Identifying topological edge states in 2D optical lattices using light scattering
NASA Astrophysics Data System (ADS)
Goldman, Nathan; Beugnon, Jérôme; Gerbier, Fabrice
2013-02-01
We recently proposed in a Letter [Phys. Rev. Lett. 108, 255303] a novel scheme to detect topological edge states in an optical lattice, based on a generalization of Bragg spectroscopy. The scope of the present article is to provide a more detailed and pedagogical description of the system - the Hofstadter optical lattice - and probing method. We first show the existence of topological edge states, in an ultra-cold gas trapped in a 2D optical lattice and subjected to a synthetic magnetic field. The remarkable robustness of the edge states is verified for a variety of external confining potentials. Then, we describe a specific laser probe, made from two lasers in Laguerre-Gaussian modes, which captures unambiguous signatures of these edge states. In particular, the resulting Bragg spectra provide the dispersion relation of the edge states, establishing their chiral nature. In order to make the Bragg signal experimentally detectable, we introduce a "shelving method", which simultaneously transfers angular momentum and changes the internal atomic state. This scheme allows to directly visualize the selected edge states on a dark background, offering an instructive view on topological insulating phases, not accessible in solid-state experiments.
Microscopy of a Quantum Gas in a 2D Optical Lattice
NASA Astrophysics Data System (ADS)
Bakr, Waseem; Peng, Amy; Tai, Ming; Ma, Ruichao; Jotzu, Gregor; Gillen, Jonathon; Foelling, Simon; Greiner, Markus
2010-03-01
Ultracold quantum gases in optical lattices provide a rich experimental toolbox for simulating the physics of condensed matter systems. With atoms in the lattice playing the role of electrons or Cooper pairs in real materials, it is possible to experimentally realize condensed matter Hamiltonians in a controlled way. To realize the full potential of such quantum simulations, we have created a quantum gas microscope (NA = 0.8) which can spatially resolve the atoms in the optical lattice at the single site level, and project arbitrary potential landscapes onto the atoms by combining the high resolution optics with static holographic masks or a spatial light modulator. The high resolution microscope operates with the atoms trapped in a two dimensional optical lattice at a distance of 10 microns from a glass surface that is part of the microscope. We have experimentally verified a resolution of ˜ 600 nm, providing the capability to study the phase diagram of the Bose Hubbard model by measuring occupation number at individual sites.
Orso, G.; Stringari, S.; Menotti, C.
2006-11-10
We use Bogoliubov theory to calculate the beyond mean field correction to the equation of state of a weakly interacting Bose gas in the presence of a tight 2D optical lattice. We show that the lattice induces a characteristic 3D to 1D crossover in the behavior of quantum fluctuations. Using the hydrodynamic theory of superfluids, we calculate the corresponding shift of the collective frequencies of a harmonically trapped gas. We find that this correction can be of the order of a few percent and hence easily measurable in current experiments. The behavior of the quantum depletion of the condensate is also discussed.
Hubbard Model study of Off Diagonally Confined fermions in a 2D Optical Lattice
NASA Astrophysics Data System (ADS)
Cone, Dave; Chiesa, Simone; Scalettar, Richard; Batrouni, George
2010-03-01
We report Quantum Monte Carlo simulations of a Hubbard Hamiltonian which incorporates a proposed new method for confining atoms in an optical lattice employing an inhomogeneous array of hopping matrix elements which trap atoms by going to zero at the lattice edges. This has been termed ``Off Diagonal Confinement (ODC)'' [1] to distinguish it from the more conventional use of a parabolic trap coupling to (diagonal) density operators. It has the advantage of producing systems which, while still being inhomogeneous, are entirely in the Mott phase, and allow simulations which are free of the sign problem at low temperatures. We analyze the effects of using ODC traps on the local density, density fluctuation, spin, and pairing correlation functions. Finally, we will discuss the advantages and importance of this new confinement technique for modeling correlated systems. Research supported by the Department of Energy, Office of Science SCIDAC program, DOE-DE-FC0206ER25793. [1] V.G. Rousseau et al., arXiv:0909.3543
NASA Astrophysics Data System (ADS)
Kumar, Ajit; Verma, Sanjay K.; Alvi, P. A.; Jasrotia, Dinesh
2016-04-01
The nanospatial morphological features of [ZnCl]- [C5H4NCH3]+ hybrid derivative depicts 28 nm granular size and 3D spreader shape packing pattern as analyzed by FESEM and single crystal XRD structural studies. The organic moiety connect the inorganic components through N-H+…Cl- hydrogen bond to form a hybrid composite, the replacement of organic derivatives from 2-methylpyridine to 2-Amino-5-choloropyridine results the increase in granular size from 28nm to 60nm and unit cell packing pattern from 3D-2D lattice dimensionality along ac plane. The change in optical energy direct band gap value from 3.01eV for [ZnCl]- [C5H4NCH3]+ (HM1) to 3.42eV for [ZnCl]- [C5H5ClN2]+ (HM2) indicates the role of organic moiety in optical properties of hybrid materials. The photoluminescence emission spectra is observed in the wavelength range of 370 to 600 nm with maximum peak intensity of 9.66a.u. at 438 nm for (HM1) and 370 to 600 nm with max peak intensity of 9.91 a.u. at 442 nm for (HM2), indicating that the emission spectra lies in visible range. PL excitation spectra depicts the maximum excitation intensity [9.8] at 245.5 nm for (HM1) and its value of 9.9 a.u. at 294 nm, specify the excitation spectra lies in UV range. Photoluminescence excitation spectra is observed in the wavelength range of 280 to 350 nm with maximum peak intensity of 9.4 a.u. at 285.5 nm and 9.9 a.u. at 294 and 297 nm, indicating excitation in the UV spectrum. Single crystal growth process and detailed physiochemical characterization such as XRD, FESEM image analysis photoluminescence property reveals the structure stability with non-covalent interactions, lattice dimensionality (3D-2D) correlations interweaving into the design of inorganic-organic hybrid materials.
NASA Astrophysics Data System (ADS)
Singh, Kevin; Geiger, Zachary; Senaratne, Ruwan; Rajagopal, Shankari; Fujiwara, Kurt; Weld, David; Weld Group Team
2015-05-01
Quasiperiodicity is intimately involved in quantum phenomena from localization to the quantum Hall effect. Recent experimental investigation of quasiperiodic quantum effects in photonic and electronic systems have revealed intriguing connections to topological phenomena. However, such experiments have been limited by the absence of techniques for creating tunable quasiperiodic structures. We propose a new type of quasiperiodic optical lattice, constructed by intersecting a Gaussian beam with a 2D square lattice at an angle with an irrational tangent. The resulting potential, a generalization of the Fibonacci lattice, is a physical realization of the mathematical ``cut-and-project'' construction which underlies all quasiperiodic structures. Calculation of the energies and wavefunctions of atoms loaded into the proposed quasiperiodic lattice demonstrate a fractal energy spectrum and the existence of edge states. We acknowledge support from the ONR (award N00014-14-1-0805), the ARO and the PECASE program (award W911NF-14-1-0154), the AFOSR (award FA9550-12-1-0305), and the Alfred P. Sloan foundation (grant BR2013-110).
Beam-Plasma Instabilities in a 2D Yukawa Lattice
Kyrkos, S.; Kalman, G. J.; Rosenberg, M.
2009-06-05
We consider a 2D Yukawa lattice of grains, with a beam of other charged grains moving in the lattice plane. In contrast to Vlasov plasmas, where the electrostatic instability excited by the beam is only longitudinal, here both longitudinal and transverse instabilities of the lattice phonons can develop. We determine and compare the transverse and longitudinal growth rates. The growth rate spectrum in wave number space exhibits remarkable gaps where no instability can develop. Depending on the system parameters, the transverse instability can be selectively excited.
Unitary quantum lattice gas representation of 2D quantum turbulence
NASA Astrophysics Data System (ADS)
Zhang, Bo; Vahala, George; Vahala, Linda; Soe, Min
2011-05-01
Quantum vortex structures and energy cascades are examined for two dimensional quantum turbulence (2D QT) using a special unitary evolution algorithm. The qubit lattice gas (QLG) algorithm, is employed to simulate the weakly-coupled Bose-Einstein condensate (BEC) governed by the Gross-Pitaevskii (GP) equation. A parameter regime is uncovered in which, as in 3D QT, there is a very short Poincare recurrence time. This short recurrence time is destroyed as the nonlinear interaction energy is increased. Energy cascades for 2D QT are considered to examine whether 2D QT exhibits the inverse cascades of 2D classical turbulence. In the parameter regime considered, the spectra analysis reveals no such dual cascades---dual cascades being a hallmark of 2D classical turbulence.
Optical modulators with 2D layered materials
NASA Astrophysics Data System (ADS)
Sun, Zhipei; Martinez, Amos; Wang, Feng
2016-04-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.
Microparticle manipulation in optical lattices
NASA Astrophysics Data System (ADS)
Mu, Weiqiang
With the interference of several coherent beams, a periodical potential is produced for the particles trapped inside. The theoretical calculations show that the optical force applied on the particle in such optical lattice is in sinusoidal form. The force amplitudes vary greatly depending on the ratio of the particle size to the spacing of the optical lattice. A setup is constructed to demonstrate this dependence with two different methods: equipartition theorem and hydrodynamic-drag method. Based on this size dependence we develop an approach that allows tunable, size-dependent force selection of a subset of particles from an ensemble containing mixed particles. Combining a universal constant force with the sinusoidal optical force, a tilted washboard potential can be formed for the trapped particle. The diffusion of a particle over the barrier in this tilted washboard potential is briefly discussed. When the washboard potential oscillates, some interesting phenomena will happen: at high oscillation frequency, the particle's movement depends only on the oscillating amplitude; at low frequency, there are some combinations of the oscillation frequency and amplitude that induce the enhanced movement of the particle. This enhancement is first experimentally demonstrated with our setup. By implanting a single laser tweezers into the interferometric optical tweezers, we succeed in dynamically assembling designer colloidal lattices on the background of the interferometric optical tweezers. This new technique provides a flexible tool to design 2-d colloidal lattices.
NASA Astrophysics Data System (ADS)
Bouchiat, Marie-Anne; Bouchiat, Claude
2012-10-01
We have constructed the geometric phases emerging from the non-trivial topology of a space-dependent magnetic field B(r), interacting with the spin magnetic moment of a neutral particle. Our basic tool, adapted from a previous work on Berry’s phases, is the space-dependent unitary transformation {U}({\\mathbf {r}}), which leads to the identity, {U}({\\mathbf {r}})^{\\dag }\\, {\\mathbf {S}}\\,{\\bm \\cdot}\\, {\\mathbf {B}}({\\mathbf {r}}) \\, {U}({\\mathbf {r}}) = \\vert {\\mathbf {B}}({\\mathbf {r}}) \\vert \\, S_z, at each point r. In the ‘rotated’ Hamiltonian \\widehat{ H}, \\frac{ \\partial }{\\partial {\\mathbf {r}}} is replaced by the non-Abelian covariant derivative \\frac{ \\partial }{\\partial {\\mathbf {r}}}- \\frac{i}{\\hbar } {A}({\\mathbf {r}}) where {A}({\\mathbf {r}}) = i \\hbar \\, {U}^{\\dag }\\,{\\bm\\cdot}\\, \\frac{ \\partial }{\\partial {\\mathbf {r}}} {U} can be written as A1(r)Sx + A2(r)Sy + A3(r)Sz. The Abelian differentials Ak(r)·dr are given in terms of the Euler angles defining the orientation of B(r). The non-Abelian field {A}({\\mathbf {r}}) transforms as a Yang-Mills field; however, its vanishing ‘curvature’ reveals its purely geometric character. We have defined a perturbation scheme based upon the assumption that in \\widehat{ H} the longitudinal field A3(r) dominates the transverse field A1, 2(r) contributions, evaluated to second order. The geometry embedded in both the vector field A3(r) and the geometric magnetic field \\mathbf { B}_3 ({\\mathbf {r}}) = \\frac{ \\partial }{\\partial {\\mathbf {r}}}\\wedge {{\\mathbf {A}}}_3({\\mathbf {r}}) is described by their associated Aharonov-Bohm phase. As an illustration we study the physics of cold 171Yb atoms dressed by overlaying two circularly polarized stationary waves with orthogonal directions, which form a 2D square optical lattice. The frequency is tuned midway between the two hyperfine levels of the (6s6p)3P1 states to protect the optical B(r) field generated by the
Subwavelength Lattice Optics by Evolutionary Design
2015-01-01
This paper describes a new class of structured optical materials—lattice opto-materials—that can manipulate the flow of visible light into a wide range of three-dimensional profiles using evolutionary design principles. Lattice opto-materials are based on the discretization of a surface into a two-dimensional (2D) subwavelength lattice whose individual lattice sites can be controlled to achieve a programmed optical response. To access a desired optical property, we designed a lattice evolutionary algorithm that includes and optimizes contributions from every element in the lattice. Lattice opto-materials can exhibit simple properties, such as on- and off-axis focusing, and can also concentrate light into multiple, discrete spots. We expanded the unit cell shapes of the lattice to achieve distinct, polarization-dependent optical responses from the same 2D patterned substrate. Finally, these lattice opto-materials can also be combined into architectures that resemble a new type of compound flat lens. PMID:25380062
Subwavelength lattice optics by evolutionary design.
Huntington, Mark D; Lauhon, Lincoln J; Odom, Teri W
2014-12-10
This paper describes a new class of structured optical materials--lattice opto-materials--that can manipulate the flow of visible light into a wide range of three-dimensional profiles using evolutionary design principles. Lattice opto-materials are based on the discretization of a surface into a two-dimensional (2D) subwavelength lattice whose individual lattice sites can be controlled to achieve a programmed optical response. To access a desired optical property, we designed a lattice evolutionary algorithm that includes and optimizes contributions from every element in the lattice. Lattice opto-materials can exhibit simple properties, such as on- and off-axis focusing, and can also concentrate light into multiple, discrete spots. We expanded the unit cell shapes of the lattice to achieve distinct, polarization-dependent optical responses from the same 2D patterned substrate. Finally, these lattice opto-materials can also be combined into architectures that resemble a new type of compound flat lens. PMID:25380062
Optimization and Design of 2d Honeycomb Lattice Photonic Crystal Modulated by Liquid Crystals
NASA Astrophysics Data System (ADS)
Guo, Caihong; Zheng, Jihong; Gui, Kun; Zhang, Menghua; Zhuang, Songlin
2013-12-01
Photonic crystals (PCs) with infiltrating liquid crystals (LCs) have many potential applications because of their ability to continuously modulate the band-gaps. Using the plane-wave expansion method (PWM), we simulate the band-gap distribution of 2D honeycomb lattice PC with different pillar structures (circle, hexagonal and square pillar) and with different filling ratios, considering both when the LC is used as filling pillar material and semiconductors (Si, Ge) are used in the substrate, and when the semiconductors (Si, Ge) are pillar material and the LC is the substrate. Results show that unlike LC-based triangle lattice PC, optimized honeycomb lattice PC has the ability to generate absolute photonic band-gaps for fabricating optical switches. We provide optimization parameters for LC infiltrating honeycomb lattice PC structure based on simulation results and analysis.
Light trapping at Dirac point in 2D triangular Archimedean-like lattice photonic crystal.
Mao, Qiuping; Xie, Kang; Hu, Lei; Li, Qian; Zhang, Wei; Jiang, Haiming; Hu, Zhijia; Wang, Erlei
2016-04-20
Optical cavities and waveguides are critical parts of modern optical devices. Traditionally, optical cavities and waveguides rely on photonic bandgaps, or total internal reflection, to achieve light trapping. It has been reported that a novel light trapping, which exists in triangular and honeycomb lattices, is attributed to the so-called Dirac point. Our analysis reveals that 2D triangular Archimedean-like lattice photonic crystals also can support this Dirac mode with similar characteristics. This is a new type of localized mode with a different algebraic field profile at a different specified Dirac frequency, which is also beyond any complete photonic bandgap. The new wave localization has different features and can be applied to the design of new optical devices. PMID:27140119
Cold atoms in a rotating optical lattice
NASA Astrophysics Data System (ADS)
Foot, Christopher J.
2009-05-01
We have demonstrated a novel experimental arrangement which can rotate a two-dimensional optical lattice at frequencies up to several kilohertz. Our arrangement also allows the periodicity of the optical lattice to be varied dynamically, producing a 2D ``accordion lattice'' [1]. The angles of the laser beams are controlled by acousto-optic deflectors and this allows smooth changes with little heating of the trapped cold (rubidium) atoms. We have loaded a BEC into lattices with periodicities ranging from 1.8μm to 18μm, observing the collapse and revival of the diffraction orders of the condensate over a large range of lattice parameters as recently reported by a group in NIST [2]. We have also imaged atoms in situ in a 2D lattice over a range of lattice periodicities. Ultracold atoms in a rotating lattice can be used for the direct quantum simulation of strongly correlated systems under large effective magnetic fields, i.e. the Hamiltonian of the atoms in the rotating frame resembles that of a charged particle in a strong magnetic field. In the future, we plan to use this to investigate a range of phenomena such as the analogue of the fractional quantum Hall effect. [4pt] [1] R. A. Williams, J. D. Pillet, S. Al-Assam, B. Fletcher, M. Shotter, and C. J. Foot, ``Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms,'' Opt. Express 16, 16977-16983 (2008) [0pt] [2] J. H. Huckans, I. B. Spielman, B. Laburthe Tolra, W. D. Phillips, and J. V. Porto, Quantum and Classical Dynamics of a BEC in a Large-Period Optical Lattice, arXiv:0901.1386v1
Quantum Gases in Optical Lattices
NASA Astrophysics Data System (ADS)
Barmettler, Peter; Kollath, Corinna
2015-09-01
The experimental realization of correlated quantum phases with ultracold gases in optical lattices and their theoretical understanding has witnessed remarkable progress during the last decade. In this review we introduce basic concepts and tools to describe the many-body physics of quantum gases in optical lattices. This includes the derivation of effective lattice Hamiltonians from first principles and an overview of the emerging quantum phases. Additionally, state-of-the-art numerical tools to quantitatively treat bosons or fermions on different lattices are introduced.
Lattice Boltzmann Equation On a 2D Rectangular Grid
NASA Technical Reports Server (NTRS)
Bouzidi, MHamed; DHumieres, Dominique; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
We construct a multi-relaxation lattice Boltzmann model on a two-dimensional rectangular grid. The model is partly inspired by a previous work of Koelman to construct a lattice BGK model on a two-dimensional rectangular grid. The linearized dispersion equation is analyzed to obtain the constraints on the isotropy of the transport coefficients and Galilean invariance for various wave propagations in the model. The linear stability of the model is also studied. The model is numerically tested for three cases: (a) a vortex moving with a constant velocity on a mesh periodic boundary conditions; (b) Poiseuille flow with an arbitrasy inclined angle with respect to the lattice orientation: and (c) a cylinder &symmetrically placed in a channel. The numerical results of these tests are compared with either analytic solutions or the results obtained by other methods. Satisfactory results are obtained for the numerical simulations.
Statistical Transmutation in Floquet Driven Optical Lattices
NASA Astrophysics Data System (ADS)
Sedrakyan, Tigran A.; Galitski, Victor M.; Kamenev, Alex
2015-11-01
We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state.
Statistical Transmutation in Floquet Driven Optical Lattices.
Sedrakyan, Tigran A; Galitski, Victor M; Kamenev, Alex
2015-11-01
We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state. PMID:26588392
Lattice Formulation of 2D SQCD with exact supersymmetry
Sugino, Fumihiko
2008-11-23
We construct a lattice model for two-dimensional N = (2,2) supersymmetric QCD (SQCD), with the matter multiplets belonging to the fundamental or anti-fundamental representation of the gauge group U(N) or SU(N). The construction is based on the topological field theory (twisted supercharge) formulation and exactly preserves one supercharge. In order to avoid the species doublers of the matter multiplets, we introduce the Wilson terms and the model is defined for the case of the number of the fundamental matters (n{sub +}) equal to that of the anti-fundamental matters (n{sub -}). If some of the matter multiplets decouple from the theory by sending the corresponding anti-holomorphic twisted masses to the infinity, we can analyze the general n{sub +}{ne}n{sub -} case, although the lattice model is defined for n{sub +} = n{sub -}. By computing the anomaly of the U(1){sub A} R-symmetry in the lattice perturbation, we see that the decoupling is achieved and the anomaly for n{sub +}{ne}n{sub -} is correctly obtained.
Optical Abelian lattice gauge theories
Tagliacozzo, L.; Celi, A.; Zamora, A.; Lewenstein, M.
2013-03-15
We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.
Dynamical polarizability of the 2D pseudospin-1 dice lattice
NASA Astrophysics Data System (ADS)
Malcolm, John; Nicol, Elisabeth
The two-dimensional dice lattice is composed of three triangular sublattices whose low-energy excitation spectrum consists of Dirac-Weyl fermions with pseudospin-1. The energy dispersion has two Dirac cones, like the pseudospin-1/2 two-triangular-sublattice graphene, with an additional third band exactly at zero energy. We present theoretical results for the electronic dynamical polarization function in the material. This is a fundamental entity in many-body physics, renormalizing the Coulomb interaction through the dielectric function. From the polarization function we also obtain the Lindhard function, the plasmon branch, and can discuss other screening effects. These are constrasted with those of graphene.
Mirror effects and optical meta-surfaces in 2d atomic arrays
NASA Astrophysics Data System (ADS)
Shahmoon, Ephraim; Wild, Dominik; Lukin, Mikhail; Yelin, Susanne
2016-05-01
Strong optical response of natural and artificial (meta-) materials typically relies on the fact that the lattice constant that separates their constituent particles (atoms or electromagnetic resonators, respectively) is much smaller than the optical wavelength. Here we consider a single layer of a 2d atom array with a lattice constant on the order of an optical wavelength, which can be thought of as a highly dilute 2d metamaterial (meta-surface). Our theoretical analysis shows how strong scattering of resonant incoming light off the array can be controlled by choosing its lattice constant, e.g. allowing the array to operate as a perfect mirror or a retro-reflector for most incident angles of the incoming light. We discuss the prospects for quantum metasurfaces, i.e. the ability to shape the output quantum state of light by controlling the atomic states, and the possible generality of our results as a universal wave phenomena.
Quantum spin Hall phase in 2D trigonal lattice.
Wang, Z F; Jin, Kyung-Hwan; Liu, Feng
2016-01-01
The quantum spin Hall (QSH) phase is an exotic phenomena in condensed-matter physics. Here we show that a minimal basis of three orbitals (s, px, py) is required to produce a QSH phase via nearest-neighbour hopping in a two-dimensional trigonal lattice. Tight-binding model analyses and calculations show that the QSH phase arises from a spin-orbit coupling (SOC)-induced s-p band inversion or p-p bandgap opening at Brillouin zone centre (Γ point), whose topological phase diagram is mapped out in the parameter space of orbital energy and SOC. Remarkably, based on first-principles calculations, this exact model of QSH phase is shown to be realizable in an experimental system of Au/GaAs(111) surface with an SOC gap of ∼73 meV, facilitating the possible room-temperature measurement. Our results will extend the search for substrate supported QSH materials to new lattice and orbital types. PMID:27599580
Optical Stark effect in 2D semiconductors
NASA Astrophysics Data System (ADS)
Sie, Edbert J.; McIver, James W.; Lee, Yi-Hsien; Fu, Liang; Kong, Jing; Gedik, Nuh
2016-05-01
Semiconductors that are atomically thin can exhibit novel optical properties beyond those encountered in the bulk compounds. Monolayer transition-metal dichalcogenides (TMDs) are leading examples of such semiconductors that possess remarkable optical properties. They obey unique selection rules where light with different circular polarization can be used for selective photoexcitation at two different valleys in the momentum space. These valleys constitute bandgaps that are normally locked in the same energy. Selectively varying their energies is of great interest for applications because it unlocks the potential to control valley degree of freedom, and offers a new promising way to carry information in next-generation valleytronics. In this proceeding paper, we show that the energy gaps at the two valleys can be shifted relative to each other by means of the optical Stark effect in a controllable valley-selective manner. We discuss the physics of the optical Stark effect, and we describe the mechanism that leads to its valleyselectivity in monolayer TMD tungsten disulfide (WS2).
Quantum vortices in optical lattices
Vignolo, P.; Fazio, R.; Tosi, M. P.
2007-08-15
A vortex in a superfluid gas inside an optical lattice can behave as a massive particle moving in a periodic potential and exhibiting quantum properties. In this paper we discuss these properties and show that the excitation of vortex dynamics in a two-dimensional lattice can lead to striking measurable changes in its dynamic response. It would be possible by means of Bragg spectroscopy to carry out the first direct measurement of the effective vortex mass. In addition, the experiments proposed here provide an alternative way to study the pinning to the underlying lattice and the dissipative damping.
Grid Cell Responses in 1D Environments Assessed as Slices through a 2D Lattice.
Yoon, KiJung; Lewallen, Sam; Kinkhabwala, Amina A; Tank, David W; Fiete, Ila R
2016-03-01
Grid cells, defined by their striking periodic spatial responses in open 2D arenas, appear to respond differently on 1D tracks: the multiple response fields are not periodically arranged, peak amplitudes vary across fields, and the mean spacing between fields is larger than in 2D environments. We ask whether such 1D responses are consistent with the system's 2D dynamics. Combining analytical and numerical methods, we show that the 1D responses of grid cells with stable 1D fields are consistent with a linear slice through a 2D triangular lattice. Further, the 1D responses of comodular cells are well described by parallel slices, and the offsets in the starting points of the 1D slices can predict the measured 2D relative spatial phase between the cells. From these results, we conclude that the 2D dynamics of these cells is preserved in 1D, suggesting a common computation during both types of navigation behavior. PMID:26898777
NASA Astrophysics Data System (ADS)
Volčko, Dušan; Quader, Khandker F.
2012-12-01
We consider fermions on a 2D square lattice with a finite-range pairing interaction, and obtain signatures for unconventional pair-symmetry states, dx2-y2 and extended-s (s*), in the Bardeen-Cooper-Schrieffer-Bose-Einstein Condensation crossover region. We find that the fermion momentum distribution function, vk2, the ratio of the Bogoliubov coefficients, vk/uk, and the Fourier transform of vk2 are strikingly different for d and s* symmetries in the crossover region. The chemical potential and the gap functions for both pairing symmetries show several interesting features as a function of interaction. Fermionic atoms in 2D optical lattices may provide a way to test these signatures. We discuss current generation cold atom experiments that may be utilized.
Statistical Transmutation in Periodically Driven Optical Lattices
NASA Astrophysics Data System (ADS)
Sedrakyan, Tigran; Galitski, Victor; Kamenev, Alex
We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state. This work was supported by the PFC-JQI (T.S.), USARO and Simons Foundation (V.G.), and DOE Contract DE-FG02-08ER46482 (A.K.).
Optical imaging systems analyzed with a 2D template.
Haim, Harel; Konforti, Naim; Marom, Emanuel
2012-05-10
Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates. PMID:22614498
A transportable optical lattice clock
NASA Astrophysics Data System (ADS)
Vogt, Stefan; Häfner, Sebastian; Grotti, Jacopo; Koller, Silvio; Al-Masoudi, Ali; Sterr, Uwe; Lisdat, Christian
2016-06-01
We present the experimental setup and first results of PTB's transportable 87Sr clock. It consists of a physics package, several compact laser breadboards, and a transportable high finesse cavity for the clock laser. A comparison of the transportable system with our stationary optical lattice clock yields an instability of 2.2 x 10-15 √s/τ for the transportable clock. The current fractional uncertainty of 1 × 10-15 is still limited by the not yet fully evaluated light shift from the free running optical lattice laser operated near the magic wavelength. We are currently improving our transportable system to reach an uncertainty at or below the 10-17 level, which will finaly be limited by the uncertainty in blackbody radiation shift correction.
Orbital optical lattices with bosons
NASA Astrophysics Data System (ADS)
Kock, T.; Hippler, C.; Ewerbeck, A.; Hemmerich, A.
2016-02-01
This article provides a synopsis of our recent experimental work exploring Bose-Einstein condensation in metastable higher Bloch bands of optical lattices. Bipartite lattice geometries have allowed us to implement appropriate band structures, which meet three basic requirements: the existence of metastable excited states sufficiently protected from collisional band relaxation, a mechanism to excite the atoms initially prepared in the lowest band with moderate entropy increase, and the possibility of cross-dimensional tunneling dynamics, necessary to establish coherence along all lattice axes. A variety of bands can be selectively populated and a subsequent thermalization process leads to the formation of a condensate in the lowest energy state of the chosen band. As examples the 2nd, 4th and 7th bands in a bipartite square lattice are discussed. The geometry of the 2nd and 7th bands can be tuned such that two inequivalent energetically degenerate energy minima arise at the X ±-points at the edge of the 1st Brillouin zone. In this case even a small interaction energy is sufficient to lock the phase between the two condensation points such that a complex-valued chiral superfluid order parameter can emerge, which breaks time reversal symmetry. In the 4th band a condensate can be formed at the Γ-point in the center of the 1st Brillouin zone, which can be used to explore topologically protected band touching points. The new techniques to access orbital degrees of freedom in higher bands greatly extend the class of many-body scenarios that can be explored with bosons in optical lattices.
Dipolar molecules in optical lattices.
Sowiński, Tomasz; Dutta, Omjyoti; Hauke, Philipp; Tagliacozzo, Luca; Lewenstein, Maciej
2012-03-16
We study the extended Bose-Hubbard model describing an ultracold gas of dipolar molecules in an optical lattice, taking into account all on-site and nearest-neighbor interactions, including occupation-dependent tunneling and pair tunneling terms. Using exact diagonalization and the multiscale entanglement renormalization ansatz, we show that these terms can destroy insulating phases and lead to novel quantum phases. These considerable changes of the phase diagram have to be taken into account in upcoming experiments with dipolar molecules. PMID:22540482
A 2D MEMS stage for optical applications
NASA Astrophysics Data System (ADS)
Ataman, Caglar; Petremand, Yves; Noell, Wilfried; Ürey, Hakan; Epitaux, Marc; de Rooij, Nico F.
2006-04-01
A 2D MEMS platform for a microlens scanner application is reported. The platform is fabricated on an SOI wafer with 50 μm thick device layer. Entire device is defined with a single etching step on the same layer. Through four S-shaped beams, the device is capable of producing nonlinear 2D motion from linear 1D translation of two pairs of comb actuator sets. The device has a clear aperture of 2mm by 2mm, which is hallowed from the backside for micro-optics assembly. In this paper, a numerical device model and its validation via experimental characterization results are presented. Integration of the micro-optical components with the stage is also discussed. Additionally, a new driving scheme to minimize the settling time of the device in DC operation is explored.
Influence of lattice defects on the ferromagnetic resonance behaviour of 2D magnonic crystals
NASA Astrophysics Data System (ADS)
Manzin, Alessandra; Barrera, Gabriele; Celegato, Federica; Coïsson, Marco; Tiberto, Paola
2016-02-01
This paper studies, from a modelling point of view, the influence of randomly distributed lattice defects (non-patterned areas and variable hole size) on the ferromagnetic resonance behaviour and spin wave mode profiles of 2D magnonic crystals based on Ni80Fe20 antidot arrays with hexagonal lattice. A reference sample is first defined via the comparison of experimental and simulated hysteresis loops and magnetoresistive curves of patterned films, prepared by self-assembly of polystyrene nanospheres. Second, a parametric analysis of the dynamic response is performed, investigating how edge, quasi-uniform and localized modes are affected by alterations of the lattice geometry and bias field amplitude. Finally, some results about the possible use of magnetic antidot arrays in frequency-based sensors for magnetic bead detection are presented, highlighting the need for an accurate control of microstructural features.
Influence of lattice defects on the ferromagnetic resonance behaviour of 2D magnonic crystals.
Manzin, Alessandra; Barrera, Gabriele; Celegato, Federica; Coïsson, Marco; Tiberto, Paola
2016-01-01
This paper studies, from a modelling point of view, the influence of randomly distributed lattice defects (non-patterned areas and variable hole size) on the ferromagnetic resonance behaviour and spin wave mode profiles of 2D magnonic crystals based on Ni80Fe20 antidot arrays with hexagonal lattice. A reference sample is first defined via the comparison of experimental and simulated hysteresis loops and magnetoresistive curves of patterned films, prepared by self-assembly of polystyrene nanospheres. Second, a parametric analysis of the dynamic response is performed, investigating how edge, quasi-uniform and localized modes are affected by alterations of the lattice geometry and bias field amplitude. Finally, some results about the possible use of magnetic antidot arrays in frequency-based sensors for magnetic bead detection are presented, highlighting the need for an accurate control of microstructural features. PMID:26911336
Influence of lattice defects on the ferromagnetic resonance behaviour of 2D magnonic crystals
Manzin, Alessandra; Barrera, Gabriele; Celegato, Federica; Coïsson, Marco; Tiberto, Paola
2016-01-01
This paper studies, from a modelling point of view, the influence of randomly distributed lattice defects (non-patterned areas and variable hole size) on the ferromagnetic resonance behaviour and spin wave mode profiles of 2D magnonic crystals based on Ni80Fe20 antidot arrays with hexagonal lattice. A reference sample is first defined via the comparison of experimental and simulated hysteresis loops and magnetoresistive curves of patterned films, prepared by self-assembly of polystyrene nanospheres. Second, a parametric analysis of the dynamic response is performed, investigating how edge, quasi-uniform and localized modes are affected by alterations of the lattice geometry and bias field amplitude. Finally, some results about the possible use of magnetic antidot arrays in frequency-based sensors for magnetic bead detection are presented, highlighting the need for an accurate control of microstructural features. PMID:26911336
2-D scalable optical controlled phased-array antenna system
NASA Astrophysics Data System (ADS)
Chen, Maggie Yihong; Howley, Brie; Wang, Xiaolong; Basile, Panoutsopoulos; Chen, Ray T.
2006-02-01
A novel optoelectronically-controlled wideband 2-D phased-array antenna system is demonstrated. The inclusion of WDM devices makes a highly scalable system structure. Only (M+N) delay lines are required to control a M×N array. The optical true-time delay lines are combination of polymer waveguides and optical switches, using a single polymeric platform and are monolithically integrated on a single substrate. The 16 time delays generated by the device are measured to range from 0 to 175 ps in 11.6 ps. Far-field patterns at different steering angles in X-band are measured.
Experimental generation of optical coherence lattices
NASA Astrophysics Data System (ADS)
Chen, Yahong; Ponomarenko, Sergey A.; Cai, Yangjian
2016-08-01
We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.
Fractionalized topological defects in optical lattices
NASA Astrophysics Data System (ADS)
Zhang, Xing-Hai; Fan, Wen-Jun; Shi, Jin-Wei; Kou, Su-Peng
2015-10-01
Topological objects are interesting topics in various fields of physics ranging from condensed matter physics to the grand unified and superstring theories. Among those, ultracold atoms provide a playground to study the complex topological objects. In this paper we present a proposal to realize an optical lattice with stable fractionalized topological objects. In particular, we generate the fractionalized topological fluxes and fractionalized skyrmions on two-dimensional optical lattices and fractionalized monopoles on three-dimensional optical lattices. These results offer a new approach to study the quantum many-body systems on optical lattices of ultracold quantum gases with controllable topological defects, including dislocations, topological fluxes and monopoles.
All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators
NASA Astrophysics Data System (ADS)
Moniem, Tamer A.
2016-04-01
The photonic crystals draw significant attention to build all-optical logic devices and are considered one of the solutions for the opto-electronic bottleneck via speed and size. The paper presents a novel optical 4 × 2 encoder based on 2D square lattice photonic crystals of silicon rods. The main realization of optical encoder is based on the photonic crystal ring resonator NOR gates. The proposed structure has four logic input ports, two output ports, and two bias input port. The photonic crystal structure has a square lattice of silicon rods with a refractive index of 3.39 in air. The structure has lattice constant 'a' equal to 630 nm and bandgap range from 0.32 to 044. The total size of the proposed 4 × 2 encoder is equal to 35 μm × 35 μm. The simulation results using the dimensional finite difference time domain and Plane Wave Expansion methods confirm the operation and the feasibility of the proposed optical encoder for ultrafast optical digital circuits.
Lattice-induced nonadiabatic frequency shifts in optical lattice clocks
Beloy, K.
2010-09-15
We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10{sup -18} and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.
