Science.gov

Sample records for 2d numerical study

  1. A numerical study on the thermal initiation of a confined explosive in 2-D geometry.

    PubMed

    Aydemir, Erdoğan; Ulas, Abdullah

    2011-02-15

    Insensitive munitions design against thermal stimuli like slow or fast cook-off has become a significant requirement for today's munitions. In order to achieve insensitive munitions characteristics, the response of the energetic material needs to be predicted against heating stimuli. In this study, a 2D numerical code was developed to simulate the slow and fast cook-off heating conditions of confined munitions and to obtain the response of the energetic materials. Computations were performed in order to predict the transient temperature distribution, the ignition time, and the location of ignition in the munitions. These predictions enable the designers to have an idea of when and at which location the energetic material ignites under certain adverse surrounding conditions. In the paper, the development of the code is explained and the numerical results are compared with available experimental and numerical data in the literature. Additionally, a parametric study was performed showing the effect of dimensional scaling of munitions and the heating rate on the ignition characteristics.

  2. Numerical Study of Microwave Reflectometry in Plasmas with 2D Turbulent Fluctuations

    SciTech Connect

    E. Mazzucato

    1998-02-01

    This paper describes a numerical study of the role played by 2D turbulent fluctuations in microwave reflectometry -- a radar technique for density measurements using the reflection of electromagnetic waves from a plasma cutoff. The results indicate that, if the amplitude of fluctuations is below a threshold which is set by the spectrum of poloidal wavenumbers, the measured backward field appears to originate from a virtual location behind the reflecting layer, and to arise from the phase modulation of the probing wave, with an amplitude given by 1D geometric optics. These results suggest a possible scheme for turbulence measurements in tokamaks, where the backward field is collected with a wide aperture antenna, and the virtual reflecting layer is imaged onto the plane of an array of detectors. Such a scheme should be capable of providing additional information on the nature of the short-scale turbulence observed in tokamaks, which still remains one of the unresolved issues in fusion research.

  3. Numerical studies of the melting transition in 2D Yukawa systems

    SciTech Connect

    Hartmann, P.; Donko, Z.; Kalman, G. J.

    2008-09-07

    We present the latest results of our systematic studies of the solid--liquid phase transition in 2D classical many-particle systems interacting with the Yukawa potential. Our previous work is extended by applying the molecular dynamic simulations to systems with up to 1.6 million particles in the computational box (for {kappa} = 2 case). Equilibrium simulations are performed for different coupling parameters in the vicinity of the expected melting transition ({gamma}{sub m}{sup {kappa}}{sup ={sup 2}}{approx_equal}415) and a wide range of observables are averaged over uncorrelated samples of the micro-canonical ensemble generated by the simulations.

  4. Numerical and experimental studies of the elastic enhancement factor of 2D open systems

    NASA Astrophysics Data System (ADS)

    Sirko, Leszek; Białous, Małgorzata; Yunko, Vitalii; Bauch, Szymon; Ławniczak, Michał

    We present the results of numerical and experimental studies of the elastic enhancement factor W for microwave rough and rectangular cavities simulating two-dimensional chaotic and partially chaotic quantum billiards in the presence of moderate absorption strength. We show that for the frequency range ν = 15 . 0 - 18 . 5 GHz, in which the coupling between antennas and the system is strong enough, the values of W for the microwave rough cavity lie below the predictions of random matrix theory and on average they are above the theoretical results of V. Sokolov and O. Zhirov, Phys. Rev. E, 91, 052917 (2015). We also show that the enhancement factor W of a microwave rectangular cavity coupled to the external channels via microwave antennas, simulating a partially chaotic quantum billiard, calculated by applying the Potter-Rosenzweig model with κ = 2 . 8 +/- 0 . 5 is close to the experimental one. Our numerical and experimental results suggest that the enhancement factor can be used as a measure of internal chaos which can be especially useful for systems with significant openness or absorption. This work was partially supported by the Ministry of Science and Higher Education Grants N N202 130239 and UMO-2013/09/D/ST2/03727.

  5. Numerical Study of Sound Emission by 2D Regular and Chaotic Vortex Configurations

    NASA Astrophysics Data System (ADS)

    Knio, Omar M.; Collorec, Luc; Juvé, Daniel

    1995-02-01

    The far-field noise generated by a system of three Gaussian vortices lying over a flat boundary is numerically investigated using a two-dimensional vortex element method. The method is based on the discretization of the vorticity field into a finite number of smoothed vortex elements of spherical overlapping cores. The elements are convected in a Lagrangian reference along particle trajectories using the local velocity vector, given in terms of a desingularized Biot-Savart law. The initial structure of the vortex system is triangular; a one-dimensional family of initial configurations is constructed by keeping one side of the triangle fixed and vertical, and varying the abscissa of the centroid of the remaining vortex. The inviscid dynamics of this vortex configuration are first investigated using non-deformable vortices. Depending on the aspect ratio of the initial system, regular or chaotic motion occurs. Due to wall-related symmetries, the far-field sound always exhibits a time-independent quadrupolar directivity with maxima parallel end perpendicular to the wall. When regular motion prevails, the noise spectrum is dominated by discrete frequencies which correspond to the fundamental system frequency and its superharmonics. For chaotic motion, a broadband spectrum is obtained; computed soundlevels are substantially higher than in non-chaotic systems. A more sophisticated analysis is then performed which accounts for vortex core dynamics. Results show that the vortex cores are susceptible to inviscid instability which leads to violent vorticity reorganization within the core. This phenomenon has little effect on the large-scale features of the motion of the system or on low frequency sound emission. However, it leads to the generation of a high-frequency noise band in the acoustic pressure spectrum. The latter is observed in both regular and chaotic system simulations.

  6. Numerical Study of Turbulence Model Predictions for the MD 30P/30N and NHLP-2D Three-Element Highlift Configurations

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    1998-01-01

    This report details calculations for the McDonnell-Douglas 30P/30N and the NHLP-2D three-element highlift configurations. Calculations were performed with the Reynolds averaged Navier-Stokes code ISAAC to study the effects of various numerical issues on high lift predictions. These issues include the effect of numerical accuracy on the advection terms of the turbulence equations, Navier-Stokes versus the thin-layer Navier-Stokes approximation, an alternative formulation of the production term, and the performance of several turbulence models. The effect of the transition location on the NHLP-2D flow solution was investigated. Two empirical transition models were used to estimate the transition location.

  7. Numerical study on spatially varying bottom friction coefficient of a 2D tidal model with adjoint method

    NASA Astrophysics Data System (ADS)

    Lu, Xianqing; Zhang, Jicai

    2006-10-01

    Based on the simulation of M2 tide in the Bohai Sea, the Yellow Sea and the East China Sea, TOPEX/Poseidon altimeter data are assimilated into a 2D tidal model to study the spatially varying bottom friction coefficient (BFC) by using the adjoint method. In this study, the BFC at some grid points are selected as the independent BFC, while the BFC at other grid points can be obtained through linear interpolation with the independent BFC. Two strategies for selecting the independent BFC are discussed. In the first strategy, one independent BFC is uniformly selected from each 1°×1° area. In the second one, the independent BFC are selected based on the spatial distribution of water depth. Twin and practical experiments are carried out to compare the two strategies. In the twin experiments, the adjoint method has a strong ability of inverting the prescribed BFC distributions combined with the spatially varying BFC. In the practical experiments, reasonable simulation results can be obtained by optimizing the spatially varying independent BFC. In both twin and practical experiments, the simulation results with the second strategy are better than those with the first one. The BFC distribution obtained from the practical experiment indicates that the BFC in shallow water are larger than those in deep water in the Bohai Sea, the North Yellow Sea, the South Yellow Sea and the East China Sea individually. However, the BFC in the East China Sea are larger than those in the other areas perhaps because of the large difference of water depth or bottom roughness. The sensitivity analysis indicates that the model results are more sensitive to the independent BFC near the land.

  8. Radioactive Sediment Transport on Ogaki Dam Reservoir in Fukushima Evacuated Zone: Numerical Simulation Studies by 2-D River Simulation Code

    NASA Astrophysics Data System (ADS)

    Yamada, Susumu; Kitamura, Akihiro; Kurikami, Hiroshi; Machida, Masahiko

    2015-04-01

    Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March 2011 released significant quantities of radionuclides to atmosphere. The most significant nuclide is radioactive cesium isotopes. Therefore, the movement of the cesium is one of the critical issues for the environmental assessment. Since the cesium is strongly sorbed by soil particles, the cesium transport can be regarded as the sediment transport which is mainly brought about by the aquatic system such as a river and a lake. In this research, our target is the sediment transport on Ogaki dam reservoir which is located in about 16 km northwest from FDNPP. The reservoir is one of the principal irrigation dam reservoirs in Fukushima Prefecture and its upstream river basin was heavily contaminated by radioactivity. We simulate the sediment transport on the reservoir using 2-D river simulation code named Nays2D originally developed by Shimizu et al. (The latest version of Nays2D is available as a code included in iRIC (http://i-ric.org/en/), which is a river flow and riverbed variation analysis software package). In general, a 2-D simulation code requires a huge amount of calculation time. Therefore, we parallelize the code and execute it on a parallel computer. We examine the relationship between the behavior of the sediment transport and the height of the reservoir exit. The simulation result shows that almost all the sand that enter into the reservoir deposit close to the entrance of the reservoir for any height of the exit. The amounts of silt depositing within the reservoir slightly increase by raising the height of the exit. However, that of the clay dramatically increases. Especially, more than half of the clay deposits, if the exit is sufficiently high. These results demonstrate that the water level of the reservoir has a strong influence on the amount of the clay discharged from the reservoir. As a result, we conclude that the tuning of the water level has a possibility for controlling the

  9. Optoacoustic temperature monitoring during HIFU impact on biological tissues: ex vivo study and numerical simulations of 2D temperature reconstruction

    NASA Astrophysics Data System (ADS)

    Nikitin, Sergey; Khokhlova, Tatiana; Pelivanov, Ivan

    2012-02-01

    Dependencies of the optoacoustic (OA) transformation efficiency on tissue temperature were obtained for the application in OA temperature monitoring during thermal therapies. Accurate measurement of the OA signal amplitude versus temperature was performed in different ex-vivo tissues in the temperature range 25°C - 80°C. The investigated tissues were selected to represent different structural components: chicken breast (skeletal muscle), porcine lard (fatty tissue) and porcine liver (richly perfused tissue). Backward mode of the OA signal detection and a narrow probe laser beam were used in the experiments to avoid the influence of changes in light scattering with tissue coagulation on the OA signal amplitude. Measurements were performed in heating and cooling regimes. Characteristic behavior of the OA signal amplitude temperature dependences in different temperature ranges were described in terms of changes in different structural components of the tissue samples. Finally, numerical simulation of the OA temperature monitoring with a linear transducers array was performed to demonstrate the possibility of real-time temperature mapping.

  10. Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps

    NASA Astrophysics Data System (ADS)

    Hussin, H. Y.; Luna, B. Quan; van Westen, C. J.; Christen, M.; Malet, J.-P.; van Asch, Th. W. J.

    2012-10-01

    The occurrence of debris flows has been recorded for more than a century in the European Alps, accounting for the risk to settlements and other human infrastructure that have led to death, building damage and traffic disruptions. One of the difficulties in the quantitative hazard assessment of debris flows is estimating the run-out behavior, which includes the run-out distance and the related hazard intensities like the height and velocity of a debris flow. In addition, as observed in the French Alps, the process of entrainment of material during the run-out can be 10-50 times in volume with respect to the initially mobilized mass triggered at the source area. The entrainment process is evidently an important factor that can further determine the magnitude and intensity of debris flows. Research on numerical modeling of debris flow entrainment is still ongoing and involves some difficulties. This is partly due to our lack of knowledge of the actual process of the uptake and incorporation of material and due the effect of entrainment on the final behavior of a debris flow. Therefore, it is important to model the effects of this key erosional process on the formation of run-outs and related intensities. In this study we analyzed a debris flow with high entrainment rates that occurred in 2003 at the Faucon catchment in the Barcelonnette Basin (Southern French Alps). The historic event was back-analyzed using the Voellmy rheology and an entrainment model imbedded in the RAMMS 2-D numerical modeling software. A sensitivity analysis of the rheological and entrainment parameters was carried out and the effects of modeling with entrainment on the debris flow run-out, height and velocity were assessed.

  11. On the effects of assembly compression on the performance of liquid-feed DMFCs under methanol-limiting conditions: A 2D numerical study

    NASA Astrophysics Data System (ADS)

    García-Salaberri, P. A.; Vera, M.

    2015-07-01

    The influence of assembly compression on the performance of liquid-feed DMFCs under methanol-limiting conditions is explored by means of a 2D/1D multiphysics across-the-channel model. The numerical formulation incorporates a comprehensive 2D description of the anode GDL, including two-phase phenomena, non-uniform anisotropic transport properties, and electrical contact resistances at the GDL/BPP interface. GDL effective properties are evaluated using empirical data corresponding to Toray® carbon paper. A simplified but physically sound 1D description, locally coupled to the 2D anode GDL model, is adopted to describe transport processes in the MPLs, membrane and cathode GDL, whereas the catalyst layers are treated as infinitely thin surfaces. Good agreement is found between the numerical results and previous experimental data. The interplay between assembly compression, bipolar plate material, and channel configuration is also investigated. The results show that there is an optimum GDL compression ratio in terms of overall power density, the optimal compression level being strongly dependent on bipolar plate material. Beyond the optimum, the detrimental effect of compression is larger in non-parallel flow fields due to the additional reduction of methanol transported by under-rib convection. The results suggest that, under certain conditions, this transport mechanism could be more important than diffusion in the anode of liquid-feed DMFCs.

  12. 2D numerical modelling of meandering channel formation

    NASA Astrophysics Data System (ADS)

    XIAO, Y.; ZHOU, G.; YANG, F. S.

    2016-03-01

    A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-load transport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numerical predictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under different scenarios and improve understanding of patterning processes.

  13. 2D and 3D Numerical Simulations of Flux Cancellation

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.

    2009-01-01

    Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta=1 level (i.e., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a low-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.

  14. Numerical simulation of rock cutting using 2D AUTODYN

    NASA Astrophysics Data System (ADS)

    Woldemichael, D. E.; Rani, A. M. Abdul; Lemma, T. A.; Altaf, K.

    2015-12-01

    In a drilling process for oil and gas exploration, understanding of the interaction between the cutting tool and the rock is important for optimization of the drilling process using polycrystalline diamond compact (PDC) cutters. In this study the finite element method in ANSYS AUTODYN-2D is used to simulate the dynamics of cutter rock interaction, rock failure, and fragmentation. A two-dimensional single PDC cutter and rock model were used to simulate the orthogonal cutting process and to investigate the effect of different parameters such as depth of cut, and back rake angle on two types of rocks (sandstone and limestone). In the simulation, the cutting tool was dragged against stationary rock at predetermined linear velocity and the depth of cut (1,2, and 3 mm) and the back rake angles(-10°, 0°, and +10°) were varied. The simulation result shows that the +10° back rake angle results in higher rate of penetration (ROP). Increasing depth of cut leads to higher ROP at the cost of higher cutting force.

  15. FLAC/SPECFEM2D coupled numerical simulation of wavefields near excavation boundaries in underground mines

    NASA Astrophysics Data System (ADS)

    Wang, X.; Cai, M.

    2016-11-01

    A nonlinear velocity model that considers the influence of confinement and rock mass failure on wave velocity is developed. A numerical method, which couples FLAC and SPECFEM2D, is developed for ground motion modeling near excavation boundaries in underground mines. The motivation of developing the FLAC/SPECFEM2D coupled approach is to take merits of each code, such as the stress analysis capability in FLAC and the powerful wave propagation analysis capability in SPECFEM2D. Because stress redistribution and failure of the rock mass around an excavation are considered, realistic non-uniform velocity fields for the SPECFEM2D model can be obtained, and this is a notable feature of this study. Very large differences in wavefields and ground motion are observed between the results from the non-uniform and the uniform velocity models. If the non-uniform velocity model is used, the ground motion around a stope can be amplified up to five times larger than that given by the design scaling law. If a uniform velocity model is used, the amplification factor is only about three. Using the FLAC/SPECFEM2D coupled modeling approach, accurate velocity models can be constructed and this in turn will assist in predicting ground motions accurately around underground excavations.

  16. Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses

    NASA Astrophysics Data System (ADS)

    Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin

    2012-12-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.

  17. Improvement of a 2D numerical model of lava flows

    NASA Astrophysics Data System (ADS)

    Ishimine, Y.

    2013-12-01

    I propose an improved procedure that reduces an improper dependence of lava flow directions on the orientation of Digital Elevation Model (DEM) in two-dimensional simulations based on Ishihara et al. (in Lava Flows and Domes, Fink, JH eds., 1990). The numerical model for lava flow simulations proposed by Ishihara et al. (1990) is based on two-dimensional shallow water model combined with a constitutive equation for a Bingham fluid. It is simple but useful because it properly reproduces distributions of actual lava flows. Thus, it has been regarded as one of pioneer work of numerical simulations of lava flows and it is still now widely used in practical hazard prediction map for civil defense officials in Japan. However, the model include an improper dependence of lava flow directions on the orientation of DEM because the model separately assigns the condition for the lava flow to stop due to yield stress for each of two orthogonal axes of rectangular calculating grid based on DEM. This procedure brings a diamond-shaped distribution as shown in Fig. 1 when calculating a lava flow supplied from a point source on a virtual flat plane although the distribution should be circle-shaped. To improve the drawback, I proposed a modified procedure that uses the absolute value of yield stress derived from both components of two orthogonal directions of the slope steepness to assign the condition for lava flows to stop. This brings a better result as shown in Fig. 2. Fig. 1. (a) Contour plots calculated with the original model of Ishihara et al. (1990). (b) Contour plots calculated with a proposed model.

  18. A numerical study of steady 2D flow around NACA 0015 and NACA 0012 hydrofoil with free surface using VOF method

    NASA Astrophysics Data System (ADS)

    Adjali, Saadia; Belkadi, Mustapha; Aounallah, Mohammed; Imine, Omar

    2015-05-01

    Accurate simulation of turbulent free surface flows around surface ships has a central role in the optimal design of such naval vessels. The flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. In this paper, our goal is to estimate the lift and drag coefficients for NACA 0012 of hydrofoil advancing in calm water under steady conditions with free surface and emerged NACA 0015. The commercial CFD software FLUENT version 14 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26.The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. In this computation, the second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretisation. The results obtained compare well with the experimental data.

  19. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    SciTech Connect

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  20. Accelerating numerical modeling of wave propagation through 2-D anisotropic materials using OpenCL.

    PubMed

    Molero, Miguel; Iturrarán-Viveros, Ursula

    2013-03-01

    We present an implementation of the numerical modeling of elastic waves propagation, in 2D anisotropic materials, using the new parallel computing devices (PCDs). Our study is aimed both to model laboratory experiments and explore the capabilities of the emerging PCDs by discussing performance issues. In the experiments a sample plate of an anisotropic material placed inside a water tank is rotated and, for every angle of rotation it is subjected to an ultrasonic wave (produced by a large source transducer) that propagates in the water and through the material producing some reflection and transmission signals that are recording by a "point-like" receiver. This experiment is numerically modeled by running a finite difference code covering a set of angles θ∈[-50°, 50°], and recorded the signals for the transmission and reflection results. Transversely anisotropic and weakly orthorhombic materials are considered. We accelerated the computation using an open-source toolkit called PyOpenCL, which lets one to easily access the OpenCL parallel computation API's from the high-level programming environment of Python. A speedup factor over 19 using the GPU is obtained when compared with the execution of the same program in parallel using a CPU multi-core (in this case we use the 4-cores that has the CPU). The performance for different graphic cards and operating systems is included together with the full 2-D finite difference code with PyOpenCL. PMID:23290584

  1. Continental rifting to seafloor spreading: 2D and 3D numerical modeling

    NASA Astrophysics Data System (ADS)

    Liao, Jie; Gerya, Taras

    2014-05-01

    Two topics related with continental extension is studied by using numerical modeling methods: (1) Lithospheric mantle stratification changes dynamics of craton extension (2D modeling) and (2) Initial lithospheric rheological structure influences the incipient geometry of the seafloor spreading (3D modeling). (Topic 1) Lithospheric mantle stratification is a common feature in cratonic areas which has been demonstrated by geophysical and geochemical studies. The influence of lithospheric mantle stratification during craton evolution remains poorly understood. We use a 2D thermo-mechanical coupled numerical model to study the influence of stratified lithospheric mantle on craton extension. A rheologically weak layer representing hydrated and/or metasomatized composition is implemented in the lithospheric mantle. Our results show that the weak mantle layer changes the dynamics of lithospheric extension by enhancing the deformation of the overlying mantle and crust and inhibiting deformation of the underlying mantle. Modeling results are compared with North China and North Atlantic cratons. Our work indicates that although the presence of a weak layer may not be sufficient to initiate craton deformation, it enhances deformation by lowering the required extensional plate boundary force. (Topic 2) The process from continental rifting to seafloor spreading is an important step in the Wilson Cycle. Since the rifting to spreading is a continuous process, understanding the inheritance of continental rifting in seafloor spreading is crucial to study the incipient geometry (on a map view) of the oceanic ridge and remains a big challenge. Large extension strain is required to simulate the rifting and spreading processes. Oceanic ridge has a 3D geometry on a map view in nature, which requires 3D studies. Therefore, we employ the three-dimensional numerical modeling method to study this problem. The initial lithospheric rheological structure and the perturbation geometry are two

  2. 2-D and 3-D numerical simulation of a supersonic inlet flowfield

    NASA Astrophysics Data System (ADS)

    Enomoto, Shunji; Arakawa, Chuichi

    The 2-D and 3-D steady, Reynolds-averaged Navier-Stokes equations were numerically solved for the flowfields in an experimentally tested inlet model with bleed through a cavity. In the 2-D analysis, a normal shock was located at diffuser inlet instead of the position below the cavity. The normal shock in the middle of the diffuser caused a massive separation of the boundary layer and a large total pressure loss. In the 3-D analysis, the shock wave was distorted by the side wall boundary layer separation, and the complex flow structure was established. The result of the 3-D analysis agreed well with the experiment.

  3. 2D numerical simulation of the MEP energy-transport model with a finite difference scheme

    SciTech Connect

    Romano, V. . E-mail: romano@dmi.unict.it

    2007-02-10

    A finite difference scheme of Scharfetter-Gummel type is used to simulate a consistent energy-transport model for electron transport in semiconductors devices, free of any fitting parameters, formulated on the basis of the maximum entropy principle. Simulations of silicon n{sup +}-n-n{sup +} diodes, 2D-MESFET and 2D-MOSFET and comparisons with the results obtained by a direct simulation of the Boltzmann transport equation and with other energy-transport models, known in the literature, show the validity of the model and the robustness of the numerical scheme.

  4. Numerical analysis using 2D modeling of optical fiber poled by induction

    NASA Astrophysics Data System (ADS)

    Huang, D.; De Lucia, F.; Corbari, C.; Healy, N.; Sazio, P. J. A.

    2016-03-01

    Thermal poling, a technique to introduce effective second-order nonlinearities in silica optical fibers, has found widespread applications in frequency conversion, electro-optic modulation, switching and polarization-entangled photon pair generation. Since its first demonstration around 25 years ago, studies into thermal poling were primarily based on anode-cathode electrode configurations. However, more recently, superior electrode configurations have been investigated that allow for robust and reliable thermally poled fibers with excellent second order nonlinear properties [1, 2]. Very recently, we experimentally demonstrated an electrostatic induction poling technique that creates a stable second-order nonlinearity in a twin-hole fiber without any direct physical contact to internal fiber electrodes whatsoever [3]. This innovative technique lifts a number of restrictions on the use of complex microstructured optical fibers (MOF) for poling, as it is no longer necessary to individually contact internal electrodes and presents a general methodology for selective liquid electrode filling of complex MOF geometries. In order to systematically implement these more advanced device embodiments, it is first necessary to develop comprehensive numerical models of the induction poling mechanism itself. To this end, we have developed two-dimensional (2D) simulations of space-charge region formation using COMSOL finite element analysis, by building on current numerical models [4].

  5. 2D numerical simulation of passive autocatalytic recombiner for hydrogen mitigation

    NASA Astrophysics Data System (ADS)

    Gera, B.; Sharma, P. K.; Singh, R. K.

    2012-04-01

    Resolving hydrogen related safety issues, pertaining to nuclear reactor safety has been an important area of research world over for the past decade. The studies on hydrogen transport behavior and development of hydrogen mitigation systems are still being pursued actively in various research labs, including Bhabha Atomic Research Centre (BARC), in India. The passive autocatalytic recombiner (PAR) is one of such hydrogen mitigating device consisting of catalyst surfaces arranged in an open-ended enclosure. In the plate type recombiner design sheets made of stainless steel and coated with platinum catalyst material are arranged in parallel inside a flow channel. The catalyst elements are exposed to a constant flow of a mixture of air, hydrogen and steam, a catalytic reaction occurs spontaneously at the catalyst surfaces and the heat of reaction produces natural convection flow through the enclosure. Numerical simulation and experiments are required for an in-depth knowledge of such plate type PAR. Specific finite volume based in-house 2D computational fluid dynamics (CFD) code has been developed to model and analyse the working of these recombiners and has been used to simulate one literature quoted experiment. The validation results were in good agreement against literature quoted German REKO experiments. Parametric study has been performed for particular recombiner geometry for various inlet conditions. Salient features of the simplified CFD model developed at BARC and results of the present model calculations are presented in this paper.

  6. Dynamic unfolding of multilayers: 2D numerical approach and application to turbidites in SW Portugal

    NASA Astrophysics Data System (ADS)

    Lechmann, S. M.; Schmalholz, S. M.; Burg, J.-P.; Marques, F. O.

    2010-10-01

    Numerical algorithms for two-dimensional (2D) ductile multilayer folding are used (1) to unfold synthetically generated multilayer folds and natural multilayer folds in turbidites on the SW coast of Portugal and (2) to test how 2D ductile multilayer folding may generate collapsed hinges. A series of dynamic retro-deformation experiments with different viscosity ratios, rheological flow laws, boundary conditions and initial geometries were able to restore digitized, natural multilayer folds to flat layers, except one particular collapsed hinge with closed limbs (i.e. no matrix material left between limbs). Consistently, 2D forward simulations of ductile multilayer folding produced always omega-shaped hinges with matrix material remaining stuffed between limbs. These numerical results suggested that 2D reverse ductile unfolding cannot retro-deform the fully closed, collapsed hinge. Having observed that one limb of this collapsed fold is ruptured, with a measured gap of about 4.9 m, additional calculations were made with implementation of this amount of stretching. Results were not more satisfactory. Since omega-shaped folds exist in other places in the field area, we concluded that in this specific case shales were likely squeezed out from the hinge in the third dimension, parallel to the fold axis. Dynamic retro-deformations indicate that the effective viscosity ratio between inter-layered quartzwackes and shales was between 25 and 100 during folding. They further point out where 3D flow and possibly fracturing were effective during folding. This work demonstrates the constructive feedback between numerical tests and field data and that dynamic retro-deformation offers rheological constraints that geometric retro-deformation of geological sections cannot provide.

  7. Modelling 2001 lahars at Popocatépetl volcano using FLO2D numerical code

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Capra, L.

    2013-12-01

    Popocatépetl volcano is located on the central part of the Transmexican Volcanic Belt. It is one of the most active volcanoes in Mexico and endanger more than 25 million people that lives in its surroundings. In the last months, the renewal of its volcanic activity put into alert scientific community. One of the possible scenarios is the 2001 explosive activity, which was characterized by a 8 km eruptive column and the subsequent formation of pumice flows up to 4 km from the crater. Lahars were generated few hours after, remobilizing the new deposits towards NE flank of the volcano, along Huiloac Gorge, almost reaching Santiago Xalitzintla town (Capra et al., 2004). The occurrence of a similar scenario makes very important to reproduce this event to delimitate accurately lahar hazard zones. In this work, 2001 lahar deposit is modeled using FLO2D numerical code. Geophone data is used to reconstruct initial hydrograph and sediment concentration. Sensitivity study of most important parameters used by this code like Manning, and α and β coefficients was conducted in order to achieve a good simulation. Results obtained were compared with field data and demonstrated a good agreement in thickness and flow distribution. A comparison with previously published data with laharZ program (Muñoz-Salinas, 2009) is also made. Additionally, lahars with fluctuating sediment concentrations but with similar volume are simulated to observe the influence of the rheological behavior on lahar distribution.

  8. Numerical Simulations of 2-D Phase-Field Model with Convection

    NASA Astrophysics Data System (ADS)

    Xu, Ying; McDonough, J. M.; Tagavi, K. A.

    2003-11-01

    We present a 2-D isotropic phase-field model with convection induced by a flow field applied to freezing into a supercooled melt of pure substance, nickle. Numerical procedures and details of numerical parameters employed are provided, and the convergence of the numerical method is demonstrated by conducting grid-function convergence tests. Dendrite structures, temperature fields, pressure fields, streamlines and velocity vector fields are presented at several different times during the dendrite growth process. Comparisons of dendrites and temperature fields with and without convection indicate that the flow field has a significant effect on the growth rate of the dendrites; in particular, it inhibits the growth. In addition, the flow field influences the dendritic structural morphologies and thickness of the interface. Moreover, the dendrites behave as a solid body in the flow leading to stagnation points and other interesting flow features.

  9. Water cycling beneath subduction zones in 2D and 3D numerical models (Invited)

    NASA Astrophysics Data System (ADS)

    Rupke, L.; Iyer, K. H.; Hasenclever, J.; Morgan, J.

    2013-12-01

    Tracing the cycling of fluids and volatiles through subduction zones continues to be a challenging task with budgets still having large error bars attached to them. In this contribution we show how numerical models can help to integrate various geological, geophysical, and geochemical datasets and how they can be used to put better bounds on the likely amounts of water being subducted, released into the arc and back-arc melting regions, and recycled to the deeper mantle. To achieve this task we use a suite of numerical models. Bending related faulting and hydration of the incoming lithosphere is resolved using a reactive flow model that solves for crustal scale fluid flow and mantle serpentinization using reaction kinetics. Seismic tomography studies from offshore Chile and Central America are used to evaluate and constrain the effective reaction rate. These rates are then used to assess the contribution of serpentinization to the water budget at subduction zones. The pattern of hydration is controlled by the reaction kinetics and serpentinization is most intense around the 270°C isotherm. The depth of this isotherm correlates well with the dominant spacing of double seismic zones observed globally. Comparison of the results with heat flow data suggests that observed seafloor temperature gradients in the bend-fault region are too low to be caused by ';one-pass' downward water flow into the serpentinizing lithosphere, but rather suggest that bend-faults are areas of active hydrothermal circulation. This implies that serpentine-sourced vents and chemosynthetic vent communities should be found in this deep-sea environment as well. Dehydration reactions are resolved with a 2D kinematic subduction zone model that computes the temperature field and the likely locations and volumes of slab fluid release due to metamorphic dehydration reactions. Here we find that up to 1/3 of the subducted water may be transported into the deeper mantle for the coldest subduction zones

  10. On craton thinning/destruction: Insight from 2D thermal-mechanical numerical modeling

    NASA Astrophysics Data System (ADS)

    Liao, J.

    2014-12-01

    Although most cratons maintain stable, some exceptions are present, such as the North China craton, North Atlantic craton, and Wyoming craton, which have experienced dramatic lithospheric deformation/thinning. Mechanisms triggering cratonic thinning remains enigmatic [Lee et al., 2011]. Using a 2D thermo-mechanical coupled numerical model [Gerya and Yuen, 2007], we investigate two possible mechanisms: (1) stratification of cratonic lithospheric mantle, and (2) rheological weakening due to hydration.Lithospheric mantle stratification is a common feature in cratonic areas which has been demonstrated by geophysical and geochemical studies [Thybo and Perchuc, 1997; Griffin et al., 2004; Romanowicz, 2009; Rychert and Shearer, 2009; Yuan and Romanowicz, 2010]. The influence of lithospheric mantle stratification during craton evolution remains poorly understood. A rheologically weak layer representing hydrated and/or metasomatized composition is implemented in the lithospheric mantle. Our results show that the weak mantle layer changes the dynamics of lithospheric extension by enhancing the deformation of the overlying mantle and crust and inhibiting deformation of the underlying mantle [Liao et al., 2013; Liao and Gerya, 2014]. Modeling results are compared with North China and North Atlantic cratons. Our work indicates that although the presence of a weak layer may not be sufficient to initiate craton deformation, it enhances deformation by lowering the required extensional plate boundary force. Rheological weakening due to hydration is a possible mechanism triggering/enhancing craton deformation, especially for cratons jaxtaposing with a subduction, since water can release from a subducting slab. We investigate the influence of wet mantle flow laws [Hirth and Kohlstedt, 2003], in which a water parameter (i.e. constant water content) is involved. Our results show that wet dislocation alone does not accelerate cratonic deformation significantly. However, if wet diffusion

  11. Optical fiber poling by induction: analysis by 2D numerical modeling.

    PubMed

    De Lucia, F; Huang, D; Corbari, C; Healy, N; Sazio, P J A

    2016-04-15

    Since their first demonstration some 25 years ago, thermally poled silica fibers have been used to realize device functions such as electro-optic modulation, switching, polarization-entangled photons, and optical frequency conversion with a number of advantages over bulk free-space components. We have recently developed an innovative induction poling technique that could allow for the development of complex microstructured fiber geometries for highly efficient χ(2)-based device applications. To systematically implement these more advanced poled fiber designs, we report here the development of comprehensive numerical models of the induction poling mechanism itself via two-dimensional (2D) simulations of ion migration and space-charge region formation using finite element analysis. PMID:27082323

  12. Comparison of numerical methods for 2D crystals under anisotropic surface free energy and through evolution

    NASA Astrophysics Data System (ADS)

    Lolla, Madhuri Udayanjani

    In this dissertation first, we compute the equilibrium shapes of 2D crystals under anisotropic surface free energies. An equilibrium shape minimizes the total surface free energy. The governing equation in polar coordinates is a nonlinear ordinary differential equation. Two numerical methods, finite difference and the finite element are used and compared. We investigate the accuracy, order of convergence and efficiency of the two methods in computing the equilibrium shapes. Secondly, we consider the surface of the crystal evolving under surface diffusion and compute the final shape in the evolution which is the equilibrium shape. The surface diffusion equation in polar coordinates is a time-dependent nonlinear 4th order partial differential equation. Again we apply the two methods finite difference and finite element. The results are observed at different stages of evolution of the crystal for the isotropy case. Then we compare the accuracy, order of convergence and efficiency of the two methods.

  13. Generalized Diffuse Field Within a 2d Alluvial Basin: a Numerical Example

    NASA Astrophysics Data System (ADS)

    Molina Villegas, J.; Baena, M.; Piña, J.; Perton, M.; Suarez, M.; Sanchez-Sesma, F. J.

    2013-05-01

    Since the pioneering work of Aki (1957), the seismic noise has been used to infer the wave velocity distribution of soil formations. Later, diffuse-field concepts from room acoustics began to be used in elastodynamics by Weaver (1982) and flourished in many applications thanks to the contributions of Campillo and coworkers. It was established that diffusion like regimes are obtained when the field is produced by equipartitioned, uniform illumination. Within an elastodynamic diffuse-field the average correlation of the displacement field between two stations is proportional to the Green function of the system for those points. Usually, the surface waves can be interpreted by means of the retrieved Green function, from which very important information about the properties in depth can be obtained. Seismic noise and coda are frequently considered as diffuse-fields. This assumption is well supported by ideas of multiple scattering of waves and the resultant energy equipartition. There are few examples of numerically generated diffuse-fields. Some are based on random distributed forces (e.g. Sánchez-Sesma et al., 2006), while others used a set of plane waves with varying incidence angles and polarization (e.g. Sánchez-Sesma and Campillo 2006; Kawase et al. 2011). In this work we generate numerically a diffuse field within the Kawase and Aki (1989) 2D model using a random set of independent and uncorrelated incident plane P, SV and Rayleigh waves. For the simulations we use the indirect boundary element method (IBEM). Thus, we obtained the Green function for pairs of receivers by averaging correlations between different stations on the surface. In order to validate our results we compute the model's Green function as the response for a unit point load using the IBEM. Our numerical experiment provides guidelines for actual calculations of earthquakes in real alluvial basins.

  14. Numerical simulation of 2D buoyant jets in ice-covered and temperature-stratified water

    NASA Astrophysics Data System (ADS)

    Gu, Ruochuan

    A two-dimensional (2D) unsteady simulation model is applied to the problem of a submerged warm water discharge into a stratified lake or reservoir with an ice cover. Numerical simulations and analyses are conducted to gain insight into large-scale convective recirculation and flow processes in a cold waterbody induced by a buoyant jet. Jet behaviors under various discharge temperatures are captured by directly modeling flow and thermal fields. Flow structures and processes are described by the simulated spatial and temporal distributions of velocity and temperature in various regions: deflection, recirculation, attachment, and impingement. Some peculiar hydrothermal and dynamic features, e.g. reversal of buoyancy due to the dilution of a warm jet by entraining cold ambient water, are identified and examined. Simulation results show that buoyancy is the most important factor controlling jet behavior and mixing processes. The inflow boundary is treated as a liquid wall from which the jet is offset. Similarity and difference in effects of boundaries perpendicular and parallel to flow, and of buoyancy on jet attachment and impingement, are discussed. Symmetric flow configuration is used to de-emphasize the Coanda effect caused by offset.

  15. A Numerical Analysis of Sloshing Fluid in 2D Tanks with Baffles

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Chen, B. F.

    2011-09-01

    A tuned liquid damper (TLD) is one possible damping device of tall buildings under wind and earthquake excitations. A 2D tank with a vertically tank bottom-mounted baffle under horizontal excitation is studied in this work. The combination of time-independent finite difference method [1-3] and one-dimensional ghost cell approach was implemented to solve liquid sloshing in the baffled tank. The correlation between the movement of baffles and flow field due to liquid sloshing might to the clue to investigate the evolution of vortices around the baffle tip. We categorize the interaction process of vortices evolution into three phases: (1) Formation of separated shear layer and generation of vortices; (2) Formation of a vertical jet and shedding of vortices; (3) Interaction between shedding vortices and sloshing flow: the generation of snaky flow.

  16. Absorption and scattering 2-D volcano images from numerically calculated space-weighting functions

    NASA Astrophysics Data System (ADS)

    Del Pezzo, Edoardo; Ibañez, Jesus; Prudencio, Janire; Bianco, Francesca; De Siena, Luca

    2016-08-01

    Short-period small magnitude seismograms mainly comprise scattered waves in the form of coda waves (the tail part of the seismogram, starting after S waves and ending when the noise prevails), spanning more than 70 per cent of the whole seismogram duration. Corresponding coda envelopes provide important information about the earth inhomogeneity, which can be stochastically modeled in terms of distribution of scatterers in a random medium. In suitable experimental conditions (i.e. high earth heterogeneity), either the two parameters describing heterogeneity (scattering coefficient), intrinsic energy dissipation (coefficient of intrinsic attenuation) or a combination of them (extinction length and seismic albedo) can be used to image Earth structures. Once a set of such parameter couples has been measured in a given area and for a number of sources and receivers, imaging their space distribution with standard methods is straightforward. However, as for finite-frequency and full-waveform tomography, the essential problem for a correct imaging is the determination of the weighting function describing the spatial sensitivity of observable data to scattering and absorption anomalies. Due to the nature of coda waves, the measured parameter couple can be seen as a weighted space average of the real parameters characterizing the rock volumes illuminated by the scattered waves. This paper uses the Monte Carlo numerical solution of the Energy Transport Equation to find approximate but realistic 2-D space-weighting functions for coda waves. Separate images for scattering and absorption based on these sensitivity functions are then compared with those obtained with commonly used sensitivity functions in an application to data from an active seismic experiment carried out at Deception Island (Antarctica). Results show that these novel functions are based on a reliable and physically grounded method to image magnitude and shape of scattering and absorption anomalies. Their

  17. Numerical Simulation of Supersonic Compression Corners and Hypersonic Inlet Flows Using the RPLUS2D Code

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1994-01-01

    A two-dimensional computational code, PRLUS2D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for two-dimensional shock-wave/turbulent-boundary-layer interactions. The problem of compression corners at supersonic speeds was solved using the RPLUS2D code. To validate the RPLUS2D code for hypersonic speeds, it was applied to a realistic hypersonic inlet geometry. Both the Baldwin-Lomax and the Chien two-equation turbulence models were used. Computational results showed that the RPLUS2D code compared very well with experimentally obtained data for supersonic compression corner flows, except in the case of large separated flows resulting from the interactions between the shock wave and turbulent boundary layer. The computational results compared well with the experiment results in a hypersonic NASA P8 inlet case, with the Chien two-equation turbulence model performing better than the Baldwin-Lomax model.

  18. Some features of auroral electric fields as seen in 2D numerical simulations

    NASA Technical Reports Server (NTRS)

    Thiemann, H.; Singh, N.; Schunk, R. W.

    1984-01-01

    Results of 2D plasma simulations are presented and related to auroral observations. The formation of V-shaped potentials is studied with a 2 1/2 dimensional electrostatic particle-in-cell code for a magnetized plasma. It is shown that amplitudes for perpendicular electric fields are larger than for parallel electric fields, and for Te less than 100 eV, the amplitudes are comparable to the electric fields associated with the electrostatic shocks observed from the S3-3 satellite. The excitation of electrostatic ion-cyclotron EIC waves which occurs in the region below the parallel potential drop is discussed. In auroral plasmas EIC waves are observed above the V-shaped double layers in association with ion beams and field-aligned currents. The results also show that oppositely directed electric fields in the center and at the edges of the simulation region produce oppositely directed currents. Precipitating auroral ions in association with electron inverted-V events are seen by the DMSP-F6 satellite.

  19. 2-D Numerical Simulation of Eruption Clouds : Effects of Turbulent Mixing between Eruption Cloud and Air

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; KOYAGUCHI, T.; OGAWA, M.; Hachisu, I.

    2001-05-01

    Mixing of eruption cloud and air is one of the most important processes for eruption cloud dynamics. The critical condition of eruption types (eruption column or pyroclastic flow) depends on efficiency of mixing of eruption cloud and the ambient air. However, in most of the previous models (e.g., Sparks,1986; Woods, 1988), the rate of mixing between cloud and air is taken into account by introducing empirical parameters such as entrainment coefficient or turbulent diffusion coefficient. We developed a numerical model of 2-D (axisymmetrical) eruption columns in order to simulate the turbulent mixing between eruption column and air. We calculated the motion of an eruption column from a circular vent on the flat surface of the earth. Supposing that relative velocity of gas and ash particles is sufficiently small, we can treat eruption cloud as a single gas. Equation of state (EOS) for the mixture of the magmatic component (i.e. volcanic gas plus pyroclasts) and air can be expressed by EOS for an ideal gas, because volume fraction of the gas phase is very large. The density change as a function of mixing ratio between air and the magmatic component has a strong non-linear feature, because the density of the mixture drastically decreases as entrained air expands by heating. This non-linear feature can be reproduced by changing the gas constant and the ratio of specific heat in EOS for ideal gases; the molecular weight increases and the ratio of specific heat approaches 1 as the magmatic component increases. It is assumed that the dynamics of eruption column follows the Euler equation, so that no viscous effect except for the numerical viscosity is taken into account. Roe scheme (a general TVD scheme for compressible flow) is used in order to simulate the generation of shock waves inside and around the eruption column. The results show that many vortexes are generated around the boundary between eruption cloud and air, which results in violent mixing. When the size of

  20. Numerical solution of 2D and 3D turbulent internal flow problems

    NASA Astrophysics Data System (ADS)

    Chen, Naixing; Xu, Yanji

    1991-08-01

    The paper describes a method for solving numerically two-dimensional or axisymmetric, and three-dimensional turbulent internal flow problems. The method is based on an implicit upwinding relaxation scheme with an arbitrarily shaped conservative control volume. The compressible Reynolds-averaged Navier-Stokes equations are solved with a two-equation turbulence model. All these equations are expressed by using a nonorthogonal curvilinear coordinate system. The method is applied to study the compressible internal flow in modern power installations. It has been observed that predictions for two-dimensional and three-dimensional channels show very good agreement with experimental results.

  1. 2D Quantum Mechanical Study of Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  2. A 2D transient numerical model combining heat/mass transport effects in a tubular solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Mollayi Barzi, Y.; Ghassemi, M.; Hamedi, M. H.

    The purpose of this study is to present a 2D transient numerical model to predict the dynamic behavior of a tubular SOFC. In this model, the transient conservation equations (momentum, species and energy equations) are solved numerically and electrical and electrochemical outputs are calculated with an equivalent electrical circuit for the cell. The developed model determines the cell electrical and thermal responses to the variation of load current. Also it predicts the local EMF, state variables (pressure, temperature and species concentration) and cell performance for different cell load currents. Using this comprehensive model the dynamic behavior of Tubular SOFC is studied. First an initial steady state operating condition is set for the SOFC model and then the time response of the fuel cell to changes of some interested input parameters (like electrical load) is analyzed. The simulation starts when the cell is at the steady state in a specific output load. When the load step change takes place, the solution continues to reach to the new steady state condition. Then the cell transient behavior is analyzed. The results show that when the load current is stepped up, the output voltage decreases to a new steady state voltage in about 67 min.

  3. Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test

    SciTech Connect

    Croin, M.; Ghiotti, A.; Bruschi, S.

    2007-04-07

    The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.

  4. 2-D MHD numerical simulations of EML plasma armatures with ablation

    NASA Astrophysics Data System (ADS)

    Boynton, G. C.; Huerta, M. A.; Thio, Y. C.

    1993-01-01

    We use a 2-D) resistive MHD code to simulate an EML plasma armature. The energy equation includes Ohmic heating, radiation heat transport and the ideal gas equation of state, allowing for variable ionization using the Saha equations. We calculate rail ablation taking into account the flow of heat into the interior of the rails. Our simulations show the development of internal convective flows and secondary arcs. We use an explicit Flux Corrected Transport algorithm to advance all quantities in time.

  5. Numerical Real Space Renormalization of a 2D Random Boson Model

    NASA Astrophysics Data System (ADS)

    Iyer, Shankar; Refael, Gil

    2011-03-01

    Interest in the random boson problem originated in experiments on Helium adsorbed in Vycor, but the problem arises in many contexts, including Josephson junction arrays and disordered cold atom systems. Recently, Altman, Kafri, Polkovnikov, and Refael have studied a rotor model description of interacting bosons subjected to quenched disorder in one dimension. Using a real space renormalization approach, they have identified a random fixed point that marks the transition between superfluid and Mott-glass phases. Here, we describe work that numerically extends their approach to the random boson problem in two dimensions. We first test the validity of the real space renormalization by comparison to exact diagonalization of small systems. Then, we move to larger systems and explore what the renormalization scheme can tell us about the nature of the insulating and superfluid phases.

  6. 2D transient granular flows over obstacles: experimental and numerical work

    NASA Astrophysics Data System (ADS)

    Juez, Carmelo; Caviedes-Voullième, Daniel; Murillo, Javier; García-Navarro, Pilar

    2016-04-01

    Landslides are an ubiquitous natural hazard, and therefore human infrastructure and settlements are often at risk in mountainous regions. In order to better understand and predict landslides, systematic studies of the phenomena need to be undertaken. In particular, computational tools which allow for analysis of field problems require to be thoroughly tested, calibrated and validated under controlled conditions. And to do so, it is necessary for such controlled experiments to be fully characterized in the same terms as the numerical model requires. This work presents an experimental study of dry granular flow over a rough bed with topography which resembles a mountain valley. It has an upper region with a very high slope. The geometry of the bed describes a fourth order polynomial curve, with a low point with zero slope, and afterwards a short region with adverse slope. Obstacles are present in the lower regions which are used as model geometries of human structures. The experiments consisted of a sudden release a mass of sand on the upper region, and allowing it to flow downslope. Furthermore, it has been frequent in previous studies to measure final states of the granular mass at rest, but seldom has transient data being provided, and never for the entire field. In this work we present transient measurements of the moving granular surfaces, obtained with a consumer-grade RGB-D sensor. The sensor, developed for the videogame industry, allows to measure the moving surface of the sand, thus obtaining elevation fields. The experimental results are very consistent and repeatable. The measured surfaces clearly show the distinctive features of the granular flow around the obstacles and allow to qualitatively describe the different flow patterns. More importantly, the quantitative description of the granular surface allows for benchmarking and calibration of predictive numerical models, key in scaling the small-scale experimental knowledge into the field. In addition, as

  7. Installed Transonic 2D Nozzle Nacelle Boattail Drag Study

    NASA Technical Reports Server (NTRS)

    Malone, Michael B.; Peavey, Charles C.

    1999-01-01

    The Transonic Nozzle Boattail Drag Study was initiated in 1995 to develop an understanding of how external nozzle transonic aerodynamics effect airplane performance and how strongly those effects are dependent on nozzle configuration (2D vs. axisymmetric). MDC analyzed the axisymmetric nozzle. Boeing subcontracted Northrop-Grumman to analyze the 2D nozzle. AU participants analyzed the AGARD nozzle as a check-out and validation case. Once the codes were checked out and the gridding resolution necessary for modeling the separated flow in this region determined, the analysis moved to the installed wing/body/nacelle/diverter cases. The boat tail drag validation case was the AGARD B.4 rectangular nozzle. This test case offered both test data and previous CFD analyses for comparison. Results were obtained for test cases B.4.1 (M=0.6) and B.4.2 (M=0.938) and compared very well with the experimental data. Once the validation was complete a CFD grid was constructed for the full Ref. H configuration (wing/body/nacelle/diverter) using a combination of patched and overlapped (Chimera) grids. This was done to ensure that the grid topologies and density would be adequate for the full model. The use of overlapped grids allowed the same grids from the full configuration model to be used for the wing/body alone cases, thus eliminating the risk of grid differences affecting the determination of the installation effects. Once the full configuration model was run and deemed to be suitable the nacelle/diverter grids were removed and the wing/body analysis performed. Reference H wing/body results were completed for M=0.9 (a=0.0, 2.0, 4.0, 6.0 and 8.0), M=1.1 (a=4.0 and 6.0) and M=2.4 (a=0.0, 2.0, 4.4, 6.0 and 8.0). Comparisons of the M=0.9 and M=2.4 cases were made with available wind tunnel data and overall comparisons were good. The axi-inlet/2D nozzle nacelle was analyzed isolated. The isolated nacelle data coupled with the wing/body result enabled the interference effects of the

  8. Numerical solution of 2D-vector tomography problem using the method of approximate inverse

    NASA Astrophysics Data System (ADS)

    Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna

    2016-08-01

    We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.

  9. The strategy for numerical solving of PIES without explicit calculation of singular integrals in 2D potential problems

    NASA Astrophysics Data System (ADS)

    Szerszeń, Krzysztof; Zieniuk, Eugeniusz

    2016-06-01

    The paper presents a strategy for numerical solving of parametric integral equation system (PIES) for 2D potential problems without explicit calculation of singular integrals. The values of these integrals will be expressed indirectly in terms of easy to compute non-singular integrals. The effectiveness of the proposed strategy is investigated with the example of potential problem modeled by the Laplace equation. The strategy simplifies the structure of the program with good the accuracy of the obtained solutions.

  10. Numerical method of crack analysis in 2D finite magnetoelectroelastic media

    NASA Astrophysics Data System (ADS)

    Zhao, Minghao; Xu, Guangtao; Fan, Cuiying

    2010-04-01

    The present paper extends the hybrid extended displacement discontinuity fundamental solution method (HEDD-FSM) (Eng Anal Bound Elem 33:592-600, 2009) to analysis of cracks in 2D finite magnetoelectroelastic media. The solution of the crack is expressed approximately by a linear combination of fundamental solutions of the governing equations, which includes the extended point force fundamental solutions with sources placed at chosen points outside the domain of the problem under consideration, and the extended Crouch fundamental solutions with extended displacement discontinuities placed on the crack. The coefficients of the fundamental solutions are determined by letting the approximated solution satisfy the prescribed boundary conditions on the boundary of the domain and on the crack face. The Crouch fundamental solution for a parabolic element at the crack tip is derived to model the square root variations of near tip fields. The extended stress intensity factors are calculated under different electric and magnetic boundary conditions.

  11. Numerical Modeling of Oxidized 2D C/SiC Composites in Air Environments Below 900 °C: Microstructure and Elastic Properties

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Chen, Xihui; Shao, Hongyan; Song, Yingdong

    2016-08-01

    A numerical model is presented for simulation of the oxidation-affected behaviors of two dimensional carbon fiber-reinforced silcon carbide matrix composite (2D C/SiC) exposed to air oxidizing environments below 900 °C, which incorporates the modeling of oxidized microstructure and computing of degraded elastic properties. This model is based upon the analysis of the representative volume cell (RVC) of the composite. The multi-scale model of 2D C/SiC composites is concerned in the present study. Analysis results of such a composite can provide a guideline for the real 2D C/SiC composite. The micro-structure during oxidation process is firstly modeled in the RVC. The elastic moduli of oxidized composite under non-stress oxidation environment is computed by finite element analysis. The elastic properties of 2D-C/SiC composites in air oxidizing environment are evaluated and validated in comparison to experimental data. The oxidation time, temperature and fiber volume fractions of C/SiC composite are investigated to show their influences upon the elastic properties of 2D C/SiC composites.

  12. A Beam-Fourier Technique for the Numerical Investigation of 2D Nonlinear Convective Flows

    NASA Astrophysics Data System (ADS)

    Papanicolaou, N. C.

    2011-11-01

    In the current work, we develop a numerical method suitable for treating the problem of nonlinear two-dimensional flows in rectangular domains. For the spatial approximation we employ the Fourier-Galerkin approach. More specifically, our basis functions are products of trigonometric and Beam functions. This choice means that the solutions automatically satisfy the boundary and periodic conditions in the x and y directions respectively. The accuracy of the method is assessed by applying it to model problems which admit exact analytical solutions. The numerical and analytic solutions are found to be in good agreement. The convergence rate of the spectral coefficients is found to be fifth-order algebraic in the x-direction and y-direction, confirming the efficiency and speed of our technique.

  13. Comparison between a 1D and a 2D numerical model of an active magnetic regenerative refrigerator

    NASA Astrophysics Data System (ADS)

    Petersen, Thomas Frank; Engelbrecht, Kurt; Bahl, Christian R. H.; Elmegaard, Brian; Pryds, Nini; Smith, Anders

    2008-05-01

    The active magnetic regenerator (AMR) refrigeration system represents an environmentally attractive alternative to vapour-compression refrigeration. This paper compares the results of two numerical AMR models: (1) a 1D finite difference model and (2) a 2D finite element model. Both models simulate a reciprocating AMR and can determine the cyclical steady-state temperature profile of the system as well as performance parameters such as the refrigeration capacity, the work input and the coefficient of performance (COP). The models are used to analyse an AMR with a regenerator made of flat parallel plates of gadolinium operating in the presence of a 1 T magnetic field. The results are used to discuss under which circumstances a 1D model is insufficient and a 2D model is necessary. The results indicate that when the temperature gradients in the AMR perpendicular to the flow are small a 1D model obtains accurate results of overall results such as the refrigeration capacity but that a 2D model is required for a detailed analysis of the phenomena occurring inside the AMR.

  14. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  15. Application of 2D numerical model to unsteady performance evaluation of vertical-axis tidal current turbine

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Qu, Hengliang; Shi, Hongda; Hu, Gexing; Hyun, Beom-Soo

    2016-09-01

    Tidal current energy is renewable and sustainable, which is a promising alternative energy resource for the future electricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2×105 and 0.01 s are selected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coefficients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analysis of the vertical tidal stream turbine.

  16. Improved treatment of asthenosphere flow and melting in 2D numerical solutions for continental rifting: embedded vs nested modeling approaches.

    NASA Astrophysics Data System (ADS)

    de Monserrat, Albert; Morgan, Jason P.; Taramón, Jorge M.; Hall, Robert

    2016-04-01

    This work focuses on improving current 2D numerical approaches to modeling the boundary conditions associated with computing accurate deformation and melting associated with continental rifting. Recent models primarily use far-field boundary conditions that have been used for decades with little assessment of their effects on asthenospheric flow beneath the rifting region. All are extremely oversimplified. All are likely to significantly shape the pattern of asthenospheric flow beneath the stretching lithosphere which is associated with pressure-release melting and rift volcanism. The choice of boundary conditions may lead to different predictions of asthenospheric flow and melting associated with lithospheric stretching and breakup. We also find that they may affect the mode of crustal stretching. Here we discuss a suite of numerical experiments using a Lagrangian formulation, that compare these choices to likely more realistic boundary condition choices like the analytical solution for flow associated with two diverging plates stretching over a finite-width region. We also compare embedded and nested meshes with a high-resolution 2-D region within a cartesian 'whole mantle cross-section' box. Our initial results imply that the choice of far-field boundary conditions does indeed significantly influence predicted melting distributions and melt volumes associated with continental breakup. For calculations including asthenospheric melting, the 'finite width plate spreading' and embedded rifting boundary condition treatments lead to significantly smaller BC-influenced signals when using high-resolution calculation regions of order ~1000 km wide and 600 km deep within a lower resolution box of the order of >5000 km wide and 2800 km. We recommend their use when models are attempting to resolve the effects of asthenosphere flow and melting. We also discuss several examples of typical numerical 'artifacts' related to 'edge convection' at the sides of the stretching region

  17. 2D and 3D numerical simulations of morphodynamics structures in a large-amplitude meanders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the pioneering study of the Ishikari River, Japan, Kinoshita (Kinoshita 1957, 1961) described two types of meandering channels: (1) channel with two bars per meander wavelength (one bar per bend), and (2) channel with three or more bars per meander wavelength (multiple bars per bend). Based on th...

  18. 2D numerical modeling of gravity-driven giant-scale deformation processes in the offshore Barreirinhas Basin (Brazil)

    NASA Astrophysics Data System (ADS)

    Cruciani, Francesco; Manconi, Andrea; Rinaldo Barchi, Massimiliano

    2014-05-01

    this particular place and also elsewhere. We set up a 2D fluid dynamic model by considering a Finite Element Method (FEM) environment, which allows us to well represent the geometries, densities and viscosities of the geological materials, as derived from geophysical investigations. Our study aims at understanding whether the long-term mechanical behavior of the Barreirinhas Basin DW-FTB can be reproduced by considering a simplified Newtonian fluid dynamics environment or it is controlled by a more complex rheology, which might include the effect of additional parameters such as internal friction, cohesive strength and pore-fluid pressure at the basal detachment.

  19. 2D dynamic studies combined with the surface curvature analysis to predict Arias Intensity amplification

    NASA Astrophysics Data System (ADS)

    Torgoev, Almaz; Havenith, Hans-Balder

    2016-07-01

    A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.

  20. 2D and 3D Numerical Experiments Assessing the Necessary Conditions for a Plume-fed Asthenosphere

    NASA Astrophysics Data System (ADS)

    Shi, C.; Phipps Morgan, J.; Hasenclever, J.

    2008-12-01

    In past years we have presented observation evidence which suggests to us that in Earth's mantle there exists a buoyant asthenosphere layer fed by upwelling in mantle plumes, and consumed by accretion and transformation into overlying lithosphere by ridge upwelling and melt-extraction (which creates a ~60km-thick layer of compositional lithosphere at mid-ocean ridges), by plate cooling (which accretes a further ~40km of asthenosphere after 100 Ma of near-surface cooling), and by dragdown by subducting slabs (which drags a further ~20km sheet of buoyant asthenosphere on either side of the subducting slab). This scenario has been recently reviewed in Yamamoto et al (GSA Vol. 431). We believe that the reason this mode of mantle convection has not yet been seen in numerical models of mantle convection is due to the inability of current models to model the correct upwelling rates in focused lower-viscosity plumes (i.e. that, due to numerical resolution problems they currently underpredict plume upwelling) and to correctly model the magnitude of downdragging of a more buoyant but lower viscosity asthenosphere layer by subducting slabs (which they currently overpredict, cf. Phipps Morgan et al., Terra Nova, 2007). Here we present results from a suite of 2D and 3D calculations that include the effects of ridge accretion, plate cooling and well-resolved asthenosphere dragdown by subducting slabs. In the 2D experiments we do not let mantle plumes spontaneously form at the hot base of the mantle. Instead we extract mantle at a prescribed rate from a single region near the bottom of the mantle (the base of the 'plume stem') and inject this hot material into the uppermost mantle using a local dilation element 'source'. The point is to bypass an incorrect 2D treatment of plume upwelling (plumes should be pipes that only slightly disrupt surrounding flow instead of sheets that break 2D mantle flow), in order to explore what upwelling flux is needed to form a persistent plume

  1. First-principles study of 2D electride : Gadolinium carbide

    NASA Astrophysics Data System (ADS)

    Nandadasa, Chandani; Kim, Seong-Gon; Kim, Sungho; Kim, Sung Wng

    Electrides are an exclusive class of ionic compounds in which some electrons are occupying crystal voids instead of attaching to specific atoms or bonds. Using first-principles density functional theory calculations, we study structural, electronic and magnetic properties of Gd2C. The theoretically predicted structure of Gd2C is in good agreement with the available experimental data. Energy band diagram of Gd2C shows that they are crossing the Fermi level. Projected electronic density of states plots indicate that the interstitial sites are the main contributor to the density of states at the Fermi level. Charge of individual atoms including interstitial site are obtained using Bader analysis. Magnetic properties of Gd2C is determined from magnetization density plots. Work functions of Gd2C are determined for (001) and (100) surfaces with the technique of macroscopic average of electrostatic potential with the Fermi energy of bulk.

  2. THE 2D HEISENBERG ANTIFERROMAGNET IN HIGH-Tc SUPERCONDUCTIVITY:. A Review of Numerical Techniques and Results

    NASA Astrophysics Data System (ADS)

    Barnes, T.

    In this article we review numerical studies of the quantum Heisenberg antiferromagnet on a square lattice, which is a model of the magnetic properties of the undoped “precursor insulators” of the high temperature superconductors. We begin with a brief pedagogical introduction and then discuss zero and nonzero temperature properties and compare the numerical results to analytical calculations and to experiment where appropriate. We also review the various algorithms used to obtain these results, and discuss algorithm developments and improvements in computer technology which would be most useful for future numerical work in this area. Finally we list several outstanding problems which may merit further investigation.

  3. Numerical simulations of heavily polluted fine-grained sediment remobilization using 1D, 1D+, and 2D channel schematization.

