-Chen

    2012-12-15

    A novel copper-azido coordination polymer, [Cu{sub 2}(N{sub 3}){sub 3}(L)]{sub n} (1, HL=pyrazine-2-carboxylic acid), has been synthesized by hydrothermal reaction with 'Non-innocent' reagent in the aqueous solution. In the reaction system, Cu{sup II} ions are avoided to reduce to Cu{sup I} ions due to the existence of Nd{sup III}. It is found that the complex is a 3D structure based on two double EO azido bridged trimmers and octahedron Cu{sup II} ions, in which the azide ligands take on EO and {mu}{sub 1,1,3} mode to form Cu{sup II}-azido 2D layers, furthermore L ligands pillar 2D layers into an infinite 3D framework with the Schlaefli symbol of {l_brace}4;6{sup 2}{r_brace}4{l_brace}4{sup 2};6{sup 12};8{sup 10};10{sup 4}{r_brace}{l_brace}4{sup 2};6{sup 4}{r_brace}. Magnetic studies revealed that the interactions between the Cu{sup II} ions in the trimmer are ferromagnetic for the Cu-N-Cu angle nearly 98 Degree-Sign , while the interactions between the trimmer and octahedron Cu{sup II} ion are antiferromgantic and result in an antiferromagnetic state. - Graphical abstract: A 3D complex containing novel 2D Cu{sup II}-azido layers, [Cu{sub 2}(N{sub 3}){sub 3}(L)]{sub n} (HL=pyrazine-2-carboxylic acid), was synthesized by hydrothermal reaction and exhibit interesting structure and magnetic properties. Highlights: Black-Right-Pointing-Pointer 'Non-innocent' reagents plays a key role in the process of formation of this complex. Black-Right-Pointing-Pointer 2D layer is formed only by Cu{sup II} ions and azido ligands. Black-Right-Pointing-Pointer Pyrazine-2-carboxylate ligands reinforce 2D layers and pillar them into an infinite 3D framework. Black-Right-Pointing-Pointer Magnetic study indicates that alternating FM-AF coupling exists in the complex.

  11. Nuclear magnetic resonance imaging of liver hemangiomas

    SciTech Connect

    Sigal, R.; Lanir, A.; Atlan, H.; Naschitz, J.E.; Simon, J.S.; Enat, R.; Front, D.; Israel, O.; Chisin, R.; Krausz, Y.

    1985-10-01

    Nine patients with cavernous hemangioma of the liver were examined by nuclear magnetic resonance imaging (MRI) with a 0.5 T superconductive magnet. Spin-echo technique was used with varying time to echo (TE) and repetition times (TR). Results were compared with /sup 99m/Tc red blood cell (RBC) scintigraphy, computed tomography (CT), echography, and arteriography. Four illustrated cases are reported. It was possible to establish a pattern for MRI characteristics of cavernous hemangiomas; rounded or smooth lobulated shape, marked increase in T1 and T2 values as compared with normal liver values. It is concluded that, although more experience is necessary to compare the specificity with that of ultrasound and CT, MRI proved to be very sensitive for the diagnosis of liver hemangioma, especially in the case of small ones which may be missed by /sup 99m/Tc-labeled RBC scintigraphy.

  12. Near-Zero-Field Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Ledbetter, M. P.; Theis, T.; Blanchard, J. W.; Ring, H.; Ganssle, P.; Appelt, S.; Blümich, B.; Pines, A.; Budker, D.

    2011-09-01

    We investigate nuclear magnetic resonance (NMR) in near zero field, where the Zeeman interaction can be treated as a perturbation to the electron mediated scalar interaction (J coupling). This is in stark contrast to the high-field case, where heteronuclear J couplings are normally treated as a small perturbation. We show that the presence of very small magnetic fields results in splitting of the zero-field NMR lines, imparting considerable additional information to the pure zero-field spectra. Experimental results are in good agreement with first-order perturbation theory and with full numerical simulation when perturbation theory breaks down. We present simple rules for understanding the splitting patterns in near-zero-field NMR, which can be applied to molecules with nontrivial spectra.

  13. Adaptive mutation PB2 D701N promotes nuclear import of influenza vRNPs in mammalian cells.

    PubMed

    Sediri, Hanna; Schwalm, Folker; Gabriel, Gülsah; Klenk, Hans-Dieter

    2015-01-01

    The segmented genome of influenza viruses is translocated into the nucleus to initiate transcription and replication. The gene segments are present as viral ribonucleoprotein (vRNP) particles composed of RNA, multiple copies of the nucleoprotein (NP), and the polymerase subunits PB1, PB2 and PA. The PB2 subunit and each NP monomer contain a nuclear localisation signal (NLS) that binds to importin-α. To throw light on the role of the NLSs of NP and PB2 in nuclear transport, we have analysed the effect of mutation D701N, responsible for the exposure of the NLS domain of PB2, on the intracellular localisation of vRNPs. We show that exposure of PB2 NLS significantly enhances the amount of vRNPs present in the nucleus. These observations suggest that entry of vRNPs into the nucleus depends on controlled interplay of the NLSs of PB2 and NP with the nuclear import machinery. PMID:26074198

  14. An introduction to nuclear magnetic resonance in biomedicine.

    PubMed

    Andrew, E R

    1990-02-01

    In this paper the author illustrates the historical aspects of the development, first, of the fundamental principles of nuclear magnetic resonance and, second, the extension of these principles to magnetic resonance imaging and in vivo spectroscopy.

  15. Time-reversal breaking and spin transport induced by magnetic impurities in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Derakhshan, V.; Ketabi, S. A.; Moghaddam, A. G.

    2016-09-01

    We employed the formalism of bond currents, expressed in terms of non-equilibrium Green’s function to obtain the local currents and transport features of zigzag silicene ribbon in the presence of magnetic impurity. When only intrinsic and Rashba spin-orbit interactions are present, silicene behaves as a two-dimensional topological insulator with gapless edge states. But in the presence of finite intrinsic spin-orbit interaction, the edge states start to penetrate into the bulk of the sample by increasing Rashba interaction strength. The exchange interaction induced by local impurities breaks the time-reversal symmetry of the gapless edge states and influences the topological properties strongly. Subsequently, the singularity of partial Berry curvature disappears and the silicene nanoribbon becomes a trivial insulator. On the other hand, when the concentration of the magnetic impurities is low, the edge currents are not affected significantly. In this case, when the exchange field lies in the x-y plane, the spin mixing around magnetic impurity is more profound rather than the case in which the exchange field is directed along the z-axis. Nevertheless, when the exchange field of magnetic impurities is placed in the x-y plane, a spin-polarized conductance is observed. The resulting conductance polarization can be tuned by the concentration of the impurities and even completely polarized spin transport is achievable.

  16. Time-reversal breaking and spin transport induced by magnetic impurities in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Derakhshan, V.; Ketabi, S. A.; Moghaddam, A. G.

    2016-09-01

    We employed the formalism of bond currents, expressed in terms of non-equilibrium Green’s function to obtain the local currents and transport features of zigzag silicene ribbon in the presence of magnetic impurity. When only intrinsic and Rashba spin–orbit interactions are present, silicene behaves as a two-dimensional topological insulator with gapless edge states. But in the presence of finite intrinsic spin–orbit interaction, the edge states start to penetrate into the bulk of the sample by increasing Rashba interaction strength. The exchange interaction induced by local impurities breaks the time-reversal symmetry of the gapless edge states and influences the topological properties strongly. Subsequently, the singularity of partial Berry curvature disappears and the silicene nanoribbon becomes a trivial insulator. On the other hand, when the concentration of the magnetic impurities is low, the edge currents are not affected significantly. In this case, when the exchange field lies in the x–y plane, the spin mixing around magnetic impurity is more profound rather than the case in which the exchange field is directed along the z-axis. Nevertheless, when the exchange field of magnetic impurities is placed in the x–y plane, a spin-polarized conductance is observed. The resulting conductance polarization can be tuned by the concentration of the impurities and even completely polarized spin transport is achievable.

  17. Experiments in Nuclear Magnetic Resonance Microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Yong; Lu, Wei; Choi, J.-H.; Chia, H. J.; Mirsaidov, U. M.; Guchhait, S.; Cambou, A. D.; Cardenas, R.; Park, K.; Markert, J. T.

    2006-03-01

    We report our group's effort in the construction of an 8-T, ^3 He cryostat based nuclear magnetic resonance force microscope (NMRFM). The probe has two independent 3-D of piezoelectric x-y-z positioners for precise positioning of a fiber optic interferometer and a sample/gradient-producing magnet with respect to a micro-cantilever. The piezoelectric positioners have a very uniform controllable step size with virtually no backlash. A novel RF tuning circuit board design is implemented which allows us to simply swap out one RF component board with another for experiments involving different nuclear species. We successfully fabricated and are characterizing 50μm x50μm x0.2μm double torsional oscillators. We have also been characterizing ultrasoft cantilevers whose spring constant is on the order of 10-4 N/m. We also report NMRFM data for ammonium dihydrogen phosphate(ADP) at room temperature using our 1.2-T system. Observed features include the correct shift of the NMR peak with carrier frequency, increases in signal amplitude with both RF field strength and frequency modulation amplitude, and signal oscillation (spin nutation) as a function of tipping RF pulse length. Experiments in progress on NH4MgF3 (at 1.2 T) and MgB2 (at 8.1 T) will also be briefly reviewed. Robert A. Welch Foundation grant No.F-1191 and the National Science Foundation grant No. DMR-0210383.

  18. The Effect of Magnetic Field on 2-D Problem for a Mode-I Crack of a Fiber-Reinforced in Generalized Thermoelasticity

    NASA Astrophysics Data System (ADS)

    Lotfy, Kh.; Othman, Mohamed I. A.

    2014-01-01

    In the present paper, the coupled theory, Lord-Şhulman theory, and Green-Lindsay theory are introduced to study the influence of a magnetic field on the 2-D problem of a fiber-reinforced thermoelastic. These theories are also applied to study the influence of reinforcement on the total deformation of an infinite space weakened by a finite linear opening Mode-I crack. The material is homogeneous and an isotropic elastic half-space. The crack is subjected to a prescribed temperature and stress distribution. Normal mode analysis is used to solve the problem of a Mode-I crack. Numerical results for the temperature, the displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field. A comparison between the three theories is also made for different depths.

  19. The effect of a magnetic field on a 2D problem of fibre-reinforced thermoelasticity rotation under three theories

    NASA Astrophysics Data System (ADS)

    Kh., Lotfy

    2012-06-01

    In the present paper, we introduce the coupled theory (CD), Lord-Schulman (LS) theory, and Green-Lindsay (GL) theory to study the influences of a magnetic field and rotation on a two-dimensional problem of fibre-reinforced thermoelasticity. The material is a homogeneous isotropic elastic half-space. The method applied here is to use normal mode analysis to solve a thermal shock problem. Some particular cases are also discussed in the context of the problem. Deformation of a body depends on the nature of the force applied as well as the type of boundary conditions. Numerical results for the temperature, displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field and rotation.

  20. Mechanical design and analysis of the 2D cross-section of the SSC collider dipole magnet

    SciTech Connect

    Strait, J.; Kerby, J.; Bossert, R.; Carson, J.

    1991-05-01

    This paper describes the mechanical design of the two dimensional cross-section of the base-line collider dipole magnet for the Superconducting Super Collider. The components described here are the collar laminations, the tapered keys that lock the upper and lower collars, the yoke laminations, the cold mass shell. We describe in detail the shape of the outer surface of the collars which defines the yoke-collar interface, and the shape of the collar interior, which defines the conductor placement. Other features of the collar and yoke will be described in somewhat less detail. 20 refs., 12 figs. , 6 tabs.

  1. Enhanced Collective Magnetic Properties in 2D Monolayers of Iron Oxide Nanoparticles Favored by Local Order and Local 1D Shape Anisotropy.

    PubMed

    Toulemon, Delphine; Liu, Yu; Cattoën, Xavier; Leuvrey, Cédric; Bégin-Colin, Sylvie; Pichon, Benoit P

    2016-02-16

    Magnetic nanoparticle arrays represent a very attractive research field because their collective properties can be efficiently modulated as a function of the structure of the assembly. Nevertheless, understanding the way dipolar interactions influence the intrinsic magnetic properties of nanoparticles still remains a great challenge. In this study, we report on the preparation of 2D assemblies of iron oxide nanoparticles as monolayers deposited onto substrates. Assemblies have been prepared by using the Langmuir-Blodgett technique and the SAM assisted assembling technique combined to CuAAC "click" reaction. These techniques afford to control the formation of well-defined monolayers of nanoparticles on large areas. The LB technique controls local ordering of nanoparticles, while adjusting the kinetics of CuAAC "click" reaction strongly affects the spatial arrangement of nanoparticles in monolayers. Fast kinetics favor disordered assemblies while slow kinetics favor the formation of chain-like structures. Such anisotropic assemblies are induced by dipolar interactions between nanoparticles as no magnetic field is applied and no solvent evaporation is performed. The collective magnetic properties of monolayers are studied as a function of average interparticle distance, local order and local shape anisotropy. We demonstrate that local control on spatial arrangement of nanoparticles in monolayers significantly strengthens dipolar interactions which enhances collective properties and results in possible super ferromagnetic order. PMID:26807596

  2. Partial-Homogeneity-Based Two-Dimensional High-Resolution Nuclear Magnetic Resonance Spectroscopy under Inhomogeneous Magnetic Fields.

    PubMed

    Qiu, Wenqi; Wei, Zhiliang; Ding, Nan; Yang, Yu; Ye, Qimiao; Lin, Yulan; Chen, Zhong

    2016-05-18

    High-resolution multidimensional nuclear magnetic resonance (NMR) spectroscopy serves as an irreplaceable and versatile tool in various chemical investigations. In this study, a method based on the concept of partial homogeneity is developed to offer two-dimensional (2D) high-resolution NMR spectra under inhomogeneous fields. Oscillating gradients are exerted to encode the high-resolution information, and a field-inhomogeneity correction algorithm based on pattern recognition is designed to recover high-resolution spectra. Under fields where inhomogeneity primarily distributes along a single orientation, the proposed method will improve performances of 2D NMR spectroscopy without increasing the experimental duration or significant loss in sensitivity, and thus may open important perspectives for studies of inhomogeneous chemical systems.

  3. Application of a Solar Wind Model Driven by Turbulence Dissipation to a 2D Magnetic Field Configuration

    NASA Astrophysics Data System (ADS)

    Lionello, Roberto; Velli, Marco; Downs, Cooper; Linker, Jon A.; Mikić, Zoran

    2014-12-01

    Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. developed a sophisticated, one-dimensional (1D), time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al., which incorporates turbulent dissipation of Alfvén waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional MHD simulations by the requirement of transverse force balance.

  4. Application of a solar wind model driven by turbulence dissipation to a 2D magnetic field configuration

    SciTech Connect

    Lionello, Roberto; Downs, Cooper; Linker, Jon A.; Mikić, Zoran; Velli, Marco E-mail: cdowns@predsci.com E-mail: mikic@predsci.com

    2014-12-01

    Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. developed a sophisticated, one-dimensional (1D), time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al., which incorporates turbulent dissipation of Alfvén waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional MHD simulations by the requirement of transverse force balance.

  5. Basement and Basin Structures of the Northwest Paraná Basin, Brazil: Illuminated by Matched-Filter Analysis and 2D Modeling of Gravity and Magnetic Data

    NASA Astrophysics Data System (ADS)

    Curto, J. B.; Blakely, R. J.; Vidotti, R. M.; Fuck, R. A.

    2015-12-01

    The South American Platform includes two major geological components with common structural roots: the Transbrasiliano Lineament (LTB) and the Paraná Basin. Important relationships between the two components occur within the northwest Paraná Basin and concealed beneath sedimentary cover. We integrated all available airborne magnetic and gravity surveys and ground-based gravity data to produce consistent, digital magnetic and Bouguer anomaly maps. Data-processing and modeling techniques then were used in order to reveal principal crustal compartments and basin-basement structures at various depths. Three large magnetic discontinuities delineate crustal compartments in the area with N30°E, N60°E, and N70°E strike, from east to west, respectively. These magnetic lineaments bound regions with distinct gravity anomaly character. Robust matched-filter analysis applied to magnetic and gravity data yielded important depth estimates: (i) 2.5 km to the top of the Paraná Basin Neoproterozoic basement; (ii) 4-6 km to the top of a second group of basement units; (iii) 20 km, possibly associated with the upper-lower crust interface; and (iv) 33-39 and 43 km related to crustal thicknesses west and southeast of a major N30°E trending lineament, respectively. The 2D joint modeling of gravity and magnetic data sheds light on the asymmetric geometry of the basement beneath the Paraná basin, with at least three half-grabens formed by LTB reactivated structures. The central region of the study area is characterized by thinner crust and higher crustal weakness, where important structures have developed in the Mesozoic, including NW trending reactivations, linked to crustal uplift and evolution of small NE-aligned Cretaceous basins. Important depocenters occur to the north and east of the study area, with N70ºE and N30°E - NS strike, respectively.

  6. Comparison of Analysis Results Between 2D/1D Synthesis and RAPTOR-M3G in the Korea Standard Nuclear Plant (KSNP)

    NASA Astrophysics Data System (ADS)

    Joung Lim, Mi; Maeng, Young Jae; Fero, Arnold H.; Anderson, Stanwood L.

    2016-02-01

    The 2D/1D synthesis methodology has been used to calculate the fast neutron (E > 1.0 MeV) exposure to the beltline region of the reactor pressure vessel. This method uses the DORT 3.1 discrete ordinates code and the BUGLE-96 cross-section library based on ENDF/B-VI. RAPTOR-M3G (RApid Parallel Transport Of Radiation-Multiple 3D Geometries) which performs full 3D calculations was developed and is based on domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architecture. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor. Both methods are applied to surveillance test results for the Korea Standard Nuclear Plant (KSNP)-OPR (Optimized Power Reactor) 1000 MW. The objective of this paper is to compare the results of the KSNP surveillance program between 2D/1D synthesis and RAPTOR-M3G. Each operating KSNP has a reactor vessel surveillance program consisting of six surveillance capsules located between the core and the reactor vessel in the downcomer region near the reactor vessel wall. In addition to the In-Vessel surveillance program, an Ex-Vessel Neutron Dosimetry (EVND) program has been implemented. In order to estimate surveillance test results, cycle-specific forward transport calculations were performed by 2D/1D synthesis and by RAPTOR-M3G. The ratio between measured and calculated (M/C) reaction rates will be discussed. The current plan is to install an EVND system in all of the Korea PWRs including the new reactor type, APR (Advanced Power Reactor) 1400 MW. This work will play an important role in establishing a KSNP-specific database of surveillance test results and will employ RAPTOR-M3G for surveillance dosimetry location as well as positions in the KSNP reactor vessel.

  7. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    SciTech Connect

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-11-11

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied.

  8. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Bryan, R. N.; Johnson, P.; Schonfeld, E.; Jhingran, S. G.

    1984-01-01

    A number of physiological changes have been demonstrated in bone, muscle and blood after exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long duration space missions is an important NASA goal. The advent of tomographic nuclear magnetic resonance imaging (NMR or MRI) gives NASA a way to greatly extend early studies of this phenomena in ways not previously possible; NMR is also noninvasive and safe. NMR provides both superb anatomical images for volume assessments of individual organs and quantification of chemical/physical changes induced in the examined tissues. The feasibility of NMR as a tool for human physiological research as it is affected by microgravity is demonstrated. The animal studies employed the rear limb suspended rat as a model of mucle atrophy that results from microgravity. And bedrest of normal male subjects was used to simulate the effects of microgravity on bone and muscle.

  9. Musculoskeletal applications of nuclear magnetic resonance

    SciTech Connect

    Moon, K.L. Jr.; Genant, H.K.; Helms, C.A.; Chafetz, N.I.; Crooks, L.E.; Kaufman, L.

    1983-04-01

    Thirty healthy subjects and 15 patients with a variety of musculoskeletal disorders were examined by conventional radiography, computed tomography (CT), and nuclear magnetic resonance (NMR). NMR proved capable of demonstrating important anatomic structures in the region of the lumbosacral spine. Lumbar disk protrusion was demonstrated in three patients with CT evidence of the disease. NMR appeared to differentiate annulus fibrosus from nucleus pulposus in intervertebral disk material. Avascular necrosis of the femoral head was demonstrated in two patients. The cruciate ligaments of the knee were well defined by NMR. Musceles, tendons and ligaments, and blood vessels could be reliably differentiated, and the excellent soft-tissue contrast of NMR proved useful in the evaluation of bony and soft-tissue tumors. NMR holds promise in the evaluation of musculoskeletal disorders.

  10. Phosphorus 31 nuclear magnetic resonance examination of female reproductive tissues

    SciTech Connect

    Noyszewski, E.A.; Raman, J.; Trupin, S.R.; McFarlin, B.L.; Dawson, M.J. )

    1989-08-01

    Nuclear magnetic resonance spectroscopy is a powerful method of investigating the relationship between metabolism and function in living tissues. We present evidence that the phosphorus 31 spectra of myometrium and placenta are functions of physiologic state and gestational age. Specific spectroscopic abnormalities are observed in association with disorders of pregnancy and gynecologic diseases. Our results suggest that noninvasive nuclear magnetic resonance spectroscopy examinations may sometimes be a useful addition to magnetic resonance imaging examinations, and that nuclear magnetic resonance spectroscopy of biopsy specimens could become a cost-effective method of evaluating certain biochemical abnormalities.

  11. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The

  12. Dynamic nuclear polarization at high magnetic fields

    PubMed Central

    Maly, Thorsten; Debelouchina, Galia T.; Bajaj, Vikram S.; Hu, Kan-Nian; Joo, Chan-Gyu; Mak–Jurkauskas, Melody L.; Sirigiri, Jagadishwar R.; van der Wel, Patrick C. A.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    Dynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (μw) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (γe/γl), being ∼660 for protons. In the early 1950s, the DNP phenomenon was demonstrated experimentally, and intensively investigated in the following four decades, primarily at low magnetic fields. This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (≥5 T), the regime where contemporary NMR experiments are performed. After a brief historical survey, we present a review of the classical continuous wave (cw) DNP mechanisms—the Overhauser effect, the solid effect, the cross effect, and thermal mixing. A special section is devoted to the theory of coherent polarization transfer mechanisms, since they are potentially more efficient at high fields than classical polarization schemes. The implementation of DNP at high magnetic fields has required the development and improvement of new and existing instrumentation. Therefore, we also review some recent developments in μw and probe technology, followed by an overview of DNP applications in biological solids and liquids. Finally, we outline some possible areas for future developments. PMID:18266416

  13. 3D chiral and 2D achiral cobalt(ii) compounds constructed from a 4-(benzimidazole-1-yl)benzoic ligand exhibiting field-induced single-ion-magnet-type slow magnetic relaxation.

    PubMed

    Wang, Yu-Ling; Chen, Lin; Liu, Cai-Ming; Du, Zi-Yi; Chen, Li-Li; Liu, Qing-Yan

    2016-05-01

    Organizing magnetically isolated 3d transition metal ions, which behave as single-ion magnet (SIM) units, in a coordination network is a promising approach to design novel single-molecule magnets (SMMs). Herein 3D chiral and 2D achiral cobalt(ii) coordination compounds based on single metal nodes with a 4-(benzimidazole-1-yl)benzoic acid (Hbmzbc) ligand, namely, [Co(bmzbc)2(1,2-etdio)]n () (1,2-etdio = 1,2-ethanediol) and [Co(bmzbc)2(Hbmzbc)]n (), have been synthesized and structurally characterized. The 3D chiral structure with 2-fold interpenetrating qtz topological nets consisting of totally achiral components was obtained via spontaneous resolution, while the achiral structure is a 2D (4,4) net. In both structures, individual cobalt(ii) ions are spatially well separated by the long organic ligands in the well-defined networks. Magnetic measurements on and showed field-induced slow magnetic relaxation resulting from single-ion anisotropy of the individual Co(ii) ions. Analysis of the dynamic ac susceptibilities with the Arrhenius law afforded an anisotropy energy barrier of 16.8(3) and 31.3(2) K under a 2 kOe static magnetic field for and , respectively. The distinct coordination environments of the Co(ii) ions in and lead to the different anisotropic energy barriers. PMID:27054774

  14. 2D soft x-ray system on DIII-D for imaging the magnetic topology in the pedestal region

    SciTech Connect

    Shafer, M.W.; Battaglia, D. J.; Unterberg, Ezekial A; Evans, T. E.; Hillis, Donald Lee; Maingi, R.

    2010-01-01

    A new tangential two-dimensional soft x-ray imaging system (SXRIS) is being designed to examine the edge island structure in the lower X-point region of DIII-D. Plasma shielding and/or amplification of the calculated vacuum islands may play a role in the suppression of edge-localized modes via resonant magnetic perturbations (RMPs). The SXRIS is intended to improve the understanding of three-dimensional (3D) phenomena associated with RMPs. This system utilizes a tangential view with a pinhole imaging system and spectral filtering with beryllium foils. SXR emission is chosen to avoid line radiation and allows suitable signal at the top of a H-mode pedestal where T(e) similar to 1-2 keV. A synthetic diagnostic calculation based on 3D SXR emissivity estimates is used to help assess signal levels and resolution of the design. A signal-to-noise ratio of 10 at 1 cm resolution is expected for the perturbed signals, which are sufficient to resolve most of the predicted vacuum island sizes.

  15. Hopping energy and percolation-type transport in p-GaAs low densities near the 2D metal-insulator transition at zero magnetic field

    NASA Astrophysics Data System (ADS)

    Dlimi, S.; El kaaouachi, A.; Narjis, A.; Limouny, L.; Sybous, A.; Errai, M.

    2013-10-01

    We investigated the temperature dependence of resistivity of a high mobility two-dimensional holes system grown on the (311) GaAs surface in the absence of the magnetic field near the metal-insulator transition. The Coulomb hopping was found in a wide range of temperature and carrier density. Quantitative analysis of our results suggests that a crossover from Efros-Shklovskii to Mott variable range hopping due to screening phenomenon when the hopping distance increases. We found that using the 2D single particle hopping amplitude CES gives unreasonably high localization lengths. Therefore, we believe that electrical transport is dominated by correlated hopping and the hopping amplitude must be renormalized by a reduction factor A≈1.6. The localization length appears to diverge in a power-law fashion near the transition point. The analysis of the hopping gives results consistent with the prediction of the critical point from a recent study of percolation and other experiences.

  16. Dimensional 3D-2D cross-over under magnetic field in Bi2Sr2-xLaxCuOy induced by La/Sr substitution

    NASA Astrophysics Data System (ADS)

    Murrills, C. D.; Li, Z. Z.; Raffy, H.

    2015-06-01

    The single CuO2 layer Bi2Sr2CuO6 (Bi-2201) is characterized by a low anisotropy under magnetic field. We show that this anisotropy increases exponentially from 4 to 400 with La/Sr substitution in Bi2Sr2-xLaxCu06 (Bi(La)-2201). We present a phase diagram showing the change in transport properties from 3D to 2D when the La concentration is increased, deduced from angular transport measurements in the mixed state of c-axis oriented epitaxial Bi(La)-2201 thin films with columnar pinning centers parallel to the c-axis. We attribute this anisotropy increase to the decrease of the distortion of CuO2 planes by La/Sr substitution.

  17. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed. PMID:26964007

  18. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  19. Nuclear magnetic resonance for cultural heritage.

    PubMed

    Brai, Maria; Camaiti, Mara; Casieri, Cinzia; De Luca, Francesco; Fantazzini, Paola

    2007-05-01

    Nuclear magnetic resonance (NMR) portable devices are now being used for nondestructive in situ analysis of water content, pore space structure and protective treatment performance in porous media in the field of cultural heritage. It is a standard procedure to invert T(1) and T(2) relaxation data of fully water-saturated samples to get "pore size" distributions, but the use of T(2) requires great caution. It is well known that dephasing effects due to water molecule diffusion in a magnetic field gradient can affect transverse relaxation data, even if the smallest experimentally available half echo time tau is used in Carr-Purcell-Meiboom-Gill experiments. When a portable single-sided NMR apparatus is used, large field gradients due to the instrument, at the scale of the sample, are thought to be the dominant dephasing cause. In this paper, T(1) and T(2) (at different tau values) distributions were measured in natural (Lecce stone) and artificial (brick samples coming from the Greek-Roman Theatre of Taormina) porous media of interest for cultural heritage by a standard laboratory instrument and a portable device. While T(1) distributions do not show any appreciable effect from inhomogeneous fields, T(2) distributions can show strong effects, and a procedure is presented based on the dependence of 1/T(2) on tau to separate pore-scale gradient effects from sample-scale gradient effects. Unexpectedly, the gradient at the pore scale can be, in some cases, strong enough to make negligible the effects of gradients at the sample scale of the single-sided device.

  20. Burn injury by nuclear magnetic resonance imaging.

    PubMed

    Eising, Ernst G; Hughes, Justin; Nolte, Frank; Jentzen, Walter; Bockisch, Andreas

    2010-01-01

    Nuclear magnetic resonance imaging has become a standard diagnostic procedure in clinical medicine and is well known to have hazards for patients with pacemaker or metallic foreign bodies. Compared to CT, the frequency of MRI examinations is increasing due to the missing exposure of the patients by X-rays. Furthermore, high-field magnetic resonance tomograph (MRT) with 3 T has entered clinical practice, and 7-T systems are installed in multiple scientific institutions. On the other hand, the possibility of burn injuries has been reported only in very few cases. Based on a clinical finding of a burn injury in a 31-year-old male patient during a routine MRI of the lumbar spine with standard protocol, the MR scanner was checked and the examination was simulated in an animal model. The patient received a third-degree burn injury of the skin of the right hand and pelvis in a small region of skin contact. The subsequent control of the MRI scanner indicated no abnormal values for radiofrequency (RF) and power. In the subsequent animal experiment, comparable injuries could only be obtained by high RF power in a microwave stove. It is concluded that 'tissue loops' resulting from a contact between hand and pelvis must be avoided. With regard to forensic aspects, the need to inform patients of such a minimal risk can be avoided if the patients are adequately positioned using an isolating material between the hands and pelvis. These facts must be emphasized more in the future, if high-field MRI with stronger RF gradients is available in routine imaging. PMID:20630342

  1. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation)

    NASA Astrophysics Data System (ADS)

    Babbick, M.; Dijkstra, C.; Larkin, O. J.; Anthony, P.; Davey, M. R.; Power, J. B.; Lowe, K. C.; Cogoli-Greuter, M.; Hampp, R.

    Gravity is an important environmental factor that controls plant growth and development. Studies have shown that the perception of gravity is not only a property of specialized cells, but can also be performed by undifferentiated cultured cells. In this investigation, callus of Arabidopsis thaliana cv. Columbia was used to investigate the initial steps of gravity-related signalling cascades, through altered expression of transcription factors (TFs). TFs are families of small proteins that regulate gene expression by binding to specific promoter sequences. Based on microarray studies, members of the gene families WRKY, MADS-box, MYB, and AP2/EREBP were selected for investigation, as well as members of signalling chains, namely IAA 19 and phosphoinositol-4-kinase. Using qRT-PCR, transcripts were quantified within a period of 30 min in response to hypergravity (8 g), clinorotation [2-D clinostat and 3-D random positioning machine (RPM)] and magnetic levitation (ML). The data indicated that (1) changes in gravity induced stress-related signalling, and (2) exposure in the RPM induced changes in gene expression which resemble those of magnetic levitation. Two dimensional clinorotation resulted in responses similar to those caused by hypergravity. It is suggested that RPM and ML are preferable to simulate microgravity than clinorotation.

  2. 3He Bilayer Film Adsorbed on Graphite Plated with a Bilayer of 4He: a New Frustrated 2D Magnetic System

    NASA Astrophysics Data System (ADS)

    Neumann, Michael; Nyéki, Ján; Cowan, Brian; Saunders, John

    2006-09-01

    The heat capacity and NMR response of a 3He bilayer adsorbed on graphite plated with a bilayer of 4He have been measured over the temperature range 1-80 mK. We find that the first 3He layer requires the presence of a 3He fluid overlayer before it solidifies. Solidification is completed at a total coverage close to 9.85 nm-2, On further increasing the coverage the heat capacity maximum grows from `antiferromagnetic-like' (AFM-like) to `ferromagnetic-like' (FM-like). On the other hand, when the 3He layer first solidifies, it has a low temperature saturation magnetisation corresponding to a significant fraction of full polarisation, and this increases with increasing coverage. Furthermore the effective exchange constant inferred from the high temperature magnetisation data is always ferromagnetic. The effective exchange constants inferred from the heat capacity and magnetisation are significantly larger than those observed in the second layer of pure 3He films adsorbed on bare graphite. Otherwise there are strong similarities in the coverage dependence of the heat capacity and magnetisation, providing fresh insights into how the magnetic ground state of such 2D magnets evolves as the frustration is tuned with increasing coverage.

  3. Coaxial probe for nuclear magnetic resonance diffusion and relaxation correlation experiments

    SciTech Connect

    Tang, Yiqiao; Hürlimann, Martin; Mandal, Soumyajit; Paulsen, Jeffrey; Song, Yi-Qiao

    2014-02-21

    A coaxial nuclear magnetic resonance (NMR) probe is built to measure diffusion and relaxation properties of liquid samples. In particular, we demonstrate the acquisition of two-dimensional (2D) distribution functions (T{sub 1}-T{sub 2} and diffusion–T{sub 2}), essential for fluids characterization. The compact design holds promise for miniaturization, thus enabling the measurement of molecular diffusion that is inaccessible to conventional micro-NMR setups. Potential applications range from crude oil characterization to biomolecular screening and detections.

  4. Nuclear magnetic resonance imaging of the kidney

    SciTech Connect

    Hricak, H.; Crooks, L.; Sheldon, P.; Kaufman, L.

    1983-02-01

    The role of nuclear magnetic resonance (NMR) imaging of the kidney was analyzed in 18 persons (6 normal volunteers, 3 patients with pelvocaliectasis, 2 with peripelvic cysts, 1 with renal sinus lipomatosis, 3 with renal failure, 1 with glycogen storage disease, and 2 with polycystic kidney disease). Ultrasound and/or computed tomography (CT) studies were available for comparison in every case. In the normal kidney distinct anatomical structures were clearly differentiated by NMR. The best anatomical detail ws obtained with spin echo (SE) imaging, using a pulse sequence interval of 1,000 msec and an echo delay time of 28 msec. However, in the evaluation of normal and pathological conditions, all four intensity images (SE 500/28, SE 500/56, SE 1,000/28, and SE 1,000/56) have to be analyzed. No definite advantage was found in using SE imaging with a pulse sequence interval of 1,500 msec. Inversion recovery imaging enhanced the differences between the cortex and medulla, but it had a low signal-to-noise level and, therefore, a suboptimal overall resolution. The advantages of NMR compared with CT and ultrasound are discussed, and it is concluded that NMR imaging will prove to be a useful modality in the evaluation of renal disease.

  5. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  6. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  7. Nuclear magnetic resonance spectroscopy with single spin sensitivity.

    PubMed

    Müller, C; Kong, X; Cai, J-M; Melentijević, K; Stacey, A; Markham, M; Twitchen, D; Isoya, J; Pezzagna, S; Meijer, J; Du, J F; Plenio, M B; Naydenov, B; McGuinness, L P; Jelezko, F

    2014-08-22

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen-vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four (29)Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds.

  8. Nuclear Magnetic Double Resonance Using Weak Perturbing RF Fields

    ERIC Educational Resources Information Center

    Reynolds, G. Fredric

    1977-01-01

    Describes a nuclear magnetic resonance experimental example of spin tickling; also discusses a direct approach for verifying the relative signs of coupling constants in three-spin cyclopropyl systems. (SL)

  9. Nuclear magnetic resonance data of C10H13ITe

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  10. Nuclear magnetic resonance data of C9H11ITe

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  11. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field.