Frequency Metrology with Optical Lattice Clocks
NASA Astrophysics Data System (ADS)
Hong, Feng-Lei; Katori, Hidetoshi
2010-08-01
The precision measurement of time and frequency is of great interest for a wide range of applications, including fundamental science and technologies that support broadband communication networks and the navigation with global positioning systems (GPSs). The development of optical frequency measurement based on frequency combs has revolutionized the field of frequency metrology, especially research on optical frequency standards. The proposal and realization of the optical lattice clock have further stimulated studies in the field of optical frequency metrology. Optical carrier transfer using optical fibers has been used to disseminate optical frequencies or compare two optical clocks without degrading their stability and accuracy. In this paper, we review the state-of-the-art development of optical frequency combs, standards, and transfer techniques with emphasis on optical lattice clocks. We address recent results achieved at the University of Tokyo and the National Metrology Institute of Japan in respect of frequency metrology with Sr and Yb optical lattice clocks.
Optical lattices with micromechanical mirrors
Hammerer, K.; Stannigel, K.; Genes, C.; Zoller, P.; Treutlein, P.; Camerer, S.; Hunger, D.; Haensch, T. W.
2010-08-15
We investigate a setup where a cloud of atoms is trapped in an optical lattice potential of a standing-wave laser field which is created by retroreflection on a micromembrane. The membrane vibrations itself realize a quantum mechanical degree of freedom. We show that the center-of-mass mode of atoms can be coupled to the vibrational mode of the membrane in free space. Via laser cooling of atoms a significant sympathetic cooling effect on the membrane vibrations can be achieved. Switching off laser cooling brings the system close to a regime of strong coherent coupling. This setup provides a controllable segregation between the cooling and coherent dynamics regimes, and allows one to keep the membrane in a cryogenic environment and atoms at a distance in a vacuum chamber.
2D photonic crystals on the Archimedean lattices (tribute to Johannes Kepler (1571 1630))
NASA Astrophysics Data System (ADS)
Gajić, R.; class="cross-out">D. Jovanović,
2008-03-01
Results of our research on 2D Archemedean lattice photonic crystals are presented. This involves the calculations of the band structures, band-gap maps, equifrequency contours and FDTD simulations of electromagnetic propagation through the structures as well as an experimental verification of negative refraction at microwaves. The band-gap dependence on dielectric contrast is established both for dielectric rods in air and air-holes in dielectric materials. A special emphasis is placed on possibilities of negative refraction and left-handedness in these structures. Together with the familiar Archimedean lattices like square, triangular, honeycomb and Kagome' ones, we consider also, the less known, (3 2, 4, 3, 4) (ladybug) and (3, 4, 6, 4) (honeycomb-ring) structures.
Self-Assembly of Cubes into 2D Hexagonal and Honeycomb Lattices by Hexapolar Capillary Interactions
NASA Astrophysics Data System (ADS)
Soligno, Giuseppe; Dijkstra, Marjolein; van Roij, René
2016-06-01
Particles adsorbed at a fluid-fluid interface induce capillary deformations that determine their orientations and generate mutual capillary interactions which drive them to assemble into 2D ordered structures. We numerically calculate, by energy minimization, the capillary deformations induced by adsorbed cubes for various Young's contact angles. First, we show that capillarity is crucial not only for quantitative, but also for qualitative predictions of equilibrium configurations of a single cube. For a Young's contact angle close to 90°, we show that a single-adsorbed cube generates a hexapolar interface deformation with three rises and three depressions. Thanks to the threefold symmetry of this hexapole, strongly directional capillary interactions drive the cubes to self-assemble into hexagonal or graphenelike honeycomb lattices. By a simple free-energy model, we predict a density-temperature phase diagram in which both the honeycomb and hexagonal lattice phases are present as stable states.
Self-Assembly of Cubes into 2D Hexagonal and Honeycomb Lattices by Hexapolar Capillary Interactions.
Soligno, Giuseppe; Dijkstra, Marjolein; van Roij, René
2016-06-24
Particles adsorbed at a fluid-fluid interface induce capillary deformations that determine their orientations and generate mutual capillary interactions which drive them to assemble into 2D ordered structures. We numerically calculate, by energy minimization, the capillary deformations induced by adsorbed cubes for various Young's contact angles. First, we show that capillarity is crucial not only for quantitative, but also for qualitative predictions of equilibrium configurations of a single cube. For a Young's contact angle close to 90°, we show that a single-adsorbed cube generates a hexapolar interface deformation with three rises and three depressions. Thanks to the threefold symmetry of this hexapole, strongly directional capillary interactions drive the cubes to self-assemble into hexagonal or graphenelike honeycomb lattices. By a simple free-energy model, we predict a density-temperature phase diagram in which both the honeycomb and hexagonal lattice phases are present as stable states. PMID:27391753
Trapping Rydberg Atoms in an Optical Lattice
NASA Astrophysics Data System (ADS)
Anderson, Sarah E.
2012-06-01
Optical lattice traps for Rydberg atoms are of interest in advanced science and in practical applications. After a brief discussion of these areas of interest, I will review some basics of optical Rydberg-atom trapping. The trapping potential experienced by a Rydberg atom in an optical lattice is given by the spatial average of the free-electron ponderomotive energy weighted by the Rydberg electron's probability distribution. I will then present experimental results on the trapping of ^85Rb Rydberg atoms in a one-dimensional ponderomotive optical lattice (wavelength 1064 nm). The principal methods employed to study the lattice performance are microwave spectroscopy, which is used to measure the lattice's trapping efficiency, and photo-ionization, which is used to measure the dwell time of the atoms in the lattice. I have achieved a 90% trapping efficiency for ^85Rb 50S atoms by inverting the lattice immediately after laser excitation of ground-state atoms into Rydberg states. I have characterized the dwell time of the atoms in the lattice using photo-ionization of 50D5/2 atoms. In continued work, I have explored the dependence of the Rydberg-atom trapping potential on the angular portion of the atomic wavefunction. Distinct angular states exhibit different trapping behavior in the optical lattice, depending on how their wavefunctions are oriented relative to the lattice planes. Specifically, I have measured the lattice potential depth of sublevels of ^85Rb nD atoms (50<=n<=65) in a one-dimensional optical lattice with a transverse DC electric field. The trapping behavior varies substantially for the various angular sublevels, in agreement with theory. The talk will conclude with an outlook into planned experiments.
Analysis of the antiferromagnetic phase transitions of the 2D Kondo lattice
NASA Astrophysics Data System (ADS)
Jones, Barbara
2010-03-01
The Kondo lattice continues to present an interesting and relevant challenge, with its interactions between Kondo, RKKY, and coherent order. We present our study[1] of the antiferromagnetic quantum phase transitions of a 2D Kondo-Heisenberg square lattice. Starting from the nonlinear sigma model as a model of antiferromagnetism, we carry out a renormalization group analysis of the competing Kondo-RKKY interaction to one-loop order in an ɛ-expansion. We find a new quantum critical point (QCP) strongly affected by Kondo fluctuations. Near this QCP, there is a breakdown of hydrodynamic behavior, and the spin waves are logarithmically frozen out. The renormalization group results allow us to propose a new phase diagram near the antiferromagnetic fixed point of this 2D Kondo lattice model. The T=0 phase diagram contains four phases separated by a tetracritical point, the new QCP. For small spin fluctuations, we find a stable local magnetic moment antiferromagnet. For stronger coupling, region II is a metallic quantum disordered paramagnet. We find in region III a paramagnetic phase driven by Kondo interactions, with possible ground states of a heavy fermion liquid or a Kondo driven spin-liquid. The fourth phase is a spiral phase, or a large-Fermi-surface antiferromagnetic phase. We will describe these phases in more detail, including possible experimental confirmation of the spiral phase. The existence of the tetracritical point found here would be expected to affect the phase diagram at finite temperatures as well. In addition, It is hoped that these results, and particularly the Kondo interaction paramagnetic phase, will serve to bridge to solutions starting from the opposite limit, of a Kondo effect leading to a heavy fermion ground state. Work in collaboration with T. Tzen Ong. [4pt] [1] T. Ong and B. A. Jones, Phys. Rev. Lett. 103, 066405 (2009).
A new apparatus for studying quantum gases in optical lattices
NASA Astrophysics Data System (ADS)
Schneider, Ulrich; Duca, Lucia; Li, Tracy; Boll, Martin; Ronzheimer, Philipp; Braun, Simon; Will, Sebastian; Rom, Tim; Schreiber, Michael; Bloch, Immanuel
2011-05-01
We present the design of a new apparatus targeted at the study of equilibrium and out-of-equilibrium phenomena of quantum gases in 2D and 3D optical lattices. Specifically this apparatus will allow for a study of the crossover between 2D and 3D using bosonic and fermionic gases as well as Bose-Fermi mixtures. In addition we present a new analysis of previous results concerning the Fermi-Hubbard model and will analyze possible routes for creating many-body states with long range order, including antiferromagnetically ordered states and BCS-superfluids. This work is supported by DARPA/OLE MURI DFG MPQ.
Anyonic braiding in optical lattices
Zhang, Chuanwei; Scarola, V. W.; Tewari, Sumanta; Das Sarma, S.
2007-01-01
Topological quantum states of matter, both Abelian and non-Abelian, are characterized by excitations whose wavefunctions undergo nontrivial statistical transformations as one excitation is moved (braided) around another. Topological quantum computation proposes to use the topological protection and the braiding statistics of a non-Abelian topological state to perform quantum computation. The enormous technological prospect of topological quantum computation provides new motivation for experimentally observing a topological state. Here, we explicitly work out a realistic experimental scheme to create and braid the Abelian topological excitations in the Kitaev model built on a tunable robust system, a cold atom optical lattice. We also demonstrate how to detect the key feature of these excitations: their braiding statistics. Observation of this statistics would directly establish the existence of anyons, quantum particles that are neither fermions nor bosons. In addition to establishing topological matter, the experimental scheme we develop here can also be adapted to a non-Abelian topological state, supported by the same Kitaev model but in a different parameter regime, to eventually build topologically protected quantum gates. PMID:18000038
Optimized geometries for future generation optical lattice clocks
NASA Astrophysics Data System (ADS)
Krämer, S.; Ostermann, L.; Ritsch, H.
2016-04-01
Atoms deeply trapped in magic wavelength optical lattices provide a Doppler- and collision-free dense ensemble of quantum emitters ideal for high-precision spectroscopy and they are the basis of some of the best optical atomic clocks to date. However, despite their minute optical dipole moments the inherent long-range dipole-dipole interactions in such lattices still generate line shifts, dephasing and modified decay. We show that in a perfectly filled lattice line shifts and decay are resonantly enhanced depending on the lattice constant and geometry. Potentially, this yields clock shifts of many atomic linewidths and reduces the measurement by optimizing the lattice geometry. Such collective effects can be tailored to yield zero effective shifts and prolong dipole lifetimes beyond the single-atom decay. In particular, we identify dense 2D hexagonal or square lattices as the most promising configurations for an accuracy and precision well below the independent ensemble limit. This geometry should also be an ideal basis for related applications such as superradiant lasers, precision magnetometry or long-lived quantum memories.
Optical vortex array in spatially varying lattice
NASA Astrophysics Data System (ADS)
Kapoor, Amit; Kumar, Manish; Senthilkumaran, P.; Joseph, Joby
2016-04-01
We present an experimental method based on a modified multiple beam interference approach to generate an optical vortex array arranged in a spatially varying lattice. This method involves two steps which are: numerical synthesis of a consistent phase mask by using two-dimensional integrated phase gradient calculations and experimental implementation of produced phase mask by utilizing a phase only spatial light modulator in an optical 4f Fourier filtering setup. This method enables an independent variation of the orientation and period of the vortex lattice. As working examples, we provide the experimental demonstration of various spatially variant optical vortex lattices. We further confirm the existence of optical vortices by formation of fork fringes. Such lattices may find applications in size dependent trapping, sorting, manipulation and photonic crystals.
Electronic and geometrical properties of monoatomic and diatomic 2D honeycomb lattices. A DFT study
NASA Astrophysics Data System (ADS)
Rojas, Ángela; Rey, Rafael; Fonseca, Karen; Grupo de Óptica e Información Cuántica Team
Since the discovery of graphene by Geim and Novoselov at 2004, several analogous systems have been theoretically and experimentally studied, due to their technological interest. Both monoatomic lattices, such as silicine and germanene, and diatomic lattices (h-GaAs and h-GaN) have been studied. Using Density Functional Theory we obtain and confirm the chemical stability of these hexagonal 2D systems through the total energy curves as a function of interatomic distance. Unlike graphene, silicine and germanene, gapless materials, h-GaAs and h-GaN exhibit electronic gaps, different from that of the bulk, which could be interesting for the industry. On the other hand, the ab initio band structure calculations for graphene, silicene and germanene show a non-circular cross section around K points, at variance with the prediction of usual Tight-binding models. In fact, we have found that Dirac cones display a dihedral group symmetry. This implies that Fermi speed can change up to 30 % due to the orientation of the wave vector, for both electrons and holes. Traditional analytic studies use the Dirac equation for the electron dynamics at low energies. However, this equation assumes an isotropic, homogeneous and uniform space. Authors would like to thank the División de Investigación Sede Bogotá for their financial support at Universidad Nacional de Colombia. A. M. Rojas-Cuervo would also like to thank the Colciencias, Colombia.
Ultracold quantum gases in optical lattices
NASA Astrophysics Data System (ADS)
Bloch, Immanuel
2005-10-01
Artificial crystals of light, consisting of hundreds of thousands of optical microtraps, are routinely created by interfering optical laser beams. These so-called optical lattices act as versatile potential landscapes to trap ultracold quantum gases of bosons and fermions. They form powerful model systems of quantum many-body systems in periodic potentials for probing nonlinear wave dynamics and strongly correlated quantum phases, building fundamental quantum gates or observing Fermi surfaces in periodic potentials. Optical lattices represent a fast-paced modern and interdisciplinary field of research.
Ultracold quantum gases in triangular optical lattices
NASA Astrophysics Data System (ADS)
Becker, C.; Soltan-Panahi, P.; Kronjäger, J.; Dörscher, S.; Bongs, K.; Sengstock, K.
2010-06-01
Over recent years, exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of those ideas demand experimental environments with non-cubic lattice geometries. In this paper, we report on the implementation of a versatile three-beam lattice allowing for the generation of triangular as well as hexagonal optical lattices. As an important step, the superfluid-Mott insulator (SF-MI) quantum phase transition has been observed and investigated in detail in this lattice geometry for the first time. In addition to this, we study the physics of spinor Bose-Einstein condensates (BEC) in the presence of the triangular optical lattice potential, especially spin changing dynamics across the SF-MI transition. Our results suggest that, below the SF-MI phase transition, a well-established mean-field model describes the observed data when renormalizing the spin-dependent interaction. Interestingly, this opens up new perspectives for a lattice-driven tuning of a spin dynamics resonance occurring through the interplay of the quadratic Zeeman effect and spin-dependent interaction. Finally, we discuss further lattice configurations that can be realized with our setup.
Thermometry via Light Shifts in Optical Lattices
NASA Astrophysics Data System (ADS)
McDonald, M.; McGuyer, B. H.; Iwata, G. Z.; Zelevinsky, T.
2015-01-01
For atoms or molecules in optical lattices, conventional thermometry methods are often unsuitable due to low particle numbers or a lack of cycling transitions. However, a differential spectroscopic light shift can map temperature onto the line shape with a low sensitivity to trap anharmonicity. We study narrow molecular transitions to demonstrate precise frequency-based lattice thermometry, as well as carrier cooling. This approach should be applicable down to nanokelvin temperatures. We also discuss how the thermal light shift can affect the accuracy of optical lattice clocks.
Trapping Rydberg Atoms in an Optical Lattice
Anderson, S. E.; Younge, K. C.; Raithel, G.
2011-12-23
Rubidium Rydberg atoms are laser excited and subsequently trapped in a one-dimensional optical lattice (wavelength 1064 nm). Efficient trapping is achieved by a lattice inversion immediately after laser excitation using an electro-optic technique. The trapping efficiency is probed via analysis of the trap-induced shift of the two-photon microwave transition 50S{yields}51S. The inversion technique allows us to reach a trapping efficiency of 90%. The dependence of the efficiency on the timing of the lattice inversion and on the trap laser power is studied. The dwell time of 50D{sub 5/2} Rydberg atoms in the lattice is analyzed using lattice-induced photoionization.
Colloquium: Physics of optical lattice clocks
Derevianko, Andrei; Katori, Hidetoshi
2011-04-01
Recently invented and demonstrated optical lattice clocks hold great promise for improving the precision of modern time keeping. These clocks aim at the 10{sup -18} fractional accuracy, which translates into a clock that would neither lose nor gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here the principles of operation of these clocks are discussed and, in particular, a novel concept of magic trapping of atoms in optical lattices. Recently proposed microwave lattice clocks are also highlights and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.
DESIGN OF THE RCMS LATTICE OPTICS.
CARDONA,J.; KEWISCH,J.; PEGGS,S.
2002-06-02
THE RAPID CYCLING MEDICAL SYNCHROTRON (RCMS) IS DESIGNED TO BE A VERY LIGHT AND INEXPENSIVE ACCELERATOR. THIS IS POSSIBLE DUE TO THE SMALL BEAM SIZE THAT HAS BEEN CHOSEN EARLY DURING THE DESIGN STAGE. THIS CHOICE HAS IMPLICATIONS IN THE DESIGN OF THE LATTICE OPTICS. IN THIS PAPER, WE PRESENT AN OVERVIEW OF THE RCMS OPTICS LATTICE, THE KIND OF MAGNETS TO BE USED AND ALSO A DESCRIPTION OF A SPECIAL OPTIC MODULE THAT MATCHES THE ROTATING GANTRY WITH THE REST OF THE FIXED ACCELERATOR. TECHNIQUESDEVELOPED TO WIN ADDITIONAL SPACE BETWEEN QUADRUPOLES WITHOUT DISTRUBING BETA FUNCTIONS ARE ALSO PRESENTED.
Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup
Doerscher, Soeren; Thobe, Alexander; Hundt, Bastian; Kochanke, Andre; Le Targat, Rodolphe; Windpassinger, Patrick; Becker, Christoph; Sengstock, Klaus
2013-04-15
We report on the first experimental setup based on a 2D-/3D-magneto-optical trap (MOT) scheme to create both Bose-Einstein condensates and degenerate Fermi gases of several ytterbium isotopes. Our setup does not require a Zeeman slower and offers the flexibility to simultaneously produce ultracold samples of other atomic species. Furthermore, the extraordinary optical access favors future experiments in optical lattices. A 2D-MOT on the strong {sup 1}S{sub 0}{yields}{sup 1}P{sub 1} transition captures ytterbium directly from a dispenser of atoms and loads a 3D-MOT on the narrow {sup 1}S{sub 0}{yields}{sup 3}P{sub 1} intercombination transition. Subsequently, atoms are transferred to a crossed optical dipole trap and cooled evaporatively to quantum degeneracy.
Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup.
Dörscher, Sören; Thobe, Alexander; Hundt, Bastian; Kochanke, André; Le Targat, Rodolphe; Windpassinger, Patrick; Becker, Christoph; Sengstock, Klaus
2013-04-01
We report on the first experimental setup based on a 2D-/3D-magneto-optical trap (MOT) scheme to create both Bose-Einstein condensates and degenerate Fermi gases of several ytterbium isotopes. Our setup does not require a Zeeman slower and offers the flexibility to simultaneously produce ultracold samples of other atomic species. Furthermore, the extraordinary optical access favors future experiments in optical lattices. A 2D-MOT on the strong (1)S0 → (1)P1 transition captures ytterbium directly from a dispenser of atoms and loads a 3D-MOT on the narrow (1)S0 → (3)P1 intercombination transition. Subsequently, atoms are transferred to a crossed optical dipole trap and cooled evaporatively to quantum degeneracy. PMID:23635183
Visualization of 3D optical lattices
NASA Astrophysics Data System (ADS)
Lee, Hoseong; Clemens, James
2016-05-01
We describe the visualization of 3D optical lattices based on Sisyphus cooling implemented with open source software. We plot the adiabatic light shift potentials found by diagonalizing the effective Hamiltonian for the light shift operator. Our program incorporates a variety of atomic ground state configurations with total angular momentum ranging from j = 1 / 2 to j = 4 and a variety of laser beam configurations including the two-beam lin ⊥ lin configuration, the four-beam umbrella configuration, and four beams propagating in two orthogonal planes. In addition to visualizing the lattice the program also evaluates lattice parameters such as the oscillation frequency for atoms trapped deep in the wells. The program is intended to help guide experimental implementations of optical lattices.
The optical potential on the lattice
Agadjanov, Dimitri; Doring, Michael; Mai, Maxim; MeiBner, Ulf -G.; Rusetsky, Akaki
2016-06-08
The extraction of hadron-hadron scattering parameters from lattice data by using the Luscher approach becomes increasingly complicated in the presence of inelastic channels. We propose a method for the direct extraction of the complex hadron-hadron optical potential on the lattice, which does not require the use of the multi-channel Luscher formalism. Furthermore, this method is applicable without modifications if some inelastic channels contain three or more particles.
Lattice Boltzmann simulations of 2D laminar flows past two tandem cylinders
NASA Astrophysics Data System (ADS)
Mussa, Alberto; Asinari, Pietro; Luo, Li-Shi
2009-03-01
We apply the lattice Boltzmann equation (LBE) with multiple-relaxation-time (MRT) collision model to simulate laminar flows in two-dimensions (2D). In order to simulate flows in an unbounded domain with the LBE method, we need to address two issues: stretched non-uniform mesh and inflow and outflow boundary conditions. We use the interpolated grid stretching method to address the need of non-uniform mesh. We demonstrate that various inflow and outflow boundary conditions can be easily and consistently realized with the MRT-LBE. The MRT-LBE with non-uniform stretched grids is first validated with a number of test cases: the Poiseuille flow, the flow past a cylinder asymmetrically placed in a channel, and the flow past a cylinder in an unbounded domain. We use the LBE method to simulate the flow past two tandem cylinders in an unbounded domain with Re = 100. Our results agree well with existing ones. Through this work we demonstrate the effectiveness of the MRT-LBE method with grid stretching.
Excitations of quantum gases in optical lattices
NASA Astrophysics Data System (ADS)
Yesilada, Emek
This thesis describes experiments that studied the excitations of an ultra-cold atomic Rb gas in an optical lattice using Bragg spectroscopy. A Bose-Einstein condensate (BEC) of 87Rb was formed in a cloverleaf trap. An optical lattice of cubic symmetry, formed by the interference of six laser beams, was superimposed on the Rb BEC and turned on adiabatically. Such a system is well described by the Bose-Hubbard model, which predicts a quantum phase transition from a superfluid to a Mott insulator state at a critical lattice depth. In the first experiment, we studied the superfluid regime. The superfluid admits sound waves as phonon excitations. In two photon Bragg spectroscopy two laser beams intersecting at angle on the condensate create such excitations. The excitation spectrum of BEC was measured in a three dimensional optical lattice as a function of lattice strength. In the second experiment we studied the excitation spectrum of the Mott insulator. The lowest energy excitations in such a system are particle-hole excitations. These correspond to the hopping of atoms from one lattice site to another. The insulating phase is characterized by a gap in the excitation spectrum and we measured this particle-hole gap by Bragg spectroscopy. The precise nature of our measurement allowed us to study the opening of the excitation gap that has previously eluded experimental verification.
Fiber-optic lattice signal processing
NASA Astrophysics Data System (ADS)
Moslehi, B.; Goodman, J. W.; Shaw, H. J.; Tur, M.
1984-07-01
It is pointed out that fiber-optic signal processing devices can be constructed to perform various functions, such as convolution, correlation, matrix operations, and frequency filtering. Previous studies have concentrated on classical tapped-delay-line forms (transversal filters). The present investigation is concerned with different fiber-optic structures, taking into account lattice (or ladder) forms, which can be used as alternatives for performing optical signal processing. The elements to perform the various signal processing operations are considered along with fiber-optic lattice configurations. Aspects of mathematical analysis are discussed, taking into account Z-transform techniques, transfer-matrix and chain-matrix formulations, modern control theory formulations, and positive optical systems. Attention is given to time-domain signal processing applications, and frequency-domain signal processing applications.
Narrow line photoassociation in an optical lattice.
Zelevinsky, T; Boyd, M M; Ludlow, A D; Ido, T; Ye, J; Ciuryło, R; Naidon, P; Julienne, P S
2006-05-26
With ultracold 88Sr in a 1D magic wavelength optical lattice, we performed narrow-line photoassociation spectroscopy near the 1S0 - 3P1 intercombination transition. Nine least-bound vibrational molecular levels associated with the long-range 0u and 1u potential energy surfaces were measured and identified. A simple theoretical model accurately describes the level positions and treats the effects of the lattice confinement on the line shapes. The measured resonance strengths show that optical tuning of the ground state scattering length should be possible without significant atom loss. PMID:16803171
NASA Astrophysics Data System (ADS)
Guillamon, I.; Vieira, S.; Suderow, H.; Cordoba, R.; Sese, J.; de Teresa, J. M.; Ibarra, R.
In two dimensional (2D) systems, theory has proposed that random disorder destroys long range correlations driving a transition to a glassy state. Here, I will discuss new insights into this issue obtained through the direct visualization of the critical behaviour of a 2D superconducting vortex lattice formed in a thin film with a smooth 1D thickness modulation. Using scanning tunneling microscopy at 0.1K, we have tracked the modification in the 2D vortex arrangements induced by the 1D thickness modulation while increasing the vortex density by three orders of magnitude. Upon increasing the field, we observed a two-step order-disorder transition in the 2D vortex lattice mediated by the appearance of dislocations and disclinations and accompanied by an increase in the local vortex density fluctuations. Through a detailed analysis of correlation functions, we find that the transition is driven by the incommensurate 1D thickness modulation. We calculate the critical points and exponents and find that they are well above theoretical expectation for random disorder. Our results show that long range 1D correlations in random potentials enhance the stability range of the ordered phase in a 2D vortex lattice. Work supported by Spanish MINECO, CIG Marie Curie Grant, Axa Research Fund and FBBVA.
Quantum phases of quadrupolar Fermi gases in optical lattices
NASA Astrophysics Data System (ADS)
Bhongale, Satyan; Mathey, Ludwig; Zhao, Erhai; Yellin, Susanne; Lemeshko, Mikhail
2013-05-01
We introduce a new platform for quantum simulation of many-body systems based on nonspherical atoms or molecules with zero dipole moment but possessing a significant value of electric quadrupole moment. We consider a quadrupolar Fermi gas trapped in a 2D square optical lattice, and show that the peculiar symmetry and broad tunability of the quadrupole-quadrupole interaction results in a rich phase diagram encompassing unconventional BCS and charge density wave phases, and opens up a perspective to create topological superfluid. Quadrupolar species, such as metastable alkaline-earth atoms and homonuclear molecules, are stable against chemical reactions and collapse and are readily available in experiment at high densities.
Quantum Phases of Quadrupolar Fermi Gases in Optical Lattices
NASA Astrophysics Data System (ADS)
Bhongale, S. G.; Mathey, L.; Zhao, Erhai; Yelin, S. F.; Lemeshko, Mikhail
2013-04-01
We introduce a new platform for quantum simulation of many-body systems based on nonspherical atoms or molecules with zero dipole moments but possessing a significant value of electric quadrupole moments. We consider a quadrupolar Fermi gas trapped in a 2D square optical lattice, and show that the peculiar symmetry and broad tunability of the quadrupole-quadrupole interaction results in a rich phase diagram encompassing unconventional BCS and charge density wave phases, and opens up a perspective to create a topological superfluid. Quadrupolar species, such as metastable alkaline-earth atoms and homonuclear molecules, are stable against chemical reactions and collapse and are readily available in experiment at high densities.
Optical Lattices With Quantum Gas Microscope
NASA Astrophysics Data System (ADS)
Peng, Amy Wan-Chih
In this thesis, we demonstrate how the recent achievement of single site resolution using the "Quantum Gas Microscope" can be integrated with a system of ultra-cold atoms in a two dimensional optical lattice, to facilitate the study of condensed matter Hamiltonians in the strongly interacting regime. With the combination of magnetic and optical manipulation of atoms, we show how to reproducibly generate cold two dimensional Bose Einstein Condensates of 87Rb situated at the focus of our "Quantum Gas Microscope", allowing us to utilise the high numerical aperture for both lattice generation and single atom detection. As a first demonstration of the type of study we can perform with this apparatus, we implement the Bose-Hubbard Hamiltonian and give some evidence of the superfluid to Mott insulator transition in this system, seen on the single lattice site level.
Optical trapping of nanoscale plasmonic optical lattice in microfluidic environments
NASA Astrophysics Data System (ADS)
Hung, Chia-Chun; Huang, Jer-Shing; Yang, Ya-Tang
2014-09-01
Recent advances in optical manipulation have made it an ideal tool to create one, two, and three dimensional periodic optical potential. Such periodic potentials have found interesting technological and fundamental applications such as micro particle sorting and optical fractionation. Plasmon enhanced optical trapping techniques using metallic nanostructures can overcome the diffraction limits of far-field optical trap techniques and therefore permit trapping of nanoparticle with deep sub wavelength dimensions. Here we report the trapping of nanoparticles for a plasmon-enhanced two dimensional optical lattice integrated with microfluidic chip. We observe the trapping of nanoparticles over such an optical lattice. Such an integrated device allows the directional control of nano particles and provides a suitable platform for stochastic transport experiment such as nanoscale optical sorting.
Ultra-Cold Atoms on Optical Lattices
ERIC Educational Resources Information Center
Ghosh, Parag
2009-01-01
The field of ultra-cold atoms, since the achievement of Bose-Einstein Condensation (Anderson et al., 1995; Davis et al., 1995; Bradley et al., 1995), have seen an immensely growing interest over the past decade. With the creation of optical lattices, new possibilities of studying some of the widely used models in condensed matter have opened up.…
Ultracold Quantum Gases in Hexagonal Optical Lattices
NASA Astrophysics Data System (ADS)
Sengstock, Klaus
2010-03-01
Hexagonal structures occur in a vast variety of systems, ranging from honeycombs of bees in life sciences to carbon nanotubes in material sciences. The latter, in particular its unfolded two-dimensional layer -- Graphene -- has rapidly grown to one of the most discussed topics in condensed-matter physics. Not only does it show proximity to various carbon-based materials but also exceptional properties owing to its unusual energy spectrum. In quantum optics, ultracold quantum gases confined in periodic light fields have shown to be very general and versatile instruments to mimic solid state systems. However, so far nearly all experiments were performed in cubic lattice geometries only. Here we report on the first experimental realization of ultracold quantum gases in a state-dependent, two-dimensional, Graphene-like optical lattice with hexagonal symmetry. The lattice is realized via a spin-dependent optical lattice structure with alternating σ^+ and σ^- -sites and thus constitutes a so called `magnetic'-lattice with `antiferromagnetic'-structure. Atoms with different spin orientation can be loaded to specific lattice sites or -- depending on the parameters -- to the whole lattice. As a consequence e.g. superpositions of a superfluid spin component with a different spin component in the Mott-insulating phase can be realized as well as spin-dependent transport properties, disorder etc. After preparing an antiferromagnetically ordered state we e.g. measure sustainable changes of the transport properties of the atoms. This manifests in a significant reduction of the tunneling as compared to a single-component system. We attribute this observation to a partial tunneling blockade for one spin component induced by population in another spin component localized at alternating lattice sites. Within a Gutzwiller-Ansatz we calculate the phase diagrams for the mixed spin-states and find very good agreement with our experimental results. Moreover, by state-resolved recording
Fibonacci optical lattices for tunable quantum quasicrystals
NASA Astrophysics Data System (ADS)
Singh, K.; Saha, K.; Parameswaran, S. A.; Weld, D. M.
2015-12-01
We describe a quasiperiodic optical lattice, created by a physical realization of the abstract cut-and-project construction underlying all quasicrystals. The resulting potential is a generalization of the Fibonacci tiling. Calculation of the energies and wave functions of ultracold atoms loaded into such a lattice demonstrate a multifractal energy spectrum, a singular continuous momentum-space structure, and the existence of controllable edge states. These results open the door to cold atom quantum simulation experiments in tunable or dynamic quasicrystalline potentials, including topological pumping of edge states and phasonic spectroscopy.
Dipolar bosons on an optical lattice ring
NASA Astrophysics Data System (ADS)
Maik, Michał; Buonsante, Pierfrancesco; Vezzani, Alessandro; Zakrzewski, Jakub
2011-11-01
We consider an ultrasmall system of polarized bosons on an optical lattice with a ring topology, interacting via long-range dipole-dipole interactions. Dipoles polarized perpendicular to the plane of the ring reveal sharp transitions between different density-wave phases. As the strength of the dipolar interactions is varied, the behavior of the transitions is first-order-like. For dipoles polarized in the plane of the ring, the transitions between possible phases show pronounced sensitivity to the lattice depth. The abundance of possible configurations may be useful for quantum-information applications.
Twisted complex superfluids in optical lattices
NASA Astrophysics Data System (ADS)
Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören
2015-09-01
We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose—Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid.
Twisted complex superfluids in optical lattices.
Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören
2015-01-01
We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose-Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid. PMID:26345721
Twisted complex superfluids in optical lattices
Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören
2015-01-01
We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose—Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid. PMID:26345721
The Abelian Higgs model on Optical Lattice?
NASA Astrophysics Data System (ADS)
Meurice, Yannick; Tsai, Shan-Wen; Bazavov, Alexei; Zhang, Jin
2015-03-01
We study the Lattice Gauge Theory of the U(1)-Higgs model in 1+1 dimensions in the strongly coupled regime. We discuss the plaquette corrections to the effective theory where link variables are integrated out. We discuss matching with the second-order perturbation theory effective Hamiltonian for various Bose-Hubbard models. This correspondence can be exploited for building a lattice gauge theory simulator on optical lattices. We propose to implement the quantum rotors which appear in the Hamiltonian formulation using Bose mixtures or p-orbitals. Recent progress on magnetic effects in 2+1 dimensions will be discussed. Supported by the Army Research Office of the Department of Defense under Award Number W911NF-13-1-0119.
Optical beam steering using a 2D MEMS scanner
NASA Astrophysics Data System (ADS)
Pétremand, Yves; Clerc, Pierre-André; Epitaux, Marc; Hauffe, Ralf; Noell, Wilfried; de Rooij, N. F.
2007-10-01
This paper presents the design, fabrication and operation principle of an optical beam steerer for laser fiber coupling based on a MEMS device. The MEMS chip consists on a bi-dimensional movable platform based on uni-dimensional comb drive actuation. An optical lens is assembled onto the mobile platform to focus and steer the light comping from a laser diode and couple it into an optical fiber. Assembly of a complete system and measurements were performed and compared to simulation results. Both the trajectory of the MEMS and resonance frewquency measurements agree with the simulated ones.
Zharova, Yu. A. Fedulova, G. V.; Astrova, E. V.; Baldycheva, A. V.; Tolmachev, V. A.; Perova, T. S.
2011-08-15
Design and fabrication technology of a microcavity structure based on a double heterojunction in macroporous silicon is suggested. The fabrication process of a strip of a 2D photonic crystal constituted by a finite number of lattice periods and the technique for defect formation by local opening of macropores on the substrate side, followed by filling of these macropores with a nematic liquid crystal, are considered.
Artificial Staggered Magnetic Field for Ultracold Atoms in Optical Lattices
NASA Astrophysics Data System (ADS)
Morais Smith, Cristiane
2011-03-01
Uniform magnetic fields are ubiquitous in nature, but this is not the case for staggered magnetic fields. In this talk, I will discuss an experimental set-up for cold atoms recently proposed by us, which allows for the realization of a ``staggered gauge field'' in a 2D square optical lattice. If the lattice is loaded with bosons, it may be described by an effective Bose-Hubbard Hamiltonian, with complex and anisotropic hopping coefficients. A very rich phase diagram emerges: besides the usual Mott-insulator and zero-momentum condensate, a new phase with a finite momentum condensate becomes the ground-state at strong gauge fields. By using the technique of Feshbach resonance, the dynamics of a coherent superposition of a vortex-carrying atomic condensate and a conventional zero-momentum molecular condensate can also be studied within the same scheme. On the other hand, if the lattice is loaded with fermions, a highly tunable, graphene-like band structure can be realized, without requiring the honeycomb lattice symmetry. When the system is loaded with a mixture of bosons and two-species fermions, several features of the high-Tc phase diagram can be reproduced. A dome-shaped unconventional superconducting region arises, surrounded by a non-Fermi liquid and a Fermi liquid at low and high doping, respectively. We acknowledge financial support from the Netherlands Organization for Scientific Research (NWO).
NASA Astrophysics Data System (ADS)
Sommer, W.