    PubMed

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2015-03-01

    This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259

  4. Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code

    NASA Astrophysics Data System (ADS)

    Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia

    2015-04-01

    Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric

  5. Numerical Modeling of Detachment Folding: a 2D Approach with Application to Incremental Coseismic Fold Growth in Taiwan

    NASA Astrophysics Data System (ADS)

    Strayer, Luther; Suppe, John; Graveleau, Fabien

    2010-05-01

    -Chi-like earthquakes with 8 m slip terminating in the fold and about 45 non-Chi-Chi events with 8 m slip passing through the fold. In order to understand the incremental, but not necessarily dynamical, development of the Tungshih and other similar anticlines we are developing 2D numerical models similar to this structure using both idealized initial states (flat layers, level ground surface, etc.) and deformed states derived from the natural prototype (seismic profiles, surface data, etc.). We are taking this two-pronged approach because while our main goal is to re-create the last 12 m increment of growth on the Cholan structure, having knowledge of the nature and extent of the strains (damage to the rockmass) required to get to this initial pre-Chi-Chi state will likely be important with regard to setting up the 'natural' example model. In other words-knowing where the rockmass is weakened or anisotropic due to prior deformation will aid in defining the character and distribution of material properties in our incremental model. We are using both continuum and discrete modeling methods and are examining the feasibility of developing a coupled continuous/discrete model in which deeper the levels of the structure is modeled as a continuum and the near surface is simulated using a bonded particle-based method. The particle nature of the discrete formulation lends itself particularly well to addressing the inherently discontinuous nature of shallow-level deformation. Both techniques rely on finite-difference formulations, which we believe have significant advantages over traditional finite-element modeling approaches. Results expected from this modeling work include, among others: 1) better understanding of the mechanical controls of the evolution of detachment folds in general; 2) knowledge of the slip-transfer mechanisms at core of the Tungshih anticline and mechanical conditions that allow us to re-create the surface deformation documented at Cholan; 3) an understanding of the

  6. Laboratory studies on N(2D) reactions of relevance to the chemistry of planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Balucani, N.; Casavecchia, P.

    Molecular nitrogen is a very stable molecule, practically inert from a chemical point of view. For a nitrogen chemistry to occur in the planetary atmospheres which contain N2 , it is necessary to transform it into an active form, such as atoms or ions. As far as the production of atomic nitrogen in the upper atmospheres of planets (like Mars) or moons (like Titan) is concerned, several processes - as N2 dissociation induced by electron impact, EUV photolysis (λ <80 nm) and dissociative photoionization, or galactic cosmic ray absorption and N+ dissociative recombination all 2 lead to atomic nitrogen, notably in the ground, 4 S3/2 , and first electronically excited, 2 D3/2,5/2 , states with comparable yields. The radiative lifetimes of the metastable states 2 D3/2 and 2 D5/2 are quite long (12.3 and 48 hours, respectively), because the transition from a doublet to a quartet state is strongly forbidden. In addition, the physical quenching of N(2 D) is often a slow process and in some important cases the main fate of N(2 D) is chemical reaction with other constituents of the planetary atmospheres. The production of N atoms in the 2 D state is an important fact, because N(4 S) atoms exhibit very low reactivity with closed-shell molecules and the probability of collision with an open-shell radical is small. Unfortunately laboratory experiments on the gas-phase reactions of N(2 D) have been lacking until recently, because of serious experimental difficulties in studying these reactive systems. Accurate kinetic data on the reactions of N(2 D) with the some molecules of relevance to the chemistry of planetary atmospheres have finally become available in the late 90's, but a better knowledge of the reactive behavior requires a dynamical investigation of N(2 D) reactions. The capability of generating intense continuous beams of N(2 D) achieved in our laboratory some years ago has opened up the possibility of studying the reactive scattering of this species under single

  7. Floodplain mapping via 1D and quasi-2D numerical models in the valley of Thessaly, Greece

    NASA Astrophysics Data System (ADS)

    Oikonomou, Athanasios; Dimitriadis, Panayiotis; Koukouvinos, Antonis; Tegos, Aristoteles; Pagana, Vasiliki; Panagopoulos, Panayiotis-Dionisios; Mamassis, Nikolaos; Koutsoyiannis, Demetris

    2013-04-01

    The European Union Floods Directive defines a flood as 'a covering by water of land not normally covered by water'. Human activities, such as agriculture, urban development, industry and tourism, contribute to an increase in the likelihood and adverse impacts of flood events. The study of the hydraulic behaviour of a river is important in flood risk management. Here, we investigate the behaviour of three hydraulic models, with different theoretical frameworks, in a real case scenario. The area is located in the Penios river basin, in the plain of Thessaly (Greece). The three models used are the one-dimensional HEC-RAS and the quasi two-dimensional LISFLOOD-FP and FLO-2D which are compared to each other, in terms of simulated maximum water depth as well as maximum flow velocity, and to a real flood event. Moreover, a sensitivity analysis is performed to determine how each simulation is affected by the river and floodplain roughness coefficient, in terms of flood inundation.

  8. Estimating elastic moduli of rocks from thin sections: Digital rock study of 3D properties from 2D images

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Mavko, Gary

    2016-03-01

    Estimation of elastic rock moduli using 2D plane strain computations from thin sections has several numerical and analytical advantages over using 3D rock images, including faster computation, smaller memory requirements, and the availability of cheap thin sections. These advantages, however, must be weighed against the estimation accuracy of 3D rock properties from thin sections. We present a new method for predicting elastic properties of natural rocks using thin sections. Our method is based on a simple power-law transform that correlates computed 2D thin section moduli and the corresponding 3D rock moduli. The validity of this transform is established using a dataset comprised of FEM-computed elastic moduli of rock samples from various geologic formations, including Fontainebleau sandstone, Berea sandstone, Bituminous sand, and Grossmont carbonate. We note that using the power-law transform with a power-law coefficient between 0.4-0.6 contains 2D moduli to 3D moduli transformations for all rocks that are considered in this study. We also find that reliable estimates of P-wave (Vp) and S-wave velocity (Vs) trends can be obtained using 2D thin sections.

  9. Numerical investigation of the flat band Bloch modes in a 2D photonic crystal with Dirac cones.

    PubMed

    Zhang, Peng; Fietz, Chris; Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M

    2015-04-20

    A numerical method combining complex-k band calculations and absorbing boundary conditions for Bloch waves is presented. We use this method to study photonic crystals with Dirac cones. We demonstrate that the photonic crystal behaves as a zero-index medium when excited at normal incidence, but that the zero-index behavior is lost at oblique incidence due to excitation of modes on the flat band. We also investigate the formation of monomodal and multimodal cavity resonances inside the photonic crystals, and the physical origins of their different line-shape features.

  10. Recent Laboratory and Numerical Trailing Vortex Studies

    NASA Technical Reports Server (NTRS)

    Delisi, Donald P.; Greene, George C.; Robins, Robert E.; Singh, Raminder

    1996-01-01

    Results from two laboratory studies and two numerical studies are presented. In the first laboratory study, measurements of the strength of vortices from a three-dimensional (3-D) model wing are presented. The measurements follow the vortices as they evolve in time from a two-dimensional (2-D) line vortex pair to the development and migration of 3-D vortex rings. It is shown that the resulting vortex rings can contain up to 40 percent of the initial vortex circulation. Thus, the formation of vortex rings may not necessarily signal the end of the wake hazard to following aircraft. In the second laboratory study, we present the results of an experiment which shows how the spanwise drag distribution affects wake-vortex evolution. In this experiment, we modified the spanwise drag distribution on a model wing while keeping the total lift and drag constant. The results show that adding drag on or near the centerline of the wing has a larger effect than adding drag at or near the wingtips. These measurements complement the results of NASA studies in the 1970s. In the first numerical study, results of 3-D numerical calculations are presented which show that the vortex Reynolds number has a significant influence on the evolution and migration of wake vortices. When the Reynolds number is large, 3-D vortex rings evolve from the initially 2-D line vortex pairs. These vortex rings then migrate vertically. When the Reynolds number is lower, the transition of vorticity from 2-D to 3-D is delayed. When the Reynolds number is very low, the vortices never transition to 3-D, and the vertical migration is significantly reduced. It is suggested that this effect may have been important in previous laboratory wake-evolution studies. A second numerical study shows the influence that vertical wind shear can have on trailing vortex evolution.

  11. Experimental and numerical investigation of DNAPL infiltration and spreading in a 2-D sandbox by means of light transmission method

    NASA Astrophysics Data System (ADS)

    Zheng, F.; Shi, X.; Wu, J.; Gao, Y. W.

    2013-12-01

    Chlorinated solvents such as trichloroethene (TCE) and tetrachloroethene (PCE) are widespread groundwater contaminants often referred to as dense non-aqueous phase liquids (DNAPLs). Accuracy description of the spreading behavior and configuration for subsurface DNAPL migration is important, especially favourable for design effective remediation strategies. In this study, a 2-D experiment was conducted to investigate the infiltration behavior and spatial distribution of PCE in saturated porous media. Accusand 20/30 mesh sand (Unimin, Le Sueur, MN) was used as the background medium with two 70/80 and 60/70 mesh lenses embedded to simulate heterogeneous conditions. Dyed PCE of 100 ml was released into the flow cell at a constant rate of 2ml/min using a Harvard Apparatus syringe pump with a 50 ml glass syringe for two times, and 5 ml/min water was continuously injected through the inlet at the left side of the sandbox, while kept the same effluent rate at right side to create hydrodynamic condition. A light transmission (LT) system was used to record the migration of PCE and determine the saturation distribution of PCE in the sandbox experiment with a thermoelectrically air-cooled charged-coupled device (CCD) camera. All images were processed using MATLAB to calculate thickness-averaged PCE saturation for each pixel. Mass balance was checked through comparing injected known mounts of PCE with that calculated from LT analysis. Results showed that LT method is effective to delineate PCE migration pathways and quantify the saturation distribution. The relative errors of total PCE volumes calculated by LT analysis at different times were within 15% of the injected PCE volumes. The simulation are conducted using the multiphase modeling software T2VOC, which calibrated by the LT analysis results of three recorded time steps to fit with the complete spatial-temporal distribution of the PCE saturation. Model verification was then performed using the other eight recorded time

  12. Advanced Tsunami Numerical Simulations and Energy Considerations by use of 3D-2D Coupled Models: The October 11, 1918, Mona Passage Tsunami

    NASA Astrophysics Data System (ADS)

    López-Venegas, Alberto M.; Horrillo, Juan; Pampell-Manis, Alyssa; Huérfano, Victor; Mercado, Aurelio

    2015-06-01

    The most recent tsunami observed along the coast of the island of Puerto Rico occurred on October 11, 1918, after a magnitude 7.2 earthquake in the Mona Passage. The earthquake was responsible for initiating a tsunami that mostly affected the northwestern coast of the island. Runup values from a post-tsunami survey indicated the waves reached up to 6 m. A controversy regarding the source of the tsunami has resulted in several numerical simulations involving either fault rupture or a submarine landslide as the most probable cause of the tsunami. Here we follow up on previous simulations of the tsunami from a submarine landslide source off the western coast of Puerto Rico as initiated by the earthquake. Improvements on our previous study include: (1) higher-resolution bathymetry; (2) a 3D-2D coupled numerical model specifically developed for the tsunami; (3) use of the non-hydrostatic numerical model NEOWAVE (non-hydrostatic evolution of ocean WAVE) featuring two-way nesting capabilities; and (4) comprehensive energy analysis to determine the time of full tsunami wave development. The three-dimensional Navier-Stokes model tsunami solution using the Navier-Stokes algorithm with multiple interfaces for two fluids (water and landslide) was used to determine the initial wave characteristic generated by the submarine landslide. Use of NEOWAVE enabled us to solve for coastal inundation, wave propagation, and detailed runup. Our results were in agreement with previous work in which a submarine landslide is favored as the most probable source of the tsunami, and improvement in the resolution of the bathymetry yielded inundation of the coastal areas that compare well with values from a post-tsunami survey. Our unique energy analysis indicates that most of the wave energy is isolated in the wave generation region, particularly at depths near the landslide, and once the initial wave propagates from the generation region its energy begins to stabilize.

  13. Experimental studies of spin-imbalanced Fermi gases in 2D geometries

    NASA Astrophysics Data System (ADS)

    Thomas, John

    We study the thermodynamics of a quasi-two-dimensional Fermi gas, which is not quite two-dimensional (2D), but far from three dimensional (3D). This system offers opportunities to test predictions that cross interdisciplinary boundaries, such as enhanced superfluid transition temperatures in spin-imbalanced quasi-2D superconductors, and provides important benchmarks for calculations of the phase diagrams. In the experiments, an ultra-cold Fermi gas is confined in an infrared CO2 laser standing-wave, which produces periodic pancake-shaped potential wells, separated by 5.3 μm. To study the thermodynamics, we load an ultra-cold mixture of N1 = 800 spin 1/2 -up and N2 2D-BCS theory, but can be fit by a 2D-polaron gas model, where each atom is surrounded by a cloud of particle-hole pairs of the opposite spin. However, this model fails to predict a transition to a spin-balanced central region as N2/N1is increased. Supported by the physics divisions of ARO, AFOSR, and NSF and by the Division of Materials Science and Engineering, the Office of Basic Energy Sciences, DOE.

  14. A Convective Vorticity Vector Associated With Tropical Convection: A 2D Cloud-Resolving Modeling Study

    NASA Technical Reports Server (NTRS)

    Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo

    2004-01-01

    Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  15. Ultrasonic field profile evaluation in acoustically inhomogeneous anisotropic materials using 2D ray tracing model: Numerical and experimental comparison.

    PubMed

    Kolkoori, S R; Rahman, M-U; Chinta, P K; Ktreutzbruck, M; Rethmeier, M; Prager, J

    2013-02-01

    Ultrasound propagation in inhomogeneous anisotropic materials is difficult to examine because of the directional dependency of elastic properties. Simulation tools play an important role in developing advanced reliable ultrasonic non destructive testing techniques for the inspection of anisotropic materials particularly austenitic cladded materials, austenitic welds and dissimilar welds. In this contribution we present an adapted 2D ray tracing model for evaluating ultrasonic wave fields quantitatively in inhomogeneous anisotropic materials. Inhomogeneity in the anisotropic material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The presented algorithm evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase relations as well as transmission coefficients. The ray tracing model is able to calculate the ultrasonic wave fields generated by a point source as well as a finite dimension transducer. The ray tracing model results are validated quantitatively with the results obtained from 2D Elastodynamic Finite Integration Technique (EFIT) on several configurations generally occurring in the ultrasonic non destructive testing of anisotropic materials. Finally, the quantitative comparison of ray tracing model results with experiments on 32mm thick austenitic weld material and 62mm thick austenitic cladded material is discussed.

  16. 3D numerical simulation of laser-generated Lamb waves propagation in 2D acoustic black holes

    NASA Astrophysics Data System (ADS)

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua; Han, Bing

    2015-05-01

    Acoustic black holes have been widely used in damping structural vibration. In this work, the Lamb waves are utilized to evaluate the specified structure. The three-dimensional numerical model of acoustic black holes with parabolic profile was established. The propagation of laser-generated Lamb wave in two-dimensional acoustic black holes was numerically simulated using the finite element method. The results indicated that the incident wave was trapped by the structure obviously.

  17. Melt-rock reaction in the asthenospheric mantle: Perspectives from high-order accurate numerical simulations in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tirupathi, S.; Schiemenz, A. R.; Liang, Y.; Parmentier, E.; Hesthaven, J.

    2013-12-01

    The style and mode of melt migration in the mantle are important to the interpretation of basalts erupted on the surface. Both grain-scale diffuse porous flow and channelized melt migration have been proposed. To better understand the mechanisms and consequences of melt migration in a heterogeneous mantle, we have undertaken a numerical study of reactive dissolution in an upwelling and viscously deformable mantle where solubility of pyroxene increases upwards. Our setup is similar to that described in [1], except we use a larger domain size in 2D and 3D and a new numerical method. To enable efficient simulations in 3D through parallel computing, we developed a high-order accurate numerical method for the magma dynamics problem using discontinuous Galerkin methods and constructed the problem using the numerical library deal.II [2]. Linear stability analyses of the reactive dissolution problem reveal three dynamically distinct regimes [3] and the simulations reported in this study were run in the stable regime and the unstable wave regime where small perturbations in porosity grows periodically. The wave regime is more relevant to melt migration beneath the mid-ocean ridges but computationally more challenging. Extending the 2D simulations in the stable regime in [1] to 3D using various combinations of sustained perturbations in porosity at the base of the upwelling column (which may result from a viened mantle), we show the geometry and distribution of dunite channel and high-porosity melt channels are highly correlated with inflow perturbation through superposition. Strong nonlinear interactions among compaction, dissolution, and upwelling give rise to porosity waves and high-porosity melt channels in the wave regime. These compaction-dissolution waves have well organized but time-dependent structures in the lower part of the simulation domain. High-porosity melt channels nucleate along nodal lines of the porosity waves, growing downwards. The wavelength scales

  18. Trench doping process for 3D transistors - 2D cross-sectional doping profiling study

    NASA Astrophysics Data System (ADS)

    Qin, Shu; Wang, Zhouguang; Hu, Y. Jeff; McTeer, Allen

    2012-11-01

    Comparison study of doping a 3D trench transistor structure was carried out by beam-line (BL) implant and plasma doping (PLAD) methods. Electron holography (EH) was used as a powerful characterization method to study 2D cross-sectional doping profiles of boron-based doping processes. Quantitative definitions of junction depths xj in both vertical and lateral directions can be obtained. Good correlations of 2D electron holography dopant profiles, 2D dopant profile simulations, and 1D SIMS/ARXPS impurity profiles are demonstrated. The results reveal an advantage of PLAD over BL implant: a much larger effective implant area for 3D trench bottom. It leads to a larger lateral junction depth xj(L) with a comparable vertical junction depth xj(V). It is attributed to the PLAD technology with no line of sight shadowing effect and less angle variation issues. Enhancing the dopant lateral straggle by PLAD at the trench bottom is particularly useful for non-planar device structures with low resistance buried dopant layers.

  19. Interaction of water molecules with hexagonal 2D systems. A DFT study

    NASA Astrophysics Data System (ADS)

    Rojas, Ángela; Rey, Rafael

    Over the years water sources have been contaminated with many chemical agents, becoming issues that affect health of the world population. The advances of the nanoscience and nanotechnology in the development new materials constitute an alternative for design molecular filters with great efficiencies and low cost for water treatment and purification. In the nanoscale, the process of filtration or separation of inorganic and organic pollutants from water requires to study interactions of these atoms or molecules with different nano-materials. Specifically, it is necessary to understand the role of these interactions in physical and chemical properties of the nano-materials. In this work, the main interest is to do a theoretical study of interaction between water molecules and 2D graphene-like systems, such as silicene (h-Si) or germanene (h-Ge). Using Density Functional Theory we calculate total energy curves as function of separation between of water molecules and 2D systems. Different spatial configurations of water molecules relative to 2D systems are considered. Structural relaxation effects and changes of electronic charge density also are reported. Universidad Nacional de Colombia.

  20. Membrane proteins: functional and structural studies using reconstituted proteoliposomes and 2-D crystals.

    PubMed

    Rigaud, J-L

    2002-07-01

    Reconstitution of membrane proteins into lipid bilayers is a powerful tool to analyze functional as well as structural areas of membrane protein research. First, the proper incorporation of a purified membrane protein into closed lipid vesicles, to produce proteoliposomes, allows the investigation of transport and/or catalytic properties of any membrane protein without interference by other membrane components. Second, the incorporation of a large amount of membrane proteins into lipid bilayers to grow crystals confined to two dimensions has recently opened a new way to solve their structure at high resolution using electron crystallography. However, reconstitution of membrane proteins into functional proteoliposomes or 2-D crystallization has been an empirical domain, which has been viewed for a long time more like "black magic" than science. Nevertheless, in the last ten years, important progress has been made in acquiring knowledge of lipid-protein-detergent interactions and has permitted to build upon a set of basic principles that has limited the empirical approach of reconstitution experiments. Reconstitution strategies have been improved and new strategies have been developed, facilitating the success rate of proteoliposome formation and 2-D crystallization. This review deals with the various strategies available to obtain proteoliposomes and 2-D crystals from detergent-solubilized proteins. It gives an overview of the methods that have been applied, which may be of help for reconstituting more proteins into lipid bilayers in a form suitable for functional studies at the molecular level and for high-resolution structural analysis.

  1. Allergenicity study of EGFP-transgenic chicken meat by serological and 2D-DIGE analysis.

    PubMed

    Nakamura, Rika; Nakamura, Ryosuke; Nakano, Mikiharu; Arisawa, Kenjiro; Ezaki, Ryo; Horiuchi, Hiroyuki; Teshima, Reiko

    2010-05-01

    Genetically modified (GM) foods must be tested for safety, including by allergenicity tests to ensure that they do not contain new allergens or higher concentrations of known allergens than the same non-GM foods. In this study experimentally developed EGFP-transgenic chickens were used and evaluated the allergenicity of meat from the chicken based on a serological and two-dimensional difference gel electrophoresis (2D-DIGE) analysis. For the serological analysis, a Western blotting with allergen-specific antibodies and a proteomic analysis of chicken meat allergens with patients' sera, a so-called allergenome analysis, were used. The allergenome analysis allowed us to identify five IgE-binding proteins in chicken meat, including a known allergen, chicken serum albumin, and no qualitative difference in their expressions between the GM and non-GM chicken meat was found. Results of the 2D-DIGE analysis showed that none of the IgE-binding proteins in chicken meat were significantly changed in expression levels between non-GM and GM chicken, and only 3 of the 1500 soluble protein spots including green fluorescence protein were markedly different as a result of gene transfer. These above results showed that the combination of serological and 2D-DIGE analysis is a valid method of evaluating quality and quantity of allergens in GM foods.

  2. Modelling river bank erosion using a 2D depth-averaged numerical model of flow and non-cohesive, non-uniform sediment transport

    NASA Astrophysics Data System (ADS)

    El Kadi Abderrezzak, Kamal; Die Moran, Andrés; Tassi, Pablo; Ata, Riadh; Hervouet, Jean-Michel

    2016-07-01

    Bank erosion can be an important form of morphological adjustment in rivers. With the advances made in computational techniques, two-dimensional (2D) depth-averaged numerical models have become valuable tools for resolving many engineering problems dealing with sediment transport. The objective of this research work is to present a simple, new, bank-erosion operator that is integrated into a 2D Saint-Venant-Exner morphodynamic model. The numerical code is based on an unstructured grid of triangular elements and finite-element algorithms. The slope of each element in the grid is compared to the angle of repose of the bank material. Elements for which the slope is too steep are tilted to bring them to the angle of repose along a horizontal axis defined such that the volume loss above the axis is equal to the volume gain below, thus ensuring mass balance. The model performance is assessed using data from laboratory flume experiments and a scale model of the Old Rhine. For the flume experiment case with uniform bank material, relevant results are obtained for bank geometry changes. For the more challenging case (i.e. scale model of the Old Rhine with non-uniform bank material), the numerical model is capable of reproducing the main features of the bank failure, induced by the newly designed groynes, as well as the transport of the mobilized sediment material downstream. Some deviations between the computed results and measured data are, however, observed. They are ascribed to the effects of three-dimensional (3D) flow structures, pore pressure and cohesion, which are not considered in the present 2D model.

  3. Digit ratio (2D:4D) and hand preference for writing in the BBC Internet Study.

    PubMed

    Manning, J T; Peters, M

    2009-09-01

    The ratio of the length of the second to the fourth digit (2D:4D) may be negatively correlated with prenatal testosterone. Hand preference has been linked with prenatal testosterone and 2D:4D. Here we show that 2D:4D is associated with hand preference for writing in a large internet sample (n>170,000) in which participants self-reported their finger lengths. We replicated a significant association between right 2D:4D and writing hand preference (low right 2D:4D associated with left hand preference) as well as a significant correlation between writing hand preference and the difference between left and right 2D:4D or Dr-l (low Dr-l associated with left hand preference). A new significant correlation between left 2D:4D and writing hand preference was also shown (high left 2D:4D associated with left hand preference). There was a clear interaction between writing hand preference and 2D:4D: The left 2D:4D was significantly larger than the right 2D:4D in male and female left-handed writers, and the right hand 2D:4D was significantly larger than the left hand 2D:4D in male and female right-handed writers.

  4. 2D Numeric Modeling of Cenozoic Lithospheric deformation in the Himalaya-Tibet-Pamir-Tien Shan Orogen

    NASA Astrophysics Data System (ADS)

    Tympel, J.; Sobolev, S. V.

    2011-12-01

    The Pamir-Hindu Kush region located in the western syntaxis of the Himalaya is the locus of a large number of intermediate-depth earthquakes and an almost vertical high velocity zone, seen in seismic tomography. The seismicity is not clearly related to oceanic subduction and forms an S-shaped zone between north-western Afghanistan and the eastern Pamir. In depth, the earthquake hypocenters are forming what some authors interpret as a V-shaped pattern which supports the model of two converging subduction zones to explain the observations. However, other models propose a single but highly contorted Indian slab or even a Rayleigh-Taylor instability due to a higher density in the lithosphere compared to the asthenosphere. As part of the TIPAGE project (TIen Shan - PAmir GEodynamic program) our aim is to find lithospheric scale models consistent with all major observations as well as to find controlling factors for the extreme Cenozoic shortening in the Pamir-Tien Shan orogen. For our current modeling approach we use the finite-element code SLIM3D which allows coupled thermo-mechanical treatment of deformation processes. The code is capable of highly nonlinear elasto-visco-plastic rheology including diffusion, dislocation and Peierls creep mechanism and allowing self-consistent generation of faults. It incorporates free surface boundary conditions and is equiped with petrological routines for gabbro-eclogite, coesite-stishovite phase transitions. We run several 2D cross-section models in order to explain the high velocity zone below the Pamir-Hindu Kush and the seismicity which distingushes the region from the rest of the Himalaya. In a typical model setup India has two parts: the 'inner part' which comprises 35-45 km thick continental crust and relatively thick cratonic mantle lithosphere; the 'outer part' has 25-30 km thick crust and a less depleted, more ocean-like lithosphere. Inside of Asia we place an "inclusion" of thicker cratonic lithosphere, like that of the

  5. Multipacting Simulation Study for 56 MHz Quarter Wave Resonator using 2D Code

    SciTech Connect

    Naik,D.; Ben-Zvi, I.

    2009-01-02

    A beam excited 56 MHz Radio Frequency (RF) Niobium Quarter Wave Resonator (QWR) has been proposed to enhance RHIC beam luminosity and bunching. Being a RF cavity, multipacting is expected; therefore an extensive study was carried out with the Multipac 2.1 2D simulation code. The study revealed that multipacting occurs in various bands up to peak surface electric field 50 kV/m and is concentrated mostly above the beam gap and on the outer conductor. To suppress multipacting, a ripple structure was introduced to the outer conductor and the phenomenon was successfully eliminated from the cavity.

  6. Numerical simulations - Some results for the 2- and 3-D Hubbard models and a 2-D electron phonon model

    NASA Technical Reports Server (NTRS)

    Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.

    1989-01-01

    Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.

  7. A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de

    NASA Technical Reports Server (NTRS)

    Lopez Ortega, Alejandro; Mikellides, Ioannis G.

    2014-01-01

    We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.

  8. Investigation of capillary nanosecond discharges in air at moderate pressure: comparison of experiments and 2D numerical modelling

    NASA Astrophysics Data System (ADS)

    Klochko, Andrei V.; Starikovskaia, Svetlana M.; Xiong, Zhongmin; Kushner, Mark J.

    2014-09-01

    Nanosecond electrical discharges in the form of ionization waves are of interest for rapidly ionizing and exciting complex gas mixtures to initiate chemical reactions. Operating with a small discharge tube diameter can significantly increase the specific energy deposition and so enable optimization of the initiation process. Analysis of the uniformity of energy release in small diameter capillary tubes will aid in this optimization. In this paper, results for the experimentally derived characteristics of nanosecond capillary discharges in air at moderate pressure are presented and compared with results from a two-dimensional model. The quartz capillary tube, having inner and outer diameters of 1.5 and 3.4 mm, is about 80 mm long and filled with synthetic dry air at 27 mbar. The capillary tube with two electrodes at the ends is inserted into a break of the central wire of a long coaxial cable. A metal screen around the tube is connected to the cable ground shield. The discharge is driven by a 19 kV 35 ns voltage pulse applied to the powered electrode. The experimental measurements are conducted primarily by using a calibrated capacitive probe and back current shunts. The numerical modelling focuses on the fast ionization wave (FIW) and the plasma properties in the immediate afterglow after the conductive plasma channel has been established between the two electrodes. The FIW produces a highly focused region of electric field on the tube axis that sustains the ionization wave that eventually bridges the electrode gap. Results from the model predict FIW propagation speed and current rise time that agree with the experiment.

  9. Studying the Polarization Switching in Polycrystalline BiFeO3 Films by 2D Piezoresponse Force Microscopy

    PubMed Central

    Jin, Yaming; Lu, Xiaomei; Zhang, Junting; Kan, Yi; Bo, Huifeng; Huang, Fengzhen; Xu, Tingting; Du, Yingchao; Xiao, Shuyu; Zhu, Jinsong

    2015-01-01

    For rhombohedral multiferroelectrics, non-180° ferroelectric domain switching may induce ferroelastic and/or (anti-)ferromagnetic effect. So the determination and control of ferroelectric domain switching angles is crucial for nonvolatile information storage and exchange-coupled magnetoelectric devices. We try to study the intrinsic characters of polarization switching in BiFeO3 by introducing a special data processing method to determine the switching angle from 2D PFM (Piezoresponse Force Microscopy) images of randomly oriented samples. The response surface of BiFeO3 is first plotted using the piezoelectric tensor got from first principles calculations. Then from the normalized 2D PFM signals before and after switching, the switching angles of randomly oriented BiFeO3 grains can be determined through numerical calculations. In the polycrystalline BiFeO3 films, up to 34% of all switched area is that with original out-of-plane (OP) polarization parallel to the poling field. 71° polarization switching is more favorable, with the area percentages of 71°, 109° and 180° domain switching being about 42%, 29% and 29%, respectively. Our analysis further reveals that IP stress and charge migration have comparable effect on switching, and they are sensitive to the geometric arrangements. This work helps exploring a route to control polarization switching in BiFeO3, so as to realize desirable magnetoelectric coupling. PMID:26192555

  10. 1D and 2D NMR studies of isobornyl acrylate - Methyl methacrylate copolymers

    NASA Astrophysics Data System (ADS)

    Khandelwal, Deepika; Hooda, Sunita; Brar, A. S.; Shankar, Ravi

    2011-10-01

    Isobornyl acrylate - methyl methacrylate (B/M) copolymers of different compositions were synthesized by atom transfer radical polymerization (ATRP) using methyl-2-bromopropionate as an initiator and PMDETA copper complex as catalyst under nitrogen atmosphere at 70 °C. 1H NMR spectrum was used to determine the compositions of copolymer. The copolymer compositions were then used to determine the reactivity ratios of monomers. Reactivity ratios of co-monomers in B/M copolymer, determined from linear Kelen-Tudos method (KT) and non linear Error-in-Variable Method (EVM), are rB = 0.41 ± 0.11, rM = 1.11 ± 0.33 and rB = 0.52, rM = 1.31 respectively. The complete resonance assignments of 1H and 13C{ 1H} NMR spectra were carried out with the help of Distortion less Enhancement by Polarization Transfer (DEPT), two-dimensional Heteronuclear Single Quantum Coherence (HSQC). 2D HSQC assignments were further confirmed by 2D Total Correlation Spectroscopy (TOCSY). The carbonyl carbon of B and M units and methyl carbon of M unit were assigned up to triad compositional and configurational sequences whereas β-methylene carbons were assigned up to tetrad compositional and configurational sequences. Similarly the methine carbon of B unit was assigned up to pentad level. 1,3 and 1,4 bond order couplings of carbonyl carbon and quaternary carbon resonances with methine, methylene and methyl protons were studied in detail using 2D Hetero Nuclear Multiple Bond Correlation (HMBC) spectra.

  11. Studies of novel deuterides RMn2D6 (R — rare earth) compressed in DAC up to 30 GPa

    NASA Astrophysics Data System (ADS)

    Filipek, S. M.; Sugiura, H.; Paul-Boncour, V.; Wierzbicki, R.; Liu, R. S.; Bagkar, N.

    2008-07-01

    The exposure of RMn2 (C15 or C14 cubic Laves phase, where R = Y; Dy; Ho or Er) to high deuterium pressure leads to formation of novel, unique YMn2D6, DyMn2D6, HoMn2D6 and ErMn2D6 deuterides with cubic Fm-3m symmetry. In spite of different structures and molecular volumes of parent RMn2 compounds, the molar volumes of RMn2D6 deuterides are almost identical. In this paper, we present results of studies on RMn2Dx (where R = Y, Dy, Ho and Er) submitted to compression up to 30 GPa in diamond anvil cell (DAC) combined with energy dispersive X-ray diffraction. The EOS (equation of state) parameters of the above four RMn2D6 samples and YMn2Dx, with x <= 4 are compared. The EOS parameters of YMn2D6 are very similar to those of other RMn2D6 but very different than those of interstitial deuterides YMn2Dx (x <= 4). The phase transition or segregation was not detected in RMn2D6 up to 30 GPa.

  12. Linkage studies for T2D in Chop and C/EBPbeta chromosomal regions in Italians.

    PubMed

    Gragnoli, Claudia; Pierpaoli, Laura; Piumelli, Nunzia; Chiaramonte, Francesco

    2007-11-01

    The genes causing type 2 diabetes (T2D), a complex heterogeneous disorder, differ and/or overlap in various populations. Among others there are two loci in linkage to T2D, the chromosomes 20q12-13.1 and 12q15. These two regions harbor two genes, C/EBPbeta and CHOP, which are excellent candidate genes for T2D. In fact, C/EBPbeta protein cooperates with HNF4alpha (MODY1, monogenic form of diabetes) and 1alpha (MODY3, monogenic form of diabetes). C/EBPbeta mediates suppression of insulin gene transcription in hyperglycemia and may contribute to insulin-resistance. It interacts in a complex pathway with the CHOP protein. CHOP may play a role in altered beta-cell glucose metabolism, in beta-cell apoptosis, and in lack of beta-cell replication. Thus, both C/EBPbeta and CHOP genes may independently and interactively contribute to T2D. The chromosomal regions targeting C/EBPbeta and CHOP genes have never been previously explored in T2D. We planned to identify their potential contribution to T2D in Italians. We have genotyped a group of affected siblings/families with both late- and early-onset T2D around the C/EBPbeta and the CHOP genes. We have performed non-parametric linkage analysis in the total T2D group, in the late-onset and the early-onset group, separately. We have identified a suggestive linkage to T2D in the CHOP gene locus in the early-onset T2D group (P = 0.04). We identified the linkage to T2D in the chromosome 12q15 region in the early-onset T2D families and specifically target the CHOP gene. Our next step will be the identification of CHOP gene variants, which may contribute to the linkage to T2D in Italians. PMID:17620318

  13. Theoretical study of surface plasmons coupling in transition metallic alloy 2D binary grating

    NASA Astrophysics Data System (ADS)

    Dhibi, Abdelhak; Khemiri, Mehdi; Oumezzine, Mohamed

    2016-05-01

    The excitation of a surface plasmon polariton (SPP) wave on a metal-air interface by a 2D diffraction grating is numerically investigated. The grating consists of homogeneous alloys of two metals of a formula AxB1-x, or three metals of a formula AxByCz, where A, B and C could be silver (Ag), copper (Cu), gold (Au) or aluminum (Al). It is observed that all the alloys of two metals present a very small change of surface plasmon resonance (SPR) irrespective of composition x. Moreover, the addition of 25% of Al to two metals alloy is insufficient to change the SPR curves. The influence of the different grating parameters is discussed in details using rigorous coupled-wave analysis (RCWA) method. Furthermore, the SPR is highly dependent on grating periods (dx and dy) and the height of the grating h. The results reveal that dx= dy= 700 nm, h=40 nm and duty cycle w=0.5 are the optimal parameters for exciting SPP.

  14. Theoretical study of surface plasmon resonance sensors based on 2D bimetallic alloy grating

    NASA Astrophysics Data System (ADS)

    Dhibi, Abdelhak; Khemiri, Mehdi; Oumezzine, Mohamed

    2016-11-01

    A surface plasmon resonance (SPR) sensor based on 2D alloy grating with a high performance is proposed. The grating consists of homogeneous alloys of formula MxAg1-x, where M is gold, copper, platinum and palladium. Compared to the SPR sensors based a pure metal, the sensor based on angular interrogation with silver exhibits a sharper (i.e. larger depth-to-width ratio) reflectivity dip, which provides a big detection accuracy, whereas the sensor based on gold exhibits the broadest dips and the highest sensitivity. The detection accuracy of SPR sensor based a metal alloy is enhanced by the increase of silver composition. In addition, the composition of silver which is around 0.8 improves the sensitivity and the quality of SPR sensor of pure metal. Numerical simulations based on rigorous coupled wave analysis (RCWA) show that the sensor based on a metal alloy not only has a high sensitivity and a high detection accuracy, but also exhibits a good linearity and a good quality.

  15. pH-induced structural changes of ovalbumin studied by 2D correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, Daehoon; Ryu, Soo Ryeon; Park, Yeonju; Czarnik-Matusewicz, Bogusława; Jung, Young Mee

    2014-07-01

    The secondary structural changes of pH-induced ovalbumin during the transition from native state into intermediate state were studied with the use of 2D correlation spectroscopy and principal component analysis. 2D correlation spectra constructed from the pH-dependent IR spectra of ovalbumin solution revealed the following scenario of the intensity changes with pH decrease. When pH decreased from 5.5 and 3.6 intensity of components attributed to the β-turns, the α-helical elements, and native β-sheets increased. It was caused by protonation induced changes in environment of these elements. When the protonation of the acidic groups were finalized the system adopted the intermediate structure. It was accompanied by weak structural changes that mainly included the β-turns and the α-helices. In extreme acidic conditions at pH below pH 2 the intermediate structure was no longer stable and oligomers rich in the β-sheet structure were formed.

  16. Digit ratio (2D:4D), dominance, reproductive success, asymmetry, and sociosexuality in the BBC Internet Study.

    PubMed

    Manning, John T; Fink, Bernhard

    2008-01-01

    Digit ratio (2D:4D) may be a correlate of prenatal sex steroids, and has been linked to traits, which are influenced by fetal testosterone and estrogen. Here we consider such links in a large Internet study of sex differences (the BBC Internet Study) in which finger lengths were self-measured. Consistent with lab-based findings the 2D:4D in this study shows sexual dimorphism, ethnic differences and higher dimorphism of right 2D:4D than left, thereby indicating that 2D:4D does measure real between-participant variation. High error in self-measurement of fingers reduces effect sizes. However, the large sample size gives assurance that significant effects are likely to be real. We controlled for ethnicity and sexual orientation by considering White heterosexuals only (153,429 participants). Sexual dimorphism was confirmed in 2D:4D and for the difference of right-left 2D:4D. After Bonferroni correction we found highly significant relationships with low effect sizes as follows. In males and females there were negative associations between 2D:4D and dominance. In males there were negative associations between 2D:4D and family size and factors associated with reproductive success. For females these associations were positive. For asymmetry we found U-shaped relationships with 2D:4D in both males and females. We found no relationship between 2D:4D and promiscuity (sociosexuality). In total, we considered 48 relationships and found 29 to be significant. We compare our findings with a similar study reported by Putz et al. (2004), which found only 2 out of 57 correlations to be significant and discuss possible reasons for the discrepancies between the studies.

  17. Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks

    NASA Astrophysics Data System (ADS)

    Lyra, W.; Johansen, A.; Zsom, A.; Klahr, H.; Piskunov, N.

    2009-04-01

    Context: As accretion in protoplanetary disks is enabled by turbulent viscosity, the border between active and inactive (dead) zones constitutes a location where there is an abrupt change in the accretion flow. The gas accumulation that ensues triggers the Rossby wave instability, which in turn saturates into anticyclonic vortices. It has been suggested that the trapping of solids within them leads to a burst of planet formation on very short timescales. Aims: We study in the formation and evolution of the vortices in greater detail, focusing on the implications for the dynamics of embedded solid particles and planet formation. Methods: We performed two-dimensional global simulations of the dynamics of gas and solids in a non-magnetized thin protoplanetary disk with the Pencil code. We used multiple particle species of radius 1, 10, 30, and 100 cm. We computed the particles' gravitational interaction by a particle-mesh method, translating the particles' number density into surface density and computing the corresponding self-gravitational potential via fast Fourier transforms. The dead zone is modeled as a region of low viscosity. Adiabatic and locally isothermal equations of state are used. Results: The Rossby wave instability is triggered under a variety of conditions, thus making vortex formation a robust process. Inside the vortices, fast accumulation of solids occurs and the particles collapse into objects of planetary mass on timescales as short as five orbits. Because the drag force is size-dependent, aerodynamical sorting ensues within the vortical motion, and the first bound structures formed are composed primarily of similarly-sized particles. In addition to erosion due to ram pressure, we identify gas tides from the massive vortices as a disrupting agent of formed protoplanetary embryos. We find evidence that the backreaction of the drag force from the particles onto the gas modifies the evolution of the Rossby wave instability, with vortices being

  18. Transport studies in 2D transition metal dichalcogenides and black phosphorus.

    PubMed

    Du, Yuchen; Neal, Adam T; Zhou, Hong; Ye, Peide D

    2016-07-01

    Two-dimensional (2D) materials are a new family of materials with interesting physical properties, ranging from insulating hexagonal boron nitride, semiconducting or semi-metallic transition metal dichalcogenides, to gapless metallic graphene. In this review, we provide a brief discussion of transport studies in transition metal dichalcogenides, including both semiconducting and semi-metallic phases, as well as a discussion of the newly emerged narrow bandgap layered material, black phosphorus, in terms of its electrical and quantum transport properties at room and cryogenic temperatures. Ultra-thin layered channel materials with atomic layer thickness in the cross-plane direction, together with relatively high carrier mobility with appropriate passivation techniques, provide the promise for new scientific discoveries and broad device applications. PMID:27187790

  19. An Experimental Study of Flow Separation over 2D Transverse Grooves

    NASA Astrophysics Data System (ADS)

    Jones, Emily; Lang, Amy; Afroz, Farhana; Wheelus, Jennifer; Smith, Drew

    2011-11-01

    A shark's scales help to reduce drag over its body by controlling boundary layer separation over its skin. It is theorized that the scales bristle when encountering a reversing flow, thereby trapping vortices between the scales, creating a partial slip condition over the surface and inducing turbulence augmentation in the boundary layer. In an attempt to replicate and study these effects, a spinning cylinder was used in a water tunnel to induce separation over a flat plate with 2 millimeter square 2D transverse grooves. The results were compared to separation occurring over a flat plate without grooves using DPIV. The angular speed of the cylinder was varied. The observed delays in separation, changes in separation bubble shedding frequency and other effects upon the boundary layer are discussed.

  20. Transport studies in 2D transition metal dichalcogenides and black phosphorus

    NASA Astrophysics Data System (ADS)

    Du, Yuchen; Neal, Adam T.; Zhou, Hong; Ye, Peide D.

    2016-07-01

    Two-dimensional (2D) materials are a new family of materials with interesting physical properties, ranging from insulating hexagonal boron nitride, semiconducting or semi-metallic transition metal dichalcogenides, to gapless metallic graphene. In this review, we provide a brief discussion of transport studies in transition metal dichalcogenides, including both semiconducting and semi-metallic phases, as well as a discussion of the newly emerged narrow bandgap layered material, black phosphorus, in terms of its electrical and quantum transport properties at room and cryogenic temperatures. Ultra-thin layered channel materials with atomic layer thickness in the cross-plane direction, together with relatively high carrier mobility with appropriate passivation techniques, provide the promise for new scientific discoveries and broad device applications.

  1. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    SciTech Connect

    Maskaly, Karlene Rosera

    2005-06-01

    Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with

  2. Test Problem: Tilted Rayleigh-Taylor for 2-D Mixing Studies

    SciTech Connect

    Andrews, Malcolm J.; Livescu, Daniel; Youngs, David L.

    2012-08-14

    reasonable quality photographic data. The photographs in Figure 2 also reveal the appearance of a boundary layer at the left and right walls; this boundary layer has not been included in the test problem as preliminary calculations suggested it had a negligible effect on plume penetration and RT mixing. The significance of this test problem is that, unlike planar RT experiments such as the Rocket-Rig (Youngs, 1984), Linear Electric Motor - LEM (Dimonte, 1990), or the Water Tunnel (Andrews, 1992), the Tilted-Rig is a unique two-dimensional RT mixing experiment that has experimental data and now (in this TP) Direct Numerical Simulation data from Livescu and Wei. The availability of DNS data for the tilted-rig has made this TP viable as it provides detailed results for comparison purposes. The purpose of the test problem is to provide 3D simulation results, validated by comparison with experiment, which can be used for the development and validation of 2D RANS models. When such models are applied to 2D flows, various physics issues are raised such as double counting, combined buoyancy and shear, and 2-D strain, which have not yet been adequately addressed. The current objective of the test problem is to compare key results, which are needed for RANS model validation, obtained from high-Reynolds number DNS, high-resolution ILES or LES with explicit sub-grid-scale models. The experiment is incompressible and so is directly suitable for algorithms that are designed for incompressible flows (e.g. pressure correction algorithms with multi-grid); however, we have extended the TP so that compressible algorithms, run at low Mach number, may also be used if careful consideration is given to initial pressure fields. Thus, this TP serves as a useful tool for incompressible and compressible simulation codes, and mathematical models. In the remainder of this TP we provide a detailed specification; the next section provides the underlying assumptions for the TP, fluids, geometry details

  3. Electronic and geometrical properties of monoatomic and diatomic 2D honeycomb lattices. A DFT study

    NASA Astrophysics Data System (ADS)

    Rojas, Ángela; Rey, Rafael; Fonseca, Karen; Grupo de Óptica e Información Cuántica Team

    Since the discovery of graphene by Geim and Novoselov at 2004, several analogous systems have been theoretically and experimentally studied, due to their technological interest. Both monoatomic lattices, such as silicine and germanene, and diatomic lattices (h-GaAs and h-GaN) have been studied. Using Density Functional Theory we obtain and confirm the chemical stability of these hexagonal 2D systems through the total energy curves as a function of interatomic distance. Unlike graphene, silicine and germanene, gapless materials, h-GaAs and h-GaN exhibit electronic gaps, different from that of the bulk, which could be interesting for the industry. On the other hand, the ab initio band structure calculations for graphene, silicene and germanene show a non-circular cross section around K points, at variance with the prediction of usual Tight-binding models. In fact, we have found that Dirac cones display a dihedral group symmetry. This implies that Fermi speed can change up to 30 % due to the orientation of the wave vector, for both electrons and holes. Traditional analytic studies use the Dirac equation for the electron dynamics at low energies. However, this equation assumes an isotropic, homogeneous and uniform space. Authors would like to thank the División de Investigación Sede Bogotá for their financial support at Universidad Nacional de Colombia. A. M. Rojas-Cuervo would also like to thank the Colciencias, Colombia.

  4. Study of aging in oil paintings by 1D and 2D NMR spectroscopy.

    PubMed

    Spyros, Apostolos; Anglos, Demetrios

    2004-09-01

    Nuclear magnetic resonance spectroscopy is proposed as an efficient analytical tool in the study of painted artworks. The binding medium from two original oil paintings, dated from the early 20th and the late 17th century, was studied via high-resolution 1D and 2D NMR, establishing the advanced state of hydrolysis and oxidation of the oil paint. Studies of the solvent-extractable component from model samples of various drying oils, raw oil paints, and aged oil paints allowed the definition of several markers based on the integral ratios of various chemical species present in the 1H and 13C NMR spectra. These markers are sensitive to hydrolytic and oxidative processes that reflect the extent of aging in oil paintings. The rapidity, simplicity, and nondestructive nature of the proposed analytical NMR methodology represents a great advantage, since the usually minute sample quantities available from original artwork can be subsequently analyzed further by other analytical techniques, if necessary. PMID:15373425

  5. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    SciTech Connect

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.

  6. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    DOE PAGES

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulkmore » IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less

  7. Cavitation control on a 2D hydrofoil through a continuous tangential injection of liquid: Experimental study

    NASA Astrophysics Data System (ADS)

    Timoshevskiy, M. V.; Zapryagaev, I. I.; Pervunin, K. S.; Markovich, D. M.

    2016-10-01

    In the paper, the possibility of active control of a cavitating flow over a 2D hydrofoil that replicates a scaled-down model of high-pressure hydroturbine guide vane (GV) was tested. The flow manipulation was implemented by a continuous tangential liquid injection at different flow rates through a spanwise slot in the foil surface. In experiments, the hydrofoil was placed in the test channel at the attack angle of 9°. Different cavitation conditions were reached by varying the cavitation number and injection velocity. In order to study time dynamics and spatial patterns of partial cavities, high-speed imaging was employed. A PIV method was used to measure the mean and fluctuating velocity fields over the hydrofoil. Hydroacoustic measurements were carried out by means of a pressure transducer to identify spectral characteristics of the cavitating flow. It was found that the present control technique is able to modify the partial cavity pattern (or even totally suppress cavitation) in case of stable sheet cavitation and change the amplitude of pressure pulsations at unsteady regimes. The injection technique makes it also possible to significantly influence the spatial distributions of the mean velocity and its turbulent fluctuations over the GV section for non-cavitating flow and sheet cavitation.

  8. Using the 2D VISAR to Study Dynamic Fracture and Deformation in Diamond

    NASA Astrophysics Data System (ADS)

    Ali, S. J.

    2015-12-01

    We have utilized the newly developed 2D VISAR diagnostic, in combination with the existing line-VISAR, to study heterogeneous deformation and fracture in micro- and nanocrystalline diamond. Diamond samples were shock compressed using a high energy laser drive. We obtained images and velocity maps of deformation and fracture that provide an unprecedented view into material response at the breakout surface. Our data show velocity roughening at the breakout surface as a result of spall fracture in free surface samples and as a result of the compressional inelastic wave and reflected release wave in tamped samples. The larger increase in velocity roughness associated with the microdiamond samples agrees with previously obtained data indicating a loss of reflectivity on breakout for microdiamond shock compression. Using the observed fragment size for spall fracture in the microcrystalline and nanocrystalline diamond, and Grady's model for spall fracture fragment size as a function of strain rate, we have found values for the micro- and nanocrystalline fracture toughness of 103±14 MPa m1/2 and 44±8 MPa m1/2, respectively. Using these values for the fracture toughness, the strain rate dependent spall stresses were calculated and found to agree with previous research.

  9. Low frequency 2D Raman-THz spectroscopy of ionic solution: A simulation study

    NASA Astrophysics Data System (ADS)

    Pan, Zhijun; Wu, Tianmin; Jin, Tan; Liu, Yong; Nagata, Yuki; Zhang, Ruiting; Zhuang, Wei

    2015-06-01

    The 2D Raman-THz spectrum of the MgCl2 solution was simulated using the molecular dynamics simulation and the stability matrix method and compared with that of the pure water. The 2D Raman-THz signal provides more information on the ion effects on the collective water motion than the conventional 1D signal. The presence of MgCl2 suppresses the cross peak of water between the hydrogen bond bending and the other intermolecular vibrational mode, which clearly illustrates that the water hydrogen bending motion is affected by the confining effect of the ions. Our theoretical work thus demonstrates that the 2D Raman-THz technique can become a valuable nonlinear vibrational probe for the molecular dynamics in the ionic solutions.

  10. Numerical simulation on the thermal radiative properties of a 2D SiO2/W/SiO2/W layered grating for thermophotovoltaic applications

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Fu, Ceji

    2016-10-01

    Tailoring the spectrum of thermal emission from the emitter is important for improving the performance of a thermophotovoltaic (TPV) system. In this work, a two-dimensional (2D) layered grating structure made of SiO2 and tungsten (W), which can realize wavelength-selective control of thermal emission, was proposed for a potential emitter in TPV applications. Numerical simulations of the spectral emissivity of the structure from the ultraviolet (UV) to the mid-infrared region reveals that the spectral-normal emissivity of the structure is enhanced to above 0.95 in the wavelength region from 0.55 μm to 1.9 μm for both TE and TM waves, but drops sharply at wavelength larger than 2 μm. Physical mechanisms responsible for the wavelength-selective emissivity were elucidated as due to resonance of magnetic polaritons (MPs) in the SiO2 spacer and in the grooves of the tungsten grating, Wood's anomaly (WA), excitation of surface plasmon polaritons (SPPs) and wave interference. Furthermore, the structure was found to exhibit quasi-diffuse and polarization-insensitive features of thermal emission, suggesting that the proposed structure can serve as the emitter in the design of high performance TPV systems.

  11. Small post-perovskite patches at the base of lower mantle primordial reservoirs: Insights from 2-D numerical modeling and implications for ULVZs

    NASA Astrophysics Data System (ADS)

    Li, Yang; Deschamps, Frédéric; Tackley, Paul J.

    2016-04-01

    We perform numerical experiments of thermochemical mantle convection in 2-D spherical annulus geometry to investigate the distribution of post-perovskite (pPv) with respect to the location of primordial reservoirs of dense material in the lowermost mantle. High core-mantle boundary temperatures lead to strong anticorrelation between the locations of pPv and large primordial reservoirs, while low values lead to a pPv layer fully covering the outer core. Intermediate values avoid a full pPv layer but allow pPv phase change to occur within the primordial reservoirs. Through interactions between cold downwellings and primordial reservoirs, low viscosity (weak) pPv leads to the formation of long-lived, thin tails of primordial materials extending laterally at the edges of these reservoirs. Small patches of pPv also form within the primordial reservoir but are short-lived. If primordial reservoirs are enriched in iron, these patches may provide an explanation for the ultralow-velocity zones.

  12. A study of a sector spectrophotometer and auroral O+(2P-2D) emissions

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.

    1976-01-01

    The metastable O+(2P-2D) auroral emission was investigated. The neighboring OH contaminants and low intensity levels of the emission itself necessitated the evolution of an instrument capable of separating the emission from the contaminants and having a high sensitivity in the wavelength region of interest. A new type of scanning photometer was developed and its properties are discussed. The theoretical aspects of auroral electron interaction with atomic oxygen and the resultant O+(2P-2D) emissions were examined in conjunction with N2(+)1NEG emissions. Ground based measurements of O+(2P-2D) auroral emission intensities were made using the spatial scanning photometer (sector spectrophotometer). Simultaneous measurements of N2(+)1NEG sub 1,0 emission intensity were made in the same field of view using a tilting photometer. Time histories of the ratio of these two emissions made in the magnetic zenith during auroral breakup periods are given. Theories of I sub 7319/I sub 4278 of previous investigators were presented. A rocket measurement of N2(+)1NEG sub 0,0 and O+(2P-2D) emission in aurora was examined in detail and was found to agree with the ground based measurements. Theoretical examination resulted in the deduction of the electron impact efficiency generating O+(2P) and also suggests a large source of O+(2P) at low altitude. A possible source is charge exchange of N+(1S) with OI(3P).

  13. Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study.

    PubMed

    Slobounov, Semyon M; Ray, William; Johnson, Brian; Slobounov, Elena; Newell, Karl M

    2015-03-01

    There is a growing empirical evidence that virtual reality (VR) is valuable for education, training, entertaining and medical rehabilitation due to its capacity to represent real-life events and situations. However, the neural mechanisms underlying behavioral confounds in VR environments are still poorly understood. In two experiments, we examined the effect of fully immersive 3D stereoscopic presentations and less immersive 2D VR environments on brain functions and behavioral outcomes. In Experiment 1 we examined behavioral and neural underpinnings of spatial navigation tasks using electroencephalography (EEG). In Experiment 2, we examined EEG correlates of postural stability and balance. Our major findings showed that fully immersive 3D VR induced a higher subjective sense of presence along with enhanced success rate of spatial navigation compared to 2D. In Experiment 1 power of frontal midline EEG (FM-theta) was significantly higher during the encoding phase of route presentation in the 3D VR. In Experiment 2, the 3D VR resulted in greater postural instability and modulation of EEG patterns as a function of 3D versus 2D environments. The findings support the inference that the fully immersive 3D enriched-environment requires allocation of more brain and sensory resources for cognitive/motor control during both tasks than 2D presentations. This is further evidence that 3D VR tasks using EEG may be a promising approach for performance enhancement and potential applications in clinical/rehabilitation settings. PMID:25448267

  14. D Recording for 2d Delivering - the Employment of 3d Models for Studies and Analyses -

    NASA Astrophysics Data System (ADS)

    Rizzi, A.; Baratti, G.; Jiménez, B.; Girardi, S.; Remondino, F.

    2011-09-01

    In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d'Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino). APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy) with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying and 3D material to

  15. Probabilistic hazard analysis of dense Pyroclastic Density Currents at Vesuvius (Italy) via parametric uncertainty characterization of TITAN2D numerical simulator

    NASA Astrophysics Data System (ADS)

    Tierz, Pablo; Ramona Stefanescu, Elena; Sandri, Laura; Patra, Abani; Marzocchi, Warner; Sulpizio, Roberto

    2014-05-01

    Probabilistic hazard assessments of Pyroclastic Density Currents (PDCs) are of great interest for decision-making purposes. However, there is a limited number of published works available on this topic. Recent advances in computation and statistical methods are offering new opportunities beyond the classical Monte Carlo (MC) sampling which is known as a simple and robust method but it usually turns out to be slow and computationally intractable. In this work, Titan2D numerical simulator has been coupled to Polynomial Chaos Quadrature (PCQ) to propagate the simulator parametric uncertainty and compute VEI-based probabilistic hazard maps of dense PDCs formed as a result of column collapse at Vesuvius volcano, Italy. Due to the lack of knowledge about the exact conditions under which these PDCs will form, Probability Distribution Functions (PDFs) are assigned to the simulator input parameters (Bed Friction Angle and Volume) according to three VEI sizes. Uniform distributions were used for both parameters since there is insufficient information to assume that any value in the range is more likely that any other value. Reasonable (and compatible) ranges for both variables were constrained according to past eruptions at Vesuvius volcanic system. On the basis of reasoning above a number of quadrature points were taken within those ranges, which resulted in one execution of the TITAN2D code at each quadrature point. With a computational cost several orders of magnitude smaller than MC, exceedance probabilities for a given threshold of flow depth (and conditional to the occurrence of VEI3, VEI4 and VEI5 eruptions) were calculated using PCQ. Moreover, PCQ can be run at different threshold values of the same output variable (flow depth, speed, kinetic energy, …) and, therefore, it can serve to compute Exceedance Probability curves (aka hazard curves) at singular points inside the hazard domain, representing the most important and useful scientific input to quantitative risk

  16. The evolution of lithosphere deformation due to infiltration of asthenosphere melt into a lithosphere with inherited weakness: insight from 2D numerical models of continental rifts

    NASA Astrophysics Data System (ADS)

    Havlin, C.; Parmentier, E.; Hirth, G.

    2013-12-01

    Melt formed in the asthenosphere affects lithosphere evolution through its accumulation and subsequent infiltration and heating of the lithosphere. Magmatic weakening of the lithosphere has received particular attention in the context of continental rifting because homogeneous continental lithosphere is too strong to rift under available tectonic forces without a weakening mechanism. But the observation that rifting generally initiates in heterogeneous continental mobile belts suggests that rift zones develop in lithosphere with some inherited compositional weakness, obscuring the importance of magmatic weakening. To test the relative roles of magmatic and compositional weakening, we construct a 2D numerical model that includes both effects. We treat the lithosphere and asthenosphere as separate, but coupled, domains. The lithosphere deforms via a composite brittle-ductile rheology with a strain rate that varies horizontally but is independent of depth. We apply an extensional force that is constant throughout the lithosphere, causing thinned or weakened regions of the lithosphere to extend at higher strain rate. We treat the asthenosphere as a viscous and partially molten and solve the 2D conservation equations for mass, momentum and energy for both the solid and melt phases. Melting and freezing are treated using a hydrated peridotite solidus. Solid velocities in the asthenosphere are calculated using the solid velocities from the lithosphere base as boundary conditions. The asthenosphere and lithosphere are coupled through magma infiltration and subsequent lithosphere heating. Melt fractions accumulating above an imposed critical melt fraction are extracted and emplaced within a few kms of the lithosphere-asthenosphere boundary, where it freezes, releasing latent heat. We test scenarios with a fixed critical melt fraction as well as a variable critical melt fraction determined by our previously published parametrization of dike propagation [Havlin et al., EPSL

  17. Numerical study of rock blasting

    NASA Astrophysics Data System (ADS)

    Stefanov, Yu. P.; Bakeev, R. A.; Yudin, A. S.; Kuznetsova, N. S.

    2015-10-01

    The paper presents numerical simulation results on fracture of a concrete block due to dynamic explosive loads applied to the walls of a blast hole. Considered in the study is the influence of the pulse shape and rock properties on the pattern of irreversible deformation and cracking. It is found that a fractured zone bounded by a plastically deformed contour always arises around the explosion site. Comparison of elastoplastic deformation and fracture induced in the concrete block by explosion pulses of different durations and amplitudes shows that shorter pulses with higher amplitudes and steeper rise times provide a higher blasting efficiency.

  18. BET_VH probabilistic assessment of pyroclastic flows hazard at El Misti volcano, South Peru, based on geological record and numerical simulations with TITAN2D

    NASA Astrophysics Data System (ADS)

    Constantinescu, R.; Thouret, J. C.; Sandri, L.; Irimus, I. A.; Stefanescu, R.

    2012-04-01

    Pyroclastic density currents, which include pyroclastic surges and pyroclastic flows (PFs), are among the most dangerous volcanic phenomena. We present a probabilistic hazard assessment of the PFs generated from eruptive column collapse at El Misti volcano (5822 m) in South Peru. The high relief of the cone, the location of the city of Arequipa (~1,000,000 people) on two large volcanoclastic fans and the H (3.5 km)/L (17 km) ratio (0.2) between the summit and the city center, make PFs a direct threat. We consider three eruption scenario sizes: small Vulcanian/Phreatomagmatic (VEI 2), medium Sub-Plinian (VEI 3-4), and large Plinian (VEI 4+). We use the Event-Tree approach in a Bayesian scheme with BET_VH (Bayesian Event Tree for Volcanic Hazard) software. Quantitative data that stem from numerical simulations from TITAN2D (termed prior models) and from stratigraphic record (termed past data) are input to BET_VH, which enables us to compute the probabilities (in a 1-year time window) of (i) having an eruption (ii) in a selected location/vent (iii) of a specific size, (iv) and that this eruption will produce PFs (v) that will reach a location of interest around El Misti. TITAN2D simulation runs, expressed as color-coded thicknesses of PDC deposits, fit well the extent of past PFs deposits, including thick confined deposits (0.5-7 m) in the Rio Chili canyon and its tributary ravines (Quebradas San Lazaro, Huarangal and Agua Salada).The unconfined, thinner (≤10cm) deposits, as displayed by simulation runs on the interfluves, is attributed to ash-cloud surges. Such thin, fine ash deposits have not been emphasized in geological maps either because they have been removed away or remain yet unrecognized. The simulated Vulcanian flows, restricted to the upper part of the cone, become confined (0.1-1m thick) in the ravines which converge towards each of the three Quebradas. The simulated Subplinian PF deposits reach 0.1 to 1 m thick in the Quebradas and 1-4 m WNW of El

  19. An Experimental Study of the Potential Biological Effects Associated with 2-D Shear Wave Elastography on the Neonatal Brain.