    PubMed

    Sallen, G; Kunz, S; Amand, T; Bouet, L; Kuroda, T; Mano, T; Paget, D; Krebs, O; Marie, X; Sakoda, K; Urbaszek, B

    2014-01-01

    Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain--that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations.

  12. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  13. Recovery of nuclear magnetization under extreme inhomogeneous broadening

    SciTech Connect

    Bodart, J.R.; Bork, V.P.; Cull, T.; Ma, H.; Fedders, P.A.; Leopold, D.J.; Norberg, R.E.

    1996-12-01

    A quantitative model is presented for the transient recovery of nuclear magnetization under conditions where nuclear spin dipolar relaxation to dilute relaxation centers proceeds without the intermediary of nuclear spin diffusion. The model is developed for rigid arrays in three, two, and one dimensions. Comparison with experimental results yields measures of effective relaxation rates and relaxation center concentrations. {copyright} {ital 1996 The American Physical Society.}

  14. Preliminary evidence for white matter metabolite differences in marijuana dependent young men using 2D J-resolved magnetic resonance spectroscopic imaging at 4 Tesla

    PubMed Central

    Silveri, Marisa M.; Jensen, J. Eric; Rosso, Isabelle M.; Sneider, Jennifer T.; Yurgelun-Todd, Deborah A.

    2010-01-01

    Chronic marijuana (MRJ) use is associated with altered cognition and mood state, altered brain metabolites, functional and structural brain changes. The objective of this study was to apply proton magnetic resonance spectroscopic imaging (MRSI) to compare proton metabolite levels in 15 young men with MRJ-dependence and 11 healthy non-using (NU) young men. Spectra were acquired at 4.0 Tesla using 2D J-resolved MRSI to resolve coupled resonances in J-space and to quantify the entire J-coupled spectral surface of metabolites from voxels containing basal ganglia and thalamus, temporal and parietal lobe, and occipital white and gray matter. This method permitted investigation of high-quality spectra for regression analyses to examine metabolites relative to tissue type. Distribution of myo-inositol (mI)/creatine (Cr) was altered in the MRJ group whereas the NU group exhibited higher mI/Cr in WM than GM, this pattern was not observed in MRJ subjects. Significant relationships observed between global mI/Cr and distribution in WM, and self-reported impulsivity and mood symptoms were also unique between MRJ and NU groups. These preliminary findings suggest that mI, and distribution of this glial metabolite in WM, is altered by MRJ use and is associated with behavioral and affective features reported by young MRJ-dependent men. PMID:21334181

  15. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    ERIC Educational Resources Information Center

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  16. Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance Three Axis Vector Magnetometer

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The Northrop Grumman Corporation is leveraging the technology developed for the Nuclear Magnetic Resonance Gyroscope (NMRG) to build a combined Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance (EPR-NMR) magnetometer. The EPR-NMR approach provides a high bandwidth and high sensitivity simultaneous measurement of all three vector components of the magnetic field averaged over the small volume of the sensor's one vapor cell. This poster will describe the history, operational principles, and design basics of the EPR-NMR magnetometer including an overview of the NSD designs developed and demonstrated to date. General performance results will also be presented.

  17. Electron transport through nuclear pasta in magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Yakovlev, D. G.

    2015-10-01

    We present a simple model for electron transport in a possible layer of exotic nuclear clusters (in the so-called nuclear pasta layer) between the crust and liquid core of a strongly magnetized neutron star. The electron transport there can be strongly anisotropic and gyrotropic. The anisotropy is produced by different electron effective collision frequencies along and across local symmetry axis in domains of exotic ordered nuclear clusters and by complicated effects of the magnetic field. We also calculate averaged kinetic coefficients in case local domains are freely oriented. Possible applications of the obtained results and open problems are outlined.

  18. Studies of magnetism by nuclear orientation and NMRON

    NASA Astrophysics Data System (ADS)

    Turrell, B. G.

    1999-09-01

    Low temperature nuclear orientation (NO) and nuclear magnetic resonance on oriented nuclei (NMRON) are used to investigate the magnetic properties of solids, and are especially useful when high sensitivity is required, for example in the study of small or dilute systems. Measurement of the static hyperfine interaction and the nuclear spin-lattice and spin-spin relaxation times T 1 and T 2 yield information about the electronic magnetization and spin dynamics, respectively. A number of NMRON techniques are available and their application to the study of magnetism will be briefly discussed. In particular, the pulsed technique has been shown to be effective for studying insulators. Recent NO and NMRON measurements, primarily on insulating magnets and magnetic multilayers, will be reviewed. Spins of stable isotopes can also be investigated using NMR thermally detected by NO (NMR-TDNO), and this method, in combination with NMRON, has been recently applied in both metals and insulators to obtain information about nuclear spin-spin couplings, “frequency pulling” and nuclear magnons.

  19. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    SciTech Connect

    Tomimatsu, Toru Shirai, Shota; Hashimoto, Katsushi Sato, Ken; Hirayama, Yoshiro

    2015-08-15

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs.

  20. Desktop fast-field cycling nuclear magnetic resonance relaxometer.

    PubMed

    Sousa, Duarte Mesquita; Marques, Gil Domingos; Cascais, José Manuel; Sebastião, Pedro José

    2010-07-01

    In this paper a new type of Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometer with low power consumption (200W) and cycle to cycle field stability better than 10(-4) is described. The new high-permeability magnet was designed to allow for good magnetic field homogeneity and allows for the sample rotation around an axis perpendicular to magnetic field, operating with magnetic fields between 0 and 0.21T. The power supply of the new relaxometer was specially developed in order to have steady state accurate currents and allow for magnetic field switching times less than 3ms. Additional control circuits were developed and included to compensate the Earth magnetic field component parallel to the field axis and to compensate for parasitic currents. The main aspects of the developed circuits together with some calibrating experimental results using the liquid crystal compounds 5CB and 8CB are presented and discussed.

  1. Magnet design considerations for Fusion Nuclear Science Facility

    DOE PAGES

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  2. Parahydrogen-enhanced zero-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2011-07-01

    Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

  3. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    PubMed

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor.

  4. Nuclear magnetic resonance in environmental engineering: principles and applications.

    PubMed

    Lens, P N; Hemminga, M A

    1998-01-01

    This paper gives an introduction to nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) in relation to applications in the field of environmental science and engineering. The underlying principles of high resolution solution and solid state NMR, relaxation time measurements and imaging are presented. Then, the use of NMR is illustrated and reviewed in studies of biodegradation and biotransformation of soluble and solid organic matter, removal of nutrients and xenobiotics, fate of heavy metal ions, and transport processes in bioreactor systems.

  5. Method and apparatus for measuring nuclear magnetic properties

    DOEpatents

    Weitekamp, D.P.; Bielecki, A.; Zax, D.B.; Zilm, K.W.; Pines, A.

    1987-12-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nuclei. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques. 5 figs.

  6. Development of a miniature permanent magnetic circuit for nuclear magnetic resonance chip

    NASA Astrophysics Data System (ADS)

    Lu, Rongsheng; Yi, Hong; Wu, Weiping; Ni, Zhonghua

    2013-07-01

    The existing researches of miniature magnetic circuits focus on the single-sided permanent magnetic circuits and the Halbach permanent magnetic circuits. In the single-sided permanent magnetic circuits, the magnetic flux density is always very low in the work region. In the Halbach permanent magnetic circuits, there are always great difficulties in the manufacturing and assembly process. The static magnetic flux density required for nuclear magnetic resonance(NMR) chip is analyzed based on the signal noise ratio(SNR) calculation model, and then a miniature C-shaped permanent magnetic circuit is designed as the required magnetic flux density. Based on Kirchhoff's law and magnetic flux refraction principle, the concept of a single shimming ring is proposed to improve the performance of the designed magnetic circuit. Using the finite element method, a comparative calculation is conducted. The calculation results demonstrate that the magnetic circuit improved with a single shimming has higher magnetic flux density and better magnetic field homogeneity than the one improved with no shimming ring or double shimming rings. The proposed magnetic circuit is manufactured and its experimental test platform is also built. The magnetic flux density measured in the work region is 0.7 T, which is well coincided with the theoretical design. The spatial variation of the magnetic field is within the range of the instrument error. At last, the temperature dependence of the magnetic flux density produced by the proposed magnetic circuit is investigated through both theoretical analysis and experimental study, and a linear functional model is obtained. The proposed research is crucial for solving the problem in the application of NMR-chip under different environmental temperatures.

  7. EFFECTS OF MAGNETIC FIELDS ON THE PROPAGATION OF NUCLEAR FLAMES IN MAGNETIC WHITE DWARFS

    SciTech Connect

    Kutsuna, Masamichi; Shigeyama, Toshikazu

    2012-04-10

    We investigate the effects of the magnetic field on the propagation of laminar flames of nuclear reactions taking place in white dwarfs with masses close to the Chandrasekhar limit. We calculate the velocities of laminar flames parallel and perpendicular to uniform magnetic fields as eigenvalues of steady solutions for magnetic hydrodynamical equations. As a result, we find that even when the magnetic pressure does not dominate the entire pressure it is possible for the magnetic field to suppress the flame propagation through the thermal conduction. Above the critical magnetic field, the flame velocity decreases with increasing magnetic field strength as v {approx} B{sup -1}. In media with densities of 10{sup 7}, 10{sup 8}, and 10{sup 9} g cm{sup -3}, the critical magnetic fields are orders of {approx}10{sup 10}, 10{sup 11}, and 10{sup 12} G, respectively.

  8. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  9. C-13 nuclear magnetic resonance in organic geochemistry.

    NASA Technical Reports Server (NTRS)

    Balogh, B.; Wilson, D. M.; Burlingame, A. L.

    1972-01-01

    Study of C-13 nuclear magnetic resonance (NMR) spectra of polycyclic fused systems. The fingerprint qualities of the natural abundance in C-13 NMR spectra permitting unequivocal identification of these compounds is discussed. The principle of structural additivity of C-13 NMR information is exemplified on alpha and beta androstanes, alpha and beta cholestanes, ergostanes, sitostanes, and isodecanes.

  10. Nuclear magnetic resonance imaging with 90-nm resolution.

    PubMed

    Mamin, H J; Poggio, M; Degen, C L; Rugar, D

    2007-05-01

    Magnetic resonance imaging (MRI) is a powerful imaging technique that typically operates on the scale of millimetres to micrometres. Conventional MRI is based on the manipulation of nuclear spins with radio-frequency fields, and the subsequent detection of spins with induction-based techniques. An alternative approach, magnetic resonance force microscopy (MRFM), uses force detection to overcome the sensitivity limitations of conventional MRI. Here, we show that the two-dimensional imaging of nuclear spins can be extended to a spatial resolution better than 100 nm using MRFM. The imaging of 19F nuclei in a patterned CaF(2) test object was enabled by a detection sensitivity of roughly 1,200 nuclear spins at a temperature of 600 mK. To achieve this sensitivity, we developed high-moment magnetic tips that produced field gradients up to 1.4 x 10(6) T m(-1), and implemented a measurement protocol based on force-gradient detection of naturally occurring spin fluctuations. The resulting detection volume was less than 650 zeptolitres. This is 60,000 times smaller than the previous smallest volume for nuclear magnetic resonance microscopy, and demonstrates the feasibility of pushing MRI into the nanoscale regime.

  11. Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.

    ERIC Educational Resources Information Center

    Venanzi, Thomas J.

    1982-01-01

    Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…

  12. Concepts in Biochemistry: Nuclear Magnetic Resonance Spectroscopy in Biochemistry.

    ERIC Educational Resources Information Center

    Cheatham, Steve

    1989-01-01

    Discusses the nature of a nuclear magnetic resonance (NMR) experiment, the techniques used, the types of structural and dynamic information obtained, and how one can view and refine structures using computer graphics techniques in combination with NMR data. Provides several spectra and a computer graphics image from B-form DNA. (MVL)

  13. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  14. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  15. Storage of nuclear magnetization as long-lived singlet order in low magnetic field

    PubMed Central

    Pileio, Giuseppe; Carravetta, Marina; Levitt, Malcolm H.

    2010-01-01

    Hyperpolarized nuclear states provide NMR signals enhanced by many orders of magnitude, with numerous potential applications to analytical NMR, in vivo NMR, and NMR imaging. However, the lifetime of hyperpolarized magnetization is normally limited by the relaxation time constant T1, which lies in the range of milliseconds to minutes, apart from in exceptional cases. In many cases, the lifetime of the hyperpolarized state may be enhanced by converting the magnetization into nuclear singlet order, where it is protected against many common relaxation mechanisms. However, all current methods for converting magnetization into singlet order require the use of a high-field, high-homogeneity NMR magnet, which is incompatible with most hyperpolarization procedures. We demonstrate a new method for converting magnetization into singlet order and back again. The new technique is suitable for magnetically inequivalent spin-pair systems in weak and inhomogeneous magnetic fields, and is compatible with known hyperpolarization technology. The method involves audio-frequency pulsed irradiation at the low-field nuclear Larmor frequency, employing coupling-synchronized trains of 180° pulses to induce singlet–triplet transitions. The echo trains are used as building blocks for a pulse sequence called M2S that transforms longitudinal magnetization into long-lived singlet order. The time-reverse of the pulse sequence, called S2M, converts singlet order back into longitudinal magnetization. The method is demonstrated on a solution of 15N-labeled nitrous oxide. The magnetization is stored in low magnetic field for over 30 min, even though the T1 is less than 3 min under the same conditions. PMID:20855584

  16. Storage of nuclear magnetization as long-lived singlet order in low magnetic field.

    PubMed

    Pileio, Giuseppe; Carravetta, Marina; Levitt, Malcolm H

    2010-10-01

    Hyperpolarized nuclear states provide NMR signals enhanced by many orders of magnitude, with numerous potential applications to analytical NMR, in vivo NMR, and NMR imaging. However, the lifetime of hyperpolarized magnetization is normally limited by the relaxation time constant T(1), which lies in the range of milliseconds to minutes, apart from in exceptional cases. In many cases, the lifetime of the hyperpolarized state may be enhanced by converting the magnetization into nuclear singlet order, where it is protected against many common relaxation mechanisms. However, all current methods for converting magnetization into singlet order require the use of a high-field, high-homogeneity NMR magnet, which is incompatible with most hyperpolarization procedures. We demonstrate a new method for converting magnetization into singlet order and back again. The new technique is suitable for magnetically inequivalent spin-pair systems in weak and inhomogeneous magnetic fields, and is compatible with known hyperpolarization technology. The method involves audio-frequency pulsed irradiation at the low-field nuclear Larmor frequency, employing coupling-synchronized trains of 180° pulses to induce singlet-triplet transitions. The echo trains are used as building blocks for a pulse sequence called M2S that transforms longitudinal magnetization into long-lived singlet order. The time-reverse of the pulse sequence, called S2M, converts singlet order back into longitudinal magnetization. The method is demonstrated on a solution of (15)N-labeled nitrous oxide. The magnetization is stored in low magnetic field for over 30 min, even though the T(1) is less than 3 min under the same conditions.

  17. Influence of nuclear spin on chemical reactions: Magnetic isotope and magnetic field effects (A Review)

    PubMed Central

    Turro, Nicholas J.

    1983-01-01

    The course of chemical reactions involving radical pairs may depend on occurrence and orientation of nuclear spins in the pairs. The influence of nuclear spins is maximized when the radical pairs are confined to a space that serves as a cage that allows a certain degree of independent diffusional and rotational motion of the partners of the pair but that also encourages reencounters of the partners within a period which allows the nuclear spins to operate on the odd electron spins of the pair. Under the proper conditions, the nuclear spins can induce intersystem crossing between triplet and singlet states of radical pairs. It is shown that this dependence of intersystem crossing on nuclear spin leads to a magnetic isotope effect on the chemistry of radical pairs which provides a means of separating isotopes on the basis of nuclear spins rather than nuclear masses and also leads to a magnetic field effect on the chemistry of radical pairs which provides a means of influencing the course of polymerization by the application of weak magnetic fields. PMID:16593273

  18. Nuclear magnetic resonance imaging at microscopic resolution

    NASA Astrophysics Data System (ADS)

    Johnson, G. Allan; Thompson, Morrow B.; Gewalt, Sally L.; Hayes, Cecil E.

    Resolution limits in NMR imaging are imposed by bandwidth considerations, available magnetic gradients for spatial encoding, and signal to noise. This work reports modification of a clinical NMR imaging device with picture elements of 500 × 500 × 5000 μm to yield picture elements of 50 × 50 × 1000 μm. Resolution has been increased by using smaller gradient coils permitting gradient fields >0.4 mT/cm. Significant improvements in signal to noise are achieved with smaller rf coils, close attention to choice of bandwidth, and signal averaging. These improvements permit visualization of anatomical structures in the rat brain with an effective diameter of 1 cm with the same definition as is seen in human imaging. The techniques and instrumentation should open a number of basic sciences such as embryology, plant sciences, and teratology to the potentials of NMR imaging.

  19. Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Characterization of Efavirenz.

    PubMed

    Sousa, Eduardo Gomes Rodrigues de; Carvalho, Erika Martins de; San Gil, Rosane Aguiar da Silva; Santos, Tereza Cristina Dos; Borré, Leandro Bandeira; Santos-Filho, Osvaldo Andrade; Ellena, Javier

    2016-09-01

    Samples of efavirenz (EFZ) were evaluated to investigate the influence of the micronization process on EFZ stability. A combination of X-ray diffraction, thermal analysis, FTIR, observations of isotropic chemical shifts of (1)H in distinct solvents, their temperature dependence and spin-lattice relaxation time constants (T1), solution (1D and 2D) (13)C nuclear magnetic resonance (NMR), and solid-state (13)C NMR (CPMAS NMR) provides valuable structural information and structural elucidation of micronized EFZ and heptane-recrystallized polymorphs (EFZ/HEPT). This study revealed that the micronization process did not affect the EFZ crystalline structure. It was observed that the structure of EFZ/HEPT is in the same form as that obtained from ethyl acetate/hexane, as shown in the literature. A comparison of the solid-state NMR spectra revealed discrepancies regarding the assignments of some carbons published in the literature that have been resolved.

  20. Nuclear magnetic resonance imaging in patients with cardiac pacing devices.

    PubMed

    Buendía, Francisco; Sánchez-Gómez, Juan M; Sancho-Tello, María J; Olagüe, José; Osca, Joaquín; Cano, Oscar; Arnau, Miguel A; Igual, Begoña

    2010-06-01

    Currently, nuclear magnetic resonance imaging is contraindicated in patients with a pacemaker or implantable cardioverter-defibrillator. This study was carried out because the potential risks in this situation need to be clearly defined. This prospective study evaluated clinical and electrical parameters before and after magnetic resonance imaging was performed in 33 patients (five with implantable cardioverter-defibrillators and 28 with pacemakers). In these patients, magnetic resonance imaging was considered clinically essential. There were no clinical complications. There was a temporary communication failure in two cases, sensing errors during imaging in two cases, and a safety signal was generated in one pacemaker at the maximum magnetic resonance frequency and output level. There were no technical restrictions on imaging nor were there any permanent changes in the performance of the cardiac pacing device. PMID:20515632

  1. Transport Properties of 2D-Electron Gas in a InGaAs/GaAs DQW in a Vicinity of Low Magnetic-Field-Induced Insulator-Quantum Hall Liquid Transition

    NASA Astrophysics Data System (ADS)

    Arapov, Yu. G.; Yakunin, M. V.; Gudina, S. V.; Harus, G. I.; Neverov, V. N.; Shelushinina, N. G.; Podgornyh, S. M.; Uskova, E. A.; Zvonkov, B. N.

    2007-04-01

    The resistivity ρ of low mobility dilute 2D-elecron gas in a InGaAs/GaAs double quantum well (DQW) exhibits the monotonic "insulating-like" temperature dependence (dρ/dT < 0) at T = 1.8-70K in zero magnetic field. This temperature interval corresponds to a ballistic regime (kBTτ/ℏ > 0.1) for our samples. We observed the coexistence of both the quantum Hall (QH) effect for the filling factors v = 2, 4 and the low magnetic field insulator — QH liquid (with v = 10) transition.

  2. Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment

    NASA Technical Reports Server (NTRS)

    Dent, William V., Jr.

    1998-01-01

    The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.

  3. Flat RF coils in static field gradient nuclear magnetic resonance.

    PubMed

    Stork, H; Gädke, A; Nestle, N; Fujara, F

    2009-10-01

    The use of flat RF coils allows considerable gains in the sensitivity of static field gradient (SFG) nuclear magnetic resonance (NMR) experiments. In this article, this effect is studied theoretically as well as experimentally. Additionally, the flat coil geometry has been studied theoretically depending on magnetic field gradient, pulse sequence and amplifier power. Moreover, detecting the signal directly from the free induction decay (FID) turned out to be quite attractive for STRAFI-like microimaging experiments, especially when using flat coils. In addition to wound rectangular flat coils also spiral flat coils have been developed which can be manufactured by photolithography from printed circuit boards.

  4. Stochastic dipolar recoupling in nuclear magnetic resonance of solids.

    PubMed

    Tycko, Robert

    2007-11-01

    I describe a nuclear magnetic resonance (NMR) technique, called stochastic dipolar recoupling (SDR), that permits continuous experimental control of the character of spin dynamics between coherent and incoherent limits in a system of magnetic dipole-coupled nuclei. In the fully incoherent limit of SDR, spin polarization transfers occur at distance-dependent rates without the quantum mechanical interferences among pairwise dipole-dipole couplings that often limit the feasibility or precision of structural studies of solids by NMR. In addition to facilitating structural studies, SDR represents a possible route to experimental studies of effects of decoherence on the dynamics of quantum many-body systems.

  5. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  6. Stochastic Dipolar Recoupling in Nuclear Magnetic Resonance of Solids

    SciTech Connect

    Tycko, Robert

    2007-11-02

    I describe a nuclear magnetic resonance (NMR) technique, called stochastic dipolar recoupling (SDR), that permits continuous experimental control of the character of spin dynamics between coherent and incoherent limits in a system of magnetic dipole-coupled nuclei. In the fully incoherent limit of SDR, spin polarization transfers occur at distance-dependent rates without the quantum mechanical interferences among pairwise dipole-dipole couplings that often limit the feasibility or precision of structural studies of solids by NMR. In addition to facilitating structural studies, SDR represents a possible route to experimental studies of effects of decoherence on the dynamics of quantum many-body system000.

  7. Stochastic dipolar recoupling in nuclear magnetic resonance of solids

    PubMed Central

    Tycko, Robert

    2008-01-01

    I describe a nuclear magnetic resonance (NMR) technique, called stochastic dipolar recoupling (SDR), that permits continuous experimental control of the character of spin dynamics between coherent and incoherent limits in a system of magnetic dipole-coupled nuclei. In the fully incoherent limit of SDR, spin polarization transfers occur at distance-dependent rates without the quantum mechanical interferences among pairwise dipole-dipole couplings that often limit the feasibility or precision of structural studies of solids by NMR. In addition to facilitating structural studies, SDR represents a possible route to experimental studies of effects of decoherence on the dynamics of quantum many-body systems. PMID:17995438

  8. Nuclear magnetic resonance spectroscopy of the circadian clock of cyanobacteria.

    PubMed

    Chang, Yong-Gang; Tseng, Roger; Kuo, Nai-Wei; LiWang, Andy

    2013-07-01

    The most well-understood circadian clock at the level of molecular mechanisms is that of cyanobacteria. This overview is on how solution-state nuclear magnetic resonance (NMR) spectroscopy has contributed to this understanding. By exciting atomic spin-½ nuclei in a strong magnetic field, NMR obtains information on their chemical environments, inter-nuclear distances, orientations, and motions. NMR protein samples are typically aqueous, often at near-physiological pH, ionic strength, and temperature. The level of information obtainable by NMR depends on the quality of the NMR sample, by which we mean the solubility and stability of proteins. Here, we use examples from our laboratory to illustrate the advantages and limitations of the technique. PMID:23667047

  9. Probing soil and aquifer material porosity with nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hinedi, Z. R.; Kabala, Z. J.; Skaggs, T. H.; Borchardt, D. B.; Lee, R. W. K.; Chang, A. C.

    1993-12-01

    Nuclear magnetic resonance relaxation measurements were used to identify different characteristic porosity domains in soil and aquifer materials. The porosity distribution can be inferred from these measurements by a regularization method applicable to any nuclear magnetic resonance (NMR) relaxation, or by an analytic method applicable only to multiexponential relaxations (D. Orazio et al., 1989). The porosity distribution obtained from NMR relaxation measurements strongly depends on the pore shape factor. For the Borden aquifer material, both the regularized and the analytic pore size distribution obtained from NMR relaxation measurements are consistent with those obtained by Ball et al. (1990) using Hg porosimetry and N2 adsorption. For the Eustis and the Webster soils, the measured porosity domains are qualitatively consistent with those expected based on their respective composition. Our findings suggest that due to the long time required to saturate fine pores, NMR measurements of porosity distribution that are collected at short saturation times are biased toward larger pore sizes.

  10. Nuclear chiral and magnetic rotation in covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Zhao, Pengwei

    2016-05-01

    Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations (AMR) seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking (TAC) is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of TAC-CDFT and its application for magnetic and AMR phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets in 133Ce and 103Rh are discussed.

  11. Chemometric Analysis of Nuclear Magnetic Resonance Spectroscopy Data

    SciTech Connect

    ALAM,TODD M.; ALAM,M. KATHLEEN

    2000-07-20

    Chemometric analysis of nuclear magnetic resonance (NMR) spectroscopy has increased dramatically in recent years. A variety of different chemometric techniques have been applied to a wide range of problems in food, agricultural, medical, process and industrial systems. This article gives a brief review of chemometric analysis of NMR spectral data, including a summary of the types of mixtures and experiments analyzed with chemometric techniques. Common experimental problems encountered during the chemometric analysis of NMR data are also discussed.

  12. Proton nuclear magnetic resonance studies on the variant-3 neurotoxin from Centruroides sculpturatus Ewing: Sequential assignment of resonances

    SciTech Connect

    Nettesheim, D.G.; Klevit, R.E.; Drobny, G.; Watt, D.D.; Krishna, N.R. )

    1989-02-21

    The authors report the sequential assignment of resonances to specific residues in the proton nuclear magnetic resonance spectrum of the variant-3 neurotoxin from the scorpion Centruroides sculpturatus Ewing (range southwestern U.S.A.). A combination of two-dimensional NMR experiments such as 2D-COSY, 2D-NOESY, and single- and double-RELAY coherence transfer spectroscopy has been employed on samples of the protein dissolved in D{sub 2}O and in H{sub 2}O for assignment purposes. These studies provide a basis for the determination of the solution-phase conformation of this protein and for undertaking detailed structure-function studies of these neurotoxins that modulate the flow of sodium current by binding to the sodium channels of excitable membranes.

  13. Three-state analytic theory of two-dimensional nuclear magnetic resonance in systems with coupled macro- and micropores

    NASA Astrophysics Data System (ADS)

    Johnson, David Linton; Schwartz, Lawrence M.

    2015-06-01

    Two-dimensional (2D) nuclear magnetic resonance (NMR) experiments involve a sequence of longitudinal (T1) and transverse (T2) measurements. In a previous paper we showed that if each of these 1D measurements can be represented by two exponential decays then there can be an accurate analytic solution for the 2D measurements with no additional information. In this paper we extend the theory to the case where there are three decay channels for the 1D measurements. The resulting analytic theory introduces a single free parameter, which is a rotation angle in the vector space spanned by the normal modes. Our predictions agree quite well with numerical results based on the microporous grain consolidation (μ GC ) model. The theory allows one to deduce information about decay modes in situations in which they may not be measurable in a conventional 1D measurement because the amplitude of that mode is too small.

  14. Three-state analytic theory of two-dimensional nuclear magnetic resonance in systems with coupled macro- and micropores.

    PubMed

    Johnson, David Linton; Schwartz, Lawrence M

    2015-06-01

    Two-dimensional (2D) nuclear magnetic resonance (NMR) experiments involve a sequence of longitudinal (T(1)) and transverse (T(2)) measurements. In a previous paper we showed that if each of these 1D measurements can be represented by two exponential decays then there can be an accurate analytic solution for the 2D measurements with no additional information. In this paper we extend the theory to the case where there are three decay channels for the 1D measurements. The resulting analytic theory introduces a single free parameter, which is a rotation angle in the vector space spanned by the normal modes. Our predictions agree quite well with numerical results based on the microporous grain consolidation (μGC) model. The theory allows one to deduce information about decay modes in situations in which they may not be measurable in a conventional 1D measurement because the amplitude of that mode is too small. PMID:26172724

  15. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  16. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  17. Electronic Magnetization of a Quantum Point Contact Measured by Nuclear Magnetic Resonance.

    PubMed

    Kawamura, Minoru; Ono, Keiji; Stano, Peter; Kono, Kimitoshi; Aono, Tomosuke

    2015-07-17

    We report an electronic magnetization measurement of a quantum point contact (QPC) based on nuclear magnetic resonance (NMR) spectroscopy. We find that NMR signals can be detected by measuring the QPC conductance under in-plane magnetic fields. This makes it possible to measure, from Knight shifts of the NMR spectra, the electronic magnetization of a QPC containing only a few electron spins. The magnetization changes smoothly with the QPC potential barrier height and peaks at the conductance plateau of 0.5×2e^{2}/h. The observed features are well captured by a model calculation assuming a smooth potential barrier, supporting a no bound state origin of the 0.7 structure.

  18. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  19. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields.

    PubMed

    Wei, Zhiliang; Yang, Jian; Chen, Youhe; Lin, Yanqin; Chen, Zhong

    2015-04-01

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  20. Nuclear magnetic resonance force microscopy at high magnetic field and low temperature

    NASA Astrophysics Data System (ADS)

    Marohn, John A.; Harrell, Lee H.; Thurber, Kent; Fainchtein, Raul; Smith, Doran D.

    2000-03-01

    We will report detection of nuclear magnetic resonance at 6.5 Tesla from a micron-scale sample by magnetic resonance force microscopy (MRFM) at low-temperature. We will detail a ``bare bones" one-inch diameter probe (including a novel ``string and spring" fiber positioning element, a tuned and matched RF coil, and a heating element) suitable for simple variable-temperature magnetic-resonance force microscopy studies. The compact probe design succeeded in minimizing both deleterious thermal drifts in the positions of probe components and pickup of environmental vibrations. In studying Nd-doped calcium fluoride at a magnetic field higher than has previously been employed in an MRFM experiment, we found that even sample-on-cantilever experiments can be complicated by the cantilever's resonance frequency changing with magnetic field.

  1. Electronic Magnetization of a Quantum Point Contact Measured by Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Kawamura, Minoru; Ono, Keiji; Stano, Peter; Kono, Kimitoshi; Aono, Tomosuke

    2015-07-01

    We report an electronic magnetization measurement of a quantum point contact (QPC) based on nuclear magnetic resonance (NMR) spectroscopy. We find that NMR signals can be detected by measuring the QPC conductance under in-plane magnetic fields. This makes it possible to measure, from Knight shifts of the NMR spectra, the electronic magnetization of a QPC containing only a few electron spins. The magnetization changes smoothly with the QPC potential barrier height and peaks at the conductance plateau of 0.5 ×2 e2/h . The observed features are well captured by a model calculation assuming a smooth potential barrier, supporting a no bound state origin of the 0.7 structure.

  2. (1)H nuclear magnetic resonance-based metabolomics study of earthworm Perionyx excavatus in vermifiltration process.

    PubMed

    Wang, Lei; Huang, Xulei; Laserna, Anna Karen Carrasco; Li, Sam Fong Yau

    2016-10-01

    In this study, (1)H nuclear magnetic resonance (NMR)-based metabolomics approach was used to characterize the metabolic response of the earthworm Perionyx excavatus in continuous vermifiltration for two months under hydraulic loading rates of 1m(3)m(-2)d(-1) (VF1) and 1.5m(3)m(-2)d(-1) (VF1.5). Both VF1 and VF1.5 showed higher removal of chemical oxygen demand and total nitrogen than the biofilter without earthworms. Principal component analysis of the NMR spectra of earthworm metabolites showed significant separations between those not subjected to wastewater filtration (control) and VF1 or VF1.5. Temporal variations of earthworm biomass, and the identified metabolites that are significantly different between control, VF1 and VF1.5 revealed that worms underwent increasing metabolic activity within 20days in VF1 and 14days in VF1.5, then decreasing metabolic activity. The use of NMR-based metabolomics in monitoring earthworm metabolism was demonstrated to be a novel approach in studying engineered vermifiltration systems. PMID:27469092

  3. (1)H nuclear magnetic resonance-based metabolomics study of earthworm Perionyx excavatus in vermifiltration process.

    PubMed

    Wang, Lei; Huang, Xulei; Laserna, Anna Karen Carrasco; Li, Sam Fong Yau

    2016-10-01

    In this study, (1)H nuclear magnetic resonance (NMR)-based metabolomics approach was used to characterize the metabolic response of the earthworm Perionyx excavatus in continuous vermifiltration for two months under hydraulic loading rates of 1m(3)m(-2)d(-1) (VF1) and 1.5m(3)m(-2)d(-1) (VF1.5). Both VF1 and VF1.5 showed higher removal of chemical oxygen demand and total nitrogen than the biofilter without earthworms. Principal component analysis of the NMR spectra of earthworm metabolites showed significant separations between those not subjected to wastewater filtration (control) and VF1 or VF1.5. Temporal variations of earthworm biomass, and the identified metabolites that are significantly different between control, VF1 and VF1.5 revealed that worms underwent increasing metabolic activity within 20days in VF1 and 14days in VF1.5, then decreasing metabolic activity. The use of NMR-based metabolomics in monitoring earthworm metabolism was demonstrated to be a novel approach in studying engineered vermifiltration systems.

  4. Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ronald J.

    2000-01-01

    The desire for fast, efficient interplanetary transport requires propulsion systems having short acceleration times and very high specific impulse attributes. Unfortunately, most highly efficient propulsion systems which are within the capabilities of present day technologies are either very heavy or yield very low impulse such that the acceleration time to final velocity is too long to be of lasting interest, One exception, the nuclear thermal thruster, could achieve the desired acceleration but it would require inordinately large mass ratios to reach the range of desired final velocities. An alternative approach, among several competing concepts that are beyond our modern technical capabilities, is a pulsed thermonuclear device utilizing microfusion detonations. In this paper, we examine the feasibility of an innovative magnetic flux compression concept for utilizing microfusion detonations, assuming that such low yield nuclear bursts can be realized in practice. In this concept, a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stationary structure formed from a high temperature superconductor (HTSC). In general, we are interested in accomplishing two important functions: (1) collimation of a hot diamagnetic plasma for direct thrust production; and (2) pulse power generation for dense plasma ignition. For the purposes of this research, it is assumed that rnicrofusion detonation technology may become available within a few decades, and that this approach could capitalize on recent advances in inertial confinement fusion ICF) technologies including magnetized target concepts and antimatter initiated nuclear detonations. The charged particle expansion velocity in these detonations can be on the order of 10 (exp 6)- 10 (exp 7) meters per second, and, if effectively collimated by a magnetic nozzle, can yield the Isp and the acceleration levels needed for practical interplanetary spaceflight. The ability to ignite pure

  5. Highly sensitive detection of protein biomarkers via nuclear magnetic resonance biosensor with magnetically engineered nanoferrite particles

    PubMed Central

    Jeun, Minhong; Park, Sungwook; Lee, Hakho; Lee, Kwan Hyi

    2016-01-01

    Magnetic-based biosensors are attractive for on-site detection of biomarkers due to the low magnetic susceptibility of biological samples. Here, we report a highly sensitive magnetic-based biosensing system that is composed of a miniaturized nuclear magnetic resonance (NMR) device and magnetically engineered nanoferrite particles (NFPs). The sensing performance, also identified as the transverse relaxation (R2) rate, of the NMR device is directly related to the magnetic properties of the NFPs. Therefore, we developed magnetically engineered NFPs (MnMg-NFP) and used them as NMR agents to exhibit a significantly improved R2 rate. The magnetization of the MnMg-NFPs was increased by controlling the Mn and Mg cation concentration and distribution during the synthesis process. This modification of the Mn and Mg cation directly contributed to improving the R2 rate. The miniaturized NMR system, combined with the magnetically engineered MnMg-NFPs, successfully detected a small amount of infectious influenza A H1N1 nucleoprotein with high sensitivity and stability. PMID:27799772

  6. Quantitative velocity distributions via nuclear magnetic resonance flow metering

    NASA Astrophysics Data System (ADS)

    O'Neill, Keelan T.; Fridjonsson, Einar O.; Stanwix, Paul L.; Johns, Michael L.