2013-03-01
The basic experimental setup of a Fabry-Perot etalon between a collimating and a focusing lens is modified by introducing 2D rectangular lattices between the etalon and the collimating lens. Consequently, the irradiance of the interference fringes on a screen in the focal plane of the focusing lens changes and is modified by the diffraction pattern of the 2D lattice. The constructive interference directions resulting from both the etalon and the diffraction by the 2D lattice have to correlate in order to obtain maximum irradiance. Considering this experiment in a didactical context and analysing how a 2D rectangular lattice is seen through the etalon, the investigation provides us with the concept of an optical space containing a row of virtual 2D lattices. Due to the partially reflecting plane surfaces of the etalon, different virtual images of the 2D lattice form a 3D lattice with a tetragonal or orthorhombic structure. As an optical interface, the simple setup with a 2D lattice and an etalon models a 3D lattice. Using a laser, the diffraction pattern of a 2D lattice and etalon can be used to optically simulate 3D x-ray diffraction. The experiments can be included wherever undergraduate or graduate students have to follow up Laue's formulation of x-ray diffraction.
The NIM Sr Optical Lattice Clock
NASA Astrophysics Data System (ADS)
Lin, Y.; Wang, Q.; Li, Y.; Meng, F.; Lin, B.; Zang, E.; Sun, Z.; Fang, F.; Li, T.; Fang, Z.
2016-06-01
A 87Sr optical lattice clock is built at the National Institute of Metrology (NIM) of China. The atoms undergo two stages of laser cooling before being loaded into a horizontal optical lattice at the magic wavelength of 813 nm. After being interrogated by a narrow linewidth 698 nm clock laser pulse, the normalized excitation rate is measured to get the frequency error, which is then used to lock the clock laser to the ultra-narrow 1S0-3P0 clock transition. The total systematic uncertainty of the clock is evaluated to be 2.3 × 10-16, and the absolute frequency of the clock is measured to be 429 228 004 229 873.7(1.4) Hz with reference to the NIM5 cesium fountain.
Fast Dynamics for Atoms in Optical Lattices
NASA Astrophysics Data System (ADS)
Łącki, Mateusz; Zakrzewski, Jakub
2013-02-01
Cold atoms in optical lattices allow for accurate studies of many body dynamics. Rapid time-dependent modifications of optical lattice potentials may result in significant excitations in atomic systems. The dynamics in such a case is frequently quite incompletely described by standard applications of tight-binding models (such as, e.g., Bose-Hubbard model or its extensions) that typically neglect the effect of the dynamics on the transformation between the real space and the tight-binding basis. We illustrate the importance of a proper quantum mechanical description using a multiband extended Bose-Hubbard model with time-dependent Wannier functions. We apply it to situations directly related to experiments.
On-chip optical lattice for cold atom experiments.
Straatsma, Cameron J E; Ivory, Megan K; Duggan, Janet; Ramirez-Serrano, Jaime; Anderson, Dana Z; Salim, Evan A
2015-07-15
An atom-chip-based integrated optical lattice system for cold and ultracold atom applications is presented. The retroreflection optics necessary for forming the lattice are bonded directly to the atom chip, enabling a compact and robust on-chip optical lattice system. After achieving Bose-Einstein condensation in a magnetic chip trap, we load atoms directly into a vertically oriented 1D optical lattice and demonstrate Landau-Zener tunneling. The atom chip technology presented here can be readily extended to higher dimensional optical lattices. PMID:26176471
Spin-1/2 Optical Lattice Clock
Lemke, N. D.; Ludlow, A. D.; Barber, Z. W.; Fortier, T. M.; Diddams, S. A.; Jiang, Y.; Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Oates, C. W.
2009-08-07
We experimentally investigate an optical clock based on {sup 171}Yb (I=1/2) atoms confined in an optical lattice. We have evaluated all known frequency shifts to the clock transition, including a density-dependent collision shift, with a fractional uncertainty of 3.4x10{sup -16}, limited principally by uncertainty in the blackbody radiation Stark shift. We measured the absolute clock transition frequency relative to the NIST-F1 Cs fountain clock and find the frequency to be 518 295 836 590 865.2(0.7) Hz.
Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity.
Yi, Fei; Ren, Mingliang; Reed, Jason C; Zhu, Hai; Hou, Jiechang; Naylor, Carl H; Johnson, A T Charlie; Agarwal, Ritesh; Cubukcu, Ertugrul
2016-03-01
Emerging two-dimensional semiconductor materials possess a giant second order nonlinear response due to excitonic effects while the monolayer thickness of such active materials limits their use in practical nonlinear devices. Here, we report 3300 times optomechanical enhancement of second harmonic generation from a MoS2 monolayer in a doubly resonant on-chip optical cavity. We achieve this by engineering the nonlinear light-matter interaction in a microelectro-mechanical system enabled optical frequency doubling device based on an electrostatically tunable Fabry-Perot microresonator. Our versatile optomechanical approach will pave the way for next generation efficient on-chip tunable light sources, sensors, and systems based on molecularly thin materials. PMID:26854706
Anomalous giant piezoresistance in AlAs 2D electron systems with antidot lattices.
Gunawan, O; Gokmen, T; Shkolnikov, Y P; De Poortere, E P; Shayegan, M
2008-01-25
An AlAs two-dimensional electron system patterned with an antidot lattice exhibits a giant piezoresistance effect at low temperatures, with a sign opposite to the piezoresistance observed in the unpatterned region. We suggest that the origin of this anomalous giant piezoresistance is the nonuniform strain in the antidot lattice and the exclusion of electrons occupying the two conduction-band valleys from different regions of the sample. This is analogous to the well-known giant magnetoresistance effect, with valley playing the role of spin and strain the role of magnetic field. PMID:18233015
2D and 3D Anilato-Based Heterometallic M(I)M(III) Lattices: The Missing Link.
Benmansour, Samia; Vallés-García, Cristina; Gómez-Claramunt, Patricia; Mínguez Espallargas, Guillermo; Gómez-García, Carlos J
2015-06-01
The similar bis-bidentate coordination mode of oxalato and anilato-based ligands is exploited here to create the first examples of 2D and 3D heterometallic lattices based on anilato ligands combining M(I) and a M(III) ions, phases already observed with oxalato but unknown with anilato-type ligands. These lattices are prepared with alkaline metal ions and magnetic chiral tris(anilato)metalate molecular building blocks: [M(III)(C6O4X2)3](3-) (M(III) = Fe and Cr; X = Cl and Br; (C6O4X2)(2-) = dianion of the 3,6-disubstituted derivatives of 2,5-dihydroxy-1,4-benzoquinone, H4C6O4). The new compounds include two very similar 2D lattices formulated as (PBu3Me)2[NaCr(C6O4Br2)3] (1) and (PPh3Et)2[KFe(C6O4Cl2)3](dmf)2 (2), both presenting hexagonal [M(I)M(III)(C6O4X2)3](2-) honeycomb layers with (PBu3Me)(+) in 1 or (PPh3Et)(+) and dmf in 2 inserted between them. Minor modifications in the synthetic conditions yield the novel 3D lattice (NEt3Me)[Na(dmf)][NaFe(C6O4Cl2)3] (3), in which hexagonal layers analogous to 1 and 2 are interconnected through Na(+) cations, and (NBu3Me)2[NaCr(C6O4Br2)3] (4), the first heterometallic 3D lattice based on anilato ligands. This compound presents two interlocked chiral 3D (10,3) lattices with opposite chiralities. Attempts to prepare 4 in larger quantities result in the 2D polymorph of compound 4 (4'). Magnetic properties of compounds 1, 3, and 4' are reported, and in all cases we observe, as expected, paramagnetic behaviors that can be satisfactorily reproduced with simple monomer models including a zero field splitting (ZFS) of the corresponding S = 3/2 for Cr(III) in 1 and 4' or S = 5/2 for Fe(III) in 3. PMID:25965415
Subharmonic Shapiro steps of sliding colloidal monolayers in optical lattices.
Paronuzzi Ticco, Stella V; Fornasier, Gabriele; Manini, Nicola; Santoro, Giuseppe E; Tosatti, Erio; Vanossi, Andrea
2016-04-01
We investigate theoretically the possibility to observe dynamical mode locking, in the form of Shapiro steps, when a time-periodic potential or force modulation is applied to a two-dimensional (2D) lattice of colloidal particles that are dragged by an external force over an optically generated periodic potential. Here we present realistic molecular dynamics simulations of a 2D experimental setup, where the colloid sliding is realized through the motion of soliton lines between locally commensurate patches or domains, and where the Shapiro steps are predicted and analyzed. Interestingly, the jump between one step and the next is seen to correspond to a fixed number of colloids jumping from one patch to the next, across the soliton line boundary, during each ac cycle. In addition to ordinary 'integer' steps, coinciding here with the synchronous rigid advancement of the whole colloid monolayer, our main prediction is the existence of additional smaller 'subharmonic' steps due to localized solitonic regions of incommensurate layers executing synchronized slips, while the majority of the colloids remains pinned to a potential minimum. The current availability and wide parameter tunability of colloid monolayers makes these predictions potentially easy to access in an experimentally rich 2D geometrical configuration. PMID:26933976
Subharmonic Shapiro steps of sliding colloidal monolayers in optical lattices
NASA Astrophysics Data System (ADS)
Paronuzzi Ticco, Stella V.; Fornasier, Gabriele; Manini, Nicola; Santoro, Giuseppe E.; Tosatti, Erio; Vanossi, Andrea
2016-04-01
We investigate theoretically the possibility to observe dynamical mode locking, in the form of Shapiro steps, when a time-periodic potential or force modulation is applied to a two-dimensional (2D) lattice of colloidal particles that are dragged by an external force over an optically generated periodic potential. Here we present realistic molecular dynamics simulations of a 2D experimental setup, where the colloid sliding is realized through the motion of soliton lines between locally commensurate patches or domains, and where the Shapiro steps are predicted and analyzed. Interestingly, the jump between one step and the next is seen to correspond to a fixed number of colloids jumping from one patch to the next, across the soliton line boundary, during each ac cycle. In addition to ordinary ‘integer’ steps, coinciding here with the synchronous rigid advancement of the whole colloid monolayer, our main prediction is the existence of additional smaller ‘subharmonic’ steps due to localized solitonic regions of incommensurate layers executing synchronized slips, while the majority of the colloids remains pinned to a potential minimum. The current availability and wide parameter tunability of colloid monolayers makes these predictions potentially easy to access in an experimentally rich 2D geometrical configuration.
Excitations in disordered bosonic optical lattices
Knap, Michael; Arrigoni, Enrico; Linden, Wolfgang von der
2010-11-15
Spectral excitations of ultracold gases of bosonic atoms trapped in one-dimensional optical lattices with disorder are investigated by means of the variational cluster approach applied to the Bose-Hubbard model. Qualitatively different disorder distributions typically employed in experiments are considered. The computed spectra exhibit a strong dependence on the shape of the disorder distribution and the disorder strength. We compare alternative results for the Mott gap obtained from its formal definition and from the minimum peak distance, which is the quantity available from experiments.
Quantum criticality in disordered bosonic optical lattices
Cai Xiaoming; Chen Shu; Wang Yupeng
2011-04-15
Using the exact Bose-Fermi mapping, we study universal properties of ground-state density distributions and finite-temperature quantum critical behavior of one-dimensional hard-core bosons in trapped incommensurate optical lattices. Through the analysis of universal scaling relations in the quantum critical regime, we demonstrate that the superfluid-to-Bose-glass transition and the general phase diagram of disordered hard-core bosons can be uniquely determined from finite-temperature density distributions of the trapped disordered system.
Lattice Boltzmann methods for some 2-D nonlinear diffusion equations:Computational results
Elton, B.H.; Rodrigue, G.H. . Dept. of Applied Science Lawrence Livermore National Lab., CA ); Levermore, C.D. . Dept. of Mathematics)
1990-01-01
In this paper we examine two lattice Boltzmann methods (that are a derivative of lattice gas methods) for computing solutions to two two-dimensional nonlinear diffusion equations of the form {partial derivative}/{partial derivative}t u = v ({partial derivative}/{partial derivative}x D(u){partial derivative}/{partial derivative}x u + {partial derivative}/{partial derivative}y D(u){partial derivative}/{partial derivative}y u), where u = u({rvec x},t), {rvec x} {element of} R{sup 2}, v is a constant, and D(u) is a nonlinear term that arises from a Chapman-Enskog asymptotic expansion. In particular, we provide computational evidence supporting recent results showing that the methods are second order convergent (in the L{sub 1}-norm), conservative, conditionally monotone finite difference methods. Solutions computed via the lattice Boltzmann methods are compared with those computed by other explicit, second order, conservative, monotone finite difference methods. Results are reported for both the L{sub 1}- and L{sub {infinity}}-norms.
Buckling in 2D periodic, soft and porous structures: effect of pore shape and lattice pattern
NASA Astrophysics Data System (ADS)
Shan, Sicong; Bertoldi, Katia; Shim, Jongmin; Overvelde, Johannes T. B.; Kang, Sung Hoon
2013-03-01
Adaptive structures allowing dramatic shape changes offer unique opportunities for the design of responsive and reconfigurable devices. Traditional morphing and foldable structures with stiff structural members and mechanical joints remains a challenge in manufacturing at small length scales. Soft structures where the folding mechanisms are induced by a mechanical instability represent a new class of novel adaptive materials which can be easily manufactured over a wide range of length scales. More specifically, soft porous structures with deliberately designed patterns can significantly change their architecture in response to diverse stimuli, opening avenues for reconfigurable devices that change their shapes to respond to their environment. While so far only two-dimensional periodic porous structures with circular holes arranged on a square or triangular lattice have been investigated, here we investigate both numerically and experimentally the effects of pore shape and lattice pattern on the macroscopic properties of the structures. Our results show that both the pore shape and lattice pattern can be used to effectively design desired materials and pave the way for the development of a new class of soft, active and reconfigurable devices over a wide range of length scales.
Solids and Supersolids of Three-Body Interacting Polar Molecules on an Optical Lattice
Schmidt, Kai P.; Dorier, Julien; Laeuchli, Andreas M.
2008-10-10
We study the physics of cold polar molecules loaded into an optical lattice in the regime of strong three-body interactions, as put forward recently by Buechler et al.[Nature Phys. 3, 726 (2007)]. To this end, quantum Monte Carlo simulations, exact diagonalization, and a semiclassical approach are used to explore hard-core bosons on the 2D square lattice which interact solely by long-ranged three-body terms. The resulting phase diagram shows a sequence of solid and supersolid phases. Our findings are directly relevant for future experimental implementations and open a new route towards the discovery of a lattice supersolid phase in experiment.
Dissipative dynamics of matter-wave solitons in a nonlinear optical lattice
Abdullaev, F. Kh.; Tomio, Lauro; Gammal, A.; Luz, H. L. F. da
2007-10-15
Dynamics and stability of solitons in two-dimensional (2D) Bose-Einstein condensates (BEC), with one-dimensional (1D) conservative plus dissipative nonlinear optical lattices, are investigated. In the case of focusing media (with attractive atomic systems), the collapse of the wave packet is arrested by the dissipative periodic nonlinearity. The adiabatic variation of the background scattering length leads to metastable matter-wave solitons. When the atom feeding mechanism is used, a dissipative soliton can exist in focusing 2D media with 1D periodic nonlinearity. In the defocusing media (repulsive BEC case) with harmonic trap in one direction and nonlinear optical lattice in the other direction, the stable soliton can exist. Variational approach simulations are confirmed by full numerical results for the 2D Gross-Pitaevskii equation.
A low maintenance Sr optical lattice clock
NASA Astrophysics Data System (ADS)
Hill, I. R.; Hobson, R.; Bowden, W.; Bridge, E. M.; Donnellan, S.; Curtis, E. A.; Gill, P.
2016-06-01
We describe the Sr optical lattice clock apparatus at NPL with particular emphasis on techniques used to increase reliability and minimise the human requirement in its operation. Central to this is a clock-referenced transfer cavity scheme for the stabilisation of cooling and trapping lasers. We highlight several measures to increase the reliability of the clock with a view towards the realisation of an optical time-scale. The clock contributed 502 hours of data over a 25 day period (84% uptime) in a recent measurement campaign with several uninterrupted periods of more than 48 hours. An instability of 2 x 10-17 was reached after 105 s of averaging in an interleaved self-comparison of the clock.
Quantum phases of quadrupolar Fermi gases in optical lattices.
Bhongale, S G; Mathey, L; Zhao, Erhai; Yelin, S F; Lemeshko, Mikhail
2013-04-12
We introduce a new platform for quantum simulation of many-body systems based on nonspherical atoms or molecules with zero dipole moments but possessing a significant value of electric quadrupole moments. We consider a quadrupolar Fermi gas trapped in a 2D square optical lattice, and show that the peculiar symmetry and broad tunability of the quadrupole-quadrupole interaction results in a rich phase diagram encompassing unconventional BCS and charge density wave phases, and opens up a perspective to create a topological superfluid. Quadrupolar species, such as metastable alkaline-earth atoms and homonuclear molecules, are stable against chemical reactions and collapse and are readily available in experiment at high densities. PMID:25167282
Observation of Stueckelberg oscillations in accelerated optical lattices
Zenesini, A.; Ciampini, D.; Arimondo, E.; Morsch, O.
2010-12-15
We report the experimental observation of Stueckelberg oscillations of matter waves in optical lattices. Extending previous work on Landau-Zener tunneling of Bose-Einstein condensates in optical lattices, we study the effects of the accumulated phase between two successive crossings of the Brillouin zone edge. Our results agree well with a simple model for multiple Landau-Zener tunneling events taking into account the band structure of the optical lattice.
Nuclear spin effects in optical lattice clocks
Boyd, Martin M.; Zelevinsky, Tanya; Ludlow, Andrew D.; Blatt, Sebastian; Zanon-Willette, Thomas; Foreman, Seth M.; Ye Jun
2007-08-15
We present a detailed experimental and theoretical study of the effect of nuclear spin on the performance of optical lattice clocks. With a state-mixing theory including spin-orbit and hyperfine interactions, we describe the origin of the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition and the differential g factor between the two clock states for alkaline-earth-metal(-like) atoms, using {sup 87}Sr as an example. Clock frequency shifts due to magnetic and optical fields are discussed with an emphasis on those relating to nuclear structure. An experimental determination of the differential g factor in {sup 87}Sr is performed and is in good agreement with theory. The magnitude of the tensor light shift on the clock states is also explored experimentally. State specific measurements with controlled nuclear spin polarization are discussed as a method to reduce the nuclear spin-related systematic effects to below 10{sup -17} in lattice clocks.
Algebraic rings of integers and some 2D lattice problems in physics
NASA Astrophysics Data System (ADS)
Nanxian, Chen; Zhaodou, Chen; Shaojun, Liu; Yanan, Shen; Xijin, Ge
1996-09-01
This paper develops the Möbius inversion formula for the Gaussian integers and Eisenstein's integers, and gives two applications. The first application is to the two-dimensional arithmetic Fourier transform (AFT), which is suitable for parallel processing. The second application is to two-dimensional inverse lattice problems, and is illustrated with the recovery of interatomic potentials from the cohesive energy for monolayer graphite. The paper demonstrates the potential application in the physical science of integral domains other than the standard integers.
Exact ground state for the four-electron problem in a 2D finite honeycomb lattice
NASA Astrophysics Data System (ADS)
Trencsényi, Réka; Glukhov, Konstantin; Gulácsi, Zsolt
2014-07-01
Working in a subspace with dimensionality much smaller than the dimension of the full Hilbert space, we deduce exact four-particle ground states in 2D samples containing hexagonal repeat units and described by Hubbard type of models. The procedure identifies first a small subspace ? in which the ground state ? is placed, than deduces ? by exact diagonalization in ?. The small subspace is obtained by the repeated application of the Hamiltonian ? on a carefully chosen starting wave vector describing the most interacting particle configuration, and the wave vectors resulting from the application of ?, till the obtained system of equations closes in itself. The procedure which can be applied in principle at fixed but arbitrary system size and number of particles is interesting on its own since it provides exact information for the numerical approximation techniques which use a similar strategy, but apply non-complete basis for ?. The diagonalization inside ? provides an incomplete image of the low lying part of the excitation spectrum, but provides the exact ?. Once the exact ground state is obtained, its properties can be easily analysed. The ? is found always as a singlet state whose energy, interestingly, saturates in the ? limit. The unapproximated results show that the emergence probabilities of different particle configurations in the ground state presents 'Zittern' (trembling) characteristics which are absent in 2D square Hubbard systems. Consequently, the manifestation of the local Coulomb repulsion in 2D square and honeycomb types of systems presents differences, which can be a real source in the differences in the many-body behaviour.
Complex zeros of the 2 d Ising model on dynamical random lattices
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.
1998-04-01
We study the zeros in the complex plane of the partition function for the Ising model coupled to 2 d quantum gravity for complex magnetic field and for complex temperature. We compute the zeros by using the exact solution coming from a two matrix model and by Monte Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional patterns in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of singularities near the critical point.
Modeling Selective Local Interactions with Memory: Motion on a 2D Lattice.
Weinberg, Daniel; Levy, Doron
2014-06-15
We consider a system of particles that simultaneously move on a two-dimensional periodic lattice at discrete times steps. Particles remember their last direction of movement and may either choose to continue moving in this direction, remain stationary, or move toward one of their neighbors. The form of motion is chosen based on predetermined stationary probabilities. Simulations of this model reveal a connection between these probabilities and the emerging patterns and size of aggregates. In addition, we develop a reaction diffusion master equation from which we derive a system of ODEs describing the dynamics of the particles on the lattice. Simulations demonstrate that solutions of the ODEs may replicate the aggregation patterns produced by the stochastic particle model. We investigate conditions on the parameters that influence the locations at which particles prefer to aggregate. This work is a two-dimensional generalization of [Galante & Levy, Physica D, http://dx.doi.org/10.1016/j.physd.2012.10.010], in which the corresponding one-dimensional problem was studied. PMID:25045193
Hybrid plasmonic lattices with tunable magneto-optical activity.
Kataja, Mikko; Pourjamal, Sara; Maccaferri, Nicolò; Vavassori, Paolo; Hakala, Tommi K; Huttunen, Mikko J; Törmä, Päivi; van Dijken, Sebastiaan
2016-02-22
We report on the optical and magneto-optical response of hybrid plasmonic lattices that consist of pure nickel and gold nanoparticles in a checkerboard arrangement. Diffractive far-field coupling between the individual emitters of the lattices results in the excitation of two orthogonal surface lattice resonance modes. Local analyses of the radiation fields indicate that both the nickel and gold nanoparticles contribute to these collective resonances and, thereby, to the magneto-optical activity of the hybrid arrays. The strong effect of noble metal nanoparticles on the magneto-optical response of hybrid lattices opens up new avenues for the realization of sensitive and tunable magneto-plasmonic nanostructures. PMID:26907022
Yang Xuefeng; Cui Jian; Zhang Yuan; Liu Yue
2012-07-15
The dispersion relations of the externally and thermally (naturally) excited dust lattice modes (both longitudinal and transverse) in two-dimensional Debye-Yukawa complex plasma crystals are investigated. The dispersion relations are calculated numerically by taking the neutral gas damping effects into account and the numerical results are in agreement with the experimental data given by Nunomura et al.[Phys. Rev. E 65, 066402 (2002)]. It is found that for the mode excited by an external disturbance with a real frequency, the dispersion properties are changed at a critical frequency near where the group velocity of the mode goes to zero. Therefore, the high frequency branch with negative dispersion cannot be reached. In contrast, for the thermally excited mode, the dispersion curve can extend all the way to the negative dispersion region, while a 'cut-off' wave number exists at the long wavelength end of the dispersion in the transverse mode.
Chaotic dynamics in a two-dimensional optical lattice.
Horsley, Eric; Koppell, Stewart; Reichl, L E
2014-01-01
The classical nonlinear dynamics of a dilute gas of rubidium atoms in an optical lattice is studied for a range of polarizations of the laser beams forming the lattice. The dynamics ranges from integrable to chaotic, and mechanisms leading to the onset of chaos in the lattice are described. PMID:24580307
Positron beam optics for the 2D-ACAR spectrometer at the NEPOMUC beamline
NASA Astrophysics Data System (ADS)
Ceeh, H.; Weber, J. A.; Hugenschmidt, C.; Leitner, M.; Boni, P.
2014-04-01
In the last year a conventional 2D-ACAR spectrometer has been set up and brought to operation at TUM. Once the NEPOMUC beamline is extended to the new experimental hall at the research reactor FRM-II the conventional 2D-ACAR spectrometer will be upgraded with a second sample chamber in order to be integrated to the NEPOMUC beamline facility. This spectrometer will add a complete new quality to 2D-ACAR experiments as it allows to track the evolution of the electronic structure from the surface to the bulk. We present the design features of the positron beam optics and the sample environment.
Chaos in the honeycomb optical-lattice unit cell
NASA Astrophysics Data System (ADS)
Porter, Max D.; Reichl, L. E.
2016-01-01
Natural and artificial honeycomb lattices are of great interest because the band structure of these lattices, if properly constructed, contains a Dirac point. Such lattices occur naturally in the form of graphene and carbon nanotubes. They have been created in the laboratory in the form of semiconductor 2DEGs, optical lattices, and photonic crystals. We show that, over a wide energy range, gases (of electrons, atoms, or photons) that propagate through these lattices are Lorentz gases and the corresponding classical dynamics is chaotic. Thus honeycomb lattices are also of interest for understanding eigenstate thermalization and the conductor-insulator transition due to dynamic Anderson localization.
Antiferromagnetic Spinor Condensates in a Two-Dimensional Optical Lattice.
Zhao, L; Jiang, J; Tang, T; Webb, M; Liu, Y
2015-06-01
We experimentally demonstrate that spin dynamics and the phase diagram of spinor condensates can be conveniently tuned by a two-dimensional optical lattice. Spin population oscillations and a lattice-tuned separatrix in phase space are observed in every lattice where a substantial superfluid fraction exists. In a sufficiently deep lattice, we observe a phase transition from a longitudinal polar phase to a broken-axisymmetry phase in steady states of lattice-confined spinor condensates. The steady states are found to depend sigmoidally on the lattice depth and exponentially on the magnetic field. We also introduce a phenomenological model that semiquantitatively describes our data without adjustable parameters. PMID:26196625
Integrated Atom Chip System for Optical Lattice Experiments
NASA Astrophysics Data System (ADS)
Salim, Evan A.; Ivory, Megan K.; Straatsma, Cameron J. E.; Anderson, Dana Z.
2015-05-01
We present an ultracold atom system incorporating a hybrid magnetic/optical atom chip for optical lattice experiments. The atom chip uses integrated, millimeter-scale optical elements to enable the production of optical lattice potentials near the atom chip traces and within a few hundred microns of a high-quality vacuum window. Due to their proximity to a window, the atoms are addressable by optics outside of vacuum operating at numerical apertures as high as 0.8. Demonstration of Bose-Einstein condensation in the chip trap and Landau-Zener tunneling in a 1D lattice are presented.
Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis.
Sun, Chenghai; Munn, Lance L
2005-03-01
Historically, predicting macroscopic blood flow characteristics such as viscosity has been an empirical process due to the difficulty in rigorously including the particulate nature of blood in a mathematical representation of blood rheology. Using a two-dimensional lattice Boltzmann approach, we have simulated the flow of red blood cells in a blood vessel to estimate flow resistance at various hematocrits and vessel diameters. By including white blood cells (WBCs) in the flow, we also calculate the increase in resistance due to white cell rolling and adhesion. The model considers the blood as a suspension of particles in plasma, accounting for cell-cell and cell-wall interactions to predict macroscopic blood rheology. The model is able to reproduce the Fahraeus-Lindqvist effect, i.e., the increase in relative apparent viscosity as tube size increases, and the Fahraeus effect, i.e., tube hematocrit is lower than discharge hematocrit. In addition, the model allows direct assessment of the effect of WBCs on blood flow in the microvasculature, reproducing the dramatic increases in flow resistance as WBCs enter short capillary segments. This powerful and flexible model can be used to predict blood flow properties in any vessel geometry and with any blood composition. PMID:15613630
Landau Levels in Strained Optical Lattices
NASA Astrophysics Data System (ADS)
Tian, Binbin; Endres, Manuel; Pekker, David
2015-12-01
We propose a hexagonal optical lattice system with spatial variations in the hopping matrix elements. Just like in the valley Hall effect in strained graphene, for atoms near the Dirac points the variations in the hopping matrix elements can be described by a pseudomagnetic field and result in the formation of Landau levels. We show that the pseudomagnetic field leads to measurable experimental signatures in momentum resolved Bragg spectroscopy, Bloch oscillations, cyclotron motion, and quantization of in situ densities. Our proposal can be realized by a slight modification of existing experiments. In contrast to previous methods, pseudomagnetic fields are realized in a completely static system avoiding common heating effects and therefore opening the door to studying interaction effects in Landau levels with cold atoms.
Arnold diffusion in a driven optical lattice
NASA Astrophysics Data System (ADS)
Boretz, Yingyue; Reichl, L. E.
2016-03-01
The effect of time-periodic forces on matter has been a topic of growing interest since the advent of lasers. It is known that dynamical systems with 2.5 or more degrees of freedom are intrinsically unstable. As a consequence, time-periodic driven systems can experience large excursions in energy. We analyze the classical and quantum dynamics of rubidium atoms confined to a time-periodic optical lattice with 2.5 degrees of freedom. When the laser polarizations are orthogonal, the system consists of two 1.5 uncoupled dynamical systems. When laser polarizations are turned away from orthogonal, an Arnold web forms and the dynamics undergoes a fundamental change. For parallel polarizations, we find huge random excursions in the rubidium atom energies and significant entanglement of energies in the quantum dynamics.
Detecting multiatomic composite states in optical lattices
NASA Astrophysics Data System (ADS)
Kuklov, Anatoly; Moritz, Henning
2007-01-01
We propose and discuss methods for detecting quasimolecular complexes which are expected to form in strongly interacting optical lattice systems. Particular emphasis is placed on the detection of composite fermions forming in Bose-Fermi mixtures. We argue that, as an indirect indication of the composite fermions and a generic consequence of strong interactions, periodic correlations must appear in the atom shot noise of bosonic absorption images, similar to the bosonic Mott insulator [S. Fölling , Nature (London) 434, 481 (2005)]. The composites can also be detected directly and their quasimomentum distribution measured. This method—an extension of the technique of noise correlation interferometry [E. Altman , Phys. Rev. A 79, 013603 (2004)]—relies on measuring higher order correlations between the bosonic and fermionic shot noise in the absorption images. However, it fails above a certain number of the constituents due to a dramatic increase of uncorrelated noise.
Arnold diffusion in a driven optical lattice.
Boretz, Yingyue; Reichl, L E
2016-03-01
The effect of time-periodic forces on matter has been a topic of growing interest since the advent of lasers. It is known that dynamical systems with 2.5 or more degrees of freedom are intrinsically unstable. As a consequence, time-periodic driven systems can experience large excursions in energy. We analyze the classical and quantum dynamics of rubidium atoms confined to a time-periodic optical lattice with 2.5 degrees of freedom. When the laser polarizations are orthogonal, the system consists of two 1.5 uncoupled dynamical systems. When laser polarizations are turned away from orthogonal, an Arnold web forms and the dynamics undergoes a fundamental change. For parallel polarizations, we find huge random excursions in the rubidium atom energies and significant entanglement of energies in the quantum dynamics. PMID:27078351
Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions
NASA Astrophysics Data System (ADS)
Lloyd, Seth; Terhal, Barbara M.
2016-02-01
We show how to perform universal Hamiltonian and adiabatic computing using a time-independent Hamiltonian on a 2D grid describing a system of hopping particles which string together and interact to perform the computation. In this construction, the movement of one particle is controlled by the presence or absence of other particles, an effective quantum field effect transistor that allows the construction of controlled-NOT and controlled-rotation gates. The construction translates into a model for universal quantum computation with time-independent two-qubit ZZ and XX+YY interactions on an (almost) planar grid. The effective Hamiltonian is arrived at by a single use of first-order perturbation theory avoiding the use of perturbation gadgets. The dynamics and spectral properties of the effective Hamiltonian can be fully determined as it corresponds to a particular realization of a mapping between a quantum circuit and a Hamiltonian called the space-time circuit-to-Hamiltonian construction. Because of the simple interactions required, and because no higher-order perturbation gadgets are employed, our construction is potentially realizable using superconducting or other solid-state qubits.
Dynamic Analysis of 2D Electromagnetic Resonant Optical Scanner Using 3D Finite Element Method
NASA Astrophysics Data System (ADS)
Hirata, Katsuhiro; Hong, Sara; Maeda, Kengo
The optical scanner is a scanning device in which a laser beam is reflected by a mirror that can be rotated or oscillated. In this paper, we propose a new 2D electromagnetic resonant optical scanner that employs electromagnets and leaf springs. Torque characteristics and resonance characteristics of the scanner are analyzed using the 3D finite element method. The validity of the analysis is shown by comparing the characteristics inferred from the analysis with the characteristics of the prototype. Further, 2D resonance is investigated by introducing a superimposed-frequency current in a single coil.
2D wave-front shaping in optical superlattices using nonlinear volume holography.
Yang, Bo; Hong, Xu-Hao; Lu, Rong-Er; Yue, Yang-Yang; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan
2016-07-01
Nonlinear volume holography is employed to realize arbitrary wave-front shaping during nonlinear processes with properly designed 2D optical superlattices. The concept of a nonlinear polarization wave in nonlinear volume holography is investigated. The holographic imaging of irregular patterns was performed using 2D LiTaO_{3} crystals with fundamental wave propagating along the spontaneous polarization direction, and the results agree well with the theoretical predictions. This Letter not only extends the application area of optical superlattices, but also offers an efficient method for wave-front shaping technology. PMID:27367067
Breakdown of adiabaticity when loading ultracold atoms in optical lattices
NASA Astrophysics Data System (ADS)
Zakrzewski, Jakub; Delande, Dominique
2009-07-01
Realistic simulations of current ultracold atom experiments in optical lattices show that the ramping up of the optical lattice is significantly nonadiabatic, implying that experimentally prepared Mott insulators are not really in the ground state of the atomic system. The nonadiabaticity is even larger in the presence of a secondary quasiperiodic lattice simulating “disorder.” Alternative ramping schemes are suggested that improve the adiabaticity when the disorder is not too large.
A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites
NASA Astrophysics Data System (ADS)
Brely, Lucas; Bosia, Federico; Pugno, Nicola
2015-07-01
In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.
Beyond classical nucleation theory: A 2-D lattice-gas automata model
NASA Astrophysics Data System (ADS)
Hickey, Joseph
Nucleation is the first step in the formation of a new phase in a thermodynamic system. The Classical Nucleation Theory (CNT) is the traditional theory used to describe this phenomenon. The object of this thesis is to investigate nucleation beyond one of the most significant limitations of the CNT: the assumption that the surface tension of a nucleating cluster of the new phase is independent of the cluster's size and has the same value that it would have in the bulk of the new phase. In order to accomplish this, we consider a microscopic, two-dimensional Lattice Gas Automata (LGA) model of precipitate nucleation in a supersaturated system, with model input parameters Ess (solid particle-to-solid particle bonding energy), Esw (solid particle-to-water particle bonding energy), eta (next-to-nearest neighbour bonding coeffiicent in solid phase), and Cin (initial solute concentration). The LGA method was chosen for its advantages of easy implementation, low memory requirements, and fast computation speed. Analytical results for the system's concentration and the crystal radius as functions of time are derived and the former is fit to the simulation data in order to determine the system's equilibrium concentration. A mean first-passage time (MFPT) technique is used to obtain the nucleation rate and critical nucleus size from the simulation data. The nucleation rate and supersaturation are evaluated using a modification to the CNT that incorporates a two-dimensional, radius-dependent surface tension term. The Tolman parameter, delta, which controls the radius-dependence of the surface tension, decreases (increases) as a function of the magnitude of Ess (Esw), at fixed values of eta and Esw (Ess). On the other hand, delta increases as eta increases while E ss and Esw are held constant. The constant surface tension term of the CNT, Sigma0, increases (decreases) with increasing magnitudes of Ess (Esw) fixed values of Esw (Ess), and increases as eta is increased. Together
Chern Kondo Insulator in an Optical Lattice.