    PubMed

    Li, Changtian; Zhang, Changsheng; Li, Junlai; Cao, Xiaolin; Song, Danfei

    2016-07-01

    2-D Shear wave elastography (SWE) imaging is widely used in clinical practice, and some researchers have applied this technique in the evaluation of neonatal brains. However, the immediate and long-term impacts of dynamic radiation force exposure on the neonatal central nervous system remain unknown. In this study, we exposed neonatal mice to 2-D SWE scanning for 10 min, 20 min and 30 min under diagnostic mode (mechanical index [MI]: 1.3; thermal index [TI]: 0.5), respectively. For the control group, the neonatal mice were sham irradiated for 30 min with the machine powered off. Their brains were collected and analyzed using histologic staining and western blot analysis at 24 h and 3 mo after the 2-D SWE scanning. The Morris water maze (MWM) test was used to assess learning and memory function of the mice at 3 mo of age. The results indicated that using 2-D SWE in evaluating brains of neonatal mice does not cause detectable histologic changes, nor does it have long-term effects on their learning and memory abilities. However, the PI3 K/AKT/mTOR pathway was disturbed when the 2-D SWE scanning lasted for more than 30 min, and the expression of p-PKCa was suppressed by 10 min or more in 2-D SWE scanning. Although these injuries may be self-repaired as the mice grow, more attention should be paid to the scanning duration when applying 2-D-SWE elastography in the assessment of neonatal brains.

  20. Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey

    2014-05-01

    We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The

  1. Nonlinear 2D-IR spectroscopy as a tool to study peptide dynamics

    NASA Astrophysics Data System (ADS)

    Hamm, Peter

    2000-03-01

    The structure of bio-macromolecules (peptides, proteins, enzymes and DNA) crucially defines their function and it is the enormous progress in structure-sensitive methods (NMR, x-ray) which has lead to an extremely detailed microscopic understanding of reactions in biological systems. Our knowledge on the dynamics of these structures, which presumably is as important for the function as the structure itself, is essentially based on computer simulations with essentially no or very indirect experimental feedback. Nonlinear 2D vibrational spectroscopy (2D-IR) on the amide I mode of small globular peptides has been demonstrated recently and a detailed relationship between the static 3D structure and the strength of cross peaks has been established (in analogy to COSY in 2D-NMR spectroscopy). An extension of this technique allows to observe equilibrium fluctuations of model helices by incorporating an additional population period (i.e. 'mixing time'), giving rise to spectral diffusion of the diagonal peaks and incoherent population transfer between excitonic states (the latter being equivalent to the nuclear Overhauser effect, NOESY). In contrast to spin transitions, however, the processes are not in the 'motional narrowing limit' (i. e. τ_c>=T_2) so that the timescales of protein fluctuation can be measured directly on a picosecond timescale and in a site specific manner.

  2. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    NASA Astrophysics Data System (ADS)

    Brady, Samuel L.; Gunasingha, Rathnayaka; Yoshizumi, Terry T.; Howell, Calvin R.; Crowell, Alexander S.; Fallin, Brent; Tonchev, Anton P.; Dewhirst, Mark W.

    2010-09-01

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the 2H(d,n)3He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  3. In-situ Hydrogen Sorption 2D-ACAR Facility for the Study of Metal Hydrides for Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Legerstee, W. J.; de Roode, J.; Anastasopol, A.; Falub, C. V.; Eijt, S. W. H.

    We developed a dedicated hydrogen sorption setup coupled to a positron 2D-ACAR (two-dimensional Angular Correlation of Annihilation Radiation) setup employing a 22Na-source, which will enable to collect 2D-ACAR momentum distributions in-situ as a function of temperature, hydrogen pressure and hydrogen content. In parallel, a dedicated glovebox was constructed for handling air-sensitive metal and metal hydride samples, with a special entrance for the 2D-ACAR sample insert. The 2D-ACAR setup was tested in first measurements on a Pd0.75Ag0.25 foil and on a ball-milled MgH2 powder in both the hydrogen loaded and desorbed states. The hydrogen loaded Pd0.75Ag0.25Hx sample was kept under a 1 bar hydrogen pressure to prevent partial desorption during measurements at room temperature. The collected 2D-ACAR distributions of Pd0.75Ag0.25 and Pd0.75Ag0.25Hx showed similar features as observed in previous studies. The broadening of the ACAR distributions observed for the Mg to MgH2 metal-insulator transition was compared in a quantitative manner to ab-initio calculations reported in the literature.

  4. FT-Raman study of quinine aqueous solutions with varying pH: 2D correlation study

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra

    2007-01-01

    Quinine (C 20H 24N 2O 2) is one of the best known, for its antimalarial activity, Cinchona alkaloid. In the current study 2D correlation method was applied to analyze FT-Raman spectra of quinine aqueous solutions with varying pH, which was regarded as an external perturbation. Protonation appears to be the main cause leading to the emergence of cross peaks in the synchronous and asynchronous correlation maps. One should know that protonation process is an important step associated with quinine antimalarial activity. Methoxy group manifests its presence by creation of the respective correlation peaks and seems to be significant for quinine mode of action.

  5. Exploratory User Study to Evaluate the Effect of Street Name Changes on Route Planning Using 2d Maps

    NASA Astrophysics Data System (ADS)

    Rautenbach, Victoria; Coetzee, Serena; Hankel, Melissa

    2016-06-01

    This paper presents the results of an exploratory user study using 2D maps to observe and analyse the effect of street name changes on prospective route planning. The study is part of a larger research initiative to understand the effect of street name changes on wayfinding. The common perception is that street name changes affect our ability to navigate an environment, but this has not yet been tested with an empirical user study. A combination of a survey, the thinking aloud method and eye tracking was used with a group of 20 participants, mainly geoinformatics students. A within-subject participant assignment was used. Independent variables were the street network (regular and irregular) and orientation cues (street names and landmarks) portrayed on a 2D map. Dependent variables recorded were the performance (were the participant able to plan a route between the origin and destination?); the accuracy (was the shortest path identified?); the time taken to complete a task; and fixation points with eye tracking. Overall, the results of this exploratory study suggest that street name changes impact the prospective route planning performance and process that individuals use with 2D maps. The results contribute to understanding how route planning changes when street names are changed on 2D maps. It also contributes to the design of future user studies. To generalise the findings, the study needs to be repeated with a larger group of participants.

  6. Dimensional reduction study of piezoelectric ceramics constitutive equations from 3-D to 2-D and 1-D.

    PubMed

    Zhu, Meiling; Leighton, Glenn

    2008-11-01

    Accurate performance evaluation is crucial to the design and development of macro/micro-sized piezoelectric devices, and key to this is the proper use of the stiffness/ compliance and piezoelectric coefficients of the piezoelectric ceramics involved. Although the literature points out effective piezoelectric coefficients e(31,f) and d(33,f) for thin film materials and reduced dimensionality of equations for bulk material, the elastic and piezoelectric coefficients remain unchanged from the 3-D equations in most reported 1-D and 2-D analyses of the macro/micro-sized devices involving the e form of the constitutive equations. The use of unchanged coefficients leads to variations between numerically predicted and experimental results in most devices. To understand effects of the dimensional reduction from 3-D to 2-D and 1-D on stiffness/compliance and piezoelectric coefficients, this paper derives the 2-D and 1-D constitutive equations from the 3-D equations, focusing on the discussion of often-required device configurations for sensor and actuator design and analysis. Two modified coefficients are proposed, termed reduced and enhanced, which enable better understanding of effects of the dimensional reduction and also effects on the design and analysis of sensors and actuators.

  7. Preliminary Study of 2D Fracture Upscaling of Geothermal Rock Using IFS Fractal Model

    NASA Astrophysics Data System (ADS)

    Tobing, Prana F. L.; Feranie, Selly; Latief, Fourier D. E.

    2016-08-01

    Fractured rock plays important role in reservoir production. In larger scale, fractures are more likely to be heterogeneous and considered to be fractal in its nature. One of the characteristics of fractal structure is the scale independence. An investigation of fractal properties on natural fractured rock is therefore needed for modelling larger fracture. We have investigated the possibilities of fractal upscaling method to produce a larger geothermal fracture model based on smaller fracture data. We generate Iterated Function System (IFS) fractal model using parameters e.g. scale factor, angle between branch, initial line direction, and branch thickness. All the model parameters are obtained from smaller fracture data. We generate higher iteration model to be compared with larger geothermal fracture. The similarity between the IFS fractal model and natural fracture is measured by 2D box counting fractal dimension (D). The fractal dimension of first to fourth generation fractal model is (1.86 ± 0.02). The fractal dimension of the reference geothermal site is (1.86 ± 0.04). Besides of D, we found significant similarity of fracture parameters there are intensity and density between fracture model and natural fracture. Based on these result, we conclude that fractal upscaling using IFS fractal model is potential to model larger scale of 2D fracture.

  8. Short-term groundwater fluxes in the hyporheic zone as a consequence of changing river stages; numerical simulation by HYDRUS 2D/3D.

    NASA Astrophysics Data System (ADS)

    Wyseure, Guido; Chou, Po-Yi

    2010-05-01

    All hydrological handbooks contain methods for direct runoff and base-flow separation. The semi-log separation method is the most classical one. One can, however, question the physical base for such method. In addition, the water fluxes in the riverbed are important for ecology and water quality. In our study an 2-D cross-section including the river and the surrounding aquifer was set-up in HYDRUS 2D/3D. Initial conditions were a steady-state subsurface flow feeding the river with a recharge from the soil surface. A surface runoff event was simulated by a rise and recession of the water level in the river. Differences between summer and winter situation were explored by given representative temperatures to the different components of the river-aquifer system. The simulations show that the fluxes are very different along the riverbed. Even during steady state baseflow we see that the fluxes through the bottom were 2 to 3 times smaller as compared to the side banks. During the hydrographs the proportion can become up to 5 times. Another interesting result is that within the time frame of the hydrograph and its immediate recession relatively little water, which pentetrated in the aquifer, returns to the river. Most of the water replenishes the aquifer and there is only a very small rise of baseflow. In our simulation we returned to the original level as before the hydrograph, so in reality even less or no rise in baseflow may occur immediately after a hydrograph. Of course, in a longer time-frame the recharge of the aquifer will give a rise to the actual subsurface drainage. The change in seasonal temperatures within the river-aquifer system has a substantial effect. For identical river stage hydrograph changes the hyporheic exchange fluxes are more intense in summer than in winter. If we define the hyporheic zone as the extedn to which the water fluxes from the river can penetrate, then we see that this zone is wider on the sides as compared to the bottom of the

  9. Study of the mechanical behavior of a 2-D carbon-carbon composite

    NASA Technical Reports Server (NTRS)

    Avery, W. B.; Herakovich, C. T.

    1987-01-01

    The out-of-plane fracture of a 2-D carbon-carbon composite was observed and characterized to gain an understanding of the factors influencing the stress distribution in such a laminate. Finite element analyses of a two-ply carbon-carbon composite under in-plane, out-of-plane, and thermal loading were performed. Under in-plane loading all components of stress were strong functions of geometry. Additionally, large thermal stresses were predicted. Out-of-plane tensile tests revealed that failure was interlaminar, and that cracks propagated along the fiber-matrix interface. An elasticity solution was utilized to analyze an orthotropic fiber in an isotropic matrix under uniform thermal load. The analysis reveals that the stress distributions in a transversely orthotropic fiber are radically different than those predicted assuming the fiber to be transversely isotropic.

  10. 2-D Modeling of the Variability of the Solar Interior for Climate Studies

    NASA Astrophysics Data System (ADS)

    Sofia, S.; Li, L. H.; Spada, F.; Ventura, P.

    2012-07-01

    To establish the possible influence of solar variability on climate, it is necessary to understand the luminosity changes induced by a variable dynamo magnetic field. To accomplish this, we have developed a 2D code of the structure and evolution of the solar interior (based on the 1D YREC code), that includes rotation, magnetic fields of arbitrary configuration, and turbulence, that can be run on very short time scales (down to 1 year), and that represents all global parameters (R, L, Teff) with a relative accuracy of 1 part per million, or better. This paper discusses the motivation for this work, the structure and the physical components of the code, and its application to interpret the results of the SODISM experiment on the PICARD satellite, and of the balloon-borne Solar Disk Sextant (SDS) experiment.

  11. A Numerical Study of Low-Reynolds-Number Separation Bubbles

    NASA Technical Reports Server (NTRS)

    Tatineni, Mahidhar; Zhong, Xiao-Lin

    1999-01-01

    The present study uses two dimensional numerical simulations to study unsteady low-Reynolds-number separation bubbles. The numerical study is in two parts: (1) a two dimensional time-accurate Navier-Stokes solver is used to simulate flows over the APEX airfoil, and (2) a numerical procedure is developed for localized simulations of transitional separation bubbles. The 2-D computations of flow over the APEX airfoil show that the flow is unsteady with periodic vortex shedding. A linear stability analysis of the separated flow shows that the vortex shedding is caused due to the instability of the separated flow. For transonic flows over the APEX airfoil the vortex shedding is additionally influenced by the presence of shocks. The flowfield has two characteristic time scales, one corresponding to the vortex shedding and another corresponding to the movement of the shocks. The two dimensional (2-D) airfoil simulations also showed the presence of nonlinear effects in the separated region. To better understand the characteristics of separation bubbles a numerical procedure has been developed for localized separation bubble calculations. This procedure is used to perform computations for a flat plate separation bubble test case. The separation bubble is induced by specifying a velocity gradient in the freestream. The growth of disturbances in the separation bubble is analyzed by introducing disturbances upstream of the separation bubble.

  12. Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies.

    PubMed

    Zhang, Tianqi O; Grechko, Maksim; Moran, Sean D; Zanni, Martin T

    2016-01-01

    This chapter provides protocols for isotope-labeling the human islet amyloid polypeptide (hIAPP or amylin) involved in type II diabetes and γD-crystallin involved in cataract formation. Because isotope labeling improves the structural resolution, these protocols are useful for experiments using Fourier transform infrared (FTIR), two-dimensional infrared (2D IR), and NMR spectroscopies. Our research group specializes in using 2D IR spectroscopy and isotope labeling. 2D IR spectroscopy provides structural information by measuring solvation from 2D diagonal lineshapes and vibrational couplings from cross peaks. Infrared spectroscopy can be used to study kinetics, membrane proteins, and aggregated proteins. Isotope labeling provides greater certainty in the spectral assignment, which enables new structural insights that are difficult to obtain with other methods. For amylin, we provide a protocol for (13)C/(18)O labeling backbone carbonyls at one or more desired amino acids in order to obtain residue-specific structural resolution. We also provide a protocol for expressing and purifying amylin from E. coli, which enables uniform (13)C or (13)C/(15)N labeling. Uniform labeling is useful for measuring the monomer infrared spectrum in an amyloid oligomer or fiber as well as amyloid protein bound to another polypeptide or protein, such as a chaperone or an inhibitor. In addition, our expression protocol results in 2-2.5 mg of amylin peptide per 1 L cell culture, which is a high enough yield to straightforwardly obtain the 2-10 mg needed for high resolution and solid-state NMR experiments. Finally, we provide a protocol to isotope-label either of the two domains of γD-crystallin using expressed protein ligation. Domain labeling makes it possible to resolve the structures of the two halves of the protein in FTIR and 2D IR spectra. With modifications, these strategies and protocols for isotope labeling can be applied to other amyloid polypeptides and proteins.

  13. Molecular study of weight gain related to atypical antipsychotics: clinical implications of the CYP2D6 genotype.

    PubMed

    Nussbaum, Laura Alexandra; Dumitraşcu, Victor; Tudor, Anca; Grădinaru, Raluca; Andreescu, Nicoleta; Puiu, Maria

    2014-01-01

    Atypical antipsychotics, especially some of them, influence cellular lipogenesis, being associated with metabolic side effects including weight gain. Due to the increasing use of atypical antipsychotics in children and adolescents, their metabolic and endocrine adverse effects are of particular concern especially within this pediatric population that appears to be at greater risk. Genetic factors with a possible influence on atypical antipsychotics adverse effects include CYP2D6 polymorphisms. Our study, performed in 2009-2014, with a two-year enrolment period during which we recruited children and adolescents with a diagnosis of schizophrenia or bipolar disorder on treatment with the antipsychotics (Risperidone, Aripiprazole or Olanzapine), included 81 patients, aged between 9 and 20 years, median age being 15.74 years. The gender percentage was 54% girls/46% boys. The CYP2D6 genotyping was performed after enrolment of the last patient. Based on the CYP2D6 genotype, three activity groups were identified and compared and we found that the patients with wt/*4 genotype, intermediary metabolizer (carrier of one functional and one non-functional allele) have significantly higher weight gain values than the patients who did not exhibit allele *4. The CYP2D6 genotype in children and adolescents with schizophrenia and bipolar disorder, proved to be a good predictor for the response to atypical antipsychotics and the side effects registered. The significant correlations between the CYP2D6 polymorphisms and the weight gain/BMI (body mass index) increase, as major side effects induced by antipsychotics proved the fact that the pharmacogenetic screening is needed in the future clinical practice, allowing for individualized, tailored treatment, especially for at-risk individuals. PMID:25329115

  14. Toward IMRT 2D dose modeling using artificial neural networks: A feasibility study

    SciTech Connect

    Kalantzis, Georgios; Vasquez-Quino, Luis A.; Zalman, Travis; Pratx, Guillem; Lei, Yu

    2011-10-15

    Purpose: To investigate the feasibility of artificial neural networks (ANN) to reconstruct dose maps for intensity modulated radiation treatment (IMRT) fields compared with those of the treatment planning system (TPS). Methods: An artificial feed forward neural network and the back-propagation learning algorithm have been used to replicate dose calculations of IMRT fields obtained from PINNACLE{sup 3} v9.0. The ANN was trained with fluence and dose maps of IMRT fields for 6 MV x-rays, which were obtained from the amorphous silicon (a-Si) electronic portal imaging device of Novalis TX. Those fluence distributions were imported to the TPS and the dose maps were calculated on the horizontal midpoint plane of a water equivalent homogeneous cylindrical virtual phantom. Each exported 2D dose distribution from the TPS was classified into two clusters of high and low dose regions, respectively, based on the K-means algorithm and the Euclidian metric in the fluence-dose domain. The data of each cluster were divided into two sets for the training and validation phase of the ANN, respectively. After the completion of the ANN training phase, 2D dose maps were reconstructed by the ANN and isodose distributions were created. The dose maps reconstructed by ANN were evaluated and compared with the TPS, where the mean absolute deviation of the dose and the {gamma}-index were used. Results: A good agreement between the doses calculated from the TPS and the trained ANN was achieved. In particular, an average relative dosimetric difference of 4.6% and an average {gamma}-index passing rate of 93% were obtained for low dose regions, and a dosimetric difference of 2.3% and an average {gamma}-index passing rate of 97% for high dose region. Conclusions: An artificial neural network has been developed to convert fluence maps to corresponding dose maps. The feasibility and potential of an artificial neural network to replicate complex convolution kernels in the TPS for IMRT dose calculations

  15. Hα Moreton waves observed on December 06, 2006. A 2D case study

    NASA Astrophysics Data System (ADS)

    Francile, C.; Costa, A.; Luoni, M. L.; Elaskar, S.

    2013-04-01

    Context. We present high temporal resolution observations of a Moreton wave event detected with the Hα Solar Telescope for Argentina (HASTA) in the Hα line 656.3 nm, on December 6, 2006. Aims: The aim is to contribute to the discussion about the nature and triggering mechanisms of Moreton wave events. Methods: We describe the HASTA telescope capabilities and the observational techniques. We carried out a detailed analysis to determine the flare onset, the radiant point location, the kinematics of the disturbance and the activation time of two distant filaments. We used a 2D reconstruction of the HASTA and corresponding TRACE observations, together with conventional techniques, to analyze the probable origin of the phenomenon. Results: The kinematic parameters and the probable onset time of the Moreton wave event are determined. A small-scale ejectum and the winking of two remote filaments are analyzed to discuss their relation with the Moreton disturbance. Conclusions: The analysis of the Moreton wave event favors the hypothesis that the phenomenon can be described as the chromospheric imprint of a single fast coronal shock triggered from a single source in association with a coronal mass ejection. Its onset time is concurrent with a Lorentz force peak measured in the photosphere, as stated by other authors. However, the existence of multiple shock waves that were generated almost simultaneously cannot be discarded.

  16. Development of electrokinetic remediation for caesium: A feasibility study of 2D electrode configuration system

    NASA Astrophysics Data System (ADS)

    Syah Putra, Rudy

    2016-02-01

    Agar matrix was artificially contaminated with caesium and subjected to rapid assessment of electrokinetic treatment on the basis of the 2D electrode configuration. The effect of caesium concentration on the process was investigated using different electrode configuration (i.e. rectangular, hexagonal and triangular). During treatment the in situ pH distribution, the current flow, and the potential distribution were monitored. At the end of the treatment, the caesium concentration distribution was measured. The results of these experiments showed that for caesium contamination, pH control is essential in order to create a suitable environment throughout the agar matrix to enable contaminant removal. It was found that the type of electrode configuration used to control the pH affected the rate of caesium accumulation. All of the electrode configurations tested was effective, but the highest caesium extraction was achieved when the hexagonal pattern was used to control the pH. After 72 h of treatment at 50 mA, the concentration of caesium decreased gradually from the second and first layer of agar matrix throughout the cell, suggesting that most of the caesium was concentrated on the cathode part.

  17. 2D electrostatic PIC algorithm for laser induced studying plasma in vacuum

    NASA Astrophysics Data System (ADS)

    Álvarez, C. A.; Riascos, H.; Gonzalez, C.

    2016-02-01

    Particle-In-Cell(PIC) method is widely used for simulating plasma kinetic models. A 2D-PIC electrostatic algorithm is implemented for simulating the expansion of a laser- induced plasma plume. For potential and Electric Field calculation, Dirichlet and periodic boundary conditions are used in the X (perpendicular to the ablated material) and Y directions, respectively. Poisson-solver employs FFTW3 library and the five-point Laplacian to compute the electric potential. Electric field calculation is made by central finite differences method. Leap-frog scheme updates particle positions and velocities at each iteration. Plume expansion anlysis is done for the Emission and Post-Emission stages. In the Emission phase (while the laser is turned on), fast electron expansion is observed and ion particles remain near the surface of the ablated material. In the post-emission stage (with the laser turned off) the charge separation produces an electric field that accelerates the ions leading to the formation of a KeV per particle Ion-Front. At the end of the expansion, fastest electrons escape from the simulation space; an almost homogeneous ion-electron distribution is observed, decreasing the electric field value and the Coulomb interactions.

  18. The Study on the Shape of 2-D Stator with Electromagnets and Permanent Magnets for 3-D Superconducting Actuator

    NASA Astrophysics Data System (ADS)

    Ozasa, S.; Kim, S. B.; Nakano, H.; Sawae, M.; Kobayashi, H.

    The electric device applications of a high temperature superconducting (HTS) bulk magnet having stable levitation and suspension properties due to their strong flux pinning force have been proposed and developed. We have been investigating the three-dimensional (3-D) superconducting actuator using HTS bulk to develop a non-contact transportation device. Probably, the cost of the manufactory will be increased to install the 2-D arranged electromagnets (EM) in a large area because many EMs are needed to cover the area. Therefore, we have been trying to find the method for reducing the number of EMs. In this study, all the EMs except for rotation were replaced in the 2-D arranged permanent magnets (PM), and gap length between PMs were experimentally investigated to improve the dynamic behavior of the mover and to reduce the cost of the manufacturing. As a result, we have succeeded in conveyance of the bulk and reduce the convergence time and maximum overshoot.

  19. Leonardo da Vinci's drapery studies: characterization of lead white pigments by µ-XRD and 2D scanning XRF

    NASA Astrophysics Data System (ADS)

    Gonzalez, Victor; Calligaro, Thomas; Pichon, Laurent; Wallez, Gilles; Mottin, Bruno

    2015-11-01

    This work focuses on the composition and microstructure of the lead white pigment employed in a set of paintworks, using a combination of µ-XRD and 2D scanning XRF, directly applied on five drapery studies attributed to Leonardo da Vinci (1452-1519) and conserved in the Département des Arts Graphiques, Musée du Louvre and in the Musée des Beaux- Arts de Rennes. Trace elements present in the composition as well as in the lead white highlights were imaged by 2D scanning XRF. Mineral phases were determined in a fully noninvasive way using a special µ-XRD diffractometer. Phase proportions were estimated by Rietveld refinement. The analytical results obtained will contribute to differentiate lead white qualities and to highlight the artist's technique.

  20. Hydrogen Bond Lifetimes and Energetics for Solute-Solvent Complexes Studied with 2D-IR Vibrational Echo Spectroscopy

    PubMed Central

    Zheng, Junrong; Fayer, Michael D.

    2008-01-01

    Weak π hydrogen bonded solute-solvent complexes are studied with ultrafast two dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute-solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory. PMID:17373792

  1. CYP2D6 Metabolism and Patient Outcome in the Austrian Breast and Colorectal Cancer Study Group Trial (ABCSG) 8

    PubMed Central

    Goetz, Matthew P.; Suman, Vera J.; Hoskin, Tanya L.; Gnant, Michael; Filipits, Martin; Safgren, Stephanie L.; Kuffel, Mary; Jakesz, Raimund; Rudas, Margaretha; Greil, Richard; Dietze, Otto; Lang, Alois; Offner, Felix; Reynolds, Carol A.; Weinshilboum, Richard M.; Ames, Matthew M.; Ingle, James N.

    2012-01-01

    Background Controversy exists regarding CYP2D6 genotype and tamoxifen efficacy. Methods A matched case-control study was conducted utilizing the Austrian Breast and Colorectal Cancer Study Group Trial 8 that randomized post-menopausal women with estrogen receptor positive breast cancer to tamoxifen for 5 years (Arm A) or tamoxifen for 2 years followed by anastrozole for 3 years (Arm B). Cases had disease recurrence, contralateral breast cancer, second non-breast cancer, or died. For each case, controls were identified from the same treatment arm of similar age, surgery/radiation, and TNM stage. Genotyping was performed for alleles associated with no (PM; *3, *4, *6); reduced (IM; *10, and *41); and extensive (EM: absence of these alleles) CYP2D6 metabolism. Findings The common CYP2D6 *4 allele was in Hardy Weinberg Equilibrium. In Arm A during the first 5 years of therapy, women with 2 poor alleles (PM/PM: OR=2.45, 95% CI: 1.05–5.73, p=0.04) and women with one poor allele (PM/IM or PM/EM: OR=1.67, 95% CI: 0.95–2.93, p=0.07) had a higher likelihood of an event than women with two extensive alleles (EM/EM). In years 3–5 when patients remained on tamoxifen (Arm A) or switched to anastrozole (Arm B), PM/PM tended towards a higher likelihood of a disease event relative to EM/EM (OR= 2.40, 95% CI: 0.86–6.66, p=0.09) among women on Arm A but not among women on Arm B (OR= 0.28; 95% CI: 0.03–2.30). Conclusion In ABCSG8, the negative effects of reduced CYP2D6 metabolism were observed only during the period of tamoxifen administration, and not after switching to anastrozole. PMID:23213055

  2. Insights into drug metabolism by cytochromes P450 from modelling studies of CYP2D6-drug interactions.

    PubMed

    Maréchal, J-D; Kemp, C A; Roberts, G C K; Paine, M J I; Wolf, C R; Sutcliffe, M J

    2008-03-01

    The cytochromes P450 (CYPs) comprise a vast superfamily of enzymes found in virtually all life forms. In mammals, xenobiotic metabolizing CYPs provide crucial protection from the effects of exposure to a wide variety of chemicals, including environmental toxins and therapeutic drugs. Ideally, the information on the possible metabolism by CYPs required during drug development would be obtained from crystal structures of all the CYPs of interest. For some years only crystal structures of distantly related bacterial CYPs were available and homology modelling techniques were used to bridge the gap and produce structural models of human CYPs, and thereby obtain useful functional information. A significant step forward in the reliability of these models came seven years ago with the first crystal structure of a mammalian CYP, rabbit CYP2C5, followed by the structures of six human enzymes, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6 and CYP3A4, and a second rabbit enzyme, CYP2B4. In this review we describe as a case study the evolution of a CYP2D6 model, leading to the validation of the model as an in silico tool for predicting binding and metabolism. This work has led directly to the successful design of CYP2D6 mutants with novel activity-including creating a testosterone hydroxylase, converting quinidine from inhibitor to substrate, creating a diclofenac hydroxylase and creating a dextromethorphan O-demethylase. Our modelling-derived hypothesis-driven integrated interdisciplinary studies have given key insight into the molecular determinants of CYP2D6 and other important drug metabolizing enzymes. PMID:18026129

  3. The use of FLO2D numerical code in lahar hazard evaluation at Popocatépetl volcano: a 2001-lahar scenario

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Capra, L.

    2014-07-01

    Lahar modelling represents an excellent tool to design hazard maps. It allows the definition of potential inundation zones for different lahar magnitude scenarios and sediment concentrations. Here we present the results obtained for the 2001 syneruptive lahar at Popocatépetl volcano, based on simulations performed with FLO2D software. An accurate delineation of this event is needed since it is one of the possible scenarios considered during a volcanic crisis. One of the main issues for lahar simulation using FLO2D is the calibration of the input hydrograph and rheologic flow properties. Here we verified that geophone data can be properly calibrated by means of peak discharge calculations obtained by superelevation method. Simulation results clearly show the influence of concentration and rheologic properties on lahar depth and distribution. Modifying rheologic properties during lahar simulation strongly affect lahar distribution. More viscous lahars have a more restricted aerial distribution, thicker depths, and resulting velocities are noticeable smaller. FLO2D proved to be a very successful tool to delimitate lahar inundation zones as well as to generate different lahar scenarios not only related to lahar volume or magnitude but also to take into account different sediment concentrations and rheologies widely documented to influence lahar prone areas.

  4. The use of FLO2D numerical code in lahar hazard evaluation at Popocatépetl volcano: a 2001 lahar scenario

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Capra, L.

    2014-12-01

    Lahar modeling represents an excellent tool for designing hazard maps. It allows the definition of potential inundation zones for different lahar magnitude scenarios and sediment concentrations. Here, we present the results obtained for the 2001 syneruptive lahar at Popocatépetl volcano, based on simulations performed with FLO2D software. An accurate delineation of this event is needed, since it is one of the possible scenarios considered if magmatic activity increases its magnitude. One of the main issues for lahar simulation using FLO2D is the calibration of the input hydrograph and rheological flow properties. Here, we verified that geophone data can be properly calibrated by means of peak discharge calculations obtained by the superelevation method. Digital elevation model resolution also resulted as an important factor in defining the reliability of the simulated flows. Simulation results clearly show the influence of sediment concentrations and rheological properties on lahar depth and distribution. Modifying rheological properties during lahar simulation strongly affects lahar distribution. More viscous lahars have a more restricted aerial distribution and thicker depths, and resulting velocities are noticeably smaller. FLO2D proved to be a very successful tool for delimitating lahar inundation zones as well as generating different lahar scenarios not only related to lahar volume or magnitude, but also taking into account different sediment concentrations and rheologies widely documented as influencing lahar-prone areas.

  5. Digital 2D-photogrammetry and direct anthropometry--a comparing study on test accomplishment and measurement data.

    PubMed

    Franke-Gromberg, Christine; Schüler, Grit; Hermanussen, Michael; Scheffler, Christiane

    2010-01-01

    The aim of this methodological anthropometric study was to compare direct anthropometry and digital two-dimensional photogrammetry in 18 male and 27 female subjects, aged 24 to 65 years, from Potsdam, Germany. In view of the rising interest in reliable biometric kephalofacial data, we focussed on head and face measurements. Out of 34 classic facial anatomical landmarks, 27 landmarks were investigated both by direct anthropometry and 2D-photogrammetry; 7 landmarks could not be localized by 2D-photogrammetry. Twenty-six kephalofacial distances were analysed both by direct anthropometry and digital 2D-photogrammetry. Kephalofacial distances are on average 7.6% shorter when obtained by direct anthropometry. The difference between the two techniques is particularly evident in total head height (vertex-gnathion) due to the fact that vertex is usually covered by hair and escapes from photogrammetry. Also the distances photographic sellion-gnathion (1.3 cm, i. e. 11.6%) and nasal-gnathion (1.2 cm, i. e. 9.4%) differ by more than one centimetre. Differences below 0.5 cm between the two techniques were found when measuring mucosa-lip-height (2.2%), gonia (3.0%), glabella-stomion (3.9%), and nose height (glabella-subnasal) (4.0%). Only the estimates of forehead width were significantly narrower when obtained by 2D-photogrammetry (-1.4 cm, -13.1%). The methodological differences increased with increasing magnitude of the kephalometric distance. Apart from these limitations, both techniques are similarly valid and may replace each other.

  6. 2D-QSAR study of some 2,5-diaminobenzophenone farnesyltransferase inhibitors by different chemometric methods

    PubMed Central

    Ghanbarzadeh, Saeed; Ghasemi, Saeed; Shayanfar, Ali; Ebrahimi-Najafabadi, Heshmatollah

    2015-01-01

    Quantitative structure activity relationship (QSAR) models can be used to predict the activity of new drug candidates in early stages of drug discovery. In the present study, the information of the ninety two 2,5-diaminobenzophenone-containing farnesyltranaferase inhibitors (FTIs) were taken from the literature. Subsequently, the structures of the molecules were optimized using Hyperchem software and molecular descriptors were obtained using Dragon software. The most suitable descriptors were selected using genetic algorithms-partial least squares and stepwise regression, where exhibited that the volume, shape and polarity of the FTIs are important for their activities. The two-dimensional QSAR models (2D-QSAR) were obtained using both linear methods (multiple linear regression) and non-linear methods (artificial neural networks and support vector machines). The proposed QSAR models were validated using internal validation method. The results showed that the proposed 2D-QSAR models were valid and they can be used for prediction of the activities of the 2,5-diaminobenzophenone-containing FTIs. In conclusion, the 2D-QSAR models (both linear and non-linear) showed good prediction capability and the non-linear models were exhibited more accuracy than the linear models. PMID:26600747

  7. A comparative study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in 2D and 3D in tantalum

    NASA Astrophysics Data System (ADS)

    Sternberger, Zach; Ravichandran, Ravi; Wehrenberg, Chris; Remington, Bruce; Maddox, Brian; Opachich, Kathy; Randall, Greg; Farrell, Mike

    2015-06-01

    Driving a shock wave through the interface between two materials with different densities can result in Richtmyer-Meshkov or Rayleigh-Taylor instability and initial perturbations at the interface will grow. If the shock wave is sufficiently strong, the instability will lead to plastic flow at the interface. Material strength will reduce the amount of plastic flow and suppress growth. While such instabilities have been investigated in 2D, no studies of this phenomena have been performed in 3D on materials with strength. Initial perturbations to seed the hydrodynamic instability were coined into tantalum recovery targets. Two types of perturbations were used, two dimensional (2D) perturbations (hill and valley) and three-dimensional (3D) perturbations (egg crate pattern). The targets were subjected to dynamic loading using the Janus laser at the Jupiter Laser Facility. Shock pressures ranged from 30 GPa up to 200 GPa, and were calibrated using VISAR drive targets. The recovered targets show that the 3D initial perturbations grew more than the 2D initial perturbations at the same shock strength. This result is compared with predictions of existing models in the literature.

  8. Comparative Variable Temperature Studies of Polyamide II with a Benchtop Fourier Transform and a Miniature Handheld Near-Infrared Spectrometer Using 2D-COS and PCMW-2D Analysis.

    PubMed

    Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W

    2016-07-01

    The main objective of this communication is to compare the performance of a miniaturized handheld near-infrared (NIR) spectrometer with a benchtop Fourier transform near-infrared (FT-NIR) spectrometer. Generally, NIR spectroscopy is an extremely powerful analytical tool to study hydrogen-bonding changes of amide functionalities in solid and liquid materials and therefore variable temperature NIR measurements of polyamide II (PAII) have been selected as a case study. The information content of the measurement data has been further enhanced by exploiting the potential of two-dimensional correlation spectroscopy (2D-COS) and the perturbation correlation moving window two-dimensional (PCMW2D) evaluation technique. The data provide valuable insights not only into the changes of the hydrogen-bonding structure and the recrystallization of the hydrocarbon segments of the investigated PAII but also in their sequential order. Furthermore, it has been demonstrated that the 2D-COS and PCMW2D results derived from the spectra measured with the miniaturized NIR instrument are equivalent to the information extracted from the data obtained with the high-performance FT-NIR instrument.

  9. Digit ratio (2D:4D), sex differences, allometry, and finger length of 12-30-year olds: evidence from the British Broadcasting Corporation (BBC) Internet study.

    PubMed

    Manning, John T

    2010-01-01

    Many studies have reported digit ratio (2D:4D) to be sexually dimorphic, (males lower 2D:4D than females). However, Kratochvíl and Flegr ([2009]: Biol Lett 5:643-646) have suggested that 2D regressed on 4D has an allometric regression line with nonzero Y-intercept that is shared by males and females. Thus, 2D is shorter than expected when 4D is long, and males have lower 2D:4D than females because they have longer fingers. In this study, it is shown that this suggestion may be incorrect because sex differences in slope were not considered. Participants were recruited in an Internet study and had an age range of 12-30 years. The expected sex difference in 2D:4D was found, and the regression of 2D on 4D showed a significant sex difference in slope (males lower than females). A comparison of 10 age groups (12 years, 13 years..., 21-30 years) showed that sexual dimorphism for fingers was age dependent, varying from monomorphic to very dimorphic. Changes in sexual dimorphism of 2D:4D were much less marked, but there was a significant reduction in mean 2D:4D with age. The tendency for slopes of 2D regressed on 4D to be lower in males compared with females was significant in eight age groups. Sex difference in 2D:4D varied across the age groups and was positively related to the magnitude of the difference in female and male slopes. In contrast to the report of Kratochvíl and Flegr, it was found that the regression of 2D on 4D showed sex differences in slope, and such differences gave rise to the sexual dimorphism in 2D:4D.

  10. Numerical study of Q-ball formation in gravity mediation

    SciTech Connect

    Hiramatsu, Takashi; Kawasaki, Masahiro; Takahashi, Fuminobu E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2010-06-01

    We study Q-ball formation in the expanding universe on 1D, 2D and 3D lattice simulations. We obtain detailed Q-ball charge distributions, and find that the distribution is peaked at Q{sup 3D}{sub peak} ≅ 1.9 × 10{sup −2}(|Φ{sub in}|/m){sup 2}, which is greater than the existing result by about 60%. Based on the numerical simulations, we discuss how the Q-ball formation proceeds. Also we make a comment on possible deviation of the charge distributions from what was conjectured in the past.

  11. An application of the FLO-2D Model to debris-flow simulation - a case study of Shinfa village in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, J.-C.; Chuang, M.-R.; Jeng, C.-J.; Wang, J.-S.

    2012-04-01

    Taiwan is an island located in the subtropical zone where typhoons often bring heavy rainfall. Heavy rainfall, stream having steep slope, and weak geological condition resulted in a high susceptibility to debris flow. Especially, Typhoon Morakot struck southern Taiwan on August 8, 2009 with high rainfall intensity and accumulated rainfall as high as 2860 mm for 72 hours. Severe landslides and debris flow hazards were induced. In this work, debris-flow events caused by Typhoon Morakot in Shinfa Village of Liouguei District, where resulted in severe impacts to local communities, in southern Taiwan were selected for case study. A two-dimensional model (FLO-2D software) was used to simulate a debris flow, and the accuracy of the simulation, including flow depth, velocity, sediment, and inundation area, was analyzed in the case study. This study consists of three phases. In the first phase, debris flow data, including information on topography, rainfall and rheological parameters were compiled to establish a database of factors that influence debris flow. For the second phase, a numerical simulation was performed using FLO-2D with the results presented as area of debris-flow inundation, maximum deposit depth, and deposit volume. The simulation results were then compared with the aerial photos and the micro geomorphological study. Finally, suitable conditions for using this model and reasonable parameters needed for simulation are presented. In this study, parameters and processes needed for a numerical simulation method for debris flow routing and depositions are formulated to provide a reference for hazard zone mapping or debris-flow hazard mitigation.

  12. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  13. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  14. Influence of anthraquinone scaffold on E/Z isomer distribution of two thiosemicarbazone derivatives. 2D NMR and DFT studies

    NASA Astrophysics Data System (ADS)

    Marković, Violeta; Joksović, Milan D.; Marković, Svetlana; Jakovljević, Ivan

    2014-01-01

    A distribution of possible isomeric and tautomeric forms of two tautomerizable anthraquinone-thiosemicarbazones with pronounced cytotoxic potential was investigated using 2D NMR and DFT studies. Conformational analysis of the E and Z isomers of both thiosemicarbazones was performed to find out the most stable conformation for each molecule. It was found that superior stability of E-isomers results from ten-membered intramolecular hydrogen bond between thiosemicarbazone N2H and anthraquinone carbonyl group. This hydrogen bond is stronger than that between thiosemicarbazone N2H and ester oxygen, owing to the large partial negative charge on the anthraquinone oxygen.

  15. 2D QSAR Study for Gemfibrozil Glucuronide as the Mechanism-based Inhibitor of CYP2C8

    PubMed Central

    Taxak, N.; Bharatam, P. V.

    2013-01-01

    Mechanism-based inhibition of cytochrome P450 involves the bioactivation of the drug to a reactive metabolite, which leads to cytochrome inhibition via various mechanisms. This is generally seen in the Phase I of drug metabolism. However, gemfibrozil (hypolipidemic drug) leads to mechanism-based inhibition after generating glucuronide conjugate (gemfibrozil acyl-β-glucuronide) in the Phase II metabolism reaction. The mechanism involves the covalent binding of the benzyl radical (generated from the oxidation of aromatic methyl group in conjugate) to the heme of CYP2C8. This article deals with the development of a 2D QSAR model based on the inhibitory potential of gemfibrozil, its analogues and corresponding glucuronide conjugates in inhibiting the CYP2C8-catalysed amodiaquine N-deethylation. The 2D QSAR model was developed using multiple linear regression analysis in Accelrys Discovery Studio 2.5 and helps in identifying the descriptors, which are actually contributing to the inhibitory potency of the molecules studied. The built model was further validated using leave one out method. The best quantitative structure activity relationship model was selected having a correlation coefficient (r) of 0.814 and cross-validated correlation coefficient (q2) of 0.799. 2D QSAR revealed the importance of volume descriptor (Mor15v), shape descriptor (SP09) and 3D matrix-based descriptor (SpMax_RG) in defining the activity for this series of molecules. It was observed that volume and 3D matrix-based descriptors were crucial in imparting higher potency to gemfibrozil glucuronide conjugate, as compared with other molecules. The results obtained from the present study may be useful in predicting the inhibitory potential (IC50 for CYP2C8 inhibition) of the glucuronide conjugates of new molecules and compare with the standard gemfibrozil acyl-β-glucuronide (in terms of pIC50 values) in early stages of drug discovery and development. PMID:24591743

  16. Water dynamics in salt solutions studied with ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy.

    PubMed

    Fayer, Michael D; Moilanen, David E; Wong, Daryl; Rosenfeld, Daniel E; Fenn, Emily E; Park, Sungnam

    2009-09-15

    with another pulse, the local oscillator. Heterodyne detection provides phase and amplitude information, which are both necessary to perform the two Fourier transforms that take the data from the time domain to a two-dimensional frequency domain spectrum. The time dependence of a series of 2D IR vibrational echo spectra provides direct information on system dynamics. Here, we use two types of 2D IR vibrational echo experiments to examine the influence that charged species have on water hydrogen-bond dynamics. Solutions of NaBr and NaBF(4) are studied. The NaBr solutions are studied as a function of the concentration using vibrational echo measurements of spectral diffusion and polarization-selective IR pump-probe measurements of orientational relaxation. Both types of measurements show the slowing of hydrogen-bond network structural evolution with an increasing salt concentration. NaBF(4) is studied using vibrational echo chemical-exchange spectroscopy. In these experiments, it is possible to directly observe the chemical exchange of water molecules switching their hydrogen-bond partners between BF(4)(-) and other water molecules. The results demonstrate that water interacting with ions has slower hydrogen-bond dynamics than pure water, but the slowing is a factor of 3 or 4 rather than orders of magnitude.

  17. A plastic scintillator-based 2D thermal neutron mapping system for use in BNCT studies.

    PubMed

    Ghal-Eh, N; Green, S

    2016-06-01

    In this study, a scintillator-based measurement instrument is proposed which is capable of measuring a two-dimensional map of thermal neutrons within a phantom based on the detection of 2.22MeV gamma rays generated via nth+H→D+γ reaction. The proposed instrument locates around a small rectangular water phantom (14cm×15cm×20cm) used in Birmingham BNCT facility. The whole system has been simulated using MCNPX 2.6. The results confirm that the thermal flux peaks somewhere between 2cm and 4cm distance from the system entrance which is in agreement with previous studies. PMID:26986813

  18. Study of the microbunching instability in single-pass systemsusing a direct 2D Vlasov solver

    SciTech Connect

    Venturini, Marco

    2007-06-30

    We apply a recently developed Vlasov solver to the study ofthemicrobunching instability generated by shot noise in the beamdeliverysystems of x-ray Free Electron Lasers (FELs). We discusstwo latticespresently under consideration for the FEL FERMI project at Elettra andshow that at least one of the two lattices appears capable of deliveringa beam with the desired quality in the longitudinal phasespace.

  19. Impacts of Large-Scale Circulation on Convection: A 2-D Cloud Resolving Model Study

    NASA Technical Reports Server (NTRS)

    Li, X; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    Studies of impacts of large-scale circulation on convection, and the roles of convection in heat and water balances over tropical region are fundamentally important for understanding global climate changes. Heat and water budgets over warm pool (SST=29.5 C) and cold pool (SST=26 C) were analyzed based on simulations of the two-dimensional cloud resolving model. Here the sensitivity of heat and water budgets to different sizes of warm and cold pools is examined.

  20. An experimental study of flow separation over a flat plate with 2D transverse grooves

    NASA Astrophysics Data System (ADS)

    Jones, Emily Michelle

    Nature has long been an inspiration for research in engineering. In particular, the biological surfaces of aquatic swimmers have been studied for their potential as drag reducing surfaces. The hydrodynamic benefit of riblets, or grooves embedded parallel to the flow, which appear on many aquatic biological surfaces, have been well documented and implemented in practical engineering applications. However the skin of dolphins is embedded with grooves that run perpendicular to the flow of water over their bodies. It is theorized that the transverse grooves present on dolphin skin trap vortices between them, creating a partial slip condition over the surface and inducing turbulence augmentation in the boundary layer, thus controlling boundary layer separation over the dolphin's skin. Similarly, sharks are covered with scales that are flexible at the base and capable of bristling, forming grooves running transverse to the flow. It is theorized that the scales bristle when encountering a reversing flow, thereby trapping vortices between the scales and, similarly, delaying boundary layer separation. In an attempt to test this hypothesis and study these affects, a spinning cylinder was used in a water tunnel to induce separation over a flat plate with 2 mm, rectangular transverse grooves and sinusoidal grooves of similar scaling. The results were compared to tripped, turbulent boundary layer separation occurring over a flat plate without grooves using time-resolved particle image velocimetry. The strength of the adverse pressure gradient was varied, and the observed delay in flow separation and other affects upon the boundary layer are discussed.

  1. Interactions in two-component liposomes studied by 2D correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Murawska, Agnieszka; Cieślik-Boczula, Katarzyna; Czarnik-Matusewicz, Bogusława

    2010-06-01

    The effect of dipping amphiphilic ICPANs (1-Alkylaminium, N-[2-[3-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]ethyl]-N,N-dimethyl-, bromide) homologues, characterized by varying alkyl chain length ( n = 8, 10, 12, and 16), into large multilamellar vesicles (MLVs) of dipalmitoylphosphatidylcholine (DPPC) was studied. Attenuated total reflectance infrared (ATR-IR) spectroscopy combined with 31P-NMR enabled observing a cut-off effect for the longest homologue. By employing two-dimensional correlation spectroscopy (2DCOS) for monitoring spectral changes induced by the heating process, detailed information about structural changes was obtained. They confirmed the substantial reorganization in the structure of the interfacial region in the ICPAN-C16/DPPC vesicles compared with the shorter homologues, where mainly the alkyl chains experience significant trans-to-gauche reorganization. Absorbance changes around 1400 cm -1 assigned to the symmetric deformation mode δsym ( +N(CH 3) 3) are a good marker of changes in vesicle shape and are sensitive to the percentage of DPPC molecules directly interacting with the surface of the ATR crystal. This study clearly demonstrates the potential of 2DCOS in investigating interactions in two-component liposomes.

  2. Study of the electrical conductivity at finite temperature in 2D Si- MOSFETs

    SciTech Connect

    Limouny, L. Kaaouachi, A. El Tata, O.; Daoudi, E.; Errai, M.; Dlimi, S.; Idrissi, H. El; Zatni, A.

    2014-01-27

    We investigate the low temperature density dependent conductivity of two dimensional electron systems in zero magnetic field for sample Si-15 MOSFETs. The first purpose of this paper is to establish that the knee of the conductivity σ{sub 0} (σ{sub 0} is the T = 0.3 conductivity obtained by linear extrapolation of the curves of σ (T) for different values of electron density, n{sub s}) as a function of the carrier densities n{sub s} for T = 0.3 K, observed by Lai et al. and Limouny et al. in previous work for two different samples, is independent of temperature. The second aim is the determination of the critical density, n{sub c}, of the metal-insulator transition. Many methods are used in this investigation of n{sub c} which have been already used for other samples. The motivation behind this last study is the observation of many values of n{sub c} that have been obtained from different methods and that are slightly different. We will use in this study three methods with the intention to infer which one is more appropriate to obtain n{sub c}.

  3. Experimental and numerical studies on standing surface acoustic wave microfluidics.

    PubMed

    Mao, Zhangming; Xie, Yuliang; Guo, Feng; Ren, Liqiang; Huang, Po-Hsun; Chen, Yuchao; Rufo, Joseph; Costanzo, Francesco; Huang, Tony Jun

    2016-02-01

    Standing surface acoustic waves (SSAW) are commonly used in microfluidics to manipulate cells and other micro/nano particles. However, except for a simple one-dimensional (1D) harmonic standing waves (HSW) model, a practical model that can predict particle behaviour in SSAW microfluidics is still lacking. Herein, we established a two-dimensional (2D) SSAW microfluidic model based on the basic theory in acoustophoresis and our previous modelling strategy to predict the acoustophoresis of microparticles in SSAW microfluidics. This 2D SSAW microfluidic model considers the effects of boundary vibrations, channel materials, and channel dimensions on the acoustic propagation; as an experimental validation, the acoustophoresis of microparticles under continuous flow through narrow channels made of PDMS and silicon was studied. The experimentally observed motion of the microparticles matched well with the numerical predictions, while the 1D HSW model failed to predict many of the experimental observations. Particularly, the 1D HSW model cannot account for particle aggregation on the sidewall in PDMS channels, which is well explained by our 2D SSAW microfluidic model. Our model can be used for device design and optimization in SSAW microfluidics. PMID:26698361

  4. Theoretical and numerical study of axisymmetric lattice Boltzmann models

    NASA Astrophysics Data System (ADS)

    Huang, Haibo; Lu, Xi-Yun

    2009-07-01

    The forcing term in the lattice Boltzmann equation (LBE) is usually used to mimic Navier-Stokes equations with a body force. To derive axisymmetric model, forcing terms are incorporated into the two-dimensional (2D) LBE to mimic the additional axisymmetric contributions in 2D Navier-Stokes equations in cylindrical coordinates. Many axisymmetric lattice Boltzmann D2Q9 models were obtained through the Chapman-Enskog expansion to recover the 2D Navier-Stokes equations in cylindrical coordinates [I. Halliday , Phys. Rev. E 64, 011208 (2001); K. N. Premnath and J. Abraham, Phys. Rev. E 71, 056706 (2005); T. S. Lee, H. Huang, and C. Shu, Int. J. Mod. Phys. C 17, 645 (2006); T. Reis and T. N. Phillips, Phys. Rev. E 75, 056703 (2007); J. G. Zhou, Phys. Rev. E 78, 036701 (2008)]. The theoretical differences between them are discussed in detail. Numerical studies were also carried out by simulating two different flows to make a comparison on these models’ accuracy and τ sensitivity. It is found all these models are able to obtain accurate results and have the second-order spatial accuracy. However, the model C [J. G. Zhou, Phys. Rev. E 78, 036701 (2008)] is the most stable one in terms of τ sensitivity. It is also found that if density of fluid is defined in its usual way and not directly relevant to source terms, the lattice Boltzmann model seems more stable.

  5. A study on symmetrization of 2D ACAR positron annihilation data

    NASA Astrophysics Data System (ADS)

    Smedskjaer, L. C.; Legnini, D. G.

    1990-07-01

    The important problem of symmetrization of two-dimensional angular correlation positron annihilation data is discussed in detail. Interest in this problem is motivated by the potential for a substantial improvement of the data quality. The artefacts present in our Anger cameras have been studied experimentally, and form the basis for a quantitative discussion of the symmetrization operation. The main conclusion is that symmetrization of the two-dimensional angular correlation spectra is allowed, if the symmetry center can be defined. It is argued that the center can be defined if the instrumental artefacts are small. Finally, it is shown that it is unlikely that the instrumental artefacts interfere constructively during the symmetrization operation.

  6. Extensions of Fixed-Node Diffusion Monte Carlo to the Study of the Rotationally Excited States of H_2D^+

    NASA Astrophysics Data System (ADS)

    Wellen, Bethany A.; Petit, Andrew S.; McCoy, Anne B.

    2012-06-01

    Diffusion Monte Carlo (DMC) has been shown to be a highly successful technique for treating quantum zero-point effects of very floppy molecules and clusters. Our group has developed a fixed-node DMC methodology that allows us to expand the application of the approach to studies of rotationally excited states of such systems. We recently applied this approach to the study of H_3^+. We chose this system because of the availability of a global potential energy surface of spectroscopic accuracy, and the results of converged variational calculations have been reported that can be used to assess the accuracy of the DMC calculations. As a symmetric top molecule, the nodal structures of the rotationally excited states of H_3^+ are well known and can be used in fixed-node DMC calculations. We have recently extended this methodology to asymmetric top molecules, using H_2D^+ as a test system for these types of molecules as it has a κ value near zero. Here, we describe these extensions and present the results of DMC calculations of representative rotationally excited states of H_2D^+. A. S. Petit, B. A. Wellen, and A. B. McCoy, J. Chem. Phys. 136, 074101 (2012).

  7. SPE-LEEM Studies on the Surface and Electronic Structure of 2-D Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chun; Jin, Wencan; Zaki, Nader; Zhang, Datong; Sadowski, Jerzy; Al-Mahboob, Abdullah; van de Zande, Arend; Chenet, Daniel; Dadap, Jerry; Herman, Irving; Sutter, Petter; Hone, James; Osgood, Richard

    2014-03-01

    In this work, we studied the surface and electronic structure of monolayer and few-layer exfoliated MoS2 and WSe2, as well as chemical-vapor-deposition (CVD) grown MoS2, using Spectroscopic Photoemission and Low Energy Electron Microscope (SPE-LEEM). LEEM measurements reveal that, unlike exfoliated MoS2, CVD-grown MoS2 exhibits grain-boundary alterations due to surface strain. However, LEEM and micro-probe low energy electron diffraction show that the quality of CVD-grown MoS2 is comparable to that of exfoliated MoS2. Micrometer-scale angle-resolved photoemission spectroscopy (ARPES) measurement on exfoliated MoS2 and WSe2 single-crystals provides direct evidence for the shifting of the valence band maximum from Γ to K, when the layer number is thinned down to one, as predicted by density functional theory. Our measurements of the k-space resolved electronic structure allow for further comparison with other theoretical predictions and with transport measurements. Session I and II

  8. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae—A 2D NMR Metabolomics Study

    PubMed Central

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-01-01

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of 1H-13C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae. PMID:27598144

  9. [Novel methods for studies of testicular development and spermatogenesis: From 2D to 3D culture].

    PubMed

    Zhang, Lian-dong; Li, He-cheng; Zhang, Tong-dian; Wang, Zi-ming

    2016-03-01

    The two-dimensional model of cell culture is an important method in the study of testicular development and spermatogenesis but can not effectively mimic and regulate the testicular microenvironment and the whole process of spermatogenesis due to the lack of relevant cell factors and the disruption of a three-dimensional spatial structure. In the past 20 years, the development and optimization of the in vitro model such as testis organotypic culture and in vivo model such as testis transplantation achieved a transformation from two- to three-dimension. The maintenance and optimization of the testicular niche structure could mimic the testicular microenvironment and cell types including Leydig, Sertoli and germ cells, which showed similar biological behaviors to those in vivo. Besides, the cell suspension or tissue fragment floats in the gas-liquid interface so that the development of somatic and germ cells is well maintained in vitro whilst the feedback linkage between grafted testis tissue and hypothalamus-pituitary of the host rebuilt in the in vitro model provides an endocrinological basis for spermatogenesis, which serves as an effective methodology to better understand the organogenesis and development of the testis as well as testicular function regulation, advancing the concept of treatment of male infertility. Al- though each of the methods may have its limitations, the progress in the processing, freezing, thawing, and transplantation of cells and tissues will surely promote their clinical application and present their value in translational medicine. PMID:27172668

  10. Experimental study on nonmonotonicity of Capillary Desaturation Curves in a 2-D pore network

    NASA Astrophysics Data System (ADS)

    Rodríguez de Castro, Antonio; Shokri, Nima; Karadimitriou, Nikolaos; Oostrom, Mart; Joekar-Niasar, Vahid

    2015-10-01

    Immiscible displacement in porous media is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oil saturation and Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigated the CDC as influenced by the viscosity ratio. To do so, we have conducted a comprehensive series of experiments using a high-resolution microscope and state-of-art micromodels to investigate the dynamics and patterns of phase entrapment at different Ca and M. By postprocessing of the experimental high-resolution images, we calculated the CDC and quantified the effects of the Ca and M on the phase entrapment and number of blobs trapped in the micromodel and their size distributions during immiscible two-phase flow. Our results show that CDCs are not necessarily monotonic for all M, and the physical mechanisms causing this nonmonotonic behavior are discussed.

  11. 2D kinematic study of the central region of NGC 4501.

    NASA Astrophysics Data System (ADS)

    Repetto, P.; Faúndez-Abans, M.; Freitas-Lemes, P.; Rodrigues, I.; de Oliveira-Abans, M.

    2016-09-01

    GMOS-IFU observational data were used to study the detailed two dimensional gas kinematics and morphological structures within the ˜ 500 × 421 pc2 of the active Seyfert 2 galaxy NGC 4501. We provide empirical evidences of possible outflowing material from the central zones of NGC 4501 to the observer. In addition, we performed a spectral synthesis and diagnostic diagram analysis to determine respectively the dominant stellar population in the inner disc of this galaxy and to unveil the actual nature of the central engine of NGC 4501. The principal finding of this work is that the central regions of NGC 4501 are dominated by non circular motions connected to probable outflows of matter from the nuclear regions of this galaxy. A predominant old stellar population inhabits the internal zones of NGC 4501 excluding the possibility of ongoing starburst activity in the central parsecs of this galaxy. The latter result is confirmed by the diagnostic diagram analysis that establishes a preponderant active galactic nucleus character for NGC 4501. These outcomes together provide a general description of the gas motion and the corresponding nuclear activity in the internal disc of NGC 4501 in an attempt to elucidate the possible relation among the central activity and the induced kinematic properties of this nearby galaxy.

  12. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae-A 2D NMR Metabolomics Study.

    PubMed

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-01-01

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of ¹H-(13)C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae. PMID:27598144

  13. Experimental study on nonmonotonicity of capillary desaturation curves in a 2-D pore-network

    SciTech Connect

    Rodriquez de Castro, Antonio; Shokri, Nima; Karadimitriou, Nikolaos; Oostrom, Martinus; Joekar-Niasar, Vahid

    2015-10-28

    Immiscible displacement in a porous medium is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oils saturation and Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigate the CDC as influenced by the viscosity ratio. A comprehensive series of experiments using a high-resolution microscope and state-of-the-art micromodels were conducted. The CDCs were calculated and the effects of Ca and M on phase entrapments were quantified. The results show that CDCs are not necessarily monotonic for all M.