    2016-08-01

    We demonstrate the use of Tikhonov regularisation as a data inversion technique to determine the velocity distributions of flowing liquid streams. Regularisation is applied to the signal produced by a nuclear magnetic resonance (NMR) flow measurement system consisting of a pre-polarising permanent magnet located upstream of an Earth's magnetic field NMR detection coil. A simple free induction decay (FID) NMR signal is measured for the flowing stream in what is effectively a 'time-of-flight' measurement. The FID signal is then modelled as a function of fluid velocity and acquisition time, enabling determination of the velocity probability distributions via regularisation. The mean values of these velocity distributions were successfully validated against in-line rotameters. The ability to quantify multi-modal velocity distributions was also demonstrated using a two-pipe system.

  7. Nuclear magnetic resonance imaging with hyper-polarized noble gases

    SciTech Connect

    Schmidt, D.M.; George, J.S.; Penttila, S.I.; Caprihan, A.

    1997-10-01

    This is the final report of a six-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The nuclei of noble gases can be hyper polarized through a laser-driven spin exchange to a degree many orders of magnitude larger than that attainable by thermal polarization without requiring a strong magnetic field. The increased polarization from the laser pumping enables a good nuclear magnetic resonance (NMR) signal from a gas. The main goal of this project was to demonstrate diffusion-weighted imaging of such hyper-polarized noble gas with magnetic resonance imaging (MRI). Possible applications include characterizing porosity of materials and dynamically imaging pressure distributions in biological or acoustical systems.

  8. Quantitative velocity distributions via nuclear magnetic resonance flow metering.

    PubMed

    O'Neill, Keelan T; Fridjonsson, Einar O; Stanwix, Paul L; Johns, Michael L

    2016-08-01

    We demonstrate the use of Tikhonov regularisation as a data inversion technique to determine the velocity distributions of flowing liquid streams. Regularisation is applied to the signal produced by a nuclear magnetic resonance (NMR) flow measurement system consisting of a pre-polarising permanent magnet located upstream of an Earth's magnetic field NMR detection coil. A simple free induction decay (FID) NMR signal is measured for the flowing stream in what is effectively a 'time-of-flight' measurement. The FID signal is then modelled as a function of fluid velocity and acquisition time, enabling determination of the velocity probability distributions via regularisation. The mean values of these velocity distributions were successfully validated against in-line rotameters. The ability to quantify multi-modal velocity distributions was also demonstrated using a two-pipe system. PMID:27343484

  9. Quantitative velocity distributions via nuclear magnetic resonance flow metering.

    PubMed

    O'Neill, Keelan T; Fridjonsson, Einar O; Stanwix, Paul L; Johns, Michael L

    2016-08-01

    We demonstrate the use of Tikhonov regularisation as a data inversion technique to determine the velocity distributions of flowing liquid streams. Regularisation is applied to the signal produced by a nuclear magnetic resonance (NMR) flow measurement system consisting of a pre-polarising permanent magnet located upstream of an Earth's magnetic field NMR detection coil. A simple free induction decay (FID) NMR signal is measured for the flowing stream in what is effectively a 'time-of-flight' measurement. The FID signal is then modelled as a function of fluid velocity and acquisition time, enabling determination of the velocity probability distributions via regularisation. The mean values of these velocity distributions were successfully validated against in-line rotameters. The ability to quantify multi-modal velocity distributions was also demonstrated using a two-pipe system.

  10. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  11. Analysis of ringing due to magnetic core materials used in pulsed nuclear magnetic resonance applications

    NASA Astrophysics Data System (ADS)

    Prabhu Gaunkar, Neelam; Nlebedim, Cajetan; Hadimani, Ravi; Bulu, Irfan; Song, Yi-Qiao; Mina, Mani; Jiles, David

    Oil-field well logging instruments employ pulsed nuclear magnetic resonance (NMR) techniques and use inductive sensors to detect and evaluate the presence of particular fluids in geological formations. Acting as both signal transmitters and receivers most inductive sensors employ magnetic cores to enhance the quality and amplitude of signals recorded during field measurements. It is observed that the magnetic core also responds to the applied input signal thereby generating a signal (`ringing') that interferes with the measurement of the signals from the target formations. This causes significant noise and receiver dead time and it is beneficial to eliminate/suppress the signals received from the magnetic core. In this work a detailed analysis of the magnetic core response and in particular loading of the sensor due to the presence of the magnetic core is presented. Pulsed NMR measurements over a frequency band of 100 kHz to 1MHz are used to determine the amplitude and linewidth of the signals acquired from different magnetic core materials. A lower signal amplitude and a higher linewidth are vital since these would correspond to minimal contributions from the magnetic core to the inductive sensor response and thus leading to minimized receiver dead time.

  12. Stray-field nuclear magnetic resonance imaging in microgravity conditions

    NASA Astrophysics Data System (ADS)

    Garrido, Leoncio; Sampayo, José

    2008-03-01

    Magnetic levitation has been proposed as an alternative approach to simulate on Earth microgravity conditions encountered in space, allowing the investigation of weightlessness on materials and biological systems. In general, very strong magnetic fields, 15T or higher, are required to achieve levitation for a majority of diamagnetic substances. Here, we show that it is possible to achieve levitation of these substances in a commercial superconductive magnet operating with a nuclear magnetic resonance (NMR) spectrometer at 9.4T at ambient conditions. Furthermore, stray-field proton NMR imaging is performed in situ at the location where a sample is levitating, showing that it is feasible to obtain the corresponding one-dimensional profile. Considering that water is a diamagnetic substance and the main constituent of living systems, the outlined approach could be useful to investigate alterations in water proton NMR properties induced by low gravity and magnetic forces upon levitating, e.g., seeds, cells, etc. In addition to protons, it would also be possible to observe other nuclei (e.g., F19, P31, etc.) that may be of interest in metabolic and therapeutic investigations.

  13. Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses

    NASA Astrophysics Data System (ADS)

    Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin

    2012-12-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.

  14. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya

    2016-05-01

    As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.

  15. Magnetic structure and domain conversion of the quasi-2D frustrated antiferromagnet CuCrO{sub 2} probed by NMR

    SciTech Connect

    Sakhratov, Yu. A.; Svistov, L. E.; Kuhns, P. L.; Zhou, H. D.; Reyes, A. P.

    2014-11-15

    We have carried out {sup 63,65}Cu NMR spectra measurements in a magnetic field up to about 15.5 T on a single crystal of the multiferroic triangular-lattice antiferromagnet CuCrO{sub 2}. The measurements were performed for perpendicular and parallel orientations of the magnetic field with respect to the c axis of the crystal, and the detailed angle dependence of the spectra on the magnetic field direction in the ab plane was studied. The shape of the spectra can be well described in the model of spiral spin structure proposed by recent neutron diffraction experiments. When the field is rotated perpendicular to the crystal c axis, we observed, directly for the first time, a remarkable reorientation of the spin plane simultaneous with rotation of the incommensurate wavevector, by quantitatively deducing the conversion of the energetically less favorable domain to a more favorable one. At high enough fields parallel to the c axis, the data are consistent with either a field-induced commensurate spiral magnetic structure or an incommensurate spiral magnetic structure with a disorder in the c direction, suggesting that high fields may have influence on interplanar ordering.

  16. Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.

    2015-12-01

    Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.

  17. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  18. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  19. Fermi Surface Studies of QUASI-1D and QUASI-2D Organic Superconductors Using Periodic Orbit Resonance in High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Kovalev, A. E.; Hill, S.; Takasaki, S.; Yamada, J.; Anzai, H.; Qualls, J. S.; Kawano, K.; Tamura, M.; Naito, T.; Kobayashi, H.

    We have studied periodic orbit resonances (PORs) in order to probe the topology of the Fermi surface (FS) of the quasi-1D organic conductor (TMTSF)2ClO4 and the quasi-2D organic conductors κ-(ET)2Cu(NCS)2 and κ-(ET)2I3. The FS of (TMTSF)2ClO4 consists of a pair of weakly corrugated open sheets, while κ-(ET)2Cu(NCS)2 and κ-(ET)2I3 additionally possess warped cylindrical FS sections. In this paper, we review the POR technique for the straightforward case of (TMTSF)2ClO4. We then report on a detailed study of the FS topology for κ-(ET)2Cu(NCS)2.

  20. Fermi Surface Studies of QUASI-1D and QUASI-2D Organic Superconductors Using Periodic Orbit Resonance in High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Kovalev, A. E.; Hill, S.; Takasaki, S.; Yamada, J.; Anzai, H.; Qualls, J. S.; Kawano, K.; Tamura, M.; Naito, T.; Kobayashi, H.

    2005-04-01

    We have studied periodic orbit resonances (PORs) in order to probe the topology of the Fermi surface (FS) of the quasi-1D organic conductor (TMTSF)2ClO4 and the quasi-2D organic conductors κ-(ET)2Cu(NCS)2 and κ-(ET)2I3. The FS of (TMTSF)2ClO4 consists of a pair of weakly corrugated open sheets, while κ-(ET)2Cu(NCS)2 and κ-(ET)2I3 additionally possess warped cylindrical FS sections. In this paper, we review the POR technique for the straightforward case of (TMTSF)2ClO4. We then report on a detailed study of the FS topology for κ-(ET)2Cu(NCS)2.

  1. Detection of molecules and cells using nuclear magnetic resonance with magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Rümenapp, Christine; Gleich, Bernhard; Mannherz, Hans Georg; Haase, Axel

    2015-04-01

    For the detection of small molecules, proteins or even cells in vitro, functionalised magnetic nanoparticles and nuclear magnetic resonance measurements can be applied. In this work, magnetic nanoparticles with the size of 5-7 nm were functionalised with antibodies to detect two model systems of different sizes, the protein avidin and Saccharomyces cerevisiae as the model organism. The synthesised magnetic nanoparticles showed a narrow size distribution, which was determined using transmission electron microscopy and dynamic light scattering. The magnetic nanoparticles were functionalised with the according antibodies via EDC/NHS chemistry. The binding of the antigen to magnetic nanoparticles was detected through the change in the NMR T2 relaxation time at 0.5 T (≈21.7 MHz). In case of a specific binding the particles cluster and the T2 relaxation time of the sample changes. The detection limit in buffer for FITC-avidin was determined to be 1.35 nM and 107 cells/ml for S. cerevisiae. For fluorescent microscopy the avidin molecules were labelled with FITC and for the detection of S. cerevisiae the magnetic nanoparticles were additionally functionalised with rhodamine. The binding of the particles to S. cerevisiae and the resulting clustering was also seen by transmission electron microscopy.

  2. A novel improved method for analysis of 2D diffusion-relaxation data--2D PARAFAC-Laplace decomposition.

    PubMed

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T; Engelsen, Søren B

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T(2)-D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T(2)-D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T(2)-D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D=3 x 10(-12) m(2) s(-1) and T(2)=180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D=10(-9) m(2) s(-1), T(2)=10 ms and D=3 x 10(-13) m(2) s(-1), T(2)=13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  3. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  4. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    DOEpatents

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  5. Nuclear magnetic resonance tomography with a toroid cavity detector

    SciTech Connect

    Woelk, K.; Rathke, J.W.; Klingler, R.J.

    1995-02-01

    A new type of nuclear magnetic resonance (NMR) tomography has been developed at Argonne National Laboratory. The method uses the strong radio frequency field gradient within a cylindrical toroid cavity to provide high-resolution NMR spectral information while simultaneously resolving distances on the micron scale. The toroid cavity imaging technique differs from conventional magnetic resonance imaging (MRI) in that NMR structural information is not lost during signal processing. The new technique could find a wide range of applications in the characterization of surface layers and in the production of advanced materials. Potential areas of application include in situ monitoring of growth sites during ceramic formation processes, analysis of the oxygen annealing step for wires coated with high-temperature superconducting films, and investigation of the reaction chemistry as a function of distance within the diffusion layer for electrochemical processes.

  6. Magnetic Imaging: a New Tool for UK National Nuclear Security

    PubMed Central

    Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications. PMID:25608957

  7. Magnetic imaging: a new tool for UK national nuclear security.

    PubMed

    Darrer, Brendan J; Watson, Joe C; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  8. Nuclear-magnetic-resonance quantum calculations of the Jones polynomial

    SciTech Connect

    Marx, Raimund; Spoerl, Andreas; Pomplun, Nikolas; Schulte-Herbrueggen, Thomas; Glaser, Steffen J.; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Myers, John M.

    2010-03-15

    The repertoire of problems theoretically solvable by a quantum computer recently expanded to include the approximate evaluation of knot invariants, specifically the Jones polynomial. The experimental implementation of this evaluation, however, involves many known experimental challenges. Here we present experimental results for a small-scale approximate evaluation of the Jones polynomial by nuclear magnetic resonance (NMR); in addition, we show how to escape from the limitations of NMR approaches that employ pseudopure states. Specifically, we use two spin-1/2 nuclei of natural abundance chloroform and apply a sequence of unitary transforms representing the trefoil knot, the figure-eight knot, and the Borromean rings. After measuring the nuclear spin state of the molecule in each case, we are able to estimate the value of the Jones polynomial for each of the knots.

  9. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  10. Nuclear Magnetic Resonance Applications to Unconventional Fossil Fuel Resources

    NASA Astrophysics Data System (ADS)

    Kleinberg, R. L.; Leu, G.

    2008-12-01

    Technical and economic projections strongly suggest that fossil fuels will continue to play a dominant role in the global energy market through at least the mid twenty-first century. However, low-cost conventional oil and gas will be depleted in that time frame. Therefore new sources of energy will be needed. We discuss two relatively untapped unconventional fossil fuels: heavy oil and gas hydrate. In both cases, nuclear magnetic resonance plays a key role in appraising the resource and providing information needed for designing production processes.

  11. A versatile pulse programmer for pulsed nuclear magnetic resonance spectroscopy.

    NASA Technical Reports Server (NTRS)

    Tarr, C. E.; Nickerson, M. A.

    1972-01-01

    A digital pulse programmer producing the standard pulse sequences required for pulsed nuclear magnetic resonance spectroscopy is described. In addition, a 'saturation burst' sequence, useful in the measurement of long relaxation times in solids, is provided. Both positive and negative 4 V trigger pulses are produced that are fully synchronous with a crystal-controlled time base, and the pulse programmer may be phase-locked with a maximum pulse jitter of 3 ns to the oscillator of a coherent pulse spectrometer. Medium speed TTL integrated circuits are used throughout.

  12. In vivo Carbon-13 Nuclear Magnetic Resonance Studies of Mammals

    NASA Astrophysics Data System (ADS)

    Alger, J. R.; Sillerud, L. O.; Behar, K. L.; Gillies, R. J.; Shulman, R. G.; Gordon, R. E.; Shaw, D.; Hanley, P. E.

    1981-11-01

    Natural abundance carbon-13 nuclear magnetic resonances (NMR) from human arm and rat tissues have been observed in vivo. These signals arise primarily from triglycerides in fatty tissue. Carbon-13 NMR was also used to follow, in a living rat, the conversion of C-1--labeled glucose, which was introduced into the stomach, to C-1--labeled liver glycogen. The carbon-13 sensitivity and resolution obtained shows that natural abundance carbon-13 NMR will be valuable in the study of disorders in fat metabolism, and that experiments with substrates labeled with carbon-13 can be used to study carbohydrate metabolism in vivo.

  13. Light nuclear charge measurement with Alpha Magnetic Spectrometer Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Basara, Laurent; Choutko, Vitaly; Li, Qiang

    2016-06-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy particle detector installed and operating on board of the International Space Station (ISS) since May 2011. So far more than 70 billion cosmic ray events have been recorded by AMS. In the present paper the Electromagnetic Calorimeter (ECAL) detector of AMS is used to measure cosmic ray nuclear charge magnitudes up to Z=10. The obtained charge magnitude resolution is about 0.1 and 0.3 charge unit for Helium and Carbon, respectively. These measurements are important for an accurate determination of the interaction probabilities of various nuclei with the AMS materials. The ECAL charge calibration and measurement procedures are presented.

  14. Applications of nuclear magnetic resonance sensors to cultural heritage.

    PubMed

    Proietti, Noemi; Capitani, Donatella; Di Tullio, Valeria

    2014-04-21

    In recent years nuclear magnetic resonance (NMR) sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported.

  15. Applications of Nuclear Magnetic Resonance Sensors to Cultural Heritage

    PubMed Central

    Proietti, Noemi; Capitani, Donatella; Di Tullio, Valeria

    2014-01-01

    In recent years nuclear magnetic resonance (NMR) sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported. PMID:24755519

  16. Nuclear magnetic resonance-based quantification of organic diphosphates.

    PubMed

    Lenevich, Stepan; Distefano, Mark D

    2011-01-15

    Phosphorylated compounds are ubiquitous in life. Given their central role, many such substrates and analogs have been prepared for subsequent evaluation. Prior to biological experiments, it is typically necessary to determine the concentration of the target molecule in solution. Here we describe a method where concentrations of stock solutions of organic diphosphates and bisphosphonates are quantified using (31)P nuclear magnetic resonance (NMR) spectroscopy with standard instrumentation using a capillary tube with a secondary standard. The method is specific and is applicable down to a concentration of 200 μM. The capillary tube provides the reference peak for quantification and deuterated solvent for locking. PMID:20833124

  17. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    SciTech Connect

    Bates, Cameron Russell

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  18. High-resolution 2D NMR spectra in inhomogeneous fields via 3D acquisition

    NASA Astrophysics Data System (ADS)

    Lin, Yanqin; Wei, Zhiliang; Zhang, Liandi; Lin, Liangjie; Chen, Zhong

    2014-04-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical studies. Here, a pulse sequence, based on coherence transfer module of tracking differences of precession frequencies of two spins and spin echo module, is proposed to obtain two dimension (2D) high-resolution NMR spectra via 3D acquisition under large field inhomogeneity. The proposed scheme composes of simple hard pulses and rectangle gradients. Resulting 2D spectra exhibit chemical shift differences and J coupling splittings in two orthogonal dimensions. The method developed here may offer a promising way for in situ high-resolution NMR studies on combinatorial chemistry.

  19. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    SciTech Connect

    Prabhu Gaunkar, N. Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  20. A 2D magnetic and 3D mechanical coupled finite element model for the study of the dynamic vibrations in the stator of induction motors

    NASA Astrophysics Data System (ADS)

    Martinez, J.; Belahcen, A.; Detoni, J. G.

    2016-01-01

    This paper presents a coupled Finite Element Model in order to study the vibrations in induction motors under steady-state. The model utilizes a weak coupling strategy between both magnetic and elastodynamic fields on the structure. Firstly, the problem solves the magnetic vector potential in an axial cut and secondly the former solution is coupled to a three dimensional model of the stator. The coupling is performed using projection based algorithms between the computed magnetic solution and the three-dimensional mesh. The three-dimensional model of the stator includes both end-windings and end-shields in order to give a realistic picture of the motor. The present model is validated using two steps. Firstly, a modal analysis hammer test is used to validate the material characteristic of this complex structure and secondly an array of accelerometer sensors is used in order to study the rotating waves using multi-dimensional spectral techniques. The analysis of the radial vibrations presented in this paper firstly concludes that slot harmonic components are visible when the motor is loaded. Secondly, the multidimensional spectrum presents the most relevant mechanical waves on the stator such as the ones produced by the space harmonics or the saturation of the iron core. The direct retrieval of the wave-number in a multi-dimensional spectrum is able to show the internal current distribution in a non-intrusive way. Experimental results for healthy induction motors are showing mechanical imbalances in a multi-dimensional spectrum in a more straightforward form.

  1. Studies of magnetism using nuclear orientation and related NMR techniques

    NASA Astrophysics Data System (ADS)

    Pond, James F.

    2001-09-01

    Nuclear Orientation and related NMR techniques have been used to study three magnetic insulators: Mn(COOCH3)2·4H2O, MnCl2·4H2O and CoCl2·6H 2O. Continuous wave NMR thermally detected by Nuclear Orientation has been used to investigate the magnetic properties and spin dynamics of the quasi-2-dimensional ferromagnet 54Mn-Mn(COOCH3)2·4H 2O. The system exhibits a frequency pulling effect due to the indirect Suhl-Nakamura interaction between nuclear spins and the electronic spin excitation spectrum is related to the coupling strength of the nuclear spins. The temperature dependence of the frequency pulling effect was measured for the two crystalline sublattices Mn1 and Mn2 in low magnetic field. The spectra show a structure not predicted theoretically. The current theory is valid only for I = 1/2 with uniaxial crystalline anisotropy fields. The theory of frequency pulling has been extended here to the case of I ≥ 1/2 and non-uniaxial crystalline anisotropy fields and the resonant frequencies and linewidths have been calculated as a function of temperature. The new theory and data agree well in terms of the magnitude and temperature dependence of the frequency pulling. Discrepancies are likely due to simplifying assumptions when calculating the electronic magnon spectrum. Classical and quantum numerical simulations confirm qualitatively the predictions of the model. The first Low Temperature Nuclear Orientation experiments on isotopes implanted into insulators is reported. Radioactive 56Mn ions have been implanted into insulating, antiferromagnetic crystals of MnCl 2·4H2O and CoCl2·6H2O. In MnCl2·4H2O, comparison of the gamma-ray anisotropy of the 56Mn nuclei with that of 54Mn, doped into the sample during growth, showed that both the 56Mn and 54Mn spins felt a very similar hyperfine field. The site occupancy factor in a simple, two site model was deduced to be 0.96+0.04-0.07 . In CoCl2·6H2O, the average hyperfine field for the implanted 56Mn was significantly

  2. TOPICAL REVIEW: Spatial localization in nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Keevil, Stephen F.

    2006-08-01

    The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications.

  3. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  4. Small-angle shubnikov-de haas measurements in a 2D electron system: the effect of a strong In-plane magnetic field

    PubMed

    Vitkalov; Zheng; Mertes; Sarachik; Klapwijk

    2000-09-01

    Measurements in magnetic fields applied at small angles relative to the electron plane in silicon MOSFETs indicate a factor of 2 increase of the frequency of Shubnikov-de Haas oscillations at H>H(sat). This signals the onset of full spin polarization above H(sat), the parallel field above which the resistivity saturates to a constant value. For H

  5. Employing 2D Forward Modeling of Gravity and Magnetic Data to Further Constrain the Magnitude of Extension Recorded by the Caetano Caldera, Nevada

    NASA Astrophysics Data System (ADS)

    Ritzinger, B. T.; Glen, J. M. G.; Athens, N. D.; Denton, K. M.; Bouligand, C.

    2015-12-01

    Regionally continuous Cenozoic rocks in the Basin and Range that predate the onset of major mid-Miocene extension provide valuable insight into the sequence of faulting and magnitude of extension. An exceptional example of this is Caetano caldera, located in north-central Nevada, that formed during the eruption of the Caetano Tuff at the Eocene-Oligocene transition. The caldera and associated deposits, as well as conformable caldera-filling sedimentary and volcanic units allow for the reconstruction of post Oligocene extensional faulting. Extensive mapping and geochronologic, geochemical and paleomagnetic analyses have been conducted over the last decade to help further constrain the eruptive and extensional history of the Caetano caldera and associated deposits. Gravity and magnetic data, that highlight contrasts in density and magnetic properties (susceptibility and remanence), respectively, are useful for mapping and modeling structural and lithic discontinuities. By combining existing gravity and aeromagnetic data with newly collected high-resolution gravity data, we are performing detailed potential field modeling to better characterize the subsurface within and surrounding the caldera. Modeling is constrained by published geologic map and cross sections and by new rock properties for these units determined from oriented drill core and hand samples collected from outcrops that span all of the major rock units in the study area. These models will enable us to better map the margins of the caldera and more accurately determine subsurface lithic boundaries and complex fault geometries, as well as aid in refining estimates of the magnitude of extension across the caldera. This work highlights the value in combining geologic and geophysical data to build an integrated structural model to help characterize the subsurface and better constrain the extensional tectonic history if this part of the Great Basin.

  6. Development of a micro nuclear magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Goloshevsky, Artem

    Application of Nuclear Magnetic Resonance (NMR) to on-line/in-line control of industrial processes is currently limited by equipment costs and requirements for installation. A superconducting magnet generating strong fields is the most expensive part of a typical NMR instrument. In industrial environments, fringe magnetic fields make accommodation of NMR instruments difficult. However, a portable, low-cost and low-field magnetic resonance system can be used in virtually any environment. Development of a number of hardware components for a portable, low-cost NMR instrument is reported in this dissertation. Chapter one provides a discussion on a miniaturized Helmholtz spiral radio-frequency (RF) coil (average diameter equal to 3.5 mm) and an NMR probe built around a capillary (outer diameter = 1.59 mm and inner diameter = 1.02 mm) for flow imaging. Experiments of NMR spectroscopy, static and dynamic (flow) imaging, conducted with the use of the miniaturized coil, are described. Chapter two presents a microfabricated package of two biaxial gradient coils and a Helmholtz RF coil. Planar configuration of discrete wires was used to create magnetic field gradients. Performance of the microfabricated gradient coils while imaging water flow compared well with a commercial gradient set of much larger size. Chapter three reports on flow imaging experiments with power law fluids (aqueous solutions of sodium salt of carboxymethyl cellulose (CMC)) of different viscosities, carried out in the NMR probe with the miniaturized RF coil and capillary. Viscosities of the CMC solutions were determined based on the curve fits of the velocity profiles and simultaneous measurements of the flow rates. The curve fits were carried out according to the power law model equations. The NMR viscosity measurements compared well with measurements of the same CMC samples, performed on a conventional rotational rheometer. A portable, home-built transceiver, designed for NMR applications utilizing a

  7. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Adelnia, Fatemeh; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio; Lascialfari, Alessandro; Borsa, Ferdinando

    2015-05-01

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac)3NITEt and the magnetically frustrated Gd(hfac)3NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr8 closed ring and in Cr7Cd and Cr8Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  8. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    SciTech Connect

    Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  9. Glitter in a 2D monolayer.

    PubMed

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  10. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy

    PubMed Central

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M. Iqbal; Rahman, Atta-ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using 1H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  11. Nuclear magnetic resonance evaluation of stroke: a preliminary report

    SciTech Connect

    Bryan, R.N.; Willcott, M.R.; Schneiders, N.J.; Ford, J.J.; Derman, H.S.

    1983-10-01

    Nine patients who had acute and subacute stroke were examined by nuclear magnetic resonance (NMR) using a 6-MHz Bruker Instruments proton scanner. A modified Carr-Purcell-Meiboom-Gill pulse sequence was used for signal detection. The resultant string of spin-echoes was Fourier transformed into projections that were subsequently back-projected to a series of spin-echo images. From these images, spin density and T/sub 2/ were calculated for each pixel. The NMR scans revealed stroke in each of the patients, while CT demonstrated only eight of the lesions. T/sub 2/ was prolonged in all of the ischemic regions and is the most sensitive NMR parameter in detecting stroke. These preliminary results suggest that NMR scanning of patients who have acute stroke may be cliniclly useful, and that the T/sub 2/ component of the NRM signal is most important.

  12. Multipole-multimode Floquet theory in nuclear magnetic resonance.

    PubMed

    Ramachandran, Ramesh; Griffin, Robert G

    2005-04-22

    In this paper, we present a new analytical approach for describing the spin dynamics of synchronous and asynchronous time-dependent modulations in solid-state nuclear magnetic resonance experiments. The approach, based on multimode Floquet theory, employs the multipole operator basis of Sanctuary for spin description and illustrates the time evolution in the Floquet-Liouville space using the effective Hamiltonians obtained from the contact (or van Vleck) transformation procedure. Since the Hamiltonian and the density operator are expressed in terms of irreducible tensor operators, extensions to higher spin magnitudes (I>12) and multiple spins are quite straightforward and permit analytical treatments for many problems. We outline the general underlying principles involved in this approach with a brief mention of its potential application in other branches of spectroscopy. PMID:15945688

  13. Nuclear magnetic resonance spectral analysis and molecular properties of berberine

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Ju; Lee, Ken S.; Hurley, Sharon J.

    An extensive theoretical study of berberine has been performed at the ab initio HF/6-31G**, HF/6-311G**, and B3LYP/6-311G** levels with and without solvent effects. The optimized structures are compared with X-ray data. We found that the optimized structures with solvent effects are in slightly better agreement with X-ray data than those without solvent effects. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of berberine were calculated by using the gauge-independent atomic orbital (GIAO) (with and without solvent effects), CSGT, and IGAIM methods. The calculated chemical shifts were compared with the two-dimensional NMR experimental data. Overall, the calculated chemical shifts show very good agreement with the experimental results. The harmonic vibrational frequencies for berberine were calculated at the B3LYP/6-311G** level.

  14. Phosphorus-31 nuclear magnetic resonance spectroscopy of toad retina.

    PubMed Central

    Apte, D V; Koutalos, Y; McFarlane, D K; Dawson, M J; Ebrey, T G

    1989-01-01

    Phosphorus-31 nuclear magnetic resonance (31P-NMR) spectra were obtained from living toad retinae and toad retinal extracts at 4 degrees C. Several phosphorus metabolites--nucleoside di- and triphosphates (NTP), phosphocreatine, phosphodiesters, inorganic phosphate, and phosphomonoesters--were identified from the spectra of whole retinae. The intracellular pH was determined to be 7.27 +/- 0.06 at 4 degrees C and the intracellular MgNTP/NTP ratio was at least 0.77. These results are consistent with those reported by other techniques, and they show that 31P-NMR spectroscopy can be used for noninvasively and quantitatively studying the metabolism of living toad retinae, and for monitoring its changes over time. PMID:2506940

  15. Applications of nuclear magnetic resonance imaging in process engineering

    NASA Astrophysics Data System (ADS)

    Gladden, Lynn F.; Alexander, Paul

    1996-03-01

    During the past decade, the application of nuclear magnetic resonance (NMR) imaging techniques to problems of relevance to the process industries has been identified. The particular strengths of NMR techniques are their ability to distinguish between different chemical species and to yield information simultaneously on the structure, concentration distribution and flow processes occurring within a given process unit. In this paper, examples of specific applications in the areas of materials and food processing, transport in reactors and two-phase flow are discussed. One specific study, that of the internal structure of a packed column, is considered in detail. This example is reported to illustrate the extent of new, quantitative information of generic importance to many processing operations that can be obtained using NMR imaging in combination with image analysis.

  16. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    SciTech Connect

    Keating, Kristina; Slater, Lee; Ntarlagiannis, Dimitris; Williams, Kenneth H.

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  17. Partial homogeneity based high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2014-09-29

    In nuclear magnetic resonance (NMR) technique, it is of great necessity and importance to obtain high-resolution spectra, especially under inhomogeneous magnetic fields. In this study, a method based on partial homogeneity is proposed for retrieving high-resolution one-dimensional NMR spectra under inhomogeneous fields. Signals from series of small voxels, which characterize high resolution due to small sizes, are recorded simultaneously. Then, an inhomogeneity correction algorithm is developed based on pattern recognition to correct the influence brought by field inhomogeneity automatically, thus yielding high-resolution information. Experiments on chemical solutions and fish spawn were carried out to demonstrate the performance of the proposed method. The proposed method serves as a single radiofrequency pulse high-resolution NMR spectroscopy under inhomogeneous fields and may provide an alternative of obtaining high-resolution spectra of in vivo living systems or chemical-reaction systems, where performances of conventional techniques are usually degenerated by field inhomogeneity.

  18. New Approach for 2D Readout of GEM Detectors

    SciTech Connect

    Hasell, Douglas K

    2011-10-29

    Detectors based on Gas Electron Multiplication (GEM) technology are becoming more and more widely used in nuclear and high energy physics and are being applied in astronomy, medical physics, industry, and homeland security. GEM detectors are thin, low mass, insensitive to magnetic fields, and can currently provide position resolutions down to {approx}50 microns. However, the designs for reconstructing the position, in two dimensions (2D), of the charged particles striking a GEM detector are often complicated to fabricate and expensive. The objective of this proposal is to investigate a simpler procedure for producing the two dimensional readout layer of GEM detectors using readily available printed circuit board technology which can be tailored to the detector requirements. We will use the established GEM laboratory and facilities at M.I.T. currently employed in developing GEM detectors for the STAR forward tracking upgrade to simplify the testing and evaluation of the new 2D readout designs. If this new design proves successful it will benefit future nuclear and high energy physics experiments already being planned and will similarly extend and simplify the application of GEM technology to other branches of science, medicine, and industry. These benefits would be not only in lower costs for fabrication but also it increased flexibility for design and application.

  19. Nuclear Magnetic Resonance Study of High Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Mounce, Andrew M.

    The high temperature superconductors HgBa2CuO 4+delta (Hg1201) and Bi2SrCa2Cu2O 8+delta (Bi2212) have been treated with 17O for both nuclear magnetic resonance (NMR) sensitivity and various electronic properties. Subsequently, NMR experiments were performed on Hg1201 and Bi2212 to reveal the nature of the pseudogap, in the normal state, and vortex phases, in the superconducting state. NMR has been performed on 17O in an underdoped Hg1201 crystal with a superconducting transition transition temperature of 74 K to look for circulating orbital currents proposed theoretically and inferred from neutron scattering. The measurements reveal narrow spectra which preclude static local fields in the pseudogap phase at the apical site, suggesting that the moments observed with neutrons are fluctuating or the orbital current ordering is not the correct model for the neutron scattering observation. The fine detail of the NMR frequency shifts at the apical oxygen site are consistent with a dipolar field from the Cu+2 site and diamagnetism below the superconducting transition. It has been predicted that superconducting vortices should be electrically charged and that this effect is particularly enhanced for high temperature superconductors. Here it is shown that the Abrikosov vortex lattice, characteristic of the mixed state of superconductors, will become unstable at sufficiently high magnetic field if there is charge trapped on the vortex core for highly anisotropic superconductors. NMR measurements of the magnetic fields generated by vortices in Bi2212 single crystals provide evidence for an electro-statically driven vortex lattice reconstruction with the magnitude of charge on each vortex pancake of 2x10-3e, depending on doping, in line with theoretical estimates. Competition with magnetism is at the heart of high temperature superconductivity, most intensely felt near a vortex core. To investigate vortex magnetism spatially resolved NMR has been used, finding a strongly non

  20. Phosphorus nuclear magnetic resonance in isolated perfused rat pancreas

    SciTech Connect

    Matsumoto, Takehisa; Kanno, Tomio; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi National Institute for Physiological Sciences, Okazaki )

    1988-04-01

    Phosphorus nuclear magnetic resonance spectroscopy was applied to measure phosphorus energy metabolites in isolated perfused rat pancreas. The gland was perfused with a modified Krebs-Henseleit solution at room temperature (25{degree}C). {sup 31}P resonances of creatine phosphate (PCr), ATP, ADP, inorganic phosphate (P{sub i}) and phosphomonoesters (PMEs) were observed in all the preparations of pancreas. In different individual preparations, the resonance of PCr varied, but those of ATP were almost the same. The initial levels of PCr and ATP in individual preparations, however, remained almost unchanged during perfusion with the standard solution for 2 h. When the perfusion was stopped, the levels of ATP and PCr decreased, while the levels of PME and P{sub i} increased. At that time, the P{sub i} resonance shfted to a higher magnetic field, indicating that the tissue pH decreased. On reperfusion, the tissue levels of phosphorus compounds and the tissue pH were restored to their initial resting levels. Continuous infusion of 0.1 {mu}M acetylcholine caused marked and sustained increases in the flow of pancreatic juice and protein output. During the stimulation the tissue levels of phosphorus compounds remained unchanged, while the tissue pH was decreased slightly.