Chen, Hua; Liu, Xiong-Jun; Xie, X C
2016-01-29
We propose to realize and observe Chern Kondo insulators in an optical superlattice with laser-assisted s and p orbital hybridization and a synthetic gauge field, which can be engineered based on the recent cold atom experiments. Considering a double-well square optical lattice, the localized s orbitals are decoupled from itinerant p bands and are driven into a Mott insulator due to the strong Hubbard interaction. Raman laser beams are then applied to induce tunnelings between s and p orbitals, and generate a staggered flux simultaneously. Because of the strong Hubbard interaction of s orbital states, we predict the existence of a critical Raman laser-assisted coupling, beyond which the Kondo screening is achieved, and then a fully gapped Chern Kondo phase emerges, with the topology characterized by integer Chern numbers. Being a strongly correlated topological state, the Chern Kondo phase is different from the single-particle quantum anomalous Hall state, and can be identified by measuring the band topology and double occupancy of s orbitals. The experimental realization and detection of the predicted Chern Kondo insulator are also proposed. PMID:26871345
Chern Kondo Insulator in an Optical Lattice
NASA Astrophysics Data System (ADS)
Chen, Hua; Liu, Xiong-Jun; Xie, X. C.
2016-01-01
We propose to realize and observe Chern Kondo insulators in an optical superlattice with laser-assisted s and p orbital hybridization and a synthetic gauge field, which can be engineered based on the recent cold atom experiments. Considering a double-well square optical lattice, the localized s orbitals are decoupled from itinerant p bands and are driven into a Mott insulator due to the strong Hubbard interaction. Raman laser beams are then applied to induce tunnelings between s and p orbitals, and generate a staggered flux simultaneously. Because of the strong Hubbard interaction of s orbital states, we predict the existence of a critical Raman laser-assisted coupling, beyond which the Kondo screening is achieved, and then a fully gapped Chern Kondo phase emerges, with the topology characterized by integer Chern numbers. Being a strongly correlated topological state, the Chern Kondo phase is different from the single-particle quantum anomalous Hall state, and can be identified by measuring the band topology and double occupancy of s orbitals. The experimental realization and detection of the predicted Chern Kondo insulator are also proposed.
Ao, L; Pham, A; Xiao, H Y; Zu, X T; Li, S
2016-03-14
We have systematically investigated the effects of different vacancy defects in 2D d(0) materials SnS2 and ZrS2 using first principles calculations. The theoretical results show that the single cation vacancy and the vacancy complex like V-SnS6 can induce large magnetic moments (3-4 μB) in these single layer materials. Other defects, such as V-SnS3, V-S, V-ZrS3 and V-ZrS6, can result in n-type conductivity. In addition, the ab initio studies also reveal that the magnetic and conductive properties from the cation vacancy and the defect complex V-SnS6 can be modified using the compressive/tensile strain of the in-plane lattices. Specifically, the V-Zr doped ZrS2 monolayer can be tuned from a ferromagnetic semiconductor to a metallic/half-metallic material with decreasing/increasing magnetic moments depending on the external compressive/tensile strains. On the other hand, the semiconducting and magnetic properties of V-Sn doped SnS2 is preserved under different lattice compression and tension. For the defect complex like V-SnS6, only the lattice compression can tune the magnetic moments in SnS2. As a result, by manipulating the fabrication parameters, the magnetic and conductive properties of SnS2 and ZrS2 can be tuned without the need for chemical doping. PMID:26888010
Toward a 2-D magneto-optical trap for polar molecules
NASA Astrophysics Data System (ADS)
Hummon, Matthew; Stuhl, Benjamin; Yeo, Mark; Collopy, Alejandra; Ye, Jun
2012-06-01
The additional structure that arises from the rotational degree of freedom in diatomic molecules makes difficult the adaptation of a traditional atomic magneto-optical trap (MOT) for use with molecules. We describe progress toward development of a 2-D MOT for laser cooled yttrium monoxide molecules based on a resonant LC baseball coil geometry.
Lattice gaugefixing and other optics in lattice gauge theory
Yee, Ken.
1992-06-01
We present results from four projects. In the first, quark and gluon propagators and effective masses and {Delta}I = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N {yields} {infinity} limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to {Delta}I = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are {xi} invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the {Delta} = {minus}1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories.
Thermodynamics of quantum degenerate gases in optical lattices
NASA Astrophysics Data System (ADS)
Blakie, P. B.; Rey, A.-M.; Bezett, A.
2007-02-01
The entropy-temperature curves are calculated for non-interacting Bose and Fermi gases in a 3D optical lattice. These curves facilitate understanding of how adiabatic changes in the lattice depth affect the temperature, and we demonstrate regimes where the atomic sample can be significantly heated or cooled by the loading process. We assess the effects of interactions on a Bose gas in a deep optical lattice, and show that interactions ultimately limit the extent of cooling that can occur during lattice loading.
Critical point of a rotating Bose-Einstein condensates in optical lattice
NASA Astrophysics Data System (ADS)
El-Badry, Azza M.; Soliman, Shemi S. M.; Hassan, Ahmed S.
2016-06-01
In this paper, we have considered the critical point (critical atoms' number and the corresponding critical temperature) of rotating condensate bosons trapped in optical lattices. Our system is formed by loading three dimensional harmonically trapped boson atoms into a 1D (axial direction) or 2D (radial direction) optical lattice. The system subjected to rotating with angular velocity Ω around to the axial direction z-axis. We employ the semiclassical approximation to calculate the critical point. Effects of the optical lattice depth, direction (axial or radial) and the rotation rate on the critical point are investigated using the semiclassical approximation. The calculated results showed that the temperature dependence of the critical point is changed in an optical lattice and depends crucially on the rotation rate. The effect of the finite size for one-dimensional optical lattice case, as required by experiment, is discussed. The outcome results furnish useful qualitatively theoretical results for the future Bose-Einstein condensation experiments in such traps.
Effective Dirac Hamiltonian for anisotropic honeycomb lattices: Optical properties
NASA Astrophysics Data System (ADS)
Oliva-Leyva, M.; Naumis, Gerardo G.
2016-01-01
We derive the low-energy Hamiltonian for a honeycomb lattice with anisotropy in the hopping parameters. Taking the reported Dirac Hamiltonian for the anisotropic honeycomb lattice, we obtain its optical conductivity tensor and its transmittance for normal incidence of linearly polarized light. Also, we characterize its dichroic character due to the anisotropic optical absorption. As an application of our general findings, which reproduce the previous case of uniformly strained graphene, we study the optical properties of graphene under a nonmechanical distortion.
Dynamic Optical Lattices of Subwavelength Spacing for Ultracold Atoms
NASA Astrophysics Data System (ADS)
Nascimbene, Sylvain; Goldman, Nathan; Cooper, Nigel R.; Dalibard, Jean
2015-10-01
We propose a scheme for realizing lattice potentials of subwavelength spacing for ultracold atoms. It is based on spin-dependent optical lattices with a time-periodic modulation. We show that the atomic motion is well described by the combined action of an effective, time-independent lattice of small spacing, together with a micromotion associated with the time modulation. A numerical simulation shows that an atomic gas can be adiabatically loaded into the effective lattice ground state, for time scales comparable to the ones required for adiabatic loading of standard optical lattices. We generalize our scheme to a two-dimensional geometry, leading to Bloch bands with nonzero Chern numbers. The realization of lattices of subwavelength spacing allows for the enhancement of energy scales, which could facilitate the achievement of strongly correlated (topological) states.
Ultracold atoms in an optical lattice with dynamically variable periodicity
Al-Assam, S.; Williams, R. A.; Foot, C. J.
2010-08-15
The use of a dynamic 'accordion' lattice with ultracold atoms is demonstrated. Ultracold atoms of {sup 87}Rb are trapped in a two-dimensional optical lattice, and the spacing of the lattice is then increased in both directions from 2.2 to 5.5 {mu}m. Atoms remain bound for expansion times as short as a few milliseconds, and the experimentally measured minimum ramp time is found to agree well with numerical calculations. This technique allows an experiment such as quantum simulations to be performed with a lattice spacing smaller than the resolution limit of the imaging system, while allowing imaging of the atoms at individual lattice sites by subsequent expansion of the optical lattice.
Novel Quantum Phases of Dipolar Bose Gases in Optical Lattices
NASA Astrophysics Data System (ADS)
Yi, S.; Li, T.; Sun, C. P.
2007-06-01
We investigate the quantum phases of polarized dipolar bosons loaded into a two-dimensional square and three-dimensional cubic optical lattices. We show that the long-range and anisotropic nature of the dipole-dipole interaction induces a rich variety of quantum phases, including the supersolid and striped supersolid phases in two-dimensional lattices, and the layered supersolid phase in three-dimensional lattices.
NASA Astrophysics Data System (ADS)
Woods, Justin; Bhat, Vinayak; Farmer, Barry; Sklenar, Joseph; Teipel, Eric; Ketterson, John; Hastings, J. Todd; de Long, Lance
2015-03-01
Artificial spin ice (ASI) systems are composed of nanoscale ferromagnetic segments whose shape anisotropy dictates they behave as mesoscopic Ising spins. Most ASI have segments patterned on periodic lattices and a single vertex topology. We have continuously distorted 2D honeycomb and square lattices such that the pattern vertex spacings follow a Fibonacci chain sequence along primitive lattice directions. The Fibonacci distortion is related to the aperiodic translational symmetry of 2D artificial quasicrystals1 that cannot be viewed as continuous distortions of periodic lattices due to their forbidden (e.g., fivefold) rotational symmetries. In contrast, Fibonacci distortions of 2D periodic lattices can be ``turned on'' by control of the ratio of two lattice parameters d1 and d2. Distortions alter film segments such that pattern vertices are no longer equivalent and traditional spin ice rules are no longer strictly valid. We have performed OOMMF simulations of magnetization reversal for samples having different levels of distortion, and found the magnetic reversal to be dramatically slowed by small distortions (d1/d2 ~ 1). Research at Kentucky is supported by U.S. DoE Grant DE-FG02-97ER45653 and NSF Grant EPS-0814194.
Automatic angle measurement of a 2D object using optical correlator-neural networks hybrid system
NASA Astrophysics Data System (ADS)
Manivannan, N.; Neil, M. A. A.
2011-04-01
In this paper a novel method is proposed and demonstrated for automatic rotation angle measurement of a 2D object using a hybrid architecture, consisting of a 4f optical correlator with a binary phase only multiplexed matched filter and a single layer neural network. The hybrid set-up can be considered as a two-layer perceptron-like neural network; an optical correlator is the first layer and the standard single layer neural network is the second layer. The training scheme used to train the hybrid architecture is a combination of a Direct Binary Search algorithm, to train the optical correlator, and an Error Back Propagation algorithm, to train the neural network. The aim is to perform the major information processing by the optical correlator with a small additional processing by the neural network stage. This allows the system to be used for real-time applications as optics has the inherent ability to process information in a parallel manner at high speed. The neural network stage gives an extra dimension of freedom so that complicated tasks like automatic rotation angle measurement can be achieved. Results of both computer simulation and experimental set-up are presented for rotation angle measurement of an English alphabetic character as a 2D object. The experimental set-up consists of a real optical correlator using two spatial light modulators for both input and frequency plane representations and a PC based model of a single layer network.
An exact and efficient first passage time algorithm for reaction–diffusion processes on a 2D-lattice
Bezzola, Andri; Bales, Benjamin B.; Alkire, Richard C.; Petzold, Linda R.
2014-01-01
We present an exact and efficient algorithm for reaction–diffusion–nucleation processes on a 2D-lattice. The algorithm makes use of first passage time (FPT) to replace the computationally intensive simulation of diffusion hops in KMC by larger jumps when particles are far away from step-edges or other particles. Our approach computes exact probability distributions of jump times and target locations in a closed-form formula, based on the eigenvectors and eigenvalues of the corresponding 1D transition matrix, maintaining atomic-scale resolution of resulting shapes of deposit islands. We have applied our method to three different test cases of electrodeposition: pure diffusional aggregation for large ranges of diffusivity rates and for simulation domain sizes of up to 4096×4096 sites, the effect of diffusivity on island shapes and sizes in combination with a KMC edge diffusion, and the calculation of an exclusion zone in front of a step-edge, confirming statistical equivalence to standard KMC simulations. The algorithm achieves significant speedup compared to standard KMC for cases where particles diffuse over long distances before nucleating with other particles or being captured by larger islands.
A transportable optical lattice clock using 171Yb
NASA Astrophysics Data System (ADS)
Mura, Gregor; SOC2 Team
2013-07-01
We present first results on the spectroscopy of the 1S0 - 3P0 transition at 578nm in a transportable 171Yb optical lattice clock. With the Yb atoms confined in a one-dimensional optical lattice, we have observed linewidths below 200 Hz, limited by saturation broadening. Currently the system is being upgraded towards full clock operation and use of more compact and robust subsystems.
Enhanced Optical Cross Section via Collective Coupling of Atomic Dipoles in a 2D Array.
Bettles, Robert J; Gardiner, Simon A; Adams, Charles S
2016-03-11
Enhancing the optical cross section is an enticing goal in light-matter interactions, due to its fundamental role in quantum and nonlinear optics. Here, we show how dipolar interactions can suppress off-axis scattering in a two-dimensional atomic array, leading to a subradiant collective mode where the optical cross section is enhanced by almost an order of magnitude. As a consequence, it is possible to attain an optical depth which implies high-fidelity extinction, from a monolayer. Using realistic experimental parameters, we also model how lattice vacancies and the atomic trapping depth affect the transmission, concluding that such high extinction should be possible, using current experimental techniques. PMID:27015480
Mitri, F G
2015-09-01
The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque. PMID:25773968
Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography.
Khan, Muhammad Umar; Justice, John; Petäjä, Jarno; Korhonen, Tia; Boersma, Arjen; Wiegersma, Sjoukje; Karppinen, Mikko; Corbett, Brian
2015-06-01
Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index contrast between core and cladding of fabricated devices. 1x2 splitting devices based on directional couplers and multimode interference interferometers are demonstrated to have less than 0.45 dB insertion loss with 0.02 ± 0.01 dB power imbalance between the outputs. We demonstrate an 'optical via' with an insertion loss less than 0.45 dB to transfer light from one optical signal plane to another. A 1x4 two-dimensional optical port is experimentally demonstrated to spatially split the input power with an insertion loss of 1.2 dB. PMID:26072823
Matter-wave propagation in optical lattices: geometrical and flat-band effects
NASA Astrophysics Data System (ADS)
Metcalf, Mekena; Chern, Gia-Wei; Di Ventra, Massimiliano; Chien, Chih-Chun
2016-04-01
The geometry of optical lattices can be engineered, allowing the study of atomic transport along paths arranged in patterns that are otherwise difficult to probe in the solid state. A question feasible to atomic systems is related to the speed of matter-wave propagation as a function of the lattice geometry. To address this issue, we investigated, theoretically, the quantum transport of noninteracting and weakly-interacting ultracold fermionic atoms in several 2D optical lattice geometries. We find that the triangular lattice has a higher propagation velocity compared to the square lattice, and the cross-linked square lattice has an even faster propagation velocity. The increase results from the mixing of the momentum states which leads to different group velocities in quantum systems. Standard band theory provides an explanation and allows for a systematic way to search and design systems with controllable matter-wave propagation. Moreover, the presence of a flat band such as in a two-leg ladder geometry leads to a dynamical density discontinuity due to its localized atoms. Possible realizations of those dynamical phenomena are discussed.
Dynamically generated flat-band phases in optical kagome lattices
NASA Astrophysics Data System (ADS)
Chern, Gia-Wei; Chien, Chih-Chun; Di Ventra, Massimiliano
2014-07-01
Motivated by recent advances in the realization of complex two-dimensional optical lattices, we investigate theoretically the quantum transport of ultracold fermions in an optical kagome lattice. In particular, we focus on its extensively degenerate localized states (flat band). By loading fermions in a partial region of the lattice and depleting the mobile atoms at the far boundary of the initially unoccupied region, we find a dynamically generated flat-band insulator, which is also a population-inverted state. We further show that inclusion of weak repulsion leads to a dynamical stripe phase for two-component fermions in a similar setup. Finally, by preparing a topological insulating state in a partially occupied kagome lattice, we find that the topological chiral current decays but exhibits an interesting oscillating dynamics during the nonequilibrium transport. Given the broad variety of lattice geometries supporting localized or topological states, our work suggests new possibilities for using geometrical effects and their dynamics in atomtronic devices.
Formation and Dynamics of Antiferromagnetic Correlations in Tunable Optical Lattices.
Greif, Daniel; Jotzu, Gregor; Messer, Michael; Desbuquois, Rémi; Esslinger, Tilman
2015-12-31
We report on the observation of antiferromagnetic correlations of ultracold fermions in a variety of optical lattice geometries that are well described by the Hubbard model, including dimers, 1D chains, ladders, isolated and coupled honeycomb planes, as well as square and cubic lattices. The dependence of the strength of spin correlations on the specific geometry is experimentally studied by measuring the correlations along different lattice tunneling links, where a redistribution of correlations between the different lattice links is observed. By measuring the correlations in a crossover between distinct geometries, we demonstrate an effective reduction of the dimensionality for our atom numbers and temperatures. We also investigate the formation and redistribution time of spin correlations by dynamically changing the lattice geometry and studying the time evolution of the system. Time scales ranging from a sudden quench of the lattice geometry to an adiabatic evolution are probed. PMID:26764974
Evolution of the Hofstadter butterfly in a tunable optical lattice
NASA Astrophysics Data System (ADS)
Yılmaz, F.; Ünal, F. Nur; Oktel, M. Ã.-.
2015-06-01
Recent advances in realizing artificial gauge fields on optical lattices promise experimental detection of topologically nontrivial energy spectra. Self-similar fractal energy structures generally known as Hofstadter butterflies depend sensitively on the geometry of the underlying lattice, as well as the applied magnetic field. The recent demonstration of an adjustable lattice geometry [L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Nature (London) 483, 302 (2012), 10.1038/nature10871] presents a unique opportunity to study this dependence. In this paper, we calculate the Hofstadter butterflies that can be obtained in such an adjustable lattice and find three qualitatively different regimes. We show that the existence of Dirac points at zero magnetic field does not imply the topological equivalence of spectra at finite field. As the real-space structure evolves from the checkerboard lattice to the honeycomb lattice, two square-lattice Hofstadter butterflies merge to form a honeycomb lattice butterfly. This merging is topologically nontrivial, as it is accomplished by sequential closings of gaps. Ensuing Chern number transfer between the bands can be probed with the adjustable lattice experiments. We also calculate the Chern numbers of the gaps for qualitatively different spectra and discuss the evolution of topological properties with underlying lattice geometry.
Quantum simulation of 2D topological physics in a 1D array of optical cavities
Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei
2015-01-01
Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration. PMID:26145177
Dissipation-Induced Symmetry Breaking in a Driven Optical Lattice
Gommers, R.; Bergamini, S.; Renzoni, F.
2005-08-12
We analyze the atomic dynamics in an ac driven periodic optical potential which is symmetric in both time and space. We experimentally demonstrate that in the presence of dissipation the symmetry is broken, and a current of atoms through the optical lattice is generated as a result.
Progress towards quantum-gas experiments in optical lattices
NASA Astrophysics Data System (ADS)
Pertot, Daniel; Greif, Daniel; Schiller, Rebekah; Schneble, Dominik
2008-05-01
We present our progress towards quantum simulation experiments with ultracold bosonic atoms in an optical lattice. We have achieved Bose-Einstein condensation of rubidium-87 in a transporter apparatus featuring a moving-coil TOP trap (McTOP). Quasi-pure condensates containing up to one million atoms are routinely produced with high stability. As atomic micro-motion in TOP traps precludes the direct loading of condensates into a single quasimomentum state of an optical lattice, we are in the process of implementing a loading scheme involving evaporation of nearly-condensed thermal clouds in a crossed optical dipole trap. We will discuss our recent experimental results.
Evolution of the Hofstadter butterfly in a tunable optical lattice
NASA Astrophysics Data System (ADS)
Oktel, Mehmet O.; Unal, Nur; Yilmaz, Firat
Advances in realizing artificial gauge fields on optical lattices promise experimental detection of topologically non-trivial energy spectra. Self-similar fractal energy structures, known as Hofstadter butterflies, depend sensitively on the geometry of the lattice, as well as the applied magnetic field. The recent demonstration of an adjustable lattice geometry [L. Tarruell et al., Nature 483, 302 (2012)] presents a unique opportunity to study this dependence. We calculate the Hofstadter butterflies that can be obtained in such an adjustable lattice and find three qualitatively different regimes. We show that the existence of Dirac points at zero magnetic field does not imply the topological equivalence of spectra at finite field. As the real-space structure evolves from the checkerboard to the honeycomb lattice, two square lattice Hofstadter butterflies merge to form a honeycomb lattice butterfly in a topologically non-trivial way, as it is accomplished by sequential closing of infinitely many gaps. We discuss the evolution of topological properties with underlying lattice geometry by calculating the Chern numbers and comment on the validity of simulating graphene in such an adjustable lattice
NASA Astrophysics Data System (ADS)
Velarde, M. G.; Ebeling, W.; Chetverikov, A. P.
2013-01-01
We study the thermal excitation of intrinsic localized modes in the form of solitons in 1d and 2d anharmonic lattices at moderately high temperatures. Such finite-amplitude fluctuations form long-living dynamical structures with life-time in the pico-second range thus surviving a relatively long time in comparison to other thermal fluctuations. Further we discuss the influence of such long-living fluctuations on the dynamics of added excess free electrons. The atomic lattice units are treated as quasi-classical objects interacting by Morse forces and stochastically moving according to Langevin equations. In 2d the atoms are initially organized in a triangular lattice. The electron distributions are in a first estimate represented by equilibrium adiabatic distributions in the actual polarization fields. Computer simulations show that in 2d systems such excitations are moving with supersonic velocities along lattice rows oriented with the cristallographic axes. By following the electron distributions we have also been able to study the excitations of solectron type (electron-soliton dynamic bound states) and estimate their life times.
Optical and Electronic Properties of 2D Graphitic Carbon-Nitride and Carbon Enriched Alloys
NASA Astrophysics Data System (ADS)
Therrien, Joel; Li, Yancen; Schmidt, Daniel; Masaki, Michael; Syed, Abdulmannan
The two-dimensional form of graphitic carbon-nitride (gCN) has been successfully synthesized using a simple CVD process. In it's pure form, the carbon to nitrogen ratio is 0.75. By adding a carbon bearing gas to the growth environment, the C/N ratio can be increased, ultimately reaching the pure carbon form: graphene. Unlike attempts at making a 2D alloy system out of BCN, the CN system does not suffer from phase segregation and thus forms a homogeneous alloy. The synthesis approach and electronic and optical properties will be presented for the pure gCN and a selection of alloy compositions.
Incommensurability Effects on Dipolar Bosons in Optical Lattices
NASA Astrophysics Data System (ADS)
Cinti, Fabio
2016-03-01
We present a study that investigated a quantum dipolar gas in continuous space where a potential lattice was imposed. Employing exact quantum Monte Carlo techniques, we analysed the ground-state properties of the scrutinised system, varying the lattice depth and the dipolar interaction. For system densities corresponding to a commensurate filling with respect to the optical lattice, we observed a simple crystal-to-superfluid quantum phase transition, being consistent with the physics of dipolar bosons in continuous space. In contrast, an incommensurate density showed the presence of a supersolid phase. Indeed, such a result opens up the tempting opportunity to observe a defect-induced supersolidity with dipolar gases in combination with a tunable optical lattice. Finally, the stability of the condensate was analysed at finite temperature.
A Closer Look at Fermions in Optical Lattices
NASA Astrophysics Data System (ADS)
Pertot, Daniel; Miller, Luke; Cocchi, Eugenio; Bohn, Johanna; Drewes, Jan; Brennecke, Ferdinand; Koschorreck, Marco; Köhl, Michael
2014-05-01
Quantum gases of interacting fermionic atoms in optical lattices promise to shed new light on the low-temperature phases of Hubbard-type models, such as spin-ordered phases or, in particular, on possible d-wave superconductivity. However, reaching the very low temperatures required necessitates the implementation of novel cooling schemes. As a first step towards this goal, we employ high-resolution imaging together with radio-frequency spectroscopy in order to spatially resolve the in-trap distributions of singly and doubly-occupied lattice sites after having loaded a quantum degenerate two-component Fermi gas of 40K atoms into a three-dimensional optical lattice geometry. Here, I will report on our recent progress towards the observation and characterization of a fermionic Mott insulator, together with an outlook on future steps towards lowering the temperature in the lattice.
Twofold PT symmetry in doubly exponential optical lattices
NASA Astrophysics Data System (ADS)
Cole, J. T.; Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.
2016-01-01
We introduce a family of non-Hermitian optical potentials that are given in terms of double-exponential periodic functions. The center of PT symmetry is not around zero and the potential satisfies a shifted PT -symmetry relation at two distinct locations. Motivated by wave transmission through thin phase screens and gratings, we examine these refractive index modulations from the perspective of optical lattices that are homogeneous along the propagation direction. The diffraction dynamics, abrupt phase transitions in the eigenvalue spectrum, and exceptional points in the band structure are examined in detail. In addition, the nonlinear properties of wave propagation in Kerr nonlinearity media are studied. In particular, coherent structures such as lattice solitons are numerically identified by applying the spectral renormalization method. The spatial symmetries of such lattice solitons follow the shifted PT -symmetric relations. Furthermore, such lattice solitons have a power threshold and their linear and nonlinear stabilities are critically dependent on their spatial symmetry point.
Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties
NASA Astrophysics Data System (ADS)
Ortega, Ivan
Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to
A mercury optical lattice clock at LNE-SYRTE
NASA Astrophysics Data System (ADS)
De Sarlo, L.; Favier, M.; Tyumenev, R.; Bize, S.
2016-06-01
We describe the development of an optical lattice clock based on mercury and the results obtained since the 7 th SFSM. We briefly present a new solution for the cooling laser system and an improved lattice trap that allows us to interrogate a few thousand atoms in parallel. This translates into a fractional short term stability of 1.2 x 10-15 at the clock frequency of 1.129 PHz.
Ultracold two-body dynamics in optical lattices with topological singularities
NASA Astrophysics Data System (ADS)
Aghamalyan, Davit; Simoni, Andrea; Launay, Jean-Michel
2016-05-01
We study bound levels of two particles trapped in a 2D optical lattice. We use a short-range potential tuned to reproduce typical experimental conditions. Near-threshold bound states are computed using a spectral element discretization approach that guarantees exponential precision in the numerical results. High computational efficiency is attained due to the very sparse nature of the Hamiltonian in this representation. The calculated wavefunction is analyzed both in real and in momentum space. We perform calculations both for standard separable optical potentials and for lattice with topological singularities (Dirac cones) in the band structure. Extension to the calculation of scattering states will be addressed. This work was supported by the Agence Nationale de la Recherche (Contract No. ANR-12-BS04-0020-01).
2D optical array probe analysis of precipitating cumulonimbus clouds during EPIC 2001
NASA Astrophysics Data System (ADS)
Baumgardner, D.; Raga, G. B.
2007-05-01
During the 2001 East Pacific Investigation of Climate (EPIC) experiment, numerous measurements were made of the size distributions of raindrops in convective clouds that were developing over a region of the Mexican inter- tropical convergence zone (ITCZ). These measurements were made with optical array probes (PMS 2D-C and 2D-P) mounted on the National Science Foundation Hercules C-130, operated by the National Center for Atmospheric Research. In addition to capturing shadow images of individual drops between 25 μm and 6400 μm, these instruments also record the distance between each drop via a measurement of arrival times in the spectrometers lasers. The separation distance, along with the drop size, provides detailed information about the microstructure of precipitation. The 2D probe measurements have been analyzed as a function of altitude above cloud base, horizontal distance from cloud edges, cloud droplet size distributions (2-50 μm) and vertical wind velocities. The objective of the analysis is to evaluate the spatial distribution of precipitation events with respect to the microphysical and dynamical processes that are related to the development and evolution of rain in tropical convective clouds. In addition, the reflectivity is calculated from the size distributions and evaluated to assess how inhomogeneities in the precipitation might be observed by meteorological radars.
Programmable lattices of optical vortices in nematic liquid crystal
NASA Astrophysics Data System (ADS)
Barboza, R.; Assanto, G.; Bortolozzo, U.; Clerc, M. G.; Residori, S.; Vidal-Henriquez, E.
2015-09-01
Using self-induced vortex-like defects in the nematic liquid crystal layer of a light valve with photo-sensible wall, we demonstrate the realization of programable optical vortices lattices with arbitrary configuration in space. On each lattice site, every matter vortex acts as a photonic spin-to-orbital momentum coupler and an array of circularly polarized input beams is converted into an output array of vortex beams with topological charges consistent with the vortex matter lattice. The vortex arrangements are explained the basis of light-induced matter defects and topological rules.
Optical fiber poling by induction: analysis by 2D numerical modeling.
De Lucia, F; Huang, D; Corbari, C; Healy, N; Sazio, P J A
2016-04-15
Since their first demonstration some 25 years ago, thermally poled silica fibers have been used to realize device functions such as electro-optic modulation, switching, polarization-entangled photons, and optical frequency conversion with a number of advantages over bulk free-space components. We have recently developed an innovative induction poling technique that could allow for the development of complex microstructured fiber geometries for highly efficient χ^{(2)}-based device applications. To systematically implement these more advanced poled fiber designs, we report here the development of comprehensive numerical models of the induction poling mechanism itself via two-dimensional (2D) simulations of ion migration and space-charge region formation using finite element analysis. PMID:27082323
Bloch-Zener oscillations in a tunable optical honeycomb lattice
Uehlinger, Thomas; Greif, Daniel; Jotzu, Gregor; Esslinger, Tilman; Tarruell, Leticia
2013-12-04
Ultracold gases in optical lattices have proved to be a flexible tool to simulate many different phenomena of solid state physics [1, 2]. Recently, optical lattices with complex geometries have been realized [3, 4, 5, 6, 7], paving the way to simulating more realistic systems. The honeycomb structure has recently become accessible in an optical lattice composed of mutually perpendicular laser beams. This lattice structure exhibits topological features in its band structure – the Dirac points. At these points, two energy bands intersect linearly and the particles behave as relativistic Dirac fermions. In optical lattices, Bloch oscillations [8] resolved both in time and in quasi-momentum space can be directly observed. We make use of such Bloch-Zener oscillations to probe the vanishing energy gap at the Dirac points as well as their position in the band structure. In small band gap regions, we observe Landau-Zener tunneling [7, 9] to the second band and the regions of maximum transfer can be identified with the position of the Dirac points.
Site-resolved measurement of spin correlations for fermions in an optical lattice
NASA Astrophysics Data System (ADS)
Parsons, Maxwell; Mazurenko, Anton; Chiu, Christie; Ji, Geoffrey; Greif, Daniel; Greiner, Markus
2016-05-01
The recent demonstrations of site-resolved imaging of fermionic atoms in an optical lattice enable local measurements of charge correlations in Fermi lattice systems. Access to local spin correlations, however, has not yet been demonstrated. Measuring spin correlations is of particular interest because in the repulsive 2D Hubbard model, away from half-filling, the interplay of the spin and charge degrees of freedom is expected to give rise to pseudo-gap physics and perhaps d-wave superconductivity, but this doped regime is difficult to describe with current theoretical techniques. In this talk, I describe a new method for locally measuring spin correlations with our Fermi Gas Microscope. We observe nearest-neighbor AFM correlations in a two-component mixture of fermionic lithium atoms in a 2D optical lattice. The ability to measure trap-resolved magnetic correlations will allow us to explore entropy redistribution schemes, and may provide a way to access the low-temperature phases of the Hubbard model using ultracold atoms.
Coupled matter-wave solitons in optical lattices
NASA Astrophysics Data System (ADS)
Golam Ali, Sk; Talukdar, B.
2009-06-01
We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (Veff(NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well Veff(LOL). But these effective potentials have opposite k dependence in the sense that the depth of Veff(LOL) increases as k increases and that of Veff(NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during evolution
Coupled matter-wave solitons in optical lattices
Golam Ali, Sk; Talukdar, B.
2009-06-15
We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (V{sub eff}(NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well V{sub eff}(LOL). But these effective potentials have opposite k dependence in the sense that the depth of V{sub eff}(LOL) increases as k increases and that of V{sub eff}(NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter {tau} drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation
Light storage in a magnetically dressed optical lattice
NASA Astrophysics Data System (ADS)
Dudin, Y. O.; Zhao, R.; Kennedy, T. A. B.; Kuzmich, A.
2010-04-01
Differential Stark shift compensation for ground-state Rb87 atoms trapped in an elliptically polarized optical lattice and “magic” magnetic field was recently proposed and demonstrated experimentally by N. Lundblad [e-print arXiv:0912.1528] and analyzed theoretically by A. Derevianko [e-print arXiv:0912.3233]. Here we demonstrate enhanced hyperfine coherence times using the magic field technique. We observe coherent light storage with a 0.32-s lifetime in an atomic Rb gas confined in a one-dimensional optical lattice and magnetic field.
Light storage in a magnetically dressed optical lattice
Dudin, Y. O.; Zhao, R.; Kennedy, T. A. B.; Kuzmich, A.
2010-04-15
Differential Stark shift compensation for ground-state {sup 87}Rb atoms trapped in an elliptically polarized optical lattice and 'magic' magnetic field was recently proposed and demonstrated experimentally by N. Lundblad et al. [e-print arXiv:0912.1528] and analyzed theoretically by A. Derevianko [e-print arXiv:0912.3233]. Here we demonstrate enhanced hyperfine coherence times using the magic field technique. We observe coherent light storage with a 0.32-s lifetime in an atomic Rb gas confined in a one-dimensional optical lattice and magnetic field.
Bose-Fermi mixtures in an optical lattice
Sengupta, K.; Majumdar, P.
2007-06-15
We study an atomic Bose-Fermi mixture with unpolarized fermions in an optical lattice. We obtain the Mott ground states of such a system in the limit of the deep optical lattice and discuss the effect of quantum fluctuations on these states. We also study the superfluid-insulator transitions of bosons and metal-insulator transition of fermions in such a mixture within a slave-rotor mean-field approximation, and obtain the corresponding phase diagram. We discuss experimental implications of our results.
Surface multipole solitons on photorefractive media with Bessel optical lattices
NASA Astrophysics Data System (ADS)
Hong, Woo-Pyo
2015-03-01
We find the existence conditions for new surface crescent, dipole, tripole, and quadrupole solitons formed at the interface of a focusing photorefractive medium and a medium imprinted with a Bessel optical lattice. We demonstrate by using numerical simulations that the crescent and the dipole solitons show oscillatory behaviors in their amplitude and shape while the tripole and the quadrupole solitons maintain a remarkable rigidity during propagation. Based on a linear stability analysis, we classify the stability region of the tripole and the quadrupole surface solitons in terms of the Bessel optical lattice strength and the Bessel index.
Manipulation of single neutral atoms in optical lattices
Zhang Chuanwei; Das Sarma, S.; Rolston, S. L.
2006-10-15
We analyze a scheme to manipulate quantum states of neutral atoms at individual sites of optical lattices using focused laser beams. Spatial distributions of focused laser intensities induce position-dependent energy shifts of hyperfine states, which, combined with microwave radiation, allow selective manipulation of quantum states of individual target atoms. We show that various errors in the manipulation process are suppressed below 10{sup -4} with properly chosen microwave pulse sequences and laser parameters. A similar idea is also applied to measure quantum states of single atoms in optical lattices.