  14. Experimental and computational studies on complex spiral waves in 2-D cardiac substrates

    NASA Astrophysics Data System (ADS)

    Bursac, Nenad

    2005-03-01

    A variety of chemical and biological nonlinear excitable media including heart tissue can support stable, self-organized waves of activity in a form of rotating single-arm spirals. In the heart tissue, stable single-arm spirals can underlie highly periodic activity such as monomorphic ventricular tachycardia (VT), while unstable spirals that continuously form and break up are shown to underlie aperiodic and lethal heart activity, namely fibrillation. Although fast pacing from a point in the heart is commonly used to terminate VT, it can occasionally yield a transient or stable acceleration of tachicardia rate and/or fibrillation. In this study we tested the effect of rapid point pacing on sustained spiral waves in the uniformly anisotropic cultures of cardiac myocytes. In 15/79 cultures, rapid pacing induced a stable formation of multiple bound spiral waves (a complex spiral) and acceleration of overall excitation rate in the tissue, as assessed by pseudo ECG (pECG). The level of rate acceleration correlated with the number of rotating waves. Further rapid point pacing decelerated, terminated, or further accelerated the complex spiral activity via a change in the number of coexisting rotating waves. The dynamic restitution analysis revealed no alternans in action potential duration in any of the cultures. Stable formation of complex spirals was accomplished only in the cultures that showed relatively broad and steep impulse wavelength and conduction velocity restitutions. A necessary condition for rate acceleration in a medium with monotonic restitution is that the rate of rotation of a single spiral wave is significantly lower than maximum sustainable rate of excitation in the medium. Preliminary data in a homogeneous medium using 3-variable Fenton-Karma (FK) based model of cardiac tissue suggest that decrease of fast inward current (excitability) can shift the spiral rate away from the break point on the restitution curve, enabling a necessary condition for rate

  15. Study on the human perception of incipient and overall slippages using a 2D FE fingertip model.

    PubMed

    Zhongkui Wang; Chathuranga, Damith Suresh; Hirai, Shinichi

    2015-08-01

    Slippage on the fingertips is an important phenomenon that occurs constantly in our daily life. However, the mechanism behind the slippage, especially incipient slippage, which appears prior to overall slippage, has not been fully understood. In this paper, a 2D finite element (FE) model of the human fingertip was presented to study how the human fingertip perceives slippages. The 2D geometries of the fingertip were generated based on magnetic resonance (MR) images. The fingertip model consisted of four layers: epidermis, dermis, subcutaneous tissue, and distal phalanx. The microstructures of the intermediate and limiting ridges in between the epidermis and dermis layers were manually constructed to locate four types of mechanoreceptors. Simulations of pushing and sliding motions were implemented, and mechanical measures of the acceleration and strain energy density (SED) were investigated at the locations of the mechanoreceptors. We found that both incipient and overall slippages could be clearly detected using the acceleration signal captured by the FA-I and SA-I receptors. The SED measurement does not provide useful information for the slippage detection. PMID:26737602

  16. Easy fabrication of aligned PLLA nanofibers-based 2D scaffolds suitable for cell contact guidance studies.

    PubMed

    Mohanraj, John; Puzzi, Luca; Capria, Ennio; Corvaglia, Stefania; Casalis, Loredana; Mestroni, Luisa; Sbaizero, Orfeo; Fraleoni-Morgera, Alessandro

    2016-05-01

    An easy, low-cost and fast wet processing-based method named ASB-SANS (Auxiliary Solvent-Based Sublimation-Aided NanoStructuring) has been used to fabricate poly(l-lactic acid) (PLLA) highly ordered and hierarchically organized 2D fibrillar patterns, with fiber widths between 40 and 500 nm and lengths exceeding tens of microns. A clear contact guidance effect of these nanofibrillar scaffolds with respect to HeLa and NIH-3T3 cells growth has been observed, on top of an overall good viability. For NIH-3T3 pronounced elongation of the cells was observed, as well as a remarkable ability of the patterns to guide the extension of pseudopodia. Moreover, SEM imaging revealed filopodia stemming from both sides of the pseudopodia and aligned with the secondary PLLA nanofibrous structures created by the ASB-SANS procedure. These results validate ASB-SANS as a technique capable to provide biocompatible 2D nanofibrillar patterns suitable for studying phenomena of contact guidance (and, more in general, the behavior of cells onto nanofibrous scaffolds), at very low costs and in an extremely easy way, accessible to virtually any laboratory. PMID:26952427

  17. 2D photonic-crystal optomechanical nanoresonator.

    PubMed

    Makles, K; Antoni, T; Kuhn, A G; Deléglise, S; Briant, T; Cohadon, P-F; Braive, R; Beaudoin, G; Pinard, L; Michel, C; Dolique, V; Flaminio, R; Cagnoli, G; Robert-Philip, I; Heidmann, A

    2015-01-15

    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8% over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265-nm thick membrane, is used to form a compact microcavity involving the suspended nanomembrane as an end mirror. The resulting cavity has a waist size smaller than 10 μm and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane. PMID:25679837

  18. Towards the Identification of the Keeper Erosion Cause(s): Numerical Simulations of the Plasma and Neutral Gas Using the Global Cathode Model OrCa2D-II

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Jameson, Kristina K.

    2006-01-01

    Numerical simulations with the time-dependent Orificed Cathode (OrCa2D-II) computer code show that classical enhancements of the plasma resistivity can not account for the elevated electron temperatures and steep plasma potential gradients measured in the plume of a 25-27.5 A discharge hollow cathode. The cathode, which employs a 0.11-in diameter orifice, was operated at 5.5 sccm without an applied magnetic field using two different anode geometries. It is found that anomalous resistivity based on electron-driven instabilities improves the comparison between theory and experiment. It is also estimated that other effects such as the Hall-effect from the self-induced magnetic field, not presently included in OrCa2D-II, may contribute to the constriction of the current density streamlines thus explaining the higher plasma densities observed along the centerline.

  19. 2D kinematical study in local luminous compact blue galaxies. Starburst origin in UCM2325+2318

    NASA Astrophysics Data System (ADS)

    Castillo-Morales, A.; Pérez-Gallego, J.; Gallego, J.; Guzmán, R.; Castander, F.; Garland, C.; Gruel, N.; Pisano, D. J.; Muñoz-Mateos, J. C.; Ocaña, F.; Zamorano, J.

    2013-05-01

    Luminous Compact Blue Galaxies (LCBGs) are small, but vigorously star forming galaxies. Their presence at different redshifts denotes their cosmological relevance and implies that local starburst galaxies, when properly selected, are unique laboratories for studying the complex ecosystem of the star formation process over time. We have selected a representative sample of 22 LCBGs from the SDSS and UCM databases which, although small, provides an excellent reference for comparison with current and future surveys of similar starbursts at high-z. We are carrying out a 2D optical spectroscopic study of this LCBG sample, including spatially resolved maps of kinematics, extinction, SFR and metallicity. This will help us to answer questions regarding the nature of these objects. In this poster we show our results on the kinematical study (Pérez-Gallego et al. 2011) which allows us to classify these galaxies into three different classes: rotating disk (RD) 48%, perturbed rotation (PR) 28% and complex kinematics (CK) 24%. We find 5% of objects show evidence of a recent major merger, 10% of a minor merger, and 45% of a companion. This argues in favor of ongoing interactions with close companions as a mechanism for the enhanced star formation activity in these galaxies. We find only 5% of objects with clear evidence of AGN activity, and 27% with kinematics consistent with SN-driven galactic winds. Therefore, a different mechanism may be responsible for quenching the star formation in LCBGs. The detailed analysis of the physical properties for each galaxy in the sample is on progress and we show in this poster the results on UCM2325+2318 as a prototype LCBG. Between the possible mechanisms to explain the starburst activity in this galaxy, our 2D spectroscopic data support the scenario of an on-going interaction with the possibility for clump B to be the dwarf satellite galaxy (Castillo-Morales et al. 2011, Pérez-Gallego et al. 2010).

  20. Near-infrared (NIR) monitoring of Nylon 6 during quenching studied by projection two-dimensional (2D) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Mizukado, Junji

    2016-11-01

    Evolutionary change in supermolecular structure of Nylon 6 during its melt-quenched process was studied by Near-infrared (NIR) spectroscopy. Time-resolved NIR spectra was measured by taking the advantage of high-speed NIR monitoring based on an acousto-optic tunable filter (AOTF). Fine spectral features associated with the variation of crystalline and amorphous structure occurring in relatively short time scale were readily captured. For example, synchronous and asynchronous 2D correlation spectra reveal the initial decrease in the contribution of the NIR band at 1485 nm due to the amorphous structure, predominantly existing in the melt Nylon 6. This is then followed by the emerging contribution of the band intensity at 1535 nm associated with the crystalline structure. Consequently, the results clearly demonstrate a definite advantage of the high-speed NIR monitoring for analyzing fleeting phenomena.

  1. Artifacts in time-resolved NUS: A case study of NOE build-up curves from 2D NOESY.

    PubMed

    Dass, Rupashree; Kasprzak, Paweł; Koźmiński, Wiktor; Kazimierczuk, Krzysztof

    2016-04-01

    Multidimensional NMR spectroscopy requires time-consuming sampling of indirect dimensions and so is usually used to study stable samples. However, dynamically changing compounds or their mixtures commonly occur in problems of natural science. Monitoring them requires the use multidimensional NMR in a time-resolved manner - in other words, a series of quick spectra must be acquired at different points in time. Among the many solutions that have been proposed to achieve this goal, time-resolved non-uniform sampling (TR-NUS) is one of the simplest. In a TR-NUS experiment, the signal is sampled using a shuffled random schedule and then divided into overlapping subsets. These subsets are then processed using one of the NUS reconstruction methods, for example compressed sensing (CS). The resulting stack of spectra forms a temporal "pseudo-dimension" that shows the changes caused by the process occurring in the sample. CS enables the use of small subsets of data, which minimizes the averaging of the effects studied. Yet, even within these limited timeframes, the sample undergoes certain changes. In this paper we discuss the effect of varying signal amplitude in a TR-NUS experiment. Our theoretical calculations show that the variations within the subsets lead to t1-noise, which is dependent on the rate of change of the signal amplitude. We verify these predictions experimentally. As a model case we choose a novel 2D TR-NOESY experiment in which mixing time is varied in parallel with shuffled NUS in the indirect dimension. The experiment, performed on a sample of strychnine, provides a near-continuous NOE build-up curve, whose shape closely reflects the t1-noise level. 2D TR-NOESY reduces the measurement time compared to the conventional approach and makes it possible to verify the theoretical predictions about signal variations during TR-NUS. PMID:26896866

  2. Artifacts in time-resolved NUS: A case study of NOE build-up curves from 2D NOESY

    NASA Astrophysics Data System (ADS)

    Dass, Rupashree; Kasprzak, Paweł; Koźmiński, Wiktor; Kazimierczuk, Krzysztof

    2016-04-01

    Multidimensional NMR spectroscopy requires time-consuming sampling of indirect dimensions and so is usually used to study stable samples. However, dynamically changing compounds or their mixtures commonly occur in problems of natural science. Monitoring them requires the use multidimensional NMR in a time-resolved manner - in other words, a series of quick spectra must be acquired at different points in time. Among the many solutions that have been proposed to achieve this goal, time-resolved non-uniform sampling (TR-NUS) is one of the simplest. In a TR-NUS experiment, the signal is sampled using a shuffled random schedule and then divided into overlapping subsets. These subsets are then processed using one of the NUS reconstruction methods, for example compressed sensing (CS). The resulting stack of spectra forms a temporal "pseudo-dimension" that shows the changes caused by the process occurring in the sample. CS enables the use of small subsets of data, which minimizes the averaging of the effects studied. Yet, even within these limited timeframes, the sample undergoes certain changes. In this paper we discuss the effect of varying signal amplitude in a TR-NUS experiment. Our theoretical calculations show that the variations within the subsets lead to t1 -noise, which is dependent on the rate of change of the signal amplitude. We verify these predictions experimentally. As a model case we choose a novel 2D TR-NOESY experiment in which mixing time is varied in parallel with shuffled NUS in the indirect dimension. The experiment, performed on a sample of strychnine, provides a near-continuous NOE build-up curve, whose shape closely reflects the t1 -noise level. 2D TR-NOESY reduces the measurement time compared to the conventional approach and makes it possible to verify the theoretical predictions about signal variations during TR-NUS.

  3. Prognostic and clinicopathological significance of Cacna2d1 expression in epithelial ovarian cancers: a retrospective study

    PubMed Central

    Yu, Dandan; Holm, Ruth; Goscinski, Mariusz Adam; Trope, Claes G; Nesland, Jahn M; Suo, Zhenhe

    2016-01-01

    Ovarian cancer is the most lethal gynecologic malignancy, in which cancer stem cells (CSC) have been reported to be the driving force of relapse and therapy-resistance. It is therefore important to explore CSC markers in ovarian cancer. This project aimed to explore the correlation between the expression of potential CSC maker Cacna2d1 and clinicopathological parameters in 238 epithelial ovarian cancer (EOC) samples. Immunohistochemically, positive Cacna2d1 expression was observed in 83.6% (199/238) of the EOC tumors, among which 107 tumors (44.9%) were highly positive and 92 (38.7%) tumors were weakly positive for the Cacna2d1 protein expression. Among the 158 serous carcinomas, the Cacna2d1 positivity was 148 (93.7%), in which 88 (55.7%) were highly positive, and 60 (38.0%) were weakly positive for the Cacna2d1 protein expression. Most strikingly, the Cacna2d1 was specifically expressed in the infiltration front areas of the EOC tumors. Statistical analyses showed that positive expression of Cacna2d1 was significantly associated with advanced FIGO stage (P<0.001), histological subtype (P=0.017) and tumor differentiation (P=0.015). Positive Cacna2d1 protein expression was significantly associated with poor overall survival (OS) and shorter progression free survival (PFS) in both total EOCs and serous carcinomas, although multivariate analyses did not reach statistical significance. In summary, our results suggest Cacna2d1 protein may play a crucial role in promoting aggressive EOC behavior and progression, and Cacna2d1 may serve as a novel predictive prognostic marker and a potential target for therapeutic intervention in EOCs. PMID:27725913

  4. Multicomponent, 3-D, and High-Resolution 2-D Seismic Characterization of Gas Hydrate Study Sites in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Ruppel, C. D.; Collett, T. S.; Shedd, W.; Lee, M. W.; Miller, J.

    2012-12-01

    High saturations of gas hydrates have been identified within coarse-grained sediments in the Green Canyon 955 and Walker Ridge 313 lease blocks of the deepwater northern Gulf of Mexico. The thickness, lateral extent, and hydrate saturations in these deposits are constrained by geological and geophysical data and state-of-the-art logging-while-drilling information obtained in multiple boreholes at each site during a 2009 expedition. Presently lacking are multicomponent seismic data that can provide a thorough understanding of the in-situ compressional and shear seismic properties of the hydrate-bearing sediments. Such data may represent an important tool for future characterization of gas hydrate resources. To address this data gap, the U.S. Geological Survey, the U.S. Department of Energy, and the Bureau of Ocean Energy Management will collaborate on a 20-day research expedition to acquire wide-angle ocean bottom seismometer and high-resolution vertical incidence 2-D seismic data at the study sites. In preparation for this mid-2013 expedition, we have analyzed existing industry 3-D seismic data, along with numerically modeled multicomponent data. The 3-D seismic data allow us to identify and rank specific survey targets and can be combined with the numerical modeling results to determine optimal survey line orientation and acquisition parameters. Together, these data also provide a more thorough understanding of the gas hydrate systems at these two sites.

  5. Numerical study on 3D composite morphing actuators

    NASA Astrophysics Data System (ADS)

    Oishi, Kazuma; Saito, Makoto; Anandan, Nishita; Kadooka, Kevin; Taya, Minoru

    2015-04-01

    There are a number of actuators using the deformation of electroactive polymer (EAP), where fewer papers seem to have focused on the performance of 3D morphing actuators based on the analytical approach, due mainly to their complexity. The present paper introduces a numerical analysis approach on the large scale deformation and motion of a 3D half dome shaped actuator composed of thin soft membrane (passive material) and EAP strip actuators (EAP active coupon with electrodes on both surfaces), where the locations of the active EAP strips is a key parameter. Simulia/Abaqus Static and Implicit analysis code, whose main feature is the high precision contact analysis capability among structures, are used focusing on the whole process of the membrane to touch and wrap around the object. The unidirectional properties of the EAP coupon actuator are used as input data set for the material properties for the simulation and the verification of our numerical model, where the verification is made as compared to the existing 2D solution. The numerical results can demonstrate the whole deformation process of the membrane to wrap around not only smooth shaped objects like a sphere or an egg, but also irregularly shaped objects. A parametric study reveals the proper placement of the EAP coupon actuators, with the modification of the dome shape to induce the relevant large scale deformation. The numerical simulation for the 3D soft actuators shown in this paper could be applied to a wider range of soft 3D morphing actuators.

  6. Multiple scattering in the high-frequency limit with second-order shadowing function from 2D anisotropic rough dielectric surfaces: II. Comparison with numerical results

    NASA Astrophysics Data System (ADS)

    Bourlier, C.; Berginc, G.

    2004-07-01

    This second part presents illustrative examples of the model developed in the companion paper, which is based on the first- and second-order optics approximation. The surface is assumed to be Gaussian and the correlation height is chosen as anisotropic Gaussian. The incoherent scattering coefficient is computed for a height rms range from 0.5lgr to 1lgr (where lgr is the electromagnetic wavelength), for a slope rms range from 0.5 to 1 and for an incidence angle range from 0 to 70°. In addition, simulations are presented for an anisotropic Gaussian surface and when the receiver is not located in the plane of incidence. For a metallic and dielectric isotropic Gaussian surfaces, the cross- and co-polarizations are also compared with a numerical approach obtained from the forward-backward method with a novel spectral acceleration algorithm developed by Torrungrueng and Johnson (2001, JOSA A 18).

  7. 2-D numerical simulations of groundwater flow, heat transfer and 4He transport — implications for the He terrestrial budget and the mantle helium heat imbalance

    NASA Astrophysics Data System (ADS)

    Castro, Maria Clara; Patriarche, Delphine; Goblet, Patrick

    2005-09-01

    Because helium and heat production results from a common source, a continental 4He crustal flux of 4.65 * 10 - 14 mol m - 2 s - 1 has been estimated based on heat flow considerations. In addition, because the observed mantle He / heat flux ratio at the proximity of mid-ocean ridges (6.6 * 10 - 14 mol J - 1 ) is significantly lower than the radiogenic production ratio (1.5 * 10 - 12 mol J - 1 ), the presence of a terrestrial helium-heat imbalance was suggested. The latter could be explained by the presence of a layered mantle in which removal of He is impeded from the lower mantle [R.K. O'Nions, E.R. Oxburgh, Heat and helium in the Earth, Nature 306 (1983) 429-431; E.R. Oxburgh, R.K. O'Nions, Helium loss, tectonics, and the terrestrial heat budget, Science 237 (1987) 1583-1588]. van Keken et al. [P.E. van Keken, C.J. Ballentine, D. Porcelli, A dynamical investigation of the heat and helium imbalance, Earth Planet, Sci. Lett. 188 (2001) 421-434] have recently claimed that the helium-heat imbalance remains a robust observation. Such conclusions, however, were reached under the assumption that a steady-state regime was in place for both tracers and that their transport properties are similar at least in the upper portion of the crust. Here, through 2-D simulations of groundwater flow, heat transfer and 4He transport carried out simultaneously in the Carrizo aquifer and surrounding formations in southwest Texas, we assess the legitimacy of earlier assumptions. Specifically, we show that the driving transport mechanisms for He and heat are of a fundamentally different nature for a high range of permeabilities ( k ≤ 10 - 16 m 2) found in metamorphic and volcanic rocks at all depths in the crust. The assumption that transport properties for these two tracers are similar in the crust is thus unsound. We also show that total 4He / heat flux ratios lower than radiogenic production ratios do not reflect a He deficit in the crust or mantle original reservoir. Instead, they

  8. Basin evaluation in deltaic series using 2-D numerical modeling a comparison of Mahakam delta and south Louisiana/Gulf of Mexico case histories

    SciTech Connect

    Burrus, J. ); De Choppin, J.G.; Grosjean, J.L.; Oudin, J.L. ); Schwarzer, T. ); Schroeder, F.; Lander, R. )

    1993-09-01

    Integrated numerical modeling of petroleum, generation and migration is difficult to apply in deltaic series. Using Institut Francais du Petrole's two-dimensional model TEMISPACK, we tried to simulate the petroleum history along a 70 km long east-west regional section in the Mahakam delta (Indonesia) and a 800 km long north-south section in south Louisiana/Gulf of Mexico. The two basins contain thick (>10 km) accumulations of the post middle miocene. The principal results are as follows (1) Both basins have similar overpressure profiles caused by thick shales with nano-darcy permeabilities. Compaction, not oil or gas generation, controls the overpressure histories. (2) In both basins, the thermal history is dominated by burial rate, thermal blanketing, and undercompaction. Basinward increases in thermal gradients are probably due to basinward increases in shale content and undercompaction, rather than geodynamic processes. (3) We used an upscaling procedure to define sedimentary facies and properties for each cell in the models. In both cases, we found a huge permeability anisotropy of interbedded facies was necessary to match observed pressure profiles and hydrocarbon distributions. This anisotropy results in a dominant [open quotes]parallel-to-bedding[close quotes] migration pattern, with only a moderate (<0.5 km) vertical migration component. (4) A fundamental difference between the Mahakam and the Gulf coast petroleum systems is the hole of growth faults. In the Gulf Coast, huge growth faults connect deep overpressured, overmature Tertiary source facies with shallow, interbedded sandy reservoirs. Enhanced vertical permeability in the vicinity of these fault zones allows for several kilometers of vertical migration. In the Mahakam delta, where growth faults are less prevalent, deep overpressured shales have very poor expulsion efficiency; gas and oil in shallow reservoirs are shown to be fed mostly by coals located above, and not within, the overpressured zone.

  9. Modes of Planetary Reshaping During Core Formation: Numerical Study

    NASA Astrophysics Data System (ADS)

    Lin, J.; Gerya, T. V.; Tackley, P. J.; Yuen, D. A.

    2007-12-01

    The early stages of terrestrial planetary accretion and differentiation related to core formation are largely enigmatic and require extensive realistic numerical modelling efforts especially in 2D(a cross-section of a spherical planet) and 3D geometries. One early stage of terrestrial planets was assumed to have a gravitationally unstable three-layer structure, the innermost undifferentiated solid core, the intermediate metal-melt layer, and the outermost silicate-melt layer, which leads to a Rayleigh-Taylor instability of various orders. We have developed a 2D thermomechanical numerical model for studying core formation in a self-gravitating planetary body surrounded by mass-less weak medium by using a combination of finite-differences with a Lagrangian marker-in-cell technique on a fully staggered Cartesian grid. We include a free planetary surface, spontaneously evolving gravity field, visco(elasto)plastic rheology of materials and feedback from shear heating. Benchmarking of this novel numerical method against available analytical solutions (Ida et al., 1987, Earth Moon Planets, 44, 149-174) has demonstrated high accuracy of the numerical results in the non inertial reshaping regime. Assuming the three-layered model (primordial protocore, metal and silicate layers) we investigated the influence of the viscosity contrast between the layers on the geometrical mode of planetary reshaping. In contrast to a previously conducted numerical study (Honda et al., 1993, JGR, 98, 2075-2089) we explored a broad range of viscosity ratios between the metallic layer and the protocore (0.001-1000) as well as between the silicate layer and the protocore (0.001-1000). A new important prediction from our study is that realistic modes of planetary reshaping characterized by a high viscosity contrast between the cold protocore and hot molten silicate layer always results in the transient exposure of the prorotocore to the planetary surface during the early stages of core formation

  10. A Comparative Study of 2D PCA Face Recognition Method with Other Statistically Based Face Recognition Methods

    NASA Astrophysics Data System (ADS)

    Senthilkumar, R.; Gnanamurthy, R. K.

    2016-09-01

    In this paper, two-dimensional principal component analysis (2D PCA) is compared with other algorithms like 1D PCA, Fisher discriminant analysis (FDA), independent component analysis (ICA) and Kernel PCA (KPCA) which are used for image representation and face recognition. As opposed to PCA, 2D PCA is based on 2D image matrices rather than 1D vectors, so the image matrix does not need to be transformed into a vector prior to feature extraction. Instead, an image covariance matrix is constructed directly using the original image matrices and its Eigen vectors are derived for image feature extraction. To test 2D PCA and evaluate its performance, a series of experiments are performed on three face image databases: ORL, Senthil, and Yale face databases. The recognition rate across all trials higher using 2D PCA than PCA, FDA, ICA and KPCA. The experimental results also indicated that the extraction of image features is computationally more efficient using 2D PCA than PCA.

  11. Surfaces of nanomaterials for sustainable energy applications: thin-film 2D-ACAR and PALS studies

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Chai, L.; Al-Sawai, W.; Eijt, S. W. H.; Mijnarends, P. E.; Schut, H.; Gao, Y.; Houtepen, A. J.; Ravelli, L.; Egger, W.; van Huis, M. A.; Bansil, A.

    2013-03-01

    Positron (e+) annihilation spectroscopy is one of only a few techniques to probe the surfaces of nanoparticles. We investigated thin films of PbSe colloidal semiconductor nanocrystals (NCs) in the range 2-10 nm as prospective highly efficient absorbers for solar cells. We compare and contrast our findings with previous studies on CdSe NCs. Evidence obtained from our e+ lifetime spectroscopy study using the PLEPS spectrometer shows that 90-95% of the implanted positrons are effectively trapped and confined at the surfaces of these NCs. The remaining 5-10% of the e+ annihilate in the relatively large oleic acid ligands, in fair agreement with the estimated positron stopping power of the PbSe nanoparticle ``core'' relative to the ligand ``shell.'' 2D-ACAR measurements on the same set of films using the low-energy e+ beam POSH showed that the e+ wavefunction at the surfaces of the PbSe NCs is more localized than for the case of CdSe NCs. Comparison with calculated e+ - e- momentum densities indicates a Pb deficiency at the surfaces of the PbSe NCs, which correlates with e+ lifetime and the NCs morphology. Work supported in part by the US Department of Energy.

  12. LOCA hydroloads calculations with multidimensional nonlinear fluid/structure interaction. Volume 2: STEALTH 2D/WHAMSE 2D single-phse fluid and elastic structure studies. Final report. [PWR

    SciTech Connect

    Chang, F.H.; Santee, G.E. Jr.; Mortensen, G.A.; Brockett, G.F.; Gross, M.B.; Silling, S.A.; Belytschko, T.

    1981-03-01

    This report, the second in a series of reports for RP-1065, describes the second step in the stepwise approach for developing the three-dimensional, nonlinear, fluid/structure interaction methodology to assess the hydroloads on a large PWR during the subcooled portions of a hypothetical LOCA. The second step in the methodology considers enhancements and special modifications to the 2D STEALTH-HYDRO computer program and the 2D WHAMSE computer program. The 2D STEALTH-HYDRO enhancements consist of a fluid-fluid coupling control-volume model and an orifice control-volume model. The enhancements to 2D WHAMSE include elimination of the implicit integration routines, material models, and structural elements not required for the hydroloads application. In addition the logic for coupling the 2D STEALTH-HYDRO computer program to the 2D WHAMSE computer program is discussed.

  13. Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide.

    PubMed

    Patil, Ranjit A; Chang, Cheng-Ping; Devan, Rupesh S; Liou, Yung; Ma, Yuan-Ron

    2016-04-20

    We synthesized unique one-dimensional (1D) nanorods and two-dimensional (2D) thin-films of NiO on indium-tin-oxide thin-films using a hot-filament metal-oxide vapor deposition technique. The 1D nanorods have an average width and length of ∼100 and ∼500 nm, respectively, and the densely packed 2D thin-films have an average thickness of ∼500 nm. The 1D nanorods perform as parallel units for charge storing. However, the 2D thin-films act as one single unit for charge storing. The 2D thin-films possess a high specific capacitance of ∼746 F/g compared to 1D nanorods (∼230 F/g) using galvanostatic charge-discharge measurements at a current density of 3 A/g. Because the 1D NiO nanorods provide more plentiful surface areas than those of the 2D thin-films, they are fully active at the first few cycles. However, the capacitance retention of the 1D nanorods decays faster than that of the 2D thin-films. Also, the 1D NiO nanorods suffer from instability due to the fast electrochemical dissolution and high nanocontact resistance. Electrochemical impedance spectroscopy verifies that the low dimensionality of the 1D NiO nanorods induces the unavoidable effects that lead them to have poor supercapacitive performances. On the other hand, the slow electrochemical dissolution and small contact resistance in the 2D NiO thin-films favor to achieve high specific capacitance and great stability.

  14. Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide.

    PubMed

    Patil, Ranjit A; Chang, Cheng-Ping; Devan, Rupesh S; Liou, Yung; Ma, Yuan-Ron

    2016-04-20

    We synthesized unique one-dimensional (1D) nanorods and two-dimensional (2D) thin-films of NiO on indium-tin-oxide thin-films using a hot-filament metal-oxide vapor deposition technique. The 1D nanorods have an average width and length of ∼100 and ∼500 nm, respectively, and the densely packed 2D thin-films have an average thickness of ∼500 nm. The 1D nanorods perform as parallel units for charge storing. However, the 2D thin-films act as one single unit for charge storing. The 2D thin-films possess a high specific capacitance of ∼746 F/g compared to 1D nanorods (∼230 F/g) using galvanostatic charge-discharge measurements at a current density of 3 A/g. Because the 1D NiO nanorods provide more plentiful surface areas than those of the 2D thin-films, they are fully active at the first few cycles. However, the capacitance retention of the 1D nanorods decays faster than that of the 2D thin-films. Also, the 1D NiO nanorods suffer from instability due to the fast electrochemical dissolution and high nanocontact resistance. Electrochemical impedance spectroscopy verifies that the low dimensionality of the 1D NiO nanorods induces the unavoidable effects that lead them to have poor supercapacitive performances. On the other hand, the slow electrochemical dissolution and small contact resistance in the 2D NiO thin-films favor to achieve high specific capacitance and great stability. PMID:27028491

  15. Effects of Clostridium difficile Toxin A on the proteome of colonocytes studied by differential 2D electrophoresis.

    PubMed

    Zeiser, Johannes J; Klodmann, Jennifer; Braun, Hans-Peter; Gerhard, Ralf; Just, Ingo; Pich, Andreas

    2011-12-21

    Clostridium difficile is a spore-forming anaerobic pathogen, commonly associated with severe diarrhea or life-threatening pseudomembraneous colitis. Its main virulence factors are the single-chain, multi-domain toxin A (TcdA) and B (TcdB). Their glucosyltransferase domain selectively inactivates Rho proteins leading to a reorganization of the cytoskeleton. To study exclusively glucosyltransferase-dependent molecular effects of TcdA, human colonic cells (Caco-2) were treated with recombinant wild type TcdA and the glucosyltransferase deficient variant of the toxin, TcdA(gd) for 24h. Changes in the protein pattern of the colonic cells were investigated by 2-D DIGE and LCMS/MS methodology combined with detailed proteome mapping. gdTcdA did not induce any detectable significant changes in the protein pattern. Comparing TcdA-treated cells with a control group revealed seven spots of higher and two of lower intensity (p<0.05). Three proteins are involved in the assembly of the cytoskeleton (β-actin, ezrin, and DPYL2) and four are involved in metabolism and/or oxidative stress response (ubiquitin, DHE3, MCCB, FABPL) and two in regulatory processes (FUBP1, AL1A1). These findings correlate well to known effects of TcdA like the reorganization of the cytoskeleton and stress the importance of Rho protein glucosylation for the pathogenic effects of TcdA. PMID:21890007

  16. Study of proton conductivity of a 2D flexible MOF and a 1D coordination polymer at higher temperature.

    PubMed

    Sanda, Suresh; Biswas, Soumava; Konar, Sanjit

    2015-02-16

    We report the proton conduction properties of a 2D flexible MOF and a 1D coordination polymer having the molecular formulas {[Zn(C10H2O8)0.5(C10S2N2H8)]·5H2O]}n (1) and {[Zn(C10H2O8)0.5(C10S2N2H8)]·2H2O]}n (2), respectively. Compounds 1 and 2 show high conductivity values of 2.55 × 10(-7) and 4.39 × 10(-4) S cm(-1) at 80 °C and 95% RH. The conductivity value of compound 1 is in the range of those for previously reported flexible MOFs, and compound 2 shows the highest proton conductivity among the carboxylate-based 1D CPs. The dimensionality and the internal hydrogen bonding connectivity play a vital role in the resultant conductivity. Variable-temperature experiments of both compounds at high humidity reveal that the conductivity values increase with increasing temperature, whereas the variable humidity studies signify the influence of relative humidity on high-temperature proton conductivity. The time-dependent measurements for both compounds demonstrate their ability to retain conductivity up to 10 h.

  17. Tropical Convective Responses to Microphysical and Radiative Processes: A Sensitivity Study With a 2D Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.

    2004-01-01

    Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.

  18. Numerical study of external burning flowfields

    NASA Technical Reports Server (NTRS)

    Bittner, Robert D.; Mcclinton, Charles R.

    1991-01-01

    This paper demonstrates the successful application of CFD to modeling an external burning flowfield. The study used the 2D, 3D, and PNS versions of the SPARK code. Various grids, boundary conditions, and ignition methodologies have been employed. Flameholding was achieved through the use of a subsonic outflow condition and a hot block located behind the step to ignite the fuel. Since the resulting burning produces a large subsonic region downstream of the cowl, this entire surface can be pressurized to the level of the back pressure. An evaluation of interactions between the ramjet exhaust and the external burning products demonstrate the complexity of this design issue. Ths code is now capable of evaluating the external burning effectiveness for flight vehicles using simple injector schemes, and the methodology can be readily applied to other external burning designs.

  19. Bifurcation structure of the special class of nonstationary regimes emerging in the 2D inertially coupled, unit-cell model: Analytical study

    NASA Astrophysics Data System (ADS)

    Vorotnikov, K.; Starosvetsky, Y.

    2016-09-01

    Present work is devoted to the analytical investigation of the bifurcation structure of special class of nonstationary low-energy regimes emerging in the locally resonant unit-cell model. System under consideration comprises an outer mass with internal rotator and subject to the 2D, nonlinear local potential. These regimes are characterized by the slow, purely rotational motion of the rotator synchronized with the periodic energy beats between the axial and the lateral vibrations of the outer element. Thus the angular speed of the rotator and the beating frequency of the outer element satisfy the 1:2 resonance condition. In the present study these regimes are referred to as regimes of synchronous nonlinear beats (RSNB). Using the regular muti-scale analysis in the limit of low energy excitation we derive the slow-flow model. To showcase the evolution of RSNBs we used the special Poincaré map technique applied on the slow-flow model. Results of the Poincaré sections unveiled some interesting local bifurcations undergone by these regimes. Further analysis of the slow-flow model enabled us to describe the RSNBs analytically as well as exposed their entire bifurcation structure. The bifurcation analysis has shown the coexistence of several branches of RSNBs corresponding to the regimes of weak and strong, two-dimensional, recurrent energy channeling. We substantiate the results of the analytical study with numerical simulations of the full model and find them to be in the very good agreement.

  20. 2D numerical simulation of impinging jet onto the concave surface by k - w - overline{{v2 }} - f turbulence model

    NASA Astrophysics Data System (ADS)

    Seifi, Zeinab; Nazari, Mohammad Reza; Khalaji, Erfan

    2016-03-01

    In the present article, the characteristics of turbulent jet impinging onto a concave surface is studied using k - w - overline{{v2 }} - f turbulence model. Dependent parameters such as inlet Reynolds number (2960 < Re < 12,000), nozzle-plate distance (4 < H/B < 10), concavity (D/B = 30, 60) of confined and unconfined impinging jet are scrutinized to find out whether this approach would bring any privileges compared to other investigations or not. The obtained results indicate better performance in low nozzle-plate distance in comparison with those mentioned in other literatures. Furthermore, the average Nusselt number of confined impinging jet overtakes unconfined one (similar circumstances) while this trend will decline as relative concavity increases. Moreover, local heat transfer of stagnation area and wall jet goes up and down through nozzle-plate distance enhancement respectively. Finally, the effects of sinusoidal pulsed inlet profile on heat transfer of unconfined impinging jet indicate direct affiliation of amplitude and neutral impact of frequency on Nusselt number distribution.

  1. Numerical models of diapiric structures: comparison of the 2D finite deformation field between Rayleigh-Taylor like and down-built like diapirs

    NASA Astrophysics Data System (ADS)

    Fuchs, Lukas; Schmeling, Harro; Koyi, Hemin

    2013-04-01

    Magmatic and salt diapirs are common structures in different tectonic regimes. Salt diapirs can act as possible hydrocarbon traps and, moreover, they could be used as repositories for nuclear waste disposal. Understanding the evolution and the dynamics of diapirs as well as their driving mechanisms has fundamental and applied significance. In general, salt diapirs seem to be driven by differential loading of sediments creating an uneven load that drives the salt from high to low pressure areas, e.g. a down-built diapir. Magmatic diapirs, instead, seem to be driven by buoyancy where lighter material rises vertically through a heavier overburden, i.e. a classical Rayleigh-Taylor instability [RTI]. These different driving mechanisms and dynamics strongly govern the internal deformation of the diapirs. In this study, we use a two-dimensional finite difference code (FDCON) in combination with a marker and cell method to calculate the finite deformation within diapiric structures. Thereby, we distinguish between the two different driving mechanisms, i.e. the differential loading and the buoyancy. We calculate the different finite deformation patterns during the evolution of RTI's and down-built diapirs for different viscosity ratios m = -?buoyant- ?overburden. The deformation pattern in the buoyant layer shows similarities for both diapiric structures, like high shear deformation at the bottom, a high finite deformation within the middle of the stem, and an increasing maximum finite deformation for a decreasing m. However, the strain partitioning between the overburden and the source layer is different within down-built diapirs compared to the RTI's, even for down-built diapirs with m = 1. Thus a higher amount of the total strain induced by down-building is concentrated within the buoyant layer. Moreover, in the case of viscosity ratios of m = 0.1 or 1 the sinking overburden units create an internal rotation within the diapiric bulb. This rotation depends indirectly on

  2. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy

    PubMed Central

    Díaz-Visurraga, Judith; Daza, Carla; Pozo, Claudio; Becerra, Abraham; von Plessing, Carlos; García, Apolinaria

    2012-01-01

    Background The objective of this study was to clarify the intermolecular interaction between antibacterial copper nanoparticles (Cu NPs) and sodium alginate (NaAlg) by Fourier transform infrared spectroscopy (FT-IR) and to process the spectra applying two-dimensional infrared (2D-IR) correlation analysis. To our knowledge, the addition of NaAlg as a stabilizer of copper nanoparticles has not been previously reported. It is expected that the obtained results will provide valuable additional information on: (1) the influence of reducing agent ratio on the formation of copper nanoparticles in order to design functional nanomaterials with increased antibacterial activity, and (2) structural changes related to the incorporation of Cu NPs into the polymer matrix. Methods Cu NPs were prepared by microwave heating using ascorbic acid as reducing agent and NaAlg as stabilizing agent. The characterization of synthesized Cu NPs by ultraviolet visible spectroscopy, transmission electron microscopy (TEM), electron diffraction analysis, X-ray diffraction (XRD), and semiquantitative analysis of the weight percentage composition indicated that the average particle sizes of Cu NPs are about 3–10 nm, they are spherical in shape, and consist of zerovalent Cu and Cu2O. Also, crystallite size and relative particle size of stabilized Cu NPs were calculated by XRD using Scherrer’s formula and FT from the X-ray diffraction data. Thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry (DSC), FT-IR, second-derivative spectra, and 2D-IR correlation analysis were applied to studying the stabilization mechanism of Cu NPs by NaAlg molecules. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of stabilized Cu NPs against five bacterial strains (Staphylococccus aureus ATCC 6538P, Escherichia coli ATCC 25922 and O157: H7, and Salmonella enterica serovar Typhimurium ATCC 13311 and 14028) were evaluated with macrodilution

  3. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture.

    PubMed

    Pothuaud, Laurent; Carceller, Pascal; Hans, Didier

    2008-04-01

    X-ray imaging remains a very cost-effective technique, with many applications in both medical and material science. However, the physical process of X-ray imaging transforms (e.g. projects) the 3-dimensional (3D) microarchitecture of the object or tissue being studied into a complex 2D grey-level texture. The 3D/2D projection process continues to be a difficult mathematical problem, and neither demonstrations nor well-established correlations have positioned 2D texture analysis-based measurement as a valid indirect evaluation of 3D microarchitecture. The trabecular bone score (TBS) is a new grey-level texture measurement which utilizes experimental variograms of 2D projection images. The aim of the present study was to determine the level of correlation between the 3D characteristics of trabecular bone microarchitecture, as evaluated using muCT reconstruction, and TBS, as evaluated using 2D projection images derived directly from 3D muCT reconstruction. Analyses were performed using sets of human cadaver bone samples from different anatomical sites (lumbar spine, femoral neck, and distal radius). Significant correlations were established via standard multiple regression analysis, and via the use of a generic mathematical 3D/2D relationship. In both instances, the correlations established a significant relationship between TBS and two 3D characteristics of bone microarchitecture: bone volume fraction and mean bone thickness. In particular, it appears that TBS permits to accurately differentiate between two 3D microarchitectures that exhibit the same amount of bone, but different trabecular characteristics. These results demonstrate the existence of a robust and generic relationship, taking into consideration a simplified model of a 2D projection image. Ultimately, this may lead to using TBS measurements directly on DXA images obtained in routine clinical practice.

  4. Source rock potential analysis using rock physics approach and 2D seismic data inversion: case study of Great Australian Bight

    NASA Astrophysics Data System (ADS)

    Shulakova, V.

    2015-12-01

    The quantity of total organic carbon (TOC) and its type determine the ability of source rocks to generate hydrocarbons. Thus, the quantification of TOC content is an essential part of any reservoir characterisation project. Traditionally TOC is estimated from geochemical analysis of core samples. In this case the results are limited spatially by a well location as well as vertically by a number of tested samples. At the same time TOC vertical variability might be very high, changing every 1-3 m. The several methods have been deployed to estimate TOC from well-log data which provides continuous vertical profile estimations. The basin wide information might be provided by the utilization of seismic surveys. The methodology of mapping source rocks based on seismic data has been lately reported to be successful for the thick source rocks (>20 m) with relatively high TOC values up to 3-4% (Løseth et al., 2011). We employ the described approach and demonstrate our findings for a case study from Ceduna Basin (Great Australian Bight, Australia). The reported TOC values estimated from the cores go up to only 1.3%. The organic matter is contained in thin layers of claystones interlayered with sandstones. The workflow included TOC estimation from the well-log data and then seismic data inversion performed in JasonTM software. The inverted acoustic impedance decreases nonlinearly with increasing TOC content. The obtained results comprises 2D section of TOC distribution. The calculated TOC values are in a good agreement with the results of laboratory measurements. The results of this study show that TOC can be successfully estimated from seismic data inversion even in the case of low organic matter values. Further work has to be done to understand whether this approach works for different types of organic matter and stages of its maturation. Løseth H., Wensaas L., Gading M., Duffaut K., Springer M. 2001. Can hydrocarbon source rocks be identified on seismic data? Geology 39/12.

  5. A proteomic study of Hutchinson-Gilford progeria syndrome: Application of 2D-chromotography in a premature aging disease.

    PubMed

    Wang, Li; Yang, Wu; Ju, Weina; Wang, Peirong; Zhao, Xinliang; Jenkins, Edmund C; Brown, W Ted; Zhong, Nanbert

    2012-01-27

    The Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease characterized by segmental premature aging. Applying a two-dimensional chromatographic proteomic approach, the 2D Protein Fractionation System (PF2D), we identified 30 differentially expressed proteins in cultured HGPS fibroblasts. We categorized them into five groups: methylation, calcium ion binding, cytoskeleton, duplication, and regulation of apoptosis. Among these 30 proteins, 23 were down-regulated, while seven were up-regulated in HGPS fibroblasts as compared to normal fibroblasts. Three differentially expressed cytoskeleton proteins, vimentin, actin, and tubulin, were validated via Western blotting and characterized by immunostaining that revealed densely thickened bundles and irregular structures. Furthermore in the HGPS cells, the cell cycle G1 phase was elongated and the concentration of free cytosolic calcium was increased, suggesting intracellular retention of calcium. The results that we obtained have implications for understanding the aging process.

  6. Theoretical Study of Large-Angle Bending Transport of Microparticles by 2D Acoustic Half-Bessel Beams

    NASA Astrophysics Data System (ADS)

    Li, Yixiang; Qiu, Chunyin; Xu, Shengjun; Ke, Manzhu; Liu, Zhengyou

    2015-08-01

    Conventional microparticle transports by light or sound are realized along a straight line. Recently, this limit has been overcome in optics as the growing up of the self-accelerating Airy beams, which are featured by many peculiar properties, e.g., bending propagation, diffraction-free and self-healing. However, the bending angles of Airy beams are rather small since they are only paraxial solutions of the two-dimensional (2D) Helmholtz equation. Here we propose a novel micromanipulation by using acoustic Half-Bessel beams, which are strict solutions of the 2D Helmholtz equation. Compared with that achieved by Airy beams, the bending angle of the particle trajectory attained here is much steeper (exceeding 90o). The large-angle bending transport of microparticles, which is robust to complex scattering environment, enables a wide range of applications from the colloidal to biological sciences.

  7. Theoretical and numerical studies of wave-packet propagation in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lu, Z. X.; Zonca, F.; Cardinali, A.

    2012-04-01

    Theoretical and numerical studies of wave-packet propagation are presented to analyze the time varying 2D mode structures of electrostatic fluctuations in tokamak plasmas, using general flux coordinates. Instead of solving the 2D wave equations directly, the solution of the initial value problem is used to obtain the 2D mode structure, following the propagation of wave-packets generated by a source and reconstructing the time varying field. As application, the 2D WKB method is applied to investigate the shaping effects (elongation and triangularity) of tokamak geometry on the lower hybrid wave propagation and absorption. Meanwhile, the mode structure decomposition (MSD) method is used to handle the boundary conditions and simplify the 2D problem to two nested 1D problems. The MSD method is related to that discussed earlier by Zonca and Chen [Phys. Fluids B 5, 3668 (1993)] and reduces to the well-known "ballooning formalism" [J. W. Connor et al., Phys. Rev. Lett. 40, 396 (1978)], when spatial scale separation applies. This method is used to investigate the time varying 2D electrostatic ion temperature gradient (ITG) mode structure with a mixed WKB-full-wave technique. The time varying field pattern is reconstructed, and the time asymptotic structure of the wave-packet propagation gives the 2D eigenmode and the corresponding eigenvalue. As a general approach to investigate 2D mode structures in tokamak plasmas, our method also applies for electromagnetic waves with general source/sink terms either by an internal/external antenna or a nonlinear wave interaction with zonal structures.

  8. Four divalent transition metal carboxyarylphosphonate compounds: Hydrothermal synthesis, structural chemistry and generalized 2D FTIR correlation spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Lei, Ran; Chai, Xiaochuan; Mei, Hongxin; Zhang, Hanhui; Chen, Yiping; Sun, Yanqiong

    2010-07-01

    Four divalent transition metal carboxyarylphosphonates, [Ni(4,4'-bipy)H 2L 1(HL 1) 2(H 2O) 2]·2H 2O 1, [Ni 2(4,4'-bipy)(L 2)(OH)(H 2O) 2]·3H 2O 2, Mn(phen) 2(H 2L 1) 23 and Mn(phen)(HL 2) 4 (H 3L 1= p-H 2O 3PCH 2-C 6H 4-COOH, H 3L 2= m-H 2O 3PCH 2-C 6H 4-COOH, 4,4'-bipy=4,4'-bipyridine, phen=1,10-phenanthroline) were synthesized under hydrothermal conditions. 1 features 1D linear chains built from Ni(II) ions bridging 4,4'-bipy. In 2, neighboring Ni 4 cluster units are connected by pairs of H 3L 2 ligands to form 1D double-crankshaft chains, which are interconnected by pairs of 4,4'-bipy into 2D sheets. 3 exhibits 2D supramolecular layers via the R 22(8) ringed hydrogen bonding units. 4 has 1D ladderlike chains, in which the 4-membered rings are cross-linked by the organic moieties of the H 3L 2 ligands. Additionally, 2D FTIR correlation analysis is applied with thermal and magnetic perturbation to clarify the structural changes of functional groups from H 3L 1 and H 3L 2 ligands in the compounds more efficiently.

  9. Moving-window 2D correlation spectroscopy in studies of fluphenazine-DPPC dehydrated film as a function of temperature

    NASA Astrophysics Data System (ADS)

    Szwed, Joanna; Cieślik-Boczula, Katarzyna; Czarnik-Matusewicz, Bogusława; Jaszczyszyn, Agata; Gąsiorowski, Kazimierz; Świątek, Piotr; Malinka, Wiesław

    2010-06-01

    The effect of incorporating fluphenazine (FPh) into the dipalmitoylphosphatidylcholine (DPPC) multibilayers was studied by means of two-dimensional correlation spectroscopy (2DCOS) applied to attenuated total reflection (ATR) infrared spectra. DPPC is used as a model membrane that mimics the organization of lipids in biological membranes and their interaction with FPh. ATR-IR spectra for both DPPC dry film alone and the film doped with FPh were recorded as a function of temperature to provide information about the interaction between FPh molecules and DPPC lipid. The chain-melting phase-transition temperature changes are strictly correlated with the conformational order of the lipid hydrocarbon chains. To gain deeper insight into the accompanying spectral changes, we employed moving-window 2D correlation spectroscopy. Subdividing all the measurements from 10 to 90 °C into 20° subsets enables a detailed identification of spectral features induced by embedding FPh into DPPC multilayers. Moving-window analysis of the power spectra for the ν asym,symCH 2, δ sCH 2, and δ rCH 2 vibrations provides evidence that FPh is embedded in the region between the bilayers, penetrating their hydrophilic part, which destabilizes the interchain interaction. Above 60 °C the FPh-DPPC system reaches the liquid crystalline phase with the well-established location of FPh. A further temperature increase to 90 °C has little effect on the intrachain conformational order and the packing character of the FPh-DPPC system in the liquid crystalline phase. In addition, FPh hinders the formation of large domains. Comparison of the moving-window analysis done by using slice spectra for DPPC and FPh-doped DPPC dry film for ν asym,symCH 2, νC dbnd O, and νPO2- shows that the interaction between the DPPC and FPh molecules is accompanied by very distinct spectral changes located in a both lower and narrower temperature range than those observed in pure DPPC film.

  10. CYP2D6 function moderates the pharmacokinetics and pharmacodynamics of 3,4-methylene-dioxymethamphetamine in a controlled study in healthy individuals.

    PubMed

    Schmid, Yasmin; Vizeli, Patrick; Hysek, Cédric M; Prestin, Katharina; Meyer Zu Schwabedissen, Henriette E; Liechti, Matthias E

    2016-08-01

    The role of genetic polymorphisms in cytochrome (CYP) 2D6 involved in the metabolism of 3,4-methylene-dioxymethamphetamine (MDMA, ecstasy) is unclear. Effects of genetic variants in CYP2D6 on the pharmacokinetics and pharmacodynamic effects of MDMA were characterized in 139 healthy individuals (70 men, 69 women) in a pooled analysis of eight double-blind, placebo-controlled crossover studies. In CYP2D6 poor metabolizers, the maximum concentrations (Cmax) of MDMA and its active metabolite 3,4-methylene-dioxyamphetamine were +15 and +50% higher, respectively, compared with extensive metabolizers and the Cmax of the inactive metabolite 4-hydroxy-3-methoxymethamphetamine was 50-70% lower. Blood pressure and subjective drug effects increased more rapidly after MDMA administration in poor metabolizers than in extensive metabolizers. In conclusion, the disposition of MDMA and its effects in humans are altered by polymorphic CYP2D6 activity, but the effects are small because of the autoinhibition of CYP2D6. PMID:27253829

  11. CYP2D6 function moderates the pharmacokinetics and pharmacodynamics of 3,4-methylene-dioxymethamphetamine in a controlled study in healthy individuals

    PubMed Central

    Schmid, Yasmin; Vizeli, Patrick; Hysek, Cédric M.; Prestin, Katharina; Meyer zu Schwabedissen, Henriette E.

    2016-01-01

    The role of genetic polymorphisms in cytochrome (CYP) 2D6 involved in the metabolism of 3,4-methylene-dioxymethamphetamine (MDMA, ecstasy) is unclear. Effects of genetic variants in CYP2D6 on the pharmacokinetics and pharmacodynamic effects of MDMA were characterized in 139 healthy individuals (70 men, 69 women) in a pooled analysis of eight double-blind, placebo-controlled crossover studies. In CYP2D6 poor metabolizers, the maximum concentrations (Cmax) of MDMA and its active metabolite 3,4-methylene-dioxyamphetamine were +15 and +50% higher, respectively, compared with extensive metabolizers and the Cmax of the inactive metabolite 4-hydroxy-3-methoxymethamphetamine was 50–70% lower. Blood pressure and subjective drug effects increased more rapidly after MDMA administration in poor metabolizers than in extensive metabolizers. In conclusion, the disposition of MDMA and its effects in humans are altered by polymorphic CYP2D6 activity, but the effects are small because of the autoinhibition of CYP2D6. PMID:27253829

  12. A Numerical Study of Feathering Instability

    NASA Astrophysics Data System (ADS)

    Lee, Wing-Kit; Wang, Hsiang-Hsu

    2016-06-01

    The stability of a spiral shock of self-gravitating, magnetized interstellar medium is studied by performing two-dimensional numerical simulations of a local patch of tight-winding spiral arm. As previously suggested by the linear studies, two types of instabilities are identified, namely, wiggle instability and feathering instability. The former instability occurs in the hydrodynamics limit and results in short wavelength perturbations. On the other hand, the feathering instability requires both self-gravitating and magnetic fields and results in wider structures.

  13. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H{sub 2}O and HOD water at charged interfaces

    SciTech Connect

    Inoue, Ken-ichi; Singh, Prashant C.; Nihonyanagi, Satoshi; Tahara, Tahei; Yamaguchi, Shoichi

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup −1} ≤ ω{sub pump} ≤ 3600 cm{sup −1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ∼0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly shows two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup −1} and 3420 cm{sup −1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.

  14. Computational Studies of Condensed Matter Systems: Manganese Vanadium Oxide and 2D attractive Hubbard model with spin-dependent disorder

    NASA Astrophysics Data System (ADS)

    Nanguneri, Ravindra

    -dependent disorder. Further, the finite temperature phase diagram for the 2D attractive fermion Hubbard model with spin-dependent disorder is also considered within BdG mean field theory. Three types of disorder are studied. In the first, only one species is coupled to a random site energy; in the second, the two species both move in random site energy landscapes which are of the same amplitude, but different realizations; and finally, in the third, the disorder is in the hopping rather than the site energy. For all three cases we find that, unlike the case of spin-symmetric randomness, where the energy gap and average order parameter do not vanish as the disorder strength increases, a critical disorder strength exists separating distinct phases. In fact, the energy gap and the average order parameter vanish at distinct transitions, Vcgap and Vc op, allowing for a gapless superconducting (gSC) phase. The gSC phase becomes smaller with increasing temperature, until it vanishes at a temperature T*.

  15. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  16. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  17. Four divalent transition metal carboxyarylphosphonate compounds: Hydrothermal synthesis, structural chemistry and generalized 2D FTIR correlation spectroscopy studies

    SciTech Connect

    Lei Ran; Chai Xiaochuan; Mei Hongxin; Zhang Hanhui; Chen Yiping; Sun Yanqiong

    2010-07-15

    Four divalent transition metal carboxyarylphosphonates, [Ni(4,4'-bipy)H{sub 2}L{sup 1}(HL{sup 1}){sub 2}(H{sub 2}O){sub 2}].2H{sub 2}O 1, [Ni{sub 2}(4,4'-bipy)(L{sup 2})(OH)(H{sub 2}O){sub 2}].3H{sub 2}O 2, Mn(phen){sub 2}(H{sub 2}L{sup 1}){sub 2}3 and Mn(phen)(HL{sup 2}) 4 (H{sub 3}L{sup 1}=p-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, H{sub 3}L{sup 2}=m-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, 4,4'-bipy=4,4'-bipyridine, phen=1,10-phenanthroline) were synthesized under hydrothermal conditions. 1 features 1D linear chains built from Ni(II) ions bridging 4,4'-bipy. In 2, neighboring Ni{sub 4} cluster units are connected by pairs of H{sub 3}L{sup 2} ligands to form 1D double-crankshaft chains, which are interconnected by pairs of 4,4'-bipy into 2D sheets. 3 exhibits 2D supramolecular layers via the R{sub 2}{sup 2}(8) ringed hydrogen bonding units. 4 has 1D ladderlike chains, in which the 4-membered rings are cross-linked by the organic moieties of the H{sub 3}L{sup 2} ligands. Additionally, 2D FTIR correlation analysis is applied with thermal and magnetic perturbation to clarify the structural changes of functional groups from H{sub 3}L{sup 1} and H{sub 3}L{sup 2} ligands in the compounds more efficiently. - Graphical abstract: A series of divalent transition metal carboxyarylphosphonate compounds were synthesized under hydrothermal conditions. The figure displays 2D sheet structure with large windows in compound 2.

  18. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  19. Numerical Study of Tip Vortex Flows

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer; Hafez, Mohamed

    1998-01-01

    This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.

  20. Numerical Studies of Doped Iron Pnictides

    NASA Astrophysics Data System (ADS)

    Bishop, Christopher; Liang, Shuhua; Moreo, Adriana; Dagotto, Elbio

    The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic disorder strength and dilution via numerical studies of a three-orbital spin-fermion model with lattice degrees of freedom. Doping introduces disorder but in theoretical studies the effect of the randomly located dopants is difficult to address. Numerically the effects of electronic doping, regulated by a chemical potential, and impurity disorder at randomly selected sites can be independently controlled. It was found that the reduction with doping of the Neel and the structural transition temperatures, and the stabilization of a nematic state, is mainly controlled by the magnetic dilution due to the disorder. Fermi surface changes due to doping affect only slightly both critical temperatures. Our findings are compatible with neutron scattering and STM results, unveiling a patchy network of locally magnetically ordered anisotropic clusters, despite the isotropic disorder. The fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by disorder and dilution to stabilize the robust nematic phase experimentally found in electron-doped 122 pnictides. National Science Foundation Grant No. DMR-1404375.

  1. A Numerical Climate Observing Network Design Study

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef

    2003-01-01

    This project was concerned with three related questions of an optimal design of a climate observing system: 1. The spatial sampling characteristics required from an ARGO system. 2. The degree to which surface observations from ARGO can be used to calibrate and test satellite remote sensing observations of sea surface salinity (SSS) as it is anticipated now. 3. The more general design of an climate observing system as it is required in the near future for CLIVAR in the Atlantic. An important question in implementing an observing system is that of the sampling density required to observe climate-related variations in the ocean. For that purpose this project was concerned with the sampling requirements for the ARGO float system, but investigated also other elements of a climate observing system. As part of this project we studied the horizontal and vertical sampling characteristics of a global ARGO system which is required to make it fully complementary to altimeter data with the goal to capture climate related variations on large spatial scales (less thanAttachment: 1000 km). We addressed this question in the framework of a numerical model study in the North Atlantic with an 1/6 horizontal resolution. The advantage of a numerical design study is the knowledge of the full model state. Sampled by a synthetic float array, model results will therefore allow to test and improve existing deployment strategies with the goal to make the system as optimal and cost-efficient as possible. Attachment: "Optimal observations for variational data assimilation".

  2. 2D dynamical arrest transition in a mixed nanoparticle-phospholipid layer studied in real and momentum spaces.

    PubMed

    Orsi, Davide; Guzmán, Eduardo; Liggieri, Libero; Ravera, Francesca; Ruta, Beatrice; Chushkin, Yuriy; Rimoldi, Tiziano; Cristofolini, Luigi

    2015-01-01

    We investigate the interfacial dynamics of a 2D self-organized mixed layer made of silica nanoparticles interacting with phospholipid (DPPC) monolayers at the air/water interface. This system has biological relevance, allowing investigation of toxicological effects of nanoparticles on model membranes and lung surfactants. It might also provide bio-inspired technological solutions, exploiting the self-organization of DPPC to produce a non-trivial 2D structuration of nanoparticles. The characterization of interfacial dynamics yields information on the effects of NPs on the mechanical properties, important to improve performances of systems such as colloidosomes, foams, creams. For this, we combine micro-tracking in real-space with measurement in momentum-space via x-ray photon-correlation spectroscopy and Digital Fourier Microscopy. Using these complementary techniques, we extend the spatial range of investigation beyond the limits of each one. We find a dynamical transition from Brownian diffusion to an arrested state driven by compression, characterized by intermittent rearrangements, compatible with a repulsive glass phase. The rearrangement and relaxation of the monolayer structure results dramatically hindered by the presence of NPs, which is relevant to explain some the mechanical features observed for the dynamic surface pressure response of these systems and which can be relevant for the respiratory physiology and for future drug-delivery composite systems. PMID:26658474

  3. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  4. Two-dimensional (2D) Chemiluminescence (CL) correlation spectroscopy for studying thermal oxidation of isotactic polypropylene (iPP)

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Hagihara, Hideaki; Suda, Hiroyuki; Mizukado, Jyunji

    2016-11-01

    Application of the two-dimensional (2D) correlation spectroscopy is extended to Chemiluminescence (CL) spectra of isotactic polypropylene (iPP) under thermally induced oxidation. Upon heating, the polymer chains of the iPP undergoes scissoring and fragmentation to develop several intermediates. While different chemical species provides the emission at different wavelength regions, entire feature of the time-dependent CL spectra of the iPP samples were complicated by the presence of overlapped contributions from singlet oxygen (1O2) and carbonyl species within sample. 2D correlation spectra showed notable enhancement of the spectral resolution to provide penetrating insight into the thermodynamics of the polymer system. For example, the, oxidation induce scissoring and fragmentation of the polymer chains to develop the carbonyl group. Further reaction results in the consumption of the carbonyl species and subsequent production of different 1O2 species each developed in different manner. Consequently, key information on the thermal oxidation can be extracted in a surprisingly simple manner without any analytical expression for the actual response curves of spectral intensity signals during the reaction.

  5. 2D dynamical arrest transition in a mixed nanoparticle-phospholipid layer studied in real and momentum spaces

    PubMed Central

    Orsi, Davide; Guzmán, Eduardo; Liggieri, Libero; Ravera, Francesca; Ruta, Beatrice; Chushkin, Yuriy; Rimoldi, Tiziano; Cristofolini, Luigi

    2015-01-01

    We investigate the interfacial dynamics of a 2D self-organized mixed layer made of silica nanoparticles interacting with phospholipid (DPPC) monolayers at the air/water interface. This system has biological relevance, allowing investigation of toxicological effects of nanoparticles on model membranes and lung surfactants. It might also provide bio-inspired technological solutions, exploiting the self-organization of DPPC to produce a non-trivial 2D structuration of nanoparticles. The characterization of interfacial dynamics yields information on the effects of NPs on the mechanical properties, important to improve performances of systems such as colloidosomes, foams, creams. For this, we combine micro-tracking in real-space with measurement in momentum-space via x-ray photon-correlation spectroscopy and Digital Fourier Microscopy. Using these complementary techniques, we extend the spatial range of investigation beyond the limits of each one. We find a dynamical transition from Brownian diffusion to an arrested state driven by compression, characterized by intermittent rearrangements, compatible with a repulsive glass phase. The rearrangement and relaxation of the monolayer structure results dramatically hindered by the presence of NPs, which is relevant to explain some the mechanical features observed for the dynamic surface pressure response of these systems and which can be relevant for the respiratory physiology and for future drug-delivery composite systems. PMID:26658474

  6. 2D dynamical arrest transition in a mixed nanoparticle-phospholipid layer studied in real and momentum spaces

    NASA Astrophysics Data System (ADS)

    Orsi, Davide; Guzmán, Eduardo; Liggieri, Libero; Ravera, Francesca; Ruta, Beatrice; Chushkin, Yuriy; Rimoldi, Tiziano; Cristofolini, Luigi

    2015-12-01

    We investigate the interfacial dynamics of a 2D self-organized mixed layer made of silica nanoparticles interacting with phospholipid (DPPC) monolayers at the air/water interface. This system has biological relevance, allowing investigation of toxicological effects of nanoparticles on model membranes and lung surfactants. It might also provide bio-inspired technological solutions, exploiting the self-organization of DPPC to produce a non-trivial 2D structuration of nanoparticles. The characterization of interfacial dynamics yields information on the effects of NPs on the mechanical properties, important to improve performances of systems such as colloidosomes, foams, creams. For this, we combine micro-tracking in real-space with measurement in momentum-space via x-ray photon-correlation spectroscopy and Digital Fourier Microscopy. Using these complementary techniques, we extend the spatial range of investigation beyond the limits of each one. We find a dynamical transition from Brownian diffusion to an arrested state driven by compression, characterized by intermittent rearrangements, compatible with a repulsive glass phase. The rearrangement and relaxation of the monolayer structure results dramatically hindered by the presence of NPs, which is relevant to explain some the mechanical features observed for the dynamic surface pressure response of these systems and which can be relevant for the respiratory physiology and for future drug-delivery composite systems.