  1. On the quantumness of correlations in nuclear magnetic resonance.

    PubMed

    Soares-Pinto, D O; Auccaise, R; Maziero, J; Gavini-Viana, A; Serra, R M; Céleri, L C

    2012-10-13

    Nuclear magnetic resonance (NMR) was successfully employed to test several protocols and ideas in quantum information science. In most of these implementations, the existence of entanglement was ruled out. This fact introduced concerns and questions about the quantum nature of such bench tests. In this paper, we address some issues related to the non-classical aspects of NMR systems. We discuss some experiments where the quantum aspects of this system are supported by quantum correlations of separable states. Such quantumness, beyond the entanglement-separability paradigm, is revealed via a departure between the quantum and the classical versions of information theory. In this scenario, the concept of quantum discord seems to play an important role. We also present an experimental implementation of an analogue of the single-photon Mach-Zehnder interferometer employing two nuclear spins to encode the interferometric paths. This experiment illustrates how non-classical correlations of separable states may be used to simulate quantum dynamics. The results obtained are completely equivalent to the optical scenario, where entanglement (between two field modes) may be present.

  2. Molecular dynamics and composition of crude oil by low-field nuclear magnetic resonance.

    PubMed

    Jia, Zijian; Xiao, Lizhi; Wang, Zhizhan; Liao, Guangzhi; Zhang, Yan; Liang, Can

    2016-08-01

    Nuclear magnetic resonance (NMR) techniques are widely used to identify pure substances and probe protein dynamics. Oil is a complex mixture composed of hydrocarbons, which have a wide range of molecular size distribution. Previous work show that empirical correlations of relaxation times and diffusion coefficients were found for simple alkane mixtures, and also the shape of the relaxation and diffusion distribution functions are related to the composition of the fluids. The 2D NMR is a promising qualitative evaluation method for oil composition. But uncertainty in the interpretation of crude oil indicated further study was required. In this research, the effect of each composition on relaxation distribution functions is analyzed in detail. We also suggest a new method for prediction of the rotational correlation time distribution of crude oil molecules using low field NMR (LF-NMR) relaxation time distributions. A set of down-hole NMR fluid analysis system is independently designed and developed for fluid measurement. We illustrate this with relaxation-relaxation correlation experiments and rotational correlation time distributions on a series of hydrocarbon mixtures that employ our laboratory-designed downhole NMR fluid analyzer. The LF-NMR is a useful tool for detecting oil composition and monitoring oil property changes. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Fragment-Based Electronic Structure Approach for Computing Nuclear Magnetic Resonance Chemical Shifts in Molecular Crystals.

    PubMed

    Hartman, Joshua D; Beran, Gregory J O

    2014-11-11

    First-principles chemical shielding tensor predictions play a critical role in studying molecular crystal structures using nuclear magnetic resonance. Fragment-based electronic structure methods have dramatically improved the ability to model molecular crystal structures and energetics using high-level electronic structure methods. Here, a many-body expansion fragment approach is applied to the calculation of chemical shielding tensors in molecular crystals. First, the impact of truncating the many-body expansion at different orders and the role of electrostatic embedding are examined on a series of molecular clusters extracted from molecular crystals. Second, the ability of these techniques to assign three polymorphic forms of the drug sulfanilamide to the corresponding experimental (13)C spectra is assessed. This challenging example requires discriminating among spectra whose (13)C chemical shifts differ by only a few parts per million (ppm) across the different polymorphs. Fragment-based PBE0/6-311+G(2d,p) level chemical shielding predictions correctly assign these three polymorphs and reproduce the sulfanilamide experimental (13)C chemical shifts with 1 ppm accuracy. The results demonstrate that fragment approaches are competitive with the widely used gauge-invariant projector augmented wave (GIPAW) periodic density functional theory calculations. PMID:26584373

  4. Molecular dynamics and composition of crude oil by low-field nuclear magnetic resonance.

    PubMed

    Jia, Zijian; Xiao, Lizhi; Wang, Zhizhan; Liao, Guangzhi; Zhang, Yan; Liang, Can

    2016-08-01

    Nuclear magnetic resonance (NMR) techniques are widely used to identify pure substances and probe protein dynamics. Oil is a complex mixture composed of hydrocarbons, which have a wide range of molecular size distribution. Previous work show that empirical correlations of relaxation times and diffusion coefficients were found for simple alkane mixtures, and also the shape of the relaxation and diffusion distribution functions are related to the composition of the fluids. The 2D NMR is a promising qualitative evaluation method for oil composition. But uncertainty in the interpretation of crude oil indicated further study was required. In this research, the effect of each composition on relaxation distribution functions is analyzed in detail. We also suggest a new method for prediction of the rotational correlation time distribution of crude oil molecules using low field NMR (LF-NMR) relaxation time distributions. A set of down-hole NMR fluid analysis system is independently designed and developed for fluid measurement. We illustrate this with relaxation-relaxation correlation experiments and rotational correlation time distributions on a series of hydrocarbon mixtures that employ our laboratory-designed downhole NMR fluid analyzer. The LF-NMR is a useful tool for detecting oil composition and monitoring oil property changes. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26990450

  5. A novel power amplification scheme for nuclear magnetic resonance/nuclear quadrupole resonance systems.

    PubMed

    Zhang, Xinwang; Schemm, Nathan; Balkır, Sina

    2011-03-01

    Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR)-based chemical analysis systems have been widely utilized in various areas such as medicine, security, and academic research. In these applications, the power amplifier stage plays a key role in generating the required oscillating magnetic fields within a radio frequency coil that serves as the probe. However, the bulky size and relatively low efficiency of the traditional power amplification schemes employed present a bottleneck for the realization of compact sized and portable NMR and NQR systems. To address this problem, this work presents a class D voltage-switching power amplification scheme with novel fast-start and fast-stop functions that are suitable for generating ideal NMR and NQR excitation signals. Compared to the traditional analog power amplifiers (PAs), the proposed switched-mode PA can achieve significant improvement on the power efficiency as well as the physical volume. A PA circuit for portable NQR-based explosive detection systems has been designed and built using the proposed scheme with 1 kW possible maximum output power and 10 MHz maximum operating frequency. Test results show that the presented PA achieves more than 60% measured efficiency within a highly compact volume while sustaining fast start and stop of excitation signals in the order of microseconds.

  6. Single-scan 2D NMR: An Emerging Tool in Analytical Spectroscopy

    PubMed Central

    Giraudeau, Patrick; Frydman, Lucio

    2016-01-01

    Two-dimensional Nuclear Magnetic Resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing an increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago a so-called “ultrafast” (UF) approach was proposed, capable to deliver arbitrary 2D NMR spectra involving any kind of homo- or hetero-nuclear correlations, in a single scan. During the intervening years the performance of this sub-second 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool witnessing an expanded scope of applications. The present reviews summarizes the principles and the main developments which have contributed to the success of this approach, and focuses on applications which have been recently demonstrated in various areas of analytical chemistry –from the real time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  7. 2D-Cosy NMR Spectroscopy as a Quantitative Tool in Biological Matrix: Application to Cyclodextrins.

    PubMed

    Dufour, Gilles; Evrard, Brigitte; de Tullio, Pascal

    2015-11-01

    Classical analytical quantifications in biological matrices require time-consuming sample pre-treatments and extractions. Nuclear magnetic resonance (NMR) analysis does not require heavy sample treatments or extractions which therefore increases its accuracy in quantification. In this study, even if quantitative (q)NMR could not be applied to 2D spectra, we demonstrated that cross-correlations and diagonal peak intensities have a linear relationship with the analyzed pharmaceutical compound concentration. This work presents the validation process of a 2D-correlation spectroscopy (COSY) NMR quantification of 2-hydroxypropyl-β-cyclodextrin in plasma. Specificity, linearity, precision (repeatability and intermediate precision), trueness, limits of quantification (LOQs), and accuracy were used as validation criteria. 2D-NMR could therefore be used as a valuable and accurate analytical technique for the quantification of pharmaceutical compounds, including hardly detectable compounds such as cyclodextrins or poloxamers, in complex biological matrices based on a calibration curve approach.

  8. A comparison of models for calculating nuclear magnetic resonance shielding tensors

    NASA Astrophysics Data System (ADS)

    Cheeseman, James R.; Trucks, Gary W.; Keith, Todd A.; Frisch, Michael J.

    1996-04-01

    The direct (recomputation of two-electron integrals) implementation of the gauge-including atomic orbital (GIAO) and the CSGT (continuous set of gauge transformations) methods for calculating nuclear magnetic shielding tensors at both the Hartree-Fock and density functional levels of theory are presented. Isotropic 13C, 15N, and 17O magnetic shielding constants for several molecules, including taxol (C47H51NO14 using 1032 basis functions) are reported. Shielding tensor components determined using the GIAO and CSGT methods are found to converge to the same value at sufficiently large basis sets; however, GIAO shielding tensor components for atoms other than carbon are found to converge faster with respect to basis set size than those determined using the CSGT method for both Hartree-Fock and DFT. For molecules where electron correlation effects are significant, shielding constants determined using (gradient-corrected) pure DFT or hybrid methods (including a mixture of Hartree-Fock exchange and DFT exchange-correlation) are closer to experiment than those determined at the Hartree-Fock level of theory. For the series of molecules studied here, the RMS error for 13C chemical shifts relative to TMS determined using the B3LYP hybrid functional with the 6-311+G(2d,p) basis is nearly three times smaller than the RMS error for shifts determined using Hartree-Fock at this same basis. Hartree-Fock 13C chemical shifts calculated using the 6-31G* basis set give nearly the same RMS error as compared to experiment as chemical shifts obtained using Hartree-Fock with the bigger 6-311+G(2d,p) basis set for the range of molecules studied here. The RMS error for chemical shifts relative to TMS calculated at the Hartree-Fock 6-31G* level of theory for taxol (C47H51NO14) is 6.4 ppm, indicating that for large systems, this level of theory is sufficient to determine accurate 13C chemical shifts.

  9. Naturally Derived Iron Oxide Nanowires from Bacteria for Magnetically Triggered Drug Release and Cancer Hyperthermia in 2D and 3D Culture Environments: Bacteria Biofilm to Potent Cancer Therapeutic.

    PubMed

    Kumeria, Tushar; Maher, Shaheer; Wang, Ye; Kaur, Gagandeep; Wang, Luoshan; Erkelens, Mason; Forward, Peter; Lambert, Martin F; Evdokiou, Andreas; Losic, Dusan

    2016-08-01

    Iron oxide nanowires produced by bacteria (Mariprofundus ferrooxydans) are demonstrated as new multifunctional drug carriers for triggered therapeutics release and cancer hyperthmia applications. Iron oxide nanowires are obtained from biofilm waste in the bore system used to pump saline groundwater into the River Murray, South Australia (Australia) and processed into individual nanowires with extensive magnetic properties. The drug carrier capabilities of these iron oxide nanowires (Bac-FeOxNWs) are assessed by loading anticancer drug (doxorubicin, Dox) followed by measuring its elution under sustained and triggered release conditions using alternating magnetic field (AMF). The cytotoxicity of Bac-FeOxNWs assessed in 2D (96 well plate) and 3D (Matrigel) cell cultures using MDA-MB231-TXSA human breast cancer cells and mouse RAW 264.7 macrophage cells shows that these Bac-FeOxNWs are biocompatible even at concentrations as high as 250 μg/mL after 24 h of incubation. Finally, we demonstrate the capabilities of Bac-FeOxNWs as potential hyperthermia agent in 3D culture setup. Application of AMF increased the local temperature by 14 °C resulting in approximately 34% decrease in cell viability. Our results demonstrate that these naturally produced nanowires in the form of biofilm can efficiently act as drug carriers with triggered payload release and magnetothermal heating features for potential anticancer therapeutics applications. PMID:27428076

  10. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  11. Nuclear Magnetic Resonance-Based Metabolic Comparative Analysis of Two Apple Varieties with Different Resistances to Apple Scab Attacks.

    PubMed

    Sciubba, Fabio; Di Cocco, Maria Enrica; Gianferri, Raffaella; Capuani, Giorgio; De Salvador, Flavio Roberto; Fontanari, Marco; Gorietti, Daniela; Delfini, Maurizio

    2015-09-23

    Apple scab, caused by the fungus Venturia inaequalis, is the most serious disease of the apple worldwide. Two cultivars (Malus domestica), having different degrees of resistance against fungi attacks, were analyzed by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy. Aqueous and organic extracts of both apple flesh and skin were studied, and over 30 metabolites, classified as organic acids, amino acids, carbohydrates, phenolic compounds, lipids, sterols, and other metabolites, were quantified by means of one-dimensional (1D) and two-dimensional (2D) NMR experiments. The metabolic profiles of the two apple cultivars were compared, and the differences were correlated with the different degrees of resistance to apple scab by means of univariate analysis. Levels of metabolites with known antifungal activity were observed not only to be higher in the Almagold cultivar but also to show different correlation patterns in comparison to Golden Delicious, implying a difference in the metabolic network involved in their biosynthesis. PMID:26345382

  12. Nuclear Magnetic Resonance-Based Metabolic Comparative Analysis of Two Apple Varieties with Different Resistances to Apple Scab Attacks.

    PubMed

    Sciubba, Fabio; Di Cocco, Maria Enrica; Gianferri, Raffaella; Capuani, Giorgio; De Salvador, Flavio Roberto; Fontanari, Marco; Gorietti, Daniela; Delfini, Maurizio

    2015-09-23

    Apple scab, caused by the fungus Venturia inaequalis, is the most serious disease of the apple worldwide. Two cultivars (Malus domestica), having different degrees of resistance against fungi attacks, were analyzed by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy. Aqueous and organic extracts of both apple flesh and skin were studied, and over 30 metabolites, classified as organic acids, amino acids, carbohydrates, phenolic compounds, lipids, sterols, and other metabolites, were quantified by means of one-dimensional (1D) and two-dimensional (2D) NMR experiments. The metabolic profiles of the two apple cultivars were compared, and the differences were correlated with the different degrees of resistance to apple scab by means of univariate analysis. Levels of metabolites with known antifungal activity were observed not only to be higher in the Almagold cultivar but also to show different correlation patterns in comparison to Golden Delicious, implying a difference in the metabolic network involved in their biosynthesis.

  13. Experimental identification of diffusive coupling using 2D NMR.

    PubMed

    Song, Y-Q; Carneiro, G; Schwartz, L M; Johnson, D L

    2014-12-01

    Spin relaxation based nuclear magnetic resonance (NMR) methods have been used extensively to determine pore size distributions in a variety of materials. This approach is based on the assumption that each pore is in the fast diffusion limit but that diffusion between pores can be neglected. However, in complex materials these assumptions may be violated and the relaxation time distribution is not easily interpreted. We present a 2D NMR technique and an associated data analysis that allow us to work directly with the time dependent experimental data without Laplace inversion to identify the signature of diffusive coupling between different pores. Measurements on microporous glass beads and numerical simulations are used to illustrate the technique. PMID:25526135

  14. /sup 13/C nuclear magnetic resonance studies of cardiac metabolism

    SciTech Connect

    Seeholzer, S.H.

    1985-01-01

    The last decade has witnessed the increasing use of Nuclear Magnetic Resonance (NMR) techniques for following the metabolic fate of compounds specifically labeled with /sup 13/C. The goals of the present study are: (1) to develop reliable quantitative procedures for measuring the /sup 13/C enrichment of specific carbon sites in compounds enriched by the metabolism of /sup 13/C-labeled substrates in rat heart, and (2) to use these quantitative measurements of fractional /sup 13/C enrichment within the context of a mathematical flux model describing the carbon flow through the TCA cycle and ancillary pathways, as a means for obtaining unknown flux parameters. Rat hearts have been perfused in vitro with various combinations of glucose, acetate, pyruvate, and propionate to achieve steady state flux conditions, followed by perfusion with the same substrates labeled with /sup 13/C in specific carbon sites. The hearts were frozen at different times after addition of /sup 13/C-labeled substrates and neutralized perchloric acid extracts were used to obtain high resolution proton-decoupled /sup 13/C NMR spectra at 90.55 MHz. The fractional /sup 13/C enrichment (F.E.) of individual carbon sites in different metabolites was calculated from the area of the resolved resonances after correction for saturation and nuclear Overhauser effects. These F.E. measurements by /sup 13/C NMR were validated by the analysis of /sup 13/C-/sup 1/H scalar coupling patterns observed in /sup 1/H NMR spectra of the extracted metabolites. The results obtained from perfusion of hearts glucose plus either (2-/sup 13/C) acetate or (3-/sup 13/C) pyruvate are similar to those obtained by previous investigators using /sup 14/C-labeled substrates.

  15. Novel nuclear magnetic resonance techniques for studying biological molecules

    SciTech Connect

    Laws, David D.

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone ({phi}/{psi}) dihedral angles by comparing experimentally determined {sup 13}C{sub a}, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of {alpha}-helical and {beta}-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly {beta}-sheet.

  16. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    SciTech Connect

    Heaney, M.B. . Dept. of Physics Lawrence Berkeley Lab., CA )

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

  17. Fluorine Chemical Shift Imaging by Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Lee, Heung Kyu

    1990-01-01

    One of the difficulties encountered in ^{19}F NMR imaging of fluorinated blood substitutes is that these compounds often exhibit complex multi-peak spectra. These peaks result in chemical shift artifacts along the readout direction (mis-registration). In addition, each peak excites a different slice (mis-selection) when a slice selection gradient is applied. Another difficulty is due to its low concentration in the human body. Even after injecting a fluorinated compound into a living system up to the safest level, the concentration still does not appear to be enough to give a sufficient SNR. To solve the inherent problem of mis-selection, a simultaneous multislice method has been developed. The essence of this method is to use the two strongest peaks of the spectrum to excite different multiple slices simultaneously in a controlled fashion, with or without a slice gap. The images corresponding to the two spectral lines are then separated from in and out of phase images (Dixon method). A signed magnitude method is proposed in conjunction with the simultaneous multislice method. Corrected images are obtained from the magnitude of the measured images using the sign determined from the phase images. The method was tested in the presence of phase error, such as static magnetic field inhomogeneity. As alternatives, two deconvolution methods have been devised to eliminate the mis-registration artifacts and utilize the multiple spectral lines. The reblurring deconvolution method, an iterative deconvolution method, is utilized without serious noise amplifications. A pseudo parametric Wiener filter, a variation of the Wiener filter combined with a constrained least square filter, is also devised. Since the point spread function and 2D or 3D object data are already available in the time domain as the FID data, the computational overhead for either method is negligible. To enhance the signal to noise ratio and solve the problems of mis-registration and mis

  18. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    SciTech Connect

    Mamone, Salvatore Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Denning, Mark; Carravetta, Marina; Whitby, Richard J.; Levitt, Malcolm H.; Lei, Xuegong; Li, Yongjun; Goh, Kelvin; Horsewill, Anthony J.

    2014-05-21

    The water-endofullerene H{sub 2}O@C{sub 60} provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H{sub 2}O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H{sub 2}O molecules is catalysed by {sup 13}C nuclei present in the cages.

  19. Laser-induced nuclear magnetic resonance splitting in hydrocarbons.

    PubMed

    Ikäläinen, Suvi; Lantto, Perttu; Manninen, Pekka; Vaara, Juha

    2008-09-28

    Irradiation of matter with circularly polarized light (CPL) shifts all nuclear magnetic resonance (NMR) lines. The phenomenon arises from the second-order interaction of the electron cloud with the optical field, combined with the orbital hyperfine interaction. The shift occurs in opposite directions for right and left CPL, and rapid switching between them will split the resonance lines into two. We present ab initio and density functional theory predictions of laser-induced NMR splittings for hydrocarbon systems with different sizes: ethene, benzene, coronene, fullerene, and circumcoronene. Due to the computationally challenging nature of the effect, traditional basis sets could not be used for the larger systems. A novel method for generating basis sets, mathematical completeness optimization, was employed. As expected, the magnitude of the spectral splitting increases with the laser beam frequency and polarizability of the system. Massive amplification of the effect is also observed close to the optical excitation energies. A much larger laser-induced splitting is found for the largest of the present molecules than for the previously investigated noble gas atoms or small molecules. The laser intensity required for experimental detection of the effect is discussed.

  20. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    SciTech Connect

    Wang, Shuanhu

    1997-09-17

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  1. Updated methodology for nuclear magnetic resonance characterization of shales

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world’s energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1–T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  2. Nuclear magnetic resonance proton imaging of bone pathology

    SciTech Connect

    Atlan, H.; Sigal, R.; Hadar, H.; Chisin, R.; Cohen, I.; Lanir, A.; Soudry, M.; Machtey, Y.; Schreiber, R.; Benmair, J.

    1986-02-01

    Thirty-two patients with diversified pathology were examined with a supraconductive NMR imager using spin echo with different TR and TE to obtain T1 and T2 weighted images. They included 20 tumors (12 primary, eight metastasis), six osteomyelitis, three fractures, two osteonecrosis, and one diffuse metabolic (Gaucher) disease. In all cases except for the stress fractures, the bone pathology was clearly visualized in spite of the normal lack of signal from the compact cortical bone. Nuclear magnetic resonance (NMR) imaging proved to be at least as sensitive as radionuclide scintigraphy but much more accurate than all other imaging procedures including computed tomography (CT) and angiography to assess the extension of the lesions, especially in tumors extended to soft tissue. This is due both to easy acquisition of sagittal and coronal sections and to different patterns of pathologic modifications of T1 and T2 which are beginning to be defined. It is hoped that more experience in clinical use of these patterns will help to discriminate between tumor extension and soft-tissue edema. We conclude that while radionuclide scintigraphy will probably remain the most sensitive and easy to perform screening test for bone pathology, NMR imaging, among noninvasive diagnostic procedures, appears to be at least as specific as CT. In addition, where the extension of the lesions is concerned, NMR imaging is much more informative than CT. In pathology of the spine, the easy visualization of the spinal cord should decrease the need for myelography.

  3. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    SciTech Connect

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-14

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  4. Proton nuclear magnetic resonance studies on brain edema

    SciTech Connect

    Naruse, S.; Horikawa, Y.; Tanaka, C.; Hirakawa, K.; Nishikawa, H.; Yoshizaki, K.

    1982-06-01

    The water in normal and edematous brain tissues of rats was studied by the pulse nuclear magnetic resonance (NMR) technique, measuring the longitudinal relaxation time (T1) and the transverse relaxation time (T2). In the normal brain, T1 and T2 were single components, both shorter than in pure water. Prolongation and separation of T2 into two components, one fast and one slow, were the characteristic findings in brain edema induced by both cold injury and triethyl tin (TET), although some differences between the two types of edema existed in the content of the lesion and in the degree of changes in T1 and T2 values. Quantitative analysis of T1 and T2 values in their time course relating to water content demonstrated that prolongation of T1 referred to the volume of increased water in tissues examined, and that two phases of T2 reflected the distribution and the content of the edema fluid. From the analysis of the slow component of T2 versus water content during edema formation, it was demonstrated that the increase in edema fluid was steady, and its content was constant during formation of TET-induced edema. On the contrary, during the formation of cold-injury edema, water-rich edema fluid increased during the initial few hours, and protein-rich edema fluid increased thereafter. It was concluded that proton NMR relaxation time measurements may provide new understanding in the field of brain edema research.

  5. Monitoring iron mineralization processes using nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Keating, Kristina

    Proton nuclear magnetic resonance (NMR) measurements can be used to probe the molecular-scale physical and chemical environment of water in the pore space of geological materials. In geophysics, NMR relaxation measurements are used in to measure water content and estimate permeability in the top 100 m of Earth's surface. The goal of the research presented in this thesis is to determine if NMR can also be used in geophysical applications to monitor iron mineralization processes associated with contaminant remediation. The first part of the research presented in this thesis focuses on understanding the effect of iron mineral form and redox state on the NMR relaxation response of water in geologic material. Laboratory NMR measurements were made on Fe(III)-bearing minerals (ferrihydrite, lepidocrocite, goethite, and hematite), Fe(II)-bearing minerals (siderite, pyrite, and troilite), and a mixed valence iron-bearing mineral (magnetite). The results of these measurements show that the relaxation rate of water is strongly dependent on the mineral form of iron. Shown in the final section of this thesis are results from an experiment exploring temporal changes in the measured NMR relaxation rates during the reaction of ferrihydrite with aqueous Fe(II). These results show that NMR can be used to monitor temporal chemical changes in iron minerals. I conclude that this research shows that NMR indeed has the potential to be used as a tool for monitoring geochemical reactions associated with contaminant remediation.

  6. Water Permeability of Chlorella Cell Membranes by Nuclear Magnetic Resonance

    PubMed Central

    Stout, Darryl G.; Steponkus, Peter L.; Bustard, Larry D.; Cotts, Robert M.

    1978-01-01

    Measurement by two nuclear magnetic resonance (NMR) techniques of the mean residence time τa of water molecules inside Chlorella vulgaris (Beijerinck) var. “viridis” (Chodot) is reported. The first is the Conlon and Outhred (1972 Biochim Biophys Acta 288: 354-361) technique in which extracellular water is doped with paramagnetic Mn2+ ions. Some complications in application of this technique are identified as being caused by the affinity of Chlorella cell walls for Mn2+ ions which shortens the NMR relaxation times of intra- and extracellular water. The second is based upon observations of effects of diffusion on the spin echo of intra- and extracellular water. Echo attenuation of intracellular water is distinguished from that of extracellular water by the extent to which diffusive motion is restricted. Intracellular water, being restricted to the cell volume, suffers less echo attenuation. From the dependence of echo amplitude upon gradient strength at several values of echo time, the mean residence time of intracellular water can be determined. From the mean residence time of intracellular water, the diffusional water permeability coefficient of the Chlorella membrane is calculated to be 2.1 ± 0.4 × 10−3 cm sec−1. PMID:16660456

  7. Advances in Nuclear Magnetic Resonance for Drug Discovery.

    PubMed

    Powers, Robert

    2009-10-01

    BACKGROUND: Drug discovery is a complex and unpredictable endeavor with a high failure rate. Current trends in the pharmaceutical industry have exasperated these challenges and are contributing to the dramatic decline in productivity observed over the last decade. The industrialization of science by forcing the drug discovery process to adhere to assembly-line protocols is imposing unnecessary restrictions, such as short project time-lines. Recent advances in nuclear magnetic resonance are responding to these self-imposed limitations and are providing opportunities to increase the success rate of drug discovery. OBJECTIVE/METHOD: A review of recent advancements in NMR technology that have the potential of significantly impacting and benefiting the drug discovery process will be presented. These include fast NMR data collection protocols and high-throughput protein structure determination, rapid protein-ligand co-structure determination, lead discovery using fragment-based NMR affinity screens, NMR metabolomics to monitor in vivo efficacy and toxicity for lead compounds, and the identification of new therapeutic targets through the functional annotation of proteins by FAST-NMR. CONCLUSION: NMR is a critical component of the drug discovery process, where the versatility of the technique enables it to continually expand and evolve its role. NMR is expected to maintain this growth over the next decade with advancements in automation, speed of structure calculation, in-cell imaging techniques, and the expansion of NMR amenable targets.

  8. Nuclear magnetic resonance studies of bovine γB-crystallin

    NASA Astrophysics Data System (ADS)

    Thurston, George; Mills, Jeffrey; Michel, Lea; Mathews, Kaylee; Zanet, John; Payan, Angel; van Nostrand, Keith; Kotlarchyk, Michael; Ross, David; Wahle, Christopher; Hamilton, John

    Anisotropy of shape and/or interactions play an important role in determining the properties of concentrated solutions of the eye lens protein, γB-crystallin, including its liquid-liquid phase transition. We are studying γB anisotropic interactions with use of nuclear magnetic resonance (NMR) concentration- and temperature-dependent chemical shift perturbations (CSPs). We analyze two-dimensional heteronuclear spin quantum coherence (HSQC) spectra on backbone nitrogen and attached hydrogen nuclei for CSPs, up to 3 percent volume fraction. Cumulative distribution functions of the CSPs show a concentration and temperature-dependent spread. Many peaks that are highly shifted with either concentration or temperature are close (i) crystal intermolecular contacts (ii) locations of cataractogenic point mutations of a homologous human protein, human γD-crystallin, and (iii) charged amino-acid residues. We also discuss the concentration- and temperature-dependence of NMR and quasielastic light scattering measurements of rotational and translational diffusion of γB crystallin in solution, affected by interprotein attractions. Supported by NIH EY018249.

  9. Nuclear magnetic resonance imaging of the kidney: renal masses

    SciTech Connect

    Hricak, H.; Williams, R.D.; Moon, K.L. Jr.; Moss, A.A.; Alpers, C.; Crooks, L.E.; Kaufman, L.

    1983-06-01

    Fifteen patients with a variety of renal masses were examined by nuclear magnetic resonance (NMR), computed tomography, ultrasound, and intravenous urography. NMR clearly differentiated between simple renal cysts and other renal masses. On spin echo images, the simple renal cyst appeared as a round or slightly oval, homogeneous low-intensity mass with characteristically long T1 and T2 values. The thickness of the cyst wall was not measurable. The cyst had a smooth outer margin and a distict, sharp interface with normal parenchyma. Hemorrhagic cysts were seen as high-intensity lesions. Renal cell carcinomas displayed a wide range of intensity. The T1 and T2 values of the tumors were always different from those of the surrounding renal parenchyma. Tumor pseudocapsule was identified in four of five patients examined. All carcinomas were accurately staged by NMR and extension of the tumor thrombus into the inferior vena cava was demonstrated. The authors predict that if these preliminary results are confirmed by data from a larger number of patients, NMR will play a significant role in renal imaging.

  10. Spherical tensor analysis of nuclear magnetic resonance signals.

    PubMed

    van Beek, Jacco D; Carravetta, Marina; Antonioli, Gian Carlo; Levitt, Malcolm H

    2005-06-22

    In a nuclear magnetic-resonance (NMR) experiment, the spin density operator may be regarded as a superposition of irreducible spherical tensor operators. Each of these spin operators evolves during the NMR experiment and may give rise to an NMR signal at a later time. The NMR signal at the end of a pulse sequence may, therefore, be regarded as a superposition of spherical components, each derived from a different spherical tensor operator. We describe an experimental method, called spherical tensor analysis (STA), which allows the complete resolution of the NMR signal into its individual spherical components. The method is demonstrated on a powder of a (13)C-labeled amino acid, exposed to a pulse sequence generating a double-quantum effective Hamiltonian. The propagation of spin order through the space of spherical tensor operators is revealed by the STA procedure, both in static and rotating solids. Possible applications of STA to the NMR of liquids, liquid crystals, and solids are discussed. PMID:16035785

  11. Nuclear magnetic resonance imaging of water content in the subsurface

    SciTech Connect

    J. Hendricks; T. Yao; A. Kearns

    1999-01-21

    Previous theoretical and experimental studies indicated that surface nuclear magnetic resonance (NMR) has the potential to provide cost-effective water content measurements in the subsurface and is a technology ripe for exploitation in practice. The objectives of this investigation are (a) to test the technique under a wide range of hydrogeological conditions and (b) to generalize existing NMR theories in order to correctly model NMR response from conductive ground and to assess properties of the inverse problem. Twenty-four sites with different hydrogeologic settings were selected in New Mexico and Colorado for testing. The greatest limitation of surface NMR technology appears to be the lack of understanding in which manner the NMR signal is influenced by soil-water factors such as pore size distribution, surface-to-volume ratio, paramagnetic ions dissolved in the ground water, and the presence of ferromagnetic minerals. Although the theoretical basis is found to be sound, several advances need to be made to make surface NMR a viable technology for hydrological investigations. There is a research need to investigate, under controlled laboratory conditions, how the complex factors of soil-water systems affect NMR relaxation times.

  12. A nuclear magnetic resonance study of water in aggrecan solutions

    PubMed Central

    Foster, Richard J.; Damion, Robin A.; Baboolal, Thomas G.; Smye, Stephen W.; Ries, Michael E.

    2016-01-01

    Aggrecan, a highly charged macromolecule found in articular cartilage, was investigated in aqueous salt solutions with proton nuclear magnetic resonance. The longitudinal and transverse relaxation rates were determined at two different field strengths, 9.4 T and 0.5 T, for a range of temperatures and aggrecan concentrations. The diffusion coefficients of the water molecules were also measured as a function of temperature and aggrecan concentration, using a pulsed field gradient technique at 9.4 T. Assuming an Arrhenius relationship, the activation energies for the various relaxation processes and the translational motion of the water molecules were determined from temperature dependencies as a function of aggrecan concentration in the range 0–5.3% w/w. The longitudinal relaxation rate and inverse diffusion coefficient were approximately equally dependent on concentration and only increased by upto 20% from that of the salt solution. The transverse relaxation rate at high field demonstrated greatest concentration dependence, changing by an order of magnitude across the concentration range examined. We attribute this primarily to chemical exchange. Activation energies appeared to be approximately independent of aggrecan concentration, except for that of the low-field transverse relaxation rate, which decreased with concentration. PMID:27069663

  13. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-01

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  14. Work in progress: nuclear magnetic resonance imaging of the gallbladder

    SciTech Connect

    Hricak, H.; Filly, R.A.; Margulis, A.R.; Moon, K.L.; Crooks, L.E.; Kaufman, L.

    1983-05-01

    A preliminary study of the relation between food intake and intensity of gallbladder bile on nuclear magnetic resonance (NMR) images was made. Twelve subjects (seven volunteers, five patients) were imaged following a minimum of 14 hours of fasting. Six of seven volunteers were reimaged one hour after stimulation by either a fatty meal or an alcoholic beverage. An additional seven patients were imaged two hours after a hospital breakfast. It was found that concentrated bile emits a high-intensity spin echo signal (SE), while hepatic bile in the gallbladder produces a low-intensity SE signal. Following ingestion of cholecystogogue, dilute hepatic bile settles on top of the concentrated bile, each emitting SE signals of different intensity. The average T1 value of concentrated bile was 594 msec, while the T1 vaue of dilute hepatic bile was 2,646 msec. The average T2 values were 104 msec for concentrated bile and 126 msec for dilute bile. The most likely cause for the different SE intensities of bile is the higher water content, and therefore longer T1 or T2 relaxation times, of hepatic bile. It is suggested that NMR imaging has the ability to provide physiological information about the gallbladder and that it may prove to be a simple and safe clinical test of gallbladder function.