Retrieval of aerosol optical and micro-physical properties with 2D-MAX-DOAS
NASA Astrophysics Data System (ADS)
Ortega, Ivan; Coburn, Sean; Hostetler, Chris; Ferrare, Rich; Hair, Johnathan; Kassianov, Evgueni; Barnard, James; Berg, Larry; Schmid, Beat; Tomlinson, Jason; Hodges, Gary; Lantz, Kathy; Wagner, Thomas; Volkamer, Rainer
2015-04-01
Recent retrievals of 2 dimensional (2D) Multi-AXis Differential Optical Absorption Spectroscopy (2D-MAX-DOAS) have highlighted its importance in order to infer diurnal horizontal in-homogeneities around the measurement site. In this work, we expand the capabilities of 2D measurements in order to estimate simultaneously aerosol optical and micro-physical properties. Specifically, we present a retrieval method to obtain: (1) aerosol optical thickness (AOT) in the boundary layer (BL) and free troposphere (FT) and (2) the effective complex refractive index and the effective radius of the aerosol column size distribution. The retrieval method to obtain AOT is based on an iterative comparison of measured normalized radiances, oxygen collision pair (O4), and absolute Raman Scattering Probability (RSP) with the forward model calculations derived with the radiative transfer model McArtim based on defined aerosol extinction profiles. Once the aerosol load is determined we use multiple scattering phase functions and single scattering albedo (SSA) obtained with Mie calculations which then constrain the RTM to forward model solar almucantar normalized radiances. The simulated almucantar normalized radiances are then compared to the measured normalized radiances. The best-fit, determined by minimizing the root mean square, retrieves the complex refractive index, and effective radius. We apply the retrieval approach described above to measurements carried out during the 2012 intensive operation period of the Two Column Aerosol Project (TCAP) held on Cape Cod, MA, USA. Results are presented for two ideal case studies with both large and small aerosol loading and similar air mass outflow from the northeast coast of the US over the West Atlantic Ocean. The aerosol optical properties are compared with several independent instruments, including the NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) for highly resolved extinction profiles during the overpasses, and with the
Graphene and graphene-like 2D materials for optical biosensing and bioimaging: a review
NASA Astrophysics Data System (ADS)
Zhu, Chengzhou; Du, Dan; Lin, Yuehe
2015-09-01
The increasing demands of bioassay and biomedical applications have significantly promoted the rational design and fabrication of a wide range of functional nanomaterials. Coupling these advanced nanomaterials with biomolecule recognition events leads to novel sensing and diagnostic platforms. Because of their unique structures and multifunctionalities, two-dimensional nanomaterials, such as graphene and graphene-like materials (e.g., graphitic carbon nitride, transition metal dichalcogenides, boron nitride, and transition metal oxides), have stimulated great interest in the field of optical biosensors and imaging because of their innovative mechanical, physicochemical and optical properties. Depending on the different applications, the graphene and graphene-like nanomaterials can be tailored to form either fluorescent emitters or efficient fluorescence quenchers, making them powerful platforms for fabricating a series of optical biosensors to sensitively detect various targets including ions, small biomolecules, DNA/RNA and proteins. This review highlights the recent progress in optical biosensors based on graphene and graphene-like 2D materials and their imaging applications. Finally, the opportunities and some critical challenges in this field are also addressed.
Free Expansion of ultracold fermions in an optical lattice
NASA Astrophysics Data System (ADS)
Schneider, Ulrich; Hackermueller, Lucia; Ronzheimer, Jens Philipp; Will, Sebastian; Braun, Simon; Best, Thorsten; Schreiber, Michael; Chung Fong, Kin; Bloch, Immanuel
2010-03-01
Recent experiments with ultracold fermions in optical lattices face two main challenges in the quest of realizing complex strongly-correlated states: While the need to realize low entropy samples resulted in several recent proposals of advanced cooling schemes there remains the problem of the unknown adiabaticity timescales in these inhomogeneous systems. In order to measure the characteristic timescales of density redistribution, we experimentally investigate the free expansion of fermionic ^40K atoms in an homogeneous optical lattice. In an initially non-interacting band-insulater, created in the combination of a blue-detuned optical lattice and a red-detuned optical dipole trap, interactions are introduced by use of a Feshbach resonance. Subsequently the expansion is initiated by quickly ramping down the dipole trap while retaining the optical lattice. In the case of negligible interactions, the atoms expand ballistically performing a continuous quantum walk. For interacting fermions, the expansion becomes diffusive with a density dependent diffusion constant that is independent of the sign of interactions. These measurements demonstrate previously unobserved transport dynamics and give insight into the characteristic timescales of density redistribution.
Stability of matter-wave solitons in optical lattices
NASA Astrophysics Data System (ADS)
Ali, Sk. Golam; Roy, S. K.; Talukdar, B.
2010-08-01
We consider localized states of both single- and two-component Bose-Einstein condensates (BECs) confined in a potential resulting from the superposition of linear and nonlinear optical lattices and make use of Vakhitov-Kolokolov criterion to investigate the effect of nonlinear lattice on the stability of the soliton solutions in the linear optical lattice (LOL). For the single-component case we show that a weak nonlinear lattice has very little effect on the stability of such solitons while sufficiently strong nonlinear optical lattice (NOL) squeezes them to produce narrow bound states. For two-component condensates we find that when the strength of the NOL (γ1) is less than that of the LOL (V0) a relatively weak intra-atomic interaction (IAI) has little effect on the stability of the component solitons. This is true for both attractive and repulsive IAI. A strong attractive IAI, however, squeezes the BEC solitons while a similar repulsive IAI makes the component solitons wider. For γ1 > V0, only a strong attractive IAI squeezes the BEC solitons but the squeezing effect is less prominent than that found for γ1 < V0. We make useful checks on the results of our semianalytical stability analysis by solving the appropriate Gross-Pitaevskii equations numerically.
Coherent manipulations of atomic wavefunctions in optical lattices
NASA Astrophysics Data System (ADS)
Ivanov, Vladyslav
2010-03-01
We report on the realization of dynamical control of transport for ultra-cold ^88Sr atoms loaded in an accelerated and amplitude-modulated 1D optical lattice. Cold atoms trapped in vertical optical lattices give rise to localized states, the Wannier-Stark states. Delocalization can be recovered by introducing a resonant coupling among neighboring lattice sites. We demonstrated this by applying a modulation either to the phase or the amplitude of the lattice potential. Atomic sample loaded into a modulated vertical optical-lattice potential exhibit a resonant delocalization dynamics arising from intraband transitions among Wannier-Stark levels [1]. We demonstrate the coherent control of the spatial extent of atomic wavefunctions by reversibly stretching and shrinking the wavefunction over a distance of more than one millimeter [2]. [4pt] [1] V. V. Ivanov et al., Phys. Rev. Lett. 100, 043602 (2008) [0pt] [2] A. Alberti, V. V. Ivanov, G. M. Tino and G. Ferrari Nature Physics 5, 547 (2009)
Atomic and molecular quantum gases in an optical lattice
NASA Astrophysics Data System (ADS)
Hecker Denschlag, Johannes
2007-06-01
We report on recent progress in preparing and manipulating ultracold atomic and molecular ensembles in a 3D optical lattice. Starting from an atomic ^87Rb condensate which is adiabatically loaded into a 3D optical lattice we can control the state and dynamics of the gas on the quantum level with the help of static magnetic fields, radio-frequency and laser radiation and a Feshbach resonance. For example, we can produce a pure molecular ensemble of Rb2 Feshbach molecules in the lattice [1] and can coherently transfer it to a more deeply molecular bound state via STIRAP [2] or radio-frequency transitions. Besides possible applications for investigating molecular collisions and producing ultracold molecules in the vibrational ground state, this can also be used for spectroscopic precision measurements of molecular levels. Besides studying chemically bound molecules, optical lattices also allow for forming a novel kind of stable bound state of two atoms which is based on repulsion rather than attraction between the particles [3]. We will explain how these lattice-induced repulsively bound atom pairs come about and discuss their interesting properties. [1] G. Thalhammer et al., Phys. Rev. Lett. 96, 050402 (2006). [2] K. Winkler, cond-mat/0611222 [3] K. Winkler et al., Nature 441, 853, (2006).
Mixtures of bosonic and fermionic atoms in optical lattices
Albus, Alexander; Illuminati, Fabrizio; Eisert, Jens
2003-08-01
We discuss the theory of mixtures of bosonic and fermionic atoms in periodic potentials at zero temperature. We derive a general Bose-Fermi Hubbard Hamiltonian in a one-dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean-field criterion for the onset of a bosonic superfluid transition. We investigate the ground-state properties of the mixture in the Gutzwiller formulation of mean-field theory, and present numerical studies of finite systems. The bosonic and fermionic density distributions and the onset of quantum phase transitions to demixing and to a bosonic Mott-insulator are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasidegenerate ground states is related to a breaking of the mirror symmetry in the lattice.
Atomic Bose and Anderson Glasses in Optical Lattices
NASA Astrophysics Data System (ADS)
Damski, B.; Zakrzewski, J.; Santos, L.; Zoller, P.; Lewenstein, M.
2003-08-01
An ultracold atomic Bose gas in an optical lattice is shown to provide an ideal system for the controlled analysis of disordered Bose lattice gases. This goal may be easily achieved under the current experimental conditions by introducing a pseudorandom potential created by a second additional lattice or, alternatively, by placing a speckle pattern on the main lattice. We show that, for a noncommensurable filling factor, in the strong-interaction limit, a controlled growing of the disorder drives a dynamical transition from superfluid to Bose-glass phase. Similarly, in the weak interaction limit, a dynamical transition from superfluid to Anderson-glass phase may be observed. In both regimes, we show that even very low-intensity disorder-inducing lasers cause large modifications of the superfluid fraction of the system.
Hu Ying; Liang Zhaoxin; Hu Bambi
2010-05-15
We investigate the combined effects of weak disorder and a two-dimensional (2D) optical lattice on the collective excitations of a harmonically trapped Bose-Einstein condensate (BEC) at zero temperature. Accordingly, we generalize the hydrodynamic equations of superfluid for a weakly interacting Bose gas in a 2D optical lattice to include the effects of weak disorder. Our analytical results for the collective frequencies beyond the mean-field approximation reveal the peculiar role of disorder, interplaying with the 2D optical lattice and interatomic interaction, on elementary excitations along the 3D to 1D crossover. In particular, consequences of disorder on the phonon propagation and surface modes are analyzed in detail. The experimental scenario is also proposed.
Superfluid fermi gas in optical lattices: self-trapping, stable, moving solitons and breathers.
Xue, Ju-Kui; Zhang, Ai-Xia
2008-10-31
We predict the existence of self-trapping, stable, moving solitons and breathers of Fermi wave packets along the Bose-Einstein condensation (BEC)-BCS crossover in one dimension (1D), 2D, and 3D optical lattices. The dynamical phase diagrams for self-trapping, solitons, and breathers of the Fermi matter waves along the BEC-BCS crossover are presented analytically and verified numerically by directly solving a discrete nonlinear Schrödinger equation. We find that the phase diagrams vary greatly along the BEC-BCS crossover; the dynamics of Fermi wave packet are different from that of Bose wave packet. PMID:18999797
Optical lattice polarization effects on magnetically induced optical atomic clock transitions
Taichenachev, A. V.; Yudin, V. I.; Oates, C. W.
2007-08-15
We derive the frequency shift for a forbidden optical transition J=0{yields}J{sup '}=0 caused by the simultaneous actions of an elliptically polarized lattice field and a static magnetic field. We find that a simple configuration of lattice and magnetic fields leads to a cancellation of this shift to first order in lattice intensity and magnetic field. In this geometry, the second-order lattice intensity shift can be minimized as well by use of optimal lattice polarization. Suppression of these shifts could considerably enhance the performance of the next generation of atomic clocks.
Veselago lensing with ultracold atoms in an optical lattice
NASA Astrophysics Data System (ADS)
Leder, Martin; Grossert, Christopher; Weitz, Martin
2014-05-01
Veselago pointed out that electromagnetic theory allows for materials with a negative index of refraction, in which most known optical phenomena are reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. Here we demonstrate Veselago lensing for matter waves, using ultracold atoms in an optical lattice. A relativistic, i.e. photon-like, dispersion relation for rubidium atoms is realized with a bichromatic optical lattice potential. A Raman pi-pulse technique serves to transfer atoms between two different branches of the dispersion relation, and the relativistic lensing occurs by a backwards propagation of atomic wavepackets on an energetically mirrored branch of the dispersion relation. We observe negative refraction and Veselago lensing both in a one-dimensional geometry and perform a ray-tracing simulation of a two-dimensional Veselago lens.
Fermionic quantum gases with tunable interactions in optical lattices
NASA Astrophysics Data System (ADS)
Schneider, Ulrich; Hackermüller, Lucia; Best, Thorsten; Will, Sebastian; Braun, Simon; Moreno Cardoner, Maria; Paredes, Belen; Bloch, Immanuel
2009-03-01
Fermionic atoms in optical lattices can serve as a model system for condensed matter physics, as they present an implementation of the Hubbard hamiltonian with high experimental control of the relevant parameters. In our system we sympathetically cool ^87Rb and ^40K in an optically plugged quadrupole trap and an optical dipole trap. After evaporation, a balanced spin mixture of 40K atoms is loaded into a blue detuned optical lattice where the interactions can be changed via a Feshbach resonance. We present experimental and theoretical studies of the behaviour of fermionic atoms for both attractive and repulsive interactions. For repulsive interactions we show a transition from compressible, metallic states to Mott-insulating and finally band insulating states. On the attractive side we investigate an anomalous expansion when the interaction is strongly attractive and study the dynamics of atoms and repulsively and attractively bound pairs.
Direct Tunneling Delay Time Measurement in an Optical Lattice.
Fortun, A; Cabrera-Gutiérrez, C; Condon, G; Michon, E; Billy, J; Guéry-Odelin, D
2016-07-01
We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of the wave packet at the turning points and measure the delay between the reflected and the tunneled packets for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a negative momentum, a result opposite to the prediction of classical physics. PMID:27419545
Interaction-induced adiabatic cooling for antiferromagnetism in optical lattices
Dare, A.-M.; Raymond, L.; Albinet, G.; Tremblay, A.-M. S.
2007-08-01
In the experimental context of cold-fermion optical lattices, we discuss the possibilities to approach the pseudogap or ordered phases by manipulating the scattering length or the strength of the laser-induced lattice potential. Using the two-particle self-consistent approach, as well as quantum Monte Carlo simulations, we provide isentropic curves for the two- and three-dimensional Hubbard models at half-filling. These quantitative results are important for practical attempts to reach the ordered antiferromagnetic phase in experiments on optical lattices of two-component fermions. We find that adiabatically turning on the interaction in two dimensions to cool the system is not very effective. In three dimensions, adiabatic cooling to the antiferromagnetic phase can be achieved in such a manner, although the cooling efficiency is not as high as initially suggested by dynamical mean-field theory. Adiabatic cooling by turning off the repulsion beginning at strong coupling is possible in certain cases.
Spin-orbit coupling in a strontium optical lattice clock
NASA Astrophysics Data System (ADS)
Bothwell, Tobias; Bromley, Sarah; Kolkowitz, Shimon; Zhang, Xibo; Wall, Michael; Rey, Ana Maria; Ye, Jun
2016-05-01
Synthetic gauge fields are a promising tool for creating complex Hamiltonians with ultracold neutral atoms that may mimic the fractional Quantum Hall effect and other topological states. A promising approach is to use spin-orbit coupling to treat an internal degree of freedom as an effective `synthetic' spatial dimension. Here, this synthetic dimension is comprised by the internal ground and excited states used for high-precision clock spectroscopy in a fermionic strontium optical lattice clock. We report on our progress towards this goal in a system where atoms tunnel through a 1D optical lattice during clock interrogation. We present measurements of the lattice band structure under varying Lamb-Dicke parameters and in a regime where s-wave collisions are expected to contribute density dependent frequency shifts.
Excitations of one-dimensional supersolids with optical lattices
NASA Astrophysics Data System (ADS)
Hsueh, C.-H.; Tsai, Y.-C.; Wu, W. C.
2016-06-01
Based on mean-field Gross-Pitaevskii and Bogoliubov-de Gennes approaches, we investigate excitations of a one-dimensional soft-core interacting ultracold Bose gas under the effect of an optical lattice. It is found that no matter how deep the lattice is, at q →0 the lowest mode corresponds to a gapless phonon, ω12=v12q2 , whereas the second lowest mode corresponds to a gapped optical phonon, ω22=Δ2±v22q2 . Determination of the velocities v1,v2 , the gap Δ , and the possible sign change in ω2 upon the change of lattice depth can give decisive measures to the transitions across various supersolid and solid states. The power law v1˜(fs) 1 /2 with fs the superfluid fraction is identified in the present system at the tight-binding regime.
Direct Tunneling Delay Time Measurement in an Optical Lattice
NASA Astrophysics Data System (ADS)
Fortun, A.; Cabrera-Gutiérrez, C.; Condon, G.; Michon, E.; Billy, J.; Guéry-Odelin, D.
2016-07-01
We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of the wave packet at the turning points and measure the delay between the reflected and the tunneled packets for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a negative momentum, a result opposite to the prediction of classical physics.
Collisional shifts in optical-lattice atom clocks
Band, Y. B.; Vardi, A.
2006-09-15
We theoretically study the effects of elastic collisions on the determination of frequency standards via Ramsey-fringe spectroscopy in optical-lattice atom clocks. Interparticle interactions of bosonic atoms in multiply occupied lattice sites can cause a linear frequency shift, as well as generate asymmetric Ramsey-fringe patterns and reduce fringe visibility due to interparticle entanglement. We propose a method of reducing these collisional effects in an optical lattice by introducing a phase difference of {pi} between the Ramsey driving fields in adjacent sites. This configuration suppresses site-to-site hopping due to interference of two tunneling pathways, without degrading fringe visibility. Consequently, the probability of double occupancy is reduced, leading to cancellation of collisional shifts.
Topological phases via engineered orbital hybridization in noncentrosymmetric optical lattices
NASA Astrophysics Data System (ADS)
Liu, Bo; Li, Xiaopeng; Liu, W. Vincent
2016-03-01
We propose a symmetry-based method of using noncentrosymmetric optical lattices to systematically control topological nontrivial orbital hybridization. A crucial difference from the previous studies is the role of inversion symmetry breaking, which is applied to induce an exotic orbital-changing hopping perpendicular to the direction without inversion symmetry and opens a band gap, instead of reducing the codimension and producing gapless points. The orbital mixing here is reminiscent of the spin-orbit physics based on hyperfine states but differs in symmetry and origin. This nontrivial orbital hybridization produces a topological band structure. Attractively interacting fermionic atoms loaded in such a lattice are found to show an orbital topological Fulde-Ferrell superfluid state in the presence of onsite rotation. This state supports Majorana fermions on its edges. Our mechanism should pave an alternative way to achieve orbital topological phases in optical lattices of nonstandard geometry.
Coherent beam combining using a 2D internally sensed optical phased array.
Roberts, Lyle E; Ward, Robert L; Sutton, Andrew J; Fleddermann, Roland; de Vine, Glenn; Malikides, Emmanuel A; Wuchenich, Danielle M R; McClelland, David E; Shaddock, Daniel A
2014-08-01
Coherent combination of multiple lasers using an optical phased array (OPA) is an effective way to scale optical intensity in the far field beyond the capabilities of single fiber lasers. Using an actively phase locked, internally sensed, 2D OPA we demonstrate over 95% fringe visibility of the interfered beam, λ/120 RMS output phase stability over a 5 Hz bandwidth, and quadratic scaling of intensity in the far field using three emitters. This paper presents a new internally sensed OPA architecture that employs a modified version of digitally enhanced heterodyne interferometry (DEHI) based on code division multiplexing to measure and control the phase of each emitter. This internally sensed architecture can be implemented with no freespace components, offering improved robustness to shock and vibration exhibited by all-fiber devices. To demonstrate the concept, a single laser is split into three channels/emitters, each independently controlled using separate electro-optic modulators. The output phase of each channel is measured using DEHI to sense the small fraction of light that is reflected back into the fiber at the OPA's glass-air interface. The relative phase between emitters is used to derive the control signals needed to stabilize their relative path lengths and maintain coherent combination in the far field. PMID:25090317
Expansion of a Quantum Gas Released from an Optical Lattice
Gerbier, F.; Trotzky, S.; Schnorrberger, U.; Thompson, J. D.; Bloch, I.; Foelling, S.; Widera, A.; Pollet, L.; Troyer, M.; Capogrosso-Sansone, B.; Prokof'ev, N. V.; Svistunov, B. V.
2008-10-10
We analyze the interference pattern produced by ultracold atoms released from an optical lattice, commonly interpreted as the momentum distributions of the trapped quantum gas. We show that for finite times of flight the resulting density distribution can, however, be significantly altered, similar to a near-field diffraction regime in optics. We illustrate our findings with a simple model and realistic quantum Monte Carlo simulations for bosonic atoms and compare the latter to experiments.
Expansion of a Quantum Gas Released from an Optical Lattice
NASA Astrophysics Data System (ADS)
Gerbier, F.; Trotzky, S.; Fölling, S.; Schnorrberger, U.; Thompson, J. D.; Widera, A.; Bloch, I.; Pollet, L.; Troyer, M.; Capogrosso-Sansone, B.; Prokof'Ev, N. V.; Svistunov, B. V.
2008-10-01
We analyze the interference pattern produced by ultracold atoms released from an optical lattice, commonly interpreted as the momentum distributions of the trapped quantum gas. We show that for finite times of flight the resulting density distribution can, however, be significantly altered, similar to a near-field diffraction regime in optics. We illustrate our findings with a simple model and realistic quantum Monte Carlo simulations for bosonic atoms and compare the latter to experiments.
Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla
Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.
1998-11-08
We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn^{2+} spins.
Quantum degenerate atomic gases in controlled optical lattice potentials
NASA Astrophysics Data System (ADS)
Gemelke, Nathan D.
2007-12-01
Since the achievement of Bose Einstein condensation in cold atomic gases, mean-field treatments of the condensed phase have provided an excellent description for the static and dynamic properties observed in experiments. Recent experimental efforts have focused on studying deviations from mean-field behavior. I will describe work on two experiments which introduce controlled single particle degeneracies with time-dependent optical potentials, aiming to induce correlated motion and nontrivial statistics in the gas. In the first experiment, an optical lattice with locally rotating site potentials is produced to investigate fractional quantum Hall effects (FQHE) in rotating Bose gases. Here, the necessary gauge potential is provided by the rotating reference frame of the gas, which, in direct analogy to the electronic system, organizes single particle states into degenerate Landau levels. At low temperatures the repulsive interaction provided by elastic scattering is expected to produce ground states with structure nearly identical to those in the FQHE. I will discuss how these effects are made experimentally feasible by working at small particle numbers in the tight trapping potentials of an optical lattice, and present first results on the use of photoassociation to probe correlation in this system. In the second experiment, a vibrated optical lattice potential alters the single-particle dispersion underlying a condensed Bose gas and offers tailored phase-matching for nonlinear atom optical processes. I will demonstrate how this leads to parametric instability in the condensed gas, and draw analogy to an optical parametric oscillator operating above threshold.
Terahertz wavefront assessment based on 2D electro-optic imaging
NASA Astrophysics Data System (ADS)
Cahyadi, Harsono; Ichikawa, Ryuji; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi; Abraham, Emmanuel
2015-03-01
Complete characterization of terahertz (THz) radiation becomes an interesting yet challenging study for many years. In visible optical region, the wavefront assessment has been proved as a powerful tool for the beam profiling and characterization, which consequently requires 2-dimension (2D) single-shot acquisition of the beam cross-section to provide the spatial profile in time- and frequency-domain. In THz region, the main problem is the lack of effective THz cameras to satisfy this need. In this communication, we propose a simple setup based on free-space collinear 2D electrooptic sampling in a ZnTe crystal for the characterization of THz wavefronts. In principle, we map the optically converted, time-resolved data of the THz pulse by changing the time delay between the probe pulse and the generated THz pulse. The temporal waveforms from different lens-ZnTe distances can clearly indicate the evolution of THz beam as it is converged, focused, or diverged. From the Fourier transform of the temporal waveforms, we can obtain the spectral profile of a broadband THz wave, which in this case within the 0.1-2 THz range. The spectral profile also provides the frequency dependency of the THz pulse amplitude. The comparison between experimental and theoretical results at certain frequencies (here we choose 0.285 and 1.035 THz) is in a good agreement suggesting that our system is capable of THz wavefront characterization. Furthermore, the implementation of Hartmann/Shack-Hartmann sensor principle enables the reconstruction of THz wavefront. We demonstrate the reconstruction of THz wavefronts which are changed from planar wave to spherical one due to the insertion of convex THz lens in the THz beam path. We apply and compare two different reconstruction methods: linear integration and Zernike polynomial. Roughly we conclude that the Zernike method provide smoother wavefront shape that can be elaborated later into quantitative-qualitative analysis about the wavefront
Doublon dynamics and polar molecule production in an optical lattice.
Covey, Jacob P; Moses, Steven A; Gärttner, Martin; Safavi-Naini, Arghavan; Miecnikowski, Matthew T; Fu, Zhengkun; Schachenmayer, Johannes; Julienne, Paul S; Rey, Ana Maria; Jin, Deborah S; Ye, Jun
2016-01-01
Polar molecules in an optical lattice provide a versatile platform to study quantum many-body dynamics. Here we use such a system to prepare a density distribution where lattice sites are either empty or occupied by a doublon composed of an interacting Bose-Fermi pair. By letting this out-of-equilibrium system evolve from a well-defined, but disordered, initial condition, we observe clear effects on pairing that arise from inter-species interactions, a higher partial-wave Feshbach resonance and excited Bloch-band population. These observations facilitate a detailed understanding of molecule formation in the lattice. Moreover, the interplay of tunnelling and interaction of fermions and bosons provides a controllable platform to study Bose-Fermi Hubbard dynamics. Additionally, we can probe the distribution of the atomic gases in the lattice by measuring the inelastic loss of doublons. These techniques realize tools that are generically applicable to studying the complex dynamics of atomic mixtures in optical lattices. PMID:27075831
Superfluid qubit systems with ring shaped optical lattices
Amico, Luigi; Aghamalyan, Davit; Auksztol, Filip; Crepaz, Herbert; Dumke, Rainer; Kwek, Leong Chuan
2014-01-01
We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our implementation combines the low decoherence rates of neutral cold atoms systems, overcoming single site addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate how atomic currents through the lattice provide an implementation of a qubit. This is realized either by artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have experimentally realized scaled ring-lattice potentials that could host, in principle, n ~ 10 of such ring-qubits, arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address, and read-out the qubit. PMID:24599096
Doublon dynamics and polar molecule production in an optical lattice
NASA Astrophysics Data System (ADS)
Covey, Jacob P.; Moses, Steven A.; Gärttner, Martin; Safavi-Naini, Arghavan; Miecnikowski, Matthew T.; Fu, Zhengkun; Schachenmayer, Johannes; Julienne, Paul S.; Rey, Ana Maria; Jin, Deborah S.; Ye, Jun
2016-04-01
Polar molecules in an optical lattice provide a versatile platform to study quantum many-body dynamics. Here we use such a system to prepare a density distribution where lattice sites are either empty or occupied by a doublon composed of an interacting Bose-Fermi pair. By letting this out-of-equilibrium system evolve from a well-defined, but disordered, initial condition, we observe clear effects on pairing that arise from inter-species interactions, a higher partial-wave Feshbach resonance and excited Bloch-band population. These observations facilitate a detailed understanding of molecule formation in the lattice. Moreover, the interplay of tunnelling and interaction of fermions and bosons provides a controllable platform to study Bose-Fermi Hubbard dynamics. Additionally, we can probe the distribution of the atomic gases in the lattice by measuring the inelastic loss of doublons. These techniques realize tools that are generically applicable to studying the complex dynamics of atomic mixtures in optical lattices.
Doublon dynamics and polar molecule production in an optical lattice
Covey, Jacob P.; Moses, Steven A.; Gärttner, Martin; Safavi-Naini, Arghavan; Miecnikowski, Matthew T.; Fu, Zhengkun; Schachenmayer, Johannes; Julienne, Paul S.; Rey, Ana Maria; Jin, Deborah S.; Ye, Jun
2016-01-01
Polar molecules in an optical lattice provide a versatile platform to study quantum many-body dynamics. Here we use such a system to prepare a density distribution where lattice sites are either empty or occupied by a doublon composed of an interacting Bose-Fermi pair. By letting this out-of-equilibrium system evolve from a well-defined, but disordered, initial condition, we observe clear effects on pairing that arise from inter-species interactions, a higher partial-wave Feshbach resonance and excited Bloch-band population. These observations facilitate a detailed understanding of molecule formation in the lattice. Moreover, the interplay of tunnelling and interaction of fermions and bosons provides a controllable platform to study Bose-Fermi Hubbard dynamics. Additionally, we can probe the distribution of the atomic gases in the lattice by measuring the inelastic loss of doublons. These techniques realize tools that are generically applicable to studying the complex dynamics of atomic mixtures in optical lattices. PMID:27075831
Nonlinear localized modes in dipolar Bose-Einstein condensates in two-dimensional optical lattices
NASA Astrophysics Data System (ADS)
Rojas-Rojas, Santiago; Naether, Uta; Delgado, Aldo; Vicencio, Rodrigo A.
2016-09-01
We analyze the existence and properties of discrete localized excitations in a Bose-Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.
Super-resolution microscopy of single atoms in optical lattices
NASA Astrophysics Data System (ADS)
Alberti, Andrea; Robens, Carsten; Alt, Wolfgang; Brakhane, Stefan; Karski, Michał; Reimann, René; Widera, Artur; Meschede, Dieter
2016-05-01
We report on image processing techniques and experimental procedures to determine the lattice-site positions of single atoms in an optical lattice with high reliability, even for limited acquisition time or optical resolution. Determining the positions of atoms beyond the diffraction limit relies on parametric deconvolution in close analogy to methods employed in super-resolution microscopy. We develop a deconvolution method that makes effective use of the prior knowledge of the optical transfer function, noise properties, and discreteness of the optical lattice. We show that accurate knowledge of the image formation process enables a dramatic improvement on the localization reliability. This allows us to demonstrate super-resolution of the atoms’ position in closely packed ensembles where the separation between particles cannot be directly optically resolved. Furthermore, we demonstrate experimental methods to precisely reconstruct the point spread function with sub-pixel resolution from fluorescence images of single atoms, and we give a mathematical foundation thereof. We also discuss discretized image sampling in pixel detectors and provide a quantitative model of noise sources in electron multiplying CCD cameras. The techniques developed here are not only beneficial to neutral atom experiments, but could also be employed to improve the localization precision of trapped ions for ultra precise force sensing.
Fast, externally triggered, digital phase controller for an optical lattice
NASA Astrophysics Data System (ADS)
Sadgrove, Mark; Nakagawa, Ken'ichi
2011-11-01
We present a method to control the phase of an optical lattice according to an external trigger signal. The method has a latency of less than 30 μs. Two phase locked digital synthesizers provide the driving signal for two acousto-optic modulators which control the frequency and phase of the counter-propagating beams which form a standing wave (optical lattice). A micro-controller with an external interrupt function is connected to the desired external signal, and updates the phase register of one of the synthesizers when the external signal changes. The standing wave (period λ/2 = 390 nm) can be moved by units of 49 nm with a mean jitter of 28 nm. The phase change is well known due to the digital nature of the synthesizer, and does not need calibration. The uses of the scheme include coherent control of atomic matter-wave dynamics.
A novel 2D MEMS-based optical crossconnect with greatly reduced complexity
NASA Astrophysics Data System (ADS)
Ma, Xiaohua; Kuo, Geng-Sheng
2004-04-01
Optical crossconnects (OXCs) are critical core for provisioning and restoration in mesh wavelength-division-multiplexing (WDM) networks. An increasingly urgent need for large-port-count OXCs severely challenges the current existing OXC technologies. To reduce the crosspoint complexity, we propose an architecture based on 2×2 switching fabrics by integrating the general symmetric (GS) architecture with Clos and Benes switching architectures together. Rearrangeably and strictly nonblocking structures are examined as well as the control algorithm of the rearrangeably nonblocking structure is studied. Then, we present two basic switching fabrics of the simples 2×2 bidirectional OXC utilizing 2D optical MEMS, one of which is used as the basic building block in our proposed architecture is studied. The resulted switch requires (N/2)×[log2(N/2)]×(log2N-1/2) micromirrors, while the switch based on GS architecture needs 2(N/2)2 micromirrors. It is very clear that our proposed architecture reduces the number of micromirrors greatly, especially when N is large. Moreover, theoretical analyses have shown that the resulted switch has the same insertion loss, lower power consumption, and better performance of port-to-port repeatability, comparing to the conventional crossbar switch.
Prospects for Optical Clocks with a Blue-Detuned Lattice
Takamoto, M.; Katori, H.; Marmo, S. I.; Ovsiannikov, V. D.; Pal'chikov, V. G.
2009-02-13
We investigated the properties of optical lattice clocks operated with a repulsive light-shift potential. The magic wavelength, where light-shift perturbation for the clock transition cancels, was experimentally determined to be 389.889(9) nm for {sup 87}Sr. The hyperpolarizability effects on the clock transition were investigated theoretically. With minimal trapping field perturbation provided by the blue-detuned lattice, the fractional uncertainty due to the hyperpolarizability effects was found to be 2x10{sup -19} in the relevant clock transition.
Mixtures of Strongly Interacting Bosons in Optical Lattices
Buonsante, P.; Penna, V.; Giampaolo, S. M.; Illuminati, F.; Vezzani, A.
2008-06-20
We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of {sup 41}K induces a significant loss of coherence in {sup 87}Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices.
Continuous loading of an atom beam into an optical lattice
NASA Astrophysics Data System (ADS)
Ivanov, Vladyslav V.
I propose a method of deceleration and continuous loading of an atom beam into a far-off-resonance optical lattice. The loading of moving atoms into a conservative far-off-resonance potential requires the removal of the atom's excess kinetic energy. Here this is achieved by the Sisyphus cooling method, where a differential lattice-induced ac Stark shift is utilized. The proposed method is described for the case of ytterbium atoms. Numerical simulations demonstrate the possibility of reaching cold and dense samples in a continuous manner on the example of ytterbium atoms.
Mixtures of strongly interacting bosons in optical lattices.
Buonsante, P; Giampaolo, S M; Illuminati, F; Penna, V; Vezzani, A
2008-06-20
We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of 41K induces a significant loss of coherence in 87Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices. PMID:18643555
Optical-lattice Hamiltonians for relativistic quantum electrodynamics
Kapit, Eliot; Mueller, Erich
2011-03-15
We show how interpenetrating optical lattices containing Bose-Fermi mixtures can be constructed to emulate the thermodynamics of quantum electrodynamics (QED). We present models of neutral atoms on lattices in 1+1, 2+1, and 3+1 dimensions whose low-energy effective action reduces to that of photons coupled to Dirac fermions of the corresponding dimensionality. We give special attention to (2+1)-dimensional quantum electrodynamics (QED3) and discuss how two of its most interesting features, chiral symmetry breaking and Chern-Simons physics, could be observed experimentally.
Experimentally observed field–gas interaction in intense optical lattices
Graul, Jacob S.; Cornella, Barry M.; Ketsdever, Andrew D.; Lilly, Taylor C.; Shneider, Mikhail N.
2013-12-09
When a gas perturbed by a laser interference pattern, an optical lattice, exhibits a periodic modulation of its refractive index, strong Bragg diffraction of the perturbing light can occur. This scattering reduces the field's ability to further manipulate the gas. Experimental observations of Bragg scattering, evidence of a two-way coupling, are compared to the evolution of the light fields calculated by solutions to the wave equation. Comparison indicates momentum deposition as a prime contributor to the shape of the scattering function vs. lattice velocity, a rationale further supported through additional direct simulation Monte Carlo simulation.
NASA Astrophysics Data System (ADS)
Talneau, A.
2010-10-01
This paper presents an overview of 2D photonic crystal-based structures designed to display low group velocity as well as reduced group velocity dispersions. Their main envisioned applications are optical delay lines for telecom transmissions at 1.55 µm. Optical mechanisms responsible for slowing down the optical modes and encountered in the slow light regime serve as a guideline for this paper.
Measuring spin correlations in optical lattices using superlattice potentials
Pedersen, K. G. L.; Andersen, B. M.; Soerensen, A. S.; Bruun, G. M.; Syljuaasen, O. F.
2011-10-15
We suggest two experimental methods for probing both short- and long-range spin correlations of atoms in optical lattices using superlattice potentials. The first method involves an adiabatic doubling of the periodicity of the underlying lattice to probe neighboring singlet (triplet) correlations for fermions (bosons) by the occupation of the resulting vibrational ground state. The second method utilizes a time-dependent superlattice potential to generate spin-dependent transport by any number of prescribed lattice sites, and probes correlations by the resulting number of doubly occupied sites. For experimentally relevant parameters, we demonstrate how both methods yield large signatures of antiferromagnetic correlations of strongly repulsive fermionic atoms in a single shot of the experiment. Lastly, we show how this method may also be applied to probe d-wave pairing, a possible ground-state candidate for the doped repulsive Hubbard model.
Dynamical phase interferometry of cold atoms in optical lattices
London, Uri; Gat, Omri
2011-12-15
We study the propagation of cold-atom wave packets in an interferometer with a Mach-Zehnder topology based on the dynamical phase of Bloch oscillation in a weakly forced optical lattice with a narrow potential barrier that functions as a cold-atom wave-packet splitter. We calculate analytically the atomic wave function, and show that the expected number of atoms in the two outputs of the interferometer oscillates rapidly as a function of the angle between the potential barrier and the forcing direction with period proportional to the external potential difference across a lattice spacing divided by the lattice band energy scale. The interferometer can be used as a high-precision force probe whose principle of operation is different from current interferometers based on the overall position of Bloch oscillating wave packets.