  7. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  8. Numerical aerodynamic simulation facility feasibility study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year. Facets of the work described include the hardware configuration, software, user language, and fault tolerance.

  9. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  10. Self-Assembly and Dynamics of Organic 2D Molecular Sieves: Ab Initio and Molecular Dynamics Studies

    NASA Astrophysics Data System (ADS)

    St. John, Alexander; Wexler, Carlos

    2015-03-01

    Spontaneous molecular self-assembly is a promising route for bottom-up manufacturing of two-dimensional (2D) nanostructures with specific topologies on atomically flat surfaces. Of particular interest is the possibility of selective lock-and-key interaction of guest molecules inside cavities formed by complex self-assembled host structures. Our host structure is a monolayer consisting of interdigitated 1,3,5-tristyrylbenzene substituted by alkoxy peripheral chains containing n = 6, 8, 10, 12, or 14 carbon atoms (TSB3,5-C n) deposited on a highly ordered pyrolytic graphite (HOPG) surface. Using ab initio methods from quantum chemistry and molecular dynamics simulations, we construct and analyze the structure and functionality of the TSB3,5-C n monolayer as a molecular sieve. Supported by ACS-PRF 52696-ND5.

  11. Experimental and theoretical study of rotationally inelastic diffraction of H2(D2) from methyl-terminated Si(111)

    NASA Astrophysics Data System (ADS)

    Nihill, Kevin J.; Hund, Zachary M.; Muzas, Alberto; Díaz, Cristina; del Cueto, Marcos; Frankcombe, Terry; Plymale, Noah T.; Lewis, Nathan S.; Martín, Fernando; Sibener, S. J.

    2016-08-01

    Fundamental details concerning the interaction between H2 and CH3-Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H2 and D2 from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H2 compared to the strong RID features observed for D2 over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuation of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH3-Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H2 and D2 have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H2 (D2) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H2(D2)/CH3-Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H2 with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems.

  12. Experimental and theoretical study of rotationally inelastic diffraction of H2(D2) from methyl-terminated Si(111).

    PubMed

    Nihill, Kevin J; Hund, Zachary M; Muzas, Alberto; Díaz, Cristina; Del Cueto, Marcos; Frankcombe, Terry; Plymale, Noah T; Lewis, Nathan S; Martín, Fernando; Sibener, S J

    2016-08-28

    Fundamental details concerning the interaction between H2 and CH3-Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H2 and D2 from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H2 compared to the strong RID features observed for D2 over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuation of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH3-Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H2 and D2 have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H2 (D2) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H2(D2)/CH3-Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H2 with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems. PMID:27586939

  13. 2D and 3D separate and joint inversion of airborne ZTEM and ground AMT data: Synthetic model studies

    NASA Astrophysics Data System (ADS)

    Sasaki, Yutaka; Yi, Myeong-Jong; Choi, Jihyang

    2014-05-01

    The ZTEM (Z-axis Tipper Electromagnetic) method measures naturally occurring audio-frequency magnetic fields and obtains the tipper function that defines the relationship among the three components of the magnetic field. Since the anomalous tipper responses are caused by the presence of lateral resistivity variations, the ZTEM survey is most suited for detecting and delineating conductive bodies extending to considerable depths, such as graphitic dykes encountered in the exploration of unconformity type uranium deposit. Our simulations shows that inversion of ZTEM data can detect reasonably well multiple conductive dykes placed 1 km apart. One important issue regarding ZTEM inversion is the effect of the initial model, because homogeneous half-space and (1D) layered structures produce no responses. For the 2D model with multiple conductive dykes, the inversion results were useful for locating the dykes even when the initial model was not close to the true background resistivity. For general 3D structures, however, the resolution of the conductive bodies can be reduced considerably depending on the initial model. This is because the tipper magnitudes from 3D conductors are smaller due to boundary charges than the 2D responses. To alleviate this disadvantage of ZTEM surveys, we combined ZTEM and audio-frequency magnetotelluric (AMT) data. Inversion of sparse AMT data was shown to be effective in providing a good initial model for ZTEM inversion. Moreover, simultaneously inverting both data sets led to better results than the sequential approach by enabling to identify structural features that were difficult to resolve from the individual data sets.

  14. Seven-degree-of-freedom, quantum scattering dynamics study of the H{sub 2}D{sup +}+H{sub 2} reaction

    SciTech Connect

    Wang Dunyou; Xie Zhen; Bowman, Joel M.

    2010-02-28

    A quantum scattering dynamics, time-dependent wavepacket propagation method is applied to study the reaction of H{sub 2}D{sup +}+H{sub 2}{yields}H{sub 3}{sup +}+HD on the Xie-Braams-Bowman potential energy surface. The reduced-dimensional, seven-degree-of-freedom approach is employed in this calculation by fixing one Jacobi and one torsion angle related to H{sub 2}D{sup +} at the lowest saddle point geometry of D{sub 2d} on the potential energy surface. Initial state selected reaction probabilities are presented for various initial rovibrational states. The ground state reaction probability shows no threshold for this reaction, in other words, this reaction can occur without an activation barrier. The vibrational excitation shows that the stretching motion of H{sup +}-HD only has a small effect on the reaction probability; the vibrational excitation of HD in H{sub 2}D{sup +} hinders the reactivity. By contrast, rotational excitation of H{sup +}-HD greatly enhances the reactivity with the reaction probability increased double or triple at high rotational states compared to the ground state. Reactive resonances, seen in all the initial state selected reaction probabilities, are also found in the integral cross section for the ground state of H{sub 2}D{sup +} and H{sub 2}. The thermal rate coefficient is also calculated and is found to be in semiquantitative agreement with experiment; however, quantum scattering approaches including more degrees of freedom, especially including all the angles, are necessary to study this reaction in the future.

  15. Finite temperature corrections in 2d integrable models

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Hasenbusch, M.

    2002-09-01

    We study the finite size corrections for the magnetization and the internal energy of the 2d Ising model in a magnetic field by using transfer matrix techniques. We compare these corrections with the functional form recently proposed by Delfino and LeClair-Mussardo for the finite temperature behaviour of one-point functions in integrable 2d quantum field theories. We find a perfect agreement between theoretical expectations and numerical results. Assuming the proposed functional form as an input in our analysis we obtain a relevant improvement in the precision of the continuum limit estimates of both quantities.

  16. Spreading dynamics of 2D dipolar Langmuir monolayer phases.

    PubMed

    Heinig, P; Wurlitzer, S; Fischer, Th M

    2004-07-01

    We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory. PMID:15278693

  17. Numerical simulations to study solar wind turbulence

    SciTech Connect

    Sharma, R. P.; Sharma, Nidhi; Kumar, Sanjay; Kumar, Sachin; Singh, H. D.

    2011-02-15

    Numerical simulation of coupled equations of kinetic Alfven wave (KAW) and ion acoustic wave is presented in the solar wind. The nonlinear dynamical equations satisfy the modified Zakharov system of equations by taking the nonadiabatic response of the background density. The ponderomotive nonlinearity is incorporated in the wave dynamics. The effect of Landau damping of KAW is taken into account. Localization of magnetic field intensity and the wavenumber spectra (perpendicular and parallel) of magnetic fluctuations are studied in solar plasmas around 1 a.u. Our results reveal the formation of damped localized structures and the steeper spectra that are in good agreement with the observations. These damped structures and steeper turbulent spectra can be responsible for plasma heating and particle acceleration in solar wind.

  18. Pre-stack depth migration for improved imaging under seafloor canyons: 2D case study of Browse Basin, Australia*

    NASA Astrophysics Data System (ADS)

    Debenham, Helen 124Westlake, Shane

    2014-06-01

    In the Browse Basin, as in many areas of the world, complex seafloor topography can cause problems with seismic imaging. This is related to complex ray paths, and sharp lateral changes in velocity. This paper compares ways in which 2D Kirchhoff imaging can be improved below seafloor canyons, using both time and depth domain processing. In the time domain, to improve on standard pre-stack time migration (PSTM) we apply removable seafloor static time shifts in order to reduce the push down effect under seafloor canyons before migration. This allows for better event continuity in the seismic imaging. However this approach does not fully solve the problem, still giving sub-optimal imaging, leaving amplitude shadows and structural distortion. Only depth domain processing with a migration algorithm that honours the paths of the seismic energy as well as a detailed velocity model can provide improved imaging under these seafloor canyons, and give confidence in the structural components of the exploration targets in this area. We therefore performed depth velocity model building followed by pre-stack depth migration (PSDM), the result of which provided a step change improvement in the imaging, and provided new insights into the area.

  19. Communication: Effect of accidental mode degeneracy on Raman intensity in 2D materials: Hybrid functional study of bilayer phosphorene.

    PubMed

    Sun, Yi-Yang; Zhang, Shengbai

    2016-07-14

    Bulk black phosphorus has two optical phonon modes labeled as Ag (2) and B2u, respectively, that are nearly degenerate in frequency. However, density functional theory calculations using local or semi-local functionals cannot reproduce this degeneracy. Here, we propose a hybrid functional approach aided by van der Waals (vdW) force fields, which can accurately describe the lattice dynamic and electronic properties of both bulk and few-layer black phosphorus (phosphorene). Using this approach we show that in bilayer phosphorene, the two Raman modes derived from the B2u and Ag (2) modes could exhibit strong resonance as a result of the accidental degeneracy so that both modes could be observed in Raman experiment. Without the mode degeneracy, however, the Raman intensity of the B2u-derived mode would be too weak to be observed. We further show that the accidental degeneracy is correlated to the applied strain, which enables Raman spectroscopy to be a powerful tool for characterizing built-in strains in 2D materials, e.g., due to the interaction with substrates, which has emerged as an important issue in vdW epitaxy. PMID:27421389

  20. Systematic Functional Study of Cytochrome P450 2D6 Promoter Polymorphisms in the Chinese Han Population

    PubMed Central

    Gong, Xueli; Liu, Yichen; Zhang, Xiaoqing; Wei, Zhiyun; Huo, Ran; Shen, Lu; He, Lin; Qin, Shengying

    2013-01-01

    The promoter polymorphisms of drug-metabolizing genes can lead to interindividual differences in gene expression, which may result in adverse drug effects and therapeutic failure. Based on the database of CYP2D6 gene polymorphisms in the Chinese Han population established by our group, we functionally characterized the single nucleotide polymorphisms (SNPs) of the promoter region and corresponding haplotypes in this population. Using site-directed mutagenesis, all the five SNPs identified and ten haplotypes with a frequency equal to or greater than 0.01 in the population were constructed on a luciferase reporter system. Dual luciferase reporter systems were used to analyze regulatory activity. The activity produced by Haplo3(−2183G>A, −1775A>G, −1589G>C, −1431C>T, −1000G>A, −678A>G), Haplo8(−2065G>A, −2058T>G, −1775A>G, −1589G>C, −1235G>A, −678A>G) and MU3(−498C>A) was 0.7−, 0.7−, 1.2− times respectively compared with the wild type in human hepatoma cell lines(p<0.05). These findings might be useful for optimizing pharmacotherapy and the design of personalized medicine. PMID:23469064

  1. Communication: Effect of accidental mode degeneracy on Raman intensity in 2D materials: Hybrid functional study of bilayer phosphorene

    NASA Astrophysics Data System (ADS)

    Sun, Yi-Yang; Zhang, Shengbai

    2016-07-01

    Bulk black phosphorus has two optical phonon modes labeled as Ag2 and B2u, respectively, that are nearly degenerate in frequency. However, density functional theory calculations using local or semi-local functionals cannot reproduce this degeneracy. Here, we propose a hybrid functional approach aided by van der Waals (vdW) force fields, which can accurately describe the lattice dynamic and electronic properties of both bulk and few-layer black phosphorus (phosphorene). Using this approach we show that in bilayer phosphorene, the two Raman modes derived from the B2u and Ag2 modes could exhibit strong resonance as a result of the accidental degeneracy so that both modes could be observed in Raman experiment. Without the mode degeneracy, however, the Raman intensity of the B2u-derived mode would be too weak to be observed. We further show that the accidental degeneracy is correlated to the applied strain, which enables Raman spectroscopy to be a powerful tool for characterizing built-in strains in 2D materials, e.g., due to the interaction with substrates, which has emerged as an important issue in vdW epitaxy.

  2. Communication: Effect of accidental mode degeneracy on Raman intensity in 2D materials: Hybrid functional study of bilayer phosphorene.

    PubMed

    Sun, Yi-Yang; Zhang, Shengbai

    2016-07-14

    Bulk black phosphorus has two optical phonon modes labeled as Ag (2) and B2u, respectively, that are nearly degenerate in frequency. However, density functional theory calculations using local or semi-local functionals cannot reproduce this degeneracy. Here, we propose a hybrid functional approach aided by van der Waals (vdW) force fields, which can accurately describe the lattice dynamic and electronic properties of both bulk and few-layer black phosphorus (phosphorene). Using this approach we show that in bilayer phosphorene, the two Raman modes derived from the B2u and Ag (2) modes could exhibit strong resonance as a result of the accidental degeneracy so that both modes could be observed in Raman experiment. Without the mode degeneracy, however, the Raman intensity of the B2u-derived mode would be too weak to be observed. We further show that the accidental degeneracy is correlated to the applied strain, which enables Raman spectroscopy to be a powerful tool for characterizing built-in strains in 2D materials, e.g., due to the interaction with substrates, which has emerged as an important issue in vdW epitaxy.

  3. A numerical study of ENO and TVD schemes for shock capturing

    NASA Technical Reports Server (NTRS)

    Chang, Shih-Hung; Liou, Meng-Sing

    1988-01-01

    The numerical performance of a second-order upwind-based total variation diminishing (TVD) scheme and that of a uniform second-order essentially non-oscillatory (ENO) scheme for shock capturing are compared. The TVD scheme used is a modified version of Liou, using the flux-difference splitting (FDS) of Roe and his superbee function as the limiter. The construction of the basic ENO scheme is based on Harten, Engquist, Osher, and Chakravarthy, and the 2-D extensions are obtained by using a Strang-type of fractional-step time-splitting method. Numerical results presented include both steady and unsteady, 1-D and 2-D calculations. All the chosen test problems have exact solutions so that numerical performance can be measured by comparing the computer results to them. For 1-D calculations, the standard shock-tube problems of Sod and Lax are chosen. A very strong shock-tube problem, with the initial density ratio of 400 to 1 and pressure ratio of 500 to 1, is also used to study the behavior of the two schemes. For 2-D calculations, the shock wave reflection problems are adopted for testing. The cases presented in this report include flows with Mach numbers of 2.9, 5.0, and 10.0.

  4. A numerical study of thin flame representations

    SciTech Connect

    Rotman, D.A.; Pindera, M.Z.

    1989-08-11

    In studies of reacting flows, the flame may be viewed as a moving discontinuity endowed with certain properties; notably, it acts as a source of velocity and vorticity. Asymptotic analysis shows this to be justified provided that the flame curvature is small compared to the flame thickness. Such an approach is useful when one is interested in the hydrodynamic effects of the flame on the surrounding flowfield. In numerical models of this kind it is customary to treat the discontinuity as a collection of discrete velocity blobs. In this study, we show that the velocities associated with such a representation can be very non-smooth, particularly very near to the flame surface. As an alternative, we propose the use of a finite line source as the basic flame element. Comparisons of the two flame representations are made for several simple test cases as well as for a flame propagating through an enclosure forming the tulip shape. The results show that the use of line sources eliminates spurious fluctuations in nearfield velocities thus allowing for a more accurate calculation of flame propagation and flame-flowfield interactions. 7 refs., 15 figs.

  5. A numerical, laboratory, and field study of riverbed filtration

    NASA Astrophysics Data System (ADS)

    Racine, C.; Lefebvre, R.; Martel, R.; Paniconi, C.

    2012-04-01

    Riverbed filtration is an appealing alternative to conventional riverbank and surface water intake systems, offering advantages of high flow rates, natural filtering, and undiminished performance under ice conditions. Its proper functioning requires careful study and monitoring of river flow dynamics, subsurface characteristics, and the interactions between these surface water and groundwater components. A research effort has been underway at INRS to develop principles and guidelines for the design, operation, and maintenance of riverbed filtration systems. A pilot system has just been completed in the Montmorency River near Quebec City (Canada). The installation consists of 4 horizontal wells (or drains), each of 20 m length and 30 cm diameter, placed 4 m apart, at a depth of 1.5 m within the riverbed sediments, and in a direction orthogonal to river flow. The housing trench for each drain is 2 m wide and 2.10 m deep and is composed of 90 cm of gravel topped with 70 cm of sifted alluvial sediments and a 50 cm protective layer of pebbles extracted from the sifted sediments. The average annual water level in the river is 1.2 m, while its mean head during low flow periods is 90 cm. The pilot installation is instrumented with multilevel pressure and temperature sensors and several flowmeters for continuous monitoring in both drainage and backwash modes. In gravity drainage (water intake) mode, the yield is expected to exceed the municipal demand criterion of 35 000 m3/d. Backwash operations, needed to unclog the trenches of fine sediments that can accumulate during water intake, are considered critical to maintaining the design performance targets for the system. Prior to construction of the pilot system, flow patterns, pressure responses, and turbidity behavior in both drainage and backwash modes were extensively studied in laboratory (sand column and sand box) and numerical (SEEP2D) experiments. These tests were fundamental to defining the design parameters and

  6. Numerical studies of impact-fusion target dynamics

    SciTech Connect

    Ribe, F.L.; Christiansen, W.H.; MacCormack, R.W.; Sankaran, L.; Yaghmaee, S.

    1986-01-01

    Impact fusion involves the collision of gas-filled metallic shells which heat the gas to fusion conditions. We report on the numerical solution of the one-dimensional (1-D) and two-dimensional (2-D) Euler equations for the combination of metallic shells and internal deuterium gas with a typical initial radial velocity of 25 km/s, corresponding to possible next generation rail-gun velocities. In the 2-D case impacting shells whose initial shapes are spherical caps making acute internal angles of contact produce a quasispherical compression of the internal gas, initially assumed to be at rest. The computations proceed through turnaround, corresponding to maximum plasma compression, neutron yield and quasispherical cavity shaping. We compare plasma parameters and energy efficiency with the 1-D, spherical case.

  7. Re-entrainment around a low-rise industrial building: 2D versus 3D wind tunnel study

    NASA Astrophysics Data System (ADS)

    Law, Adrian W. K.; Choi, Edmund C. C.; Britter, Rex E.

    We investigate the re-entrainment of pollutants around a low-rise industrial building under opposing cross winds through experimental means in a wind tunnel. Two scaled models of an industrial building for electrowinning metal extraction were tested. The first model was a two-dimensional simplified segment of the building with a scale ratio of 1:40, while the second was a 1:100 three-dimensional model of the full building. Particle image velocimetry was adopted to provide the planar velocity measurements that illustrated the flow distribution around the building. Flame ionization detection with propane tracer gas was used to measure the concentration distribution. The results of the 2D model show that the exhaust plume interacted with the opposing wind in two different stages, namely ground attachment and bent-over. The ground attachment stage occurred under low wind speeds, whereby the exhaust plume exhibited Coanda attachment with the ground surface before being lifted off by the cross wind and circulated to the leeward wake cavity. Upon further increase in the wind speed, the bent-over stage occurred with the exhaust plume being detached from the ground and deflected upward over the roof, before entrained by the wake. The re-entrainment ratio decreased with the increase in wind speed within the range of wind speeds tested, indicating that the range did not include the critical wind speed. Results from the 3D model painted a somewhat different picture and pointed to the significance of the end conditions. The maximum re-entrainment always occurred near the two ends of the building, where the pollutants mostly flowed around the ends rather than over the roof. The re-entrainment ratio was consistently higher at the two ends compared to the central sections. Finally, a building re-entrainment index, ( KR) ∞, is proposed to characterize the re-entrainment performance of a specific building geometry.

  8. Numerical Study of a Convective Turbulence Encounter

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.

    2002-01-01

    A numerical simulation of a convective turbulence event is investigated and compared with observational data. The specific case was encountered during one of NASA's flight tests and was characterized by severe turbulence. The event was associated with overshooting convective turrets that contained low to moderate radar reflectivity. Model comparisons with observations are quite favorable. Turbulence hazard metrics are proposed and applied to the numerical data set. Issues such as adequate grid size are examined.

  9. Numerical study of a high siphon

    SciTech Connect

    Babala, D. )

    1989-11-01

    In safety analysis of the PIUS nuclear power plants with external steam generators, the problem of a high siphon was encountered. In a high siphon, the pressure at the apex may become equal to or lower than the saturation pressure of the liquid. After a large pipe break in a PIUS primary system, the cold leg may, under certain conditions, act as a siphon draining water from the reactor vessel. Because of the size of the PIUS system, the cold leg may function as a high siphon. The dynamics of the system was studied both numerically with the RIGEL computer program and theoretically. Since no experiments have been performed to data, it was important to verify the modeling in RIGEL by comparing computed results with exact analytical solutions for a simple high siphon. The RIGEL results show an excellent agreement with analytical steady-state solutions, and the program was applied to a concrete PIUS design. It appears that for an assumed high containment pressure (maximum of 300 kPa), a siphon breaker (an opening between the cold leg and the riser) is necessary to prevent the water level from falling below a safe value.

  10. A Structure-Activity Relationship Study of Imidazole-5-Carboxylic Acid Derivatives as Angiotensin II Receptor Antagonists Combining 2D and 3D QSAR Methods.

    PubMed

    Sharma, Mukesh C

    2016-03-01

    Two-dimensional (2D) and three-dimensional (3D) quantitative structure-activity relationship (QSAR) studies were performed for correlating the chemical composition of imidazole-5-carboxylic acid analogs and their angiotensin II [Formula: see text] receptor antagonist activity using partial least squares and k-nearest neighbor, respectively. For comparing the three different feature selection methods of 2D-QSAR, k-nearest neighbor models were used in conjunction with simulated annealing (SA), genetic algorithm and stepwise coupled with partial least square (PLS) showed variation in biological activity. The statistically significant best 2D-QSAR model having good predictive ability with statistical values of [Formula: see text] and [Formula: see text] was developed by SA-partial least square with the descriptors like [Formula: see text]count, 5Chain count, SdsCHE-index, and H-acceptor count, showing that increase in the values of these descriptors is beneficial to the activity. The 3D-QSAR studies were performed using the SA-PLS. A leave-one-out cross-validated correlation coefficient [Formula: see text] and predicate activity [Formula: see text] = 0.7226 were obtained. The information rendered by QSAR models may lead to a better understanding of structural requirements of substituted imidazole-5-carboxylic acid derivatives and also aid in designing novel potent antihypertensive molecules.

  11. A 2-D FEM thermal model to simulate water flow in a porous media: Campi Flegrei caldera case study

    NASA Astrophysics Data System (ADS)

    Romano, V.; Tammaro, U.; Capuano, P.

    2012-05-01

    Volcanic and geothermal aspects both exist in many geologically young areas. In these areas the heat transfer process is of fundamental importance, so that the thermal and fluid-dynamic processes characterizing a viscous fluid in a porous medium are very important to understand the complex dynamics of the these areas. The Campi Flegrei caldera, located west of the city of Naples, within the central-southern sector of the large graben of Campanian plain, is a region where both volcanic and geothermal phenomena are present. The upper part of the geothermal system can be considered roughly as a succession of volcanic porous material (tuff) saturated by a mixture formed mainly by water and carbon dioxide. We have implemented a finite elements approach in transient conditions to simulate water flow in a 2-D porous medium to model the changes of temperature in the geothermal system due to magmatic fluid inflow, accounting for a transient phase, not considered in the analytical solutions and fluid compressibility. The thermal model is described by means of conductive/convective equations, in which we propose a thermal source represented by a parabolic shape function to better simulate an increase of temperature in the central part (magma chamber) of a box, simulating the Campi Flegrei caldera and using more recent evaluations, from literature, for the medium's parameters (specific heat capacity, density, thermal conductivity, permeability). A best-fit velocity for the permeant is evaluated by comparing the simulated temperatures with those measured in wells drilled by Agip (Italian Oil Agency) in the 1980s in the framework of geothermal exploration. A few tens of days are enough to reach the thermal steady state, showing the quick response of the system to heat injection. The increase in the pressure due to the heat transport is then used to compute ground deformation, in particular the vertical displacements characteristics of the Campi Flegrei caldera behaviour. The

  12. Numerical studies of solar chromospheric jets

    NASA Astrophysics Data System (ADS)

    Iijima, Haruhisa

    2016-03-01

    The solar chromospheric jet is one of the most characteristic structures near the solar surface. The quantitative understanding of chromospheric jets is of substantial importance for not only the partially ionized phenomena in the chromosphere but also the energy input and dissipation processes in the corona. In this dissertation, the formation and dynamics of chromospheric jets are investigated using the radiation magnetohydrodynamic simulations. We newly develop a numerical code for the radiation magnetohydrodynamic simulations of the comprehensive modeling of solar atmosphere. Because the solar chromosphere is highly nonlinear, magnetic pressure dominated, and turbulent, a robust and high-resolution numerical scheme is required. In Chapter 2, we propose a new algorithm for the simulation of magnetohydrodynamics. Through the test problems and accuracy analyses, the proposed scheme is proved to satisfy the requirements. In Chapter 3, the effect of the non-local radiation energy transport, Spitzer-type thermal conduction, latent heat of partial ionization and molecule formation, and gravity are implemented to the magnetohydrodynamic code. The numerical schemes for the radiation transport and thermal conduction is carefully chosen in a view of the efficiency and compatibility with the parallel computation. Based on the developed radiation magnetohydrodynamic code, the formation and dynamics of chromospheric jets are investigated. In Chapter 4, we investigate the dependence of chromospheric jets on the coronal temperature in the two-dimensional simulations. Various scale of chromospheric jets with the parabolic trajectory are found with the maximum height of 2–8 Mm, lifetime of 2–7 min, maximum upward velocity of 10– 50 km/s, and deceleration of 100–350 m/s2. We find that chromospheric jets are more elongated under the cool corona and shorter under the hot corona. We also find that the pressure gradient force caused by the periodic shock waves accelerates

  13. Numerical studies of solar chromospheric jets

    NASA Astrophysics Data System (ADS)

    Iijima, Haruhisa

    2016-03-01

    The solar chromospheric jet is one of the most characteristic structures near the solar surface. The quantitative understanding of chromospheric jets is of substantial importance for not only the partially ionized phenomena in the chromosphere but also the energy input and dissipation processes in the corona. In this dissertation, the formation and dynamics of chromospheric jets are investigated using the radiation magnetohydrodynamic simulations. We newly develop a numerical code for the radiation magnetohydrodynamic simulations of the comprehensive modeling of solar atmosphere. Because the solar chromosphere is highly nonlinear, magnetic pressure dominated, and turbulent, a robust and high-resolution numerical scheme is required. In Chapter 2, we propose a new algorithm for the simulation of magnetohydrodynamics. Through the test problems and accuracy analyses, the proposed scheme is proved to satisfy the requirements. In Chapter 3, the effect of the non-local radiation energy transport, Spitzer-type thermal conduction, latent heat of partial ionization and molecule formation, and gravity are implemented to the magnetohydrodynamic code. The numerical schemes for the radiation transport and thermal conduction is carefully chosen in a view of the efficiency and compatibility with the parallel computation. Based on the developed radiation magnetohydrodynamic code, the formation and dynamics of chromospheric jets are investigated. In Chapter 4, we investigate the dependence of chromospheric jets on the coronal temperature in the two-dimensional simulations. Various scale of chromospheric jets with the parabolic trajectory are found with the maximum height of 2-8 Mm, lifetime of 2-7 min, maximum upward velocity of 10- 50 km/s, and deceleration of 100-350 m/s2. We find that chromospheric jets are more elongated under the cool corona and shorter under the hot corona. We also find that the pressure gradient force caused by the periodic shock waves accelerates some of the

  14. Study on aggregation and electric properties in the micro-region of functionalized dithieno[2, 3-b: 3', 2'-d]thiophene (DTT) oligomers

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaohong; Huang, Xiaowei; Zhang, Jiajia; Lu, Zhijuan; Wang, Hua; Du, Zuliang

    2016-07-01

    Three kinds of 2,5,-diphenyl-dithienol[2, 3-b: 3', 2'-d]thiophene (DP-DTT), 2,5,-distyryl-dithienol[2, 3-b: 3', 2'-d]thiophene (DEP-DTT) and 2,5,-thienyl-dithienol[2, 3-b: 3', 2'-d]thiophene (DET-DTT) micro-region structure and electronic properties were studied. Thin films of these functionalized DTT oligomers were prepared in a one-step drop-casting deposition onto highly oriented pyrolytic graphite substrates. The surface structure of these films was characterized by atomic force microscopy (AFM). Conducting probe atomic force microscope (C-AFM) and Kelvin probe force microscope (KFM) were both used to characterize the electronic transport behavior and surface potential distribution. The substituents of DTT oligomers can greatly affect their aggregation and the hopping conductance mechanism was used to explain the Au-DTTs-HOPG junctions. KFM investigation revealed that these oligomers with different substituents have different highest occupied molecular orbital energy levels. The corresponding theoretical analysis reveals similar result to KFM characterization. The I-V results indicated that the aggregates of molecules were the dominating factor to their micro-region electrical transport.

  15. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  16. Numerical studies of silica precipitation/dissolution

    SciTech Connect

    Lai, C.H.; Bodvarsson, G.S.; Witherspoon, P.A.

    1985-01-01

    In this paper we describe our numerical simulator PIC (pressure-temperature-chemistry), and also present the methods we use to reduce error due to numerical diffusion. Examples of the application of this approach to two problems are included. The first problem involves non-isothermal flow of supersaturated silica through single fractures. The precipitation of silica in the fractures is modeled and the resulting permeability and flow rate decreases are calculated. The second problem involves field data collected at the Ellidaar geothermal field in Iceland. After 15 years of fluid production, significant declines in pressure and temperature have been observed along with changes in silica concentrations. In order to illustrate the applicability of our model to such data, we have developed a simple numerical model that fits well with the observed production history. The applicability of our coupled method of analyzing the changing reservoir conditions is demonstrated, and the result is a more detailed understanding of the geothermal system.

  17. Morphologic Analysis of the Temporomandibular Joint Between Patients With Facial Asymmetry and Asymptomatic Subjects by 2D and 3D Evaluation: A Preliminary Study.

    PubMed

    Zhang, Yuan-Li; Song, Jin-Lin; Xu, Xian-Chao; Zheng, Lei-Lei; Wang, Qing-Yuan; Fan, Yu-Bo; Liu, Zhan

    2016-03-01

    Signs and symptoms of temporomandibular joint (TMJ) dysfunction are commonly found in patients with facial asymmetry. Previous studies on the TMJ position have been limited to 2-dimensional (2D) radiographs, computed tomography (CT), or cone-beam computed tomography (CBCT). The purpose of this study was to compare the differences of TMJ position by using 2D CBCT and 3D model measurement methods. In addition, the differences of TMJ positions between patients with facial asymmetry and asymptomatic subjects were investigated. We prospectively recruited 5 patients (cases, mean age, 24.8 ± 2.9 years) diagnosed with facial asymmetry and 5 asymptomatic subjects (controls, mean age, 26 ± 1.2 years). The TMJ spaces, condylar and ramus angles were assessed by using 2D and 3D methods. The 3D models of mandible, maxilla, and teeth were reconstructed with the 3D image software. The variables in each group were assessed by t-test and the level of significance was 0.05. There was a significant difference in the horizontal condylar angle (HCA), coronal condylar angle (CCA), sagittal ramus angle (SRA), medial joint space (MJS), lateral joint space (LJS), superior joint space (SJS), and anterior joint space (AJS) measured in the 2D CBCT and in the 3D models (P < 0.05). The case group had significantly smaller SJS compared to the controls on both nondeviation side (P = 0.009) and deviation side (P = 0.004). In the case group, the nondeviation SRA was significantly larger than the deviation side (P = 0.009). There was no significant difference in the coronal condylar width (CCW) in either group. In addition, the anterior disc displacement (ADD) was more likely to occur on the deviated side in the case group. In conclusion, the 3D measurement method is more accurate and effective for clinicians to investigate the morphology of TMJ than the 2D method. PMID:27043669

  18. Investigations on 2D and 3D topography and Z-scan studies of zinc chloride co-doped L-lysinium succinate

    NASA Astrophysics Data System (ADS)

    Kalaivani, D.; Jayaraman, D.; Joseph, V.

    2015-10-01

    Semi-organic NLO single crystals of zinc chloride doped L-lysinium succinate (ZnCl2-Lls) were grown using a slow evaporation method at ambient temperature. The structure and cell parameters of the grown crystal were determined by single crystal XRD and powder XRD studies. The 2-D surface morphology and elemental compositions were analyzed through SEM and EDAX studies. The 3-D surface topology was discussed using AFM images. Z-scan technique was used for measuring the third order nonlinear optical coefficients of the grown crystal.

  19. Self-Navigation with Compressed Sensing for 2D Translational Motion Correction in Free-Breathing Coronary MRI: A Feasibility Study

    PubMed Central

    Bonanno, Gabriele; Puy, Gilles; Wiaux, Yves; van Heeswijk, Ruud B.; Piccini, Davide; Stuber, Matthias

    2014-01-01

    Purpose Respiratory motion correction remains a challenge in coronary magnetic resonance imaging (MRI) and current techniques, such as navigator gating, suffer from sub-optimal scan efficiency and ease-of-use. To overcome these limitations, an image-based self-navigation technique is proposed that uses “sub-images” and compressed sensing (CS) to obtain translational motion correction in 2D. The method was preliminarily implemented as a 2D technique and tested for feasibility for targeted coronary imaging. Methods During a 2D segmented radial k-space data acquisition, heavily undersampled sub-images were reconstructed from the readouts collected during each cardiac cycle. These sub-images may then be used for respiratory self-navigation. Alternatively, a CS reconstruction may be used to create these sub-images, so as to partially compensate for the heavy undersampling. Both approaches were quantitatively assessed using simulations and in vivo studies, and the resulting self-navigation strategies were then compared to conventional navigator gating. Results Sub-images reconstructed using CS showed a lower artifact level than sub-images reconstructed without CS. As a result, the final image quality was significantly better when using CS-assisted self-navigation as opposed to the non-CS approach. Moreover, while both self-navigation techniques led to a 69% scan time reduction (as compared to navigator gating), there was no significant difference in image quality between the CS-assisted self-navigation technique and conventional navigator gating, despite the significant decrease in scan time. Conclusions CS-assisted self-navigation using 2D translational motion correction demonstrated feasibility of producing coronary MRA data with image quality comparable to that obtained with conventional navigator gating, and does so without the use of additional acquisitions or motion modeling, while still allowing for 100% scan efficiency and an improved ease-of-use. In

  20. Numerical study of mixing in hypervelocity flows

    SciTech Connect

    Krishnamurthy, R.; Woods, D.M.; Chandra, S.

    1996-12-31

    Results are reported from an analysis of data obtained with a combustor model tested in the new pulse facility at California Institute of Technology. Data analysis was performed using the numerical code GASP. Comparisons were drawn between the predictions of the algebraic Baldwin-Lomax and the two equation k-{epsilon} turbulence models. It is concluded that the use of the simpler Baldwin-Lomax model is sufficient as it saves computational resources and yields adequate predictions, for the conditions considered here.

  1. Association of genetic variants in INS (rs689), INSR (rs1799816) and PP1G.G (rs1799999) with type 2 diabetes (T2D): a case-control study in three ethnic groups from North-West India.

    PubMed

    Sokhi, Jasmine; Sikka, Ruhi; Raina, Priyanka; Kaur, Ramandeep; Matharoo, Kawaljit; Arora, Punit; Bhanwer, Ajs

    2016-02-01

    Genetic contributions towards Type 2 diabetes (T2D) have been assessed through association studies across different world populations with inconsistencies. The majority of the T2D susceptibility loci are common across different races or populations but show ethnicity-specific differences. The pathogenesis of T2D involves genetic variants in the candidate genes. The interactions between the genes involved in insulin signaling and secretory pathways are believed to play an important role in determining an individual's susceptibility towards T2D. Therefore, the present study was initiated to examine the differences, if any, in the contribution of polymorphisms towards T2D susceptibility in the background of different ethnic specifications. The present case-control study included a total of 1216 T2D cases and healthy controls from three ethnic groups (Jat Sikhs, Banias and Brahmins) of North-West India. Polymorphisms were selected on the basis of information available in the literature for INS (rs689), INSR (rs1799816) and PP1G.G (rs1799999) in context to T2D. The genotyping was done using PCR-RFLP method. Statistical analysis was done using SPSS 16.0. The analyses revealed that INS (rs689) polymorphism conferred risk towards T2D susceptibility in all the three ethnic groups whereas INSR (rs1799816) polymorphism conferred risk towards T2D in Brahmins only and PP1G.G (rs1799999) polymorphism indicated T2D risk in Jat Sikhs only. Furthermore, interaction analyses indicated the cumulative role of three genetic variants in modulating T2D susceptibility in the three ethnic groups. In conclusion, our results substantiated the evidences for the role of ethnicity in differential susceptibility to T2D in the background of same genetic variants.

  2. Study of Positronium in Low-k Dielectric Films by means of 2D-Angular Correlation Experiments at a High-Intensity Slow-Positron Beam

    SciTech Connect

    Gessmann, T; Petkov, M P; Weber, M H; Lynn, K G; Rodbell, K P; Asoka-Kumar, P; Stoeffl, W; Howell, R H

    2001-06-20

    Depth-resolved measurements of the two-dimensional angular correlation of annihilation radiation (2D-ACAR) were performed at the high-intensity slow-positron beam of Lawrence Livermore National Laboratory. We studied the formation of positronium in thin films of methyl-silsesquioxane (MSSQ) spin-on glass containing open-volume defects in the size of voids. Samples with different average void sizes were investigated and positronium formation could be found in all cases. The width of the angular correlation related to the annihilation of parapositronium increased with the void size indicating the annihilation of non-thermalized parapositronium.

  3. Numerical study of combustion processes in afterburners

    NASA Technical Reports Server (NTRS)

    Zhou, Xiaoqing; Zhang, Xiaochun

    1986-01-01

    Mathematical models and numerical methods are presented for computer modeling of aeroengine afterburners. A computer code GEMCHIP is described briefly. The algorithms SIMPLER, for gas flow predictions, and DROPLET, for droplet flow calculations, are incorporated in this code. The block correction technique is adopted to facilitate convergence. The method of handling irregular shapes of combustors and flameholders is described. The predicted results for a low-bypass-ratio turbofan afterburner in the cases of gaseous combustion and multiphase spray combustion are provided and analyzed, and engineering guides for afterburner optimization are presented.

  4. 2-D and 3-D Difraction Stake Migration Method Using GPR: A Case Study in Canakkale (Turkey)

    NASA Astrophysics Data System (ADS)

    Çaǧlar Yalçiner, Cahit

    In this study, ground-penetrating radar (GPR) method was applied for Clandestine cemetery detection in Ηanakkale (Dardanelles), west Turkey. Investigated area was a historical area which was used as tent hospitals during the World War I. The study area was also used to bury soldiers who died during the treatment process in tent hospitals. Because of agricultural activity grave stones were used by local people, thus, most of the graves were lost in the field. 45 GPR profiles were applied with a GPR system (RAMAC) equipped with 250 MHz central frequency shielded antenna. After main processing steps on raw data, migration was applied to improve section resolution and develop the realism of the subsurface images. Although the GPR in results before migration the anomalous zones are visible, after migration the results became much more visible both in the profiles and 3D illustrations, thus, migrated GPR data were preferred to locate the buried martyrdoms.

  5. Controllable strain fields in multimonolayer 2D-layered TiO2 (110) crystals studied by STM

    NASA Astrophysics Data System (ADS)

    Li, Zhisheng; Potapenko, Denis; Osgood, Richard

    2014-03-01

    Strain of crystal lattice can change the electronic property of materials, such as oxides and semiconductors, significantly. However, experimental studies of lattice effects in oxides are limited especially in atomic scale, due to the difficulty of generating strain field experimentally. In this work, we generate a strain field in multiple monolayer sample of at TiO2 (110) by very low energy bombardment of single crystal TiO2 samples with argon ions at 1000oC. The interstitial argon diffuses so as to form nanometer scale regions of local exfoliated TiO2 layers. These layers retain their unstressed surface reconstruction although the top-most surface layers have a convex morphology. We use STM studies along with a continuum model to show the strain field. Our studies also show that the strained surface layers are free of oxygen vacancies and that the adsorption energy of hydrogen is altered by the local strain field. The authors gratefully acknowledge support of this work by the Basic Energy Sciences Division of the U.S. Department of Energy, Contract No. DE-FG02-90ER14104.

  6. Numerical and Experimental Study of Transport Phenomena in Directional Solidification of Succinonitrile

    NASA Technical Reports Server (NTRS)

    de Groh, Henry C., III; Yao, Minwu

    1994-01-01

    A numerical and experimental study of the growth of succinonitrile (SCN) using a horizontal Bridginan furnace and transparent glass ampoule was conducted. Two experiments were considered: one in which the temperature profile was fixed relative to the ampoule (no-growth case); and a second in which the thermal profile was translated at a constant rate (steady growth case). Measured temperature profiles on the outer surface of the ampoule were used as thermal boundary conditions for the modelling. The apparent heat capacity formulation combined with the variable viscositymeth was used to model the phase change in SeN. Both 2-D and 3-D models were studied and numerical solutions obtained using the commercial finite element code, FIDAP1. Comparison of the numerical results to experimental data showed excellent agreement. The complex 3-D shallow-cavity flow in the melt, differences between 2-D and 3-D models, effects of natural convection on the thermal gradient and shape of the solid/liquid interface, and the sensitivity of simulations to specific assumptions, are also discussed.

  7. Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: an EEG study.

    PubMed

    Kober, Silvia Erika; Kurzmann, Jürgen; Neuper, Christa

    2012-03-01

    The present study is the first that examined neuronal underpinnings of spatial presence using multi-channel EEG in an interactive virtual reality (VR). We compared two VR-systems: a highly immersive Single-Wall-VR-system (three-dimensional view, large screen) and a less immersive Desktop-VR-system (two-dimensional view, small screen). Twenty-nine participants performed a spatial navigation task in a virtual maze and had to state their sensation of "being there" on a 5-point rating scale. Task-related power decrease/increase (TRPD/TRPI) in the Alpha band (8-12Hz) and coherence analyses in different frequency bands were used to analyze the EEG data. The Single-Wall-VR-system caused a more intense presence experience than the Desktop-VR-system. This increased feeling of presence in the Single-Wall-VR-condition was accompanied by an increased parietal TRPD in the Alpha band, which is associated with cortical activation. The lower presence experience in the Desktop-VR-group was accompanied by a stronger functional connectivity between frontal and parietal brain regions indicating that the communication between these two brain areas is crucial for the presence experience. Hence, we found a positive relationship between presence and parietal brain activation and a negative relationship between presence and frontal brain activation in an interactive VR-paradigm, supporting the results of passive non-interactive VR-studies.

  8. PBE–DFT theoretical study of organic photovoltaic materials based on thiophene with 1D and 2D periodic boundary conditions

    SciTech Connect

    Saïl, K. Bassou, G.; Gafour, M. H.; Miloua, F.

    2015-12-15

    Conjugated organic systems such as thiophene are interesting topics in the field of organic solar cells. We theoretically investigate π-conjugated polymers constituted by n units (n = 1–11) based on the thiophene (Tn) molecule. The computations of the geometries and electronic structures of these compounds are performed using the density functional theory (DFT) at the 6–31 G(d, p) level of theory and the Perdew–Burke–Eenzerhof (PBE) formulation of the generalized gradient approximation with periodic boundary conditions (PBCs) in one (1D) and two (2D) dimensions. Moreover, the electronic properties (HOCO, LUCO, E{sub gap}, V{sub oc}, and V{sub bi}) are determined from 1D and 2D PBC to understand the effect of the number of rings in polythiophene. The absorption properties—excitation energies (E{sub ex}), the maximal absorption wavelength (λ{sub max}), oscillator strengths, and light harvesting—efficiency are studied using the time-dependent DFT method. Our studies show that changing the number of thiophene units can effectively modulate the electronic and optical properties. On the other hand, our work demonstrates the efficiency of theoretical calculation in the PBCs.

  9. SPE-LEEM Studies on the Surface and Electronic Structure of 2-D Transition Metal Dichalcogenides (Part II)

    NASA Astrophysics Data System (ADS)

    Jin, Wencan; Yeh, Po-Chun; Zaki, Nader; Zhang, Datong; Sadowski, Jerzy; Al-Mahboob, Abdullah; van de Zande, Arend; Chenet, Daniel; Dadap, Jerry; Herman, Irving; Sutter, Peter; Hone, James; Osgood, Richard

    2014-03-01

    In this work, we studied the surface and electronic structure of monolayer and few-layer exfoliated MoS2 and WSe2, as well as chemical-vapor-deposition (CVD) grown MoS2, using Spectroscopic Photoemission and Low Energy Electron Microscope (SPE-LEEM). LEEM measurements reveal that, unlike exfoliated MoS2, CVD-grown MoS2 exhibits grain-boundary alterations due to surface strain. However, LEEM and micro-probe low energy electron diffraction show that the quality of CVD-grown MoS2 is comparable to that of exfoliated MoS2. Micrometer-scale angle-resolved photoemission spectroscopy (ARPES) measurement on exfoliated MoS2 and WSe2 single-crystals provides direct evidence for the shifting of the valence band maximum from Γ to K, when the layer number is thinned down to one, as predicted by density functional theory. Our measurements of the k-space resolved electronic structure allow for further comparison with other theoretical predictions and with transport measurements. This work is supported by DOE grant DE-FG 02-04-ER-46157, research carried out in part at the CFN and NSLS, Brookhaven National Laboratory.

  10. High Pressure Study of Delocalized Polarons in 2-D Lamellar Structure of Regio-Regular Poly(3-alkylthiophene) Films

    NASA Astrophysics Data System (ADS)

    An, C. P.; Jiang, X. M.; Vardeny, Z. V.

    2001-03-01

    The long-lived photoexcitations in poly(3-alkylthiophene) [P3AT] having a high head-to-tail ratio, the so called regio-regular (RR) P3AT, have been extensively studied by the photoinduced absorption (PA) spectroscopy using a FTIR spectrometer. In particular, delocalized polarons with DP1 (low energy) and DP2 (high energy) PA bands were observed in the self-assembled two-dimensional lamellar structure of RR P3AT films.(R. Osterbacka et al, Science, 287), p839 (2000) DP1 with a peak at ~0.1 eV is expected to red-shift as the interlayer distance decreases. This was indirectly confirmed before in the experiments by observing a red-shift in DP1 band as the aklyl sidegroup of the P3AT polymer decreases from dodecyl to hexyl.^2 In the present work we have succeeded, for the first time, to measure infrared PA spectra down to 400 cm-1 under high hydrostatic pressure up to 50 kbar with a diamond anvil cell. This technique was applied to RR P3AT in order to test the effect of the change in the interlayer distance for the same alkyl sidegroup, which is induced by the high pressure. We found that the first moment of the DP1 band red-shifts as the pressure increases. This result is in agreement with the delocalized polaron model in the lamellar structure.

  11. Remediation of Chlorinated Solvent Plumes Using In-Situ Air Sparging—A 2-D Laboratory Study

    PubMed Central

    Adams, Jeffrey A.; Reddy, Krishna R.; Tekola, Lue

    2011-01-01

    In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs. PMID:21776228

  12. Rational design, synthesis and 2D-QSAR study of novel vasorelaxant active benzofuran-pyridine hybrids.

    PubMed

    Srour, Aladdin M; Abd El-Karim, Somaia S; Saleh, Dalia O; El-Eraky, Wafaa I; Nofal, Zeinab M

    2016-05-15

    Reaction of 3-aryl-1-(benzofuran-2-yl)-2-propen-1-ones 3a-c with malononitrile in the presence of sufficient amount of sodium alkoxide in the corresponding alcohol proceeds in a regioselective manner to afford 2-alkoxy-4-aryl-6-(benzofuran-2-yl)-3-pyridinecarbonitriles 4-37, which also obtained by treating ylidenemalononitriles 6a-q with 2-acetylbenzofuran 1 in the presence of sufficient amount of sodium alkoxide in the corresponding alcohol. The new chemical entities showed significant vasodilation properties using isolated thoracic aortic rings of rats pre-contracted with norepinephrine hydrochloride standard technique. Compounds 11, 16, 21, 24 and 30 exhibited remarkable activity compared with amiodarone hydrochloride the reference standard used in the present study. CODESSA-Pro software was employing to obtain a statistically significant QSAR model describing the bioactivity of the newly synthesized analogs (N=31, n=5, R(2)=0.846, R(2)cvOO=0.765, R(2)cvMO=0.778, F=27.540. s(2)=0.002). PMID:27048942

  13. 2D/3D registration using only single-view fluoroscopy to guide cardiac ablation procedures: a feasibility study

    NASA Astrophysics Data System (ADS)

    Fallavollita, Pascal

    2010-02-01

    The CARTO XP is an electroanatomical cardiac mapping system that provides 3D color-coded maps of the electrical activity of the heart, however it is expensive and it can only use a single costly magnetic catheter for each patient intervention. Aim: To develop an affordable fluoroscopic navigation system that could shorten the duration of RF ablation procedures and increase its efficacy. Methodology: A 4-step filtering technique was implemented in order to project the tip electrode of an ablation catheter visible in single-view C-arm images in order to calculate its width. The width is directly proportional to the depth of the catheter. Results: For phantom experimentation, when displacing a 7- French catheter at 1cm intervals away from an X-ray source, the recovered depth using a single image was 2.05 +/- 1.47 mm, whereas depth errors improved to 1.55 +/- 1.30 mm when using an 8-French catheter. In clinic experimentation, twenty posterior and left lateral images of a catheter inside the left ventricle of a mongrel dog were acquired. The standard error of estimate for the recovered depth of the tip-electrode of the mapping catheter was 13.1 mm and 10.1 mm respectively for the posterior and lateral views. Conclusions: A filtering implementation using single-view C-arm images showed that it was possible to recover depth in phantom study and proved adequate in clinical experimentation based on isochronal map fusion results.

  14. Rational design, synthesis and 2D-QSAR study of novel vasorelaxant active benzofuran-pyridine hybrids.

    PubMed

    Srour, Aladdin M; Abd El-Karim, Somaia S; Saleh, Dalia O; El-Eraky, Wafaa I; Nofal, Zeinab M

    2016-05-15

    Reaction of 3-aryl-1-(benzofuran-2-yl)-2-propen-1-ones 3a-c with malononitrile in the presence of sufficient amount of sodium alkoxide in the corresponding alcohol proceeds in a regioselective manner to afford 2-alkoxy-4-aryl-6-(benzofuran-2-yl)-3-pyridinecarbonitriles 4-37, which also obtained by treating ylidenemalononitriles 6a-q with 2-acetylbenzofuran 1 in the presence of sufficient amount of sodium alkoxide in the corresponding alcohol. The new chemical entities showed significant vasodilation properties using isolated thoracic aortic rings of rats pre-contracted with norepinephrine hydrochloride standard technique. Compounds 11, 16, 21, 24 and 30 exhibited remarkable activity compared with amiodarone hydrochloride the reference standard used in the present study. CODESSA-Pro software was employing to obtain a statistically significant QSAR model describing the bioactivity of the newly synthesized analogs (N=31, n=5, R(2)=0.846, R(2)cvOO=0.765, R(2)cvMO=0.778, F=27.540. s(2)=0.002).

  15. Remediation of chlorinated solvent plumes using in-situ air sparging--a 2-D laboratory study.

    PubMed

    Adams, Jeffrey A; Reddy, Krishna R; Tekola, Lue

    2011-06-01

    In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs.

  16. Study on the Multi-phase Flow and Fluid Saturation in 2D Fractured Media by Light Transmission Technique

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ye, S.; Wu, J.

    2013-12-01

    Immiscible two-phase flows in fractured media are encountered in many engineering processes such as recovery of oil and gas, exploitation of geothermal energy, and groundwater contamination by immiscible chemicals. A two-dimensional rough wall parallel plate fracture model was set up and light transmission method (LTM) was applied to study two-phase flow system in fractured media. The fracture model stood with up and bottom flow and no flow on other two sides. A charge-coupled device (CCD) camera was used to monitor the migration of DNAPL and gas bubbles in the fracture model. To simulate two-phase system in fracture media, air was injected into the water saturated cell (C1) through the middle of the bottom and NAPL was injected into another water saturated cell (C2) through the middle of the top of the cell. The results show LTM was an effective way in monitoring the migration of DNAPL and gas bubbles in the fracture models. Gas moved upwards quickly to the top of C1 in the way of air bubbles generated at the injection position and formed a continuous distribution. The migration of TCE was controlled by its own weight and fracture aperture. TCE migrated to large aperture firstly when moving downwards, and intruded into smaller one with accumulation of TCE. Light Intensity-Saturation Models (LISMs) were developed to estimate the gas or NAPL saturation in two-phase system. The volume amount of infiltration of gas bubbles or NAPL could be estimated from light intensities by LISMs. There were strong correlations between the added and calculated amounts of gas or TCE. It is feasible to use the light transmission method to characterize the movement and spatial distribution of gas or NAPL in fractured media.

  17. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  18. Numerical study of mountain system evolution along the Tarim-Altay profile

    NASA Astrophysics Data System (ADS)

    Suvorov, V. D.; Stefanov, Yu. P.; Pavlov, E. V.; Kochnev, V. A.; Melnik, E. A.; Tataurova, A. A.

    2015-10-01

    The paper reports the numerical modeling results on the Earth's crust deformation along the Tarim-Altay profile under gravity and lateral compression. Modeling was performed to study how the strength properties and block structure of the crust section influence the formation of plastic deformation zones, day surface relief and the Moho deflection. Conditions were estimated in which mountains grow under certain geological and geophysical characteristics, including mountain root formation. The deformation process was considered in a 2D elastic-plastic formulation for the vertical section of the crust and upper mantle down to a depth of 90 km.

  19. Excitons and exciton-phonon interactions in 2D MoS2 , WS2 and WSe2 studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pimenta, Marcos; Del Corro, Elena; Carvalho, Bruno; Malard, Leandro; Alves, Juliana; Fantini, Cristiano; Terrones, Humberto; Elias, Ana Laura; Terrones, Mauricio

    The 2D materials exhibit a very strong exciton binding energy, and the exciton-phonon coupling plays an important role in their optical properties. Resonance Raman spectroscopy (RRS) is a very useful tool to provide information about excitons and their couplings with phonons. We will present in this work a RRS study of different samples of 2D transition metal dichalcogenides (MoS2, WS2 and WSe2) with one, two and three layers (1L, 2L, 3L) and bulk samples, using more than 30 different laser excitation lines covering the visible range. We have observed that all Raman features are enhanced by resonances with excitonic transitions. From the laser energy dependence of the Raman excitation profile (REP) we obtained the energies of the excitonic states and their dependence with the number of atomic layers.. In the case of MoS2, we observed that the electron-phonon coupling is symmetry dependent, and our results provide experimental evidence of the C exciton recently predicted theoretically. The RRS results WSe2 show that the Raman modes are enhanced by the excited excitonic states and we will present the dependence of the excited states energies on the number of layers.

  20. Numerical study of an underground heat tube

    SciTech Connect

    Sulaiman, F.

    1989-01-01

    The energy consumption of the air-to-air heat pump can be reduced, especially in winter, by using the soil as a heat source. A system of buried tube through which air is passed, has great potential in supplying higher temperature air than the ambient air, to the outside heat exchanger of the heat pump. Heat transfer from the soil to the tube, including the possibility of formation of ice lenses around the tube, was investigated over a period of time in a cold season. Models of ice formation were developed in two types of tube, the circular tube and the square tube. Latent heat released due to the formation of ice were included in the models. Computer simulation utilizing finite difference equations were developed, using the explicit method, where forward differences were used in time and central differences were used in space. The numerical results show the effects of increasing the moisture content of the soil, increasing the air flow rate in the tube, and the release of latent heat when soil freezes. The formation of ice around the tube played a significant role in achieving a stabilized output air temperature at a short time.

  1. Externally fed star formation: a numerical study

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Motahareh; Stahler, Steven W.

    2013-08-01

    We investigate, through a series of numerical calculations, the evolution of dense cores that are accreting external gas up to and beyond the point of star formation. Our model clouds are spherical, unmagnetized configurations with fixed outer boundaries, across which gas enters subsonically. When we start with any near-equilibrium state, we find that the cloud's internal velocity also remains subsonic for an extended period, in agreement with observations. However, the velocity becomes supersonic shortly before the star forms. Consequently, the accretion rate building up the protostar is much greater than the benchmark value c_s^3/G, where cs is the sound speed in the dense core. This accretion spike would generate a higher luminosity than those seen in even the most embedded young stars. Moreover, we find that the region of supersonic infall surrounding the protostar races out to engulf much of the cloud, again in violation of the observations, which show infall to be spatially confined. Similar problematic results have been obtained by all other hydrodynamic simulations to date, regardless of the specific infall geometry or boundary conditions adopted. Low-mass star formation is evidently a quasi-static process, in which cloud gas moves inward subsonically until the birth of the star itself. We speculate that magnetic tension in the cloud's deep interior helps restrain the infall prior to this event.

  2. Numerical Studies of Boundary-Layer Receptivity

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1995-01-01

    Direct numerical simulations (DNS) of the acoustic receptivity process on a semi-infinite flat plate with a modified-super-elliptic (MSE) leading edge are performed. The incompressible Navier-Stokes equations are solved in stream-function/vorticity form in a general curvilinear coordinate system. The steady basic-state solution is found by solving the governing equations using an alternating direction implicit (ADI) procedure which takes advantage of the parallelism present in line-splitting techniques. Time-harmonic oscillations of the farfield velocity are applied as unsteady boundary conditions to the unsteady disturbance equations. An efficient time-harmonic scheme is used to produce the disturbance solutions. Buffer-zone techniques have been applied to eliminate wave reflection from the outflow boundary. The spatial evolution of Tollmien-Schlichting (T-S) waves is analyzed and compared with experiment and theory. The effects of nose-radius, frequency, Reynolds number, angle of attack, and amplitude of the acoustic wave are investigated. This work is being performed in conjunction with the experiments at the Arizona State University Unsteady Wind Tunnel under the direction of Professor William Saric. The simulations are of the same configuration and parameters used in the wind-tunnel experiments.

  3. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  4. Changes in the Capillarity of the Rat Extensor Digitorum Longus Muscle 4 Weeks after Nerve Injury Studied by 2D Measurement Methods.

    PubMed

    Čebašek, Vita; Ribarič, Samo

    2016-01-01

    We have previously shown by 3D study that 2 weeks after nerve injury there was no change in the length of capillaries per muscle fibre length in rat extensor digitorum longus muscle (EDL). The primary goal of the present 2D study was to determine the capillarity of rat EDL 4 weeks after various modes of nerve injury. Additionally, we wished to calculate the same capillary/fibre parameters that were used in our 3D stereological study. EDL muscles derived from denervated (4 weeks after nerve injury), re-innervated (4 weeks after two successive nerve crushes) and age-matched controls from the beginning (CON-1) and the end (CON-2) of the experiment were analysed in two ways. Global indices of capillarity, such as capillary density (CD) and capillary/fibre (C/F) ratio, were determined by automatic analysis, local indices as the number (CAF) and the length of capillaries around individual muscle fibres (Lcap) in relation to muscle fibre size were estimated manually by tracing the muscle fibre outlines and the transversally and longitudinally cut segments of capillaries seen in 5-µm-thin muscle cross sections. Four weeks after both types of nerve injury, CD increased in comparison to the CON-2 group (p < 0.001) due to atrophied muscle fibres in denervated muscles and probably proliferation of capillaries in re-innervated ones. Higher C/F, CAF (both p < 0.001) and Lcap (p < 0.01) in re-innervated than denervated EDL confirmed this assumption. Calculated capillary/fibre parameters were comparable to our previous 3D study, which strengthens the practical value to the adapted 2D method used in this study.

  5. Changes in the Capillarity of the Rat Extensor Digitorum Longus Muscle 4 Weeks after Nerve Injury Studied by 2D Measurement Methods.

    PubMed

    Čebašek, Vita; Ribarič, Samo

    2016-01-01

    We have previously shown by 3D study that 2 weeks after nerve injury there was no change in the length of capillaries per muscle fibre length in rat extensor digitorum longus muscle (EDL). The primary goal of the present 2D study was to determine the capillarity of rat EDL 4 weeks after various modes of nerve injury. Additionally, we wished to calculate the same capillary/fibre parameters that were used in our 3D stereological study. EDL muscles derived from denervated (4 weeks after nerve injury), re-innervated (4 weeks after two successive nerve crushes) and age-matched controls from the beginning (CON-1) and the end (CON-2) of the experiment were analysed in two ways. Global indices of capillarity, such as capillary density (CD) and capillary/fibre (C/F) ratio, were determined by automatic analysis, local indices as the number (CAF) and the length of capillaries around individual muscle fibres (Lcap) in relation to muscle fibre size were estimated manually by tracing the muscle fibre outlines and the transversally and longitudinally cut segments of capillaries seen in 5-µm-thin muscle cross sections. Four weeks after both types of nerve injury, CD increased in comparison to the CON-2 group (p < 0.001) due to atrophied muscle fibres in denervated muscles and probably proliferation of capillaries in re-innervated ones. Higher C/F, CAF (both p < 0.001) and Lcap (p < 0.01) in re-innervated than denervated EDL confirmed this assumption. Calculated capillary/fibre parameters were comparable to our previous 3D study, which strengthens the practical value to the adapted 2D method used in this study. PMID:27023720

  6. Fermi Surface Studies of QUASI-1D and QUASI-2D Organic Superconductors Using Periodic Orbit Resonance in High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Kovalev, A. E.; Hill, S.; Takasaki, S.; Yamada, J.; Anzai, H.; Qualls, J. S.; Kawano, K.; Tamura, M.; Naito, T.; Kobayashi, H.

    We have studied periodic orbit resonances (PORs) in order to probe the topology of the Fermi surface (FS) of the quasi-1D organic conductor (TMTSF)2ClO4 and the quasi-2D organic conductors κ-(ET)2Cu(NCS)2 and κ-(ET)2I3. The FS of (TMTSF)2ClO4 consists of a pair of weakly corrugated open sheets, while κ-(ET)2Cu(NCS)2 and κ-(ET)2I3 additionally possess warped cylindrical FS sections. In this paper, we review the POR technique for the straightforward case of (TMTSF)2ClO4. We then report on a detailed study of the FS topology for κ-(ET)2Cu(NCS)2.