  15. Advances in Nuclear Magnetic Resonance for Drug Discovery

    PubMed Central

    Powers, Robert

    2010-01-01

    Background Drug discovery is a complex and unpredictable endeavor with a high failure rate. Current trends in the pharmaceutical industry have exasperated these challenges and are contributing to the dramatic decline in productivity observed over the last decade. The industrialization of science by forcing the drug discovery process to adhere to assembly-line protocols is imposing unnecessary restrictions, such as short project time-lines. Recent advances in nuclear magnetic resonance are responding to these self-imposed limitations and are providing opportunities to increase the success rate of drug discovery. Objective/Method A review of recent advancements in NMR technology that have the potential of significantly impacting and benefiting the drug discovery process will be presented. These include fast NMR data collection protocols and high-throughput protein structure determination, rapid protein-ligand co-structure determination, lead discovery using fragment-based NMR affinity screens, NMR metabolomics to monitor in vivo efficacy and toxicity for lead compounds, and the identification of new therapeutic targets through the functional annotation of proteins by FAST-NMR. Conclusion NMR is a critical component of the drug discovery process, where the versatility of the technique enables it to continually expand and evolve its role. NMR is expected to maintain this growth over the next decade with advancements in automation, speed of structure calculation, in-cell imaging techniques, and the expansion of NMR amenable targets. PMID:20333269

  16. A metabonomics investigation of multiple sclerosis by nuclear magnetic resonance.

    PubMed

    Mehrpour, Masoud; Kyani, Anahita; Tafazzoli, Mohsen; Fathi, Fariba; Joghataie, Mohammad-Taghi

    2013-02-01

    Multiple sclerosis (MS) is a nervous system disease that affects the fatty myelin sheaths around the axons of the brain and spinal cord, leading to demyelination and a broad range of signs and symptoms. MS can be difficult to diagnose because its signs and symptoms may be similar to other medical problems. To find out which metabolites in serum are effective for the diagnosis of MS, we utilized metabolic profiling using proton nuclear magnetic resonance spectroscopy ((1)H-NMR). Random forest (RF) was used to classify the MS patients and healthy subjects. Atomic absorption spectroscopy was used to measure the serum levels of selenium. The results showed that the levels of selenium were lower in the MS group, when compared with the control group. RF was used to identify the metabolites that caused selenium changes in people with MS by building a correlation model between these metabolites and serum levels of selenium. For the external test set, the obtained classification model showed a 93% correct classification of MS and healthy subjects. The regression model of levels of selenium and metabolites showed the correlation (R(2)) value of 0.88 for the external test set. The results indicate the suitability of NMR as a screen for identifying MS patients and healthy subjects. A novel model with good prediction outcomes was constructed between serum levels of selenium and NMR data. PMID:23255426

  17. Features of influence of dc magnetic field pulses on a nuclear spin echo in magnets

    NASA Astrophysics Data System (ADS)

    Mamniashvili, G. I.; Gegechkori, T. O.; Akhalkatsi, A. M.; Gavasheli, C. A.

    2012-06-01

    Signal intensities of a two-pulse nuclear spin echo as a function of parameters of dc magnetic field pulses are measured in the series of materials: Li0.5Fe2.5-xZnxO4 (x < 0.25) (enriched in 57Fe isotope to 96.8%), NiMnSb, Co2MnSi, La1-хСахMnO3 (x = 0.2; 0.25) and polycrystalline Co. Two types of dependences of these signals on a supplying time of such pulses with respect to the times of the exciting RF pulses are found. The mechanisms of influence of a domain structure and a dynamic frequency shift on the observed features of the investigated signals are discussed.

  18. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    SciTech Connect

    Goodson, Boyd M.

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  19. Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation.

    PubMed

    Brown, Keith A; Vassiliou, Christophoros C; Issadore, David; Berezovsky, Jesse; Cima, Michael J; Westervelt, R M

    2010-10-01

    The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T2CP of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T2CP and details of the aggregate. We find that in the motional averaging regime T2CP scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T2CP∝N-0.44 for aggregates with d = 2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T2CP is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times. PMID:20689678

  20. Nuclear Spin Maser at Highly Stabilized Low Magnetic Field and Search for Atomic EDM

    SciTech Connect

    Yoshimi, A.; Asahi, K.; Inoue, T.; Uchida, M.; Hatakeyama, N.; Tsuchiya, M.; Kagami, S.

    2009-08-04

    A nuclear spin maser is operated at a low static field through an active feedback scheme based on an optical nuclear spin detection and succeeding spin control by a transverse field application. The frequency stability of this optical-coupling spin maser is improved by installation of a low-noise current source for a solenoid magnet producing a static magnetic field in the maser operation. Experimental devices for application of the maser to EDM experiment are being developed.

  1. [Progress in nuclear magnetic resonance spectroscopy for early cancer diagnosis].

    PubMed

    Gao, Xiu-xiang; Xu, Yi-zhuang; Zhao, Mei-xian; Qi, Jian; Li, Hui-zhen; Wu, Jin-guang

    2008-08-01

    Based on more than 100 references, the present paper reviews the progress in the application of nuclear magnetic resonance (NMR) spectroscopy, an effective method to study the variation in chemical composition and molecular structure in biological samples for early diagnosis of cancer at molecular level. In the past several decades, numerous works have demonstrated that NMR spectroscopy may be developed into a sensitive diagnosis method to detect cancer in early stage. Because of the rapid development of NMR spectroscopic techniques, it becomes possible to record NMR spectra of biological samples in both in-vitro and in-vivo manner. Systematic spectral differences between biological samples from cancer patients and normal controls can be observed from both liquid-state and solid-state 1H, 31P NMR spectra and used to reflect the changes in metabolic behavior of malignant tissues. This paper has summarized NMR spectroscopic investigation on biological fluid, cultured cancerous cells, resected tissues, as well as in-vivo malignant tissues by using various advanced NMR techniques including recently developedhigh-resolution magic angle spinning (HR-MAS)and magnetic resonance spectroscopy and imaging (MRSI) methods. First, characteristic peaks, which are related to choline, phosphocholine (PC) and glycerophosphocholine, can be observed in both 1H and 31P NMR spectra of biological fluid samples from cancer patients. These results indicate that alternation in the metabolic pattern occurs with the progression of cancer. The research on cultured cells by using NMR spectroscopy showed that the signal of various phospholipids and their metabolites such as PME increased significantly in cultured cancer cells. For resected tissues, two methods can be utilized. The first one is to investigate the tissues directly by using HR-MAS spectroscopy. The second method is to extract various metabolites with various solvents such as CHCl3/methonal mixtures, HClO4 solutions, etc. and then

  2. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  3. Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging: applications from analytical chemistry to molecular sensors.

    PubMed

    Harel, Elad; Schröder, Leif; Xu, Shoujun

    2008-01-01

    Nuclear magnetic resonance (NMR) is a well-established analytical technique in chemistry. The ability to precisely control the nuclear spin interactions that give rise to the NMR phenomenon has led to revolutionary advances in fields as diverse as protein structure determination and medical diagnosis. Here, we discuss methods for increasing the sensitivity of magnetic resonance experiments, moving away from the paradigm of traditional NMR by separating the encoding and detection steps of the experiment. This added flexibility allows for diverse applications ranging from lab-on-a-chip flow imaging and biological sensors to optical detection of magnetic resonance imaging at low magnetic fields. We aim to compare and discuss various approaches for a host of problems in material science, biology, and physics that differ from the high-field methods routinely used in analytical chemistry and medical imaging.

  4. Applications of two-dimensional solid state nuclear magnetic resonance in silicates

    NASA Astrophysics Data System (ADS)

    Xu, Zhi

    1998-10-01

    Nuclear magnetic resonance (NMR) is a powerful technique and has been routinely applied in many fields. In this study, we have used high resolution two-dimensional (2D) solid state NMR techniques to study the dynamic process of Li diffusion, the kinetic process of oxygen isotope exchange, and the structural characterization of hydrous and anhydrous silicate glasses at atomic level. In the Li diffusion study, we first established the correlation between the sp6Li chemical shifts and the lithium coordination environments in lithium containing silicates. Then, we assigned the sp6Li magic angle spinning (MAS) spectrum and applied 1D, 2D variable temperature exchange NMR to observe Lisp+ diffusion in lithium orthosilicate. For the first time, our result revealed a detailed picture of the hopping rates of Lisp+ ions among structurally distinct sites and helped to define the diffusion pathway. We have shown that Lisp+ ions hopping rates and activation energies depend on site geometry. NMR measurements on Li ionic hopping frequencies was used to accurately predict the bulk conductivity. In the site-specific oxygen isotope exchange study, we first developed a method to obtain quantitative sp{17}O NMR spectra. Then, we applied the method to stilbite, a natural zeolite. We have shown for the first time that framework oxygens in Al-O-Si sites react faster with oxygens in the channel water than oxygens in Si-O-Si sites. Such an observation has partially proved the quantum ab initio calculation on water adsorption onto silicates. Our measured kinetics results agreed well with bulk isotopic measurements. Water dissolution mechanism in silicates glasses, especially aluminosilicate glasses, has been a long-standing controversy. We have used the sp{17}O spectra for hydrous and anhydrous sodium tetrasilicate glasses and albite glasses to study the structural role of hydrogen-containing species. For the first time, we have observed the oxygen peak for SiOH in hydrous sodium

  5. Varied magnetic field, multiple-pulse, and magic-angle spinning proton nuclear magnetic resonance study of muscle water

    SciTech Connect

    Fung, B.M.; Ryan, L.M.; Gerstein, B.C.

    1980-02-01

    The nuclear magnetic resonance linewidth of /sup 1/H in water of frog muscle was studied as a function of magnetic field strength and angle of orientation. The results suggest that the observed spectra are dominated by demagnetization field anisotropy and dispersion, but a small static dipolar interaction of the order of a few hertz may be present. Data from line-narrowing, multiple-pulse experiments also indicate the presence of a small dipolar broadening.

  6. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925

  7. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-06-09

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery.

  8. Advances in Theory of Solid-State Nuclear Magnetic Resonance

    PubMed Central

    Mananga, Eugene S.; Moghaddasi, Jalil; Sana, Ajaz; Akinmoladun, Andrew; Sadoqi, Mostafa

    2015-01-01

    Recent advances in theory of solid state nuclear magnetic resonance (NMR) such as Floquet-Magnus expansion and Fer expansion, address alternative methods for solving a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state NMR in particular. The power and the salient features of these theoretical approaches that are helpful to describe the time evolution of the spin system at all times are presented. This review article presents a broad view of manipulations of spin systems in solid-state NMR, based on milestones theories including the average Hamiltonian theory and the Floquet theory, and the approaches currently developing such as the Floquet-Magnus expansion and the Fer expansion. All these approaches provide procedures to control and describe the spin dynamics in solid-state NMR. Applications of these theoretical methods to stroboscopic and synchronized manipulations, non-synchronized experiments, multiple incommensurated frequencies, magic-angle spinning samples, are illustrated. We also reviewed the propagators of these theories and discussed their convergences. Note that the FME is an extension of the popular Magnus Expansion and Average Hamiltonian Theory. It aims is to bridge the AHT to the Floquet Theorem but in a more concise and efficient formalism. Calculations can then be performed in a finite-dimensional Hilbert space instead of an infinite dimensional space within the so-called Floquet theory. We expected that the FME will provide means for more accurate and efficient spin dynamics simulation and for devising new RF pulse sequence. PMID:26878063

  9. Nuclear magnetic resonance studies of macroscopic morphology and dynamics

    SciTech Connect

    Barrall, G A

    1995-09-01

    Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample`s density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques.

  10. Characterization of organic contaminants in porous media using nuclear magnetic resonance and spectral induced polarization measurements.

    NASA Astrophysics Data System (ADS)

    Rupert, Y. K.

    2015-12-01

    The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. This laboratory research focuses on combining two innovative geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to assess their suitability to characterize and quantify organic contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL), and ethoxy-nonafluorobutane, an engineered dense non-aqueous phase liquid (DNAPL), have been selected as representative organic contaminants. Low-field NMR relaxation time (T2) measurements and diffusion-relaxation (D-T2) correlation measurements, as well as low frequency SIP measurements (<10 kHz) are performed to quantify the amount of these two organic compounds in the presence of water in three types of porous media (sands, clay, and various sand-clay mixtures). The T2, D-T2, and SIP measurements are made on water, toluene, and the synthetic DNAPL in each porous media to understand the effect of different porous media on the NMR and SIP responses in each fluid. We then plan to make measurements on water-organic mixtures with varied concentrations of organic compounds in each porous medium to resolve the NMR and SIP response of the organic contaminants from that of water and to quantify the amount of organic contaminants. Building a relationship between SIP and NMR signatures from organic contaminants not only provides a fundamental yet important petrophysical relationship, but also builds a framework for continued investigation into how these two methods synergize. This will also provide spatially dense information about organic contaminated natural sediments at scales that will improve the quantitative characterization and remediation of contaminated sites.The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts

  11. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  12. Development of a 700 MHz low-/high- temperature superconductor nuclear magnetic resonance magnet: Test results and spatial homogeneity improvement

    PubMed Central

    Hahn, S.; Bascuñán, J.; Lee, H.; Bobrov, E. S.; Kim, W.; Iwasa, Y.

    2010-01-01

    For the first time in nuclear magnetic resonance (NMR) magnet development, a magnet configuration comprising an insert wound with high-temperature superconductor (HTS) and a background-field magnet wound with low-temperature superconductor (LTS) has been proven viable for NMR magnets. This new LTS/HTS magnet configuration opens the way for development of 1 GHz and above NMR magnets. Specifically, a 700 MHz LTS/HTS NMR magnet (LH700), consisting of a 600 MHz LTS magnet (L600) and a 100 MHz HTS insert (H100), has been designed, built, and successfully tested, and its magnetic field characteristics were measured and analyzed. A field homogeneity of 172 ppm in a cylindrical mapping volume of 17 mm diameter by 30 mm long was measured at 692 MHz and corresponding 1H NMR signal with 1.9 kHz half-width was captured. Two techniques, room-temperature and ferromagnetic shimming, were analytically examined to investigate if they would be effective for further improving spatial field homogeneity of the LH700. PMID:18315337

  13. Development of a 700 MHz low-/high- temperature superconductor nuclear magnetic resonance magnet: test results and spatial homogeneity improvement.

    PubMed

    Hahn, S; Bascuñán, J; Lee, H; Bobrov, E S; Kim, W; Iwasa, Y

    2008-02-01

    For the first time in nuclear magnetic resonance (NMR) magnet development, a magnet configuration comprising an insert wound with high-temperature superconductor (HTS) and a background-field magnet wound with low-temperature superconductor (LTS) has been proven viable for NMR magnets. This new LTS/HTS magnet configuration opens the way for development of 1 GHz and above NMR magnets. Specifically, a 700 MHz LTS/HTS NMR magnet (LH700), consisting of a 600 MHz LTS magnet (L600) and a 100 MHz HTS insert (H100), has been designed, built, and successfully tested, and its magnetic field characteristics were measured and analyzed. A field homogeneity of 172 ppm in a cylindrical mapping volume of 17 mm diameter by 30 mm long was measured at 692 MHz and corresponding 1H NMR signal with 1.9 kHz half-width was captured. Two techniques, room-temperature and ferromagnetic shimming, were analytically examined to investigate if they would be effective for further improving spatial field homogeneity of the LH700.

  14. Low-field nuclear magnetic resonance characterization of organic content in shales

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Seymour, Joseph D.; Kirkland, Catherine; Vogt, Sarah J.

    2013-01-01

    Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Longitudinal T1 and transverse T2 relaxation time measurements made using LF-NMR on conventional reservoir systems provides information on rock porosity, pore size distributions, and fluid types and saturations in some cases. Recent improvements in LF-SNMR instrument electronics have made it possible to apply these methods to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids, therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus some types of T2 relaxation during correlation measurements allows for improved resolution of solid phase photons. LF-NMR measurements of T1 and T2 relaxation time correlations were carried out on raw oil shale samples from resources around the world. These shales vary widely in mineralogy, total organic carbon (TOC) content and kerogen type. NMR results were correlcated with Leco TOC and geochemical data obtained from Rock-Eval. There is excellent correlation between NMR data and programmed pyrolysis parameters, particularly TOC and S2, and predictive capability is also good. To better understand the NMR response, the 2D NMR spectra were compared to similar NMR measurements made using high-field (HF) NMR equipment.

  15. Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer.

    PubMed

    Tayler, Michael C D; Sjolander, Tobias F; Pines, Alexander; Budker, Dmitry

    2016-09-01

    We describe new analytical capabilities for nuclear magnetic resonance (NMR) experiments in which signal detection is performed with chemical resolution (via spin-spin J couplings) in the zero to ultra-low magnetic field region, below 1μT. Using magnetic fields in the 100μT to 1mT range, we demonstrate the implementation of conventional NMR pulse sequences with spin-species selectivity.

  16. Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer

    NASA Astrophysics Data System (ADS)

    Tayler, Michael C. D.; Sjolander, Tobias F.; Pines, Alexander; Budker, Dmitry

    2016-09-01

    We describe new analytical capabilities for nuclear magnetic resonance (NMR) experiments in which signal detection is performed with chemical resolution (via spin-spin J couplings) in the zero to ultra-low magnetic field region, below 1 μT. Using magnetic fields in the 100 μT to 1 mT range, we demonstrate the implementation of conventional NMR pulse sequences with spin-species selectivity.

  17. Development and performance of a 129-GHz dynamic nuclear polarizer in an ultra-wide bore superconducting magnet

    PubMed Central

    Lumata, Lloyd L.; Martin, Richard; Jindal, Ashish K.; Kovacs, Zoltan; Conradi, Mark S.

    2014-01-01

    Objective We sought to build a dynamic nuclear polarization system for operation at 4.6 T (129 GHz) and evaluate its efficiency in terms of 13C polarization levels using free radicals that span a range of ESR linewidths. Materials and methods A liquid helium cryostat was placed in a 4.6 T superconducting magnet with a 150-mm warm bore diameter. A 129-GHz microwave source was used to irradiate 13C enriched samples. Temperatures close to 1 K were achieved using a vacuum pump with a 453-m3/h roots blower. A hyperpolarized 13C nuclear magnetic resonance (NMR) signal was detected using a saddle coil and a Varian VNMRS console operating at 49.208 MHz. Samples doped with free radicals BDPA (1,3-bisdipheny-lene-2-phenylallyl), trityl OX063 (tris{8-carboxyl-2,2,6,6-benzo(1,2-d:4,5-d)-bis(1,3)dithiole-4-yl}methyl sodium salt), galvinoxyl ((2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy), 2,2-diphenylpicrylhydrazyl (DPPH) and 4-oxo-TEMPO (4-Oxo-2,2,6,6-tetramethyl-1-piperidinyloxy) were assayed. Microwave dynamic nuclear polarization (DNP) spectra and solid-state 13C polarization levels for these samples were determined. Results 13C polarization levels close to 50 % were achieved for [1-13C]pyruvic acid at 1.15 K using the narrow electron spin resonance (ESR) linewidth free radicals trityl OX063 and BDPA, while 10–20 % 13C polarizations were achieved using galvinoxyl, DPPH and 4-oxo-TEMPO. Conclusion At this field strength free radicals with smaller ESR linewidths are still superior for DNP of 13C as opposed to those with linewidths that exceed that of the 1H Larmor frequency. PMID:25120071

  18. Electronic and nuclear motion and their couplings in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Schmelcher, P.; Cederbaum, L. S.; Meyer, H.-D.

    1988-12-01

    The performance of an adiabatic separation of electronic and nuclear motion in the presence of a magnetic field is examined, and it is shown that the diagonal term of the nonadiabatic coupling elements must be added to the nuclear equation of motion in the Born-Oppenheimer (BO) approximation. The screened BO approximation is described which is particularly suited to describe the adiabatic separation of electronic and nuclear degrees of freedom in a magnetic field. A new interpretation of the well-known gauge-centering is presented. The results are of interest in connection with the studies of white dwarfs and neutron stars.

  19. MEMS-Based Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Butler, Mark C.; Elgammal, Ramez A.; George, Thomas; Hunt, Brian; Weitekamp, Daniel P.

    2006-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy allows assignment of molecular structure by acquiring the energy spectrum of nuclear spins in a molecule, and by interpreting the symmetry and positions of resonance lines in the spectrum. As such, NMR has become one of the most versatile and ubiquitous spectroscopic methods. Despite these tremendous successes, NMR experiments suffer from inherent low sensitivity due to the relatively low energy of photons in the radio frequency (rt) region of the electromagnetic spectrum. Here, we describe a high-resolution spectroscopy in samples with diameters in the micron range and below. We have reported design and fabrication of force-detected nuclear magnetic resonance (FDNMR).

  20. Self-shielded gradient coils for nuclear magnetic resonance imaging

    SciTech Connect

    Roemer, P.B.; Hickey, J.S.

    1988-04-12

    A gradient coil set for an MR apparatus is described comprising radially disposed coils adapted to be placed within a main field magnet. Each of the coils is adapted to provide a respective surface current distribution. The total magnetic field resulting from the coaction of the surface current distribution has a predetermined gradient in a predetermined single dimension within a predetermined area inside the coil set and a substantially zero value outside the coil set. Magnetic forces between the coil set and the field magnet are substantially eliminated.

  1. Microstructure of Wet Cement Pastes: a Nuclear Magnetic Resonance Study

    NASA Astrophysics Data System (ADS)

    Jehng, Jyh-Yuar

    1995-01-01

    Nuclear magnetic resonance relaxation analysis has been applied to interpret the evolution of microstructure in a cement paste during hydration. The work in this thesis has yielded a better understanding of the geometric and physical characterization of porous materials, and specifically cement pastes. A basic understanding of the wet-dry and freeze-thaw processes of cement pastes has been developed. The pore structure evolution has been studied by the suppression of the freezing temperature of water and compared with relaxation analysis performed at room temperature. Both methods consistently show that hydrating cement pastes have two principal components in their size distribution. Firstly, in situ measurements have been made of the water consumption, the total specific surface area, and pore water size distribution as a function of hydration time. The amount of evaporable water in the pore space can be determined from the magnitude of the NMR signal, and the NMR relaxation times provide a measure of the characteristic pore sizes. Drying studies have been performed to determine the surface spin-spin relaxation time. The NMR results on evolution of cement pore structure with hydration clearly show five different stages. The water consumption was determined to be a linear function of the logarithm of hydration time over a wide range during which the total surface area of the wet gel remains constant. These experiments support a model of capillary and gel pores in the cement paste and provide strong evidence of a stable dense-gel structure. Secondly, supercooling and thawing point depression of confined water has been studied systematically. The depression of the freezing point of liquid water confined within a pore was found to be dependent on the pore size with capillary pore water freezing at 240 K and the remaining gel pore water freezing over a temperature range extending to as low as 160 K. Finally, an important application of NMR has been developed to monitor

  2. Dynamics of Protein Kinases: Insights from Nuclear Magnetic Resonance

    PubMed Central

    Xiao, Yao; Liddle, Jennifer C.; Pardi, Arthur; Ahn, Natalie G.

    2015-01-01

    CONSPECTUS Protein kinases are ubiquitous enzymes with critical roles in cellular processes and pathology. As a result, researchers have studied their activity and regulatory mechanisms extensively. Thousands of X-ray structures give snapshots of the architectures of protein kinases in various states of activation and ligand binding. However, the extent of and manner by which protein motions and conformational dynamics underlie the function and regulation of these important enzymes is not well understood. Nuclear magnetic resonance (NMR) methods provide complementary information about protein conformation and dynamics in solution. However, until recently, the large size of these enzymes prevented researchers from using these methods with kinases. Developments in transverse relaxation-optimized spectroscopy (TROSY)-based techniques and more efficient isotope labeling strategies are now allowing researchers to carry out NMR studies on full-length protein kinases. In this Account, we describe recent insights into the role of dynamics in protein kinase regulation and catalysis that have been gained from NMR measurements of chemical shift changes and line broadening, residual dipolar couplings, and relaxation. These findings show strong associations between protein motion and events that control kinase activity. Dynamic and conformational changes occurring at ligand binding sites and other regulatory domains of these proteins propagate to conserved kinase core regions that mediate catalytic function. NMR measurements of slow time scale (microsecond to millisecond) motions also reveal that kinases carry out global exchange processes that synchronize multiple residues and allosteric interconversion between conformational states. Activating covalent modifications or ligand binding to form the Michaelis complex can induce these global processes. Inhibitors can also exploit the exchange properties of kinases by using conformational selection to form dynamically quenched

  3. Structure Determination of Natural Products by Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Du.

    High-field NMR experiments were used to determine the full structures of six new natural products extracted from plants. These are: four saponins (PT-2, P1, P2 and P3) from the plant Alphitonia zizyphoides found in Samoa; one sesquiterpene (DF-4) from Douglas fir and one diterpene derivative (E-2) from a Chinese medicinal herb. By concerted use of various 1D and 2D NMR techniques, the structures of the above compounds were established and complete resonance assignments were achieved. The 2D INADEQUATE technique coupled with a computerized spectral analysis was extensively used. When carried out on concentrations as low as 60 mg of sample, this technique provided absolute confirmation of the assignments for 35 of the possible 53 C-C bonds for PT-2. On 30 mg of sample of E-21, it revealed 22 of 28 possible C-C bonds.

  4. Optically rewritable patterns of nuclear magnetization in gallium arsenide.

    PubMed

    King, Jonathan P; Li, Yunpu; Meriles, Carlos A; Reimer, Jeffrey A

    2012-06-26

    The control of nuclear spin polarization is important to the design of materials and algorithms for spin-based quantum computing and spintronics. Towards that end, it would be convenient to control the sign and magnitude of nuclear polarization as a function of position within the host lattice. Here we show that, by exploiting different mechanisms for electron-nuclear interaction in the optical pumping process, we are able to control and image the sign of the nuclear polarization as a function of distance from an irradiated GaAs surface. This control is achieved using a crafted combination of light helicity, intensity and wavelength, and is further tuned via use of NMR pulse sequences. These results demonstrate all-optical creation of micron scale, rewritable patterns of positive and negative nuclear polarization in a bulk semiconductor without the need for ferromagnets, lithographic patterning techniques, or quantum-confined structures.

  5. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  6. DYNA2D96. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.

    1992-04-01

    DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  7. Solid state nuclear magnetic resonance investigations of advanced energy materials

    NASA Astrophysics Data System (ADS)

    Bennett, George D.

    In order to better understand the physical electrochemical changes that take place in lithium ion batteries and asymmetric hybrid supercapacitors solid state nuclear magnetic resonance (NMR) spectroscopy has been useful to probe and identify changes on the atomic and molecular level. NMR is used to characterize the local environment and investigate the dynamical properties of materials used in electrochemical storage devices (ESD). NMR investigations was used to better understand the chemical composition of the solid electrolyte interphase which form on the negative and positive electrodes of lithium batteries as well as identify the breakdown products that occur in the operation of the asymmetric hybrid supercapacitors. The use of nano-structured particles in the development of new materials causes changes in the electrical, structural and other material properties. NMR was used to investigate the affects of fluorinated and non fluorinated single wall nanotubes (SWNT). In this thesis three experiments were performed using solid state NMR samples to better characterize them. The electrochemical reactions of a lithium ion battery determine its operational profile. Numerous means have been employed to enhance battery cycle life and operating temperature range. One primary means is the choice and makeup of the electrolyte. This study focuses on the characteristics of the solid electrolyte interphase (SEI) that is formed on the electrodes surface during the charge discharge cycle. The electrolyte in this study was altered with several additives in order to determine the influence of the additives on SEI formation as well as the intercalation and de-intercalation of lithium ions in the electrodes. 7Li NMR studies where used to characterize the SEI and its composition. Solid state NMR studies of the carbon enriched acetonitrile electrolyte in a nonaqueous asymmetric hybrid supercapacitor were performed. Magic angle spinning (MAS) coupled with cross polarization NMR

  8. The fluorinated (10, 0) boron nitride nanotube: a computational nuclear magnetic resonance and nuclear quadrupole resonance study.

    PubMed

    Seif, Ahmad; Boshra, Asadollah; Bodaghi, Ali

    2010-01-01

    Quantum chemical calculations at the level of density functional theory (DFT) were carried out to investigate the influence of fluorination boron and nitrogen nuclear magnetic resonance (NMR) and also nuclear quadrupole resonance (NQR) parameters in the (10, 0) single-wall boron nitride nanotube (SWBNNT). To achieve this aim three models of (10, 0) boron nitride nanotubes (BNNTs), raw and two F-attached (exohedral and endohedral) derivatives were studied. The results of calculations showed that while the boron atom chemically bonded to F atom has the largest chemical shielding isotropy (CSI); it has the smallest quadrupole coupling constant (CQ) value among the other boron nuclei.

  9. (129) Xe and (131) Xe nuclear magnetic dipole moments from gas phase NMR spectra.

    PubMed

    Makulski, Włodzimierz

    2015-04-01

    (3) He, (129) Xe and (131) Xe NMR measurements of resonance frequencies in the magnetic field B0=11.7586 T in different gas phase mixtures have been reported. Precise radiofrequency values were extrapolated to the zero gas pressure limit. These results combined with new quantum chemical values of helium and xenon nuclear magnetic shielding constants were used to determine new accurate nuclear magnetic moments of (129) Xe and (131) Xe in terms of that of the (3) He nucleus. They are as follows: μ((129) Xe) = -0.7779607(158)μN and μ((131) Xe) = +0.6918451(70)μN . By this means, the new 'helium method' for estimations of nuclear dipole moments was successfully tested. Gas phase NMR spectra demonstrate the weak intermolecular interactions observed on the (3) He and (129) Xe and (131) Xe shielding in the gaseous mixtures with Xe, CO2 and SF6 .

  10. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic

    NASA Astrophysics Data System (ADS)

    Lovchinsky, I.; Sushkov, A. O.; Urbach, E.; de Leon, N. P.; Choi, S.; De Greve, K.; Evans, R.; Gertner, R.; Bersin, E.; Müller, C.; McGuinness, L.; Jelezko, F.; Walsworth, R. L.; Park, H.; Lukin, M. D.

    2016-02-01

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  11. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    PubMed

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  12. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    PubMed

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition. PMID:26847544

  13. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms.

    PubMed

    Goodson, Boyd M

    2002-04-01

    The sensitivity of conventional nuclear magnetic resonance (NMR) techniques is fundamentally limited by the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This review describes the principles and magnetic resonance applications of laser-polarized noble gases. The enormous sensitivity enhancement afforded by optical pumping can be exploited to permit a variety of novel NMR experiments across numerous disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, NMR sensitivity enhancement via polarization transfer, and low-field NMR and MRI. PMID:12036331

  14. High-Gradient Nanomagnets on Cantilevers for Sensitive Detection of Nuclear Magnetic Resonance

    PubMed Central

    Longenecker, Jonilyn G.; Mamin, H. J.; Senko, Alexander W.; Chen, Lei; Rettner, Charles T.; Rugar, Daniel; Marohn, John A.

    2012-01-01

    Detection of magnetic resonance as a force between a magnetic tip and nuclear spins has previously been shown to enable sub-10 nm resolution 1H imaging. Maximizing the spin force in such a magnetic resonance force microscopy (MRFM) experiment demands a high field gradient. In order to study a wide range of samples, it is equally desirable to locate the magnetic tip on the force sensor. Here we report the development of attonewton-sensitivity cantilevers with high gradient cobalt nanomagnet tips. The damage layer thickness and saturation magnetization of the magnetic material were characterized by X-ray photoelectron spectroscopy and superconducting quantum interference device magnetometry. The coercive field and saturation magnetization of an individual tip were quantified in situ using frequency-shift cantilever magnetometry. Measurements of cantilever dissipation versus magnetic field and tip-sample separation were conducted. MRFM signals from protons in a polystyrene film were studied versus rf irradiation frequency and tip-sample separation, and from this data the tip field and tip-field gradient were evaluated. Magnetic tip performance was assessed by numerically modeling the frequency dependence of the magnetic resonance signal. We observed a tip-field gradient ∂Bztip∕∂z estimated to be between 4.4 and 5.4 MT m−1, which is comparable to the gradient used in recent 4 nm resolution 1H imaging experiments and larger by nearly an order of magnitude than the gradient achieved in prior magnet-on-cantilever MRFM experiments. PMID:23033869

  15. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  16. Nuclear magnetic resonance multiwindow analysis of proton local fields and magnetization distribution in natural and deuterated mouse muscle.

    PubMed Central

    Peemoeller, H; Pintar, M M

    1979-01-01

    The proton free-induction decays, spin-spin relaxation times, local fields in the rotating frame, and spin-lattice relaxation times in the laboratory and rotating frames, in natural and fully deuterated mouse muscle, are reported. Measurements were taken above and below freezing temperature and at two time windows on the free-induction decay. A comparative analysis show that the magnetization fractions deduced from the different experiments are in good agreement. The main conclusion is that the resolution of the (heterogeneous) muscle nuclear magnetic resonance (NMR) response is improved by the multiwindow analysis. PMID:262554

  17. A Search for Nonstandard Neutron Spin Interactions using Dual Species Xenon Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Larsen, Michael; Mirijanian, James; Fu, Changbo; Yan, Haiyang; Smith, Erick; Snow, Mike; Walker, Thad

    2012-06-01

    NMR measurements using polarized noble gases can constrain possible exotic spin-dependent interactions involving nucleons. A differential measurement insensitive to magnetic field fluctuations can be performed using a mixture of two polarized species with different ratios of nucleon spin to magnetic moment. We used the NMR cell test station at Northrop Grumman Corporation (NGC) (developed to evaluate dual species xenon vapor cells for the Nuclear Magnetic Resonance Gyroscope) to search for NMR frequency shifts of xenon-129 and xenon-131 when a non-magnetic zirconia rod is modulated near the NMR cell. We simultaneously excited both Xe isotopes and detected free-induction-decay transients. In combination with theoretical calculations of the neutron spin contribution to the nuclear angular momentum, the measurements put a new upper bound on possible monopole-dipole interactions of the neutron for ranges around 1mm. This work is supported by the NGC Internal Research and Development (IRAD) funding, the Department of Energy, and the NSF.

  18. Nuclear magnetic resonance micro-imaging in the investigation of plant cell metabolism.

    PubMed

    Köckenberger, W

    2001-04-01

    Micro-imaging based on nuclear magnetic resonance offers the possibility to map metabolites in plant tissues non-invasively. Major metabolites such as sucrose and amino acids can be observed with high spatial resolution. Stable isotope tracers, such as (13)C-labelled metabolites can be used to measure the in vivo conversion rates in a metabolic network. This review summarizes the different nuclear magnetic resonance micro-imaging techniques that are available to obtain spatially resolved information on metabolites in plants. A short general introduction into NMR imaging techniques is provided. Particular emphasis is given to the difficulties encountered when NMR micro-imaging is applied to plant systems.

  19. Diamond-nitrogen-vacancy electronic and nuclear spin-state anticrossings under weak transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Clevenson, Hannah; Chen, Edward H.; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle

    2016-08-01

    We report on detailed studies of electronic and nuclear spin states in the diamond-nitrogen-vacancy (NV) center under weak transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV hyperfine level anticrossing (LAC) occurring at bias fields of tens of gauss—two orders of magnitude lower than previously reported LACs at ˜500 and ˜1000 G axial magnetic fields. We then discuss how the NV ground-state Hamiltonian can be manipulated in this regime to tailor the NV's sensitivity to environmental factors and to map into the nuclear spin state.