Towards Quantum Magnetism with Ultracold Quantum Gases in Optical Lattices
NASA Astrophysics Data System (ADS)
Bloch, Immanuel
2008-05-01
Quantum mechanical superexchange interactions form the basis of quantum magnetism in strongly correlated electronic media and are believed to play a major role in high-Tc superconducting materials. We report on the first direct measurement of such superexchange interactions with ultracold atoms in optical lattices. After preparing a spin-mixture of ultracold atoms with the help of optical superlattices in an antiferromagnetically ordered state, we are able to observe a coherent superexchange mediated spin dynamics down to coupling energies as low as 5 Hz. Furthermore, it is shown how these superexchange interactions can be fully controlled in magnitude and sign. The prospects of using such superexchange interactions for the investigation of dynamical behaviour in quantum spin systems and for quantum information processing will be outlined in the talk. In addition we present results on the dynamical resolved co-tunneling of repulsively bound atom pairs in optical superlattices and show how by using ``Coulomb-blockade'' type tunneling resonance one can count atoms one by one to determine their number statistics in the lattice potential. Finally, latest results on ultracold Fermions and Bose-Fermi mixtures in optical lattices will be presented.
Towards Quantum Magnetism with Ultracold Quantum Gases in Optical Lattices
NASA Astrophysics Data System (ADS)
Bloch, Immanuel
2008-03-01
Quantum mechanical superexchange interactions form the basis of quantum magnetism in strongly correlated electronic media and are believed to play a major role in high-Tc superconducting materials. We report on the first direct measurement of such superexchange interactions with ultracold atoms in optical lattices. After preparing a spin-mixture of ultracold atoms with the help of optical superlattices in an antiferromagnetically ordered state, we are able to observe a coherent superexchange mediated spin dynamics down to coupling energies as low as 5 Hz. Furthermore, it is shown how these superexchange interactions can be fully controlled in magnitude and sign. The prospects of using such superexchange interactions for the investigation of dynamical behaviour in quantum spin systems and for quantum information processing will be outlined in the talk. In addition we present results on the dynamical resolved co-tunnelling of repulsively bound atom pairs in optical superlattices and show how by using ``Coulomb-blockade'' type tunnelling resonance one can count atoms one by one to determine their number statistics in the lattice potential. Finally, latest results on ultracold Fermions and Bose-Fermi mixtures in optical lattices will be presented.
A quantum gas of polar molecules in an optical lattice
NASA Astrophysics Data System (ADS)
Moses, Steven A.
Ultracold polar molecules, because of their long-range, spatially anisotropic interactions, are a new quantum system in which to study novel many-body phenomena. In our lab, we have produced the first quantum gas of 40K 87Rb polar molecules. These molecules were found to undergo exothermic chemical reactions, and this led to interesting studies of chemistry near absolute zero. By creating the molecules at individual sites of a 3D optical lattice, we completely suppress these chemical reactions, and the polar molecule gas becomes stable and lives for tens of seconds. This thesis documents our efforts to explore coherent, many-body phenomena resulting from long-range dipolar interactions in the lattice. By encoding a spin-1/2 system in the rotational states of the molecules, we were able to realize spin-exchange interactions based on a spin Hamiltonian, which is one of the first steps in studying quantum magnetism with polar molecules. While this study was the first realization of such coherent dipolar interactions with polar molecules in a lattice, its full potential was limited by the low lattice filling fractions. Using our ability to exquisitely control the initial atomic gas mixture, we loaded a Mott insulator of Rb and a band insulator of K into the lattice. This quantum synthesis approach led to significantly higher molecular filling fractions and represents the first fully connected system of polar molecules in an optical lattice. This low-entropy quantum gas of polar molecules opens the door to interesting quantum simulations, which should be attainable in the next generation of the experiment.
NaKV4O9·2H2O: a new 2D magnetic compound with a 1/5-depleted square lattice.
Cui, Meiyan; He, Zhangzhen; Wang, Nannan; Tang, Yingying; Guo, Wenbin; Zhang, Suyun; Wang, Lin; Xiang, Hongping
2016-03-15
A new vanadate compound NaKV4O9·2H2O is successfully synthesized by a conventional hydrothermal method. This compound crystallizes in the monoclinic system with the space group C2/c, showing a typical 2D layered structure built from VO5 pyramids, in which the layers are separated by Na(+), K(+), and H2O. The topology structure of magnetic V(4+) ions shows a quite interesting 1/5-depleted square lattice, which is quite similar to that of a famous low-dimensional quantum spin system CaV4O9. A structural and magnetic comparison confirmed that the title compound may exhibit a more pronounced 2D character with a large spin gap. PMID:26892907
Chiral topological orders in an optical Raman lattice
NASA Astrophysics Data System (ADS)
Liu, Xiong-Jun; Liu, Zheng-Xin; Law, K. T.; Liu, W. Vincent; Ng, T. K.
2016-03-01
We find an optical Raman lattice without spin-orbit coupling showing chiral topological orders for cold atoms. Two incident plane-wave lasers are applied to simultaneously generate a double-well square lattice and periodic Raman couplings, the latter of which drive the nearest-neighbor hopping and create a staggered flux pattern across the lattice. Such a minimal setup can yield the quantum anomalous Hall effect with a large gap-bandwidth ratio in the single particle regime, while in the interacting regime it achieves the J 1-J 2-K spin model, with the nearest-neighboring (J 1) and next-nearest-neightboring (J 2) exchange coupling coefficients, and the three three-spin interacting parameter (K) is controllable. We show that the J 1-J 2-K spin model may support a chiral spin liquid phase. It is interesting that the quantum anomalous Hall state can be detected by only measuring the Bloch states in the two symmetric momentum points of the first Brillouin zone. Further, we also show that heating in the present optical Raman lattice can be essentially reduced compared with the conventional laser-assisted tunneling schemes. This suggests that the predicted topological states be reachable with the current experimental capability.
2D and 3D micro-XRF based on polycapillary optics at XLab Frascati
NASA Astrophysics Data System (ADS)
Polese, C.; Cappuccio, G.; Dabagov, S. B.; Hampai, D.; Liedl, A.; Pace, E.
2015-08-01
XRF imaging spectrometry is a powerful tool for materials characterization. A high spatial resolution is often required, in order to appreciate very tiny details of the studied object. With respect to simple pinholes, polycapillary optics allows much more intense fluxes to be achieved. This is fundamental to detect elements in trace and to strongly reduce the global acquisition time that is actually among the main reasons, in addition to radioprotection issues, affecting the competitiveness of XRF imaging with respect to other faster imaging techniques such as multispectral imaging. Unlike other well-known X-ray optics, principally employed for high brilliant radiation source such as synchrotron facilities, polyCO can be efficiently coupled also with conventional X-ray tubes. All these aspects make them the most suitable choice to realize portable, safe and high performing μXRF spectrometers. In this work preliminary results achieved with a novel 2D and 3D XRF facility, called Rainbow X-Ray (RXR), are reported, with particular attention to the spatial resolution achieved. RXR is based on the confocal arrangement of three polycapillary lenses, one focusing the primary beam and the other two capturing the fluorescence signal. The detection system is split in two couples of lens-detector in order to cover a wider energy range. The entire device is a laboratory user-friendly facility and, though it allows measurements on medium-size objects, its dimensions do not preclude it to be transported for in situ analysis on request, thanks also to a properly shielded cabinet.
In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing
NASA Astrophysics Data System (ADS)
Kuranov, Roman; Prough, Donald; Sapozhnikova, Veronika; Cicenaite, Inga; Esenaliev, Rinat
2005-11-01
Optical Coherence Tomography (OCT) was recently proposed by our group for noninvasive, continuous monitoring of blood glucose concentration in diabetics as well as in critically ill patients (both diabetic and nondiabetic). In our previous studies we tested OCT-based glucose sensing using one-dimensional (1-D) lateral scanning of the OCT probing beam over the tissue surface. The measured OCT signal was prone to motion artifacts and had high level of speckle noise. In this study we used two-dimensional (2-D) lateral scanning of the OCT probing beam and achieved 3.6-fold reduction of the speckle noise level. We also applied a post-processing Fourier filtration technique that resulted in an additional 2-2.5-fold suppression of noise. Our data indicate that the combination of acquisition time of 30-40s and the Fourier filtration technique may provide OCT monitoring of blood glucose concentration with a sensitivity of 1mM (18 mg/dL).
Experimental investigation on the high chip rate of 2D incoherent optical CDMA system
NASA Astrophysics Data System (ADS)
Su, Guorui; Wang, Rong; Pu, Tao; Fang, Tao; Zheng, Jilin; Zhu, Huatao; Wu, Weijiang
2015-08-01
An innovative approach to realise high chip rate in OCDMA transmission system is proposed and experimentally investigation, the high chip rate is achieved through a 2-D wavelength-hopping time-spreading en/decoder based on the supercontinuum light source. The source used in the experiment is generated by high nonlinear optical fiber (HNLF), Erbium-doped fiber amplifier (EDFA) which output power is 26 dBm, and distributed feed-back laser diode which works in the gain switch state. The span and the flatness of the light source are 20 nm and 3 dB, respectively, after equalization of wavelength selective switch (WSS). The wavelength-hopping time-spreading coder can be changed 20 nm in the wavelength and 400 ps in the time, is consist of WSS and delay lines. Therefore, the experimental results show that the chip rate can achieve 500 Gchip/s, in the case of 2.5 Gbit/s, while keeping a bit error rate below forward error correction limit after 40 km transmission.
Shao, Yonghong; Liu, Honghai; Qin, Wan; Qu, Junle; Peng, Xiang; Niu, Hanben
2013-01-01
We present an addressable, large-field second harmonic generation microscope by combining a 2D acousto-optical deflector with a spatial light modulator. The SLM shapes an incoming mode-locked, near-infrared Ti:Sapphire laser beam into a multifocus array, which can be rapidly scanned by changing the incident angle of the laser beam using a 2D acousto-optical deflector. Compared to the single-beam-scan technique, the multifocus array scan can increase the scanning rate and the field-of-view size with the multi-region imaging ability. PMID:24307756
Self-similar solitary waves in Bessel optical lattices
Xu Siliu; Liang Jianchu; Yi Lin
2010-01-15
An analytical solitary wave solution to the generalized nonlinear Schroedinger equation (NLSE) with varying coefficients in Bessel optical lattices is obtained based on the self-similar method. Our results indicate that a new family of Bessel (BSL) self-similar spatial solitons can be formed in the Kerr nonlinear media in the confined cylindrical symmetric geometry in sizes. These soliton profiles are rather stable, independent of propagation distance.
Quantum phase transition of condensed bosons in optical lattices
Liang Junjun; Liang, J.-Q.; Liu, W.-M.
2003-10-01
In this paper we study the superfluid-Mott-insulator phase transition of ultracold dilute gas of bosonic atoms in an optical lattice by means of Green function method and Bogliubov transformation as well. The superfluid-Mott-insulator phase transition condition is determined by the energy-band structure with an obvious interpretation of the transition mechanism. Moreover the superfluid phase is explained explicitly from the energy spectrum derived in terms of Bogliubov approach.
Tunneling Dynamics and Gauge Potentials in Optical Lattices
NASA Astrophysics Data System (ADS)
Dutta, S. K.; Teo, B. K.; Raithel, G.
1999-09-01
We study periodic well-to-well tunneling of 87Rb atoms on adiabatic potential surfaces of a 1D optical lattice. The observed dependence of the lowest-band tunneling period on the depth of the adiabatic potential can only be explained by an additional intensity-independent gauge potential predicted by Dum et al. The experimental data are in excellent agreement with our quantum Monte Carlo wave-function simulations and band structure calculations.
Dynamic response of trapped ultracold bosons on optical lattices
Batrouni, G.G.; Assaad, F.F.; Scalettar, R.T.; Denteneer, P.J.H.
2005-09-15
We study the dynamic response of ultracold bosons trapped in one-dimensional optical lattices using Quantum Monte Carlo simulations of the boson Hubbard model with a confining potential. The dynamic structure factor reveals the inhomogeneous nature of the low temperature state, which contains coexisting Mott insulator and superfluid regions. We present new evidence for local quantum criticality and discuss implications for the experimental excitation spectrum of {sup 87}Rb atoms confined in one dimension.
Quantum gases in optical lattices : the atomic Mott insulator
NASA Astrophysics Data System (ADS)
van Oosten, D.
2004-09-01
An optical lattice is a periodic potential for atoms, created using a standing wave pattern of light. Due to the interaction between the light and the atoms, the atoms are attracted to either the nodes or the anti-nodes of the standing wave, depending on the exact wave lenght of the light. This means that if such a lattice is loaded with a sufficiently high number of ultracold atoms, a periodic array of atoms is obtained, we an interatomic distance of a few tenths of a micrometer. In order to obtain such a high number of cold atoms, one first has to create a so-called Bose-Einstein condensate. When an optical lattice is loaded from a Bose-Einstein condensate, it is possible to create a system in which every atom is in the lowest band of the lattice and there is on average one atom in each lattice site. Because the lattice potential is created with laser light, the depth of the lattice can easily be tuned by changing the intensity of the laser. When the intensity of the laser light is low, the atoms can tunnel from one site to the next. Due to this tunneling, the gas of atoms in the lattice will remain superfluid. However, if the intensity of the laser light is increased to above a certain critical value, a quantum phase transition occurs to a so-called Mott insulator. In this state, the atoms can no longer tunnel due to the fact that the on-site interaction between atoms becomes more important then the tunneling probability. In this PhD thesis, a description is given of the experimental setup that is being constructed in our group to create these systems in our lab. Also, a theoretical description is given of these systems and several important quantities our derived, such as the gap of the Mott-insulating state. Furthermore, an experiment is proposed that can be used to accurately measure this gap.
Dynamics of Hubbard-Band Quasiparticles in Disordered Optical Lattices
NASA Astrophysics Data System (ADS)
Scarola, Vito; Demarco, Brian
Recent experiments use transport of degenerate Fermi gases in optical lattices (Kondov et al. Phys. Rev. Lett. 114, 083002 (2015) to probe the interplay of disorder and strong interactions. These experiments find evidence for an intriguing insulating phase where quantum diffusion is completely suppressed by strong disorder. Quantitative interpretation of these experiments remains an open problem that requires inclusion of non-zero entropy, strong interaction, and trapping in an Anderson-Hubbard model. We construct a theory of dynamics of Hubbard-band quasiparticles tailored to trapped optical lattice experiments. We compare the theory directly with center-of-mass transport experiments of Kondov et al. with no fitting parameters. The close agreement between theory and experiments shows that the suppression of transport is only partly due to finite entropy effects. We argue that the complete suppression of transport is consistent with short-time, finite size precursors of Anderson localization of Hubbard-band quasiparticles. The combination of our theoretical framework and optical lattice experiments offers an important platform for studying localization in isolated many-body quantum systems. V.W.S. acknowledges support from AFOSR under Grant FA9550-11-1-0313.
Cold Atomic Gases in Optical Lattices with Disorder
NASA Astrophysics Data System (ADS)
Schulte, T.; Drenkelforth, S.; Kruse, J.; Ertmer, W.; Arlt, J. J.; Kantian, A.; Santos, L. Sanchez-Palencia L.; Sanpera, A.; Sacha, K.; Zoller, P.; Lewenstein, M.; Zakrzewski, J.
2007-01-01
Cold atomic gases placed in optical lattices enable studies of simple condensed matter theory models with parameters that may be tuned relatively easily. When the optical potential is randomized (e.g. using laser speckle to create a random intensity distribution) one may be able to observe Anderson localization of matter waves for non-interacting bosons, the so-called Bose glass in the presence of interactions, as well as the Fermi glass or quantum spin glass for mixtures of fermions and bosons.
Non-equilibrium dynamics of ultracold atoms in optical lattices
NASA Astrophysics Data System (ADS)
Chen, David
This thesis describes experiments focused on investigating out-of-equilibrium phenomena in the Bose-Hubbard Model and exploring novel cooling techniques for ultracold gases in optical lattices. In the first experiment, we study quenches across the Mott-insulator-to-superfluid quantum phase transition in the 3D Bose-Hubbard Model. The quench is accomplished by continuously tuning the ratio of the Hubbard energies. We observe that the degree of excitation is proportional to the fraction of atoms that cross the phase boundary, and that the amount of excitations and energy produced during the quench have a power-law dependence on the quench rate. These phenomena suggest an excitation process analogous to the mechanism for defect generation in non-equilibrium classical phase transitions. This experiment constitutes the first observation of the Kibble-Zurek mechanism in a quantum quench. We have reported our findings in Ref. [1]. In a second experiment, published in Ref. [2], we investigate dissipation as a method for cooling a strongly interacting gas. We introduce dissipation via a bosonic reservoir to a strongly interacting bosonic gas in the Mott-insulator regime of a 3D spin-dependent optical lattice. The lattice atoms are excited to a higher energy band using laser-induced Bragg transitions. A weakly interacting superfluid comprised of atoms in a state that does not experience the lattice potential acts as a dissipative bath that interacts with the lattice atoms through collisions. We measure the resulting bath-induced decay using the atomic quasimomentum distribution, and we compare the decay rate with predictions from a weakly interacting model with no free parameters. A competing intrinsic decay mechanism arising from collisions between lattice atoms is also investigated. The presence of intrinsic decay can not be accommodated within a non-interacting framework and signals that strong interactions may play a central role in the lattice-atom dynamics. The
Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock
NASA Astrophysics Data System (ADS)
Lodewyck, Jérôme; Bilicki, Sławomir; Bookjans, Eva; Robyr, Jean-Luc; Shi, Chunyan; Vallet, Grégoire; Le Targat, Rodolphe; Nicolodi, Daniele; Le Coq, Yann; Guéna, Jocelyne; Abgrall, Michel; Rosenbusch, Peter; Bize, Sébastien
2016-08-01
Optical lattice clocks are at the forefront of frequency metrology. Both the instability and systematic uncertainty of these clocks have been reported to be two orders of magnitude smaller than the best microwave clocks. For this reason, a redefinition of the SI second based on optical clocks seems possible in the near future. However, the operation of optical lattice clocks has not yet reached the reliability that microwave clocks have achieved so far. In this paper, we report on the operation of a strontium optical lattice clock that spans several weeks, with more than 80% uptime. We make use of this long integration time to demonstrate a reproducible measurement of frequency ratios between the strontium clock transition and microwave Cs primary and Rb secondary frequency standards.
A Mott insulator of fermionic atoms in an optical lattice
NASA Astrophysics Data System (ADS)
Moritz, Henning
2009-03-01
In a solid material strong interactions between the electrons can lead to surprising properties. A prime example is the Mott insulator, where the suppression of conductivity is a result of interactions and not the consequence of a filled Bloch band. The proximity to the Mott insulating phase in fermionic systems is the origin for many intriguing phenomena in condensed matter physics, most notably high-temperature superconductivity. Compared to real materials, a fermionic quantum gas trapped in an optical lattice offers a very pure realisation of the Hubbard model, giving a new approach to understand the physics of strongly correlated systems. We report on the formation of a Mott insulator of a repulsively interacting two-component Fermi gas in an optical lattice. It is signalled by three features: a drastic suppression of doubly occupied lattice sites, a strong reduction of the compressibility inferred from the response of double occupancy to atom number increase, and the appearance of a gapped mode in the excitation spectrum. In collaboration with Robert J"ordens, Niels Strohmaier, and Daniel Greif, ETH Zurich; Kenneth G"unter, ETH Zurich, ENS Paris; Leticia Tarruell and Tilman Esslinger, ETH Zurich.
Probing many-body interactions in an optical lattice clock
Rey, A.M.; Gorshkov, A.V.; Kraus, C.V.; Martin, M.J.; Bishof, M.; Swallows, M.D.; Zhang, X.; Benko, C.; Ye, J.; Lemke, N.D.; Ludlow, A.D.
2014-01-15
We present a unifying theoretical framework that describes recently observed many-body effects during the interrogation of an optical lattice clock operated with thousands of fermionic alkaline earth atoms. The framework is based on a many-body master equation that accounts for the interplay between elastic and inelastic p-wave and s-wave interactions, finite temperature effects and excitation inhomogeneity during the quantum dynamics of the interrogated atoms. Solutions of the master equation in different parameter regimes are presented and compared. It is shown that a general solution can be obtained by using the so called Truncated Wigner Approximation which is applied in our case in the context of an open quantum system. We use the developed framework to model the density shift and decay of the fringes observed during Ramsey spectroscopy in the JILA {sup 87}Sr and NIST {sup 171}Yb optical lattice clocks. The developed framework opens a suitable path for dealing with a variety of strongly-correlated and driven open-quantum spin systems. -- Highlights: •Derived a theoretical framework that describes many-body effects in a lattice clock. •Validated the analysis with recent experimental measurements. •Demonstrated the importance of beyond mean field corrections in the dynamics.
Deviations from Boltzmann-Gibbs Statistics in Confined Optical Lattices.
Dechant, Andreas; Kessler, David A; Barkai, Eli
2015-10-23
We investigate the semiclassical phase-space probability distribution P(x,p) of cold atoms in a Sisyphus cooling lattice with an additional harmonic confinement. We pose the question of whether this nonequilibrium steady state satisfies the equivalence of energy and probability. This equivalence is the foundation of Boltzmann-Gibbs and generalized thermostatic statistics, and a prerequisite for the description in terms of a temperature. At large energies, P(x,p) depends only on the Hamiltonian H(x,p) and the answer to the question is yes. In distinction to the Boltzmann-Gibbs state, the large-energy tails are power laws P(x,p)∝H(x,p)(-1/D), where D is related to the depth of the optical lattice. At intermediate energies, however, P(x,p) cannot be expressed as a function of the Hamiltonian and the equivalence between energy and probability breaks down. As a consequence the average potential and kinetic energy differ and no well-defined temperature can be assigned. The Boltzmann-Gibbs state is regained only in the limit of deep optical lattices. For strong confinement relative to the damping, we derive an explicit expression for the stationary phase-space distribution. PMID:26551114
Intrinsic Localized Modes in Optical Photonic Lattices and Arrays
NASA Astrophysics Data System (ADS)
Christodoulides, Demetrios
Discretizing light behavior requires optical elements that can confine optical energy at distinct sites. One possible scenario in implementing such arrangements is to store energy within low loss high Q-microcavities and then allow photon exchange between such components in time. This scheme requires high-contrast dielectric elements that became available with the advent of photonic crystal technologies. Another possible avenue where such light discretization can be directly observed and studied is that based on evanescently coupled waveguide arrays. As indicated in several studies, discrete systems open up whole new directions in terms of modifying light transport properties. One such example is that of discrete solitons. By nature, discrete solitons represent self-trapped wavepackets in nonlinear periodic structures and result from the interplay between lattice diffraction (or dispersion) and material nonlinearity. In optics, this class of self-localized states has been successfully observed in both one- and two-dimensional nonlinear waveguide arrays. In recent years such photonic lattices have been implemented or induced in a variety of material systems, including those with cubic (Kerr), quadratic, photorefractive, and liquid-crystal nonlinearities. In all cases the underlying periodicity or discreteness can lead to new families of optical solitons that have no counterpart whatsoever in continuous systems. Interestingly, these results paved the way for observations in other physical systems obeying similar evolution equations like Bose-Einstein condensates. New developments in laser writing ultrashort femtosecond laser pulses, now allow the realization of all-optical switching networks in fully 3D environments using nonlinear discrete optics. Using this approach all-optical routing can be achieved using blocking operations. The spatio-temporal evolution of optical pulses in both normally and anomalously dispersive arrays can lead to novel schemes for mode
Bose-Einstein Condensates in Optical Lattices: Experiments
NASA Astrophysics Data System (ADS)
Morsch, O.
In the early days of laser cooling, which together with magnetic trapping techniques led to the first observation of BEC in 1995, it was realized that the optical interference between the cooling beams could lead to a spatially periodic density modulation of the trapped atoms. This notion of a "three-dimensional egg-carton" for cold atoms quickly led to a number of experiments confirming the existence of such a light-bound crystal and exploring its properties [1-3]. It was found that, indeed, cold atoms could be trapped in such periodic structures, and it was possible to measure, for example, the quantized motion of the atoms inside the potential wells. While early experiments were carried out in the dissipative regime using near-resonant lattices in which the atoms were continuously cooled through the Sisyphus mechanism involving light scattering [4], more sophisticated experimental techniques later enabled studies on far-detuned lattices in which atoms evolved coherently.
Pair tunneling of bosonic atoms in an optical lattice
Zhou Xiangfa; Zhang Yongsheng; Guo Guangcan
2009-07-15
We show that atom-molecule coupling with large detuning can cause effective hopping of pairs of bosonic atoms in a state-dependent optical lattice. Taking advantage of the high controllability of all relevant parameters in such systems, we discuss the pair-superfluid (PSF) to Mott insulator (MI) transition using the effective model within mean-field theory. In the presence of on-site disorder, simultaneous tunneling of bosonic atoms can result in a compressible weak Mott insulating phase. We have also investigated the coexistence of superfluid (SF) and PSF in the lattice, and found that the competition between the two hopping mechanisms can cause a first-order PSF(SF)-MI transition.
Spin Gradient Thermometry for Ultracold Atoms in Optical Lattices
Weld, David M.; Medley, Patrick; Miyake, Hirokazu; Hucul, David; Pritchard, David E.; Ketterle, Wolfgang
2009-12-11
We demonstrate spin gradient thermometry, a new general method of measuring the temperature of ultracold atoms in optical lattices. We realize a mixture of spins separated by a magnetic field gradient. Measurement of the width of the transition layer between the two spin domains serves as a new method of thermometry which is observed to work over a broad range of lattice depths and temperatures, including in the Mott insulator regime. We demonstrate the thermometry using ultracold rubidium atoms, and suggest that interesting spin physics can be realized in this system. The lowest measured temperature is 1 nK, indicating that the system has reached the quantum regime, where insulating shells are separated by superfluid layers.
Spin gradient thermometry for ultracold atoms in optical lattices.
Weld, David M; Medley, Patrick; Miyake, Hirokazu; Hucul, David; Pritchard, David E; Ketterle, Wolfgang
2009-12-11
We demonstrate spin gradient thermometry, a new general method of measuring the temperature of ultracold atoms in optical lattices. We realize a mixture of spins separated by a magnetic field gradient. Measurement of the width of the transition layer between the two spin domains serves as a new method of thermometry which is observed to work over a broad range of lattice depths and temperatures, including in the Mott insulator regime. We demonstrate the thermometry using ultracold rubidium atoms, and suggest that interesting spin physics can be realized in this system. The lowest measured temperature is 1 nK, indicating that the system has reached the quantum regime, where insulating shells are separated by superfluid layers. PMID:20366208
Birefringent breakup of Dirac fermions on a square optical lattice
Kennett, Malcolm P.; Komeilizadeh, Nazanin; Kaveh, Kamran; Smith, Peter M.
2011-05-15
We introduce a lattice model for fermions in a spatially periodic magnetic field that also has spatially periodic hopping amplitudes. We discuss how this model might be realized with cold atoms in an artificial magnetic field on a square optical lattice. When there is an average flux of half a flux quantum per plaquette, the spectrum of low-energy excitations can be described by massless Dirac fermions in which the usually doubly degenerate Dirac cones split into cones with different ''speeds of light.'' These gapless birefringent Dirac fermions arise because of broken chiral symmetry in the kinetic energy term of the effective low-energy Hamiltonian. We characterize the effects of various perturbations to the low-energy spectrum, including staggered potentials, interactions, and domain-wall topological defects.
Synthetic Spin-Orbit Coupling in an Optical Lattice Clock.
Wall, Michael L; Koller, Andrew P; Li, Shuming; Zhang, Xibo; Cooper, Nigel R; Ye, Jun; Rey, Ana Maria
2016-01-22
We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s-wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p- and s-wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures. PMID:26849600
Tunneling, diffusion, and dissociation of Feshbach molecules in optical lattices
NASA Astrophysics Data System (ADS)
Bailey, Taylor; Bertulani, Carlos A.; Timmermans, Eddy
2012-03-01
The quantum dynamics of an ultracold diatomic molecule tunneling and diffusing in a one-dimensional optical lattice exhibits unusual features. While it is known that the process of quantum tunneling through potential barriers can break up a bound-state molecule into a pair of dissociated atoms, interference and reassociation produce intricate patterns in the time-evolving site-dependent probability distribution for finding atoms and bound-state molecules. We find that the bound-state molecule is unusually resilient against break up at ultralow binding energy Eb (Eb much smaller than the barrier height of the lattice potential). After an initial transient, the bound-state molecule spreads with a width that grows as the square root of time. Surprisingly, the width of the probability of finding dissociated atoms does not increase with time as a power law.
Optical lattice clock with atoms confined in a shallow trap
Lemonde, Pierre; Wolf, Peter
2005-09-15
We study the trap depth requirement for the realization of an optical clock using atoms confined in a lattice. We show that site-to-site tunneling leads to a residual sensitivity to the atom dynamics hence requiring large depths [(50-100)E{sub r} for Sr] to avoid any frequency shift or line broadening of the atomic transition at the 10{sup -17}-10{sup -18} level. Such large depths and the corresponding laser power may, however, lead to difficulties (e.g., higher-order light shifts, two-photon ionization, technical difficulties) and therefore one would like to operate the clock in much shallower traps. To circumvent this problem we propose the use of an accelerated lattice. Acceleration lifts the degeneracy between adjacents potential wells which strongly inhibits tunneling. We show that using the Earth's gravity, much shallower traps (down to 5E{sub r} for Sr) can be used for the same accuracy goal.
Synthetic Spin-Orbit Coupling in an Optical Lattice Clock
NASA Astrophysics Data System (ADS)
Wall, Michael L.; Koller, Andrew P.; Li, Shuming; Zhang, Xibo; Cooper, Nigel R.; Ye, Jun; Rey, Ana Maria
2016-01-01
We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s -wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p - and s -wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures.
Dynamical properties of ultracold bosons in an optical lattice
Huber, S. D.; Blatter, G.; Altman, E.; Buechler, H. P.
2007-02-15
We study the excitation spectrum of strongly correlated lattice bosons for the Mott-insulating phase and for the superfluid phase close to localization. Within a Schwinger-boson mean-field approach we find two gapped modes in the Mott insulator and the combination of a sound mode (Goldstone) and a gapped (Higgs) mode in the superfluid. To make our findings comparable with experimental results, we calculate the dynamic structure factor as well as the linear response to the optical lattice modulation introduced by Stoeferle et al. [Phys. Rev. Lett. 92, 130403 (2004)]. We find that the puzzling finite frequency absorption observed in the superfluid phase could be explained via the excitation of the gapped (Higgs) mode. We check the consistency of our results with an adapted f-sum rule and propose an extension of the experimental technique by Stoeferle et al. to further verify our findings.
Zeptonewton force sensing with nanospheres in an optical lattice
NASA Astrophysics Data System (ADS)
Ranjit, Gambhir; Cunningham, Mark; Casey, Kirsten; Geraci, Andrew A.
2016-05-01
Optically trapped nanospheres in high vacuum experience little friction and hence are promising for ultrasensitive force detection. Here we demonstrate measurement times exceeding 105 s and zeptonewton force sensitivity with laser-cooled silica nanospheres trapped in an optical lattice. The sensitivity achieved exceeds that of conventional room-temperature solid-state force sensors by over an order of magnitude, and enables a variety of applications including electric-field sensing, inertial sensing, and gravimetry. The particle is confined at the antinodes of the optical standing wave, and by studying the motion of a particle which has been moved to an adjacent trapping site, the known spacing of the antinodes can be used to calibrate the displacement spectrum of the particle. Finally, we study the dependence of the trap stability and lifetime on the laser intensity and gas pressure, and examine the heating rate of the particle in vacuum without feedback cooling.
Development of 171Yb optical lattice clock at KRISS
NASA Astrophysics Data System (ADS)
Mun, Jongchul; Park, Chang Yong; Yu, Dai-Hyuk; Lee, Won-Kyu; Eon Park, Sang; Kwon, Taeg Yong; Lee, Sang-Bum
2012-06-01
We measured the absolute frequency of the optical clock transition 1S0 (F = 1/2) - 3P0 (F = 1/2) of 171Yb atoms confined in a one-dimensional optical lattice and it was determined to be 518 295 836 590 865.7 (9.2) Hz. The measured frequency was calibrated to the Coordinated Universal Time (UTC) by using an optical frequency comb of which frequency was phase-locked to a hydrogen maser as a flywheel oscillator traceable to the UTC. The magic wavelength was also measured as 394 798.48 (79) GHz. The results are in good agreement with two previous measurements of other institutes within the specified uncertainty of this work.
Lanty, Gaëtan; Jemli, Khaoula; Wei, Yi; Leymarie, Joël; Even, Jacky; Lauret, Jean-Sébastien; Deleporte, Emmanuelle
2014-11-20
We focus here our attention on a particular family of 2D-layered and 3D hybrid perovskite molecular crystals, the mixed perovskites (C6H5-C2H4-NH3)2PbZ4(1-x)Y4x and (CH3-NH3)PbZ3(1-x)Y3x, where Z and Y are halogen ions such as I, Br, and Cl. Studying experimentally the disorder-induced effects on the optical properties of the 2D mixed layered materials, we demonstrate that they can be considered as pseudobinary alloys, exactly like Ga1-xAlxAs, Cd1-xHgxTe inorganic semiconductors, or previously reported 3D mixed hybrid perovskite compounds. 2D-layered and 3D hybrid perovskites afford similar continuous optical tunability at room temperature. Our theoretical analysis allows one to describe the influence of alloying on the excitonic properties of 2D-layered perovskite molecular crystals. This model is further refined by considering different Bohr radii for pure compounds. This study confirms that despite a large binding energy of several 100 meV, the 2D excitons present a Wannier character rather than a Frenkel character. The small inhomogeneous broadening previously reported in 3D hybrid compounds at low temperature is similarly consistent with the Wannier character of free excitons. PMID:26276477
Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices.
Zohar, Erez; Cirac, J Ignacio; Reznik, Benni
2016-01-01
Can high-energy physics be simulated by low-energy, non-relativistic, many-body systems such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure an atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective low-energy symmetry, or as an exact symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to a new type of (table-top) experiments which will be used to study various QCD (quantum chromodynamics) phenomena, such as the confinement of dynamical quarks, phase transitions and other effects, which are inaccessible using the currently known computational methods. In this report, we review the Hamiltonian formulation of lattice gauge theories, and then describe our recent progress in constructing the quantum simulation of Abelian and non-Abelian lattice gauge theories in 1 + 1 and 2 + 1 dimensions using ultracold atoms in optical lattices. PMID:26684222
Towards a lattice based neutral magnesium optical frequency standard
NASA Astrophysics Data System (ADS)
Kelkar, Hrishikesh; Riedmann, Matthias; Wuebbena, Temmo; Kulosa, Andre; Friebe, Jan; Pape, Andre; Amairi, Sana; Malobabic, Sina; Zipfel, Klaus; Ruehmann, Steffen; -Maria Rasel, Ernst; Ertmer, Wolfgang
2010-03-01
Magnesium is a promising candidate for a high performance neutral atom optical frequency standard. It offers a low sensitivity to frequency shifts of the ^1S0-^3P0 clock transition by room temperature blackbody radiation and has several isotopes of suitable abundance (two bosonic, one fermionic) to realize an optical clock. We report on recent progress towards creating a lattice clock of magnesium. ^24Mg atoms are pre-cooled in two stages. The singlet Magneto Optical Trap (MOT) captures and cools atoms from an atomic beam which are then loaded into a triplet MOT. The triplet MOT has a decay channel to the dark ^3P0 state which is used to load atoms into a 1064 nm dipole trap. The cooling stages are on simultaneously and atoms are continuously loaded in the dipole trap. We capture upto 9 10^4 atoms at a temperature below 100 μK. We are exploring different avenues for further cooling which will enable reaching the Lamb-Dicke regime in a magic wavelength lattice.
Intrinsic photoconductivity of ultracold fermions in optical lattices.