  7. Fermi Surface Studies of QUASI-1D and QUASI-2D Organic Superconductors Using Periodic Orbit Resonance in High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Kovalev, A. E.; Hill, S.; Takasaki, S.; Yamada, J.; Anzai, H.; Qualls, J. S.; Kawano, K.; Tamura, M.; Naito, T.; Kobayashi, H.

    2005-04-01

    We have studied periodic orbit resonances (PORs) in order to probe the topology of the Fermi surface (FS) of the quasi-1D organic conductor (TMTSF)2ClO4 and the quasi-2D organic conductors κ-(ET)2Cu(NCS)2 and κ-(ET)2I3. The FS of (TMTSF)2ClO4 consists of a pair of weakly corrugated open sheets, while κ-(ET)2Cu(NCS)2 and κ-(ET)2I3 additionally possess warped cylindrical FS sections. In this paper, we review the POR technique for the straightforward case of (TMTSF)2ClO4. We then report on a detailed study of the FS topology for κ-(ET)2Cu(NCS)2.

  8. Application of micro-PIV technique to study multiphase flow of water and liquid CO2 in 2D porous media

    NASA Astrophysics Data System (ADS)

    Kazemifar, F.; Blois, G.; Kyritsis, D. C.; Christensen, K. T.

    2014-11-01

    We study the multiphase flow of water and liquid/supercritical CO2 in 2D porous micromodels, with the goal of developing a more complete understanding of pore-scale flow dynamics for the scenario of geological sequestration of carbon dioxide. Fluorescent microscopy and the micro-PIV technique are employed to simultaneously visualize both phases and obtain the velocity field in the aqueous phase. This technique provides a powerful tool for studying such flow systems and the results give valuable insight into flow processes at the pore scale. The fluid-fluid interface curvature from the images can be used to estimate the local capillary pressure. The velocity measurements illustrate active and passive flow pathways and circulation regions near the fluid-fluid interfaces induced by shear. Thin water films observed on the solid surfaces confirm the hydrophilic nature of the micromodels. The velocity of the said films is measured by particle tracking.

  9. Numerical and experimental study of blowing jet on a high lift airfoil

    NASA Astrophysics Data System (ADS)

    Bobonea, A.; Pricop, M. V.

    2013-10-01

    Active manipulation of separated flows over airfoils at moderate and high angles of attack in order to improve efficiency or performance has been the focus of a number of numerical and experimental investigations for many years. One of the main methods used in active flow control is the usage of blowing devices with constant and pulsed blowing. Through CFD simulation over a 2D high-lift airfoil, this study is trying to highlight the impact of pulsed blowing over its aerodynamic characteristics. The available wind tunnel data from INCAS low speed facility are also beneficial for the validation of the numerical analysis. This study intends to analyze the impact of the blowing jet velocity and slot geometry on the efficiency of an active flow control.

  10. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  11. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  12. Improved Large-Scale Inundation Modelling by 1D-2D Coupling and Consideration of Hydrologic and Hydrodynamic Processes - a Case Study in the Amazon

    NASA Astrophysics Data System (ADS)

    Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.

    2015-12-01

    Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple

  13. Numerical study of fluid motion in bioreactor with two mixers

    SciTech Connect

    Zheleva, I.; Lecheva, A.

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  14. Numerical study of fluid motion in bioreactor with two mixers

    NASA Astrophysics Data System (ADS)

    Zheleva, I.; Lecheva, A.

    2015-10-01

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  15. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  16. A numerical study of bifurcations in a barotropic shear flow

    NASA Technical Reports Server (NTRS)

    Huerre, P.; Keefe, L. R.; Meunier, G.; Redekopp, L. G.; Spalart, P. R.; Rogers, M. M.

    1988-01-01

    In the last few years, more and more evidence has emerged suggesting that transition to turbulence may be viewed as a succession of bifurcations to deterministic chaos. Most experimental and numerical observations have been restricted to Rayleigh-Benard convection and Taylor-Couette flow between concentric cylinders. An attempt is made to accurately describe the bifurcation sequence leading to chaos in a 2-D temporal free shear layer on the beta-plane. The beta-plane is a locally Cartesian reduction of the equations describing the dynamicss of a shallow layer of fluid on a rotating spherical planet. It is a valid model for large scale flows of interest in meteorology and oceanography.

  17. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  18. Critical Dynamics in Quenched 2D Atomic Gases

    NASA Astrophysics Data System (ADS)

    Larcher, F.; Dalfovo, F.; Proukakis, N. P.

    2016-05-01

    Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.

  19. Study of non-axisymmetric divertor footprints using 2-D IR and visible cameras and a 3-D heat conduction solver in NSTX

    SciTech Connect

    Ahn, J-W.; Gan, K. F.; Scotti, F.; Lore, J. D.; Maingi, R.; Canik, J. M.; Gray, T. K.; McLean, A. G.; Roquemore, A. L.; Soukhanovskii, V. A.

    2013-01-12

    Toroidally non-axisymmetric divertor profiles during the 3-D field application and for ELMs are studied with simultaneous observation by a new wide angle visible camera and a high speed IR camera. A newly implemented 3-D heat conduction code, TACO, is used to obtain divertor heat flux. The wide angle camera data confirmed the previously reported result on the validity of vacuum field line tracing on the prediction of split strike point pattern by 3-D fields as well as the phase locking of ELM heat flux to the 3-D fields. TACO calculates the 2- D heat flux distribution allowing assessment of toroidal asymmetry of peak heat flux and heat flux width. Lastly, the degree of asymmetry (εDA) is defined to quantify the asymmetric heat deposition on the divertor surface and is found to have a strong positive dependence on peak heat flux.

  20. Proton 2D NMR and distance geometry study of the folding of Ecballium elaterium trypsin inhibitor, a member of the squash inhibitors family

    SciTech Connect

    Heitz, A.; Chiche, L.; Le-Nguyen, D.; Castro, B. )

    1989-03-21

    The solution conformation of synthetic Ecballium elaterium trypsin inhibitor II, a 28-residue peptide with 3 disulfide bridges, has been studied by {sup 1}H 2D NMR measurements. Secondary structure elements were determined: a miniantiparallel {beta}-sheet Met 7-Cys 9 and Gly 25-Cys 27, a {beta}-hairpin 20-28 with {beta}-turn 22-25, and two tight turns Asp 12-Cys 15 and Leu 16-Cys 19. A set of interproton distance restraints deduced from two-dimensional nuclear Overhauser enhancement spectra and 13 {phi} backbone torsion angles restraints were used as the basis of three-dimensional structure computations including disulfide bridges arrangement by using distance geometry calculations. Computations for the 15 possible S-S linkage combinations lead to the proposal of the array 2-19, 9-21, 15-27 as the most probably structure for EETI II.

  1. Correlation of Global Strain Rate and Left Ventricular Filling Pressure in Patients with Coronary Artery Disease: A 2-D Speckle-Tracking Study.

    PubMed

    Ma, Hong; Wu, Wei-Chun; Xie, Rong-Ai; Gao, Li-Jian; Wang, Hao

    2016-02-01

    The aim of the present study was to evaluate the role of 2-D speckle-tracking imaging in the prediction of left ventricular filling pressure in patients with coronary artery disease (CAD) and normal left ventricular ejection fraction (LVEF). Eighty-four patients with CAD and 30 healthy controls were recruited prospectively. The longitudinal strain rate (SR) curves were determined in three apical views of the left ventricle long axis. Circumferential and radial SR curves were determined in three short-axis views. Left ventricular end-diastolic pressure (LVEDP) was invasively obtained by left heart catheterization. Compared with the 30 controls, the patients with CAD had significantly lower global SR during early diastole (SRe) and higher E/SRe in three directions of myocardial deformation. CAD patients with elevated LVEDP had significantly lower SRe and higher E/SRe of three deformations. Pearson's correlation analysis revealed that LVEDP correlated positively with E/E' ratio, radial SRe and longitudinal and circumferential E/SRe. LVEDP correlated negatively with longitudinal and circumferential SRe and radial E/SRe. Receiver operating characteristic curve analysis revealed that these SR indexes predicted elevated LVEDP (areas under the curve: longitudinal E/SRe = 0.74, circumferential E/SRe = 0.74, circumferential SRe = 0.70, longitudinal SRe = 0.69, radial E/SRe = 0.68, radial SRe = 0.65), but neither was superior to the tissue Doppler imaging index E/E' (area under the curve = 0.84). The present study indicates that 2-D speckle-tracking imaging is a practical method for evaluating LV filling pressure, but it might not provide additional advantages compared with E/E' in CAD patients.

  2. Comparative numerical study on the optimal vulcanization of rubber compounds through traditional curing and microwaves

    NASA Astrophysics Data System (ADS)

    Milani, Gabriele; Milani, Federico

    2012-12-01

    The main problem in the industrial production process of thick EPM/EPDM elements is constituted by the different temperatures which undergo internal (cooler) and external regions. Indeed, while internal layers remain essentially under-vulcanized, external coating is always over-vulcanized, resulting in an overall average tensile strength insufficient to permit the utilization of the items in several applications where it is required a certain level of performance. Possible ways to improve rubber output mechanical properties include a careful calibration of exposition time and curing temperature in traditional heating or a vulcanization through innovative techniques, such as microwaves. In the present paper, a comprehensive numerical model able to give predictions on the optimized final mechanical properties of vulcanized 2D and 3D thick rubber items is presented and applied to a meaningful example of engineering interest. A detailed comparative numerical study is finally presented in order to establish pros and cons of traditional vulcanization vs microwaves curing.

  3. Studying Spacecraft Charging via Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Delzanno, G. L.; Moulton, D.; Meierbachtol, C.; Svyatskiy, D.; Vernon, L.

    2015-12-01

    The electrical charging of spacecraft due to bombarding charged particles can affect their performance and operation. We study this charging using CPIC; a particle-in-cell code specifically designed for studying plasma-material interactions [1]. CPIC is based on multi-block curvilinear meshes, resulting in near-optimal computational performance while maintaining geometric accuracy. Relevant plasma parameters are imported from the SHIELDS framework (currently under development at LANL), which simulates geomagnetic storms and substorms in the Earth's magnetosphere. Simulated spacecraft charging results of representative Van Allen Probe geometries using these plasma parameters will be presented, along with an overview of the code. [1] G.L. Delzanno, E. Camporeale, J.D. Moulton, J.E. Borovsky, E.A. MacDonald, and M.F. Thomsen, "CPIC: A Curvilinear Particle-In-Cell Code for Plasma-Material Interaction Studies," IEEE Trans. Plas. Sci., 41 (12), 3577 (2013).

  4. The double pendulum: a numerical study

    NASA Astrophysics Data System (ADS)

    Calvão, A. M.; Penna, T. J. P.

    2015-07-01

    Analysis and characterization of dynamical systems is a common task in computational physics. It frequently demands new algorithms for finding solutions and new techniques for analysing the results. Here we review some of these algorithms and techniques in the study of the double pendulum, which, despite being a very simple mechanical system, can display complex behaviour. Even though it has been studied before (Yu and Bi 1998 J. Sound Vib. 217 691736; Stachowiak and Okada 2006 Chaos, Solitons & Fractals 29 417422; Rafat, Wheatland and Bedding 2009 Am. J. Phys. 77 216-23; Levien and Tan 1993 Am. J. Phys. 61 103844), here we present a deeper discussion of the several methods and algorithms that are used in typical studies of dynamical systems. In addition, we present new results obtained through techniques commonly used in the analysis of complex systems.

  5. Hybrid plan verification for intensity-modulated radiation therapy (IMRT) using the 2D ionization chamber array I'mRT MatriXX--a feasibility study.

    PubMed

    Dobler, Barbara; Streck, Natalia; Klein, Elisabeth; Loeschel, Rainer; Haertl, Petra; Koelbl, Oliver

    2010-01-21

    The 2D ionization chamber array I'mRT MatriXX (IBA, Schwarzenbruck, Germany) has been developed for absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT) for perpendicular beam incidence. The aim of this study is to evaluate the applicability of I'mRT MatriXX for oblique beam incidence and hybrid plan verification of IMRT with original gantry angles. For the assessment of angular dependence, open fields with gantry angles in steps of 10 degrees were calculated on a CT scan of I'mRT MatriXX. For hybrid plan verification, 17 clinical IMRT plans and one rotational plan were used. Calculations were performed with pencil beam (PB), collapsed cone (CC) and Monte Carlo (MC) methods, which had been previously validated. Measurements were conducted on an Elekta SynergyS linear accelerator. To assess the potential and limitations of the system, gamma evaluation was performed with different dose tolerances and distances to agreement. Hybrid plan verification passed the gamma test with 4% dose tolerance and 3 mm distance to agreement in all cases, in 82-88% of the cases for tolerances of 3%/3 mm, and in 59-76% of the cases if 3%/2 mm were used. Separate evaluation of the low dose and high dose regions showed that I'mRT MatriXX can be used for hybrid plan verification of IMRT plans within 3% dose tolerance and 3 mm distance to agreement with a relaxed dose tolerance of 4% in the low dose region outside the multileaf collimator (MLC).

  6. Respiratory motion compensation for simultaneous PET/MR based on a 3D-2D registration of strongly undersampled radial MR data: a simulation study

    NASA Astrophysics Data System (ADS)

    Rank, Christopher M.; Heußer, Thorsten; Flach, Barbara; Brehm, Marcus; Kachelrieß, Marc

    2015-03-01

    We propose a new method for PET/MR respiratory motion compensation, which is based on a 3D-2D registration of strongly undersampled MR data and a) runs in parallel with the PET acquisition, b) can be interlaced with clinical MR sequences, and c) requires less than one minute of the total MR acquisition time per bed position. In our simulation study, we applied a 3D encoded radial stack-of-stars sampling scheme with 160 radial spokes per slice and an acquisition time of 38 s. Gated 4D MR images were reconstructed using a 4D iterative reconstruction algorithm. Based on these images, motion vector fields were estimated using our newly-developed 3D-2D registration framework. A 4D PET volume of a patient with eight hot lesions in the lungs and upper abdomen was simulated and MoCo 4D PET images were reconstructed based on the motion vector fields derived from MR. For evaluation, average SUVmean values of the artificial lesions were determined for a 3D, a gated 4D, a MoCo 4D and a reference (with ten-fold measurement time) gated 4D reconstruction. Compared to the reference, 3D reconstructions yielded an underestimation of SUVmean values due to motion blurring. In contrast, gated 4D reconstructions showed the highest variation of SUVmean due to low statistics. MoCo 4D reconstructions were only slightly affected by these two sources of uncertainty resulting in a significant visual and quantitative improvement in terms of SUVmean values. Whereas temporal resolution was comparable to the gated 4D images, signal-to-noise ratio and contrast-to-noise ratio were close to the 3D reconstructions.

  7. Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures

    NASA Astrophysics Data System (ADS)

    Kindracki, J.; Kobiera, A.; Wolański, P.; Gut, Z.; Folusiak, M.; Swiderski, K.

    2011-10-01

    Experimental and numerical study of rotating detonation is presented. The experimental study is focused on the evaluation of the geometry of the detonation chamber and the conditions at which the rotating detonation can propagate in cylindrical channels. Lean hydrogen-air mixtures were tested in the experiments. The pressure measured at different locations was used to check the detonative nature of combustion. Also, the relationship between detonation velocity and operation conditions is analyzed in the paper. The experimental study is accompanied with numerical analysis. The paper briefly presents the results of two-dimensional (2D) numerical simulation of detonative combustion. The detonating mixture is created by mixting hydrogen with air. The air is injected axially to the chamber and hydrogen is injected through the inner wall of the chamber in radial direction. Application of proper injection conditions (pressure and nozzle area) allows establishing a stable rotating detonation like in the experiments. The detonation can be sustained for some range of conditions which are studied herein. The analysis of mean parameters of the process is provided as well. The numerical simulation results agree well with the experiments.

  8. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  9. A Numerical Study of Nonlinear Wave Interactions

    NASA Astrophysics Data System (ADS)

    de Bakker, A.; Tissier, M.; Ruessink, G.

    2014-12-01

    Nonlinear triad interactions redistribute energy among a wave field, which transforms the shape of the incident short waves (f = 0.05 - 2 Hz) and generates energy at infragravity frequencies (f = 0.005-0.05 Hz). Recently, it has been suggested that infragravity energy may dissipate by energy transfers from infragravity frequencies to either the (former) short-wave spectral peak, or through infragravity-infragravity self-interactions that cause the infragravity waves to steepen and to eventually break. To investigate these infragravity dissipation mechanisms, we use the non-hydrostatic SWASH model. In this study, we first validate the model with the high-resolution GLOBEX laboratory data set and then explore the dependence of the energy transfers, with a focus on infragravity frequencies, on beach slope. Consistent with previous studies we find that SWASH is able to reproduce the transformation and corresponding nonlinear energy transfers of shoreward propagating waves to great detail. Bispectral analysis is used to study the coupling between wave frequencies; nonlinear energy transfers are then quantified using the Boussinesq coupling coefficient. To obtain more detailed insight we divide the nonlinear interactions in four categories based on triads including 1) infragravity frequencies only, 2) two infragravity frequencies and one short-wave frequency, 3) one infragravity frequency and two short-wave frequencies and 4) short-wave frequencies only. Preliminary results suggest that interactions are rather weak on gently beach slopes (1:80) and, in the innermost part of the surf zone, are dominated by infragravity-infragravity interactions. On steeper slopes (1:20), interactions are stronger, but entirely dominated by those involving short-wave frequencies only. The dependence of the transfers on offshore wave conditions and beach shape will be explored too. Funded by NWO.

  10. Cryogenic cavitating flow in 2D laval nozzle

    NASA Astrophysics Data System (ADS)

    Tani, Naoki; Nagashima, Toshio

    2003-05-01

    Cavitation is one of the troublesome problems in rocket turbo pumps, and since most of high-efficiency rocket propellants are cryogenic fluids, so called “thermodynamic effect” becomes more evident than in water. In the present study, numerical and experimental study of liquid nitrogen cavitation in 2D Laval nozzle was carried out, so that the influence of thermodynamic effect was examined. It was revealed that temperature and cavitation have strong inter-relationship with each other in thermo-sensitive cryogenic fluids.

  11. Numerical studies of open ocean deep convection

    NASA Astrophysics Data System (ADS)

    Sander, Johannes; Wolf-Gladrow, Dieter; Olbers, Dirk

    1995-10-01

    Open ocean deep convection is examined with a nonhydrostatic model based on primitive equations. Strong cooling on the surface of the ocean enforces vertical motion which takes place in the narrow regions of convective cells. Different equations of state are considered, and it is shown that a linear equation of state with a constant thermal expansion coefficient cannot represent the buoyancy field and fluxes properly. The inclusion of thermobaric effects leads to additional vertical acceleration in the whole water column. The parametrization of the convective fluxes by a convective adjustment algorithm represents the horizontal mean temperature quite well but suppresses the entire vertical mass transport within the convective cells. This mass transport may be important for the transport of other tracers. Investigation of an energy cycle of the convective motion sorts out sources and sinks and reveals the conversion between different forms of energy during convective events. Both the vertical and the horizontal component of the Earth rotation vector contribute to the time mean energy balance with the same order of magnitude, but the instantaneous amplitudes of the distinct terms may differ substantially. A sensitivity study with respect to eddy and thermal diffusion coefficients distinguishes two regions; at high values of the diffusivities the velocities and tracer distributions show that a strong dependence on this values occurs, while for sufficiently small coefficients, only a weak dependence is observed.

  12. Numerical Study of Explosive Dispersal of Particles

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Annamalai, Subramanian; Neal, Christopher; Jackson, Thomas; Balachandar, S.

    2014-11-01

    Recent experiments have shown that when a layer of solid particles is explosively dispersed, a multiphase instability front occurs, which leads to the formation of aerodynamically stable jet-like particle structures. We aim at replicating these experimental observations using highly resolved large-scale simulations, to improve our understanding of particulate front instabilities and jetting phenomenon. We consider a cylindrical core of high pressure and density gas generated from energetic material. Throughout the length of the cylinder, an annular region of micron-sized inert spherical particles surrounds the charge. The particles are treated as point particles, the gas is treated as a continuum, and a rigorous two-way coupled compressible multiphase formulation is used. The jets are believed to have their origin during the early phase of rapid acceleration of the bed of particles. Therefore, this work focuses on capturing the early-time behavior and growth of the instabilities caused by the presence of particles. The accuracy of our predictive simulations will be studied by comparing the shock radius, particle front location, and other relevant metrics against the data extracted from experimental results. This work is supported by the U.S. DoE, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  13. A numerical study of aircraft empennage buffet

    NASA Astrophysics Data System (ADS)

    Findlay, David Bruce

    1999-10-01

    A method to predict tightly-coupled dynamic aeroelastic vertical tail buffet was presented. Analysis of high angle of attack vertical tail buffet was performed. A Navier-Stokes fluid dynamics method was coupled with a modal structural dynamics method. The approach was to improve upon existing methods to evaluate complex geometric arrangements with general multi-zone interfacing. The method was demonstrated through a step- wise approach beginning with a simple configuration and building up to a complete aircraft at high angle of attack with flexible tail surfaces. Results compared well with in-flight and Full-scale wind tunnel measured trends and frequency content. Comparisons with measured absolute values of buffet loads showed the computations to be under-predicting the test data. This was primarily attributed to insufficient grid resolution, in particular in the vicinity of the main vortex flow. The demanding computational requirements of full-configuration tail buffet prediction limited the fidelity. The primary contribution of the present study was the extension and demonstration of a tightly-coupled aeroelastic computational fluid dynamics/structural dynamics based analysis method for analysis of aircraft empennage buffet. The focus was on improving the development process associated with characterizing empennage buffet loads and the resulting structural response. The intent was to establish a computationally based alternative approach to the experimentally based process currently employed. The computational method was employed to provide far greater insight into the flow physics phenomena associated with specific configurations and conditions of interest.

  14. Numerical study of insect free hovering flight

    NASA Astrophysics Data System (ADS)

    Wu, Di; Yeo, Khoon Seng; Lim, Tee Tai; Fluid lab, Mechanical Engineering, National University of Singapore Team

    2012-11-01

    In this paper we present the computational fluid dynamics study of three-dimensional flow field around a free hovering fruit fly integrated with unsteady FSI analysis and the adaptive flight control system for the first time. The FSI model being specified for fruitfly hovering is achieved by coupling a structural problem based on Newton's second law with a rigorous CFD solver concerning generalized finite difference method. In contrast to the previous hovering flight research, the wing motion employed here is not acquired from experimental data but governed by our proposed control systems. Two types of hovering control strategies i.e. stroke plane adjustment mode and paddling mode are explored, capable of generating the fixed body position and orientation characteristic of hovering flight. Hovering flight associated with multiple wing kinematics and body orientations are shown as well, indicating the means by which fruitfly actually maintains hovering may have considerable freedom and therefore might be influenced by many other factors beyond the physical and aerodynamic requirements. Additionally, both the near- and far-field flow and vortex structure agree well with the results from other researchers, demonstrating the reliability of our current model.

  15. Numerical Studies of Properties of Confined Helium

    NASA Technical Reports Server (NTRS)

    Manousakis, Efstratios

    2003-01-01

    We carry out state of the art simulations of properties of confined liquid helium near the superfluid transition to a degree of accuracy which allows to make predictions for the outcome of fundamental physics experiments in microgravity. First we report our results for the finite-size scaling behavior of heat capacity of superfluids for cubic and parallel-plate geometry. This allows us to study the crossover from zero and two dimensions to three dimensions. Our calculated scaling functions are in good agreement with recently measured specific heat scaling functions for the above mentioned geometries. We also present our results of a quantum simulation of submonolayer of molecular hydrogen deposited on an ideal graphite substrate using path-integral quantum Monte Carlo simulation. We find that the monolayer phase diagram is rich and very similar to that of helium monolayer. We are able to uncover the main features of the complex monolayer phase diagram, such as the commensurate solid phases and the commensurate to incommensurate transition, in agreement with the experiments and to find some features which are missing from the experimental analysis.

  16. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  17. 2 D - QSAR studies on CYP26A1 inhibitory activity of 1-[benzofuran-2-yl-(4-alkyl/aryl-phenyl)-methyl]- 1 H-triazoles.

    PubMed

    Yadav, Madhu

    2011-01-01

    The Quantitative Structure Activity Relationship (QSAR) study is performed over a set of 15, 4-alkyl/aryl-substituted 1- [benzofuran-2-yl-phenylmethyl]-1 H-triazoles derivatives. This study is based on the application of physicochemical parameters in QSAR. The parameters include (MR (molar refractivity), MW (molecular weight), Pc (parachor), St (surface tension), D (density), Ir (index of refraction) and log P (partition coefficient). The parameters describing physiochemical properties are used as independent variables and the biological activity (IC(50)) is considered as dependent variable in multiple regression analysis. Different models were generated with high co-efficient of determination (R(2)). The 2D-QSAR study identified compounds capable of inhibiting the metabolic breakdown of the retinoid (trans-retinoic acid (ATRA)) involved in the activation of specific nuclear Retinoic acid receptors (RARs). This study identifies R115866 as a potential inhibitor of the cytochrome P450 (CYP) mediated metabolism with increased RA levels for retinoid actions. PMID:22347780

  18. 2d index and surface operators

    NASA Astrophysics Data System (ADS)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  19. Analytical and numerical studies on a single-droplet evaporation and combustion under forced convection

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.; Li, K.

    2015-08-01

    Existing droplet evaporation/combustion models in computational fluid dynamics (CFD) simulation of spray combustion are based on simplified 1-D models. Both these models and recently developed 3-D models of single-droplet combustion do not give the conditions for the different existing droplet combustion modes. In this paper, droplet evaporation and combustion are studied both analytically and numerically. In the analytical solution, a 2-D axisymmetric flow surrounding an evaporating and combusting droplet was considered. The governing equations were solved using an integral method, similar to the Karman-Pohlhausen method for solving boundary-layer flows with pressure gradient. The results give a local evaporation rate and flame radius in agreement with experimental results. In numerical simulation, 3-D combusting gas flows surrounding an ethanol droplet were studied. The prediction results show three modes of droplet combustion under different relative velocities, explaining the change in the evaporation constant with an increase in relative velocity observed in experiments. This implies that different droplet combustion models should be developed in simulating spray combustion. The predicted local evaporation rate and flame radius by numerical simulation are in agreement with the analytical solution in the range of azimuthal angles . The numerical results indicate that the drag force of an evaporating and combusting droplet is much smaller than that of a cold solid particle, and thus the currently used drag models should be modified.

  20. Fractional Counts for Authorship Attribution: A Numerical Study.

    ERIC Educational Resources Information Center

    Burrell, Quentin; Rousseau, Ronald

    1995-01-01

    Discussion of authorship distributions focuses on the results of a numerical study for fractional authorship attribution. Highlights include coauthors; multinomial coefficients; Lotka functions; probability distributions of articles per author; and probability distributions of authors per article. (LRW)

  1. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  2. Numerical study of free surface flow around large obstacles

    NASA Astrophysics Data System (ADS)

    Zhang, Yanming

    In this thesis a numerical model was developed to study three-dimensional turbulent flows around large obstacles in an open channel. With this numerical model, a series of numerical tests was carried out, and the properties of turbulent flows around a single obstacle or a cluster of obstacles were investigated. The origin of this study was to study the flow properties around fish habitat structures. Actually, the numerical model can be applied to the study of general turbulent flows under free surfaces. In the numerical model the three-dimensional Reynolds-averaged Navier-Stokes equations in conjunction with k-epsilon turbulence model were solved in a free surface fitted coordinate system. First, different forms of governing equations for turbulent flow were investigated, and a concise form of fully transformed governing equations in a general curvilinear coordinate system was derived. In the numerical solution the FAVOR (Fractional Area/Volume Obstacle Representation) technique was extended into the free surface fitted coordinate system. With this feature the problem of complex turbulent flow with a free surface and general shaped obstacles could be solved efficiently. To locate the free surface, a method based on integrating the momentum equation in the vertical direction was developed. After study and tests of several popular difference schemes, a QUICK scheme with UMIST limiter was adopted in this numerical model. Several test cases were presented to demonstrate the present numerical model. The first test case was to simulate a submerged hydraulic jump. The calculated velocity, free surface profile and turbulence properties of the flow showed a close match with the experimental data. The second test was a submerged hydraulic jump with a baffle sill. The comparison between numerical and experimental data indicated that the current numerical model could catch the general flow structures of the submerged hydraulic jumps. The last two test cases were flows around a

  3. Numerical comparison of Kalman filter algorithms - Orbit determination case study

    NASA Technical Reports Server (NTRS)

    Bierman, G. J.; Thornton, C. L.

    1977-01-01

    Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity to variations in the a priori statistics.

  4. Study on Fracture Behavior of 2D-C/C Composite for Application to Control Rod of Very High Temperature Reactor

    NASA Astrophysics Data System (ADS)

    Sumita, J.; Fujita, I.; Shibata, T.; Makita, T.; Takagi, T.; Kunimoto, E.; Sawa, K.; Kim, W.; Park, J.

    2011-10-01

    For a control rod element of the Very High Temperature Reactor, a carbon fiber reinforced carbon matrix composite (C/C composite) is one of the major candidate materials for its high strength and thermal stability. In this study, in order to establish the data base of the 2D-C/C composite, the fracture data was obtained by simulating the crack expected to be generated under the VHTR condition and the oxidation effect on the fracture behavior was evaluated. Moreover, the fracture mechanism of the C/C composite was investigated through scanning electron microscope observation. This study showed that the oxidized matrix caused reduction of the fracture toughness and the reduction ratio was dependent on the density of matrix and a number cracks. With increasing the oxidation, the fracture toughness is mainly dependent on the fiber characteristics. Furthermore, the crack grows along the boundary between fiber bundles without breaking the fiber. The cracks which were initiated at the interface between the matrix and the fiber were gathered into the voids in the boundary between fiber bundles, and, then, the cracks grew up in the matrix.

  5. Consensus brain-derived protein, extraction protocol for the study of human and murine brain proteome using both 2D-DIGE and mini 2DE immunoblotting.

    PubMed

    Fernandez-Gomez, Francisco-Jose; Jumeau, Fanny; Derisbourg, Maxime; Burnouf, Sylvie; Tran, Hélène; Eddarkaoui, Sabiha; Obriot, Hélène; Dutoit-Lefevre, Virginie; Deramecourt, Vincent; Mitchell, Valérie; Lefranc, Didier; Hamdane, Malika; Blum, David; Buée, Luc; Buée-Scherrer, Valérie; Sergeant, Nicolas

    2014-01-01

    Two-dimensional gel electrophoresis (2DE) is a powerful tool to uncover proteome modifications potentially related to different physiological or pathological conditions. Basically, this technique is based on the separation of proteins according to their isoelectric point in a first step, and secondly according to their molecular weights by SDS polyacrylamide gel electrophoresis (SDS-PAGE). In this report an optimized sample preparation protocol for little amount of human post-mortem and mouse brain tissue is described. This method enables to perform both two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mini 2DE immunoblotting. The combination of these approaches allows one to not only find new proteins and/or protein modifications in their expression thanks to its compatibility with mass spectrometry detection, but also a new insight into markers validation. Thus, mini-2DE coupled to western blotting permits to identify and validate post-translational modifications, proteins catabolism and provides a qualitative comparison among different conditions and/or treatments. Herein, we provide a method to study components of protein aggregates found in AD and Lewy body dementia such as the amyloid-beta peptide and the alpha-synuclein. Our method can thus be adapted for the analysis of the proteome and insoluble proteins extract from human brain tissue and mice models too. In parallel, it may provide useful information for the study of molecular and cellular pathways involved in neurodegenerative diseases as well as potential novel biomarkers and therapeutic targets. PMID:24747743

  6. Ligand Efficiency Outperforms pIC50 on Both 2D MLR and 3D CoMFA Models: A Case Study on AR Antagonists.

    PubMed

    Li, Jiazhong; Bai, Fang; Liu, Huanxiang; Gramatica, Paola

    2015-12-01

    The concept of ligand efficiency is defined as biological activity in each molecular size and is widely accepted throughout the drug design community. Among different LE indices, surface efficiency index (SEI) was reported to be the best one in support vector machine modeling, much better than the generally and traditionally used end-point pIC50. In this study, 2D multiple linear regression and 3D comparative molecular field analysis methods are employed to investigate the structure-activity relationships of a series of androgen receptor antagonists, using pIC50 and SEI as dependent variables to verify the influence of using different kinds of end-points. The obtained results suggest that SEI outperforms pIC50 on both MLR and CoMFA models with higher stability and predictive ability. After analyzing the characteristics of the two dependent variables SEI and pIC50, we deduce that the superiority of SEI maybe lie in that SEI could reflect the relationship between molecular structures and corresponding bioactivities, in nature, better than pIC50. This study indicates that SEI could be a more rational parameter to be optimized in the drug discovery process than pIC50.

  7. HP-Lattice QSAR for dynein proteins: experimental proteomics (2D-electrophoresis, mass spectrometry) and theoretic study of a Leishmania infantum sequence.

    PubMed

    Dea-Ayuela, María Auxiliadora; Pérez-Castillo, Yunierkis; Meneses-Marcel, Alfredo; Ubeira, Florencio M; Bolas-Fernández, Francisco; Chou, Kuo-Chen; González-Díaz, Humberto

    2008-08-15

    The toxicity and inefficacy of actual organic drugs against Leishmaniosis justify research projects to find new molecular targets in Leishmania species including Leishmania infantum (L. infantum) and Leishmaniamajor (L. major), both important pathogens. In this sense, quantitative structure-activity relationship (QSAR) methods, which are very useful in Bioorganic and Medicinal Chemistry to discover small-sized drugs, may help to identify not only new drugs but also new drug targets, if we apply them to proteins. Dyneins are important proteins of these parasites governing fundamental processes such as cilia and flagella motion, nuclear migration, organization of the mitotic splinde, and chromosome separation during mitosis. However, despite the interest for them as potential drug targets, so far there has been no report whatsoever on dyneins with QSAR techniques. To the best of our knowledge, we report here the first QSAR for dynein proteins. We used as input the Spectral Moments of a Markov matrix associated to the HP-Lattice Network of the protein sequence. The data contain 411 protein sequences of different species selected by ClustalX to develop a QSAR that correctly discriminates on average between 92.75% and 92.51% of dyneins and other proteins in four different train and cross-validation datasets. We also report a combined experimental and theoretic study of a new dynein sequence in order to illustrate the utility of the model to search for potential drug targets with a practical example. First, we carried out a 2D-electrophoresis analysis of L. infantum biological samples. Next, we excised from 2D-E gels one spot of interest belonging to an unknown protein or protein fragment in the region M<20,200 and pI<4. We used MASCOT search engine to find proteins in the L. major data base with the highest similarity score to the MS of the protein isolated from L. infantum. We used the QSAR model to predict the new sequence as dynein with probability of 99.99% without

  8. New dicyano cyclometalated compounds containing Pd(II)-Tl(I) bonds as building blocks in 2D extended structures: synthesis, structure, and luminescence studies.

    PubMed

    Sicilia, Violeta; Forniés, Juan; Fuertes, Sara; Martín, Antonio

    2012-10-15

    New mixed metal complexes [PdTl(C^N)(CN)(2)] [C^N = 7,8-benzoquinolinate (bzq, 3); 2-phenylpyridinate (ppy, 4)] have been synthesized by reaction of their corresponding precursors (NBu(4))[Pd(C^N)(CN)(2)] [C^N = bzq (1), ppy (2)] with TlPF(6). Compounds 3 and 4 were studied by X-ray diffraction, showing the not-so-common Pd(II)-Tl(I) bonds. Both crystal structures exhibit 2-D extended networks fashioned by organometallic "PdTl(C^N)(CN)(2)" units, each one containing a donor-acceptor Pd(II)-Tl(I) bond, which are connected through additional Tl···N≡C contacts and weak Tl···π (bzq) contacts in the case of 3. Solid state emissions are red-shifted compared with those of the precursors and have been assigned to metal-metal'-to-ligand charge transfer (MM'LCT [d/s σ*(Pd,Tl) → π*(C^N)]) mixed with some intraligand ((3)IL[π(C^N) → π*(C^N)]) character. In diluted solution either at room temperature or 77 K, the Pd-Tl bond is no longer retained as confirmed by mass spectrometry, NMR, and UV-vis spectroscopic techniques.

  9. Reactions of Th(+) + H2, D2, and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Quantum Chemical Calculations.

    PubMed

    Cox, Richard M; Armentrout, P B; de Jong, Wibe A

    2016-03-01

    Kinetic energy dependent reactions of Th(+) with H2, D2, and HD were studied using a guided ion beam tandem mass spectrometer. Formation of ThH(+) and ThD(+) is endothermic in all cases with similar thresholds. Branching ratio results for the reaction with HD indicate that Th(+) reacts via a statistical mechanism, similar to Hf(+). The kinetic energy dependent cross sections for formation of ThH(+) and ThD(+) were evaluated to determine a 0 K bond dissociation energy (BDE) of D0(Th(+)-H) = 2.45 ± 0.07 eV. This value is in good agreement with a previous result obtained from analysis of the Th(+) + CH4 reaction. D0(Th(+)-H) is observed to be larger than its transition metal congeners, TiH(+), ZrH(+), and HfH(+), believed to be a result of lanthanide contraction. The reactions with H2 were also explored using quantum chemical calculations that include a semiempirical estimation and explicit calculation of spin-orbit contributions. These calculations agree nicely and indicate that ThH(+) most likely has a (3)Δ1 ground level with a low-lying (1)Σ(+) excited state. Theory also provides the reaction potential energy surfaces and BDEs that are in reasonable agreement with experiment.

  10. Reactions of Th(+) + H2, D2, and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Quantum Chemical Calculations.

    PubMed

    Cox, Richard M; Armentrout, P B; de Jong, Wibe A

    2016-03-01

    Kinetic energy dependent reactions of Th(+) with H2, D2, and HD were studied using a guided ion beam tandem mass spectrometer. Formation of ThH(+) and ThD(+) is endothermic in all cases with similar thresholds. Branching ratio results for the reaction with HD indicate that Th(+) reacts via a statistical mechanism, similar to Hf(+). The kinetic energy dependent cross sections for formation of ThH(+) and ThD(+) were evaluated to determine a 0 K bond dissociation energy (BDE) of D0(Th(+)-H) = 2.45 ± 0.07 eV. This value is in good agreement with a previous result obtained from analysis of the Th(+) + CH4 reaction. D0(Th(+)-H) is observed to be larger than its transition metal congeners, TiH(+), ZrH(+), and HfH(+), believed to be a result of lanthanide contraction. The reactions with H2 were also explored using quantum chemical calculations that include a semiempirical estimation and explicit calculation of spin-orbit contributions. These calculations agree nicely and indicate that ThH(+) most likely has a (3)Δ1 ground level with a low-lying (1)Σ(+) excited state. Theory also provides the reaction potential energy surfaces and BDEs that are in reasonable agreement with experiment. PMID:26414691

  11. A 2-d modeling approach for studying the formation, maintenance, and decay of Tropical Tropopause Layer Cirrus associated with Deep Convection

    NASA Astrophysics Data System (ADS)

    Henz, D. R.; Hashino, T.; Tripoli, G. J.; Smith, E. A.

    2009-12-01

    This study is being conducted to examine the distribution, variability, and formation-decay processes of TTL cirrus associated with tropical deep convection using the University of Wisconsin Non-Hydrostatic modeling system (NMS). The experimental design is based on Tripoli, Hack and Kiehl (1992) which explicitly simulates the radiative-convective equilibrium of the tropical atmosphere over extended periods of weeks or months using a 2D periodic cloud resolving model. The experiment design includes a radiation parameterization to explicitly simulate radiative transfer through simulated crystals. Advanced Microphysics Prediction System (AMP) will be used to simulate microphysics by employing SHIPS (Spectral Habit Ice Prediction System) for ice, SLiPS (Spectral Liquid Prediction System) for droplets, and SAPS (Spectral Aerosol Prediction System) for aerosols. The ice scheme called SHIPS is unique in that ice particle properties (such as size, particle density, and crystal habitats) are explicitly predicted in a CRM (Hashino and Tripoli, 2007, 2008). The Advanced Microphysics Prediction System (AMPS) technology provides a particularly strong tool that effectively enables the explicit modeling of the TTL cloud microphysics and dynamical processes which has yet to be accomplished by more traditional bulk microphysics approaches.

  12. New dicyano cyclometalated compounds containing Pd(II)-Tl(I) bonds as building blocks in 2D extended structures: synthesis, structure, and luminescence studies.

    PubMed

    Sicilia, Violeta; Forniés, Juan; Fuertes, Sara; Martín, Antonio

    2012-10-15

    New mixed metal complexes [PdTl(C^N)(CN)(2)] [C^N = 7,8-benzoquinolinate (bzq, 3); 2-phenylpyridinate (ppy, 4)] have been synthesized by reaction of their corresponding precursors (NBu(4))[Pd(C^N)(CN)(2)] [C^N = bzq (1), ppy (2)] with TlPF(6). Compounds 3 and 4 were studied by X-ray diffraction, showing the not-so-common Pd(II)-Tl(I) bonds. Both crystal structures exhibit 2-D extended networks fashioned by organometallic "PdTl(C^N)(CN)(2)" units, each one containing a donor-acceptor Pd(II)-Tl(I) bond, which are connected through additional Tl···N≡C contacts and weak Tl···π (bzq) contacts in the case of 3. Solid state emissions are red-shifted compared with those of the precursors and have been assigned to metal-metal'-to-ligand charge transfer (MM'LCT [d/s σ*(Pd,Tl) → π*(C^N)]) mixed with some intraligand ((3)IL[π(C^N) → π*(C^N)]) character. In diluted solution either at room temperature or 77 K, the Pd-Tl bond is no longer retained as confirmed by mass spectrometry, NMR, and UV-vis spectroscopic techniques. PMID:22998590

  13. 2D dry granular free-surface flow over complex topography with obstacles. Part I: experimental study using a consumer-grade RGB-D sensor

    NASA Astrophysics Data System (ADS)

    Caviedes-Voullième, Daniel; Juez, Carmelo; Murillo, Javier; García-Navarro, Pilar

    2014-12-01

    Avalanches, debris flows and other types of gravity-driven granular flows are a common hazard in mountainous regions. These regions often have human settlements in the lower parts of valleys, with human structures dangerously exposed to the destructive effects of these geophysical flows. Therefore a scientific effort has been made to understand, model and simulate geophysical granular flows. In order for computer models and simulations to be of predictive value they need to be validated under controlled, yet nature-like conditions. This work presents an experimental study of granular flow over a simplified mountain slope and valley topography. The experimental facility has a rough bed with very high slope at the upstream end and adverse slope on the downstream end, following a parabolic profile. Obstacles are present in the lower regions. Transient measurements of the moving granular surfaces were taken with a consumer-grade RGB-D sensor, providing transient 2D elevation fields around the obstacles. Three experimental configurations were tested, with semispheres of different diameters and a square dike obstacle. The experimental results are very consistent and repeatable. The quantitative, transient and two-dimensional data for all three experiments constitute excellent benchmarking tests for computational models, such as the one presented in a companion paper.

  14. Numerical Study for the Three-Dimensional Rayleigh Taylor Instability through the TVD/AC Scheme and Parallel Computation

    NASA Astrophysics Data System (ADS)

    Li, X. L.; Jin, B. X.; Glimm, J.

    1996-07-01

    The Rayleigh-Taylor instability is a gravity driven instability of a contact surface between fluids of different densities. The growth of this instability is sensitive to numerical or physical mass diffusion. For this reason, high resolution of the contact discontinuity is particularly important. In this paper, we address this problem using a second-order TVD finite difference scheme with artificial compression. We describe our numerical simulations of the 3D Rayleigh-Taylor instability using this scheme. The numerical solutions are compared to (a) the exact 2D solution in the linear regime and (b) numerical solutions using the TVD scheme and the front tracking method. The computational program is used to study the evolution of a single bubble and 3D bubble merger, i.e., the nonlinear evolution of a single mode and the process of nonlinear mode-mode interaction.

  15. An in-depth numerical study of the two-dimensional Kuramoto–Sivashinsky equation

    PubMed Central

    Kalogirou, A.; Keaveny, E. E.; Papageorgiou, D. T.

    2015-01-01

    The Kuramoto–Sivashinsky equation in one spatial dimension (1D KSE) is one of the most well-known and well-studied partial differential equations. It exhibits spatio-temporal chaos that emerges through various bifurcations as the domain length increases. There have been several notable analytical studies aimed at understanding how this property extends to the case of two spatial dimensions. In this study, we perform an extensive numerical study of the Kuramoto–Sivashinsky equation (2D KSE) to complement this analytical work. We explore in detail the statistics of chaotic solutions and classify the solutions that arise for domain sizes where the trivial solution is unstable and the long-time dynamics are completely two-dimensional. While we find that many of the features of the 1D KSE, including how the energy scales with system size, carry over to the 2D case, we also note several differences including the various paths to chaos that are not through period doubling. PMID:26345218

  16. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  17. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  18. 2D correlation spectroscopy and multivariate curve resolution in analyzing pH-dependent evolving systems monitored by FT-IR spectroscopy, a comparative study.

    PubMed

    Diewok, Josef; Ayora-Cañada, María Jose; Lendl, Bernhard

    2002-10-01

    Multivariate curve resolution (MCR) and 2D correlation spectroscopy (2D-CoS), including sample-sample correlation, have been applied to the analysis of evolving midinfrared spectroscopic data sets obtained from titrations of organic acids in aqueous solution. In these data sets, well-defined species with significant differences in their spectra are responsible for the spectral variation observed. The two fundamentally different chemometric techniques have been evaluated and discussed on the basis of experimental and supportive simulated data sets. MCR gives information that can be directly related to the chemical species that is of importance from a practical point of view, whereas 2D-CoS results normally require more interpretation. The obtained conclusions are regarded valid for similar evolving data, which are increasingly being encountered in analytical chemistry when multivariate detectors are used to follow dynamic processes, including separations as well as chemical reactions, among others.

  19. Association Between Albuminuria and Duration of Diabetes and Myocardial Dysfunction and Peripheral Arterial Disease Among Patients With Stable Coronary Artery Disease in the BARI 2D Study

    PubMed Central

    Escobedo, Jorge; Rana, Jamal S.; Lombardero, Manuel S.; Albert, Stewart G.; Davis, Andrew M.; Kennedy, Frank P.; Mooradian, Arshag D.; Robertson, David G.; Srinivas, V. S.; Gebhart, Suzanne S. P.

    2010-01-01

    OBJECTIVE: To evaluate the effect of prior duration of diabetes, glycated hemoglobin level at study entry, and microalbuminuria or macroalbuminuria on the extent and severity of coronary artery disease (CAD) and peripheral arterial disease. PATIENTS AND METHODS: We studied baseline characteristics of the 2368 participants of the BARI 2D (Bypass Angioplasty Revascularization Investigation 2 Diabetes) study, a randomized clinical trial that evaluates treatment efficacy for patients with type 2 diabetes and angiographically documented stable CAD. Patients were enrolled from January 1, 2001, through March 31, 2005. Peripheral arterial disease was ascertained by an ankle-brachial index (ABI) of 0.9 or less, and extent of CAD was measured by presence of multivessel disease, a left ventricular ejection fraction (LVEF) of less than 50%, and myocardial jeopardy index. RESULTS: Duration of diabetes of 20 or more years was associated with increased risk of ABI of 0.9 or less (odds ratio [OR], 1.54; 95% confidence interval [CI], 1.04-2.26), intermittent claudication (OR, 1.61; 95% CI, 1.10-2.35), and LVEF of less than 50% (OR, 2.03; 95% CI, 1.37-3.02). Microalbuminuria was associated with intermittent claudication (OR, 1.53; 95% CI, 1.16-2.02) and ABI of 0.9 or less (OR, 1.31; 95% CI, 0.98-1.75), whereas macroalbuminuria was associated with abnormal ABI, claudication, and LVEF of less than 50%. There was a significant association between diabetes duration and extent of CAD as manifested by number of coronary lesions, but no other significant associations were observed between duration of disease, glycated hemoglobin levels, or albumin-to-creatinine ratio and other manifestations of CAD. CONCLUSION: Duration of diabetes and microalbuminuria or macroalbuminuria are important predictors of severity of peripheral arterial disease and left ventricular dysfunction in a cohort of patients selected for the presence of CAD. PMID:20042560

  20. Proton-detected 2D radio frequency driven recoupling solid-state NMR studies on micelle-associated cytochrome-b5

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Vivekanandan, Subramanian; Yamamoto, Kazutoshi; Im, Sangchoul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2014-05-01

    Solid-state NMR spectroscopy is increasingly used in the high-resolution structural studies of membrane-associated proteins and peptides. Most such studies necessitate isotopically labeled (13C, 15N and 2H) proteins/peptides, which is a limiting factor for some of the exciting membrane-bound proteins and aggregating peptides. In this study, we report the use of a proton-based slow magic angle spinning (MAS) solid-state NMR experiment that exploits the unaveraged 1H-1H dipolar couplings from a membrane-bound protein. We have shown that the difference in the buildup rates of cross-peak intensities against the mixing time - obtained from 2D 1H-1H radio frequency-driven recoupling (RFDR) and nuclear Overhauser effect spectroscopy (NOESY) experiments on a 16.7-kDa micelle-associated full-length rabbit cytochrome-b5 (cytb5) - can provide insights into protein dynamics and could be useful to measure 1H-1H dipolar couplings. The experimental buildup curves compare well with theoretical simulations and are used to extract relaxation parameters. Our results show that due to fast exchange of amide protons with water in the soluble heme-containing domain of cyb5, coherent 1H-1H dipolar interactions are averaged out for these protons while alpha and side chain protons show residual dipolar couplings that can be obtained from 1H-1H RFDR experiments. The appearance of resonances with distinct chemical shift values in 1H-1H RFDR spectra enabled the identification of residues (mostly from the transmembrane region) of cytb5 that interact with micelles.

  1. Experimental and numerical study on condensation in transonic steam flow

    NASA Astrophysics Data System (ADS)

    Majkut, Mirosław; Dykas, Sławomir; Strozik, Michał; Smołka, Krystian

    2015-09-01

    The present paper describes an experimental and numerical study of steam condensing flow in a linear cascade of turbine stator blades. The experimental research was performed on the facility of a small scale steam power plant located at Silesian University of Technology in Gliwice, Poland. The test rig of the facility allows us to perform the tests of steam transonic flows for the conditions corresponding to these which prevail in the low-pressure (LP) condensing steam turbine stages. The experimental data of steam condensing flow through the blade-to- blade stator channel were compared with numerical results obtained using the in-house CFD numerical code TraCoFlow. Obtained results confirmed a good quality of the performed experiment and numerical calculations.

  2. Numerical study on small scale vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Parra-Santos, Teresa; Gallegos, Armando; Uzarraga, Cristóbal N.; Rodriguez, Miguel A.

    2016-03-01

    The performance of a Vertical Axis Wind Turbine (VAWT) is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  3. High resolution 2D-NMR studies indicating complete assignments and conformational characteristics of the NF-kappa B binding enhancer element of HIV-LTR.

    PubMed

    Singh, M P; Fregeau, N L; Pon, R T; Lown, J W

    1995-10-01

    The asymmetrical DNA duplex [5'd(AAGGGACTTTCC)].[5'-d(GGAAAGTCCCTT)] has been studied by one- and two-dimensional NMR techniques. The sequence is comprised of the actual 10 base-pair long binding site for the transcription factor NF-kappa B in the enhancer sequence of the long term repeat (LTR) region of HIV and SIV types of retroviruses associated with the AIDS syndrome. Two additional A.T base-pairs are also included on one end for an added interest in the 12-bp duplex sequence with a pseudo dyad-symmetric disposition of the oligopurine and oligopyrimidine segments, as it appears in the HIV-1 genome. Phase-sensitive two-dimensional spectra (NOESY, ROESY, COSY and TOCSY) were obtained at three different temperatures (5, 15 and 25 degrees C) for a complete assignment of the non-exchangeable protons by tracing through sequence specific intra- and internucleotide connectivities. 2D-NOESY spectra were also acquired in aqueous (90% H2O-D2O) solutions, with two different methods of water signal suppression, to assign the exchangeable protons from specific NOE correlations. Adenine H2 protons were assigned by the use of NOE correlations and from T1 relaxation time measurements. The general spectral features and semi-quantitative interproton distance estimates indicate a B-DNA type conformation. However, some distinctly unusual features associated with the nucleotides at and immediately adjacent to both the 5'-and 3'-ends of AAA/TTT and GGG/CCC segments were noted. The complete assignments, and the observed characteristics, will be of significant value in studying the complexes of this transcriptionally active DNA domain with the protein and other rationally designed DNA binding agents.

  4. Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry.

    PubMed

    Davidenko, Natalia; Schuster, Carlos F; Bax, Daniel V; Farndale, Richard W; Hamaia, Samir; Best, Serena M; Cameron, Ruth E

    2016-10-01

    Studies of cell attachment to collagen-based materials often ignore details of the binding mechanisms-be they integrin-mediated or non-specific. In this work, we have used collagen and gelatin-based substrates with different dimensional characteristics (monolayers, thin films and porous scaffolds) in order to establish the influence of composition, crosslinking (using carbodiimide) treatment and 2D or 3D architecture on integrin-mediated cell adhesion. By varying receptor expression, using cells with collagen-binding integrins (HT1080 and C2C12 L3 cell lines, expressing α2β1, and Rugli expressing α1β1) and a parent cell line C2C12 with gelatin-binding receptors (αvβ3 and α5β1), the nature of integrin binding sites was studied in order to explain the bioactivity of different protein formulations. We have shown that alteration of the chemical identity, conformation and availability of free binding motifs (GxOGER and RGD), resulting from addition of gelatin to collagen and crosslinking, have a profound effect on the ability of cells to adhere to these formulations. Carbodiimide crosslinking ablates integrin-dependent cell activity on both two-dimensional and three-dimensional architectures while the three-dimensional scaffold structure also leads to a high level of non-specific interactions remaining on three-dimensional samples even after a rigorous washing regime. This phenomenon, promoted by crosslinking, and attributed to cell entrapment, should be considered in any assessment of the biological activity of three-dimensional substrates. Spreading data confirm the importance of integrin-mediated cell engagement for further cell activity on collagen-based compositions. In this work, we provide a simple, but effective, means of deconvoluting the effects of chemistry and dimensional characteristics of a substrate, on the cell activity of protein-derived materials, which should assist in tailoring their biological properties for specific tissue engineering

  5. Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry.

    PubMed

    Davidenko, Natalia; Schuster, Carlos F; Bax, Daniel V; Farndale, Richard W; Hamaia, Samir; Best, Serena M; Cameron, Ruth E

    2016-10-01

    Studies of cell attachment to collagen-based materials often ignore details of the binding mechanisms-be they integrin-mediated or non-specific. In this work, we have used collagen and gelatin-based substrates with different dimensional characteristics (monolayers, thin films and porous scaffolds) in order to establish the influence of composition, crosslinking (using carbodiimide) treatment and 2D or 3D architecture on integrin-mediated cell adhesion. By varying receptor expression, using cells with collagen-binding integrins (HT1080 and C2C12 L3 cell lines, expressing α2β1, and Rugli expressing α1β1) and a parent cell line C2C12 with gelatin-binding receptors (αvβ3 and α5β1), the nature of integrin binding sites was studied in order to explain the bioactivity of different protein formulations. We have shown that alteration of the chemical identity, conformation and availability of free binding motifs (GxOGER and RGD), resulting from addition of gelatin to collagen and crosslinking, have a profound effect on the ability of cells to adhere to these formulations. Carbodiimide crosslinking ablates integrin-dependent cell activity on both two-dimensional and three-dimensional architectures while the three-dimensional scaffold structure also leads to a high level of non-specific interactions remaining on three-dimensional samples even after a rigorous washing regime. This phenomenon, promoted by crosslinking, and attributed to cell entrapment, should be considered in any assessment of the biological activity of three-dimensional substrates. Spreading data confirm the importance of integrin-mediated cell engagement for further cell activity on collagen-based compositions. In this work, we provide a simple, but effective, means of deconvoluting the effects of chemistry and dimensional characteristics of a substrate, on the cell activity of protein-derived materials, which should assist in tailoring their biological properties for specific tissue engineering

  6. ALL-CERAMIC AND PORCELAIN-FUSED-TO-METAL FIXED PARTIAL DENTURES: A COMPARATIVE STUDY BY 2D FINITE ELEMENT ANALYSES

    PubMed Central

    Motta, Andréia Barreira; Pereira, Luiz Carlos; da Cunha, Andréia R.C.C

    2007-01-01

    All-ceramic fixed partial dentures (FPDs) have an esthetic approach for oral rehabilitation. However, metal-ceramic FPDs are best indicated in the posterior area where the follow-up studies found a lower failure rate. This 2D finite element study compared the stress distribution on 3-unit all-ceramic and metal-ceramic FPDs and identified the areas of major risk of failure. Three FPD models were designed: (1) metal-ceramic FPD; (2) All-ceramic FPD with the veneering porcelain on the occlusal and cervical surface of the abutment tooth; (3) All-ceramic FPD with the veneering porcelain only on the occlusal surface. A 100 N load was applied in an area of 0.5 mm2 on the working cusps, following these simulations: (1) on the abutment teeth and the pontic; (2) only on the abutment teeth; and (3) only on the pontic. Relative to the maximum stress values found for the physiological load, all-ceramic FPD with only occlusal veneering porcelain produced the lowest stress value (220 MPa), followed by all-ceramic FPD with cervical veneering porcelain (322 MPa) and metal-ceramic FPD (387 MPa). The stress distribution of the load applied on the abutments was significantly better compared to the other two load simulations. The highest principal stress values were low and limited in a small area for the three types of models under this load. When the load was applied on the pontic, the highest stress values appeared on the connector areas between the abutments and pontic. In conclusion, the best stress values and distribution were found for the all-ceramic FPD with the veneering porcelain only on the occlusal surface. However, in under clinical conditions, fatigue conditions and restoration defects must be considered. PMID:19089168

  7. Influence of anisotropic grain boundary properties on the evolution of grain boundary character distribution during grain growth—a 2D level set study

    NASA Astrophysics Data System (ADS)

    Hallberg, Håkan

    2014-12-01

    The present study elaborates on a 2D level set model of polycrystal microstructures that was recently established by adding the influence of anisotropic grain boundary energy and mobility on microstructure evolution. The new model is used to trace the evolution of grain boundary character distribution during grain growth. The employed level set formulation conveniently allows the grain boundary characteristics to be quantified in terms of coincidence site lattice (CSL) type per unit of grain boundary length, providing a measure of the distribution of such boundaries. In the model, both the mobility and energy of the grain boundaries are allowed to vary with misorientation. In addition, the influence of initial polycrystal texture is studied by comparing results obtained from a polycrystal with random initial texture against results from a polycrystal that initially has a cube texture. It is shown that the proposed level set formulation can readily incorporate anisotropic grain boundary properties and the simulation results further show that anisotropic grain boundary properties only have a minor influence on the evolution of CSL boundary distribution during grain growth. As anisotropic boundary properties are considered, the most prominent changes in the CSL distributions are an increase of general low-angle Σ1 boundaries as well as a more stable presence of Σ3 boundaries. The observations also hold for the case of an initially cube-textured polycrystal. The presence of this kind of texture has little influence over the evolution of the CSL distribution. Taking into consideration the anisotropy of grain boundary properties, grain growth alone does not seem to be sufficient to promote any significantly increased overall presence of CSL boundaries.

  8. CYP2D6*36 gene arrangements within the cyp2d6 locus: association of CYP2D6*36 with poor metabolizer status.

    PubMed

    Gaedigk, Andrea; Bradford, L Dianne; Alander, Sarah W; Leeder, J Steven

    2006-04-01

    Unexplained cases of CYP2D6 genotype/phenotype discordance continue to be discovered. In previous studies, several African Americans with a poor metabolizer phenotype carried the reduced function CYP2D6*10 allele in combination with a nonfunctional allele. We pursued the possibility that these alleles harbor either a known sequence variation (i.e., CYP2D6*36 carrying a gene conversion in exon 9 along the CYP2D6*10-defining 100C>T single-nucleotide polymorphism) or novel sequences variation(s). Discordant cases were evaluated by long-range polymerase chain reaction (PCR) to test for gene rearrangement events, and a 6.6-kilobase pair PCR product encompassing the CYP2D6 gene was cloned and entirely sequenced. Thereafter, allele frequencies were determined in different study populations comprising whites, African Americans, and Asians. Analyses covering the CYP2D7 to 2D6 gene region established that CYP2D6*36 did not only exist as a gene duplication (CYP2D6*36x2) or in tandem with *10 (CYP2D6*36+*10), as previously reported, but also by itself. This "single" CYP2D6*36 allele was found in nine African Americans and one Asian, but was absent in the whites tested. Ultimately, the presence of CYP2D6*36 resolved genotype/phenotype discordance in three cases. We also discovered an exon 9 conversion-positive CYP2D6*4 gene in a duplication arrangement (CYP2D6*4Nx2) and a CYP2D6*4 allele lacking 100C>T (CYP2D6*4M) in two white subjects. The discovery of an allele that carries only one CYP2D6*36 gene copy provides unequivocal evidence that both CYP2D6*36 and *36x2 are associated with a poor metabolizer phenotype. Given a combined frequency of between 0.5 and 3% in African Americans and Asians, genotyping for CYP2D6*36 should improve the accuracy of genotype-based phenotype prediction in these populations.

  9. The correlation between wake transition and propulsive efficiency of a flapping foil: A numerical study

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Sun, Liping; Teng, Lubao; Pan, Dingyi; Shao, Xueming

    2016-09-01

    We study numerically the propulsive wakes produced by a flapping foil. Both pure pitching and pure heaving motions are considered, respectively, at a fixed Reynolds number of Re = 1700. As the major innovation of this paper, we find an interesting coincidence that the efficiency maximum agrees well with the 2D-3D transition boundary, by plotting the contours of propulsive efficiency in the frequency-amplitude parametric space and comparing to the transition boundaries. Although there is a lack of direct 3D simulations, it is reasonable to conjecture that the propulsive efficiency increases with Strouhal number until the wake transits from a 2D state to a 3D state. By comparing between the pure pitching motion and the pure heaving motion, we find that the 2D-3D transition occurs earlier for the pure heaving foil than that of the pure pitching foil. Consequently, the efficiency for the pure heaving foil peaks more closely to the wake deflection boundary than that of the pure pitching foil. Furthermore, since we have drawn the maps on the same parametric space with the same Reynolds number, it is possible to make a direct comparison in the propulsive efficiency between a pure pitching foil and a pure heaving foil. We note that the maximum efficiency for a pure pitching foil is 15.6%, and that of a pure heaving foil is 17%, indicating that the pure heaving foil has a slightly better propulsive performance than that of the pure pitching foil for the currently studied Reynolds number.