  20. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  1. Zero and Ultra-Low-Field Nuclear Magnetic Resonance Spectroscopy Via Optical Magnetometry

    NASA Astrophysics Data System (ADS)

    Blanchard, John Woodland

    Nuclear magnetic resonance (NMR) is among the most powerful analytical tools available to the chemical and biological sciences for chemical detection, characterization, and structure elucidation. NMR experiments are usually performed in large magnetic fields in order to maximize sensitivity and increase chemical shift resolution. However, the high magnetic fields required for conventional NMR necessitate large, immobile, and expensive superconducting magnets, limiting the use of the technique. New hyperpolarization and non-inductive detection methods have recently allowed for NMR measurements in the inverse regime of extremely low magnetic fields. Whereas a substantial body of research has been conducted in the high-field regime, taking advantage of the efficient coherent control afforded by a spectroscopy dominated by coupling to the spectrometer, the zero- and ultra-low-field (ZULF) regime has remained mostly unexplored. In this dissertation, we investigate the applicability of ZULF-NMR as a novel spectroscopic technique complimentary to high-field NMR. In particular, we consider various aspects of the ZULF-NMR experiment and the dynamics of nuclear spins under various local spin coupling Hamiltonians. We first survey zero-field NMR experiments on systems dominated by the electron-mediated indirect spin-spin coupling (J-coupling). The resulting J-spectra permit precision measurement of chemically relevant information due to the exquisite sensitivity of J-couplings to subtle changes in molecular geometry and electronic structure. We also consider the effects of weak magnetic fields and residual dipolar couplings in anisotropic media, which encode information about nuclear magnetic moments and geometry, and further resolve topological ambiguities by lifting degeneracies. By extending the understanding of the interactions that contribute to ZULF-NMR spectra, this work represents a significant advancement towards a complete description of zero- and ultra

  2. [Application of nuclear magnetic resonance for the determination of the structure of proteins in solution].

    PubMed

    Charretier, E; Guéron, M

    1991-01-01

    Knowledge of three-dimensional structure is a key factor in protein engineering. It is useful, for example, in predicting and understanding the functional consequences of specific substitution of one or more amino acids of the polypeptide chain. It is also necessary for the design of new effectors or analogs of the substrates of enzymes and receptors. X-ray diffraction by crystals of the biomolecule was for a long time the only method of determining three-dimensional structures. In the last 5 years, it has been joined by a new technique, two-dimensional nuclear magnetic resonance (2D NMR), which can resolve the structure of middle-sized proteins (less than 10 kilodaltons). The technique is applied on solutions whose pH, ionic strength, and temperature can be chosen and changed. The two basic measurements, COSY and NOESY, detect respectively the systems of hydrogen nuclei, or protons, coupled through covalent bonds, and those in which the interproton distances are less than 0.5 nm. A systematic strategy leads from resonance assignments of the two-dimensional spectrum to molecular modeling with constraints and finally to the determination of the molecular structure in the solution. Much sophistication is needed even today for the first task, the assignment of the resonances. Each of the COSY and NOESY spectra is a two-dimensional map, where the diagonal line is the one-dimensional spectrum, and the off-diagonal peaks indicate connectives between protons. Peak assignment to a specific type of amino acid is based on the pattern of scalar couplings observed in the COSY spectrum. Next, the amino acids are positioned in the primary sequence, using the spatial proximities of polypeptide chain protons, as observed in the NOESY spectrum. The principal secondary structures (alpha helix, beta sheets, etc.) are then identified by their specific connectivities. The tertiary structure is detected by NOESY connectivities between protons of different amino acids which are far apart

  3. Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: the effect of magnetic field strength.

    PubMed

    Mitchell, J; Chandrasekera, T C; Johns, M L; Gladden, L F; Fordham, E J

    2010-02-01

    It is known that internal magnetic field gradients in porous materials, caused by susceptibility differences at the solid-fluid interfaces, alter the observed effective Nuclear Magnetic Resonance transverse relaxation times T2,eff. The internal gradients scale with the strength of the static background magnetic field B0. Here, we acquire data at various magnitudes of B0 to observe the influence of internal gradients on T2-T2 exchange measurements; the theory discussed and observations made are applicable to any T2-T2 analysis of heterogeneous materials. At high magnetic field strengths, it is possible to observe diffusive exchange between regions of local internal gradient extrema within individual pores. Therefore, the observed exchange pathways are not associated with pore-to-pore exchange. Understanding the significance of internal gradients in transverse relaxation measurements is critical to interpreting these results. We present the example of water in porous sandstone rock and offer a guideline to determine whether an observed T2,eff relaxation time distribution reflects the pore size distribution for a given susceptibility contrast (magnetic field strength) and spin echo separation. More generally, we confirm that for porous materials T1 provides a better indication of the pore size distribution than T2,eff at high magnetic field strengths (B0>1 T), and demonstrate the data analysis necessary to validate pore size interpretations of T2,eff measurements.

  4. The effects of nuclear magnetic resonance on patients with cardiac pacemakers

    SciTech Connect

    Pavlicek, W.; Geisinger, M.; Castle, L.; Borkowski, G.P.; Meaney, T.F.; Bream, B.L.; Gallagher, J.H.

    1983-04-01

    The effect of nuclear magnetic resonance (NMR) imaging on six representative cardiac pacemakers was studied. The results indicate that the threshold for initiating the asynchronous mode of a pacemaker is 17 gauss. Radiofrequency levels are present in an NMR unit and may confuse or possibly inhibit demand pacemakers, although sensing circuitry is normally provided with electromagnetic interference discrimination. Time-varying magnetic fields can generate pulse amplitudes and frequencies to mimic cardiac activity. A serious limitation in the possibility of imaging a patient with a pacemaker would be the alteration of normal pulsing parameters due to time-varying magnetic fields.

  5. Finite temperature corrections in 2d integrable models

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Hasenbusch, M.

    2002-09-01

    We study the finite size corrections for the magnetization and the internal energy of the 2d Ising model in a magnetic field by using transfer matrix techniques. We compare these corrections with the functional form recently proposed by Delfino and LeClair-Mussardo for the finite temperature behaviour of one-point functions in integrable 2d quantum field theories. We find a perfect agreement between theoretical expectations and numerical results. Assuming the proposed functional form as an input in our analysis we obtain a relevant improvement in the precision of the continuum limit estimates of both quantities.

  6. Effect of 1. 5 tesla nuclear magnetic resonance imaging scanner on implanted permanent pacemakers

    SciTech Connect

    Hayes, D.L.; Holmes, D.R. Jr.; Gray, J.E.

    1987-10-01

    Patients with a permanent pacemaker are currently restricted from diagnostic nuclear magnetic resonance (NMR) imaging because of potential adverse effects on the pacemaker by the magnet. Previous work has shown that NMR imaging will result in asynchronous pacing of the pulse generator within a given distance of the magnet. The radiofrequency signal generated by the system may also result in rapid cardiac pacing, which may have deleterious effects. This study utilized a 1.5 tesla unit in an in vivo laboratory animal to evaluate the unit's effects on eight different pulse generators from two manufacturers. All pacemakers functioned in an asynchronous mode when placed within a certain distance of the magnet. In addition, transient reed switch inhibition was observed. Seven of the eight pulse generators paced rapidly when exposed to the radiofrequency signal and there was a dramatic decrease in arterial blood pressure. Whether effective rapid cardiac pacing would occur could not be predicted before exposure to the magnetic resonance unit. Nuclear magnetic resonance imaging with high magnetic fields in patients with a pacemaker should continue to be avoided until the mechanism of the rapid cardiac pacing can be further delineated and either predicted or prevented.

  7. Ferromagnetic ordering in NpAl2: Magnetic susceptibility and 27Al nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Martel, L.; Griveau, J.-C.; Eloirdi, R.; Selfslag, C.; Colineau, E.; Caciuffo, R.

    2015-08-01

    We report on the magnetic properties of the neptunium based ferromagnetic compound NpAl2. We used magnetization measurements and 27Al NMR spectroscopy to access magnetic features related to the paramagnetic and ordered states (TC=56 K). While very precise DC SQUID magnetization measurements confirm ferromagnetic ordering, they show a relatively small hysteresis loop at 5 K reduced with a coercive field HCo~3000 Oe. The variable offset cumulative spectra (VOCS) acquired in the paramagnetic state show a high sensitivity of the 27Al nuclei spectral parameters (Knight shifts and line broadening) to the ferromagnetic ordering, even at room temperature.

  8. Remote detection of nuclear magnetic resonance with an anisotropic magnetoresistive sensor.

    PubMed

    Verpillat, F; Ledbetter, M P; Xu, S; Michalak, D J; Hilty, C; Bouchard, L-S; Antonijevic, S; Budker, D; Pines, A

    2008-02-19

    We report the detection of nuclear magnetic resonance (NMR) using an anisotropic magnetoresistive (AMR) sensor. A "remote-detection" arrangement was used in which protons in flowing water were prepolarized in the field of a superconducting NMR magnet, adiabatically inverted, and subsequently detected with an AMR sensor situated downstream from the magnet and the adiabatic inverter. AMR sensing is well suited for NMR detection in microfluidic "lab-on-a-chip" applications because the sensors are small, typically on the order of 10 mum. An estimate of the sensitivity for an optimized system indicates that approximately 6 x 10(13) protons in a volume of 1,000 mum(3), prepolarized in a 10-kG magnetic field, can be detected with a signal-to-noise ratio of 3 in a 1-Hz bandwidth. This level of sensitivity is competitive with that demonstrated by microcoils in superconducting magnets and with the projected sensitivity of microfabricated atomic magnetometers.

  9. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice

    PubMed Central

    Pan, Xian

    2015-01-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter. PMID:25943116

  10. Magnetic Separation for Nuclear Material Detection and Surveillance

    SciTech Connect

    Worl, L.A.; Devlin, D.; Hill, D.; Padilla, D.; Prenger, F.C.

    1998-08-01

    A high performance superconducting magnet is being developed for particle retrieval from field collected samples. Results show that maximum separation effectiveness is obtained when the matrix fiber diameter approaches the diameter of the particles to be captured. Experimentally, the authors obtained a single particle capture limit with 0.8{micro}m PuO{sub 2} particles with dodecane as a carrier fluid. The development of new matrix materials is being pursued through the controlled corrosion of stainless steel wool, or the deposition of nickel dendrites on the existing stainless steel matrix material. They have also derived a model from a continuity equation that uses empirically determined capture cross section values. This enables the prediction of high gradient magnetic separator performance for a variety of materials and applications. The model can be used to optimize the capture cross section and thus increase the capture efficiency.

  11. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    PubMed Central

    Ghiglieno, Filippo

    2016-01-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures. PMID:27703681

  12. MEMS-based force-detected nuclear magnetic resonance spectrometer for in situ planetary exploration

    NASA Technical Reports Server (NTRS)

    George, T.; Leskowitz, G.; Madsen, L.; Weitekamp, D.; Tang, W.

    2000-01-01

    Nuclear Magnetic resonance (NMR) is a well-known spectroscopic technique used by chemists and is especially powerful in detecting the presence of water and distinguishing between arbitrary physisorbed and chemisorbed states. This ability is of particular importance in the search for extra-terrestrial life on planets such as Mars.

  13. Phosphorus-31 nuclear magnetic resonance chemical shifts of phosphoric acid derivatives.

    PubMed

    Wittmann, Z; Kovács, Z

    1985-07-01

    (31)P nuclear magnetic resonance chemical shifts of alkyi and alkylaryl phosphates, condensed phosphates, phosphoric arids and their salts, are reported. These are listed by classes of compounds so that relationships between chemical shifts and the substituent groups on phosphorus atoms can be recognized. These relationships are useful for qualitative identification of the specific compounds listed and of related compounds by extrapolation.

  14. The Complexation of the Na(super +) by 18-Crown-6 Studied via Nuclear Magnetic Resonance

    ERIC Educational Resources Information Center

    Peters, Steven J.; Stevenson, Cheryl D.

    2004-01-01

    A student friendly experiment that teaches several important concepts of modern nuclear magnetic resonance (NMR), like multinuclear capabilities, the NMR time scale, and time-averaged signals, is described along with some important concepts of thermo chemical equilibria. The mentioned experiment involves safe and inexpensive compounds, such as…

  15. Structural Isomer Identification via NMR: A Nuclear Magnetic Resonance Experiment for Organic, Analytical, or Physical Chemistry.

    ERIC Educational Resources Information Center

    Szafran, Zvi

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment that examines the ability of nuclear magnetic resonance (NMR) to distinguish between structural isomers via resonance multiplicities and chemical shifts. Reasons for incorporating the experiment into organic, analytical, or physical chemistry…

  16. Quantitative Analysis of Nail Polish Remover Using Nuclear Magnetic Resonance Spectroscopy Revisited

    ERIC Educational Resources Information Center

    Hoffmann, Markus M.; Caccamis, Joshua T.; Heitz, Mark P.; Schlecht, Kenneth D.

    2008-01-01

    Substantial modifications are presented for a previously described experiment using nuclear magnetic resonance (NMR) spectroscopy to quantitatively determine analytes in commercial nail polish remover. The revised experiment is intended for a second- or third-year laboratory course in analytical chemistry and can be conducted for larger laboratory…

  17. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    DOEpatents

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  18. Nuclear-spin-induced cotton-mouton effect in a strong external magnetic field.

    PubMed

    Fu, Li-Juan; Vaara, Juha

    2014-08-01

    Novel, high-sensitivity and high-resolution spectroscopic methods can provide site-specific nuclear information by exploiting nuclear magneto-optic properties. We present a first-principles electronic structure formulation of the recently proposed nuclear-spin-induced Cotton-Mouton effect in a strong external magnetic field (NSCM-B). In NSCM-B, ellipticity is induced in a linearly polarized light beam, which can be attributed to both the dependence of the symmetric dynamic polarizability on the external magnetic field and the nuclear magnetic moment, as well as the temperature-dependent partial alignment of the molecules due to the magnetic fields. Quantum-chemical calculations of NSCM-B were conducted for a series of molecular liquids. The overall order of magnitude of the induced ellipticities is predicted to be 10(-11) -10(-6) rad T(-1)  M(-1)  cm(-1) for fully spin-polarized nuclei. In particular, liquid-state heavy-atom systems should be promising for experiments in the Voigt setup.

  19. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance

    EPA Science Inventory

    Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % f...

  20. An Accessible Two-Dimensional Solution Nuclear Magnetic Resonance Experiment on Human Ubiquitin

    ERIC Educational Resources Information Center

    Rovnyak, David; Thompson, Laura E.

    2005-01-01

    Solution-state nuclear magnetic resonance (NMR) is an invaluable tool in structural and molecular biology research, but may be underutilized in undergraduate laboratories because instrumentation for performing structural studies of macromolecules in aqueous solutions is not yet widely available for use in undergraduate laboratories. We have…

  1. Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses

    NASA Astrophysics Data System (ADS)

    Munsch, Mathieu; Wüst, Gunter; Kuhlmann, Andreas V.; Xue, Fei; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Poggio, Martino; Warburton, Richard J.

    2014-09-01

    The nuclear spins in nanostructured semiconductors play a central role in quantum applications. The nuclear spins represent a useful resource for generating local magnetic fields but nuclear spin noise represents a major source of dephasing for spin qubits. Controlling the nuclear spins enhances the resource while suppressing the noise. NMR techniques are challenging: the group III and V isotopes have large spins with widely different gyromagnetic ratios; in strained material there are large atom-dependent quadrupole shifts; and nanoscale NMR is hard to detect. We report NMR on 100,000 nuclear spins of a quantum dot using chirped radiofrequency pulses. Following polarization, we demonstrate a reversal of the nuclear spin. We can flip the nuclear spin back and forth a hundred times. We demonstrate that chirped NMR is a powerful way of determining the chemical composition, the initial nuclear spin temperatures and quadrupole frequency distributions for all the main isotopes. The key observation is a plateau in the NMR signal as a function of sweep rate: we achieve inversion at the first quantum transition for all isotopes simultaneously. These experiments represent a generic technique for manipulating nanoscale inhomogeneous nuclear spin ensembles and open the way to probe the coherence of such mesoscopic systems.

  2. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    SciTech Connect

    Sachleben, J. R.

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and {sup 13}C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution {sup 1}H and {sup 13}C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 {angstrom}. Internal motion is estimated to be slow with a correlation time > 10{sup {minus}8} s{sup {minus}1}. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O{sub 2} and ultraviolet. A method for measuring {sup 14}N-{sup 1}H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T{sub 1} and T{sub 2} experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in {sup 13}C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  3. Chemical structures in pyrodextrin determined by nuclear magnetic resonance spectroscopy.

    PubMed

    Bai, Yanjie; Shi, Yong-Cheng

    2016-10-20

    Glycosidic linkages in a pyrodextrin were identified by NMR spectroscopy for the first time. Pyrodextrin was prepared by slurrying waxy maize starch at pH 3, filtering and drying at 40°C to 10-15% moisture content, then heating at 170°C for 4h. (1)H and (13)C NMR resonances of the pyrodextrin were assigned with the assistance of 2D techniques including COSY, TOCSY, HSQC, and HMBC, all measured on a 500MHz instrument. During dextrinization, native waxy maize starch was hydrolyzed and extensively branched with new glycosidic linkages. The resulting pyrodextrin became 100% soluble in water and produced lower viscosity solutions at 30% solids. There were only 1.2% reducing ends (α-form) detected in the pyrodextrin, but 1,6-anhydro-β-d-glucopyranosyl units accounted for 5.2% of repeating units and they were thought to be at the potential reducing end. New glycosyl linkages including α-1,6, β-1,6, α-1,2, and β-1,2 were identified. The total non-α-1,4 linkages in the pyrodextrin were about 17.8% compared to 5.8% in a maltodextrin prepared by α-amylase digestion. Transglycosidation and depolymerization occurred during dextrinization, and the resulting pyrodextrin was highly branched. PMID:27474585

  4. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    NASA Astrophysics Data System (ADS)

    Sachleben, J. R.

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and C-13 enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution H-1 and C-13 liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 angstrom. Internal motion is estimated to be slow with a correlation time greater than 10(exp -8) s(exp -1). The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring (N-14)-(H-1) J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T(sub 1) and T(sub 2) experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in C-13 enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  5. Metallogrid Single-Molecule Magnet: Solvent-Induced Nuclearity Transformation and Magnetic Hysteresis at 16 K.

    PubMed

    Huang, Wei; Shen, Fu-Xing; Wu, Shu-Qi; Liu, Li; Wu, Dayu; Zheng, Zhe; Xu, Jun; Zhang, Ming; Huang, Xing-Cai; Jiang, Jun; Pan, Feifei; Li, Yao; Zhu, Kun; Sato, Osamu

    2016-06-01

    Structural assembly and reversible transformation between a metallogrid Dy4 SMM (2) and its fragment Dy2 (1) were established in the different solvent media. The zero-field magnetization relaxation was slowed for dysprosium metallogrid (2) with relaxation barrier of Ueff = 61.3 K when compared to Dy2 (1). Both magnetic dilution and application of a moderate magnetic field suppress ground-state quantum tunneling of magnetization and result in an enhanced Ueff of 119.9 and 96.7 K for 2, respectively. Interestingly, the lanthanide metallogrid complex (2) exhibits magnetic hysteresis loop even up to 16 K at a given field sweep rate of 500 Oe/s. PMID:27164298

  6. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning

    SciTech Connect

    Mance, Deni; Baldus, Marc; Gast, Peter; Huber, Martina; Ivanov, Konstantin L.

    2015-06-21

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.

  7. Spinodal instabilities and the distillation effect in nuclear matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Providencia, C.; Providencia, J. Da

    2009-01-15

    We study the effect of strong magnetic fields, of the order of 10{sup 18}-10{sup 19} G, on the instability region of nuclear matter at subsaturation densities. Relativistic nuclear models both with constant couplings and with density-dependent parameters are considered. It is shown that a strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. As a consequence, we predict larger transition densities at the inner edge of the crust of compact stars with strong magnetic fields. The direction of instability gives rise to a very strong distillation effect if the last Landau level is only partially filled. However, for almost completed Landau levels, an antidistillation effect may occur.

  8. Electrically detected nuclear magnetic resonance in GaAs/AlGaAs-based quantum point contacts

    NASA Astrophysics Data System (ADS)

    Keane, Zachary; Godfrey, Matthew; Burke, Adam; Chen, Jason; Fricke, Sebastian; Klochan, Oleh; Micolich, Adam; Beere, Harvey; Ritchie, Dave; Trunov, Kirill; Reuter, Dirk; Wieck, Andreas; Hamilton, Alex

    2011-03-01

    Nuclear magnetic resonance (NMR) is a well-known technique with widespread applications in physics, chemistry and medicine. Conventional NMR studies use inductive coils to detect the magnetic field produced by precessing nuclear spins; this approach requires on the order of 1012 spins for detection. Recently, resistive detection of NMR through the hyperfine interaction has been demonstrated with electrons in mesoscopic 2- and 1-dimensional devices based on high-quality GaAs/AlGaAs heterostructures. These studies are typically sensitive to 108 spins, enabling NMR on much smaller sample volumes. Holes are predicted to have much weaker nuclear spin coupling than electrons, which could be relevant to the emerging fields of spintronics and quantum information processing. We present a preliminary comparison between the magnitude of the NMR signal in electron and hole quantum point contacts.

  9. Nuclear magnetic resonance study of the collagen matrix in tendon

    NASA Astrophysics Data System (ADS)

    Krasnosselskaia, Lada Vadimovna

    Understanding of complex interactions of water with macromolecules is a prerequisite for quantitative musculoskeletal imaging and this dissertation presents a study on NMR characteristics of water in anisotropic environment of the collagen extracellular matrix of tendon. The first chapter of the dissertation analyzes a "magic angle" effect, a well known in clinical practice artifact of a sudden signal increase in normal tendons and ligaments at the orientation of 55° with respect to the static magnetic field of an MRI scanner. The physical basis of the orientation dependence of the free induction decay is studied in ex-vivo mammalian tissue at the field strength of 2 Tesla. Obtained quantitative measures are related to the model of heterogeneous water phases in the collagen extracellular matrix of tendon. A novel effect of central frequency shift of the water signal is reported and hypothesis on the origin of the effect is put forward. Clinical applications of NMR and MRI constantly benefit from adopting methods and techniques from the field of NMR of liquids, solids and liquid crystals. In the second chapter, a pseudo solid echo technique is evaluated for the purpose of detecting slow motions in the collagen matrix at different hydration and temperatures, at the field strength of 11.74 Tesla (500 MHz). The pseudo solid echo is shown capable in detecting motions on the scale of 10-3-10-6 seconds. 1H spin-lattice relaxation study at different levels of hydration and temperatures is presented in the third chapter. Predictions of the molecular model of collagen hydration are verified at the field strength of 11.74 Tesla (500 MHz) and temperature of 6°C, 26°C and 37°C. In the fourth chapter, an efficient adaptive mesh numerical code is developed on the basis of the octal tree data structure for assessment of the bulk magnetic susceptibility effects. The code allows calculation of the microscopic magnetic field as "seen by the nucleus" for uniformly magnetized

  10. Spin-exchange narrowing in a nuclear magnetic transverse oscillator

    NASA Astrophysics Data System (ADS)

    Korver, Anna; Thrasher, Daniel; Bulatowicz, Michael; Walker, Thad

    2015-05-01

    We demonstrate spin exchange narrowing in synchronously pumped Xe NMR. The Xe NMR is driven by spin exchange with Rb atoms whose polarization is square-wave modulated at the Xe NMR frequency. On resonance, the nuclei precess in phase with the Rb polarization. Off resonance, however, the spin-exchange fields from the Rb cause the Xe to develop a static orthogonal spin component. This induces broadening in the NMR line while also dramatically suppressing the phase shift between the precessing Rb and Xe polarizations. We can compensate for this effect by adding an oscillating magnetic field oriented along the optical pumping axis and 180 degrees out of phase with the Rb polarization. This narrows the NMR line width to approximately the T1 limit, and nearly restores the usual relationship between detuning and phase shift. These results suggest the possibility of using the alkali field with appropriate magnetic field feedback along the bias field direction to narrow the NMR linewidth below the usual T1 limit. Support by the NSF and Northrop Grumman Co.

  11. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  12. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed.

  13. Methodological aspects in the calculation of parity-violating effects in nuclear magnetic resonance parameters.

    PubMed

    Weijo, Ville; Bast, Radovan; Manninen, Pekka; Saue, Trond; Vaara, Juha

    2007-02-21

    We examine the quantum chemical calculation of parity-violating (PV) electroweak contributions to the spectral parameters of nuclear magnetic resonance (NMR) from a methodological point of view. Nuclear magnetic shielding and indirect spin-spin coupling constants are considered and evaluated for three chiral molecules, H2O2, H2S2, and H2Se2. The effects of the choice of a one-particle basis set and the treatment of electron correlation, as well as the effects of special relativity, are studied. All of them are found to be relevant. The basis-set dependence is very pronounced, especially at the electron correlated ab initio levels of theory. Coupled-cluster and density-functional theory (DFT) results for PV contributions differ significantly from the Hartree-Fock data. DFT overestimates the PV effects, particularly with nonhybrid exchange-correlation functionals. Beginning from third-row elements, special relativity is of importance for the PV NMR properties, shown here by comparing perturbational one-component and various four-component calculations. In contrast to what is found for nuclear magnetic shielding, the choice of the model for nuclear charge distribution--point charge or extended (Gaussian)--has a significant impact on the PV contribution to the spin-spin coupling constants. PMID:17328593

  14. Measurement of lateral diffusion rates in membranes by pulsed magnetic field gradient, magic angle spinning-proton nuclear magnetic resonance.

    PubMed

    Gawrisch, Klaus; Gaede, Holly C

    2007-01-01

    Membrane organization, including the presence of domains, can be characterized by measuring lateral diffusion rates of lipids and membrane-bound substances. Magic angle spinning (MAS) yields well-resolved proton nuclear magnetic resonance (NMR) of lipids in biomembranes. When combined with pulsed-field gradient NMR (rendering what is called "pulsed magnetic field gradients-MAS-NMR"), it permits precise diffusion measurements on the micrometer lengths scale for any substance with reasonably well-resolved proton MAS-NMR resonances, without the need of preparing oriented samples. Sample preparation procedures, the technical requirements for the NMR equipment, and spectrometer settings are described. Additionally, equations for analysis of diffusion data obtained from unoriented samples, and a method for correcting the data for liposome curvature are provided.

  15. Nonaqueous magnetic nanoparticle suspensions with controlled particle size and nuclear magnetic resonance properties.

    PubMed

    Meledandri, Carla J; Stolarczyk, Jacek K; Ghosh, Swapankumar; Brougham, Dermot F

    2008-12-16

    We report the preparation of monodisperse maghemite (gamma-Fe2O3) nanoparticle suspensions in heptane, by thermal decomposition of iron(III) acetylacetonate in the presence of oleic acid and oleylamine surfactants. By varying the surfactant/Fe precursor mole ratio during synthesis, control was exerted both over the nanocrystal core size, in the range from 3 to 6 nm, and over the magnetic properties of the resulting nanoparticle dispersions. We report field-cycling 1H NMR relaxation analysis of the superparamagnetic relaxation rate enhancement of nonaqueous suspensions for the first time. This approach permits measurement of the relaxivity and provides information on the saturation magnetization and magnetic anisotropy energy of the suspended particles. The saturation magnetization was found to be in the expected range for maghemite particles of this size. The anisotropy energy was found to increase significantly with decreasing particle size, which we attribute to increased shape anisotropy. This study can be used as a guide for the synthesis of maghemite nanoparticles with selected magnetic properties for a given application.

  16. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment.

    PubMed

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising. PMID:26979686

  17. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-01

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  18. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment.

    PubMed

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  19. Meso-Scale Magnetic Signatures for Nuclear Reactor Steel Irradiation Embrittlement Monitoring

    SciTech Connect

    Suter, Jonathan D.; Ramuhalli, Pradeep; McCloy, John S.; Xu, Ke; Hu, Shenyang Y.; Li, Yulan; Jiang, Weilin; Edwards, Danny J.; Schemer-Kohrn, Alan L.; Johnson, Bradley R.

    2015-03-31

    Verifying the structural integrity of passive components in light-water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the ‘state of health’ of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of non-destructive evaluation (NDE) technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results to integrate advanced material characterization techniques with meso-scale computational models to provide an interpretive understanding of the state of degradation in a material. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. In future efforts, microstructural measurements and meso-scale magnetic measurements on thin films will be used to gain insights into the structural state of these materials to study the impact of irradiation on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  20. Mechanical design parameters for detection of nuclear signals by magnetic resonance force microscopy

    SciTech Connect

    Moore, G.J.; Hanlon, J.A.; Lamartine, B.; Hawley, M.; Solem, J.C.; Signer, S.; Jarmer, J.J.; Penttila, S.; Sillerud, L.O.; Pryputniewicz, R.J.

    1993-10-01

    Recent theoretical work has shown that mechanical detection of magnetic resonance from a single nuclear spin is in principle possible. This theory has recently been experimentally validated by the mechanical detection of electron spin resonance signals using microscale cantilevers. Currently we are extending this technology in an attempt to detect nuclear signals which are extending this technology in an attempt to detect nuclear signals which are three orders of magnitude lower in intensity than electron signals. In order to achieve the needed thousand-fold improvement in sensitivity we have undertaken the development of optimized mechanical cantilevers and highly polarized samples. Finite element modeling is used as a tool to simulate cantilever beam dynamics and to optimize the mechanical properties including Q, resonant frequency, amplitude of vibration and spring constant. Simulations are compared to experiments using heterodyne hologram interferometry. Nanofabrication of optimized cantilevers via ion milling will be directed by the outcome of these simulations and experiments. Highly polarized samples are developed using a three-fold approach: (1) high magnetic field strength (2.5T), (2) low temperature (1K), and (3) use of samples polarized by dynamic nuclear polarization. Our recent experiments have demonstrated nuclear polarizations in excess of 50% in molecules of toulene.

  1. Nuclear heating, radiation damage, and waste management options for the HYLIFE-II final focus magnets

    SciTech Connect

    Latkowski, J F; Moir, R W; House, P A

    1999-08-09

    Heavy-ion fusion (HIF) designs for inertial fusion energy (XFE) power plants typically require final focusing magnets just outside the reaction chamber and blanket. Due to penetrations within the chamber and blanket, the magnets are exposed to a radiation environment. Although the magnet bores would be sized to avoid line-of-sight irradiation, the magnets still would be susceptible to nuclear heating and radiation damage from neutrons and y-rays. Additionally, the magnets must be included in waste management considerations due to neutron activation. Modified versions of the HYLIFE-II IFE power plant featuring two-sided illumination by arrays of 32 or 96 beams from each side are presented. A simple, point-of-departure quadrupole magnet design is assumed, and a three-dimensional neutronics model is created for the Flibe pocket, first wall, blanket, shield, and final two focusing magnets. This work details state-of-the-art neutronics calculations and shows that the final focus system needs to be included in the economic and environmental considerations for the driver-chamber interface of any HIF IFE power plant design.

  2. Quantitative nuclear magnetic resonance imaging: characterisation of experimental cerebral oedema.

    PubMed Central

    Barnes, D; McDonald, W I; Johnson, G; Tofts, P S; Landon, D N

    1987-01-01

    Magnetic resonance imaging (MRI) has been used quantitatively to define the characteristics of two different models of experimental cerebral oedema in cats: vasogenic oedema produced by cortical freezing and cytotoxic oedema induced by triethyl tin. The MRI results have been correlated with the ultrastructural changes. The images accurately delineated the anatomical extent of the oedema in the two lesions, but did not otherwise discriminate between them. The patterns of measured increase in T1' and T2' were, however, characteristic for each type of oedema, and reflected the protein content. The magnetisation decay characteristics of both normal and oedematous white matter were monoexponential for T1 but biexponential for T2 decay. The relative sizes of the two component exponentials of the latter corresponded with the physical sizes of the major tissue water compartments. Quantitative MRI data can provide reliable information about the physico-chemical environment of tissue water in normal and oedematous cerebral tissue, and are useful for distinguishing between acute and chronic lesions in multiple sclerosis. Images PMID:3572428

  3. Half-metallicity in 2D organometallic honeycomb frameworks

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  4. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  5. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575

  6. Two-dimensional nuclear magnetic resonance studies of molecular structure in liquids and liquid crystals

    SciTech Connect

    Rucker, S.P.

    1991-07-01

    Magnetic couplings between protons, such as through-space dipole couplings, and scalar J-couplings depend sensitively on the structure of the molecule. Two dimensional nuclear magnetic resonance experiments provide a powerful tool for measuring these couplings, correlating them to specific pairs of protons within the molecule, and calculating the structure. This work discusses the development of NMR methods for examining two such classes of problems -- determination of the secondary structure of flexible molecules in anisotropic solutions, and primary structure of large biomolecules in aqueous solutions. 201 refs., 84 figs., 19 tabs.

  7. Nuclear Magnetic Moment of {sup 210}Fr: A Combined Theoretical and Experimental Approach

    SciTech Connect

    Gomez, E.; Aubin, S.; Sprouse, G. D.; Orozco, L. A.; Iskrenova-Tchoukova, E.; Safronova, M. S.

    2008-05-02

    We measure the hyperfine splitting of the 9S{sub 1/2} level of {sup 210}Fr, and find a magnetic dipole hyperfine constant A=622.25(36) MHz. The theoretical value, obtained using the relativistic all-order method from the electronic wave function at the nucleus, allows us to extract a nuclear magnetic moment of 4.38(5){mu}{sub N} for this isotope, which represents a factor of 2 improvement in precision over previous measurements. The same method can be applied to other rare isotopes and elements.

  8. Micro-coil detection of nuclear magnetic resonance for nanofluidic samples

    SciTech Connect

    Shibahara, A.; Casey, A.; Lusher, C. P.; Saunders, J.; Aßmann, C.; Schurig, Th.; Drung, D.

    2014-02-15

    We have developed a novel dc SQUID system with a micro-coil input circuit to act as a local probe of quantum matter and nanosystems. The planar niobium micro-coil pickup loop is located remotely from the SQUID, coupled through a superconducting twisted pair. A high degree of coupling between the coil and the region of interest of similar dimensions (up to ∼ 100 microns) can be achieved. We report nuclear magnetic resonance (NMR) measurements to characterise the sensitivity of these coils to {sup 3}He in the gas phase at 4.2 K in a 30 mT magnetic field.

  9. Application of a portable nuclear magnetic resonance surface probe to porous media.

    PubMed

    Marko, Andriy; Wolter, Bernd; Arnold, Walter

    2007-03-01

    A portable nuclear magnetic resonance (NMR) surface probe was used to determine the time-dependent self-diffusion coefficient D(t) of water molecules in two fluid-filled porous media. The measuring equipment and the inhomogeneous magnetic fields in the sensitive volume of the probe are described. It is discussed how to evaluate D(t) using a surface probe from the primary and stimulated echoes generated in three-pulse experiments. Furthermore, the evaluation of D(t) allows one to determine the geometrical structure of porous materials.

  10. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    SciTech Connect

    Adushkin, V.V.; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V.

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  11. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    SciTech Connect

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-12-15

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR.

  12. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOEpatents

    Kraus, Robert H.; Matlashov, Andrei N.; Espy, Michelle A.; Volegov, Petr L.

    2010-03-30

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  13. Nuclear magnetic resonance imaging and spectroscopy of human brain function.