Heinze, J; Krauser, J S; Fläschner, N; Hundt, B; Götze, S; Itin, A P; Mathey, L; Sengstock, K; Becker, C
2013-02-22
We report on the experimental observation of an analog to a persistent alternating photocurrent in an ultracold gas of fermionic atoms in an optical lattice. The dynamics is induced and sustained by an external harmonic confinement. While particles in the excited band exhibit long-lived oscillations with a momentum-dependent frequency, a strikingly different behavior is observed for holes in the lowest band. An initial fast collapse is followed by subsequent periodic revivals. Both observations are fully explained by mapping the system onto a nonlinear pendulum. PMID:23473159
Floquet engineering with quasienergy bands of periodically driven optical lattices
NASA Astrophysics Data System (ADS)
Holthaus, Martin
2016-01-01
A primer on the Floquet theory of periodically time-dependent quantum systems is provided, and it is shown how to apply this framework for computing the quasienergy band structure governing the dynamics of ultracold atoms in driven optical cosine lattices. Such systems are viewed here as spatially and temporally periodic structures living in an extended Hilbert space, giving rise to spatio-temporal Bloch waves whose dispersion relations can be manipulated at will by exploiting ac-Stark shifts and multiphoton resonances. The elements required for numerical calculations are introduced in a tutorial manner, and some example calculations are discussed in detail, thereby illustrating future prospects of Floquet engineering.
Topological quantum matter with ultracold gases in optical lattices
NASA Astrophysics Data System (ADS)
Goldman, N.; Budich, J. C.; Zoller, P.
2016-07-01
Since the discovery of topological insulators, many topological phases have been predicted and realized in a range of different systems, providing both fascinating physics and exciting opportunities for devices. And although new materials are being developed and explored all the time, the prospects for probing exotic topological phases would be greatly enhanced if they could be realized in systems that were easily tuned. The flexibility offered by ultracold atoms could provide such a platform. Here, we review the tools available for creating topological states using ultracold atoms in optical lattices, give an overview of the theoretical and experimental advances and provide an outlook towards realizing strongly correlated topological phases.
Strongly correlated Fermi Bose mixtures in disordered optical lattices
NASA Astrophysics Data System (ADS)
Sanchez-Palencia, L.; Ahufinger, V.; Kantian, A.; Zakrzewski, J.; Sanpera, A.; Lewenstein, M.
2006-05-01
We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes.
Bosonic Integer Quantum Hall Effect in Optical Flux Lattices
NASA Astrophysics Data System (ADS)
Sterdyniak, A.; Cooper, Nigel R.; Regnault, N.
2015-09-01
In two dimensions strongly interacting bosons in a magnetic field can realize a bosonic integer quantum Hall state, the simplest two-dimensional example of a symmetry-protected topological phase. We propose a realistic implementation of this phase using an optical flux lattice. Through exact diagonalization calculations, we show that the system exhibits a clear bulk gap and the topological signature of the bosonic integer quantum Hall state. In particular, the calculation of the many-body Chern number leads to a quantized Hall conductance in agreement with the analytical predictions. We also study the stability of the phase with respect to some of the experimentally relevant parameters.
Vortex configurations of bosons in an optical lattice
Wu Congjun; Zhang Shoucheng; Chen Handong; Hu Jiangpiang
2004-04-01
The single-vortex problem in a strongly correlated bosonic system is investigated self-consistently within the mean-field theory of the Bose-Hubbard model. Near the superfluid-Mott-insulator transition, the vortex core has a tendency toward the Mott-insulating phase, with the core particle density approaching the nearest commensurate value. If the nearest-neighbor repulsion exists, the charge-density wave order may develop locally in the core. The evolution of the vortex configuration from the strong- to weak-coupling regions is studied. This phenomenon can be observed in systems of rotating ultracold atoms in optical lattices and Josephson-junction arrays.
Topologically induced avoided band crossing in an optical checkerboard lattice.
Olschläger, Matthias; Wirth, Georg; Kock, Thorge; Hemmerich, Andreas
2012-02-17
We report on the condensation of bosons in the 4th band of an optical checkerboard lattice providing a topologically induced avoided band crossing involving the 2nd, 3rd, and 4th Bloch bands. When the condensate is slowly tuned through the avoided crossing, accelerated band relaxation arises and the zero momentum approximately C4-invariant condensate wave function acquires finite momentum order and reduced C2 symmetry. For faster tuning Landau-Zener oscillations between different superfluid orders arise, which are used to characterize the avoided crossing. PMID:22401220
Wilson Fermions and Axion Electrodynamics in Optical Lattices
Bermudez, A.; Martin-Delgado, M. A.; Mazza, L.; Rizzi, M.; Goldman, N.; Lewenstein, M.
2010-11-05
We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.
Defect-mediated discrete solitons in optically induced photorefractive lattices
Li Yongyao; Pang Wei; Chen Yongzhu; Yu Zhiqiang; Zhou Jianying; Zhang Huarong
2009-10-15
Theoretical analysis to the defect mediated discrete solitons in one- and two-dimensional periodical waveguide lattices is presented. The waveguide arrays with these functional defects are assumed to respond to the light field as an optically induced photorefraction and they are patterned by a holographic technique. It is found that the spatial energy distributions of the solitary waves can be controlled by the defects in the waveguide arrays, and this gives rise to an additional freedom to externally shaping the light field distribution to a special shape.
The Strontium Optical Lattice Clock: Optical Spectroscopy with Sub-Hertz Accuracy
NASA Astrophysics Data System (ADS)
Ludlow, Andrew
2009-05-01
Atomic clocks find significant roles in a number of scientific and technological settings. One interesting approach to a next-generation clock based on an optical transition uses atomic strontium confined in an optical lattice. The tight atomic confinement eliminates motional effects which otherwise trouble the atomic interrogation. At the same time, the optical lattice is equally perturbs the two electronic clock states so that the confinement introduces a net zero shift of the natural transition frequency. Here I describe the design and realization of an optical frequency standard using ^87Sr confined in a 1-D optical lattice. With an ultra-stable laser light source, atomic spectral linewidths of the optical clock transition are observed below 2 Hz. High accuracy spectroscopy of the clock transition is carried out utilizing a frequency comb referenced to the NIST-F1 Cs fountain. To explore the performance of an improved, spin-polarized Sr standard, a coherent optical phase transfer link is established between JILA and NIST. This enables remote comparison of the Sr standard against optical standards at NIST. The high frequency stability of a Sr-Ca comparison (3x10-16 at 200 s) is used to make measurements of Sr transition frequency shifts at the fractional frequency level below 10-16. These systematic shifts are discussed in detail, resulting in a total uncertainty of the Sr clock frequency at 1.5x10-16, the smallest for a neutral atom system.
NASA Astrophysics Data System (ADS)
Yang, PeiPei; Wen, Zhi; Dou, RuiFeng; Liu, Xunliang
2016-08-01
Flow and heat transfer through a 2D random porous medium are studied by using the lattice Boltzmann method (LBM). For the random porous medium, the influence of disordered cylinder arrangement on permeability and Nusselt number are investigated. Results indicate that the permeability and Nusselt number for different cylinder locations are unequal even with the same number and size of cylinders. New correlations for the permeability and coefficient b‧Den of the Forchheimer equation are proposed for random porous medium composed of Gaussian distributed circular cylinders. Furthermore, a general set of heat transfer correlations is proposed and compared with existing experimental data and empirical correlations. Our results show that the Nu number increases with the increase of the porosity, hence heat transfer is found to be accurate considering the effect of porosity.
Optical Lattice Induced Light Shifts in an Yb Atomic Clock
Barber, Z. W.; Stalnaker, J. E.; Lemke, N. D.; Poli, N.; Oates, C. W.; Fortier, T. M.; Diddams, S. A.; Hollberg, L.; Hoyt, C. W.; Taichenachev, A. V.; Yudin, V. I.
2008-03-14
We present an experimental study of the lattice-induced light shifts on the {sup 1}S{sub 0}{yields}{sup 3}P{sub 0} optical clock transition ({nu}{sub clock}{approx_equal}518 THz) in neutral ytterbium. The 'magic' frequency {nu}{sub magic} for the {sup 174}Yb isotope was determined to be 394 799 475(35) MHz, which leads to a first order light shift uncertainty of 0.38 Hz. We also investigated the hyperpolarizability shifts due to the nearby 6s6p{sup 3}P{sub 0}{yields}6s8p{sup 3}P{sub 0}, 6s8p{sup 3}P{sub 2}, and 6s5f{sup 3}F{sub 2} two-photon resonances at 759.708, 754.23, and 764.95 nm, respectively. By measuring the corresponding clock transition shifts near these two-photon resonances, the hyperpolarizability shift was estimated to be 170(33) mHz for a linear polarized, 50 {mu}K deep, lattice at the magic wavelength. These results indicate that the differential polarizability and hyperpolarizability frequency shift uncertainties in a Yb lattice clock could be held to well below 10{sup -17}.
Ma, Xiaonan; Dostál, Jakub; Brixner, Tobias
2016-09-01
We demonstrate noncollinear coherent two-dimensional (2D) electronic spectroscopy for which broadband pulses are generated in an argon-filled hollow-core fiber pumped by a 1-kHz Ti:Sapphire laser. Compression is achieved to 7 fs duration (TG-FROG) using dispersive mirrors. The hollow fiber provides a clean spatial profile and smooth spectral shape in the 500-700 nm region. The diffractive-optic-based design of the 2D spectrometer avoids directional filtering distortions and temporal broadening from time smearing. For demonstration we record data of cresyl-violet perchlorate in ethanol and use phasing to obtain broadband absorptive 2D spectra. The resulting quantum beating as a function of population time is consistent with literature data. PMID:27607681
Lapchuk, A; Pashkevich, G A; Prygun, O V; Yurlov, V; Borodin, Y; Kryuchyn, A; Korchovyi, A A; Shylo, S
2015-10-01
The quasi-spiral 2D diffractive optical element (DOE) based on M-sequence of length N=15 is designed and manufactured. The speckle suppression efficiency by the DOE rotation is measured. The speckle suppression coefficients of 10.5, 6, and 4 are obtained for green, violet, and red laser beams, respectively. The results of numerical simulation and experimental data show that the quasi-spiral binary DOE structure can be as effective in speckle reduction as a periodic 2D DOE structure. The numerical simulation and experimental results show that the speckle suppression efficiency of the 2D DOE structure decreases approximately twice at the boundaries of the visible range. It is shown that a replacement of this structure with the bilateral 1D DOE allows obtaining the maximum speckle suppression efficiency in the entire visible range of light. PMID:26479664
Characters of basic steady state solutions for superfluid Fermi gas in Bessel optical lattices
NASA Astrophysics Data System (ADS)
Zhang, Ke-Zhi; Chen, Yan; He, Yong-Lin; Liu, Zheng-Lai
2015-08-01
We consider a dynamical model for superfluid Fermi gas, trapped in the central well of an axially symmetric Bessel optical lattice potential. The equation includes nonlinear power-law form of the chemical potential μ(n) = C|ψ|2γ, for γ = 2 3, which accounts for Fermi pressure. Reducing the equation to two-dimensional (2D) form, we obtain the basic steady state solutions of the system along the Bose-Einstein condensation (BEC) side to Bardeen-Cooper-Schrieffer (BCS) side by employing the energy balance condition, which are guided by the variational approximation. It is found that the strength ɛ and the radial scale r of the Bessel optical lattice have an extreme effect on the characters of basic steady state solution. Analytically, we deduce the atomic density distribution, the average atom number and the average energy of basic steady state, where the atom distribution of the system presents on periodic change with r, and increases faster at unitarity than in the BEC limit. Furthermore, because of the Fermi pressure, the atomic density distribution at the unitarity is more extensive than that in the BEC limit. In particular, there exist very interesting changes, the average energy intends to collapse state with r, however it emerges as a stable state with varying L both in the BEC limit and at unitarity.
Ballistic expansion of interacting fermions in one-dimensional optical lattices
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, Fabian; Langer, Stephan; Schuetz, Martin J. A.; McCulloch, Ian; Schollwoeck, Ulrich
2012-02-01
In most quantum quenches, no net particle currents arise. Access to studying transport properties can be gained by letting a two-component Fermi gas that is originally confined by the presence of a trapping potential expand into an empty optical lattice. In recent experiments, this situation was addressed in 2D and 3D optical lattices [1]. We focus on the 1D case in which an exact numerical simulation of the time-evolution is possible by means of the DMRG method. Concretely, we study the expansion in the 1D Hubbard model with repulsive interactions, driven by quenching the trapping potential to zero, and we concentrate on the most direct experimental observable, namely density profiles [2]. In the strict 1D case, we identify conditions for which the expansion is ballistic, characterized by an increase of the cloud's radius that is linear in time. This behavior is found whenever initial densities are smaller or equal to one, both for the expansion from box and harmonic traps. We make quantitative predictions for the expansion velocity as a function of onsite repulsion and initial density that can be probed in experiments. [4pt] [1] Schneider et al., arXiv:1005.3545[0pt] [2] Langer et al., arXiv:1109.4364
Observation of optical solitons in PT-symmetric lattices
Wimmer, Martin; Regensburger, Alois; Miri, Mohammad-Ali; Bersch, Christoph; Christodoulides, Demetrios N.; Peschel, Ulf
2015-01-01
Controlling light transport in nonlinear active environments is a topic of considerable interest in the field of optics. In such complex arrangements, of particular importance is to devise strategies to subdue chaotic behaviour even in the presence of gain/loss and nonlinearity, which often assume adversarial roles. Quite recently, notions of parity-time (PT) symmetry have been suggested in photonic settings as a means to enforce stable energy flow in platforms that simultaneously employ both amplification and attenuation. Here we report the experimental observation of optical solitons in PT-symmetric lattices. Unlike other non-conservative nonlinear arrangements where self-trapped states appear as fixed points in the parameter space of the governing equations, discrete PT solitons form a continuous parametric family of solutions. The possibility of synthesizing PT-symmetric saturable absorbers, where a nonlinear wave finds a lossless path through an otherwise absorptive system is also demonstrated. PMID:26215165
Accurate Optical Lattice Clock with {sup 87}Sr Atoms
Le Targat, Rodolphe; Baillard, Xavier; Fouche, Mathilde; Brusch, Anders; Tcherbakoff, Olivier; Rovera, Giovanni D.; Lemonde, Pierre
2006-09-29
We report a frequency measurement of the {sup 1}S{sub 0}-{sup 3}P{sub 0} transition of {sup 87}Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879(5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. The two previous measurements of this transition were found to disagree by about 2x10{sup -13}, i.e., almost 4 times the combined error bar and 4 to 5 orders of magnitude larger than the claimed ultimate accuracy of this new type of clocks. Our measurement is in agreement with one of these two values and essentially resolves this discrepancy.
Subwavelength optical lattices induced by position-dependent dark states
Sun Qingqing; Evers, Joerg; Kiffner, Martin; Zubairy, M. Suhail
2011-05-15
A method for the generation of subwavelength optical lattices based on multilevel dark states is proposed. The dark state is formed by a suitable combination of standing wave light fields, leading to position-dependent populations of the ground states. An additional field coupling dispersively to one of the ground states translates this position dependence into a subwavelength optical potential. We provide two semiclassical approaches to understand the involved physics, and demonstrate that they lead to identical results in a certain meaningful limit. Then we apply a Monte Carlo simulation technique to study the full quantum dynamics of the subwavelength trapping. Finally, we discuss the relevant time scales for the trapping, optimum conditions, and possible implementations.
Generation and detection of atomic spin entanglement in optical lattices
NASA Astrophysics Data System (ADS)
Dai, Han-Ning; Yang, Bing; Reingruber, Andreas; Xu, Xiao-Fan; Jiang, Xiao; Chen, Yu-Ao; Yuan, Zhen-Sheng; Pan, Jian-Wei
2016-08-01
Ultracold atoms in optical lattices hold promise for the creation of entangled states for quantum technologies. Here we report on the generation, manipulation and detection of atomic spin entanglement in an optical superlattice. Using a spin-dependent superlattice, atomic spins in the left or right sites can be individually addressed and coherently manipulated with near-unity fidelities by microwave pulses. The spin entanglement of the two atoms in the double wells of the superlattice is generated via the dynamical evolution governed by spin superexchange. By monitoring the collisional atom loss with in situ absorption imaging we measure the spin correlations of the atoms inside the double wells and obtain a lower bound on the entanglement fidelity of 0.79 +/- 0.06, and a violation of a Bell's inequality S = 2.21 +/- 0.08.
Stability improvements for the NIST Yb optical lattice clock
NASA Astrophysics Data System (ADS)
Fasano, R. J.; Schioppo, M.; McGrew, W. F.; Brown, R. C.; Hinkley, N.; Yoon, T. H.; Beloy, K.; Oates, C. W.; Ludlow, A. D.
2016-05-01
To reach the fundamental limit given by quantum projection noise, optical lattice clocks require advanced laser stabilization techniques. The NIST ytterbium clock has benefited from several generations of extremely high finesse optical cavities, with cavity linewidths below 1 kHz. Characterization of the cavity drift rate has allowed compensation to the mHz/s level, improving the medium-term stability of the cavity. Based on recent measurements using Ramsey spectroscopy with synchronous interrogation, we report a fractional instability σy(1s) <=10-16 , dominated by atom number fluctuation noise. We also provide updates on our cryogenic sapphire cavity with a reduced thermal noise floor, which will improve our Dick-limited fractional instability at 1 s to below 10-16. Also at University of Colorado.
Infrared intensities and optical constants of crystalline C 2H 4 and C 2D 4
NASA Astrophysics Data System (ADS)
Zhao, G.; Ospina, M. J.; Khanna, R. K.
Infrared absorption spectra of several thin films of C 2H 4 and C 2D 4 at ˜55 K were investigated at ˜0.6 cm -1 resolution. The integrated band intensities of the infrared active fundamental modes were obtained by a linear fit of the integrated absorbances vs film thickness. An iterative Kramers—Kronig analysis of the absorption data was carried out to obtain the complex refractive indices of crystalline C 2H 4 and C 2D 4 in the regions of absorption bands.
Proposal for generating synthetic magnetic fields in hexagonal optical lattices
NASA Astrophysics Data System (ADS)
Tian, Binbin; Endres, Manuel; Pekker, David
2015-05-01
We propose a new approach to generating synthetic magnetic fields in ultra cold atom systems that does not rely on either Raman transitions nor periodic drive. Instead, we consider a hexagonal optical lattice produced by the intersection of three laser beams at 120 degree angles, where the intensity of one or more of the beams is spatially non-uniform. The resulting optical lattice remains hexagonal, but has spatially varying hopping matrix elements. For atoms near the Dirac points, these spatial variations appear as a gauge field, similar to the fictitious gauge field that is induced for for electrons in strained graphene. We suggest that a robust way to generate a gauge field that corresponds to a uniform flux is to aligning three gaussian beams to intersect in an equilateral triangle. Using realistic experimental parameters, we show how the proposed setup can be used to observe cyclotron motion of an atom cloud - the conventional Hall effect and distinct Landau levels - the integer quantum Hall effect.
Micro-resonators coupled to atoms in an optical lattice
NASA Astrophysics Data System (ADS)
Geraci, Andrew; Kitching, John
2010-03-01
Recently there has been a convergence of ideas between the fields of solid-state and atomic physics -- examples range from using atoms for quantum simulation of condensed-matter Hamiltonians to physically coupling atoms with solid-state devices such as micro-resonators. In this talk, we discuss an experimental proposal involving an array of cooled microcantilevers coupled to a sample of ultracold atoms trapped near a microfabricated surface [1]. The cantilevers allow individual lattice site addressing for atomic state control and readout, and potentially may be useful in optical lattice quantum computation schemes. Assuming resonators can be cooled to their vibrational ground state, we describe the implementation of a two-qubit controlled-NOT gate with atomic internal states and the motional states of the resonators, along with a protocol for entangling two or more cantilevers on the atom chip using the trapped atoms as an intermediary. Although similar experiments could be carried out with magnetic microchip traps, the optical confinement scheme we consider may exhibit reduced near-field magnetic noise and decoherence. Prospects for using this system for tests of quantum mechanics at macroscopic scales or quantum information processing will be discussed. [4pt] [1] A. Geraci and J. Kitching, Phys. Rev. A 80, 032317 (2009)
Coherent control of atomic transport in spinor optical lattices
Mischuck, Brian; Deutsch, Ivan H.; Jessen, Poul S.
2010-02-15
Coherent transport of atoms trapped in an optical lattice can be controlled by microwave-induced spin flips that correlate with site-to-site hopping. We study the controllability of homogeneous one-dimensional systems of noninteracting atoms in the absence of site addressability. Given these restrictions, we construct a deterministic protocol to map an initially localized Wannier state to a wave packet that is coherently distributed over n sites. As an example, we consider a one dimensional quantum walk in the presence of both realistic photon scattering and inhomogeneous broadening of the microwave transition due to the optical lattice. Using composite pulses to suppress errors, fidelities of over 95% can be achieved for a 25-step walk. We extend the protocol for state preparation to analytic solutions for arbitrary unitary maps given homogeneous systems and in the presence of time-dependent uniform forces. Such control is important for applications in quantum information processing, such as quantum computing and quantum simulations of condensed matter phenomena.
Dynamic photorefractive self-amplified angular-multiplex 2-D optical beam-array generation
NASA Technical Reports Server (NTRS)
Zhou, Shaomin; Yeh, Pochi; Liu, Hua-Kuang
1993-01-01
A real-time 2-D angular-multiplex beam-array holographic storage and reconstruction technique using electrically-addressed spatial light modulators(E-SLM's) and photorefractive crystals is described. Using a liquid crystal television (LCTV) spatial light modulator (SLM) for beam steering and lithium niobate photorefractive crystal for holographic recording, experimental results of generating large and complicated arrays of laser beams with high diffraction efficiency and good uniformity are presented.
Auto- and hetero-associative memory using a 2-D optical logic gate
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
1989-01-01
An optical associative memory system suitable for both auto- and hetero-associative recall is demonstrated. This system utilizes Hamming distance as the similarity measure between a binary input and a memory image with the aid of a two-dimensional optical EXCLUSIVE OR (XOR) gate and a parallel electronics comparator module. Based on the Hamming distance measurement, this optical associative memory performs a nearest neighbor search and the result is displayed in the output plane in real-time. This optical associative memory is fast and noniterative and produces no output spurious states as compared with that of the Hopfield neural network model.
Strongly Correlated Quantum Gases Trapped in 3D Spin-Dependent Optical Lattices
NASA Astrophysics Data System (ADS)
Demarco, Brian
2011-03-01
Optical lattices have emerged as ideal systems for exploring Hubbard model physics, since the equivalent of material parameters such as the ratio of tunneling to interaction energy are easily and widely tunable. In this talk I will discuss our recent measurements using novel lattice potentials to realize more complex Hubbard models for bosonic 87 Rb atoms. In these experiments, we adjust the polarization of the lattice laser beams to realize fully three-dimensional, spin-dependent cubic optical lattices. We demonstrate that atoms can be trapped in combinations of spin states for which superfluid and Mott-insulator phases exist simultaneously in the lattice. We also co-trap states that experience a strong lattice potential and no lattice potential whatsoever. I will discuss recent measurements revealing a mechanism similar to Kapitza resistance that leads to thermal decoupling in this latter combination. The implications for sympathetic cooling and thermometry using species-dependent lattices will be outlined.
Phases of d-orbital bosons in optical lattices
NASA Astrophysics Data System (ADS)
Pinheiro, Fernanda; Matrikainen, Jani-Petri; Larson, Jonas
2015-05-01
We explore the properties of bosonic atoms loaded into the d bands of an isotropic square optical lattice. Following the recent experimental success reported in Zhai et al (2013 Phys. Rev. A 87 063638), in which populating d bands with a 99 % fidelity was demonstrated, we present a theoretical study of the possible phases that can appear in this system. Using the Gutzwiller ansatz for the three d band orbitals we map the boundaries of the Mott insulating phases. For not too large occupation, two of the orbitals are predominantly occupied, while the third, of a slightly higher energy, remains almost unpopulated. In this regime, in the superfluid phase we find the formation of a vortex lattice, where the vortices come in vortex/anti-vortex pairs with two pairs locked to every site. Due to the orientation of the vortices time-reversal symmetry is spontaneously broken. This state also breaks a discrete {{{Z}}2}-symmetry. We further derive an effective spin-1/2 model that describe the relevant physics of the lowest Mott-phase with unit filling. We argue that the corresponding two dimensional phase diagram should be rich with several different phases. We also explain how to generate anti-symmetric spin interactions that can give rise to novel effects like spin canting.
Squeezing out the entropy of fermions in optical lattices
Ho, Tin-Lun; Zhou, Qi
2009-01-01
At present, there is considerable interest in using atomic fermions in optical lattices to emulate the mathematical models that have been used to study strongly correlated electronic systems. Some of these models, such as the 2-dimensional fermion Hubbard model, are notoriously difficult to solve, and their key properties remain controversial despite decades of studies. It is hoped that the emulation experiments will shed light on some of these long-standing problems. A successful emulation, however, requires reaching temperatures as low as 10−12 K and beyond, with entropy per particle far lower than what can be achieved today. Achieving such low-entropy states is an essential step and a grand challenge of the whole emulation enterprise. In this article, we point out a method to literally squeeze the entropy out from a Fermi gas into a surrounding Bose–Einstein condensed gas, which acts as a heat reservoir. This method allows one to reduce the entropy per particle of a lattice Fermi gas to a few percent of the lowest value obtainable today. PMID:19365065
Measuring Z2 topological invariants in optical lattices using interferometry
NASA Astrophysics Data System (ADS)
Grusdt, F.; Abanin, D.; Demler, E.
2014-04-01
We propose an interferometric method to measure Z2 topological invariants of time-reversal invariant topological insulators realized with optical lattices in two and three dimensions. We suggest two schemes which both rely on a combination of Bloch oscillations with Ramsey interferometry and can be implemented using standard tools of atomic physics. In contrast to topological Zak phase and Chern number, defined for individual one-dimensional and two-dimensional Bloch bands, the formulation of the Z2 invariant involves at least two Bloch bands related by time-reversal symmetry which one must keep track of in measurements. In one of our schemes this can be achieved by the measurement of Wilson loops, which are non-Abelian generalizations of Zak phases. The winding of their eigenvalues is related to the Z2 invariant. We thereby demonstrate that Wilson loops are not just theoretical concepts but can be measured experimentally. For the second scheme we introduce a generalization of time-reversal polarization which is continuous throughout the Brillouin zone. We show that its winding over half the Brillouin zone yields the Z2 invariant. To measure this winding, our protocol only requires Bloch oscillations within a single band, supplemented by coherent transitions to a second band which can be realized by lattice shaking.
Pressure tuning the lattice and optical response of silver sulfide
NASA Astrophysics Data System (ADS)
Zhao, Zhao; Wei, Hua; Mao, Wendy L.
2016-06-01
Binary transition metal chalcogenides have attracted increasing attention for their unique structural and electronic properties. High pressure is a powerful tool for tuning the lattice and electronic structure of transition metal chalcogenides away from their pristine states. In this work, we systematically studied the in situ structural and optical behavior of silver sulfide (Ag2S) under pressure by synchrotron X-ray diffraction and infrared spectroscopy measurements in a diamond anvil cell. Upon compression, Ag2S undergoes structural symmetrization accompanied by a series of structural transitions while the crystallographic inequivalence of the two Ag sites is maintained. Electronically, pressure effectively tunes the ambient semiconducting Ag2S into a metal at ˜22 GPa. Drude model analysis shows that the optical conductivity evolves significantly, reaching the highest value of 100 Ω-1 cm-1 at ˜40 GPa. Our results highlight the structural and electronic tunability of silver chalcogenides as a function of pressure and suggest the potential of Ag2S as a platform for developing optical and opto-electronic applications.
Experimental realization of an optical second with strontium lattice clocks.
Le Targat, R; Lorini, L; Le Coq, Y; Zawada, M; Guéna, J; Abgrall, M; Gurov, M; Rosenbusch, P; Rovera, D G; Nagórny, B; Gartman, R; Westergaard, P G; Tobar, M E; Lours, M; Santarelli, G; Clairon, A; Bize, S; Laurent, P; Lemonde, P; Lodewyck, J
2013-01-01
Progress in realizing the SI second had multiple technological impacts and enabled further constraint of theoretical models in fundamental physics. Caesium microwave fountains, realizing best the second according to its current definition with a relative uncertainty of 2-4 × 10(-16), have already been overtaken by atomic clocks referenced to an optical transition, which are both more stable and more accurate. Here we present an important step in the direction of a possible new definition of the second. Our system of five clocks connects with an unprecedented consistency the optical and the microwave worlds. For the first time, two state-of-the-art strontium optical lattice clocks are proven to agree within their accuracy budget, with a total uncertainty of 1.5 × 10(-16). Their comparison with three independent caesium fountains shows a degree of accuracy now only limited by the best realizations of the microwave-defined second, at the level of 3.1 × 10(-16). PMID:23839206
Localization of collisionally inhomogeneous condensates in a bichromatic optical lattice
NASA Astrophysics Data System (ADS)
Cheng, Yongshan; Adhikari, S. K.
2011-02-01
By direct numerical simulation and variational solution of the Gross-Pitaevskii equation, we studied the stationary and dynamic characteristics of a cigar-shaped, localized, collisionally inhomogeneous Bose-Einstein condensate trapped in a one-dimensional bichromatic quasiperiodic optical-lattice potential, as used in a recent experiment on the localization of a Bose-Einstein condensate [Roati , Nature (London)NATUAS0028-083610.1038/nature07071 453, 895 (2008)]. The effective potential characterizing the spatially modulated nonlinearity is obtained. It is found that the collisional inhomogeneity has influence not only on the central region but also on the tail of the Bose-Einstein condensate. The influence depends on the sign and value of the spatially modulated nonlinearity coefficient. We also demonstrate the stability of the stationary localized state by performing a standard linear stability analysis. Where possible, the numerical results are shown to be in good agreement with the variational results.
Anyon Hubbard Model in One-Dimensional Optical Lattices.
Greschner, Sebastian; Santos, Luis
2015-07-31
Raman-assisted hopping may be used to realize the anyon Hubbard model in one-dimensional optical lattices. We propose a feasible scenario that significantly improves the proposal of T. Keilmann et al. [Nat. Commun. 2, 361 (2011)], allowing as well for an exact realization of the two-body hard-core constraint, and for controllable effective interactions without the need of Feshbach resonances. We show that the combination of anyonic statistics and two-body hard-core constraint leads to a rich ground-state physics, including Mott insulators with attractive interactions, pair superfluids, dimer phases, and multicritical points. Moreover, the anyonic statistics results in a novel two-component superfluid of holon and doublon dimers, characterized by a large but finite compressibility and a multipeaked momentum distribution, which may be easily revealed experimentally. PMID:26274417
Simulating the Wess-Zumino Supersymmetry Model in Optical Lattices
Yu Yue; Yang Kun
2010-10-08
We study a cold atom-molecule mixture in two-dimensional optical lattices. We show that, by fine-tuning the atomic and molecular interactions, the Wess-Zumino supersymmetry (SUSY) model in 2+1 dimensions emerges in the low-energy limit and can be simulated in such mixtures. At zero temperature, SUSY is not spontaneously broken, which implies identical relativistic dispersions of the atom and its superpartner, a bosonic diatom molecule. This defining signature of SUSY can be probed by single-particle spectroscopies. Thermal breaking of SUSY at a finite temperature is accompanied by a thermal Goldstone fermion, i.e., phonino excitation. This and other signatures of broken SUSY can also be probed experimentally.
Quantum states of p-band bosons in optical lattices
Collin, A.; Larson, J.; Martikainen, J.-P.
2010-02-15
We study a gas of repulsively interacting bosons in the first excited band of an optical lattice. We explore this p-band physics both within the framework of a standard mean-field theory as well as with the more accurate generalized Gutzwiller ansatz. We find the phase diagrams for two- and three-dimensional systems and characterize the first Mott-states which typically possess an integer or half-integer vortex structure. Furthermore, we find that even though the p-band model has strongly anisotropic kinetic energies and interflavor interaction terms are missing in the lowest band theory, the mean-field theory becomes useful quite rapidly once the transition from the Mott insulator to the superfluid is crossed.
Ultraviolet laser spectroscopy of neutral mercury in a one-dimensional optical lattice
Mejri, S.; McFerran, J. J.; Yi, L.; Le Coq, Y.; Bize, S.
2011-09-15
We present details on the ultraviolet lattice spectroscopy of the (6s{sup 2}) {sup 1}S{sub 0}{r_reversible} (6s6p) {sup 3}P{sub 0} transition in neutral mercury, specifically {sup 199}Hg. Mercury atoms are loaded into a one-dimensional vertically aligned optical lattice from a magneto-optical trap with an rms temperature of {approx}60 {mu}K. We describe aspects of the magneto-optical trapping, the lattice cavity design, and the techniques employed to trap and detect mercury in an optical lattice. The clock-line frequency dependence on lattice depth is measured at a range of lattice wavelengths. We confirm the magic wavelength to be 362.51(0.16) nm. Further observations to those reported by Yi et al.[Phys. Rev. Lett. 106, 073005 (2011)] are presented regarding the laser excitation of a Wannier-Stark ladder of states.
Non-standard Hubbard models in optical lattices: a review
NASA Astrophysics Data System (ADS)
Dutta, Omjyoti; Gajda, Mariusz; Hauke, Philipp; Lewenstein, Maciej; Lühmann, Dirk-Sören; Malomed, Boris A.; Sowiński, Tomasz; Zakrzewski, Jakub
2015-06-01
Originally, the Hubbard model was derived for describing the behavior of strongly correlated electrons in solids. However, for over a decade now, variations of it have also routinely been implemented with ultracold atoms in optical lattices, allowing their study in a clean, essentially defect-free environment. Here, we review some of the vast literature on this subject, with a focus on more recent non-standard forms of the Hubbard model. After giving an introduction to standard (fermionic and bosonic) Hubbard models, we discuss briefly common models for mixtures, as well as the so-called extended Bose-Hubbard models, that include interactions between neighboring sites, next-neighbor sites, and so on. The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation for the original physical Hamiltonian. Even when restricting the models to the lowest Bloch band is justified, the standard approach neglects the density-induced tunneling (which has the same origin as the usual on-site interaction). The importance of these contributions is discussed for both contact and dipolar interactions. For sufficiently strong interactions, the effects related to higher Bloch bands also become important even for deep optical lattices. Different approaches that aim at incorporating these effects, mainly via dressing the basis, Wannier functions with interactions, leading to effective, density-dependent Hubbard-type models, are reviewed. We discuss also examples of Hubbard-like models that explicitly involve higher p orbitals, as well as models that dynamically couple spin and orbital degrees of freedom. Finally, we review mean-field nonlinear Schrödinger models of the Salerno type that share with the non-standard Hubbard models nonlinear coupling between the adjacent sites. In that part, discrete solitons are the main subject of consideration. We conclude by listing some open problems, to be addressed in the future.
Non-standard Hubbard models in optical lattices: a review.
Dutta, Omjyoti; Gajda, Mariusz; Hauke, Philipp; Lewenstein, Maciej; Lühmann, Dirk-Sören; Malomed, Boris A; Sowiński, Tomasz; Zakrzewski, Jakub
2015-06-01
Originally, the Hubbard model was derived for describing the behavior of strongly correlated electrons in solids. However, for over a decade now, variations of it have also routinely been implemented with ultracold atoms in optical lattices, allowing their study in a clean, essentially defect-free environment. Here, we review some of the vast literature on this subject, with a focus on more recent non-standard forms of the Hubbard model. After giving an introduction to standard (fermionic and bosonic) Hubbard models, we discuss briefly common models for mixtures, as well as the so-called extended Bose-Hubbard models, that include interactions between neighboring sites, next-neighbor sites, and so on. The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation for the original physical Hamiltonian. Even when restricting the models to the lowest Bloch band is justified, the standard approach neglects the density-induced tunneling (which has the same origin as the usual on-site interaction). The importance of these contributions is discussed for both contact and dipolar interactions. For sufficiently strong interactions, the effects related to higher Bloch bands also become important even for deep optical lattices. Different approaches that aim at incorporating these effects, mainly via dressing the basis, Wannier functions with interactions, leading to effective, density-dependent Hubbard-type models, are reviewed. We discuss also examples of Hubbard-like models that explicitly involve higher p orbitals, as well as models that dynamically couple spin and orbital degrees of freedom. Finally, we review mean-field nonlinear Schrödinger models of the Salerno type that share with the non-standard Hubbard models nonlinear coupling between the adjacent sites. In that part, discrete solitons are the main subject of consideration. We conclude by listing some open problems, to be addressed in the future
Optical properties of GaAs 2D hexagonal and cubic photonic crystal
Arab, F. Assali, A.; Grain, R.; Kanouni, F.