  10. A Numerical Study of Hypersonic Forebody/Inlet Integration Problem

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay

    1991-01-01

    A numerical study of hypersonic forebody/inlet integration problem is presented in the form of the view-graphs. The following topics are covered: physical/chemical modeling; solution procedure; flow conditions; mass flow rate at inlet face; heating and skin friction loads; 3-D forebogy/inlet integration model; and sensitivity studies.

  11. A comparative study of DIGNET, average, complete, single hierarchical and k-means clustering algorithms in 2D face image recognition

    NASA Astrophysics Data System (ADS)

    Thanos, Konstantinos-Georgios; Thomopoulos, Stelios C. A.

    2014-06-01

    The study in this paper belongs to a more general research of discovering facial sub-clusters in different ethnicity face databases. These new sub-clusters along with other metadata (such as race, sex, etc.) lead to a vector for each face in the database where each vector component represents the likelihood of participation of a given face to each cluster. This vector is then used as a feature vector in a human identification and tracking system based on face and other biometrics. The first stage in this system involves a clustering method which evaluates and compares the clustering results of five different clustering algorithms (average, complete, single hierarchical algorithm, k-means and DIGNET), and selects the best strategy for each data collection. In this paper we present the comparative performance of clustering results of DIGNET and four clustering algorithms (average, complete, single hierarchical and k-means) on fabricated 2D and 3D samples, and on actual face images from various databases, using four different standard metrics. These metrics are the silhouette figure, the mean silhouette coefficient, the Hubert test Γ coefficient, and the classification accuracy for each clustering result. The results showed that, in general, DIGNET gives more trustworthy results than the other algorithms when the metrics values are above a specific acceptance threshold. However when the evaluation results metrics have values lower than the acceptance threshold but not too low (too low corresponds to ambiguous results or false results), then it is necessary for the clustering results to be verified by the other algorithms.

  12. Guided ion beam and theoretical study of the reactions of Os{sup +} with H{sub 2}, D{sub 2}, and HD

    SciTech Connect

    Hinton, Christopher S.; Citir, Murat; Armentrout, P. B.

    2011-12-21

    Reactions of the third-row transition metal cation Os{sup +} with H{sub 2}, D{sub 2}, and HD to form OsH{sup +} (OsD{sup +}) were studied using a guided ion beam tandem mass spectrometer. A flow tube ion source produces Os{sup +} in its {sup 6}D (6s{sup 1}5d{sup 6}) electronic ground state level. Corresponding state-specific reaction cross sections are obtained. The kinetic energy dependences of the cross sections for the endothermic formation of OsH{sup +} and OsD{sup +} are analyzed to give a 0 K bond dissociation energy of D{sub 0}(Os{sup +}-H) = 2.45 {+-} 0.10 eV. Quantum chemical calculations are performed here at several levels of theory, with B3LYP approaches generally overestimating the experimental bond energy whereas results obtained using BHLYP and CCSD(T), coupled-cluster with single, double, and perturbative triple excitations, levels show good agreement. Theory also provides the electronic structures of these species and the potential energy surfaces for reaction. Results from the reactions with HD provide insight into the reaction mechanism and indicate that Os{sup +} reacts via a direct reaction. We also compare this third-row transition metal system with the first-row and second-row congeners, Fe{sup +} and Ru{sup +}, and find that Os{sup +} reacts more efficiently with dihydrogen, forming a stronger M{sup +}-H bond. These differences can be attributed to the lanthanide contraction and relativistic effects.

  13. Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: Sequential resonance assignment and implications for protein dynamics and receptor recognition

    SciTech Connect

    Hua, Qingxin ); Weiss, M.A. Massachusetts General Hospital, Boston, MA )

    1991-06-04

    The solution structure and dynamics of human insulin are ivestigated by 2D {sup 1}H NMR spectroscopy in reference to a previously analyzed analogue, des-pentapeptide (B26-B30) insulin. This spectroscopic comparison is of interest since (i) the structure of the C-terminal region of the B-chain has not been determined in the monomeric state and (ii) the role of this region in binding to the insulin receptor has been the subject of long-standing speculation. The present NMR studies are conducted in the presence of an organic cosolvent (20% acetic acid), under which conditions both proteins are monomeric and stably folded. Complete sequential assignment of human insulin is obtained and leads to the following conclusions. (1) The secondary structure of the insulin monomer (three {alpha}-helices and B-chain {beta}-turn) is similar to that observed in the 2-Zn crustal state. (2) The folding of DPI is essentially the same as the corresponding portion of intact insulin, in accord with the similarities between their respective crystal structues. (3) residues B24-B28 adopt an extended configuration in the monomer and pack against the hydrophobic core as in crystallographic dimers; residues B29 and B30 are largely disordered. (4) The insulin fold is shown to provide a model for collective motions in a protein with implications for the mechanism of protein-protein recognition. To their knowledge, this paper describes the first detailed analysis of a protein NMR spectrum under conditions of extensive conformational broadening.

  14. Numerical study of vorticity-enhanced heat transfer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Alben, Silas

    2013-11-01

    Vortices produced by vibrated reeds and flapping foils can improve heat transfer efficiency in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we modeled and simulated the fluid flow and temperature in a 2-D channel flow with vortices injected at the upstream boundary. We classified four types of vortex streets depending on the Reynolds number and vortices' strengths and spacings, and studied the different vortex dynamics in each situation. We then used Lagrangian coherent structures (LCS) to study the effect of the vortices on mixing and determined how the Nusselt number and Coefficients of performance vary with flow parameters and Peclet numbers.

  15. Numerical aerodynamic simulation facility preliminary study: Executive study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A computing system was designed with the capability of providing an effective throughput of one billion floating point operations per second for three dimensional Navier-Stokes codes. The methodology used in defining the baseline design, and the major elements of the numerical aerodynamic simulation facility are described.

  16. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  17. DYNA2D96. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.

    1992-04-01

    DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  18. Numerical study of the unsteady flow and heat transfer in channels with periodically mounted square bars

    NASA Astrophysics Data System (ADS)

    Valencia, A.; Martin, J. S.; Gormaz, R.

    Numerical investigations of unsteady laminar flow and heat transfer in a channel of height H with periodically mounted square bars of height d = 0.2H arranged side by side to the approaching flow have been conducted for different transverse separation distances of the bars. Five cases with transverse separation distance of 0, 0.5, 1, 1.5 and 2d for a Reynolds number of 300 in a channel with a periodicity length of 2H were studied. The unsteady Navier-Stokes equations and the energy equation have been solved by a finite volume code with staggered grids combined with the SIMPLEC algorithm and a fine grid resolution. Due to the arrangement of bars detached from the channel walls the flow is unsteady with vortex shedding from the bars. The amplitude and mean values of the drag coefficients, skin friction coefficients, friction factor and Nusselt numbers have a strong dependence of the transverse separation distance of the bars.

  19. Numerical study of quantum vortex phase diagram in two-dimensional superconductors

    NASA Astrophysics Data System (ADS)

    Myojin, Kiyokazu; Ikeda, Ryusuke; Koikegami, Shigeru

    2008-07-01

    Vortex phase diagrams of weakly disordered two-dimensional (2D) superconductors under a magnetic field perpendicular to the plane are numerically studied based on a recent development on the corresponding issue in three-dimensional (3D) systems with a low density of columnar defects at high temperatures. By examining the field dependences of magnetic quantities and the glass correlation, two consecutive first-order transitions (FOTs) are found to occur in weakly disordered cases even at low but finite temperatures, and the lower FOT is identified with a remnant of the melting transition of Bragg-Bose glass at zero temperature. The resulting phase diagram is discussed in relation to a FOT-like behavior found in superconducting thin films.

  20. Numerical study on the high-speed water-entry of hemispherical and ogival projectiles

    NASA Astrophysics Data System (ADS)

    Guo, Zitao; Zhang, Wei; Wei, Gang; Ren, Peng

    2012-03-01

    The water entry problem is considered as a classic problem which has a long research history; however, projectile water entry is still a difficult problem that has not been completely solved. In this paper, the effects of the projectile nose shape on laws of velocity attenuations for all projectiles were studied by a series of numerical simulations using the AUTODYN-2D. The result showed that the drag coefficient increases monotonically with the initial velocities for an identical projectile and decreases with the CRH values for projectiles at the same velocity. A simple and effective model was proposed to determine the relations between the drag coefficients, nose shape coefficient and initial velocities of projectiles.

  1. Numerical Study of Interaction of a Vortical Density Inhomogeneity with Shock and Expansion Waves

    NASA Technical Reports Server (NTRS)

    Povitsky, A.; Ofengeim, D.

    1998-01-01

    We studied the interaction of a vortical density inhomogeneity (VDI) with shock and expansion waves. We call the VDI the region of concentrated vorticity (vortex) with a density different from that of ambiance. Non-parallel directions of the density gradient normal to the VDI surface and the pressure gradient across a shock wave results in an additional vorticity. The roll-up of the initial round VDI towards a non-symmetrical shape is studied numerically. Numerical modeling of this interaction is performed by a 2-D Euler code. The use of an adaptive unstructured numerical grid makes it possible to obtain high accuracy and capture regions of induced vorticity with a moderate overall number of mesh points. For the validation of the code, the computational results are compared with available experimental results and good agreement is obtained. The interaction of the VDI with a propagating shock wave is studied for a range of initial and induced circulations and obtained flow patterns are presented. The splitting of the VDI develops into the formation of a non-symmetrical vortex pair and not in a set of vortices. A method for the analytical computation of an overall induced circulation Gamma(sub 1) as a result of the interaction of a moving VDI with a number of waves is proposed. Simplified, approximated, expressions for Gamma(sub 1) are derived and their accuracy is discussed. The splitting of the VDI passing through the Prandtl-Meyer expansion wave is studied numerically. The obtained VDI patterns are compared to those for the interaction of the VDI with a propagating shock wave for the same values of initial and induced circulations. These patterns have similar shapes for corresponding time moments.

  2. Numerical study of self modulation instability of 1 nC electron bunch at ATF

    SciTech Connect

    Fang Yun; Mori, Warren; Muggli, Patric

    2012-12-21

    The development of self-modulation instability (SMI) is investigated numerically for the 1 nC electron bunch available at Accelerator Test Facility (ATF) of Brookhaven National Laboratory (BNL). Possible experiment based on the simulation results is proposed. All the simulations are performed with the 2D-cylindrically symmetric particle-in-cell code.

  3. Numerical study of porous airfoils in transonic flow

    NASA Technical Reports Server (NTRS)

    Chen, C. L.; Chow, C. Y.; Holst, T. L.; Vandalsem, W. R.

    1985-01-01

    A numerical study was made to examine the effect of a porous surface on the aerodynamic performance of a transonic airfoil. The pressure jump across the normal shock wave on the upper surface of the airfoil was reduced by making the surface below the shock porous. The weakened shock is preceded by an oblique shock at the upstream end of the porous surface where air is blown out of the cavity. The lambda shock structure shown in the numerical result qualitatively agrees with that observed in the wind tunnel. According to the present analysis, the porous airfoil has a smaller drag and a higher lift than the solid airfoil.

  4. Numerical study of the Kerr solution in rotating coordinates

    NASA Astrophysics Data System (ADS)

    Bai, S.; Izquierdo, G.; Klein, C.

    2016-06-01

    The Kerr solution in coordinates corotating with the horizon is studied as a testbed for a spacetime with a helical Killing vector in the Ernst picture. The solution is numerically constructed by solving the Ernst equation with a spectral method and a Newton iteration. We discuss convergence of the iteration for several initial iterates and different values of the Kerr parameters.

  5. Two-dimensional (2D) infrared correlation study of the structural characterization of a surface immobilized polypeptide film stimulated by pH

    NASA Astrophysics Data System (ADS)

    Chae, Boknam; Son, Seok Ho; Kwak, Young Jun; Jung, Young Mee; Lee, Seung Woo

    2016-11-01

    The pH-induced structural changes to surface immobilized poly (L-glutamic acid) (PLGA) films were examined by Fourier transform infrared (FTIR) spectroscopy and two-dimensional (2D) correlation analysis. Significant spectral changes were observed in the FTIR spectra of the surface immobilized PLGA film between pH 6 and 7. The 2D correlation spectra constructed from the pH-dependent FTIR spectra of the surface immobilized PLGA films revealed the spectral changes induced by the alternations of the protonation state of the carboxylic acid group in the PLGA side chain. When the pH was increased from 6 to 8, weak spectral changes in the secondary structure of the PLGA main chain were induced by deprotonation of the carboxylic acid side group.

  6. Orbits of real and fictitious asteroids studied by numerical integration

    NASA Astrophysics Data System (ADS)

    Schubart, J.

    1994-05-01

    The paper starts with a review of the author's various numerical studies on asteroid orbits, ruled by the violent evolution of the computer technique, and continues with a collection of starting values of orbital elements. This collection supplements the author's numerous papers on orbits at resonances of mean motion with respect to Jupiter. Especially, it refers to work on Trojan-type motion, mainly done together with R. Bien, and to the Hilda and Hecuba cases of resonance. It will allow the extension of intervals covered by numerical integration in interesting cases. The collection contains hitherto unpublished examples of orbits and additional comments. In particular, special remarks and some new results refer to low-eccentricity motion of Hecuba type.

  7. Microwave assisted regioselective synthesis and 2D-NMR studies of novel azoles and azoloazines utilizing fluorine-containing building blocks

    NASA Astrophysics Data System (ADS)

    Al-Bogami, Abdullah S.; Saleh, Tamer S.; Mekky, Ahmed E. M.; Shaaban, Mohamed R.

    2016-10-01

    An efficient regioselective synthesis of novel azoles containing a trifluoromethyl moiety via the 1,3-dipolar cycloaddition reaction under microwave irradiation, using fluorine-containing building blocks methodology was achieved. Furthermore, these novel azoles scaffolds have been employed as the starting material in the synthesis of new azoloazines containing a trifluoromethyl group. An unambiguous structural assignment of the obtained regioisomers was determined using the 2D HMBC NMR techniques as a valuable tool.

  8. Electrochemical incineration of indigo. A comparative study between 2D (plate) and 3D (mesh) BDD anodes fitted into a filter-press reactor.

    PubMed

    Nava, José L; Sirés, Ignasi; Brillas, Enric

    2014-01-01

    This paper compares the performance of 2D (plate) and 3D (mesh) boron-doped diamond (BDD) electrodes, fitted into a filter-press reactor, during the electrochemical incineration of indigo textile dye as a model organic compound in chloride medium. The electrolyses were carried out in the FM01-LC reactor at mean fluid velocities between 0.9 ≤ u ≤ 10.4 and 1.2 ≤ u ≤ 13.9 cm s(-1) for the 2D BDD and the 3D BDD electrodes, respectively, at current densities of 5.63 and 15 mA cm(-2). The oxidation of the organic matter was promoted, on the one hand, via the physisorbed hydroxyl radicals (BDD(·OH)) formed from water oxidation at the BDD surface and, on the other hand, via active chlorine formed from the oxidation of chloride ions on BDD. The performance of 2D BDD and 3D BDD electrodes in terms of current efficiency, energy consumption, and charge passage during the treatments is discussed.

  9. Electrochemical incineration of indigo. A comparative study between 2D (plate) and 3D (mesh) BDD anodes fitted into a filter-press reactor.

    PubMed

    Nava, José L; Sirés, Ignasi; Brillas, Enric

    2014-01-01

    This paper compares the performance of 2D (plate) and 3D (mesh) boron-doped diamond (BDD) electrodes, fitted into a filter-press reactor, during the electrochemical incineration of indigo textile dye as a model organic compound in chloride medium. The electrolyses were carried out in the FM01-LC reactor at mean fluid velocities between 0.9 ≤ u ≤ 10.4 and 1.2 ≤ u ≤ 13.9 cm s(-1) for the 2D BDD and the 3D BDD electrodes, respectively, at current densities of 5.63 and 15 mA cm(-2). The oxidation of the organic matter was promoted, on the one hand, via the physisorbed hydroxyl radicals (BDD(·OH)) formed from water oxidation at the BDD surface and, on the other hand, via active chlorine formed from the oxidation of chloride ions on BDD. The performance of 2D BDD and 3D BDD electrodes in terms of current efficiency, energy consumption, and charge passage during the treatments is discussed. PMID:24737017

  10. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  11. Numerical study of nonlinear, transcranial focused ultrasound wave propagation for blood-brain barrier (BBB) opening

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Roig, Bernardino; Redondo, Javier; Picó, Rubén; Marquet, Fabrice; Konofagou, Elisa E.; Camarena, Francisco

    2012-10-01

    Focused ultrasound (FUS) techniques for Blood-Brain Barrier opening are emerging for localized and safe brain drug delivery. In this work, a transcranial FUS field is computed by a numerical approach entailing nonlinear wave propagation in the time domain in order to determine the position of the true focus and the existence of reflections and resonances. A transducer with a curvature radius of 90 mm, and an aperture of 80 mm was simulated at a central frequency of 500 kHz. The computational method was a Finite-Difference Time-Domain (FDTD) implemented on nonlinear fluid model over a 2D Axis-symmetric domain. The boundary conditions were derived from the apparent density measurements based on a 3D CT scan acquisition performed on a Macaca mulatta primate. The study shows that nonlinear propagation shifts the peak pressure 3 mm away from the transducer when the pressure in the transducer increases from 2 kPa to 70 kPa. The focal shift is mainly due to the presence of the skull and dependent on the incidence angle of the ultrasonic beam. This study proposes a FDTD nonlinear numerical approach to study the propagation of ultrasonic waves through the skull, showing that nonlinear propagation can affect the position of the focal peak.

  12. Numerical Studies on a Rotor with Distributed Suction for Noise Reduction

    NASA Astrophysics Data System (ADS)

    Lutz, Thorsten; Arnold, Benjamin; Wolf, Alexander; Krämer, Ewald

    2014-06-01

    Minimizing the flow-induced noise is an important issue in the design of modern onshore wind turbines. There is a number of proven passive means to reduce the aeroacoustic noise, such as the implementation of serrations, porous trailing edges or the aeroacoustic airfoil design. The noise emission can be further reduced by active flow control techniques. In the present study the impact of distributed boundary layer suction on the noise emission of an airfoil and a complete rotor is investigated. Aerodynamic and aeroacoustic wind tunnel tests were performed for the NACA 64-418 airfoil and supplemented by numerical calculations. The aeroacoustic analyses have been conducted by means of the institute's Rnoise prediction scheme. The 2D studies have shown that noise reductions of 5 dB can be achieved by suction at moderate mass flow rates. To study the impact of three-dimensional effects numerical investigations have been conducted on the example of the generic NREL 5MW rotor with suction applied in the outer part of the blade. The predictions for the complete rotor provided smaller benefits compared to those for the isolated airfoil, mainly because the examined suction configurations were not optimized with respect to the extent of the suction patch and suction distribution.

  13. Numerical Model Studies of the Martian Mesoscale Circulations

    NASA Technical Reports Server (NTRS)

    Segal, Moti; Arritt, Raymond W.

    1997-01-01

    The study objectives were to evaluate by numerical modeling various possible mesoscale circulation on Mars and related atmospheric boundary layer processes. The study was in collaboration with J. Tillman of the University of Washington (who supported the study observationally). Interaction has been made with J. Prusa of Iowa State University in numerical modeling investigation of dynamical effects of topographically-influenced flow. Modeling simulations included evaluations of surface physical characteristics on: (i) the Martian atmospheric boundary layer and (ii) their impact on thermally and dynamically forced mesoscale flows. Special model evaluations were made in support of selection of the Pathfinder landing sites. J. Tillman's finding of VL-2 inter-annual temperature difference was followed by model simulations attempting to point out the forcing for this feature. Publication of the results in the reviewed literature in pending upon completion of the manuscripts in preparation as indicated later.

  14. Numerical study of wave propagation around an underground cavity: acoustic case

    NASA Astrophysics Data System (ADS)

    Esterhazy, Sofi; Perugia, Ilaria; Schöberl, Joachim; Bokelmann, Götz

    2015-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as 'resonance seismometry' - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena. Here, we focus our numerical study on the propagation of P-waves in two dimensions. An extension to three dimensions as well as an inclusion of the full elastic wave field is planned in the following. For the numerical simulations of wave propagation we use a high order finite element discretization which has the significant advantage that it can be extended easily from simple toy designs to complex and irregularly shaped geometries without excessive effort. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D tetrahedral mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Using the basic mathematical understanding of the

  15. Analytical and Numerical Studies of Coherent Field Configurations

    NASA Astrophysics Data System (ADS)

    Muller, Hans-Reinhard

    Motivated by the goal of investigating the dynamics of the electroweak phase transition in the early Universe, a study of dynamical aspects of nonlinear field-theoretical systems is performed. Symmetric and asymmetric double-well potentials in the φ4 theory are used as a model for these systems. In the first part, it is shown that in this model, a class of localized, time-dependent, spherically-symmetric objects dubbed oscillons exists. The most distinctive feature of these objects is that they are extremely long-lived. The properties of oscillons are studied by numerical and analytical means. In the second part of the study, the matching between (1+1)-dimensional nonlinear field theories coupled to an external stochastic environment and their lattice simulations is investigated. In particular, a method is developed to obtain numerical results which are lattice-spacing independent, and to extract the correct effective potential which emerges from the simulations. As an application, the thermal production of kinks is studied, obtaining the lattice-spacing independent number density of kinks and the effective barrier for kink production, i.e., the effective kink mass. Within its range of validity, the approach can be used to match numerical simulations to continuum studies of the emergence of coherent field structures in cosmology and condensed matter physics.

  16. Spring phytoplankton bloom and associated lower trophic level food web dynamics on Georges Bank: 1-D and 2-D model studies

    NASA Astrophysics Data System (ADS)

    Ji, Rubao; Chen, Changsheng; Franks, Peter J. S.; Townsend, David W.; Durbin, Edward G.; Beardsley, Robert C.; Gregory Lough, R.; Houghton, Robert W.

    2006-11-01

    A coupled biological-physical model was developed and tested in one-dimensional (1-D, vertical) and two-dimensional (2-D, cross-sectional) domains to examine the spring phytoplankton bloom and associated lower trophic level food web dynamics on Georges Bank (GB). The biological model consists of nine compartments: dissolved inorganic nutrients (nitrate, ammonium and silicate), phytoplankton (large and small size classes), zooplankton (large and small size classes), and detrital organic nitrogen and biogenic silica. The 1-D model results showed that in the shallow central bank, the timing and duration of spring blooms are closely linked to the light intensity and its downward penetration, while the intensity of blooms is regulated by initial nutrient concentrations and zooplankton grazing pressure. In the deeper flank area, the bloom dynamics is directly controlled by the seasonal development of stratification. The interactions between the shallow and deep regions of the bank were examined by a 2-D model, which showed that the cross-sectional gradients of biological quantities were caused mainly by the shallow-deep topographic transition and tidal mixing. Between the shallow and deep regions, a possible phytoplankton maximum concentration area was seen in the model at the time before the formation of the tidal-mixing front. Once the tidal-mixing front was established during late spring, the model showed a relatively high concentration of phytoplankton near the front as the result of the tidally driven up-front nutrient flux. Both the 1-D and 2-D models captured the basic seasonal cycles of the nutrients and phytoplankton in the central bank, but failed to reproduce those patterns in the deep flank regions, where horizontal advection might play a significant role.

  17. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    SciTech Connect

    Chai, Feng; Chen, YiPing; You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)₃]₃[CoW₁₂O₄₀]·9H₂O 1 (phen=1,10-phenanthroline) and [Fe(phen)₃]₂[FeW₁₂O₄₀]·H₃O·H₂O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)₃]²⁺ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm⁻¹, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

  18. Numerical Study on Cryogenic Coflowing Jets under Transcritical Conditions

    NASA Astrophysics Data System (ADS)

    Tani, Hiroumi; Teramoto, Susumu; Okamoto, Koji; Yamanishi, Nobuhiro

    2012-11-01

    A numerical and experimental study is presented on cryogenic coflowing jets under transcritical conditions for a better understanding of the propellant mixing in supercritical-pressure rocket engines. The major concerns are dominant flow structures in the mixing of cryogenic coflowing jets under transcritical conditions. Experimentally, in advance of detailed numerical simulations, cryogenic nitrogen/gaseous nitrogen coaxial jets were visualized by the backlighting photography technique. It was observed that a dense nitrogen core has a shear-layer instability near the injector exit and eventually breaks up into large lumps which dissolve and fade away downstream. In numerical simulations, LES technique was employed for more detailed discussion on the flow structures. LES of a cryogenic nitrogen/gaseous nitrogen coflowing plane jet was conducted with the same density and velocity ratios of inner/outer jets as the experiments. As observed in the experiments, the shear-layer instability in the inner mixing layers is predominant near the injector exit. After roll-up and paring, the shear-layer instability waves become large-scale vortices. They cause coherent vortex structures which become dominant in the downstream and break the dense core into lumps. Strouhal numbers of the shear-layer instability and the dense lump shedding in the numerical simulations were comparable to those measured in the experiments, respectively.

  19. Feasibility of vibro-acoustography with a quasi-2D ultrasound array transducer for detection and localizing of permanent prostate brachytherapy seeds: A pilot ex vivo study

    SciTech Connect

    Mehrmohammadi, Mohammad; Kinnick, Randall R.; Fatemi, Mostafa; Alizad, Azra; Davis, Brian J.

    2014-09-15

    Purpose: Effective permanent prostate brachytherapy (PPB) requires precise placement of radioactive seeds in and around the prostate. The impetus for this research is to examine a new ultrasound-based imaging modality, vibro-acoustography (VA), which may serve to provide a high rate of PPB seed detection while also effecting enhanced prostate imaging. The authors investigate the ability of VA, implemented on a clinical ultrasound (US) scanner and equipped with a quasi-2D (Q2D) array US transducer, to detect and localize PPB seeds in excised prostate specimens. Methods: Nonradioactive brachytherapy seeds were implanted into four excised cadaver prostates. A clinical US scanner equipped with a Q2D array US transducer was customized to acquire both US and C-scan VA images at various depths. The VA images were then used to detect and localize the implanted seeds in prostate tissue. To validate the VA results, computed tomography (CT) images of the same tissue samples were obtained to serve as the reference by which to evaluate the performance of VA in PPB seed detection. Results: The results indicate that VA is capable of accurately identifying the presence and distribution of PPB seeds with a high imaging contrast. Moreover, a large ratio of the PPB seeds implanted into prostate tissue samples could be detected through acquired VA images. Using CT-based seed identification as the standard, VA was capable of detecting 74%–92% of the implanted seeds. Additionally, the angular independency of VA in detecting PPB seeds was demonstrated through a well-controlled phantom experiment. Conclusions: Q2DVA detected a substantial portion of the seeds by using a 2D array US transducer in excised prostate tissue specimens. While VA has inherent advantages associated with conventional US imaging, it has the additional advantage of permitting detection of PPB seeds independent of their orientation. These results suggest the potential of VA as a method for PPB imaging that

  20. 13C and 15N—Chemical Shift Anisotropy of Ampicillin and Penicillin-V Studied by 2D-PASS and CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Antzutkin, Oleg N.; Lee, Young K.; Levitt, Malcolm H.

    1998-11-01

    The principal values of the chemical shift tensors of all13C and15N sites in two antibiotics, ampicillin and penicillin-V, were determined by 2-dimensionalphaseadjustedspinningsideband (2D-PASS) and conventional CP/MAS experiments. The13C and15N chemical shift anisotropies (CSA), and their confidence limits, were evaluated using a Mathematica program. The CSA values suggest a revised assignment of the 2-methyl13C sites in the case of ampicillin. We speculate on a relationship between the chemical shift principal values of many of the13C and15N sites and the β-lactam ring conformation.

  1. 2D bifurcations and Newtonian properties of memristive Chua's circuits

    NASA Astrophysics Data System (ADS)

    Marszalek, W.; Podhaisky, H.

    2016-01-01

    Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.

  2. Numerous Numerals.

    ERIC Educational Resources Information Center

    Henle, James M.

    This pamphlet consists of 17 brief chapters, each containing a discussion of a numeration system and a set of problems on the use of that system. The numeration systems used include Egyptian fractions, ordinary continued fractions and variants of that method, and systems using positive and negative bases. The book is informal and addressed to…

  3. Numerical Study of Buoyancy and Different Diffusion Effects on the Structure and Dynamics of Triple Flames

    NASA Technical Reports Server (NTRS)

    Chen, Jyh-Yuan; Echekki, Tarek

    2001-01-01

    Numerical simulations of 2-D triple flames under gravity force have been implemented to identify the effects of gravity on triple flame structure and propagation properties and to understand the mechanisms of instabilities resulting from both heat release and buoyancy effects. A wide range of gravity conditions, heat release, and mixing widths for a scalar mixing layer are computed for downward-propagating (in the same direction with the gravity vector) and upward-propagating (in the opposite direction of the gravity vector) triple flames. Results of numerical simulations show that gravity strongly affects the triple flame speed through its contribution to the overall flow field. A simple analytical model for the triple flame speed, which accounts for both buoyancy and heat release, is developed. Comparisons of the proposed model with the numerical results for a wide range of gravity, heat release and mixing width conditions, yield very good agreement. The analysis shows that under neutral diffusion, downward propagation reduces the triple flame speed, while upward propagation enhances it. For the former condition, a critical Froude number may be evaluated, which corresponds to a vanishing triple flame speed. Downward-propagating triple flames at relatively strong gravity effects have exhibited instabilities. These instabilities are generated without any artificial forcing of the flow. Instead disturbances are initiated by minute round-off errors in the numerical simulations, and subsequently amplified by instabilities. A linear stability analysis on mean profiles of stable triple flame configurations have been performed to identify the most amplified frequency in spatially developed flows. The eigenfunction equations obtained from the linearized disturbance equations are solved using the shooting method. The linear stability analysis yields reasonably good agreements with the observed frequencies of the unstable triple flames. The frequencies and amplitudes of

  4. Attosecond lighthouses in gases: A theoretical and numerical study

    NASA Astrophysics Data System (ADS)

    Auguste, T.; Gobert, O.; Ruchon, T.; Quéré, F.

    2016-03-01

    We present an extensive theoretical and numerical study of the attosecond lighthouse effect in gases. We study how this scheme impacts the spatiotemporal structure of the driving laser field all along the generation medium, and show that this can modify the phase matching relation governing high-harmonic generation (HHG) in gases. We then present a set of numerical simulations performed to test the robustness of the effect against variations of HHG parameters, and to identify possible solutions for relaxing the constraint on the driving laser pulse duration. We thus demonstrate that the lighthouse effect can actually be achieved with laser pulses consisting of up to ˜8 optical periods available from current lasers without postcompression, for instance by using an appropriate combination of 800 - and 1600 -nm wavelength fields.

  5. Numerical study of fractional nonlinear Schrödinger equations

    PubMed Central

    Klein, Christian; Sparber, Christof; Markowich, Peter

    2014-01-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation. PMID:25484604

  6. Numerical Studies of a Fluidic Diverter for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  7. Numerical study of vertical pneumatic conveying: Effect of friction coefficient

    NASA Astrophysics Data System (ADS)

    Li, K.; Kuang, S. B.; Zou, R. P.; Pan, R. H.; Yu, A. B.

    2013-06-01

    This paper presents a numerical study of vertical pneumatic conveying by a combined approach of computational fluid dynamics for gas phase and discrete element method for solid phase. The effects of friction coefficient on the flows in regard with particle flow patterns and their transition, reverse flow, and gas pressure behavior are qualified. The forces acting on particles are analyzed in detail to understand the underlying mechanisms.

  8. Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study

    NASA Astrophysics Data System (ADS)

    Burt, G.; Samsonov, S. V.; Ronald, K.; Denisov, G. G.; Young, A. R.; Bratman, V. L.; Phelps, A. D.; Cross, A. W.; Konoplev, I. V.; He, W.; Thomson, J.; Whyte, C. G.

    2004-10-01

    Helically corrugated waveguides have recently been studied for use in various applications such as interaction regions in gyrotron traveling-wave tubes and gyrotron backward-wave oscillators and as a dispersive medium for passive microwave pulse compression. The paper presents a summary of various methods that can be used for analysis of the wave dispersion of such waveguides. The results obtained from an analytical approach, simulations with the three-dimensional numerical code MAGIC, and cold microwave measurements are analyzed and compared.

  9. Numerical study of multicomponent droplet vaporization at near critical conditions

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung; Shuen, Jian-Shun; Yang, Vigor

    1988-01-01

    A comprehensive numerical analysis of multicomponent droplet vaporization at near critical conditions has been carried out. The model is based on the full time-dependent conservation equations and accommodates various important high-pressure phenomena. As an example, the case involving a two-component (n-pentane and n-octane) fuel droplet in nitrogen gas is studied. The influences of transient effects, surface regression, ambient gas solubility, and phase-equilibrium relations on vaporization mechanisms are examined in detail.

  10. Variable-temperature Fourier-transform infrared studies of poly(L-lactic acid) in different states of order: A 2DCOS and PCMW2D analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Pudun; Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W.

    2016-11-01

    Variable-temperature Fourier-transform infrared (FT-IR) spectra of a predominantly amorphous and a semi-crystalline poly(L-lactic acid) (PLLA) film were measured between 30 °C and 170 °C in order to investigate their temperature-dependent structural changes as a function of the initial state of order. For an in-depth analysis of the spectral variations in the carbonyl stretching band region (1803-1722 cm-1) two-dimensional correlation spectroscopy (2DCOS) and perturbation-correlation moving-window two-dimensional (PCMW2D) analyses were applied. Significant spectral changes were observed during heating of the amorphous PLLA sample whereas the semi-crystalline specimen showed only slight band shifts as a function of the external perturbation. The PCMW2D results suggested that for efficient 2DCOS analyses the heating process should be split up in two temperature intervals. These analyses then provided information on the recrystallization of the amorphous regions, the presence of an intermediate state of order and a sequence scenario for the observed spectral changes.

  11. Experimental and numerical study on fragmentation of steel projectiles

    NASA Astrophysics Data System (ADS)

    Råkvaag, K. G.; Børvik, T.; Hopperstad, O. S.; Westermann, I.

    2012-08-01

    A previous experimental study on penetration and perforation of circular Weldox 460E target plates with varying thicknesses struck by blunt-nose projectiles revealed that fragmentation of the projectile occurred if the target thickness or impact velocity exceeded a certain value. Thus, numerical simulations that do not account for fragmentation during impact can underestimate the perforation resistance of protective structures. Previous numerical studies have focused primarily on the target plate behaviour. This study considers the behaviour of the projectile and its possible fragmentation during impact. Hardened steel projectiles were launched at varying velocities in a series of Taylor tests. The impact events were captured using a high-speed camera. Fractography of the fragmented projectiles showed that there are several fracture mechanisms present during the fragmentation process. Tensile tests of the projectile material revealed that the hardened material has considerable variations in yield stress and fracture stress and strain. In the finite element model, the stress-strain behaviour from tensile tests was used to model the projectile material with solid elements and the modified Johnson-Cook constitutive relation. Numerical simulations incorporating the variations in material properties are capable of reproducing the experimental fracture patterns, albeit the predicted fragmentation velocities are too low.

  12. A numerical parametric study on hydrofoil interaction in tandem

    NASA Astrophysics Data System (ADS)

    Kemal, Omer

    2015-01-01

    Understanding the effects of the parameters affecting the interaction of tandem hydrofoil system is a crucial subject in order to fully comprehend the aero/hydrodynamics of any vehicle moving inside a fluid. This study covers a parametric study on tandem hydrofoil interaction in both potential and viscous fluids using iterative Boundary Element Method (BEM) and RANSE. BEM allows a quick estimation of the flow around bodies and may be used for practical purposes to assess the interaction inside the fluid. The produced results are verified by conformal mapping and Finite Volume Method (FVM). RANSE is used for viscous flow conditions to assess the effects of viscosity compared to the inviscid solutions proposed by BEM. Six different parameters are investigated and they are the effects of distance, thickness, angle of attack, chord length, aspect ratio and tapered wings. A generalized 2-D code is developed implementing the iterative procedure and is adapted to generate results. Effects of free surface and cavitation are ignored. It is believed that the present work will provide insight into the parametric interference between hydrofoils inside the fluid

  13. Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method

    NASA Astrophysics Data System (ADS)

    Rasouli, C.; Abbasi Davani, F.; Rokrok, B.

    2016-08-01

    Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation has been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.

  14. Numerical study of the ZnO growth by MOCVD

    NASA Astrophysics Data System (ADS)

    Tena-Zaera, R.; Zúñiga-Pérez, J.; Martínez-Tomás, C.; Muñoz-Sanjosé, V.

    2004-03-01

    In order to analyze the growth of zinc oxide by metalorganic chemical vapor deposition, a numerical model has been developed to simulate the gas flow in a horizontal reactor. A two-inlet system, one for the Zn precursor and the other for the oxygen one, has been studied in the framework of this numerical simulation. This model takes into account the momentum conservation equation coupled with the heat transfer and mass transport of chemical species. Different Zn precursors, DiethylZinc (DEZn), DimethylZinc (DMZn) and DimethylZinc-TriethylAmine (DMZn-TEA) and oxygen precursors, ( tert-butanol, iso-propanol and acetone) as well as carrier gases (H 2 and N 2) have been considered. The effects of simulated experimental conditions on the fluid dynamics inside the reactor and, consequently, on the growth rate of ZnO layers have been analyzed.

  15. Numerical study of cluster formation in binary charged colloids.

    PubMed

    Okuzono, Tohru; Odai, Kana; Masuda, Tatsuhiro; Toyotama, Akiko; Yamanaka, Junpei

    2016-07-01

    Cluster formation of oppositely charged colloidal particles is studied numerically. A simple Brownian dynamics method with a screened-Coulomb (Yukawa) potential is employed for numerical simulations. An equilibrium phase which consists of clusters and unassociated particles is obtained. It is shown that the equilibrium association number of clusters and their shapes are determined by charge numbers and charge ratio of the binary particles. The phase diagram of cluster formation for various charge numbers and their ratios is obtained. A simple relation between the association number and the charge ratio is found. It is demonstrated that in the case of high charge ratio the cluster takes a multilayer structure which is highly symmetric. It is also pointed out that the cluster-particle interaction changes dynamically in the cluster formation process, which is involved in the selection of final cluster structure. PMID:27575181

  16. Numerical Study on Tsunami Hazard Mitigation Using a Submerged Breakwater

    PubMed Central

    Yoo, Jeseon; Han, Sejong; Cho, Yong-Sik

    2014-01-01

    Most coastal structures have been built in surf zones to protect coastal areas. In general, the transformation of waves in the surf zone is quite complicated and numerous hazards to coastal communities may be associated with such phenomena. Therefore, the behavior of waves in the surf zone should be carefully analyzed and predicted. Furthermore, an accurate analysis of deformed waves around coastal structures is directly related to the construction of economically sound and safe coastal structures because wave height plays an important role in determining the weight and shape of a levee body or armoring material. In this study, a numerical model using a large eddy simulation is employed to predict the runup heights of nonlinear waves that passed a submerged structure in the surf zone. Reduced runup heights are also predicted, and their characteristics in terms of wave reflection, transmission, and dissipation coefficients are investigated. PMID:25215334

  17. Numerical and experimental study of rotating jet flows

    NASA Astrophysics Data System (ADS)

    Shin, Seungwon; Che, Zhizhao; Kahouadji, Lyes; Matar, Omar; Chergui, Jalel; Juric, Damir

    2015-11-01

    Rotating jets are investigated through experimental measurements and numerical simulations. The experiments are performed on a rotating jet rig and the effects of a range of parameters controlling the liquid jet are investigated, e.g. jet flow rate, rotation speed, jet diameter, etc. Different regimes of the jet morphology are identified, and the dependence on several dimensionless numbers is studied, e.g. Reynolds number, Weber number, etc. The breakup process of droplets is visualized through high speed imaging. Full three-dimensional direct numerical simulations are performed using BLUE, a massively parallel two-phase flow code. The novel interface algorithms in BLUE track the gas-liquid interface through a wide dynamic range including ligament formation, break up and rupture. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  18. Numerical Relativity as a tool for studying the Early Universe

    NASA Astrophysics Data System (ADS)

    Garrison, David

    2013-04-01

    Numerical simulations are becoming a more effective tool for conducting detailed investigations into the evolution of our universe. In this presentation, I show how the framework of numerical relativity can be used for studying cosmological models. We are working to develop a large-scale simulation of the dynamical processes in the early universe. These take into account interactions of dark matter, scalar perturbations, gravitational waves, magnetic fields and a turbulent plasma. The code described in this report is a GRMHD code based on the Cactus framework and is structured to utilize one of several different differencing methods chosen at run-time. It is being developed and tested on the Texas Learning and Computation Center's Xanadu cluster.

  19. Numerical study of cluster formation in binary charged colloids

    NASA Astrophysics Data System (ADS)

    Okuzono, Tohru; Odai, Kana; Masuda, Tatsuhiro; Toyotama, Akiko; Yamanaka, Junpei

    2016-07-01

    Cluster formation of oppositely charged colloidal particles is studied numerically. A simple Brownian dynamics method with a screened-Coulomb (Yukawa) potential is employed for numerical simulations. An equilibrium phase which consists of clusters and unassociated particles is obtained. It is shown that the equilibrium association number of clusters and their shapes are determined by charge numbers and charge ratio of the binary particles. The phase diagram of cluster formation for various charge numbers and their ratios is obtained. A simple relation between the association number and the charge ratio is found. It is demonstrated that in the case of high charge ratio the cluster takes a multilayer structure which is highly symmetric. It is also pointed out that the cluster-particle interaction changes dynamically in the cluster formation process, which is involved in the selection of final cluster structure.

  20. Numerical study on tsunami hazard mitigation using a submerged breakwater.

    PubMed

    Ha, Taemin; Yoo, Jeseon; Han, Sejong; Cho, Yong-Sik

    2014-01-01

    Most coastal structures have been built in surf zones to protect coastal areas. In general, the transformation of waves in the surf zone is quite complicated and numerous hazards to coastal communities may be associated with such phenomena. Therefore, the behavior of waves in the surf zone should be carefully analyzed and predicted. Furthermore, an accurate analysis of deformed waves around coastal structures is directly related to the construction of economically sound and safe coastal structures because wave height plays an important role in determining the weight and shape of a levee body or armoring material. In this study, a numerical model using a large eddy simulation is employed to predict the runup heights of nonlinear waves that passed a submerged structure in the surf zone. Reduced runup heights are also predicted, and their characteristics in terms of wave reflection, transmission, and dissipation coefficients are investigated. PMID:25215334

  1. Theoretical and numerical studies of density modulated whistlers

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Shukla, P. K.

    2004-09-01

    Recently, observations from laboratory experiments, which are relevant to space observations as well, have conclusively revealed the amplitude modulation of whistlers by low-frequency perturbations. Our objective here is to present theoretical and simulation studies of amplitude modulated whistler packets on account of their interaction with background low-frequency density perturbations that are reinforced by the whistler ponderomotive force. Specifically, we show that nonlinear interactions between whistlers and finite amplitude density perturbations are governed by a nonlinear Schrödinger equation for the modulated whistlers, and a set of equations for arbitrary large amplitude density perturbations in the presence of the whistler ponderomotive force. The governing equations are solved numerically to show the existence of large scale density perturbations that are self-consistently created by localized modulated whistler wavepackets. Our numerical results are found to be in good agreement with experimental results, as well as have relevance to observations from magnetized space plasmas.

  2. 2D Spinodal Decomposition in Forced Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; Diamond, Patrick; Chacon, Luis; Li, Hui

    2015-11-01

    Spinodal decomposition is a second order phase transition for binary fluid mixture, from one thermodynamic phase to form two coexisting phases. The governing equation for this coarsening process below critical temperature, Cahn-Hilliard Equation, is very similar to 2D MHD Equation, especially the conserved quantities have a close correspondence between each other, so theories for MHD turbulence are used to study spinodal decomposition in forced turbulence. Domain size is increased with time along with the inverse cascade, and the length scale can be arrested by a forced turbulence with direct cascade. The two competing mechanisms lead to a stabilized domain size length scale, which can be characterized by Hinze Scale. The 2D spinodal decomposition in forced turbulence is studied by both theory and simulation with ``pixie2d.'' This work focuses on the relation between Hinze scale and spectra and cascades. Similarities and differences between spinodal decomposition and MHD are investigated. Also some transport properties are studied following MHD theories. This work is supported by the Department of Energy under Award Number DE-FG02-04ER54738.

  3. An experimental and theoretical study on the kinetic isotope effect of C2H6 and C2D6 reaction with OH

    NASA Astrophysics Data System (ADS)

    Khaled, Fethi; Giri, Binod Raj; Szőri, Milán; Viskolcz, Béla; Farooq, Aamir

    2015-11-01

    We report experimental and theoretical results for the deuterated kinetic isotope effect (DKIE) of the reaction of OH with ethane (C2H6) and deuterated ethane (C2D6). The reactions were investigated behind reflected shock waves over 800-1350 K by monitoring OH radicals near 306.69 nm using laser absorption. In addition, high level CCSD(T)/cc-pV(T,Q)Z//MP2/cc-pVTZ quantum chemical and statistical rate theory calculations were performed which agreed very well with the experimental findings. The results reported herein provide the first experimental evidence that DKIE asymptotes to a value of 1.4 at high temperatures.

  4. Studies on the mechanism of the peroxyoxalate chemiluminescence reaction: part 2. Further identification of intermediates using 2D EXSY 13C nuclear magnetic resonance spectroscopy.

    PubMed

    Tonkin, Sarah A; Bos, Richard; Dyson, Gail A; Lim, Kieran F; Russell, Richard A; Watson, Simon P; Hindson, Christopher M; Barnett, Neil W

    2008-05-01

    Further consideration has been given to the reaction pathway of a model peroxyoxalate chemiluminescence system. Again utilising doubly labelled oxalyl chloride and anhydrous hydrogen peroxide, 2D EXSY (13)C nuclear magnetic resonance (NMR) spectroscopy experiments allowed for the characterisation of unknown products and key intermediate species on the dark side of the peroxyoxalate chemiluminescence reaction. Exchange spectroscopy afforded elucidation of a scheme comprised of two distinct mechanistic pathways, one of which contributes to chemiluminescence. (13)C NMR experiments carried out at varied reagent molar ratios demonstrated that excess amounts of hydrogen peroxide favoured formation of 1,2-dioxetanedione: the intermediate that, upon thermolysis, has been long thought to interact with a fluorophore to produce light. PMID:18420048

  5. The antibacterial activity of some sulfonamides and sulfonyl hydrazones, and 2D-QSAR study of a series of sulfonyl hydrazones

    NASA Astrophysics Data System (ADS)

    Aslan, H. Güzin; Özcan, Servet; Karacan, Nurcan

    2012-12-01

    Benzenesulfonicacid-1-methylhydrazide (1) and its four aromatic sulfonyl hydrazone derivatives (1a-1d), N-(3-amino-2-hydroxypropyl)benzene sulfonamide (2) and N-(2-hydroxyethyl)benzenesulfonamide (3) were synthesized and their structures were determined by IR, 1H NMR, 13C NMR, and LCMS techniques. Antibacterial activities of new synthesized compounds were evaluated against various bacteria strains by microdilution and disk diffusion methods. The experimental results show that presence of OH group on sulfonamides reduces the antimicrobial activity, and antimicrobial activities of the sulfonyl hydrazones (1a-1d) are smaller than that of the parent sulfonamide (1), except Candida albicans. In addition, 2D-QSAR analysis was performed on 28 aromatic sulfonyl hydrazones as antimicrobial agents against Escherichia coli and Staphylococcus aureus. In the QSAR models, the most important descriptor is total point-charge component of the molecular dipole for E. coli, and partial negative surface area (PNSA-1) for S. aureus.

  6. Feasibility study for a numerical aerodynamic simulation facility: Summary

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.

    1979-01-01

    The Ames Research Center of NASA is engaged in the development and investigation of numerical methods and computer technologies to be employed in conjunction with physical experiments, particularly utilizing wind tunnels in the furtherance of the field of aircraft and aerodynamic body design. Several studies, aimed primarily at the areas of development and production of extremely high-speed computing facilities, were conducted. The studies focused on evaluating the aspects of feasibility, reliability, costs, and practicability of designing, constructing, and bringing into effect production of a special-purpose system. An executive summary of the activities for this project is presented in this volume.

  7. Numerical study of transient flow phenomena in shock tunnels

    NASA Technical Reports Server (NTRS)

    Tokarcik-Polsky, Susan; Cambier, Jean-Luc

    1994-01-01

    Computational fluid dynamics (CFD) was used to study some transient flow features that can occur during the startup process of a shoch tunnel. The investigation concentrated on two areas: (1) the flow near the endwall of the driven tube during shock reflection and (2) the transient flow in the nozzle. The driven tube calculations were inviscid and focused on the study of a vortex system that was seen to form at the driven tube's axis of symmetry. The nozzle flow calculations examined viscous and inviscid effects during nozzle startup. The CFD solutions of the nozzle flows were compared with experimental data to demonstrate the effectiveness of the numerical analysis.

  8. Careful numerical study of flowfields about asymmetric external conical corners

    NASA Technical Reports Server (NTRS)

    Salas, M. D.

    1980-01-01

    A numerical study of the flowfield about asymmetrical external axial corners formed by the juncture of swept compressive wedges is presented. The geometrical configuration allows a unified treatment of external corners typical of delta wings and rectangular inlets. The study investigates how the flow transitions from a symmetrical flowfield with a cross-flow stagnation point at the corner to an asymmetrical flowfield for which the flow spills over the corner. The effects of leading-edge sweep, wedge compression, and corner radius are investigated.

  9. Numerical studies of transverse curvature effects on transonic flow stability

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.; Daudpota, Q. I.

    1992-01-01

    A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.

  10. Guided ion beam and theoretical study of the reactions of Hf{sup +} with H{sub 2}, D{sub 2}, and HD

    SciTech Connect

    Hinton, Christopher S.; Armentrout, P. B.

    2010-09-28

    The kinetic energy dependences of reactions of the third-row transition metal cation Hf{sup +} with H{sub 2}, D{sub 2}, and HD were determined using a guided ion beam tandem mass spectrometer. A flow tube ion source produces Hf{sup +} in its {sup 2}D (6s{sup 2}5d{sup 1}) electronic ground state level. Corresponding state-specific reaction cross sections are obtained. The kinetic energy dependences of the cross sections for the endothermic formation of HfH{sup +} and HfD{sup +} are analyzed to give a 0 K bond dissociation energy of D{sub 0}(Hf{sup +}-H)=2.11{+-}0.08 eV. Quantum chemical calculations at several levels of theory performed here generally overestimate the experimental bond energy but results obtained using the Becke-half-and-half-LYP functional show good agreement. Theory also provides the electronic structures of these species and the reactive potential energy surfaces. Results from the reactions with HD provide insight into the reaction mechanisms and indicates that Hf{sup +} reacts via a statistical mechanism. We also compare this third-row transition metal system with the first-row and second-row congeners, Ti{sup +} and Zr{sup +}, and find that Hf{sup +} has a weaker M{sup +}-H bond. As most third-row transition metal hydride cation bonds exceed their lighter congeners, this trend is unusual but can be understood using promotion energy arguments.

  11. Numerical study of forced convective heat transfer around airships

    NASA Astrophysics Data System (ADS)

    Dai, Qiumin; Fang, Xiande

    2016-02-01

    Forced convective heat transfer is an important factor that affects the thermal characteristics of airships. In this paper, the steady state forced convective heat transfer around an ellipsoid is numerically investigated. The numerical simulation is carried out by commercial computational fluid dynamic (CFD) software over the extended Re range from 20 to 108 and the aspect ratio from 2 to 4. Based on the regression and optimization with software, a new piecewise correlation of the Nusselt number at constant wall temperature for ellipsoid is proposed, which is suitable for applications to airships and other ellipse shaped bodies such as elliptical balloons. The thermal characteristics of a stratospheric airship in midsummer located in the north hemisphere are numerical studied. The helium temperature predicated using the new correlation is compared to those predicted by correlations applicable for spheres and flat plates. The results show that the helium temperature obtained using the new correlation at noon is about 5.4 K lower than that using the correlation of spheres and about 2.1 K higher than that of flat plates.

  12. Effects of 2D small-scale sedimentary basins on strong ground motion characteristics

    NASA Astrophysics Data System (ADS)

    Movahedasl, R.; Ghayamghamian, M. R.

    2015-08-01

    A lot of research on the 2D or 3D effects of large-scale basins (within several kilometers depth) have been conducted in the past. However, different 2D aspects of small-scale sedimentary basins (within tens of meters depth) remain in the developing stage. Here, an attempt is made to analyze different aspects of small-scale basins using both numerical and empirical investigations. In the first step, the 2D effects of small-scale basins on strong motion characteristics are numerically examined both in the time and frequency domains. In addition, the effects of input motion are also explained by the results of model excitation in different orthogonal directions. Then, the numerical outcomes are verified by the analysis of actual earthquake data recorded at a downhole array in the Fujisawa small basin, Japan. In the second step, since available recorded earthquake data in small basins with a clear understanding of subsurface geology are very limited, different 2D aspects of the small basin are parametrically investigated. For this purpose, extensive parametrical studies are carried out on the main features of a small basin such as slope angle, shape, infill soil properties, and basin thickness by using the finite difference numerical method. The horizontal and vertical peak ground accelerations of 2D with respect to 1D ones are defined as the horizontal and vertical aggravation factors (AGH and AGV). The AGH and AGV factors show large sensitivity to infill soil properties, shape and thickness, and small sensitivity to slope angle. The values of AGH and AGV factors vary in the range of 0.5-2 with large variations around small basin edges due to wave coupling, conversion, scattering and focusing in the vicinity of small basin edges. These cause a complicated pattern of 2D de-amplification and amplification, which mostly affect the motion in the high frequency range (>1 Hz). Finally, the outcomes provide numerical and field evidence on the 2D effects of small basins

  13. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  14. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  15. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  16. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin “wrapping”, i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  17. Density matrix renormalization group numerical study of the kagome antiferromagnet.

    PubMed

    Jiang, H C; Weng, Z Y; Sheng, D N

    2008-09-12

    We numerically study the spin-1/2 antiferromagnetic Heisenberg model on the kagome lattice using the density-matrix renormalization group method. We find that the ground state is a magnetically disordered spin liquid, characterized by an exponential decay of spin-spin correlation function in real space and a magnetic structure factor showing system-size independent peaks at commensurate magnetic wave vectors. We obtain a spin triplet excitation gap DeltaE(S=1)=0.055+/-0.005 by extrapolation based on the large size results, and confirm the presence of gapless singlet excitations. The physical nature of such an exotic spin liquid is also discussed.

  18. Numerical studies of a 36-site [ital kagome] antiferromagnet

    SciTech Connect

    Leung, P.W. Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay ); Elser, V. )

    1993-03-01

    The ground-state wave function for the spin-1/2 quantum antiferromagnet on a 36-site [ital kagome]$[ital iaa]--- structure is found by numerical diagonalization. Spin-spin correlations and spin gaps indicate that the ground state of this system does not possess magnetic order. The spin-Peierls order is studied using a four-spin correlation function. The short-range structure in this correlation function is found to be consistent with a simple dimer-liquid model. The spin-Peierls order, if it exists, must be quite small.

  19. A numerical and experimental study of confined swirling jets

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Samuelsen, G. S.; Mcdonell, V. G.

    1989-01-01

    A numerical and experimental study of a confined strong swirling flow is presented. Detailed velocity measurements are made using a two-component laser Doppler velocimeter (LDV) technique. Computations are performed using a differential second-moment (DSM) closure. The effect of inlet dissipation rate on calculated mean and turbulence fields is investigated. Various model constants are employed in the pressure-strain model to demonstrate their influences on the predicted results. Finally, comparison of the DSM calculations with the algebraic second-monent (ASM) closure results shows that the DSM is better suited for complex swirling flow analysis.

  20. 2D/3D image (facial) comparison using camera matching.

    PubMed

    Goos, Mirelle I M; Alberink, Ivo B; Ruifrok, Arnout C C

    2006-11-10

    A problem in forensic facial comparison of images of perpetrators and suspects is that distances between fixed anatomical points in the face, which form a good starting point for objective, anthropometric comparison, vary strongly according to the position and orientation of the camera. In case of a cooperating suspect, a 3D image may be taken using e.g. a laser scanning device. By projecting the 3D image onto a 2D image with the suspect's head in the same pose as that of the perpetrator, using the same focal length and pixel aspect ratio, numerical comparison of (ratios of) distances between fixed points becomes feasible. An experiment was performed in which, starting from two 3D scans and one 2D image of two colleagues, male and female, and using seven fixed anatomical locations in the face, comparisons were made for the matching and non-matching case. Using this method, the non-matching pair cannot be distinguished from the matching pair of faces. Facial expression and resolution of images were all more or less optimal, and the results of the study are not encouraging for the use of anthropometric arguments in the identification process. More research needs to be done though on larger sets of facial comparisons. PMID:16337353

  1. Options of applying of numerical codes for the study of transient processes in a binary star with a white dwarf

    NASA Astrophysics Data System (ADS)

    Boneva, Daniela; Kononov, Dmitry

    In this paper we present the idea of applying of numerical codes, particularly of the ZEUS, for the study of transient processes in the close binary stars during the interaction. As a transient processes they could be long- and short-lived and we take into consideration both of them in our survey, as we explained their behavior and connection with tidal influence in the binary configuration. Basic features of the code are revealed. Using the hydrodynamical possibilities of ZEUS 2D and applying our hydrodynamical system of examination, we show what kind of possible results we can derive. This solution gives the initial distribution of the wave after tidally flow of the matter through the contact point of the binary. It is compared to the results obtained with recently employed codes, the ability of working with ZEUS and other numerical codes capabilities to find out the most suitable code or their combination and to make the problem solvable.

  2. Numerical and Analytic Studies of Random-Walk Models.

    NASA Astrophysics Data System (ADS)

    Li, Bin

    We begin by recapitulating the universality approach to problems associated with critical systems, and discussing the role that random-walk models play in the study of phase transitions and critical phenomena. As our first numerical simulation project, we perform high-precision Monte Carlo calculations for the exponents of the intersection probability of pairs and triplets of ordinary random walks in 2 dimensions, in order to test the conformal-invariance theory predictions. Our numerical results strongly support the theory. Our second numerical project aims to test the hyperscaling relation dnu = 2 Delta_4-gamma for self-avoiding walks in 2 and 3 dimensions. We apply the pivot method to generate pairs of self-avoiding walks, and then for each pair, using the Karp-Luby algorithm, perform an inner -loop Monte Carlo calculation of the number of different translates of one walk that makes at least one intersection with the other. Applying a least-squares fit to estimate the exponents, we have obtained strong numerical evidence that the hyperscaling relation is true in 3 dimensions. Our great amount of data for walks of unprecedented length(up to 80000 steps), yield a updated value for the end-to-end distance and radius of gyration exponent nu = 0.588 +/- 0.001 (95% confidence limit), which comes out in good agreement with the renormalization -group prediction. In an analytic study of random-walk models, we introduce multi-colored random-walk models and generalize the Symanzik and B.F.S. random-walk representations to the multi-colored case. We prove that the zero-component lambdavarphi^2psi^2 theory can be represented by a two-color mutually -repelling random-walk model, and it becomes the mutually -avoiding walk model in the limit lambda to infty. However, our main concern and major break-through lies in the study of the two-point correlation function for the lambda varphi^2psi^2 theory with N > 0 components. By representing it as a two-color random-walk expansion

  3. Analysis of heat conductivity in a 2D hard disk system

    NASA Astrophysics Data System (ADS)

    Del Pozo, J.; Garrido, P. L.

    2009-01-01

    Using numerical simulations, we study the heat conductivity in a 2d Hard Disk system. We find nonlinear temperature profiles for diferent gradients, and use this profiles to obtain the empirical expresion of heat conductivity κ(T,ρ). We compare our results with predictions based on the Enskog theory, finding good agreement even for large gradients. Also we find that Henderson state equation for Hard Disk stands for our system.

  4. Extreme value statistics of 2D Gaussian free field: effect of finite domains

    NASA Astrophysics Data System (ADS)

    Cao, X.; Rosso, A.; Santachiara, R.

    2016-01-01

    We study minima statistics of the 2D Gaussian free field (GFF) on circles in the unit disk with Dirichlet boundary condition. Free energy distributions of the associated random energy models are exactly calculated in the high temperature phase, and shown to satisfy the duality property, which enables us to predict the minima distribution by assuming the freezing scenario. Numerical tests are provided. Related questions concerning the GFF on a sphere are also considered.

  5. Theoretical studies on densities, stability and detonation properties of 2D polymeric complexes Cu(DAT)₂Cl₂ and its new analogues Zn(DAT)₂Cl₂.

    PubMed

    Shu, Yuanjie; Li, Huarong; Gao, Shijie; Xiong, Ying

    2013-04-01

    A novel environmentally friendly octahedrally coordinated 2D polymeric complexes bis(1,5-diaminotetrazole) -dichlorozinc(II) (Zn(DAT)2Cl2) was first designed based on the the crystal data of bis(1,5-diaminotetrazole)- dichlorocopper(II) (Cu(DAT)2Cl2). Density functional theory (DFT) was used to predict the optimized geometries at TPSSTPSS/6-311G(d, p) level. Densities and detonation properties were evaluated using the electron cloud enclosed volume and VLW equation of state (VLW EOS), respectively. Calculation results show that the density of Zn(DAT)2Cl2 (2.117 g · cm(-1)) is a bit more than that of Cu(DAT)2Cl2 (2.106 g · cm(-1)). The calculated high positive heat of formation (HOF) predicts that the stabilities of the title compounds decrease in the order Zn(DAT)2Cl2 > Cu(DAT)2Cl2, which agrees with the result of bond dissociation energies (BDE). Even though they have the same molecule structures, their first scission steps are different. Furthermore, the title two compounds show good detonation velocities and pressures compared with that of bis-(5-nitro-2H-tetrazolato-N (2)) tetraamminecobalt(III) perchlorates (BNCP), and they are potential candidates for high-energy-density materials (HEDM).

  6. Interactions between 1alpha,25(OH)2D3 and residues in the ligand-binding pocket of the vitamin D receptor: a correlated fragment molecular orbital study.