    PubMed Central

    Shulman, R G; Blamire, A M; Rothman, D L; McCarthy, G

    1993-01-01

    The techniques of in vivo magnetic resonance (MR) imaging and spectroscopy have been established over the past two decades. Recent applications of these methods to study human brain function have become a rapidly growing area of research. The development of methods using standard MR contrast agents within the cerebral vasculature has allowed measurements of regional cerebral blood volume (rCBV), which are activity dependent. Subsequent investigations linked the MR relaxation properties of brain tissue to blood oxygenation levels which are also modulated by consumption and blood flow (rCBF). These methods have allowed mapping of brain activity in human visual and motor cortex as well as in areas of the frontal lobe involved in language. The methods have high enough spatial and temporal sensitivity to be used in individual subjects. MR spectroscopy of proton and carbon-13 nuclei has been used to measure rates of glucose transport and metabolism in the human brain. The steady-state measurements of brain glucose concentrations can be used to monitor the glycolytic flux, whereas subsequent glucose metabolism--i.e., the flux into the cerebral glutamate pool--can be used to measure tricarboxylic acid cycle flux. Under visual stimulation the concentration of lactate in the visual cortex has been shown to increase by MR spectroscopy. This increase is compatible with an increase of anaerobic glycolysis under these conditions as earlier proposed from positron emission tomography studies. It is shown how MR spectroscopy can extend this understanding of brain metabolism. Images Fig. 1 Fig. 2 Fig. 3 PMID:8475050

  14. 2D exchange 31P NMR spectroscopy of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1995-01-01

    Two-dimensional (2D) exchange 31P nuclear magnetic resonance spectroscopy is used to study the slow overall motion of the rod-shaped viruses M13 and tobacco mosaic virus in concentrated gels. Even for short mixing times, observed diagonal spectra differ remarkably from projection spectra and one-dimensional spectra. Our model readily explains this to be a consequence of the T2e anisotropy caused by slow overall rotation of the viruses about their length axis. 2D exchange spectra recorded for 30% (w/w) tobacco mosaic virus with mixing times < 1 s do not show any off-diagonal broadening, indicating that its overall motion occurs in the sub-Hz frequency range. In contrast, the exchange spectra obtained for 30% M13 show significant off-diagonal intensity for mixing times of 0.01 s and higher. A log-gaussian distribution around 25 Hz of overall diffusion coefficients mainly spread between 1 and 10(3) Hz faithfully reproduces the 2D exchange spectra of 30% M13 recorded at various mixing times in a consistent way. A small but notable change in diagonal spectra at increasing mixing time is not well accounted for by our model and is probably caused by 31P spin diffusion. PMID:7756532

  15. Key metabolites in tissue extracts of Elliptio complanata identified using (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Hurley-Sanders, Jennifer L; Levine, Jay F; Nelson, Stacy A C; Law, J M; Showers, William J; Stoskopf, Michael K

    2015-01-01

    We used (1)H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology.

  16. Dzyaloshinsky-Moriya interaction in the enhanced nuclear magnet PrCu6

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroumi; Kinoshita, Yasushi

    2001-01-01

    Recently it has been shown experimentally that the enhanced nuclear magnet PrCu6 behaves antiferromagnetically along the b axis and ferrromagnetically along the c axis. The mechanism for this anomalous magnetism is proposed here. The key lies in the crystal structure of PrCu6 with space group P21/c. In the unit cell there are two kinds of sites for Pr atoms. The neighboring atoms of one Pr are located at mirror reflection of those for another Pr. It is shown that between nuclear spins of these two Pr atoms the Dzyaloshinsky-Moriya type interaction is induced in the Ruderman-Kittel-Kasuya-Yosida interaction through the Van Vleck susceptibility. The susceptibility is calculated in the mean-field approximation, which reproduces the features of experimental results qualitatively.

  17. Protein carbon-13 spin systems by a single two-dimensional nuclear magnetic resonance experiment

    SciTech Connect

    Oh, B.H.; Westler, W.M.; Darba, P.; Markley, J.L.

    1988-05-13

    By applying a two-dimensional double-quantum carbon-13 nuclear magnetic resonance experiment to a protein uniformly enriched to 26% carbon-13, networks of directly bonded carbon atoms were identified by virtue of their one-bond spin-spin couplings and were classified by amino acid type according to their particular single- and double-quantum chemical shift patterns. Spin systems of 75 of the 98 amino acid residues in a protein, oxidized Anabaena 7120 ferredoxin (molecular weight 11,000), were identified by this approach, which represents a key step in an improved methodology for assigning protein nuclear magnetic resonance spectra. Missing spin systems corresponded primarily to residues located adjacent to the paramagnetic iron-sulfur cluster. 25 references, 2 figures.

  18. Analysis of antimycin A by reversed-phase liquid chromatography/nuclear magnetic-resonance spectrometry

    USGS Publications Warehouse

    Ha, Steven T.K.; Wilkins, Charles L.; Abidi, Sharon L.

    1989-01-01

    A mixture of closely related streptomyces fermentation products, antimycin A, Is separated, and the components are identified by using reversed-phase high-performance liquid chromatography with directly linked 400-MHz proton nuclear magnetic resonance detection. Analyses of mixtures of three amino acids, alanine, glycine, and valine, are used to determine optimal measurement conditions. Sensitivity increases of as much as a factor of 3 are achieved, at the expense of some loss in chromatographic resolution, by use of an 80-μL NMR cell, Instead of a smaller 14-μL cell. Analysis of the antimycin A mixture, using the optimal analytical high performance liquid chromatography/nuclear magnetic resonance conditions, reveals it to consist of at least 10 closely related components.

  19. Key metabolites in tissue extracts of Elliptio complanata identified using 1H nuclear magnetic resonance spectroscopy

    PubMed Central

    Hurley-Sanders, Jennifer L.; Levine, Jay F.; Nelson, Stacy A. C.; Law, J. M.; Showers, William J.; Stoskopf, Michael K.

    2015-01-01

    We used 1H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology. PMID:27293708

  20. Negotiated identities of chemical instrumentation: the case of nuclear magnetic resonance spectroscopy, 1956-1969.

    PubMed

    Roberts, Jody A

    2003-05-01

    What is an NMR spectrometer? Beginning with this seemingly simple question, I will explore the development of nuclear magnetic resonance spectroscopy between the years 1956 and 1969 from two vantage points: the organic chemists who used the new instrument, and Varian Associates-the makers of the first NMR spectrometers-. Through an examination of the articles and advertisements published in the Journal of Organic Chemistry, I will draw two conclusions. First, organic chemists and Varian Associates (along with other actors) are co-responsible for the development of nuclear magnetic resonance spectroscopy (i.e., NMR spectroscopy was not created by a single actor). Second, by changing the way NMR spectrometers are used, organic chemists attempted to change to the identity of the instrument. Similarly, when Varian Associates advertised their NMR spectrometers in a different way, they, too, attempted to change the identity of the instrument.

  1. Nuclear Magnetic Resonance (NMR) analysis of a Kel-F resin and lacquer

    NASA Astrophysics Data System (ADS)

    Rutenberg, A. C.

    1985-08-01

    Proton, carbon, and fluorine nuclear magnetic resonance (NMR) spectroscopy has been used at the Oak Ridge Y-12 Plant to determine the concentration of various species present in Kel-F 800 resin and its lacquers. Nuclear magnetic resonance (NMR) spectroscopy has been used to characterize Kel-F 800 resin and to measure the various chemical species present in a lacquer based on this resin. Proton NMR spectroscopy was used to measure the ratio of ethyl acetate to xylenes and to estimate the vinylidene fluoride content of the resin. Fluorine NMR spectroscopy was used to determine the water and ethanol content of the lacquer as well as some of its components. Fluorine NMR spectroscopy was also used to estimate the amount of perfluorodecanoate emulsifier present in the Kel-F resin. Carbon-13 NMR spectroscopy was used to determine the isomeric composition of various batches of xylenes and as an alternate method for measuring the vinylidene fluoride content of the resin.

  2. Use of Nuclear Spin Noise Spectroscopy to Monitor Slow Magnetization Buildup at Millikelvin Temperatures

    PubMed Central

    Pöschko, Maria Theresia; Peat, David; Owers‐Bradley, John

    2016-01-01

    Abstract At ultralow temperatures, longitudinal nuclear magnetic relaxation times become exceedingly long and spectral lines are very broad. These facts pose particular challenges for the measurement of NMR spectra and spin relaxation phenomena. Nuclear spin noise spectroscopy is used to monitor proton spin polarization buildup to thermal equilibrium of a mixture of glycerol, water, and copper oxide nanoparticles at 17.5 mK in a static magnetic field of 2.5 T. Relaxation times determined in such a way are essentially free from perturbations caused by excitation radiofrequency pulses, radiation damping, and insufficient excitation bandwidth. The experimental spin‐lattice relaxation times determined on resonance by saturation recovery with spin noise detection are consistently longer than those determined by using pulse excitation. These longer values are in better accordance with the expected field dependence trend than those obtained by on‐resonance experiments with pulsed excitation. PMID:27305629

  3. Stimulated echoes and two-dimensional nuclear magnetic resonance spectra for solids with simple line shapes

    NASA Astrophysics Data System (ADS)

    Geil, Burkhard; Diezemann, Gregor; Böhmer, Roland

    2008-03-01

    Nuclear magnetic resonance (NMR) experiments on ion conductors often yield rather unstructured spectra, which are hard to interpret if the relation between the actual translational motion of the mobile species and the changes of the NMR frequencies is not known. In order to facilitate a general analysis of experiments on solids with such spectra, different models for the stochastic evolution of the NMR frequencies are considered. The treated models involve random frequency jumps, diffusive evolutions, or approximately fixed frequency jumps. Two-dimensional nuclear magnetic resonance spectra as well as stimulated-echo functions for the study of slow and ultraslow translational dynamics are calculated for Gaussian equilibrium line shapes. The results are compared with corresponding ones from rotational models and with experimental data.

  4. Fetal imaging by nuclear magnetic resonance: a study in goats: work in progress

    SciTech Connect

    Foster, M.A.; Knight, C.H.; Rimmington, J.E.; Mallard, J.R.

    1983-10-01

    Nuclear magnetic resonance proton imaging was used to obtain images of goat fetuses in utero. The long T1 relaxation time of amniotic fluid makes it appear black on proton density images when examined using the Aberdeen imager, and so allows very good discrimination of the position and structure of the fetus. Some fetal internal tissues can be seen on T1 images. These findings suggest that NMR imaging has great potential in pregnancy studies.

  5. Nuclear magnetic resonance studies of granular flows: Technical progress report, quarter ending 09/30/93

    SciTech Connect

    Not Available

    1993-10-27

    This Technical Progress Report for the quarter ending 09/30/93 describes work on two tasks which are part of nuclear magnetic resonance studies of granular flows. (1) Research has been directed toward improving concentration measurements under reasonably fast conditions. (2) The process continues of obtaining comprehensive velocity, concentration, and diffusion information at several angular velocities of the cylinder for seeds (mustard, sesame, and sunflower seeds) flowing in a half-filled cylinder.

  6. Robert Vivian Pound and the Discovery of Nuclear Magnetic Resonance in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Pavlish, Ursula

    2010-06-01

    This paper is based upon five interviews I conducted with Robert Vivian Pound in 2006-2007 and covers his childhood interest in radios, his time at the Massachusetts Institute of Technology Radiation Laboratory during the Second World War, his work on the discovery of nuclear magnetic resonance in condensed matter, his travels as a professor at Harvard University, and his social interactions with other physicists.

  7. Theory and applications of maps on SO(3) in nuclear magnetic resonance

    SciTech Connect

    Cho, H.M.

    1987-02-01

    Theoretical approaches and experimental work in the design of multiple pulse sequences in Nuclear Magnetic Resonance (NMR) are the subjects of this dissertation. Sequences of discrete pulses which reproduce the nominal effect of single pulses, but over substantially broader, narrower, or more selective ranges of transition frequencies, radiofrequency field amplitudes, and spin-spin couplings than the single pulses they replace, are developed and demonstrated. 107 refs., 86 figs., 6 tabs.

  8. Effects of time and temperature of firing on Fe-rich ceramics studied by Moessbauer spectroscopy and two-dimensional {sup 1}H-nuclear magnetic resonance relaxometry

    SciTech Connect

    Casieri, Cinzia; De Luca, Francesco; Nodari, Luca; Russo, Umberto; Terenzi, Camilla; Tudisca, Valentina

    2012-10-15

    The combined effects of firing temperature and soaking time on the microstructure of iron-rich porous ceramics have been studied by {sup 57}Fe-Moessbauer spectroscopy and 2D {sup 1}H nuclear magnetic resonance (NMR) relaxometry using a single-sided probe. Examining water-saturated ceramics using the relaxation correlation method, where longitudinal (T{sub 1}) and transverse (T{sub 2}) relaxation times are measured concurrently, provides information about firing-induced changes in both porosity (related to T{sub 1}) and magnetic properties (related to T{sub 2}). Comparing the information obtained from {sup 1}H-NMR analyses with that obtained from Moessbauer spectroscopy (which characterizes changes in iron-bearing species) shows that the T{sub 1}-T{sub 2} NMR correlation technique is very sensitive to even subtle modifications in the magnetic behavior of Fe-bearing species. Moreover, the single-sided NMR approach allows us to perform millimeter-scale depth-resolved measurements, which can be used to non-invasively study the microstructural heterogeneities associated with non-uniform firing effects inside ceramics. This is in contrast to Moessbauer spectroscopy, which requires that the ceramic samples be ground.

  9. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    PubMed

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN. PMID:27265668

  10. Separation Nanotechnology of Diethylenetriaminepentaacetic Acid Bonded Magnetic Nanoparticles for Spent Nuclear Fuel

    SciTech Connect

    Kaur, Maninder; Johnson, Andrew; Tian, Guoxin; Jiang, Weilin; Rao, Linfeng; Paszczynski, Andrzej; Qiang, You

    2013-01-01

    A nanomagnetic separation method based on Diethylenetriaminepentaacetic acid (DTPA) conjugated with magnetic nanoparticles (MNPs) is studied for application in spent nuclear fuel separation. The high affinity of DTPA towards actinides aids in separation from the highly acidic medium of nuclear waste. The solubility and magnetization of particles at low pH is protected by encapsulating them in silica layer. Surface functionalization of silica coated particles with polyamines enhances the loading capacity of the chelators on MNPs. The particles were characterized before and after surface modification using transmission electron microscopy (TEM), helium ion microscopy (HIM), Fourier transform-infrared (FT-IR) spectrometry, and X-ray diffractometry. The coated and uncoated samples were studied using vibrating sample magnetometer (VSM) to understand the change in magnetic properties due to the influence of the surface functionalization. The hydrodynamic size and surface charge of the particles are investigated using Dynamic Light Scattering (DLS). The uptake behavior of Am(III), Pu(IV), U(VI), and Np(V) from 0.1M NaNO3 solution was investigated. The sorption result shows the strong affinity of DTPA towards Am(III) and Pu(IV) by extracting 97% and 80% of actinides, respectively. The high removal efficiency and fast uptake of actinides make the chelator conjugated MNPs an effective method for spent nuclear fuel separation.

  11. (83)Kr nuclear magnetic moment in terms of that of (3)He.

    PubMed

    Makulski, Włodzimierz

    2014-08-01

    High resolution NMR spectroscopy was applied to precisely determine the (83)Kr nuclear magnetic dipole moment on the basis of new results available for nuclear magnetic shielding in krypton and helium-3 atoms. Small amounts of (3)He as the solutes and (83)Kr as the buffer gas were observed in (3)He and (83)Kr NMR spectra at the constant external field, B0 = 11.7578 T. In each case, the resonance frequencies (ν(He) and ν(Kr)) were linearly dependent on the density of gaseous solvent. The extrapolation of experimental points to the zero density of gaseous krypton allowed for the evaluation of both resonance frequencies free from intermolecular interactions. By combining these measurements with the recommended (83)Kr chemical shielding value, the nuclear magnetic moment could be determined with much better precision than ever before, μ((83)Kr) = -0.9707297(32)μN, with the improvement due to the greater accuracy of the spectral data.

  12. (83)Kr nuclear magnetic moment in terms of that of (3)He.

    PubMed

    Makulski, Włodzimierz

    2014-08-01

    High resolution NMR spectroscopy was applied to precisely determine the (83)Kr nuclear magnetic dipole moment on the basis of new results available for nuclear magnetic shielding in krypton and helium-3 atoms. Small amounts of (3)He as the solutes and (83)Kr as the buffer gas were observed in (3)He and (83)Kr NMR spectra at the constant external field, B0 = 11.7578 T. In each case, the resonance frequencies (ν(He) and ν(Kr)) were linearly dependent on the density of gaseous solvent. The extrapolation of experimental points to the zero density of gaseous krypton allowed for the evaluation of both resonance frequencies free from intermolecular interactions. By combining these measurements with the recommended (83)Kr chemical shielding value, the nuclear magnetic moment could be determined with much better precision than ever before, μ((83)Kr) = -0.9707297(32)μN, with the improvement due to the greater accuracy of the spectral data. PMID:24842240

  13. Low-field nuclear magnetic resonance for the in vivo study of water content in trees

    SciTech Connect

    Yoder, Jacob; Malone, Michael W.; Espy, Michelle A.; Sevanto, Sanna

    2014-09-15

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging have long been used to study water content in plants. Approaches have been primarily based on systems using large magnetic fields (∼1 T) to obtain NMR signals with good signal-to-noise. This is because the NMR signal scales approximately with the magnetic field strength squared. However, there are also limits to this approach in terms of realistic physiological configuration or those imposed by the size and cost of the magnet. Here we have taken a different approach – keeping the magnetic field low to produce a very light and inexpensive system, suitable for bulk water measurements on trees less than 5 cm in diameter, which could easily be duplicated to measure on many trees or from multiple parts of the same tree. Using this system we have shown sensitivity to water content in trees and their cuttings and observed a diurnal signal variation in tree water content in a greenhouse. We also demonstrate that, with calibration and modeling of the thermal polarization, the system is reliable under significant temperature variation.

  14. Low-field nuclear magnetic resonance for the in vivo study of water content in trees.

    PubMed

    Yoder, Jacob; Malone, Michael W; Espy, Michelle A; Sevanto, Sanna

    2014-09-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging have long been used to study water content in plants. Approaches have been primarily based on systems using large magnetic fields (~1 T) to obtain NMR signals with good signal-to-noise. This is because the NMR signal scales approximately with the magnetic field strength squared. However, there are also limits to this approach in terms of realistic physiological configuration or those imposed by the size and cost of the magnet. Here we have taken a different approach--keeping the magnetic field low to produce a very light and inexpensive system, suitable for bulk water measurements on trees less than 5 cm in diameter, which could easily be duplicated to measure on many trees or from multiple parts of the same tree. Using this system we have shown sensitivity to water content in trees and their cuttings and observed a diurnal signal variation in tree water content in a greenhouse. We also demonstrate that, with calibration and modeling of the thermal polarization, the system is reliable under significant temperature variation.

  15. EM 2dV1.0.F

    2012-01-05

    Code is for a layered electric medium with 2d structure. Includes air-earth interface at node z=2.. The electric ex and ez fields are calculated on edges of elemental grid and magnetic field hy is calculated on the face of the elemental grid. The code allows for a layered earth with 2d structures. Solutions of coupled first order Maxwell's equations are solved in the two dimensional environment using a finite- difference scheme on a staggered spationamore » and temporal grid.« less

  16. Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

    SciTech Connect

    Casadei, Cecilia

    2011-01-01

    The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr8 antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr3+ ion with diamagnetic Cd2+ (Cr7Cd) and with Ni2+ (Cr7Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both 53Cr-NMR and 19F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant 19F - M+ where M+ = Cr3+, Ni2+ in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.

  17. Enhanced affinity of ketotifen toward tamarind seed polysaccharide in comparison with hydroxyethylcellulose and hyaluronic acid: a nuclear magnetic resonance investigation.

    PubMed

    Uccello-Barretta, Gloria; Nazzi, Samuele; Balzano, Federica; Di Colo, Giacomo; Zambito, Ylenia; Zaino, Chiara; Sansò, Marco; Salvadori, Eleonora; Benvenuti, Marco

    2008-08-01

    Nuclear magnetic resonance (NMR) spectroscopy demonstrated that, in aqueous solution, ketotifen fumarate bound more strongly to tamarind seed polysaccharide (TSP) than to hydroxyethylcellulose or hyaluronic acid. Results were confirmed by dynamic dialysis technique.

  18. Separation of quadrupolar and chemical/paramagnetic shift interactions in two-dimensional 2H (I=1) nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Antonijevic, Sasa; Wimperis, Stephen

    2005-01-01

    A novel two-dimensional 2H (spin I=1) nuclear magnetic resonance technique is introduced for determination of both quadrupole and chemical/paramagnetic shift tensors and their relative orientation. The new method is based upon the well-known quadrupolar-echo experiment and is designed to refocus the quadrupolar interaction at the end of the t1 evolution period while retaining the modulation introduced by the shift interaction. As a result, a projection of the resulting two-dimensional spectrum onto its F1 dimension yields a shift anisotropy powder lineshape free from any quadrupolar broadening. The chemical/paramagnetic shifts appear in both F1 and F2 dimensions and are thus spread along a +1 frequency gradient; hence, a projection orthogonal to this gradient yields the pure quadrupolar powder lineshape, free from all shift interaction effects. The relative orientation of the quadrupole and shift tensors can be obtained by analysis of the full two-dimensional correlation lineshape. Unlike the well-known double-quantum experiment, the new method is, in principle, equally effective for all values of the quadrupolar splitting, including zero. The properties of the new technique are demonstrated using computer simulation and methods for the extraction of quadrupole and shift tensor parameters are described. The new technique is applied to (diamagnetic) benzoic acid-d1 (C6H5CO2D) and (paramagnetic) copper(II) chloride dihydrate-d4 (CuCl2ṡ2D2O).

  19. Separation of quadrupolar and chemical/paramagnetic shift interactions in two-dimensional 2H (I=1) nuclear magnetic resonance spectroscopy.

    PubMed

    Antonijevic, Sasa; Wimperis, Stephen

    2005-01-22

    A novel two-dimensional (2)H (spin I=1) nuclear magnetic resonance technique is introduced for determination of both quadrupole and chemical/paramagnetic shift tensors and their relative orientation. The new method is based upon the well-known quadrupolar-echo experiment and is designed to refocus the quadrupolar interaction at the end of the t(1) evolution period while retaining the modulation introduced by the shift interaction. As a result, a projection of the resulting two-dimensional spectrum onto its F(1) dimension yields a shift anisotropy powder lineshape free from any quadrupolar broadening. The chemical/paramagnetic shifts appear in both F(1) and F(2) dimensions and are thus spread along a +1 frequency gradient; hence, a projection orthogonal to this gradient yields the pure quadrupolar powder lineshape, free from all shift interaction effects. The relative orientation of the quadrupole and shift tensors can be obtained by analysis of the full two-dimensional correlation lineshape. Unlike the well-known double-quantum experiment, the new method is, in principle, equally effective for all values of the quadrupolar splitting, including zero. The properties of the new technique are demonstrated using computer simulation and methods for the extraction of quadrupole and shift tensor parameters are described. The new technique is applied to (diamagnetic) benzoic acid-d(1) (C(6)H(5)CO(2)D) and (paramagnetic) copper(II) chloride dihydrate-d(4) (CuCl(2).2D(2)O). PMID:15740253

  20. Superconducting quantum interference device microsusceptometer balanced over a wide bandwidth for nuclear magnetic resonance applications

    SciTech Connect

    Vinante, A. Falferi, P.; Mezzena, R.

    2014-10-15

    Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from {sup 1}H spins in a glycerol droplet placed directly on top of the 20 μm SQUID loops.

  1. Moissanite anvil cell design for giga-pascal nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Herzig, Tobias; Haase, Jürgen

    2014-04-01

    A new design of a non-magnetic high-pressure anvil cell for nuclear magnetic resonance (NMR) experiments at Giga-Pascal pressures is presented, which uses a micro-coil inside the pressurized region for high-sensitivity NMR. The comparably small cell has a length of 22 mm and a diameter of 18 mm, so it can be used with most NMR magnets. The performance of the cell is demonstrated with external-force vs. internal-pressure experiments, and the cell is shown to perform well at pressures up to 23.5 GPa using 800 μm 6H-SiC large cone Boehler-type anvils. 1H, 23Na, 27Al, 69Ga, and 71Ga NMR test measurements are presented, which show a resolution of better than 4.5 ppm, and an almost maximum possible signal-to-noise ratio.

  2. Moissanite anvil cell design for giga-pascal nuclear magnetic resonance

    SciTech Connect

    Meier, Thomas; Herzig, Tobias; Haase, Jürgen

    2014-04-15

    A new design of a non-magnetic high-pressure anvil cell for nuclear magnetic resonance (NMR) experiments at Giga-Pascal pressures is presented, which uses a micro-coil inside the pressurized region for high-sensitivity NMR. The comparably small cell has a length of 22 mm and a diameter of 18 mm, so it can be used with most NMR magnets. The performance of the cell is demonstrated with external-force vs. internal-pressure experiments, and the cell is shown to perform well at pressures up to 23.5 GPa using 800 μm 6H-SiC large cone Boehler-type anvils. {sup 1}H, {sup 23}Na, {sup 27}Al, {sup 69}Ga, and {sup 71}Ga NMR test measurements are presented, which show a resolution of better than 4.5 ppm, and an almost maximum possible signal-to-noise ratio.

  3. Superconducting quantum interference device microsusceptometer balanced over a wide bandwidth for nuclear magnetic resonance applications.

    PubMed

    Vinante, A; Mezzena, R; Falferi, P

    2014-10-01

    Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from (1)H spins in a glycerol droplet placed directly on top of the 20 μm SQUID loops.

  4. Nuclear relaxation in an electric field enables the determination of isotropic magnetic shielding

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2016-08-01

    It is shown that in contrast to the case of nuclear relaxation in a magnetic field B, simultaneous application of the magnetic field B and an additional electric field E causes transverse relaxation of a spin-1/2 nucleus with the rate proportional to the square of the isotropic part of the magnetic shielding tensor. This effect can contribute noticeably to the transverse relaxation rate of heavy nuclei in molecules that possess permanent electric dipole moments. Relativistic quantum mechanical computations indicate that for 205Tl nucleus in a Pt-Tl bonded complex, Pt(CN)5Tl, the transverse relaxation rate induced by the electric field is of the order of 1 s-1 at E = 5 kV/mm and B = 10 T.

  5. Moissanite anvil cell design for Giga-Pascal nuclear magnetic resonance.

    PubMed

    Meier, Thomas; Herzig, Tobias; Haase, Jürgen

    2014-04-01

    A new design of a non-magnetic high-pressure anvil cell for nuclear magnetic resonance (NMR) experiments at Giga-Pascal pressures is presented, which uses a micro-coil inside the pressurized region for high-sensitivity NMR. The comparably small cell has a length of 22 mm and a diameter of 18 mm, so it can be used with most NMR magnets. The performance of the cell is demonstrated with external-force vs. internal-pressure experiments, and the cell is shown to perform well at pressures up to 23.5 GPa using 800 μm 6H-SiC large cone Boehler-type anvils. (1)H, (23)Na, (27)Al, (69)Ga, and (71)Ga NMR test measurements are presented, which show a resolution of better than 4.5 ppm, and an almost maximum possible signal-to-noise ratio. PMID:24784622

  6. Heterometallic Cu(II)-Dy(III) Clusters of Different Nuclearities with Slow Magnetic Relaxation.

    PubMed

    Modak, Ritwik; Sikdar, Yeasin; Cosquer, Goulven; Chatterjee, Sudipta; Yamashita, Masahiro; Goswami, Sanchita

    2016-01-19

    The synthesis, structures, and magnetic properties of two heterometallic Cu(II)-Dy(III) clusters are reported. The first structural motif displays a pentanuclear Cu(II)4Dy(III) core, while the second one reveals a nonanuclear Cu(II)6Dy(III)3 core. We employed o-vanillin-based Schiff base ligands combining o-vanillin with 3-amino-1-propanol, H2vap, (2-[(3-hydroxy-propylimino)-methyl]-6-methoxy-phenol), and 2-aminoethanol, H2vae, (2-[(3-hydroxy-ethylimino)-methyl]-6-methoxy-phenol). The differing nuclearities of the two clusters stem from the choice of imino alcohol arm in the Schiff bases, H2vap and H2vae. This work is aimed at broadening the diversity of Cu(II)-Dy(III) clusters and to perceive the consequence of changing the length of the alcohol arm on the nuclearity of the cluster, providing valuable insight into promising future synthetic directions. The underlying topological entity of the pentanuclear Cu4Dy cluster is reported for the first time. The investigation of magnetic behaviors of 1 and 2 below 2 K reveals slow magnetic relaxation with a significant influence coming from the variation of the alcohol arm affecting the nature of magnetic interactions. PMID:26702645

  7. Electric quadrupole polarizabilities of nuclear magnetic shielding in some small molecules.

    PubMed

    Ferraro, M B; Caputo, M C; Pagola, G I; Lazzeretti, P

    2008-01-28

    Computational procedures, based on (i) the Ramsey common origin approach and (ii) the continuous transformation of the origin of the quantum mechanical current density-diamagnetic zero (CTOCD-DZ), were applied at the Hartree-Fock level to determine electric quadrupole polarizabilities of nuclear magnetic shielding for molecules in the presence of a nonuniform electric field with a uniform gradient. The quadrupole polarizabilities depend on the origin of the coordinate system, but values of the magnetic field induced at a reference nucleus, determined via the CTOCD-DZ approach, are origin independent for any calculations relying on the algebraic approximation, irrespective of size and quality of the (gaugeless) basis set employed. On the other hand, theoretical estimates of the induced magnetic field obtained by single-origin methods are translationally invariant only in the limit of complete basis sets. Calculations of electric quadrupole polarizabilities of nuclear magnetic shielding are reported for H(2), HF, H(2)O, NH(3), and CH(4) molecules.

  8. Meso-scale magnetic signatures for nuclear reactor steel irradiation embrittlement monitoring

    NASA Astrophysics Data System (ADS)

    Suter, J. D.; Ramuhalli, P.; McCloy, J. S.; Xu, K.; Hu, S.; Li, Y.; Jiang, W.; Edwards, D. J.; Schemer-Kohrn, A. L.; Johnson, B. R.

    2015-03-01

    Verifying the structural integrity of passive components in light water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the "state of health" of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of nondestructive evaluation technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results of integrating advanced material characterization techniques with meso-scale computational models. In the future, this will help to provide an interpretive understanding of the state of degradation in structural materials. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. Ongoing research is focused on extending the measurements and models on thin films to gain insights into the structural state of irradiated materials and the resulting impact on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  9. Meso-scale magnetic signatures for nuclear reactor steel irradiation embrittlement monitoring

    SciTech Connect

    Suter, J. D. Ramuhalli, P. Hu, S.; Li, Y.; Jiang, W.; Edwards, D. J.; Schemer-Kohrn, A. L.; Johnson, B. R.; McCloy, J. S. Xu, K.

    2015-03-31

    Verifying the structural integrity of passive components in light water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the “state of health” of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of nondestructive evaluation technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results of integrating advanced material characterization techniques with meso-scale computational models. In the future, this will help to provide an interpretive understanding of the state of degradation in structural materials. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. Ongoing research is focused on extending the measurements and models on thin films to gain insights into the structural state of irradiated materials and the resulting impact on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  10. Bioengineered Magnetoferritin Nanoprobes for Single-Dose Nuclear-Magnetic Resonance Tumor Imaging.

    PubMed

    Zhao, Yanzhao; Liang, Minmin; Li, Xiao; Fan, Kelong; Xiao, Jie; Li, Yanli; Shi, Hongcheng; Wang, Fei; Choi, Hak Soo; Cheng, Dengfeng; Yan, Xiyun

    2016-04-26

    Despite all the advances in multimodal imaging, it remains a significant challenge to acquire both magnetic resonance and nuclear imaging in a single dose because of the enormous difference in sensitivity. Indeed, nuclear imaging is almost 10(6)-fold more sensitive than magnetic resonance imaging (MRI); thus, repeated injections are generally required to obtain sufficient MR signals after nuclear imaging. Here, we show that strategically engineered magnetoferritin nanoprobes can image tumors with high sensitivity and specificity using SPECT and MRI in living mice after a single intravenous injection. The magnetoferritin nanoprobes composed of (125)I radionuclide-conjugated human H-ferritin iron nanocages ((125)I-M-HFn) internalize robustly into cancer cells via a novel tumor-specific HFn-TfR1 pathway. In particular, the endocytic recycling characteristic of TfR1 transporters solves the nuclear signal blocking issue caused by the high dose nanoprobes injected for MRI, thus enabling simultaneous functional and morphological tumor imaging without reliance on multi-injections.

  11. Nuclear magnetic biosignatures in the carbonaceous matter of ancient cherts: comparison with carbonaceous meteorites.

    PubMed

    Gourier, Didier; Delpoux, Olivier; Binet, Laurent; Vezin, Hervé

    2013-10-01

    The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies.

  12. Nuclear magnetic biosignatures in the carbonaceous matter of ancient cherts: comparison with carbonaceous meteorites.

    PubMed

    Gourier, Didier; Delpoux, Olivier; Binet, Laurent; Vezin, Hervé

    2013-10-01

    The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies. PMID:24093546

  13. Two Phase Flow Measurements by Nuclear Magnetic Resonance (NMR)

    SciTech Connect

    Altobelli, Stephen A; Fukushima, Eiichi

    2006-08-14

    different nuclei, protons and 19F. It also uses two different types of NMR image formation, a conventional spin-echo and a single-point method. The single-point method is notable for being useful for imaging materials which are much more rigid than can usually be studied by NMR imaging. We use it to image “low density” polyethylene (LDPE) plastic in this application. We have reduced the imaging time for this three-phase imaging method to less than 10 s per pair of profiles by using new hardware. Directly measuring the solid LDPE signal was a novel feature for multi-phase flow studies. We also used thermally polarized gas NMR (as opposed to hyper-polarized gas) which produces low signal to noise ratios because gas densities are on the order of 1000 times smaller than liquid densities. However since we used multi-atom molecules that have short T1's and operated at elevated pressures we could overcome some of the losses. Thermally polarized gases have advantages over hyperpolarized gases in the ease of preparation, and in maintaining a well-defined polarization. In these studies (Codd and Altobelli, 2003), we used stimulated echo sequences to successfully obtain propagators of gas in bead packs out to observation times of 300 ms. Zarraga, et al. (2000) used laser-sheet profilometry to investigate normal stress differences in concentrated suspensions. Recently we developed an NMR imaging analog for comparison with numerical work that is being performed by Rekha Rao at Sandia National Laboratories (Rao, Mondy, Sun, et al, 2002). A neutrally buoyant suspension of 100 mm PMMA spheres in a Newtonian liquid was sheared in a vertical Couette apparatus inside the magnet. The outer cylinder rotates and the inner cylinder is fixed. At these low rotation rates, the free-surface of the Newtonian liquid shows no measurable deformation, but the suspension clearly shows its non-Newtonian character.

  14. [Recent progress in nuclear magnetic resonance spectrum for drug research and development].

    PubMed

    Zhong, Jun; Jiang, Xue-mei

    2015-01-01

    In the process of modern drug research, the new methods and technologies which can detect drug molecules' chemical composition, structure and interaction with biomolecules are always the key scientific problems people care about. Spectra (including IR, UV and NMR) are the most common analytical methods, of which NMR can obtain detailed parameter about the nucleus of organic molecules through researching the laws of nuclear transition in the impact of surrounding chemical environment. The parameter contains rich information about the chemical composition, structure and interaction with other molecules of organic molecules. In many complex environments, such as liquid, solid or gas state, even biological in situ environment, NMR can provide molecules' chemical composition, atomic-resolution three-dimensional structure, information of interaction with each other and dynamic process, especially the information about drug interacting with biomacromolecules. In recent years, the applications of nuclear magnetic resonance spectrum in drug research and development are more and more widespread. This paper reviewed its recent progress in structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in drug research and development. In the first part, we gave a brief introduction of nuclear magnetic resonance technology and its applications in drug research. In the second part, we explained the basic principles briefly and summarized progress in methods and techniques for drug research. In the third part, we discussed applications of nuclear magnetic resonance ir structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in detail. The conclusions were stated in the last part.

  15. [Recent progress in nuclear magnetic resonance spectrum for drug research and development].