    PubMed

    Yamagishi, Kenji; Tokiwa, Hiroaki; Makishima, Makoto; Yamada, Sachiko

    2010-07-01

    To provide physicochemical insight into the role of each residue in the ligand-binding pocket (LBP) of the vitamin D receptor (VDR), we evaluated the energies of the interactions between the LBP residues and 1alpha,25(OH)2D3 by using an ab initio fragment molecular orbital (FMO) method at the Møller-Plesset second-order perturbation (MP2) level. This FMO-MP2 method can be used to correctly evaluate both electrostatic and van der Waals dispersion interactions, and it affords these interaction energies separately. We deduced the nature of each interaction and determined the importance of all the LBP residues involved in ligand recognition by the VDR. We previously reported the results of alanine-scanning mutational analysis (ASMA) of all 34 non-alanine residues lining the LBP of the human VDR. The theoretical results in combination with the ASMA results enabled us to assign the role of each LBP residue. We concluded that electrostatic interactions are the major determinant of the ligand-binding activity and ligand recognition specificity and that van der Waals interactions are important for protein folding and, in turn, for cofactor binding.

  7. High resolution infrared synchrotron study of CH2D81Br: ground state constants and analysis of the ν5, ν6 and ν9 fundamentals

    NASA Astrophysics Data System (ADS)

    Baldacci, A.; Stoppa, P.; Visinoni, R.; Wugt Larsen, R.

    2012-09-01

    The high resolution infrared absorption spectrum of CH2D81Br has been recorded by Fourier transform spectroscopy in the range 550-1075 cm-1, with an unapodized resolution of 0.0025 cm-1, employing a synchrotron radiation source. This spectral region is characterized by the ν6 (593.872 cm-1), ν5 (768.710 cm-1) and ν9 (930.295 cm-1) fundamental bands. The ground state constants up to sextic centrifugal distortion terms have been obtained for the first time by ground-state combination differences from the three bands and subsequently employed for the evaluation of the excited state parameters. Watson's A-reduced Hamiltonian in the Ir representation has been used in the calculations. The ν 6 = 1 level is essentially free from perturbation whereas the ν 5 = 1 and ν 9 = 1 states are mutually interacting through a-type Coriolis coupling. Accurate spectroscopic parameters of the three excited vibrational states and a high-order coupling constant which takes into account the interaction between ν5 and ν9 have been determined.

  8. Numerical Simulation Study on the Hydraulic Behavior in Closed Fractures

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Shu, L.; Wen, Z.; Wu, G.; Zhang, X.; Hu, B. X.

    2015-12-01

    As the main repositories for groundwater in karst systems, fractures involve the movement and storage of groundwater. Fundamentally, Navier-Stokes (NS) Equations is used to describe flow in fractures. However, due to the complexity of Navier-Stokes Equations, it is rarely applied to solve fracture flow problems. Thus, based on some simplifications, Stokes equations, Reynolds equations and Cubic Law (CL) are derived to describe fracture flow. The validity of the three simplified equations were extensively studies. Among the three simplified equations of NS, CL is the simplest and used to describe flow in open, smooth and paralleled fractures. In the previous work, most researchers focused on the open fractures. But it's the closed fractures exist widely in the field not the open fractures. The objective of this paper aims to check the validity of CL in closed fractures with different apertures and widths of fracture. After comparing the experimental results and simulations results from the COMSOL Multiphysics (FEM), this software was applied to solve the 3D or 2D NS equations in the closed fractures. The results obtained from NS simulation results and calculation results from CL were compared to indicate the degree of the validity of CL in application. A critical velocity was proposed to illustrate the validity of CL in closed fractures. Furthermore, the impacts of aperture size, width of fracture size, and velocity magnitude on both the hydraulic conductivity and velocity profile were also analyzed. The results showed the CL was capable of describing flow in closed fractures when the velocity was less than the critical velocity varying from 0.02 to 30.08cm/s. The ratio of NS results and CL results was between 0.9 and 2, with velocity varying from 0 to 40cm/s. The discrepancy between NS equation and CL increased with Reynolds number, increased with aperture size and decreased with width of fracture.

  9. Numerical Study of Pyrolysis of Biomass in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.

  10. Numerical Study of Rotating Turbulence with External Forcing

    NASA Technical Reports Server (NTRS)

    Yeung, P. K.; Zhou, Ye

    1998-01-01

    Direct numerical simulation at 256(exp 3) resolution have been carried out to study the response of isotropic turbulence to the concurrent effects of solid-body rotation and numerical forcing at the large scales. Because energy transfer to the smaller scales is weakened by rotation, energy input from forcing gradually builds up at the large scales, causing the overall kinetic energy to increase. At intermediate wavenumbers the energy spectrum undergoes a transition from a limited k(exp -5/3) inertial range to k(exp -2) scaling recently predicted in the literature. Although the Reynolds stress tensor remains approximately isotropic and three-components, evidence for anisotropy and quasi- two-dimensionality in length scales and spectra in different velocity components and directions is strong. The small scales are found to deviate from local isotropy, primarily as a result of anisotropic transfer to the high wavenumbers. To understand the spectral dynamics of this flow we study the detailed behavior of nonlinear triadic interactions in wavenumber space. Spectral transfer in the velocity component parallel to the axis of rotation is qualitatively similar to that in non-rotating turbulence; however the perpendicular component is characterized by a greatly suppressed energy cascade at high wavenumber and a local reverse transfer at the largest scales. The broader implications of this work are briefly addressed.

  11. Experimental and numerical study of open-air active cooling

    NASA Astrophysics Data System (ADS)

    Al-Fifi, Salman Amsari

    The topic of my thesis is Experimental and Numerical Study of Open Air Active Cooling. The present research is intended to investigate experimentally and Numerically the effectiveness of cooling large open areas like stadiums, shopping malls, national gardens, amusement parks, zoos, transportation facilities and government facilities or even in buildings outdoor gardens and patios. Our cooling systems are simple cooling fans with different diameters and a mist system. This type of cooling systems has been chosen among the others to guarantee less energy consumption, which will make it the most favorable and applicable for cooling such places mentioned above. In the experiments, the main focus is to study the temperature domain as a function of different fan diameters aerodynamically similar in different heights till we come up with an empirical relationship that can determine the temperature domain for different fan diameters and for different heights of these fans. The experimental part has two stages. The first stage is devoted to investigate the maximum range of airspeed and profile for three different fan diameters and for different heights without mist, while the second stage is devoted to investigate the maximum range of temperature and profile for the three different diameter fans and for different heights with mist. The computational study is devoted to built an experimentally verified mathematical model to be used in the design and optimization of water mist cooling systems, and to compare the mathematical results to the experimental results and to get an insight of how to apply such evaporative mist cooling for different places for different conditions. In this study, numerical solution is presented based on experimental conditions, such dry bulb temperature, wet bulb temperature, relative humidity, operating pressure and fan airspeed. In the computational study, all experimental conditions are kept the same for the three fans except the fan airspeed

  12. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate

    PubMed Central

    Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-01-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values. PMID:26693303

  13. Nonlinear propagating localized modes in a 2D hexagonal crystal lattice

    NASA Astrophysics Data System (ADS)

    Bajars, Janis; Eilbeck, J. Chris; Leimkuhler, Benedict

    2015-05-01

    In this paper we consider a 2D hexagonal crystal lattice model first proposed by Marín, Eilbeck and Russell in 1998. We perform a detailed numerical study of nonlinear propagating localized modes, that is, propagating discrete breathers and kinks. The original model is extended to allow for arbitrary atomic interactions, and to allow atoms to travel out of the unit cell. A new on-site potential is considered with a periodic smooth function with hexagonal symmetry. We are able to confirm the existence of long-lived propagating discrete breathers. Our simulations show that, as they evolve, breathers appear to localize in frequency space, i.e. the energy moves from sidebands to a main frequency band. Our numerical findings shed light on the open question of whether exact moving breather solutions exist in 2D hexagonal layers in physical crystal lattices.

  14. Impacts on foam stabilised composite structures: Experimental and numerical study

    NASA Astrophysics Data System (ADS)

    Rivallant, S.; Ferrero, J. F.; Barrau, J. J.

    2003-09-01

    A dropweight tester is used to make low velocity tests on specific sandwich type structures. Sandwich are made of glass-epoxy skin and polyurethane foam core. The skins can be straight or little curved, and impact direction is the global skin direction. The aim of these tests is to study the initiation of rupture in such structures: local buckling of skin and foam core rupture. Experimental results are given. They show the evolution of buckling critical stress in the skin when impact velocity increases. The rupture mode in curved skin specimen is also studied: rupture is no more provoked by buckling. A numerical analysis is proposed to model the behaviour of the structure and the rupture initiation. Finally, a method is developed, in order to predict the propagation of skin debonding during impact: an element layer under the skin is damaged with a specific law to simulate debonding.

  15. Numerical study of a high-speed miniature centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyi

    A miniature centrifugal compressor is a key component of reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low cryogenic temperature environment for electronics to increase their efficiency, or generate, store and transport cryogenic liquids, such as liquid hydrogen and oxygen, where space limit is also an issue. Because of space limitation, the compressor is composed of a radial IGV, a radial impeller and an axial-direction diffuser (which reduces the radial size because of smaller diameter). As a result of reduction in size, rotating speed of the impeller is as high as 313,000 rpm, and Helium is used as the working fluid, in order to obtain the required static pressure ratio/rise. Two main characteristics of the compressor---miniature and high-speed, make it distinct from conventional compressors. Higher compressor efficiency is required to obtain a higher COP (coefficient of performance) system. Even though miniature centrifugal compressors start to draw researchers' attention in recent years, understanding of the performance and loss mechanism is still lacking. Since current experimental techniques are not advanced enough to capture details of flow at miniature scale, numerical methods dominate miniature turbomachinery study. This work numerically studied a high speed miniature centrifugal compressor with commercial CFD code. The overall performance of the compressor was predicted with consideration of interaction between blade rows by using sliding mesh model. The law of similarity of turbomachinery was validated for small scale machines. It was found that the specific ratio effect needs to be considered when similarity law is applied. But Reynolds number effect can be neglected. The loss mechanism of each component was analyzed. Loss due to turning bend was significant in each component. Tip leakage loss of small scale turbomachines has more impact on the impeller performance than that of large scale ones. Because the

  16. Numerical study of Taylor bubbles with adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

    2014-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  17. Numerical study of water mitigation effects on blast wave

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Hung, K. C.; Chong, O. Y.

    2005-11-01

    The mitigating effect of a water wall on the generation and propagation of blast waves of a nearby explosive has been investigated using a numerical approach. A multimaterial Eulerian finite element technique is used to study the influence of the design parameters, such as the water-to-explosive weight ratio, the water wall thickness, the air-gap and the cover area ratio of water on the effectiveness of the water mitigation concept. In the computational model, the detonation gases are modelled with the standard Jones Wilkins Lee (JWL) equation of state. Water, on the other hand, is treated as a compressible fluid with the Mie Gruneisen equation of state model. The validity of the computational model is checked against a limited amount of available experimental data, and the influence of mesh sizes on the convergence of results is also discussed. From the results of the extensive numerical experiments, it is deduced that firstly, the presence of an air-gap reduces the effectiveness of the water mitigator. Secondly, the higher the water-to-explosive weight ratio, the more significant is the reduction in peak pressure of the explosion. Typically, water-to-explosive weight ratios in the range of 1 3 are found to be most practical.

  18. Numerical study of delta wing leading edge blowing

    NASA Technical Reports Server (NTRS)

    Yeh, David; Tavella, Domingo; Roberts, Leonard

    1988-01-01

    Spanwise and tangential leading edge blowing as a means of controlling the position and strength of the leading edge vortices are studied by numerical solution of the three-dimensional Navier-Stokes equations. The leading edge jet is simulated by defining a permeable boundary, corresponding to the jet slot, where suitable boundary conditions are implemented. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of spanwise leading edge blowing at moderate angle of attack magnifies the size and strength of the leading edge vortices, and moves the vortex cores outboard and upward. The increase in lift primarily comes from the greater nonlinear vortex lift. However, spanwise blowing causes earlier vortex breakdown, thus decreasing the stall angle. The effects of tangential blowing at low to moderate angles of attack tend to reduce the pressure peaks associated with leading edge vortices and to increase the suction peak around the leading edge, so that the integrated value of the surface pressure remains about the same. Tangential leading edge blowing in post-stall conditions is shown to re-establish vortical flow and delay vortex bursting, thus increasing C sub L sub max and stall angle.

  19. MAGNETIZATION DEGREE OF GAMMA-RAY BURST FIREBALLS: NUMERICAL STUDY

    SciTech Connect

    Harrison, Richard; Kobayashi, Shiho

    2013-08-01

    The relative strength between forward and reverse shock emission in early gamma-ray burst (GRB) afterglow reflects that of magnetic energy densities in the two shock regions. We numerically show that with the current standard treatment, the fireball magnetization is underestimated by up to two orders of magnitude. This discrepancy is especially large in the sub-relativistic reverse shock regime (i.e., the thin shell and intermediate regime), where most optical flashes were detected. We provide new analytic estimates of the reverse shock emission based on a better shock approximation, which well describe numerical results in the intermediate regime. We show that the reverse shock temperature at the onset of afterglow is constant, ( {Gamma}-bar{sub d}-1){approx}8 Multiplication-Sign 10{sup -2}, when the dimensionless parameter {xi}{sub 0} is more than several. Our approach is applied to case studies of GRB 990123 and 090102, and we find that magnetic fields in the fireballs are even stronger than previously believed. However, these events are still likely to be due to a baryonic jet with {sigma} {approx} 10{sup -3} for GRB 990123 and {approx}3 Multiplication-Sign 10{sup -4} to 3 for GRB 090102.

  20. Numerical Study of a Four-Roll Coating System

    NASA Astrophysics Data System (ADS)

    Tsuda, Takeaki

    The characteristics of a four-roll coating system were numerically investigated and compared with experimental data to validate the theoretical models used in this study. In the theoretical models, a film splitting model using a power-law-type equation, a roll-gap model based on elastohydrodynamics, and a flow model from a rotating-cylinder system were applied. The parametric computations for each operational condition revealed the steady and dynamic behaviors of a coating film and liquid films on the coating rolls. The results of the frequency response to the speed disturbances of the coating rolls indicated that the sensitivity of the lowest coating roll to the disturbance was half that of the others; this implies that the requirement for the accuracy of a driving system of the coating roll is not as severe as compared with others. The experimental data and the numerical results at steady state agreed well. Therefore, the theoretical models used in this research were found to be appropriate.

  1. Experimental and numerical FSI study of compliant hydrofoils

    NASA Astrophysics Data System (ADS)

    Augier, B.; Yan, J.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y.

    2015-06-01

    A propulsion system based on tandem hydrofoils is studied experimentally and numerically. An experimental measurement system is developed to extract hydrodynamic loads on the foils and capture their twisting deformation during operation. The measured data allowed us to assess the efficiency of the propulsion system as a function of travel speed and stroke frequency. The numerical simulation of the propulsion system is also presented and involves 3D, full-scale fluid-structure interaction (FSI) computation of a single (forward) foil. The foil is modeled as a combination of the isogeometric rotation-free Kirchhoff-Love shell and bending-stabilized cable, while the hydrodynamics makes use of the finite-element-based arbitrary Lagrangian-Eulerian variational multiscale formulation. The large added mass is handled through a quasi-direct FSI coupling technique. The measurement data collected is used in the validation of the FSI simulation, and excellent agreement is achieved between the predicted and measured hydrodynamic loads and foil twisting motion.

  2. Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies

    SciTech Connect

    Safta, Cosmin; Najm, Habib N.; Phipps, Eric Todd

    2014-09-01

    Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.

  3. A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration

    NASA Astrophysics Data System (ADS)

    Park, Dohyun; Jeon, Byungkyu; Jeon, Seokwon

    2009-06-01

    Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.

  4. Numerical Study on GRB-Jet Formation in Collapsars

    SciTech Connect

    Nagataki, Shigehiro; Takahashi, Rohta; Mizuta, Akira; Takiwaki, Tomoya; /Tokyo U.

    2006-08-22

    Two-dimensional magnetohydrodynamic simulations are performed using the ZEUS-2D code to investigate the dynamics of a collapsar that generates a GRB jet, taking account of realistic equation of state, neutrino cooling and heating processes, magnetic fields, and gravitational force from the central black hole and self gravity. It is found that neutrino heating processes are not so efficient to launch a jet in this study. It is also found that a jet is launched mainly by B{sub {phi}} fields that are amplified by the winding-up effect. However, since the ratio of total energy relative to the rest mass energy in the jet is not so high as several hundred, we conclude that the jets seen in this study are not be a GRB jet. This result suggests that general relativistic effects, which are not included in this study, will be important to generate a GRB jet. Also, the accretion disk with magnetic fields may still play an important role to launch a GRB jet, although a simulation for much longer physical time {approx} 10-100 s is required to confirm this effect. It is shown that considerable amount of {sup 56}Ni is synthesized in the accretion disk. Thus there will be a possibility for the accretion disk to supply sufficient amount of {sup 56}Ni required to explain the luminosity of a hypernova. Also, it is shown that neutron-rich matter due to electron captures with high entropy per baryon is ejected along the polar axis. Moreover, it is found that the electron fraction becomes larger than 0.5 around the polar axis near the black hole by {nu}{sub e} capture at the region. Thus there will be a possibility that r-process and r/p-process nucleosynthesis occur at these regions. Finally, much neutrons will be ejected from the jet, which suggests that signals from the neutron decays may be observed as the delayed bump of the light curve of the afterglow or gamma-rays.

  5. Experimental and numerical study of tornado-like vortex formation

    NASA Astrophysics Data System (ADS)

    Kotelnikova, M. S.; Verbitskaya, Z. V.; Nikulin, V. V.

    2012-04-01

    Swirling flows of fluids in vortex chambers have been extensively studied because they are widely used in various technical devices [A. K. Gupta, D. G. Lilley, and N. Syred, Swirl Flows (Abacus Press, 1984)]. However, most of these investigations have been devoted to the swirling flows in steady-state regimes, while basic questions concerning the formation of tornado-like vortices remain unanswered. The determination of the laws of vortex formation is also of considerable practical significance, since swirling flows can be used, for example, for the rapid removal of atmospheric contaminations. The laws of tornado-like vortex formation in a closed chamber have been experimentally and numerically studied as dependent on the air volume flow rate and swirl intensity. A physical interpretation of the obtained empirical relationships is proposed. It is established that a flow regime can exist in which the impurity mass transfer along the vortex core is accompanied by mass exchange between the core and surrounding atmosphere. This exchange has the form of spiral formations ejected regularly out of the vortex core. This process takes place under stationary conditions at the chamber input and output, which implies an autooscillatory character of the flow in the system studied. Also it is shown that the time of tornado-like vortex formation weakly depends on the airflow swirl parameter and approximately inversely proportional to the airflow rate. In the case when the vertical and horizontal chamber dimensions are close, this time is approximately equal to the characteristic time of air renewal in the chamber. The established laws and numerical models can be used for evaluating the time of formation of the vortex flows of this type and for the development of theoretical models of the formation of tornado-like vortices.

  6. Correlation of CpG Island Methylation of the Cytochrome P450 2E1/2D6 Genes with Liver Injury Induced by Anti-Tuberculosis Drugs: A Nested Case-Control Study

    PubMed Central

    Zhang, Jinling; Zhu, Xuebin; Li, Yuhong; Zhu, Lingyan; Li, Shiming; Zheng, Guoying; Ren, Qi; Xiao, Yonghong; Feng, Fumin

    2016-01-01

    This study investigated the role of CpG island methylation of the CYP2E1 and CYP2D6 genes in liver injury induced by anti-TB drugs from an epigenetic perspective in a Chinese cohort. A 1:1 matched nested case-control study design was applied. Pulmonary tuberculosis (TB) patients, who underwent standard anti-TB therapy and developed liver injury were defined as cases, while those who did not develop liver injury were defined as control. The two groups were matched in terms of sex, treatment regimen, and age. In 114 pairs of cases, CpG island methylation levels of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of anti-TB drug-induced liver injury (ADLI), with odds ratio (OR) values of 2.429 and 3.500, respectively (p < 0.01). Moreover, through multivariate logistic regression analysis, CpG island methylation of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of ADLI, with adjusted OR values of 4.390 (95% confidence interval (CI): 1.982–9.724) and 9.193 (95% CI: 3.624–25.888), respectively (p < 0.001). These results suggest that aberrantly elevated methylation of CpG islands of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA may increase the risk of ADLI in Chinese TB patients. PMID:27490558

  7. Numerical, analytical, experimental study of fluid dynamic forces in seals

    NASA Astrophysics Data System (ADS)

    Shapiro, William; Artiles, Antonio; Aggarwal, Bharat; Walowit, Jed; Athavale, Mahesh M.; Preskwas, Andrzej J.

    1992-04-01

    NASA/Lewis Research Center is sponsoring a program for providing computer codes for analyzing and designing turbomachinery seals for future aerospace and engine systems. The program is made up of three principal components: (1) the development of advanced three dimensional (3-D) computational fluid dynamics codes, (2) the production of simpler two dimensional (2-D) industrial codes, and (3) the development of a knowledge based system (KBS) that contains an expert system to assist in seal selection and design. The first task has been to concentrate on cylindrical geometries with straight, tapered, and stepped bores. Improvements have been made by adoption of a colocated grid formulation, incorporation of higher order, time accurate schemes for transient analysis and high order discretization schemes for spatial derivatives. This report describes the mathematical formulations and presents a variety of 2-D results, including labyrinth and brush seal flows. Extensions of 3-D are presently in progress.

  8. Numerical, analytical, experimental study of fluid dynamic forces in seals

    NASA Technical Reports Server (NTRS)

    Shapiro, William; Artiles, Antonio; Aggarwal, Bharat; Walowit, Jed; Athavale, Mahesh M.; Preskwas, Andrzej J.

    1992-01-01

    NASA/Lewis Research Center is sponsoring a program for providing computer codes for analyzing and designing turbomachinery seals for future aerospace and engine systems. The program is made up of three principal components: (1) the development of advanced three dimensional (3-D) computational fluid dynamics codes, (2) the production of simpler two dimensional (2-D) industrial codes, and (3) the development of a knowledge based system (KBS) that contains an expert system to assist in seal selection and design. The first task has been to concentrate on cylindrical geometries with straight, tapered, and stepped bores. Improvements have been made by adoption of a colocated grid formulation, incorporation of higher order, time accurate schemes for transient analysis and high order discretization schemes for spatial derivatives. This report describes the mathematical formulations and presents a variety of 2-D results, including labyrinth and brush seal flows. Extensions of 3-D are presently in progress.

  9. Numerical study of rotating interstellar clouds: equilibrium and collapse

    SciTech Connect

    Norman, M.L.

    1980-06-01

    Equilibrium and collapse of rotating, axisymmetric, idealized interstellar gas clouds is calculated with a 2D hydrodynamics code. The hydrodynamics features an improved angular momentum advection algorithm. Angular momentum is advected consistently with mass by deriving angular momentum fluxes from mass fluxes and the local distribution of specific angular momentum. Local conservation is checked by a graph of mass versus specific angular momentum for the cloud as a whole.

  10. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  11. A numerical study on surface asperities in bakelite-RPC

    NASA Astrophysics Data System (ADS)

    Majumdar, N.; Mukhopadhyay, S.; Bhattacharya, P.; Biswas, S.; Bhattacharya, S.; Saha, S.; Chattopadhyay, S.

    2012-11-01

    The effect of asperities on the inner surface of bakelite electrodes in a bakelite-RPC has been studied following numerical simulation. Ideally smooth, untreated, as well as bakelite surface treated with polymer have been considered here in order to achieve a comprehensive understanding. The models of the chambers in the simulation have been built on the basis of the geometrical parameters of the prototypes fabricated in the R&D exercises of India-based Neutrino Observatory (INO) experiment. The asperities have been modeled from the surface profile measured for the specific grade of bakelite that has been used to fabricate the prototypes. The charge induced on one of the readout strips has been computed for the models having treated and untreated bakelites. The results have indicated fairly that the treatment of the rough surface has indeed helped in suppressing the generation of higher charges.

  12. Numerical studies of dilute and dense spray characteristics

    NASA Technical Reports Server (NTRS)

    Kim, Y. M.; Shang, H. M.; Chen, C. P.; Ziebarth, J. P.; Wang, T. S.

    1992-01-01

    Several issues involving the improvement of physical submodels and the computational efficiency in modeling dilute and dense spray combustion are discussed. First, the implementations of a dispersion width approach accounting for turbulent dispersion within each computational parcel is discussed. This is essentially a statistical transport model and the testings of this model confirm the capability of accurately representing dispersion in nearly-homogeneous and inhomogeneous turbulent flows with improved efficiency over the delta function stochastic separated flow model. To account for the dense spray effects, an existing drop collision and coalescence model and a Taylor analogy breakup (TAB) model were employed. These models were incorporated into a state-of-the-art multiphase all-speed transient flow solution procedure. Several examples including nonevaporating, evaporating, and burning dense spray cases were studied. The numerical results show reasonably good comparisons with available experimental data in terms of spray penetration, drop sizes, and overall configuration of a spray flame.

  13. Infrasonic interferometry of stratospherically refracted microbaroms--a numerical study.

    PubMed

    Fricke, Julius T; El Allouche, Nihed; Simons, Dick G; Ruigrok, Elmer N; Wapenaar, Kees; Evers, Läslo G

    2013-10-01

    The atmospheric wind and temperature can be estimated through the traveltimes of infrasound between pairs of receivers. The traveltimes can be obtained by infrasonic interferometry. In this study, the theory of infrasonic interferometry is verified and applied to modeled stratospherically refracted waves. Synthetic barograms are generated using a raytracing model and taking into account atmospheric attenuation, geometrical spreading, and phase shifts due to caustics. Two types of source wavelets are implemented for the experiments: blast waves and microbaroms. In both numerical experiments, the traveltimes between the receivers are accurately retrieved by applying interferometry to the synthetic barograms. It is shown that microbaroms can be used in practice to obtain the traveltimes of infrasound through the stratosphere, which forms the basis for retrieving the wind and temperature profiles. PMID:24116404

  14. Dynamics of a cylinder plunging into liquid: a numerical study

    NASA Astrophysics Data System (ADS)

    Ding, Hang

    2012-11-01

    The impact of a cylinder on a liquid surface and subsequent events are investigated numerically. The flows are resolved by solving the Navier-Stokes equations and the Cahn-Hilliard equation. Moving contact lines are modeled by a diffuse interface model (Seppecher 1996; Jaqcmin 2000), and contact-angle hysteresis is included (Ding&Spelt 2008). The method is validated by comparison to the experiments by Aristoff and Bush (2009). Our studies focus on the dynamics of the waves induced by the impact and the cavity collapse behind the cylinder. A variety of parameters affect the flow behaviors such as wettability, impact speed, viscosity etc. Their effects on the transition of the flow phenomena are investigated through parametric simulations over relevant ranges of Weber and Reynolds numbers and contact angles. This work is supposed by the 100 Talents Program of the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant No. 11172294).

  15. Numerical study of carbon nanotubes under circularly polarized irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Nakajima, Yudai; Wakabayashi, Katsunori

    2016-08-01

    We numerically study the energy band structures and the corresponding wavefunctions of carbon nanotubes under circularly polarized irradiation perpendicular to the tube axis on the basis of the Floquet-Bloch theory. We focus on two typical irradiation frequencies, ħΩ ≪ γ and ħΩ ˜ γ, where γ ≈ 3 eV is the hopping energy of graphene. Circularly polarized irradiation is found to open gaps for metallic zigzag nanotubes near the Fermi energy and shift the degenerate points of armchair nanotubes in the energy spectra away from the K and K‧ points. Furthermore, high-frequency irradiation localizes the wavefunctions on either side of the nanotubes; in particular, the localized wavefunctions have different valley indices on each side of the nanotubes.

  16. Study cosmic ray modulation near the heliopause: A numerical approach

    NASA Astrophysics Data System (ADS)

    Luo, X.; Zhang, M.; Potgieter, M. S.; Feng, X.; Pogorelov, N. V.

    2016-03-01

    By incorporating the MagnetoHydroDynamic (MHD) global heliospheric data into the Parker's cosmic-rays (CRs) transport equation, we constructed a hybrid galactic cosmic ray transport model to study the galactic cosmic-rays (GCR) behaviour near the heliopause(HP). Based on this hybrid model, we found that: (1)By increasing the ratio of the parallel diffusion coefficient to the perpendicular diffusion coefficient in the outer heliosheath (the region near HP and beyond), the simulated radial flux gradient near the HP increases as well. As this ratio multiplying factor reaches 1010, the flux experiences a sudden jump near the HP, similar to what Voyager 1 had observed in 2012. (2)After increasing the ratio of the diffusion coefficients beyond the HP, more pseudo- particles in our numerical approach which have been traced from the upwind nose region exit in the downwind tail region. It is thus possible that they diffuse more directly from the tail region to the nose region.

  17. Numerical study of metal oxide heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Shao, G.; Luo, J. K.

    2011-08-01

    Metal oxide (MO) semiconductors have great potential for photovoltaic (PV) application owing to some optimal bandgaps and a variety of possible combinations of the materials. The progress is limited due to lack of high-quality materials, reliable process and theoretical study and models which can guide the development. This paper reports on the numerical modelling of MO semiconductor PV cells. The effects of the bandgap structure, material, doping concentration and layer thickness on the proposed oxide solar cells have been investigated. It was found that, in an ideal case of no defects and no interface states, wide-gap MO, CuO and Cu2O can form a heterostructure n+/p/p+ cell with efficiency up to 28.6%, demonstrating great potential for development.

  18. Numerical Study on Microwave Scattering by Various Plasma Objects

    NASA Astrophysics Data System (ADS)

    Wang, Guibin; Zhang, Lin; He, Feng; Ouyang, Jiting

    2016-08-01

    The scattering features of microwave (MW) by planar plasma layer, plasma column and plasma-column array under different parameters have been numerically studied by the finite-difference time-domain (FDTD) method. The effects of the plasma frequency and electron collision rate on MW's reflectance, transmittance and absorptance are examined. The results show that for the planar plasma layer, the electron collision plays an important role in MW absorption and the reduction of wave reflection. In the plasma column condition, strong scattering occurs in certain directions. The scattering pattern depends on the plasma frequency, electron collision rate and column radius. A collisional, non-planar shaped plasma object like the plasma-column array can reduce significantly the wave reflection comparing with the planar plasma layer.

  19. Infrared spectroscopy of molecules with nanorod arrays: a numerical study.

    PubMed

    Tardieu, Clément; Vincent, Grégory; Haïdar, Riad; Collin, Stéphane

    2016-04-15

    Nanorod arrays with diameters much smaller than the wavelength exhibit sharp resonances with strong electric-field enhancement and angular dependence. They are investigated for enhanced infrared spectroscopy of molecular bonds. The molecule 3-cyanopropyldimethylchlorosilane (CS) is taken as a reference, and its complex permittivity is determined experimentally in the 3-5 μm wavelength range. When grafted on silicon nitride nanorods, we show numerically that its weak absorption bands due to chemical bond vibrations can be enhanced by several orders of magnitude compared with unstructured thin film. We propose a figure of merit (FoM) to assess the performance of this spectroscopic scheme, and we study the impact of the nanorod cross section on the FoM.

  20. Steady propagation of Bingham plugs in 2D channels

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Takayama, Shuichi; Grotberg, James

    2009-11-01

    The displacement of the yield-stress liquid plugs in channels and tubes occur in many biological systems and industrial processes. Among them is the propagation of mucus plugs in the respiratory tracts as may occur in asthma, cystic fibrosis, or emphysema. In this work the steady propagation of mucus plugs in a 2D channel is studied numerically, assuming that the mucus is a pure Bingham fluid. The governing equations are solved by a mixed-discontinuous finite element formulation and the free surface is resolved with the method of spines. The constitutive equation for a pure Bingham fluid is modeled by a regularization method. Fluid inertia is neglected, so the controlling parameters in a steady displacement are; the capillary number, Ca, Bingham number ,Bn, and the plug length. According to the numerical results, the yield stress behavior of the plug modifies the plug shape, the pattern of the streamlines and the distribution of stresses in the plug domain and along the walls in a significant way. The distribution along the walls is a major factor in studying cell injuries. This work is supported through the grant NIH HL84370.

  1. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-01

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. PMID:25965703

  2. On 2D bisection method for double eigenvalue problems

    SciTech Connect

    Ji, X.

    1996-06-01

    The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.

  3. Design of the LRP airfoil series using 2D CFD

    NASA Astrophysics Data System (ADS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas

    2014-06-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.

  4. Radiative heat transfer in 2D Dirac materials

    DOE PAGES

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  5. Nomenclature for human CYP2D6 alleles.

    PubMed

    Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M

    1996-06-01

    To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658

  6. Protostellar Jets: Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Vitorino, B. F.; Jatenco-Pereira, V.; Opher, R.

    1998-11-01

    Numerical simulations of astrophysical jets have been made in order to study their collimation and internal structure. Recently Ouyed & Pudritz (1997) did numerical simulations of axi-simetric magnetocentrifugal jets from a keplerian acretion disk employing the eulerian finite difference code Zeus-2D. During their simulation, it was raised a steady state jet confirming a lot of results of the MHD winds steady state theory. Following this scenario we did tridimensional numerial simulations of this model allowing the jet, after a perturbation, evolve into a not steady state producing the helical features observed in some protostellar jets.

  7. CYP2D6: novel genomic structures and alleles

    PubMed Central

    Kramer, Whitney E.; Walker, Denise L.; O’Kane, Dennis J.; Mrazek, David A.; Fisher, Pamela K.; Dukek, Brian A.; Bruflat, Jamie K.; Black, John L.

    2010-01-01

    Objective CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. Methods Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. Results Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. Conclusion Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis. PMID:19741566

  8. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  9. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice

    PubMed Central

    Pan, Xian

    2015-01-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter. PMID:25943116

  10. Numerical Studies of Radioactive Sediment Deposition on Reservoirs in Fukushima Coastal Area

    NASA Astrophysics Data System (ADS)

    Yamada, Susumu; Itakura, Mitsuhiro; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2014-05-01

    The transportation of radioactive Cs is mainly brought about by movement of silt- and clay-sized particles in rivers. Therefore, predicting such a fine sediment flow and deposition in rivers has been one of central issues toward environmental recovery after the Fukushima Dai-ichi nuclear power plant (FDNPP) accident. For the purpose of the Cs transport prediction, we concentrate on a few reservoirs in Fukushima costal area, since they are temporal destinations for contaminated silt and clay transported by rivers. We numerically study how the river water together with floating silt and clays penetrate into the reservoirs and where the sediments settle on the bottom surface of the reservoirs by using 2D river simulation framework named iRIC developed by Shimizu et al. In this presentation, we reveal the typical deposition pattern in the target reservoirs and compare the results with direct sampling data for the sediments on the reservoir bottom surfaces. We believe that the obtained information is useful in planning the water supply and treatment for highly-contaminated districts in Fukushima costal area.

  11. Numerical Study on the High-Speed Water-Entry of Hemispherical and Ogival Projectiles

    NASA Astrophysics Data System (ADS)

    Guo, Zitao; Zhang, Wei; Wei, Gang; Xiao, Xinke

    2011-06-01

    The water entry problem is considered as a classic problem which has a long research history, however, projectile water entry is still a difficult problem that has not been completely solved. In this paper, the effects of the projectile nose shape on laws of velocity attenuations for all projectiles were studied by a series of numerical simulations using the AUTODYN-2D. The projectiles including the hemispherical and ogival projectiles with three CRH (caliber-radius-head) have been set to a constant mass and their water-entry velocities were in the range of 300m/s ~ 1500m/s. The result showed that the drag coefficient increases monotonically with increasing initial velocities for an identical projectile but decrease with the increase of the CRH for ogival projectiles at the same velocity. It was found that the relation between the drag coefficient and the initial velocities for all projectiles can be expressed as a general equation. Correspondingly, the relation between the drag coefficient and the CRH value of ogival projectiles was also presented in this paper.

  12. Numerical Study on plumes and thermochemical piles in plate-mode convection

    NASA Astrophysics Data System (ADS)

    Stein, C.; Brannaschke, K.; Hansen, U.

    2010-12-01

    Plates and plumes are two important aspects of mantle convection that both have large impact on the structure and dynamics of the Earth's mantle. Tectonic plates shield the interior from effective cooling and the movement of plates and subduction processes affect the dynamics of the interior. Thermal plumes and thermochemical piles forming at the core-mantle boundary play a further role in the mixing and evolution of the mantle. We apply a 2D numerical code to investigate the structure and evolution of the mantle in thermal and thermochemical convection. In our model plates form in a self-consistent manner, so that we can study the effect of plate-mode convection. During periods of subduction, we observe the formation of plume clusters. In cases where we apply a strong pressure-dependent viscosity, we find a few, stable Superplumes. In thermochemical convection dense material is viscously trapped by the flow and piled up beneath plumes. We will here discuss the effect of plates on plumes and piles and compare the signals they leave at the surface and core-mantle boundary.

  13. A numerical study of droplet trapping in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Nagel, Mathias; Brun, P.-T.; Gallaire, François

    2014-03-01

    Microfluidic channels are powerful means of control of minute volumes such as droplets. These droplets are usually conveyed at will in an externally imposed flow which follows the geometry of the micro-channel. It has recently been pointed out by Dangla et al. ["Trapping microfluidic drops in wells of surface energy," Phys. Rev. Lett. 107(12), 124501 (2011)] that the motion of transported droplets may also be stopped in the flow, when they are anchored to grooves which are etched in the channels top wall. This feature of the channel geometry explores a direction that is usually uniform in microfluidics. Herein, this anchoring effect exploiting the three spatial directions is studied combining a depth averaged fluid description and a geometrical model that accounts for the shape of the droplet in the anchor. First, the presented method is shown to enable the capture and release droplets in numerical simulations. Second, this tool is used in a numerical investigation of the physical mechanisms at play in the capture of the droplet: a localized reduced Laplace pressure jump is found on its interface when the droplet penetrates the groove. This modified boundary condition helps the droplet cope with the linear pressure drop in the surrounding fluid. Held on the anchor the droplet deforms and stretches in the flow. The combination of these ingredients leads to recover the scaling law for the critical capillary number at which the droplets exit the anchors C a^{star} ∝ h2/R2 where h is the channel height and R the droplet undeformed radius.

  14. A numerical study of the upwelling circulation off Central Chile

    NASA Astrophysics Data System (ADS)

    Mesias, Jorge M.

    The summer upwelling circulation off Central Chile between 34°--40°S is studied using the Princeton Ocean Circulation numerical model, implemented with realistic atmospheric forcings and bottom topography. The simulations are made for summers of years 1992, 1993, and 1994. Sea surface temperature (SST) from the model results and satellite sensors (derived from NASA/NOAA Pathfinder Project datasets) are compared to determine regions where the numerical simulations more realistically represent the oceanic fields. The summer local winds are predominantly equatorward and fluctuate affected by the seasonal displacement of the Subtropical Anticyclone of the Southeast Pacific. The model ocean circulation shows the presence of a surface coastal equatorward jet flowing over a poleward undercurrent that spreads over the continental shelf and slope break. These currents resemble those historically observed off Central Chile, following a classical Ekman-geostrophy dynamics. The oceanic variability is strongly related to the variability of the local wind forcing, bottom relief, and coastline geometry. Strong wind fluctuations induce the formation of cyclonic/anticyclonic mesoscale eddies, favored by the separation of the equatorward jet from the coast, downstream of a prominent mid-domain cape. The flow variability between regions depends on the spatial variability of the wind forcing. The wind relaxation is larger in the southern regions, where the upwelling tends to disappear. In the northern areas, the separation of the jet and the formation of eddies induce a strong cross-shelf transport activity. Comparisons among SST fields for all years indicate that the model and satellite fields vary in similar patterns, especially in the northern coastal areas, and suggest that oceanic fields are largely affected by changes in local winds during El Nino events. During El Nino periods, the upwelling activity weakens due to a rapid decrease of the equatorward winds, and the passage of

  15. Experimental and numerical study of high intensity argon cluster beams

    SciTech Connect

    Korobeishchikov, N. G.; Kalyada, V. V.; Shmakov, A. A.; Zarvin, A. E.; Skovorodko, P. A.

    2014-12-09

    Experimental and numerical investigations of expansion of argon with homogeneous condensation in supersonic conical nozzle and in free jet behind it were carried out. Optimal parameters (stagnation pressure, nozzle-skimmer distance) for the formation of cluster beam with maximum intensity were determined. Two available models for nonequilibrium nucleation were tested. The numerical results are in satisfactory agreement with the measured data.

  16. A numerical study of laminar flames propagating in stratified mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacheng

    Numerical simulations are carried out to study the structure and speed of laminar flames propagating in compositionally and thermally stratified fuel-air mixtures. The study is motivated by the need to understand the physics of flame propagation in stratified-charge engines and model it. The specific question of interest in this work is: how does the structure and speed of the flame in the stratified mixture differ from that of the flame in a corresponding homogeneous mixture at the same equivalence ratio, temperature, and pressure? The studies are carried out in hydrogen-air, methane-air, and n-heptane-air mixtures. A 30-species 184-step skeletal mechanism is employed for methane oxidation, a 9-species 21-step mechanism for hydrogen oxidation, and a 37-species 56-step skeletal mechanism for n-heptane oxidation. Flame speed and structure are compared with corresponding values for homogeneous mixtures. For compositionally stratified mixtures, as shown in prior experimental work, the numerical results suggest that when the flame propagates from a richer mixture to a leaner mixture, the flame speed is faster than the corresponding speed in the homogeneous mixture. This is caused by enhanced diffusion of heat and species from the richer mixture to the leaner mixture. In fact, the effects become more pronounced in leaner mixtures. Not surprisingly, the stratification gradient influences the results with shallower gradients showing less effect. The controlling role that diffusion plays is further assessed and confirmed by studying the effect of a unity Lewis number assumption in the hydrogen/air mixtures. Furthermore, the effect of stratification becomes less important when using methane or n-heptane as fuel. The laminar flame speed in a thermally stratified mixture is similar to the laminar flame speed in homogeneous mixture at corresponding unburned temperature. Theoretical analysis is performed and the ratio of extra thermal diffusion rate to flame heat release rate

  17. Numerical and asymptotic studies of delay differential equations

    NASA Astrophysics Data System (ADS)

    Adhikari, Mohit Hemchandra

    Two classes of differential delay equations exhibiting diverse phenomena are studied. The first one is a singularly perturbed delay differential equation which is used to model selected physical systems involving feedback where relaxation effects are combined with nonlinear driving from the past. In the limit of fast relaxation, the differential equation reduces to a difference equation or a map, due to the presence of the delay. A basic question in this field is how the behavior of the map is reflected in the behavior of the solutions of the delay differential equation. In this work, a generic logistic form is used for the underlying map and the above question is studied in the first period-doubling regime of the map. Using an efficient numerical algorithm, the shape and the period of the corresponding asymptotically stable periodic solution is studied first, for various values of the delay. In the limit of large delay, these solutions resemble square-waves of period close to twice the value of the delay, with sharp transition layers joining flat plateau-like regions. A Poincare-Lindstedt method involving a two-parameter perturbation expansion is applied to solve equations representing these layers and accurate expressions for the shape and the period of these solutions, in terms of Jacobi elliptic functions, are obtained. A similar approach is used to obtain leading order expressions for sub-harmonic solutions of shorter periods, but it is shown that while they are extremely long-lived for large values of delay, they eventually decay to the fundamental solutions mentioned above. The spectral algorithm used for the numerical integration is tested by comparing its accuracy and efficiency in obtaining stiff solutions of linear delay equations, with that of a current state-of-the-art time-stepping algorithm for integrating delay equations. Effect of delay on the synchronization of two nerve impulses traveling along two parallel nerve fibers, is the second question

  18. Observational and numerical studies of extreme frontal scale contraction

    NASA Technical Reports Server (NTRS)

    Koch, Steven E.

    1995-01-01

    The general objective of this effort is to increase understanding of how frontal scale contraction processes may create and sustain intense mesoscale precipitation along intensifying cold fronts. The five-part project (an expansion of the originally proposed two-part project) employed conventional meteorological data, special mesoscale data, remote sensing measurements, and various numerical models. First an idealized hydrostatic modeling study of the scale contraction effects of differential cloud cover on low-level frontal structure and dynamics was completed and published in a peer-reviewed journal. The second objective was to complete and publish the results from a three dimensional numerical model simulation of a cold front in which differential sensible heating related to cloud coverage patterns was apparently crucial in the formation of a severe frontal squall line. The third objective was to use a nonhydrostatic model to examine the nonlinear interactions between the transverse circulation arising from inhomogeneous cloud cover, the adiabatic frontal circulation related to semi-geostrophic forcing, and diabatic effects related to precipitation processes, in the development of a density current-like microstructure at the leading edge of cold fronts. Although the development of a frontal model that could be used to initialize such a primitive equation model was begun, we decided to focus our efforts instead on a project that could be successfully completed in this short time, due to the lack of prospects for continued NASA funding beyond this first year (our proposal was not accepted for future funding). Thus, a fourth task was added, which was to use the nonhydrostatic model to test tentative hypotheses developed from the most detailed observations ever obtained on a density current (primarily sodar and wind profiler data). These simulations were successfully completed, the findings were reported at a scientific conference, and the results have recently been

  19. A numerical study of three-dimensional vortex breakdown

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Ash, Robert L.

    1987-01-01

    A numerical simulation of bubble-type vortex breakdown using a unique discrete form of the full 3-D, unsteady incompressible Navier-Stokes equations was performed. The Navier-Stokes equations were written in a vorticity-velocity form and the physical problem was not restricted to axisymmetric flow. The problem was parametized on a Rossby- Reynolds-number basis. Utilization of this parameter duo was shown to dictate the form of the free-field boundary condition specification and allowed control of axial breakdown location within the computational domain. The structure of the breakdown bubble was studied through time evolution plots of planar projected velocity vectors as well as through plots of particle traces and vortex lines. These results compared favorably with previous experimental studies. In addition, profiles of all three velocity components are presented at various axial stations and a Fourier analysis was performed to identify the dominant circumferential modes. The dynamics of the breakdown process were studied through plots of axial variation of rate of change of integrated total energy and rate of change of integrated enstrophy, as well as through contour plots of velocity, vorticity and pressure.

  20. A numerical study of rapidly rotating magneto-convection

    NASA Astrophysics Data System (ADS)

    Stellmach, S.; Raabe, W.; Hansen, U.

    2006-12-01

    Convective flows of low viscosity fluids under the combined influence of strong rotational and Lorentz forces are believed to generate the magnetic fields of the Earth and other terrestrial planets. We investigate the dynamics of such flows in a simple, idealized model. Convection currents are generated in an electrically conducting fluid layer by a fixed temperature difference between the lower and the upper boundary. A horizontal, homogenous magnetic field is externally imposed. The whole system rapidly rotates about a vertical axis. Direct numerical simulations are carried out for a wide range of control parameter values. The simulations reveal that the amplitude and the spatial and temporal scales of the convective flow strongly depend on the imposed field strength. We demonstrate that states of relatively ordered, small scale convection which emerge for weak imposed fields undergo a transition to turbulent, high amplitude states as the imposed field strength is increased. Large convection cells develop which allow for an efficient heat transport and organize the magnetic field into an approximate Taylor state. We present a systematic parameter study and discuss the influence of the various control parameters on the transition described above. The dynamics of the strong field states is studied in detail. We further analyze the strength of the α-effect in our system and study its quenching behavior. An attempt is made to compare the efficiency of spectral and finite volume codes for this problem.

  1. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  2. In situ reaction mechanism studies on the Ti(NMe{sub 2}){sub 2}(O{sup i}Pr){sub 2}-D{sub 2}O and Ti(O{sup i}Pr){sub 3}[MeC(N{sup i}Pr){sub 2}]-D{sub 2}O atomic layer deposition processes

    SciTech Connect

    Tomczak, Yoann Knapas, Kjell; Leskelä, Markku; Ritala, Mikko

    2014-01-15

    Reaction mechanisms in the Ti(NMe{sub 2}){sub 2}(O{sup i}Pr){sub 2}-D{sub 2}O and Ti(O{sup i}Pr){sub 3}[MeC(N{sup i}Pr){sub 2}] [also written Ti(O{sup i}Pr){sub 3}(N{sup i}Pr-Me-amd)]-D{sub 2}O atomic layer deposition processes were studied in situ with quartz crystal microbalance (QCM) and quadrupole mass spectrometry (QMS) at 275 °C. For the Ti(NMe{sub 2}){sub 2}(O{sup i}Pr){sub 2}-D{sub 2}O process, both QCM and QMS results indicated adsorption of the Ti(NMe{sub 2}){sub 2}(O{sup i}Pr){sub 2} molecule through an exchange of at least one of its –NMe{sub 2} ligands with surface hydroxyl groups. Regarding the Ti(O{sup i}Pr){sub 3}(N{sup i}Pr-Me-amd)-D{sub 2}O process, a mismatch between the QCM and QMS results revealed more complex reactions: the decomposition of the [MeC(N{sup i}Pr){sub 2}] [also written (N{sup i}Pr-Me-amd)] ligand is suggested by the shape of the QCM data and the intensity of the QMS signals belonging to fragments of the [MeC(N{sup i}Pr){sub 2}] [also written (N{sup i}Pr-Me-amd)] ligand. A simple calculation model associating the growth rate per cycle of a crystalline film and the surface area taken by the ligands remaining after saturation was also used to support the decomposition of the [MeC(N{sup i}Pr){sub 2}] [also written (N{sup i}Pr-Me-amd)] ligand. The observed high growth rate is incompatible with the whole [MeC(N{sup i}Pr){sub 2}] (also written [N{sup i}Pr-Me-amd)] ligand remaining on the surface.

  3. Numerical simulations and analytical studies of collapsing spheres

    NASA Astrophysics Data System (ADS)

    Foster, Prudence Nichols

    We investigate the spherical self-gravitating collapse of two scenarios. In the first, used to study star formation, we assume the gas remains isothermal. In the second, used in cooling flow studies, we assume the gas is radiatively cooling. In both cases, we compare numerical hydrodynamic evolutions with analytical solutions. In the star formation problem our simulations begin close to hydrostatic equilibrium. For initial conditions with a central density plateau, supersonic infall velocities develop. At core formation, near the origin, the central density diverges approaching an r-2 profile, and the infall velocity approaches -3.3 times the speed of sound. These are characteristics of the Larson Penston self-similar solution, although in the analytical solution these conditions would apply at all radii. After core formation, these initial conditions lead to a decreasing mass accretion rate. Other initial configurations with larger initial outer cloud radii to core radius ratios, i.e. in excess of 20, will develop constant mass accretion rates after core formation. This agrees with the self-similar solutions developed by Shu. Assuming optical transparency, we calculate line profiles for the computed collapse and find that the supersonic velocities do affect the line profiles near the time of core formation. The second problem we address is radiatively cooling self-gravitating flows. We find a self-similar solution that describes the flow, with characteristics in common with the gravothermal catastrophe studied in the context of globular clusters. Our analysis applies to the early transitional stage of cluster cooling flows, as the gas evolves from a static medium to a steady state inflow. The self-similar solution incorporates a power law cooling term which is inversely proportional to rho2 Tlamda;if lambda is less than 1 the central temperature increases with time. This is confirmed with numerical simulations for lambda less than or equal to -0.5 that have

  4. Systematic analytical and numerical studies of highly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Tsai, Shan-Wen

    Strong electron correlations in condensed matter systems give rise to a wide range of striking physical properties, producing phenomena as varied as high temperature superconductivity, metal-insulator transitions and the integer and fractional quantum Hall effects. Quantum critical systems also exhibit strong correlations between a large number of degrees of freedom. In this thesis we study these complicated systems using a combination of analytical and numerical approaches. We perform systematic investigations, which adds to the robustness of our results. We develop a new method, based on the density-matrix renormalization-group (DMRG) algorithm combined with finite-size scaling analysis, to study critical behavior in quantum spin chains and extract critical exponents. Accurate results are obtained for spin-1/2 antiferromagnetic chains and the spin-1 chain at the critical point separating the Haldane and the dimerized phases. Disorder in a system can change its properties drastically. Plateau transitions in the integer quantum Hall effect provide the clearest example of quantum critical behavior in a disordered system. We provide analytical proof that the Chalker-Coddington model, which is used to describe the plateau transitions, is quantum critical. Starting from a field theory based on this model, equivalent to a non-Hermitian supersymmetric spin chain, we prove quantum criticality by a Lieb-Schultz-Mattis type theorem. This approach was motivated by numerical results obtained using the DMRG/finite-size scaling method. Our generalized LSM theorem also applies to the spin quantum Hall effect, which can appear in disordered d-wave superconductors with broken time-reversal symmetry. The last part of the thesis is a renormalization-group study of two dimensional interacting electron systems. We obtain results relevant to high-temperature superconductors and also to the family of kappa - (BEDT - TTF)2X organic superconductors. At half filling, the fully nested

  5. Black shale weathering: An integrated field and numerical modeling study

    NASA Astrophysics Data System (ADS)

    Bolton, E. W.; Wildman, R. A., Jr.; Berner, R. A.; Eckert, J. O., Jr.; Petsch, S. T.; Mok, U.; Evans, B.

    2003-04-01

    We present an integrated study of black shale weathering in a near surface environment. Implications of this study contribute to our understanding of organic matter oxidation in uplifted sediments, along with erosion and reburial of ancient unoxidized organic matter, as major controls on atmospheric oxygen levels over geologic time. The field study used to launch the modeling effort is based on core samples from central-eastern Kentucky near Clay City (Late Devonian New Albany/Ohio Shale), where the strata are essentially horizontal. Samples from various depth intervals (up to 12 m depth) were analyzed for texture (SEM images), porosity fraction (0.02 to 0.1), and horizontal and vertical permeability (water and air permeabilities differ due to the fine-grained nature of the sediments, but are on the order of 0.01 to 1. millidarcies, respectively). Chemical analyses were also performed for per cent C, N, S, and basic mineralogy was determined (clays, quartz, pyrite, in addition to organic matter). The samples contained from 2 to 15 per cent ancient (non-modern soil) organic matter. These results were used in the creation of a numerical model for kinetically controlled oxidation of the organic matter within the shale (based on kinetics from Chang and Berner, 1999). The one-dimensional model includes erosion, oxygen diffusion in the partially saturated vadose zone as well as water percolation and solute transport. This study extends the studies of Petsch (2000) and the weathering component of Lasaga and Ohmoto (2002) to include more reactions (e.g., pyrite oxidation to sulfuric acid and weathering of silicates due to low pH) and to resolve the near-surface boundary layer. The model provides a convenient means of exploring the influence of variable rates of erosion, oxygen level, rainfall, as well as physical and chemical characteristics of the shale on organic matter oxidation.

  6. Numerical study of error propagation in Monte Carlo depletion simulations

    SciTech Connect

    Wyant, T.; Petrovic, B.

    2012-07-01

    Improving computer technology and the desire to more accurately model the heterogeneity of the nuclear reactor environment have made the use of Monte Carlo depletion codes more attractive in recent years, and feasible (if not practical) even for 3-D depletion simulation. However, in this case statistical uncertainty is combined with error propagating through the calculation from previous steps. In an effort to understand this error propagation, a numerical study was undertaken to model and track individual fuel pins in four 17 x 17 PWR fuel assemblies. By changing the code's initial random number seed, the data produced by a series of 19 replica runs was used to investigate the true and apparent variance in k{sub eff}, pin powers, and number densities of several isotopes. While this study does not intend to develop a predictive model for error propagation, it is hoped that its results can help to identify some common regularities in the behavior of uncertainty in several key parameters. (authors)

  7. Numerical Study of a Hydrodynamic Instability Driven by Evaporation

    NASA Astrophysics Data System (ADS)

    Hernandez-Zapata, Sergio; Romo-Cruz, Julio Cesar Ruben; Lopez-Sanchez, Erick Javier; Ruiz-Chavarria, Gerardo

    2013-11-01

    The study of hydrodynamic instabilities in liquid layers produced by evaporation has several applications on industry and technology. In this work we study numerically the conditions under which a liquid layer becomes unstable when evaporation in the vapor-liquid interphase is present. The evaporation process follows the Hertz-Knudsen law (the evaporation rate is proportional to the difference between the saturated vapor pressure at the liquid layer temperature and the vapor partial pressure in the environment). Additionally to the usual boundary conditions on solid walls (for example, the non-slip condition for the velocity), we analyze the boundary conditions in the vapor-liquid interphase where the momentum and energy balances have to be taken into account and where the evaporation plays a crucial role. To solve this problem the linear theory of stability is used; that is, a small perturbation around the basic solution is applied (flow at rest and a temperature stationary field). The equations are solved using the Chebyshev pseudo-spectral method. The results are compared with the more usual Rayleigh-Bénard and Marangoni mechanisms as well as with some experiments carried out by our team. Authors acknowledge DGAPA-UNAM by support under project IN116312, ``Vorticidad y Ondas no lineales en fluidos.''

  8. Numerical study of Wavy Blade Section for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kobæk, C. M.; Hansen, M. O. L.

    2016-09-01

    The Wavy Blade concept is inspired by the unique flipper of a humpback whale, characterized by the tubercles located at the leading edge. It has been suggested that this shape may have been a result of a natural selection process, since this flipper under some circumstances can produce higher lift than a flipper having a smooth trailing edge and thus could be potentially beneficial when catching food. A thorough literature study of the Wavy Blade concept is made and followed by CFD computations of two wavy blade geometries and a comparison with their baseline S809 airfoil at conditions more relevant for modern wind turbines. The findings in the literature from geometries similar to the hump back whale flipper indicate that the aerodynamic performance can be improved at high angles of attack, but sometimes at the expense of a lower lift slope and increased drag before stall. The numerical results for a blade section based on the S809 airfoil are, however, not as promising as some of the findings reported in the literature for the whale flipper at high angles of attack. These first CFD computations using a thicker airfoil and a higher Reynolds number than the whale flipper indicate that the results may very well depend on the actual airfoil geometry and perhaps also the Reynolds number, and future studies are necessary in order to illuminate this further.

  9. Numerical study on the thermo-chemically driven Geodynamo

    NASA Astrophysics Data System (ADS)

    Trümper, Tobias; Hansen, Ulrich

    2014-05-01

    In our numerical study we consider magneto-convection in the Earth's outer core driven by buoyancy induced by heterogeneities both in the thermal and the chemical field. The outer core is thus treated as a self-gravitating, rotating, spherical shell with unstable thermal and chemical gradients across its radius. The thermal gradient is maintained by secular cooling of the core and the release of latent heat at the inner core freezing front. Simultaneously, the concentration of the light constituents of the liquid phase increases at the inner core boundary since only a smaller fraction of the light elements can be incorporated during solidification. Thus, the inner core boundary constitutes a source of compositional buoyancy. The molecular diffusivities of the driving agents differ by some orders of magnitude so that a double-diffusive model is employed in order to study the flow dynamics of this system. We investigate the influence of different thermo-chemical driving scenarios on the structure of the flow and the internal magnetic field. A constant ratio of the diffusivities (Le=10) and a constant Ekman number (Ek=10-4) are adopted. Apart from testing different driving scenarios, the double-diffusive approach also allows to implement distinct boundary conditions on temperature and composition. Isochemical and fixed chemical flux boundary conditions are implemented in order to investigate their respective influence on the flow and magnetic field generation.

  10. Numerical study on dielectrophoretic chaining of two ellipsoidal particles.

    PubMed

    House, Dustin L; Luo, Haoxiang; Chang, Siyuan

    2012-05-15

    Electric field-induced assembly of biological and synthetic particles has proven useful in two- and three-dimensional fabrication of composite materials, microwires, photonic crystals, artificial tissues, and more. Biological particles are typically irregularly shaped, and using non-spherical synthetic particles has the ability to expand current applications. However, there is much to be understood about the dielectrophoretic (DEP) interaction that takes place between particles of general shape. In this work, we numerically study the DEP interaction between two prolate spheroid particles suspended in an unbounded fluid. The boundary-element method (BEM) is applied to solve the coupled electric field, Stokes flow, and particle motion, and the DEP forces are obtained by integrating the Maxwell stress tensor over the particle surfaces. Effects of the initial configuration and aspect ratio are investigated. Results show that the particles go through a self-rotation process, that is, electro-orientation, while translating slowly to form a chain pair. The final formation resembles the chaining pattern observed previously in experiments using densely distributed ellipsoidal particles. Thus, the transient behavior and particle-particle interaction exhibited in the current study could be used as the fundamental mechanism to explain the phenomenon in the experiment. PMID:22340950

  11. Secretory pathways generating immunosuppressive NKG2D ligands

    PubMed Central

    Baragaño Raneros, Aroa; Suarez-Álvarez, Beatriz; López-Larrea, Carlos

    2014-01-01

    Natural Killer Group 2 member D (NKG2D) activating receptor, present on the surface of various immune cells, plays an important role in activating the anticancer immune response by their interaction with stress-inducible NKG2D ligands (NKG2DL) on transformed cells. However, cancer cells have developed numerous mechanisms to evade the immune system via the downregulation of NKG2DL from the cell surface, including the release of NKG2DL from the cell surface in a soluble form. Here, we review the mechanisms involved in the production of soluble NKG2DL (sNKG2DL) and the potential therapeutic strategies aiming to block the release of these immunosuppressive ligands. Therapeutically enabling the NKG2D-NKG2DL interaction would promote immunorecognition of malignant cells, thus abrogating disease progression. PMID:25050215

  12. Numerical studies of bubble dynamics in laser thrombolysis

    SciTech Connect

    Chapyak, E.J.; Godwin, R.P.

    1996-03-01

    The applicability of modern numerical hydrodynamic methods for modeling the bubble dynamics occurring in Laser Thrombolysis is addressed. An idealized test problem is formulated and comparisons are made between numerical and analytical results. We find that approximately 23% of the available energy is radiated acoustically in one cycle with larger fractions likely to be radiated under more realistic conditions. We conclude that this approach shows promise in helping to optimize design parameters.

  13. Numerical study of detonation transmission in mixtures containing chemical inhibitors

    NASA Astrophysics Data System (ADS)

    Papalexandris, M. V.

    2012-05-01

    In this article, we report on numerical simulations of the evolution of gaseous detonation waves in mixtures that contain chemical inhibitors. In general, these are compounds that consume the radicals that are produced during combustion, thereby inhibiting the exothermic chain-terminating reaction. Also, some of them participate in endothermic reactions, such as dissociation. These properties make them very efficient flame suppressants. In this study, we employ a chemical kinetics model that consists of a three-step chain-branching mechanism for the fuel combustion and a one-step mechanism for the reaction between inhibitor and radicals. Results from both one- and two-dimensional simulations are presented and discussed. It is shown that radical consumption and heat absorption due to the inhibitor's reaction result in longer induction zones. This, in turn, leads to a detachment of the reaction zone from the precursor shock. For small and medium inhibitor concentrations, this detachment is temporary. Eventually, the radical concentration behind the induction zone becomes sufficient to initiate rapid fuel consumption, thus producing pressure waves which reach the precursor shock and re-ignite the detonation. This is followed by large over-pressures and highly irregular oscillations of the shock. Nonetheless, sufficiently high inhibitor concentrations can yield permanent detonation