    PubMed

    Zhong, Jun; Jiang, Xue-mei

    2015-01-01

    In the process of modern drug research, the new methods and technologies which can detect drug molecules' chemical composition, structure and interaction with biomolecules are always the key scientific problems people care about. Spectra (including IR, UV and NMR) are the most common analytical methods, of which NMR can obtain detailed parameter about the nucleus of organic molecules through researching the laws of nuclear transition in the impact of surrounding chemical environment. The parameter contains rich information about the chemical composition, structure and interaction with other molecules of organic molecules. In many complex environments, such as liquid, solid or gas state, even biological in situ environment, NMR can provide molecules' chemical composition, atomic-resolution three-dimensional structure, information of interaction with each other and dynamic process, especially the information about drug interacting with biomacromolecules. In recent years, the applications of nuclear magnetic resonance spectrum in drug research and development are more and more widespread. This paper reviewed its recent progress in structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in drug research and development. In the first part, we gave a brief introduction of nuclear magnetic resonance technology and its applications in drug research. In the second part, we explained the basic principles briefly and summarized progress in methods and techniques for drug research. In the third part, we discussed applications of nuclear magnetic resonance ir structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in detail. The conclusions were stated in the last part. PMID:25993865

  16. Small-scale instrumentation for nuclear magnetic resonance of porous media

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard; Casanova, Federico; Dabrowski, Martin; Danieli, Ernesto; Evertz, Loribeth; Haber, Agnes; Van Landeghem, Maxime; Haber-Pohlmeier, Sabina; Olaru, Alexandra; Perlo, Juan; Sucre, Oscar

    2011-01-01

    The investigation of fluids confined to porous media is the oldest topic of investigation with small-scale nuclear magnetic resonance (NMR) instruments, as such instruments are mobile and can be moved to the site of the object, such as the borehole of an oil well. While the analysis was originally restricted by the inferior homogeneity of the employed magnets to relaxation measurements, today, portable magnets are available for all types of NMR measurements concerning relaxometry, imaging and spectroscopy in two types of geometries. These geometries refer to closed magnets that surround the sample and open magnets, which are brought close to the object for measurement. The current state of the art of portable, small-scale NMR instruments is reviewed and recent applications of such instruments are featured. These include the porosity analysis and description of diesel particulate filters, the determination of the moisture content in walls from gray concrete, new approaches to analyze the pore space and moisture migration in soil, and the constitutional analysis of the mortar base of ancient wall paintings.

  17. Nanomagnetism of Core-Shell Magnetic Nanoparticles and Application in Spent Nuclear Fuel Separation

    NASA Astrophysics Data System (ADS)

    Tarsem Singh, Maninder Kaur

    This dissertation presents the study on novel core-shell magnetic nanoparticles (NPs) with unique magnetic properties. Understanding the fundamental physics of antiferromagnetic - ferromagnetic interactions is essential to apply in different applications. Chromium (Cr) doped and undoped core-shell iron/iron-oxide NPs have been synthesized using cluster deposition system and studied with respect to their nanostructures, morphologies, sizes, chemical composition and magnetic properties. The room-temperature magnetic properties of Fe based NPs shows the strong dependence of intra/inter-particle interaction on NP size. The Cr-doped Fe NP shows the origin of sigma-FeCr phase at very low Cr concentration (2 at.%) unlike others reported at high Cr content and interaction reversal from dipolar to exchange interaction. A theoretical model of watermelon is constructed based on the experimental results and core-shell NP system in order to explain the physics of exchange interaction in Cr-doped Fe particles. The magnetic nanoparticle---chelator separation nanotechnology is investigated for spent nuclear fuel recycling and is reported 97% and 80% of extraction for Am(III) and Pu(IV) actinides respectively. If the long-term heat generating actinides such as Am(III) can be efficiently removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. As it is a simple, versatile, compact, and cost efficient process that minimizes secondary waste and improves storage performance.

  18. Modeling the nuclear magnetic resonance behavior of lung: from electrical engineering to critical care medicine.

    PubMed

    Cutillo, A G; Ailion, D C

    1999-01-01

    The present article reviews the basic principles of a new approach to the characterization of pulmonary disease. This approach is based on the unique nuclear magnetic resonance (NMR) properties of the lung and combines experimental measurements (using specially developed NMR techniques) with theoretical simulations. The NMR signal from inflated lungs decays very rapidly compared with the signal from completely collapsed (airless) lungs. This phenomenon is due to the presence of internal magnetic field inhomogeneity produced by the alveolar air-tissue interface (because air and water have different magnetic susceptibilities). The air-tissue interface effects can be detected and quantified by magnetic resonance imaging (MRI) techniques using temporally symmetric and asymmetric spin-echo sequences. Theoretical models developed to explain the internal (tissue-induced) magnetic field inhomogeneity in aerated lungs predict the NMR lung behavior as a function of various technical and physiological factors (e.g., the level of lung inflation) and simulate the effects of various lung disorders (in particular, pulmonary edema) on this behavior. Good agreement has been observed between the predictions obtained from the mathematical models and the results of experimental NMR measurements in normal and diseased lungs. Our theoretical and experimental data have important pathophysiological and clinical implications, especially with respect to the characterization of acute lung disease (e.g., pulmonary edema) and the management of critically ill patients.

  19. Collinear laser spectroscopy of atomic cadmium. Extraction of nuclear magnetic dipole and electric quadrupole moments

    NASA Astrophysics Data System (ADS)

    Frömmgen, Nadja; Balabanski, Dimiter L.; Bissell, Mark L.; Bieroń, Jacek; Blaum, Klaus; Cheal, Bradley; Flanagan, Kieran; Fritzsche, Stephan; Geppert, Christopher; Hammen, Michael; Kowalska, Magdalena; Kreim, Kim; Krieger, Andreas; Neugart, Rainer; Neyens, Gerda; Rajabali, Mustafa M.; Nörtershäuser, Wilfried; Papuga, Jasna; Yordanov, Deyan T.

    2015-06-01

    Hyperfine structure A and B factors of the atomic 5 s5 p 3P2 → 5 s6 s 3S1 transition are determined from collinear laser spectroscopy data of 107-123Cd and 111 m-123 m Cd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with s 1/2 and d 5/2 nuclear ground states and isomeric h 11/2 states is evaluated and a linear relationship is observed for all nuclear states except s 1/2. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic 5 s5 p 3P2 level is derived from multi-configuration Dirac-Hartree-Fock calculations in order to evaluate the spectroscopic nuclear quadrupole moments. The results are consistent with those obtained in an ionic transition and based on a similar calculation.

  20. Theory of damped quantum rotation in nuclear magnetic resonance spectra. III. Nuclear permutation symmetry of the line shape equation.

    PubMed

    Szymański, S

    2009-12-28

    The damped quantum rotation (DQR) theory describes manifestations in nuclear magnetic resonance spectra of the coherent and stochastic dynamics of N-fold molecular rotors composed of indistinguishable particles. The standard jump model is only a limiting case of the DQR approach; outside this limit, the stochastic motions of such rotors have no kinematic description. In this paper, completing the previous two of this series, consequences of nuclear permutation symmetry for the properties of the DQR line shape equation are considered. The systems addressed are planar rotors, such as aromatic hydrocarbons' rings, occurring inside of molecular crystals oriented in the magnetic field. Under such conditions, oddfold rotors can have nontrivial permutation symmetries only for peculiar orientations while evenfold ones always retain their intrinsic symmetry element, which is rotation by 180 degrees about the N-fold axis; in specific orientations the latter can gain two additional symmetry elements. It is shown that the symmetry selection rules applicable to the classical rate processes in fluids, once recognized as having two diverse aspects, macroscopic and microscopic, are also rigorously valid for the DQR processes in the solid state. However, formal justification of these rules is different because the DQR equation is based on the Pauli principle, which is ignored in the jump model. For objects like the benzene ring, exploitation of these rules in simulations of spectra using the DQR equation can be of critical significance for the feasibility of the calculations. Examples of such calculations for the proton system of the benzene ring in a general orientation are provided. It is also shown that, because of the intrinsic symmetries of the evenfold rotors, many of the DQR processes, which such rotors can undergo, are unobservable in NMR spectra.

  1. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    SciTech Connect

    Urban, Jeffry Todd

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  2. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K.

    PubMed

    Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. PMID:23238592

  3. Prospects for Sub-Micron Solid State Nuclear Magnetic Resonance Imaging with Low-Temperature Dynamic Nuclear Polarization

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2010-01-01

    Summary We evaluate the feasibility of 1H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol/water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 µl sample yields a 1H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that 1H NMR signals from 1 µm3 voxel volumes should be readily detectable, and voxels as small as 0.03 µm3 may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz 1H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension. PMID:20458431

  4. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    NASA Astrophysics Data System (ADS)

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids.

  5. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    PubMed Central

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592

  6. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range

    SciTech Connect

    Lin, Tingting; Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho; Lin, Jun

    2014-11-15

    In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-T{sub c} superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz{sup 1/2} are employed as detectors. Considering the flux trapping and operational difficulties associated with low-T{sub c} SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2 fT/Hz{sup 1/2} at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-T{sub c} SQUIDs.

  7. Functionalized 2D atomic sheets with new properties

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Zhou, Jian; Wang, Qian; Jena, Puru

    2011-03-01

    Due to the unique atomic structure and novel physical and chemical properties, graphene has sparked tremendous theoretical and experimental efforts to explore other 2D atomic sheets like B-N, Al-N, and Zn-O, where the two components offer much more complexities and flexibilities in surface modifications. Using First principles calculations based on density functional theory, we have systematically studied the semi- and fully-decorated 2D sheets with H and F and Cl. We have found that the electronic structures and magnetic properties can be effectively tuned, and the system can be a direct or an indirect semiconductor or even a half-metal, and the system can be made ferromagnetic, antiferromagnetic, or magnetically degenerate depending upon how the surface is functionalized. Discussions are made for the possible device applications.

  8. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  9. Probing the effective nuclear-spin magnetic field in a single quantum dot via full counting statistics

    SciTech Connect

    Xue, Hai-Bin; Nie, Yi-Hang; Chen, Jingzhe; Ren, Wei

    2015-03-15

    We study theoretically the full counting statistics of electron transport through a quantum dot weakly coupled to two ferromagnetic leads, in which an effective nuclear-spin magnetic field originating from the configuration of nuclear spins is considered. We demonstrate that the quantum coherence between the two singly-occupied eigenstates and the spin polarization of two ferromagnetic leads play an important role in the formation of super-Poissonian noise. In particular, the orientation and magnitude of the effective field have a significant influence on the variations of the values of high-order cumulants, and the variations of the skewness and kurtosis values are more sensitive to the orientation and magnitude of the effective field than the shot noise. Thus, the high-order cumulants of transport current can be used to qualitatively extract information on the orientation and magnitude of the effective nuclear-spin magnetic field in a single quantum dot. - Highlights: • The effective nuclear-spin magnetic field gives rise to the off-diagonal elements of the reduced density matrix of single QD. • The off-diagonal elements of reduced density matrix of the QD have a significant impact on the high-order current cumulants. • The high-order current cumulants are sensitive to the orientation and magnitude of the effective nuclear-spin magnetic field. • The FCS can be used to detect the orientation and magnitude of the effective nuclear-spin magnetic field in a single QD.

  10. Tunnel-diode resonator and nuclear magnetic resonance studies of low-dimensional magnetic and superconducting systems

    NASA Astrophysics Data System (ADS)

    Yeninas, Steven Lee

    This thesis emphasizes two frequency-domain techniques which uniquely employ radio frequency (RF) excitations to investigate the static and dynamic properties of novel magnetic and superconducting materials. The first technique is a tunnel-diode resonator (TDR) which detects bulk changes in the dynamic susceptibility, chi = dM/dH. The capability of TDR to operate at low temperatures (less than 100 mK) and high fields (up to 65 T in pulsed fields) was critical for investigations of the antiferromagnetically correlated magnetic molecules Cr12Cu2 and Cr12 Ln4 (Ln = Y, Eu, Gd, Tb, Dy, Ho, Er, Yb), and the superconductor SrFe2(As1--xPx) 2 (x = 0.35). Investigations of Cr12Cu 2 and Cr12Ln4 demonstrates the first implementation of TDR to experimentally investigate the lowlying energy spectra of magnetic molecules in pulsed magnetic fields. Zeeman splitting of the quantum spin states results in transitions between field-dependent ground state energy levels observed as peaks in dM/dH at 600 mK, and demonstrate good agreement with theoretical calculations using a isotropic Heisenberg spin Hamiltonian. Increasing temperature to 2.5 K, TDR reveals a rich spectrum of frequency-dependent level crossings from thermally populated excited states which cannot be observed by conventional static magnetometry techniques. The last study presented uses TDR in pulsed fields to determine the temperature-dependent upper-critical field Hc2 to investigate the effects of columnar defects arising from heavy ion irradiation of SrFe2(As 1--xPx)2. Results suggest irradiation uniformly suppresses Tc and Hc2, and does not introduce additional features on H c2(T) and the shapes of the anisotropic Hc2 curves indicates a nodal superconducting gap. The second technique is nuclear magnetic resonance (NMR) which yields site specific magnetic and electronic information arising from hyperfine interactions for select magnetic nuclei. NMR spectra and nuclear spin-lattice relaxation measurements are reported

  11. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  12. Fermi liquid parameters of a 2D 3He film

    NASA Astrophysics Data System (ADS)

    Lusher, C. P.; Saunders, J.; Cowan, B. P.

    1990-08-01

    A temperature independent magnetic susceptibility has been observed for the second layer of 3He on graphite for second layer surface densities less than 0.055 Å -2, consistent with 2D Fermi liquid behaviour. The Landau parameter Foa is determined using known values of m ∗/m. The relative dependence of these two parameters is in good agreement with almost localised Fermion theory, as is the case in bulk liquid 3He.

  13. A magnetization-transfer nuclear magnetic resonance study of the folding of staphylococcal nuclease

    SciTech Connect

    Evans, P.A.; Kautz, R.A.; Fox, R.O.; Dobson, C.M. )

    1989-01-10

    The equilibrium between alternative folded states of a globular protein, staphylococcal nuclease, has been investigated by using {sup 1}H NMR. Magnetization-transfer experiments have revealed the existence of a related structural heterogeneity of the unfolded state, and quantitative analysis of a series of these experiments has permitted the kinetics of folding and interconversion of the different states to be explored. A model based on cis/trans isomerism at the peptide bond preceding Pro-117 has been developed to account for the results. This model, recently supported by a protein-engineering experiment has been used to interpret the kinetic data, providing insight into the nature of the folding processes. The predominance of the cis-proline form in the folded state is shown to derive from a large favorable enthalpy term resulting from more effective overall folding interactions. The kinetics of folding and isomerization are shown to occur on similar time scales, such that more than one pathway between two states may be significant. It has been possible, however, to compare the direct folding and unfolding rates within the cis- and trans-proline-containing populations, with results suggesting that the specific stabilization of the cis peptide bond is effective only at a late stage in the folding process.

  14. Nuclear magnetic resonance spectroscopy is highly sensitive for lipid-soluble metabolites.

    PubMed

    Dai, Haiyang; Hong, Bikai; Xu, Zhifeng; Ma, Lian; Chen, Yaowen; Xiao, Yeyu; Wu, Renhua

    2013-08-01

    Although the water-soluble metabolite profile of human mesenchymal stem cells is known, the lipid profile still needs further investigation. In this study, methanol-chloroform was used to extract pid-soluble metabolites and perchloric acid was used to extract water-soluble metabolites. Furthermore, a dual phase extraction method using methanol-chloroform and water was used to obtain both water and lipid fractions simultaneously. All metabolite extractions were analyzed on a 9.4T high-resolution nuclear magnetic resonance spectrometer. Metabolite resonance peaks were assigned in the acquired spectra according to the chemical shift, and the extraction efficiency of ferent methods was compared. Results showed that in the spectra of water-soluble extracts, major metabolites comprised low molecular weight metabolites, including lactate, acetic acid, fatty acids, threonine, glutamic acid, creatine, choline and its derivatives, while in the spectra of lipid-soluble extracts, most metabolites were assigned to fatty acids. Among the different extraction procedures, perchloric acid was more efficient in extracting water-soluble metabolites and methanol-chloroform was efficient in extracting organic components compared with the dual phase extraction method. Nuclear magnetic resonance spectroscopy showed that as low as 0.7 mg organic yield was enough to obtain clear resonance peaks, while about 6.0 mg water-soluble yield was needed to obtain relatively favorable spectral lines. These results show that the efficiency of extracting water and lipid fractions is higher using perchloric acid and methanol-chloroform compared with dual phase extraction and that nuclear magnetic resonance spectroscopy is highly sensitive for analyzing lipid-soluble extracts.

  15. Computational study of interactions and nuclear magnetic shielding constants in linear chains of formamide clusters.

    PubMed

    Sánchez, Marina; Prosmiti, Rita; Delgado-Barrio, Gerardo

    2014-07-01

    We investigated the energetic, structural, dielectric, and nuclear magnetic shielding properties of linear n-formamide clusters, with n up to 6, to quantitatively characterize cooperative effects in model biological systems. The geometries of the complexes were optimized at the MP2 and DFT/B3LYP levels by using the pc-2 and pc-3 basis sets, while the nuclear magnetic shielding constants were calculated by employing pcS-n type basis sets, which have been optimized specifically for density functional calculations of these properties. The interaction energies show the cooperative effect, which favors the successive addition of monomers. In addition, by analyzing structural changes in the intermolecular C=O, C-N and hydrogen O⋯H bonds, as well as in the average dipole moments as cluster size increases, we found that the cooperative interaction far exceeds that expected for electrostatic interactions. Such non-pairwise-additive effects are also reflected in the changes of the nuclear magnetic shielding constants. In particular, the negativity of O shielding decreases around 23% from the monomer to the 6-formamide chain. It is possible to note the decrease in the shielding of H and in the deshielding of O as a result of their hydrogen bonding. However, the results obtained show that these variations in the extremes of formamide chains tend to zero, and the respective shielding values tend to stabilize as the number of monomers increases in the chain. Also, the cooperative effect increases in the middle of the chains, by decreasing the shielding for all atoms except that of O, which decreases its deshielding. These results could serve to guide improvements in current conventional models for simulating hydrogen bonded systems.

  16. Characterization of high-level nuclear waste glass using magnetic measurements

    SciTech Connect

    Senftle, F.E.; Thorpe, A.N.; Grant, J.R.; Barkatt, A.

    1994-12-31

    Magnetic measurements constitute a promising method for the characterization of nuclear waste glasses in view of their simplicity and small sample weight requirements. Initial studies of simulated high-level waste glasses show that the Curie constant is generally a useful indicator of the Fe{sup 2+}:Fe{sup 3+} ratio. Glasses produced by air-cooling in large vessels show systematic deviations between experimental and calcined values, which are indicative of the presence of small amounts of crystalline iron-containing phases. Most of the iron in these phases becomes dissolved in the glass upon re-heating and more rapid quenching. The studies further show that upon leaching the glass in water some of the iron in the surface regions of the glass is converted to a form which has high temperature-independent magnetic susceptibility.

  17. Spatio-temporal anomalous diffusion in heterogeneous media by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Palombo, M.; Gabrielli, A.; De Santis, S.; Cametti, C.; Ruocco, G.; Capuani, S.

    2011-07-01

    In this paper, we describe nuclear magnetic resonance measurements of water diffusion in highly confined and heterogeneous colloidal systems using an anomalous diffusion model. For the first time, temporal and spatial fractional exponents, α and μ, introduced within the framework of continuous time random walk, are simultaneously measured by pulsed gradient spin-echo NMR technique in samples of micro-beads dispersed in aqueous solution. In order to mimic media with low and high level of disorder, mono-dispersed and poly-dispersed samples are used. We find that the exponent α depends on the disorder degree of the system. Conversely, the exponent μ depends on both bead sizes and magnetic susceptibility differences within samples. The new procedure proposed here may be a useful tool to probe porous materials and microstructural features of biological tissue.

  18. Spatio-temporal anomalous diffusion in heterogeneous media by nuclear magnetic resonance.

    PubMed

    Palombo, M; Gabrielli, A; De Santis, S; Cametti, C; Ruocco, G; Capuani, S

    2011-07-21

    In this paper, we describe nuclear magnetic resonance measurements of water diffusion in highly confined and heterogeneous colloidal systems using an anomalous diffusion model. For the first time, temporal and spatial fractional exponents, α and μ, introduced within the framework of continuous time random walk, are simultaneously measured by pulsed gradient spin-echo NMR technique in samples of micro-beads dispersed in aqueous solution. In order to mimic media with low and high level of disorder, mono-dispersed and poly-dispersed samples are used. We find that the exponent α depends on the disorder degree of the system. Conversely, the exponent μ depends on both bead sizes and magnetic susceptibility differences within samples. The new procedure proposed here may be a useful tool to probe porous materials and microstructural features of biological tissue.

  19. Effects of Barrier-Induced Nuclear Spin Magnetization Inhomogeneities on Diffusion-Attenuated MR Signal

    PubMed Central

    Sukstanskii, A.L.; Ackerman, J.J.H.; Yablonskiy, D.A.

    2007-01-01

    The spatial distribution of the transverse nuclear spin magnetization, appearing in a single compartment with impermeable boundaries in a Stejskal-Tanner gradient pulse MR experiment, is analyzed in detail. At short diffusion times the presence of diffusion-restrictive barriers (membranes) reduces effective diffusivity near the membranes and leads to an inhomogeneous spin magnetization distribution (the edge-enhancement effect). In this case, the signal reveals a quasi-two-compartment behavior and can be empirically modeled remarkably well by a biexponential function. The current results provide a framework for interpreting experimental MR data on various phenoma, including water diffusion in giant axons, metabolite diffusion in the brain, and hyperpolarized gas diffusion in lung airways. PMID:14523959

  20. A Whole Body Nuclear Magnetic Resonance (NMR) Imaging System With Full Three-Dimensional Capabilities

    NASA Astrophysics Data System (ADS)

    Simon, Howard E.

    1981-07-01

    A description of the nuclear magnetic resonance imaging system at Stony Brook with whole body capabilities based on a .1 Tesla air-core magnet with a 62 cm bore will be given. Important considerations for full three-dimensional (3D) imaging from projections include static field homogeneity, linear field gradient strength and uniformity, adequate trans-mitter and receiver capabilities and rapid data collection and processing. Preliminary results of our efforts to achieve a flexible system with potential clinical applications will be shown along with images of the head and breast from living human subjects. Since the 3D image has isotropic resolution, the image may be viewed from any desired direction.

  1. New formulation of Magnetization Equation for Flowing Nuclear Spin under NMR/MRI Excitation(I)

    NASA Astrophysics Data System (ADS)

    de, Dilip; Emetere, Moses; Omotosho, Victor

    2015-03-01

    We have obtained for the first time from the Bloch NMR equations the correct dependence of the single component of magnetization, My and Mz at resonance (NMR/MRI) on relaxation times, rf B1 field (pulsed or continuous), blood(nuclear spin) flow velocity, etc. in the rotating frame of reference. The equations are applicable for both CW and pulsed NMR experiments with or without flow of spins. Our approaches can be extended easily to include gradient fields and diffusion of spins, if needed in NMR/MRI experiments. We also discuss the application of our equations to a specific case of MR excitation scheme: Free induction decay. The first time new equations of single component of MR magnetization and further equations that can be derived with the methodologies used here, can be applied towards accurate simulation of MR images/signals and extraction of parameters of clinical importance through comparison of the measured and the simulated images/signals.

  2. A Magnetic Carbon Sorbent for Radioactive Material from the Fukushima Nuclear Accident

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Daizo; Furukawa, Kazumi; Takasuga, Masaya; Watanabe, Koki

    2014-08-01

    Here we present the first report of a carbon-γ-Fe2O3 nanoparticle composite of mesoporous carbon, bearing COOH- and phenolic OH- functional groups on its surface, a remarkable and magnetically separable adsorbent, for the radioactive material emitted by the Fukushima Daiichi nuclear power plant accident. Contaminated water and soil at a level of 1,739 Bq kg-1 (134Cs and 137Cs at 509 Bq kg-1 and 1,230 Bq kg-1, respectively) and 114,000 Bq kg-1 (134Cs and 137Cs at 38,700 Bq kg-1 and 75,300 Bq kg-1, respectively) were decontaminated by 99% and 90% respectively with just one treatment carried out in Nihonmatsu city in Fukushima. Since this material is remarkably high performance, magnetically separable, and a readily applicable technology, it would reduce the environmental impact of the Fukushima accident if it were used.

  3. Billion-fold enhancement in sensitivity of nuclear magnetic resonance spectroscopy for magnesium ions in solution.

    PubMed

    Gottberg, Alexander; Stachura, Monika; Kowalska, Magdalena; Bissell, Mark L; Arcisauskaite, Vaida; Blaum, Klaus; Helmke, Alexander; Johnston, Karl; Kreim, Kim; Larsen, Flemming H; Neugart, Rainer; Neyens, Gerda; Garcia Ruiz, Ronald F; Szunyogh, Daniel; Thulstrup, Peter W; Yordanov, Deyan T; Hemmingsen, Lars

    2014-12-15

    β-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. (31)Mg β-NMR spectra are measured for as few as 10(7) magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β-NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry.

  4. Atomic electric dipole moment induced by the nuclear electric dipole moment: The magnetic moment effect

    SciTech Connect

    Porsev, S. G.; Ginges, J. S. M.; Flambaum, V. V.

    2011-04-15

    We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM d{sub N} with the hyperfine interaction, the ''magnetic moment effect''. We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms {sup 129}Xe, {sup 171}Yb, {sup 199}Hg, {sup 211}Rn, and {sup 225}Ra have been calculated numerically. From the experimental limits on the atomic EDMs of {sup 129}Xe and {sup 199}Hg we have placed the following constraints on the nuclear EDMs, |d{sub N}({sup 129}Xe)|<1.1x10{sup -21}|e|cm and |d{sub N}({sup 199}Hg)|<2.8x10{sup -24}|e|cm.

  5. /sup 13/C nuclear magnetic resonance study of the complexation of calcium by taurine

    SciTech Connect

    Irving, C.S.; Hammer, B.E.; Danyluk, S.S.; Klein, P.D.

    1980-01-01

    /sup 13/C Nuclear magnetic resonance chemical shifts, /sup 1/J/sub c-c/ scalar coupling constants, spin-lattice relaxation times, and nuclear Overhauser effects were determined for taurine-(1, 2 /sup 13/C) and a taurine-(1 /sup 13/C) and taurine-(2 /sup 13/C) mixture in the presence and absence of calcium. Comparison of taurine titration shifts to values for related compounds reveals some unusual electronic properties of the taurine molecule. Stability constants of 1:1 calcium complexes with taurine zwitterions and anions, as well as their /sup 13/C chemical shifts, were obtained by least squares analysis of titration curves measured in the presence of calcium. The stability constants of calcium-taurine complexes were significantly lower than previous values and led to estimates that only approximately one percent of intracellular calcium of mammalian myocardial cells would exist in a taurine complex.

  6. Billion-fold enhancement in sensitivity of nuclear magnetic resonance spectroscopy for magnesium ions in solution.

    PubMed

    Gottberg, Alexander; Stachura, Monika; Kowalska, Magdalena; Bissell, Mark L; Arcisauskaite, Vaida; Blaum, Klaus; Helmke, Alexander; Johnston, Karl; Kreim, Kim; Larsen, Flemming H; Neugart, Rainer; Neyens, Gerda; Garcia Ruiz, Ronald F; Szunyogh, Daniel; Thulstrup, Peter W; Yordanov, Deyan T; Hemmingsen, Lars

    2014-12-15

    β-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. (31)Mg β-NMR spectra are measured for as few as 10(7) magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β-NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry. PMID:25303164

  7. Contributed review: nuclear magnetic resonance core analysis at 0.3 T.

    PubMed

    Mitchell, Jonathan; Fordham, Edmund J

    2014-11-01

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  8. Applicability of radioactive 99mTc-O4- magnetic fluid to nuclear medicine

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hee; Kim, Seong-Min; Kim, Keun-Ho; Kim, Chong-Oh

    2011-01-01

    Magnetite nanoparticles were synthesized with solution of ferrous and ferric chlorides and ammonia water by sonochemical method. The hydrophilically radioactive magnetic fluids were prepared by labeling technetium pertechnetate (99mTc-O4-) and then adsorbing alginic acid on the magnetite particles. In order to measure some properties of the dispersed particles, the magnetic fluids were freezed down to -70 oC, and were dried in vacuum. The total size of the particles was about 15 nm with the core diameter of 12 nm and their superparamagnetic saturation magnetization was 63 emu/g for the core-shell of Fe3O4/Algin and 52 emu/g for that of Fe3O4/99mTc-O4-/Algin. The labeling of radioactive 99mTc-O4- to the magnetite particles was efficient to about 70 %. The fluid of magnetic particles on which the radioisotopic substance is labeled with such an efficiency level may be applied as a tracer for diagnosis in nuclear medicine.

  9. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    SciTech Connect

    Mitchell, Jonathan Fordham, Edmund J.

    2014-11-15

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  10. Flocculation Effects on Bound Water in Sludges as Measured by Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Carberry, Judith Bower; Prestowitz, Robert A.

    1985-01-01

    Nuclear magnetic resonance relaxation times (T1 and T2) were measured for flocculated and unflocculated samples of activated sludge. The weight of water and solids in the sludge samples was found and related to T1 to find the relative percentage of bound water. The results suggest that the amount of bound water increases as the samples become more unflocculated. The values of T1 and T2 also indicate that unflocculated individual particles are characterized by loose packing of shorter molecules and that the addition of larger molecules may induce flocculation. PMID:16346723

  11. High-resolution proton nuclear magnetic resonance characterization of seminolipid from bovine spermatozoa.

    PubMed

    Alvarez, J G; Storey, B T; Hemling, M L; Grob, R L

    1990-06-01

    The high-resolution one- and two-dimensional proton nuclear magnetic resonance (1H-NMR) characterization of seminolipid from bovine spermatozoa is presented. The 1H-NMR data was confirmed by gas-liquid chromatography-mass spectrometric analysis of the partially methylated alditol acetates of the sugar unit, mild alkaline methanolysis of the glyceryl ester, mobility on normal phase and diphasic thin-layer chromatography (HPTLC), and fast atom bombardment mass spectrometry (FAB-MS). The structure of the molecule corresponds to 1-O-hexadecyl-2-O-hexadecanoyl-3-O-beta-D-(3'-sulfo)-galactopyranosyl- sn-glycerol. PMID:2373957

  12. Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor

    SciTech Connect

    Loretz, M.; Degen, C. L.; Pezzagna, S.; Meijer, J.

    2014-01-20

    We present nanoscale nuclear magnetic resonance (NMR) measurements performed with nitrogen-vacancy (NV) centers located down to about 2 nm from the diamond surface. NV centers were created by shallow ion implantation followed by a slow, nanometer-by-nanometer removal of diamond material using oxidative etching in air. The close proximity of NV centers to the surface yielded large {sup 1}H NMR signals of up to 3.4 μT-rms, corresponding to ∼330 statistically polarized or ∼10 fully polarized proton spins in a (1.8 nm){sup 3} detection volume.

  13. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    SciTech Connect

    Geiger, David K

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  14. Isotropic proton-detected local-field nuclear magnetic resonancein solids

    SciTech Connect

    Havlin, Robert H.; Walls, Jamie D.; Pines, Alexander

    2004-08-04

    A new nuclear magnetic resonance (NMR) method is presented which produces linear, isotropic proton-detected local-field spectra for InS spin systems in powdered samples. The method, HETeronuclear Isotropic Evolution (HETIE), refocuses the anisotropic portion of the heteronuclear dipolar coupling frequencies by evolving the system under a series of specially designed Hamiltonians and evolution pathways. The theory behind HETIE is represented along with experimental studies conducted on a powdered sample of ferrocene, demonstrating the methodology outlined in this paper. Applications of HETIE for structural determination in solid-state NMR are discussed.

  15. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    SciTech Connect

    Fukushima, Tatsuya; Yamamoto, Junichi; Fukuchi, Masashi; Kaji, Hironori; Hirata, Shuzo; Jung, Heo Hyo; Adachi, Chihaya; Hirata, Osamu; Shibano, Yuki

    2015-08-15

    Liquid organic light-emitting diodes (liquid OLEDs) are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR) experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  16. High-resolution proton nuclear magnetic resonance characterization of seminolipid from bovine spermatozoa.

    PubMed

    Alvarez, J G; Storey, B T; Hemling, M L; Grob, R L

    1990-06-01

    The high-resolution one- and two-dimensional proton nuclear magnetic resonance (1H-NMR) characterization of seminolipid from bovine spermatozoa is presented. The 1H-NMR data was confirmed by gas-liquid chromatography-mass spectrometric analysis of the partially methylated alditol acetates of the sugar unit, mild alkaline methanolysis of the glyceryl ester, mobility on normal phase and diphasic thin-layer chromatography (HPTLC), and fast atom bombardment mass spectrometry (FAB-MS). The structure of the molecule corresponds to 1-O-hexadecyl-2-O-hexadecanoyl-3-O-beta-D-(3'-sulfo)-galactopyranosyl- sn-glycerol.

  17. Combining Nuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations to Characterize Carvedilol Polymorphs.

    PubMed

    Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z

    2016-09-01

    The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations.

  18. In vivo phosphorus-31 nuclear magnetic resonance reveals lowered ATP during heat shock of Tetrahymena

    SciTech Connect

    Findly, R.C.; Gillies, R.J.; Shulman, R.G.

    1983-03-11

    Cells synthesize a characteristic set of proteins--heat shock proteins--in response to a rapid temperature jump or certain other stress treatments. The technique of phosphorus-31 nuclear magnetic resonance spectroscopy was used to examine in vivo the effects of temperature jump on two species of Tetrahymena that initiate the heat shock response at different temperatures. An immediate 50 percent decrease in cellular adenosine triphosphate was observed when either species was jumped to a temperature that strongly induces synthesis of heat shock proteins. This new adenosine triphosphate concentration was maintained at the heat shock temperature.

  19. {sup 1}H nuclear magnetic resonance study of hydrated water dynamics in perfluorosulfonic acid ionomer Nafion

    SciTech Connect

    Han, Jun Hee; Lee, Kyu Won; Jeon, G. W.; Lee, Cheol Eui; Park, W. K.; Choi, E. H.

    2015-01-12

    We have studied the dynamics of hydrated water molecules in the proton exchange membrane of Nafion by means of high-resolution {sup 1}H nuclear magnetic resonance (NMR) measurements. “Bound” and “free” states of hydrated water clusters as well as the exchange protons were identified from the NMR chemical shift measurements, and their activation energies were obtained from the temperature-dependent laboratory- and rotating-frame spin-lattice relaxation measurements. Besides, a peculiar motional transition in the ultralow frequency region was observed at 373 K for the “free” hydrated water from the rotating-frame NMR spin-lattice relaxation time measurements.

  20. Determination of alkylbenzenesulfonate surfactants in groundwater using macroreticular resins and carbon-13 nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Willoughby, T.; Barber, L.B.; Thorn, K.A.

    1987-01-01

    Alkylbenzenesulfonate surfactants were determined in groundwater at concentrations as low as 0.3 mg/L. The method uses XAD-8 resin for concentration, followed by elution with methanol, separation of anionic and nonionic surfactants by anion exchange, quantitation by titration, and identification by 13C nuclear magnetic resonance spectrometry. Laboratory standards and field samples containing straight-chain and branched-chain alkylbenzenesulfonates, sodium dodecyl sulfate, and alkylbenzene ethoxylates were studied. The XAD-8 extraction of surfactants from groundwater was completed in the field, which simplified sample preservation and reduced the cost of transporting samples.