2015-03-30
In this paper we present our theoretical study of 2D hexagonal and cubic rods GaAs in air, with plan wave expansion (PWE) and finite difference time domain (FDTD) by using BandSOLVE and FullWAVE of Rsoft photonic CAD package. In order to investigate the effect of symmetry and radius, we performed calculations of the band structures for both TM and TE polarization, contour and electromagnetic propagation and transmission spectra. Our calculations show that the hexagonal structure gives a largest band gaps compare to cubic one for a same filling factor.
Photoassociation experiments on ultracold and quantum gases in optical lattices
NASA Astrophysics Data System (ADS)
Ryu, Changhyun
This thesis describes the results of several experiments that studied the photoassociation of an ultracold atomic Rb gas. In the first experiment, we produced ultracold diatomic molecules from an atomic gas via single-color photoassociation. The molecules were detected with resonance-enhanced multiphoton ionization. Trapping of these molecules in a quadrupole magnetic trap, with lifetimes up to 20 seconds, was also demonstrated. In addition, the rate constant for inelastic collisions between the trapped molecules and atoms was determined from measurements of the atomic density dependence of the decay rate of the trapped molecules. In another experiment, stimulated Raman photoassociation of Rb atoms in a Mott insulator state was studied. A Bose-Einstein condensate (BEC) of 87Rb atoms was loaded into a three-dimensional optical lattice formed by the interference pattern of three orthogonal standing wave laser fields. This system constitutes a very good realization of the Bose-Hubbard model; which predicts a quantum phase transition between a superfluid state and a Mott insulator state at a particular lattice height. A time-of-flight imaging method was used to study the state of the atomic gas, and the quantum phase transition was observed at the predicted lattice height. The signature of the phase transition was the disappearance and reappearance of peaks in the image that arose from the interference of atoms originating from different lattice sites. Two coherent laser fields were applied to the gas in its Mott insulating state, and tuned close to a Raman photoassociation resonance, and this resulted in an observable loss of atoms due to the formation of molecules. This transition exhibited a double-peaked spectrum, with one of the peaks arising from photoassociation of atoms in sites containing only two atoms, and the other from sites containing three atoms. Also, the loss of atoms vs. the duration of the Raman photoassociation period was studied, with the lasers
Orbit, optics and chromaticity correction for PS2 negative momentum compaction lattices
Papaphilippou,Y.; Barranco, J.; Bartmann, W.; Benedikt, M.; Carli, C.; de Maria, R.; Peggs, S.; Trbojevic, D.
2009-05-04
The effect of magnet misalignments in the beam orbit and linear optics functions are reviewed and correction schemes are applied to the negative momentum compaction lattice of PS2. Chromaticity correction schemes are also proposed and tested with respect to off-momentum optics properties. The impact of the correction schemes in the dynamic aperture of the lattice is finally evaluated.
Guryev, I. V. Sukhoivanov, I. A. Andrade Lucio, J. A. Manzano, O. Ibarra Rodriguez, E. Vargaz Gonzales, D. Claudio Chavez, R. I. Mata Gurieva, N. S.
2014-05-15
In our work, we investigated the wideband optical filter on the basis of nonlinear photonic crystal. The all-optical flip-flop using ultra-short pulses with duration lower than 200 fs is obtained in such filters. Here we pay special attention to the stability problem of the nonlinear element. To investigate this problem, the temporal response demonstrating the flip-flop have been computed within the certain range of the wavelengths as well as at different input power.
Optical nanostructures in 2D for wide-diameter and broadband beam collimation
Clark, James; Anguita, José V.; Chen, Ying; Silva, S. Ravi P.
2016-01-01
Eliminating curved refracting lensing components used in conventional projection, imaging and sensing optical assemblies, is critical to enable compactness and miniaturisation of optical devices. A suitable means is replacing refracting lenses with two-dimensional optical media in flat-slab form, to achieve an equivalent optical result. One approach, which has been the focus of intense research, uses a Veselago lens which features a negative-index metamaterial. However, practical implementations rely on resonance techniques, thus broadband operation at optical frequencies imposes significant technical challenges that have been difficult to overcome. Here, we demonstrate a highly-collimated, broadband, wide-diameter beam from a compact source in flat-slab form, based on light collimation using nanomaterials ordered in patterns and embedded into flexible polymers. These provide a highly anisotropic absorption coefficient due to patterns created by vertical carbon nanotube structures grown on glass, and the anisotropic electrical conductivity of the nanotubes. We show this nanostructure strongly absorbs unwanted off-axis light rays, whilst transmitting the desired on-axis rays, to achieve the required optical effect over broadband, from visible to short-infrared, thus circumventing some technical limitations of negative-index metamaterials. We further show a low substrate-temperature system for nanotube growth, allowing direct implementation into heat-sensitive large-area devices. PMID:26732851
Optical nanostructures in 2D for wide-diameter and broadband beam collimation.
Clark, James; Anguita, José V; Chen, Ying; Silva, S Ravi P
2016-01-01
Eliminating curved refracting lensing components used in conventional projection, imaging and sensing optical assemblies, is critical to enable compactness and miniaturisation of optical devices. A suitable means is replacing refracting lenses with two-dimensional optical media in flat-slab form, to achieve an equivalent optical result. One approach, which has been the focus of intense research, uses a Veselago lens which features a negative-index metamaterial. However, practical implementations rely on resonance techniques, thus broadband operation at optical frequencies imposes significant technical challenges that have been difficult to overcome. Here, we demonstrate a highly-collimated, broadband, wide-diameter beam from a compact source in flat-slab form, based on light collimation using nanomaterials ordered in patterns and embedded into flexible polymers. These provide a highly anisotropic absorption coefficient due to patterns created by vertical carbon nanotube structures grown on glass, and the anisotropic electrical conductivity of the nanotubes. We show this nanostructure strongly absorbs unwanted off-axis light rays, whilst transmitting the desired on-axis rays, to achieve the required optical effect over broadband, from visible to short-infrared, thus circumventing some technical limitations of negative-index metamaterials. We further show a low substrate-temperature system for nanotube growth, allowing direct implementation into heat-sensitive large-area devices. PMID:26732851
Optical nanostructures in 2D for wide-diameter and broadband beam collimation
NASA Astrophysics Data System (ADS)
Clark, James; Anguita, José V.; Chen, Ying; Silva, S. Ravi P.
2016-01-01
Eliminating curved refracting lensing components used in conventional projection, imaging and sensing optical assemblies, is critical to enable compactness and miniaturisation of optical devices. A suitable means is replacing refracting lenses with two-dimensional optical media in flat-slab form, to achieve an equivalent optical result. One approach, which has been the focus of intense research, uses a Veselago lens which features a negative-index metamaterial. However, practical implementations rely on resonance techniques, thus broadband operation at optical frequencies imposes significant technical challenges that have been difficult to overcome. Here, we demonstrate a highly-collimated, broadband, wide-diameter beam from a compact source in flat-slab form, based on light collimation using nanomaterials ordered in patterns and embedded into flexible polymers. These provide a highly anisotropic absorption coefficient due to patterns created by vertical carbon nanotube structures grown on glass, and the anisotropic electrical conductivity of the nanotubes. We show this nanostructure strongly absorbs unwanted off-axis light rays, whilst transmitting the desired on-axis rays, to achieve the required optical effect over broadband, from visible to short-infrared, thus circumventing some technical limitations of negative-index metamaterials. We further show a low substrate-temperature system for nanotube growth, allowing direct implementation into heat-sensitive large-area devices.
Towards quantum many-body physics with Sr in optical lattices
NASA Astrophysics Data System (ADS)
Blatt, Sebastian; Jansa, Nejc; Escudero, Rodrigo G.; Heinz, André; Park, Annie Jihyun; Snigirev, Stepan; Dalibard, Jean; Bloch, Immanuel
2016-05-01
Within the last decade, fermionic alkaline earth atoms in optical lattices have become a platform for precision measurements, culminating in the realization of an atomic clock with the currently highest stability and accuracy at the 2 ×10-18 level. In the meantime, quantum degenerate gases of all bosonic and fermionic isotopes of Sr have been realized. With the extension of the quantum gas microscopy technique to fermionic alkali metal atoms, experiments with quantum degenerate gases in optical lattices have taken another step towards full control over the internal and external degrees of freedom of fermions in optical lattices. Here, we report on the construction of a new experiment with quantum degenerate gases of Sr in optical lattices. Our experiment aims to combine the high spatial control over the atomic degrees of freedom from quantum gas microscopy with the precision control over the internal degrees of freedom enabled by optical lattice clock techniques.
The strontium optical lattice clock: Optical spectroscopy with sub-hertz accuracy
NASA Astrophysics Data System (ADS)
Ludlow, Andrew D.
One of the most well-developed applications of coherent interaction with atoms is atomic frequency standards and clocks. Atomic clocks find significant roles in a number of scientific and technological settings. State-of-the-art, laser-cooled, Cs-fountain microwave clocks have demonstrated impressive frequency measurement accuracy, with fractional uncertainties below the 10-15 level. On the other hand, frequency standards based on optical transitions have made substantial steps forward over the last decade, benefiting from their high operational frequencies. An interesting approach to such an optical standard uses atomic strontium confined in an optical lattice. The tight atomic confinement allows for nearly complete elimination of Doppler and recoil-related effects which can otherwise trouble the precise atomic interrogation. At the same time, the optical lattice is designed to equally perturb the two electronic clock states so that the confinement introduces a net zero shift of the natural transition frequency. This thesis describes the design and realization of an optical frequency standard using 87Sr confined in a 1-D optical lattice. Techniques for atomic manipulation and control are described, including two-stage laser cooling, proper design of atomic confinement in a lattice potential, and optical pumping techniques. With the development of an ultra-stable coherent laser light source, atomic spectral linewidths of the optical clock transition are observed below 2 Hz. High accuracy spectroscopy of the clock transition is carried out utilizing a femtosecond frequency comb referenced to the NIST-F1 Cs fountain. To explore the performance of an improved, spin-polarized Sr standard, a coherent optical phase transfer link is established between JILA and NIST. This enables remote comparison of the Sr standard against optical standards at NIST, such as the cold Ca standard. The high frequency stability of a Sr-Ca comparison (3 x 10-16 at 200 s) is used to make
Ashley, Carlee E; Dunphy, Darren R; Jiang, Zhang; Carnes, Eric C; Yuan, Zhen; Petsev, Dimiter N; Atanassov, Plamen B; Velev, Orlin D; Sprung, Michael; Wang, Jin; Peabody, David S; Brinker, C Jeffrey
2011-04-18
The rapid assembly of icosohedral virus-like particles (VLPs) into highly ordered (domain size > 600 nm), oriented 2D superlattices directly onto a solid substrate using convective coating is demonstrated. In-situ grazing-incidence small-angle X-ray scattering (GISAXS) is used to follow the self-assembly process in real time to characterize the mechanism of superlattice formation, with the ultimate goal of tailoring film deposition conditions to optimize long-range order. From water, GISAXS data are consistent with a transport-limited assembly process where convective flow directs assembly of VLPs into a lattice oriented with respect to the water drying line. Addition of a nonvolatile solvent (glycerol) modified this assembly pathway, resulting in non-oriented superlattices with improved long-range order. Modification of electrostatic conditions (solution ionic strength, substrate charge) also alters assembly behavior; however, a comparison of in-situ assembly data between VLPs derived from the bacteriophages MS2 and Qβ show that this assembly process is not fully described by a simple Derjaguin-Landau-Verwey-Overbeek model alone. PMID:21425464
Cooling fermions in optical lattices by faster entropy redistribution
NASA Astrophysics Data System (ADS)
Teles, Rafael P.; Yang, Tsung-Lin; Paiva, Thereza; Scalettar, Richard T.; Natu, Stefan S.; Hulet, Randall G.; Hazzard, Kaden R. A.
2016-05-01
Lower entropy for fermions in optical lattices would unlock new quantum phases, including antiferromagnetism and potentially superconductivity. We propose a method to cool these systems at temperatures where conventional methods fail: slowly turning on a tightly focused optical potential transports entropy from the Mott insulator to a metallic entropy reservoir formed along the beam. Our scheme places the entropy reservoir close to the targeted cooling region, which allows entropy redistribution to be effective at lower temperatures than in prior proposals. Furthermore we require only a straightforwardly-applied Gaussian potential. We compute the temperatures achieved with this scheme using an analytic T >> t approximation and, for low T, determinantal quantum Monte Carlo. We optimize the waist and depth of the focused beam, and we find that repulsive potentials cool better than attractive ones. We estimate that the time required for entropy transport under nearly adiabatic conditions at these low temperatures is compatible with the system lifetime. Finally, we explore further improvements to cooling enabled by sophisticated potential engineering, e.g. using a spatial light modulator. Work supported by CNPq.
Optical signatures of a hypercritical 1D potential in a 2D Dirac metal
NASA Astrophysics Data System (ADS)
Jiang, Bor-Yuan; Ni, Guangxin; Pan, Cheng; Fei, Zhe; Cheng, Bin; Lau, Chun Ning; Bockrath, Marc; Basov, Dimitri; Fogler, Michael
Generation of quasi-bound states in graphene near strong charged perturbations is a solid-state analog of atomic collapse of superheavy elements or particle production by hypothetical cosmic strings. We show, for the case of a linelike perturbation, that as the perturbation grows in strength, quasi-bound states are generated sequentially. Each of these critical events is signaled by a sharp change in the local optical conductivity. Tunable linelike perturbations can be realized in experiment using nanowire or nanotube electrostatic gates. We report measurements of local conductivity for such systems obtained through near-field optical microscopy.
The optical system design and application of micro 2D barcode
NASA Astrophysics Data System (ADS)
Zhu, Yi-jia; Li, Liang-liang; Qian, Cheng; Liang, Zhong-cheng
2010-11-01
We show an optical system of micro visual tag which is based on the principle of microscope and the property of QR Code. Unlike current optical tag, such as barcodes, must be read within a short rang and occupy valuable physical space on products, the new tags can be shrunk to several millimeters and captured from a distance of over 0.5 meters. We design the transmitter according to the parameters of camera lens. We also take the detection range and apertures into account, meanwhile conduct simulations and experiments. The result shows that: the tag can be captured from a long distance, and the amplified image is able to accurately be decoded.
Development of a strontium optical lattice clock for space applications
NASA Astrophysics Data System (ADS)
Singh, Yeshpal
2016-07-01
With timekeeping being of paramount importance for modern life, much research and major scientific advances have been undertaken in the field of frequency metrology, particularly over the last few years. New Nobel-prize winning technologies have enabled a new era of atomic clocks; namely the optical clock. These have been shown to perform significantly better than the best microwave clocks reaching an inaccuracy of 1.6x10-18 [1]. With such results being found in large lab based apparatus, the focus now has shifted to portability - to enable the accuracy of various ground based clocks to be measured, and compact autonomous performance - to enable such technologies to be tested in space. This could lead to a master clock in space, improving not only the accuracy of technologies on which modern life has come to require such as GPS and communication networks. But also more fundamentally, this could lead to the redefinition of the second and tests of fundamental physics including applications in the fields of ground based and satellite geodesy, metrology, positioning, navigation, transport and logistics etc. Within the European collaboration, Space Optical Clocks (SOC2) [2-3] consisting of various institutes and industry partners across Europe we have tried to tackle this problem of miniaturisation whilst maintaining stability, accuracy (5x10-17) and robustness whilst keeping power consumption to a minimum - necessary for space applications. We will present the most recent results of the Sr optical clock in SOC2 and also the novel compact design features, new methods employed and outlook. References [1] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, "An optical lattice clock with accuracy and stability at the 10-18 level," Nature 506, 71-75 (2014). [2] S. Schiller et al. "Towards Neutral-atom Space Optical Clocks (SOC2): Development of high-performance transportable and breadboard optical clocks and
Optical position feedback of quasi-static 2D MOEMS mirrors
NASA Astrophysics Data System (ADS)
Tortschanoff, A.; Baumgart, M.; Holzmann, D.; Lenzhofer, M.; Sandner, T.; Kenda, A.
2013-05-01
Recently, we have realized a new position sensing device for MOEMS mirrors applicable to arbitrary trajectories, which is based on the measurement of a reflected light beam with a quadrant diode. In this work we present the characteristics of this device, showing first experimental results obtained with a test set-up, but also theoretical considerations and optical ray-tracing simulations.
Graphene/carbon nanotube hybrid-based transparent 2D optical array.
Kim, Un Jeong; Lee, Il Ha; Bae, Jung Jun; Lee, Sangjin; Han, Gang Hee; Chae, Seung Jin; Güneş, Fethullah; Choi, Jun Hee; Baik, Chan Wook; Kim, Sun Il; Kim, Jong Min; Lee, Young Hee
2011-09-01
Graphene/carbon nanotube (CNT) hybrid structures are fabricated for use as optical arrays. Vertically aligned CNTs are directly synthesized on a graphene/quartz substrate using plasma-enhanced chemical vapor deposition (PECVD). Graphene preserves the transparency and resistance during CNT growth. Highly aligned single-walled CNTs show a better performance for the diffraction intensity. PMID:21769950
Auto and hetero-associative memory using a 2-D optical logic gate
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor)
1992-01-01
An optical system for auto-associative and hetero-associative recall utilizing Hamming distance as the similarity measure between a binary input image vector V(sup k) and a binary image vector V(sup m) in a first memory array using an optical Exclusive-OR gate for multiplication of each of a plurality of different binary image vectors in memory by the input image vector. After integrating the light of each product V(sup k) x V(sup m), a shortest Hamming distance detection electronics module determines which product has the lowest light intensity and emits a signal that activates a light emitting diode to illuminate a corresponding image vector in a second memory array for display. That corresponding image vector is identical to the memory image vector V(sup m) in the first memory array for auto-associative recall or related to it, such as by name, for hetero-associative recall.
A novel 2D wavelength-time chaos code in optical CDMA system
NASA Astrophysics Data System (ADS)
Zhang, Qi; Xin, Xiangjun; Wang, Yongjun; Zhang, Lijia; Yu, Chongxiu; Meng, Nan; Wang, Houtian
2012-11-01
Two-dimensional wavelength-time chaos code is proposed and constructed for a synchronous optical code division multiple access system. The access performance is compared between one-dimensional chaos code, WDM/chaos code and the proposed code. Comparison shows that two-dimensional wavelength-time chaos code possesses larger capacity, better spectral efficiency and bit-error ratio than WDM/chaos combinations and one-dimensional chaos code.
Integrated packaging of 2D MOEMS mirrors with optical position feedback
NASA Astrophysics Data System (ADS)
Baumgart, M.; Lenzhofer, M.; Kremer, M. P.; Tortschanoff, A.
2015-02-01
Many applications of MOEMS microscanners rely on accurate position feedback. For MOEMS devices which do not have intrinsic on-chip feedback, position information can be provided with optical methods, most simply by using a reflection from the backside of a MOEMS scanner. By measuring the intensity distribution of the reflected beam across a quadrant diode, one can precisely detect the mirror's deflection angles. Previously, we have presented a position sensing device, applicable to arbitrary trajectories, which is based on the measurement of the position of the reflected laser beam with a quadrant diode. In this work, we present a novel setup, which comprises the optical position feedback functionality integrated into the device package itself. The new device's System-in-Package (SiP) design is based on a flip-folded 2.5D PCB layout and fully assembled as small as 9.2×7×4 mm³ in total. The device consists of four layers, which supply the MOEMS mirror, a spacer to provide the required optical path length, the quadrant photo-diode and a laser diode to serve as the light source. In addition to describing the mechanical setup of the novel device, we will present first experimental results and optical simulation studies. Accurate position feedback is the basis for closed-loop control of the MOEMS devices, which is crucial for some applications as image projection for example. Position feedback and the possibility of closed-loop control will significantly improve the performance of these devices.
Ye, Xingwei; Zhang, Fangzheng; Pan, Shilong
2016-09-01
A hardware-compressive optical true time delay architecture for 2D beam steering in a planar phased array antenna is proposed using fiber-Bragg-grating-based tunable dispersive elements (TDEs). For an M×N array, the proposed system utilizes N TDEs and M wavelength-fixed optical carriers to control the time delays. Both azimuth and elevation beam steering are realized by programming the settings of the TDEs. An experiment is carried out to demonstrate the delay controlling in a 2×2 array, which is fed by a wideband pulsed signal. Radiation patterns calculated from the experimentally measured waveforms at the four antennas match well with the theoretical results. PMID:27607946
Low noise optical lattices for a Li-6 Fermi gas microscope
NASA Astrophysics Data System (ADS)
Mazurenko, Anton; Parsons, Maxwell; Chiu, Christie; Huber, Florian; Blatt, Sebastian; Greiner, Markus
2015-05-01
We report on recent progress towards single-site resolved imaging of fermions in an optical lattice. Fermionic 6-Li atoms are trapped in an optical lattice 10 μm below a high-quality reference surface in the image plane of a high resolution (NA 0.85) imaging system. We have created a highly intensity-stable optical lattice whose depth remains adjustable over three orders of magnitude. The high optical resolution enables a band mapping technique that allows detection of less than 1000 atoms in the ground band of the lattice. We use this technique to measure the decay of the radial ground band population and find lifetimes up to 70 seconds, limited by spontaneous scattering of lattice light. ARO DARPA OLE, ARO MURI, NSF, AFOSR MURI, and The Moore Foundation.
Pérez-Montoto, Lázaro G; Santana, Lourdes; González-Díaz, Humberto
2009-11-01
We introduce here a new class of invariants for MD trajectories based on the spectral moments pi(k)(L) of the Markov matrix associated to lattice network-like (LN) graph representations of Molecular Dynamics (MD) trajectories. The procedure embeds the MD energy profiles on a 2D Cartesian coordinates system using simple heuristic rules. At the same time, we associate the LN with a Markov matrix that describes the probabilities of passing from one state to other in the new 2D space. We construct this type of LNs for 422 MD trajectories obtained in DNA-drug docking experiments of 57 furocoumarins. The combined use of psoralens+ultraviolet light (UVA) radiation is known as PUVA therapy. PUVA is effective in the treatment of skin diseases such as psoriasis and mycosis fungoides. PUVA is also useful to treat human platelet (PTL) concentrates in order to eliminate Leishmania spp. and Trypanosoma cruzi. Both are parasites that cause Leishmaniosis (a dangerous skin and visceral disease) and Chagas disease, respectively; and may circulate in blood products collected from infected donors. We included in this study both lineal (psoralens) and angular (angelicins) furocoumarins. In the study, we grouped the LNs on two sets; set1: DNA-drug complex MD trajectories for active compounds and set2: MD trajectories of non-active compounds or no-optimal MD trajectories of active compounds. We calculated the respective pi(k)(L) values for all these LNs and used them as inputs to train a new classifier that discriminate set1 from set2 cases. In training series the model correctly classifies 79 out of 80 (specificity=98.75%) set1 and 226 out of 238 (Sensitivity=94.96%) set2 trajectories. In independent validation series the model correctly classifies 26 out of 26 (specificity=100%) set1 and 75 out of 78 (sensitivity=96.15%) set2 trajectories. We propose this new model as a scoring function to guide DNA-docking studies in the drug design of new coumarins for anticancer or antiparasitic
Dea-Ayuela, María Auxiliadora; Pérez-Castillo, Yunierkis; Meneses-Marcel, Alfredo; Ubeira, Florencio M; Bolas-Fernández, Francisco; Chou, Kuo-Chen; González-Díaz, Humberto
2008-08-15
The toxicity and inefficacy of actual organic drugs against Leishmaniosis justify research projects to find new molecular targets in Leishmania species including Leishmania infantum (L. infantum) and Leishmaniamajor (L. major), both important pathogens. In this sense, quantitative structure-activity relationship (QSAR) methods, which are very useful in Bioorganic and Medicinal Chemistry to discover small-sized drugs, may help to identify not only new drugs but also new drug targets, if we apply them to proteins. Dyneins are important proteins of these parasites governing fundamental processes such as cilia and flagella motion, nuclear migration, organization of the mitotic splinde, and chromosome separation during mitosis. However, despite the interest for them as potential drug targets, so far there has been no report whatsoever on dyneins with QSAR techniques. To the best of our knowledge, we report here the first QSAR for dynein proteins. We used as input the Spectral Moments of a Markov matrix associated to the HP-Lattice Network of the protein sequence. The data contain 411 protein sequences of different species selected by ClustalX to develop a QSAR that correctly discriminates on average between 92.75% and 92.51% of dyneins and other proteins in four different train and cross-validation datasets. We also report a combined experimental and theoretic study of a new dynein sequence in order to illustrate the utility of the model to search for potential drug targets with a practical example. First, we carried out a 2D-electrophoresis analysis of L. infantum biological samples. Next, we excised from 2D-E gels one spot of interest belonging to an unknown protein or protein fragment in the region M<20,200 and pI<4. We used MASCOT search engine to find proteins in the L. major data base with the highest similarity score to the MS of the protein isolated from L. infantum. We used the QSAR model to predict the new sequence as dynein with probability of 99.99% without
A superradiant clock laser on a magic wavelength optical lattice.
Maier, Thomas; Kraemer, Sebastian; Ostermann, Laurin; Ritsch, Helmut
2014-06-01
An ideal superradiant laser on an optical clock transition of noninteracting cold atoms is predicted to exhibit an extreme frequency stability and accuracy far below mHz-linewidth. In any concrete setup sufficiently many atoms have to be confined and pumped within a finite cavity mode volume. Using a magic wavelength lattice minimizes light shifts and allows for almost uniform coupling to the cavity mode. Nevertheless, the atoms are subject to dipole-dipole interaction and collective spontaneous decay which compromises the ultimate frequency stability. In the high density limit the Dicke superradiant linewidth enhancement will broaden the laser line and nearest neighbor couplings will induce shifts and fluctuations of the laser frequency. We estimate the magnitude and scaling of these effects by direct numerical simulations of few atom systems for different geometries and densities. For Strontium in a regularly filled magic wavelength configuration atomic interactions induce small laser frequency shifts only and collective spontaneous emission weakly broadens the laser. These interactions generally enhance the laser sensitivity to cavity length fluctuations but for optimally chosen operating conditions can lead to an improved synchronization of the atomic dipoles. PMID:24921521
Feshbach-stabilized insulator of bosons in optical lattices.
de Forges de Parny, L; Rousseau, V G; Roscilde, T
2015-05-15
Feshbach resonances-namely, resonances between an unbound two-body (atomic) state and a bound (molecular) state, differing in magnetic moment-are a unique tool to tune the interaction properties of ultracold atoms. Here we show that the spin-changing interactions, coherently coupling the atomic and molecular states, can act as a novel mechanism to stabilize an insulating phase-the Feshbach insulator-for bosons in an optical lattice close to a narrow Feshbach resonance. Making use of quantum Monte Carlo simulations and mean-field theory, we show that the Feshbach insulator appears around the resonance, preventing the system from collapsing when the effective atomic scattering length becomes negative. On the atomic side of the resonance, the transition from condensate to Feshbach insulator has a characteristic first-order nature, due to the simultaneous loss of coherence in the atomic and molecular components. These features appear clearly in the ground-state phase diagram of, e.g., ^{87}Rb around its 414 G resonance, and they are therefore directly amenable to experimental observation. PMID:26024178
Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration
NASA Astrophysics Data System (ADS)
Soto, Marcelo A.; Ramírez, Jaime A.; Thévenaz, Luc
2016-03-01
Distributed optical fibre sensors possess the unique capability of measuring the spatial and temporal map of environmental quantities that can be of great interest for several field applications. Although existing methods for performance enhancement have enabled important progresses in the field, they do not take full advantage of all information present in the measured data, still giving room for substantial improvement over the state-of-the-art. Here we propose and experimentally demonstrate an approach for performance enhancement that exploits the high level of similitude and redundancy contained on the multidimensional information measured by distributed fibre sensors. Exploiting conventional image and video processing, an unprecedented boost in signal-to-noise ratio and measurement contrast is experimentally demonstrated. The method can be applied to any white-noise-limited distributed fibre sensor and can remarkably provide a 100-fold improvement in the sensor performance with no hardware modification.
Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration
Soto, Marcelo A.; Ramírez, Jaime A.; Thévenaz, Luc
2016-01-01
Distributed optical fibre sensors possess the unique capability of measuring the spatial and temporal map of environmental quantities that can be of great interest for several field applications. Although existing methods for performance enhancement have enabled important progresses in the field, they do not take full advantage of all information present in the measured data, still giving room for substantial improvement over the state-of-the-art. Here we propose and experimentally demonstrate an approach for performance enhancement that exploits the high level of similitude and redundancy contained on the multidimensional information measured by distributed fibre sensors. Exploiting conventional image and video processing, an unprecedented boost in signal-to-noise ratio and measurement contrast is experimentally demonstrated. The method can be applied to any white-noise-limited distributed fibre sensor and can remarkably provide a 100-fold improvement in the sensor performance with no hardware modification. PMID:26927698
Lattice-Induced Frequency Shifts in Sr Optical Lattice Clocks at the 10{sup -17} Level
Westergaard, P. G.; Lodewyck, J.; Lecallier, A.; Millo, J.; Lemonde, P.; Lorini, L.; Burt, E. A.; Zawada, M.
2011-05-27
We present a comprehensive study of the frequency shifts associated with the lattice potential in a Sr lattice clock by comparing two such clocks with a frequency stability reaching 5x10{sup -17} after a 1 h integration time. We put the first experimental upper bound on the multipolar M1 and E2 interactions, significantly smaller than the recently predicted theoretical upper limit, and give a 30-fold improved upper limit on the effect of hyperpolarizability. Finally, we report on the first observation of the vector and tensor shifts in a Sr lattice clock. Combining these measurements, we show that all known lattice related perturbations will not affect the clock accuracy down to the 10{sup -17} level, even for lattices as deep as 150 recoil energies.
Atomic Bloch-Zener Oscillations and Stueckelberg Interferometry in Optical Lattices
Kling, Sebastian; Salger, Tobias; Grossert, Christopher; Weitz, Martin
2010-11-19
We report on experiments investigating quantum transport and band interferometry of an atomic Bose-Einstein condensate in an optical lattice with a two-band miniband structure, realized with a Fourier-synthesized optical lattice potential. Bloch-Zener oscillations, the coherent superposition of Bloch oscillations and Landau-Zener tunneling between the two bands, are observed. When the relative phase between paths in different bands is varied, an interference signal is observed, demonstrating the coherence of the dynamics in the miniband system. Measured fringe patterns of this Stueckelberg interferometer allow us to interferometrically map out the band structure of the optical lattice over the full Brillouin zone.
Detecting the Chern number of topological Weyl semimetals in 3D optical lattices
NASA Astrophysics Data System (ADS)
Zhang, Dan-Wei; Cao, Shuai
2016-06-01
We propose a realistic scheme to directly probe the Chern number of topological Weyl semimetals in optical lattices. The Weyl semimetal states can be realized with ultracold fermionic atoms trapped in three-dimensional optical lattices, and are topologically characterized by k z -dependent Chern number, where k z is the out-of-plane quasimomentum. We demonstrate with numerical simulations that this characteristic topological invariant can be extracted from the shift of the hybrid Wannier center in the optical lattice, based on the particle pumping approach. Through in situ measurement of atomic density, the topological properties of the Weyl semimetal states are then directly revealed.
The Quantum Dynamics of a Dilute Gas in a 3D BCC Optical Lattice
NASA Astrophysics Data System (ADS)
Reichl, Linda; Boretz, Yingyue
2015-03-01
The classical and quantum dynamics of a dilute gas of rubidium atoms, in a 3D body-centered cubic optical lattice, is studied for a range of polarizations of the laser beams forming the lattice. The relative polarization of the lasers determines the the structure of the potential energy seen by the rubidium atoms. If three pairs of in-phase mutually perpendicular laser beams, with the same wavelength, form the lattice, only a limited range of possible couplings can be realized in the lab. We have determined the band structure of the BCC optical lattice for all theoretically possible couplings, and find that the band structure for lattices realizable in the lab, differs significantly from that expected for a BCC crystal. As coupling is increased, the lattice becomes increasingly chaotic and it becomes possible to produce band structure that has qualitative similarity to a BCC. Welch Foundation
2D Optical Streaking for Ultra-Short Electron Beam Diagnostics
Ding, Y.T.; Huang, Z.; Wang, L.; /SLAC
2011-12-14
field ionization, which occurs in plasma case, gases species with high field ionization threshold should be considered. For a linear polarized laser, the kick to the ionized electrons depends on the phase of the laser when the electrons are born and the unknown timing jitter between the electron beam and laser beam makes the data analysis very difficult. Here we propose to use a circular polarized laser to do a 2-dimensional (2D) streaking (both x and y) and measure the bunch length from the angular distribution on the screen, where the phase jitter causes only a rotation of the image on the screen without changing of the relative angular distribution. Also we only need to know the laser wavelength for calibration. A similar circular RF deflecting mode was used to measure long bunches. We developed a numerical particle-in-Cell (PIC) code to study the dynamics of ionization electrons with the high energy beam and the laser beam.
A Next-Generation Apparatus for Lithium Optical Lattice Experiments
NASA Astrophysics Data System (ADS)
Keshet, Aviv
Quantum simulation is emerging as an ambitious and active subfield of atomic physics. This thesis describes progress towards the goal of simulating condensed matter systems, in particular the physics of the Fermi-Hubbard model, using ultracold Lithium atoms in an optical lattice. A major goal of the quantum simulation program is to observe phase transitions of the Hubbard model, into Neal antiferromagnetic phases and d-wave superfluid phases. Phase transitions are generally accompanied by a change in an underlying correlation in a physical system. Such correlations may be most amenable to probing by looking at fluctuations in the system. Experimental techniques for probing density and magnetization fluctuations in a variety of atomic Fermi systems are developed. The suppression of density fluctuations (or atom "shot noise") in an ideal degenerate Fermi gas is observed by absorption imaging of time-of-flight expanded clouds. In-trap measurements of density and magnetization fluctuations are not easy to probe with absorption imaging, due to their extremely high attenuation. A method to probe these fluctuations based on speckle patterns, caused by fluctuations in the index of refraction for a detuned illumination beam, is developed and applied first to weakly interacting and then to strongly interacting in-trap gases. Fluctuation probes such as these will be a crucial tool in future quantum simulation of condensed matter systems. The quantum simulation experiments that we want to perform require a complex sequence of precisely timed computer controlled events. A distributed GUI-based control system designed with such experiments in mind, The Cicero Word Generator, is described. The system makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature allows this to be extended to other output
Probing Nearest-Neighbor Correlations of Ultracold Fermions in an Optical Lattice
Greif, Daniel; Tarruell, Leticia; Uehlinger, Thomas; Joerdens, Robert; Esslinger, Tilman
2011-04-08
We demonstrate a probe for nearest-neighbor correlations of fermionic quantum gases in optical lattices. It gives access to spin and density configurations of adjacent sites and relies on creating additional doubly occupied sites by perturbative lattice modulation. The measured correlations for different lattice temperatures are in good agreement with an ab initio calculation without any fitting parameters. This probe opens new prospects for studying the approach to magnetically ordered phases.
NASA Astrophysics Data System (ADS)
Prior, Phillip; Roth, Bradley J.
2009-05-01
Optical mapping is a commonly used technique to visualize the electrical activity in the heart. Recently, several groups have attempted to use the signals acquired in optical mapping to image the transmembrane potential in the heart, which would be particularly advantageous when studying the effects of defibrillation-type shocks throughout the wall of the heart. Our work presents an alternative imaging method that makes use of data obtained using multiple wavelengths and therefore multiple optical decay constants. A modified form of the diffusion equation Green's function for a semi-infinite slab of tissue is derived and used to relate the detected optical signals to the source of emission photons. Images using the optical signals are reconstructed using Gaussian quadrature and matrix inversion. Our results show that images can be obtained for source terms located below the tissue surface. Furthermore, we demonstrate that our reconstruction method's susceptibility to noise can be alleviated using sophisticated matrix inverse techniques, such as singular value decomposition. Sources that rapidly decay with depth or are highly localized in the image plane require more sophisticated techniques (e.g., regularization methods) to image the electrical activity in the heart. The work presented here demonstrates the feasibility of a new imaging technique of cardiac electrical activity using optical mapping.
2D position guidance with single-station optical scan-based system
NASA Astrophysics Data System (ADS)
Guo, Siyang; Ren, Yongjie; Huang, Zhe; Chen, Yang; Hong, Tianqi
2015-08-01
The workshop Measuring Position System (wMPS) based on intersection of optical planes is widely applied in large-scale metrology. However, in guidance areas concerning more about horizontal directions such as in the area of transporting with AGVs, the coordinate of z axis which represents the height of the vehicle is of no particular importance. Also, the installation and parameters calibration of wMPS is complex and time-consuming. In this paper, a new method with single transmitter measuring two dimensional coordinate to guide the moving object (except the vertical direction) is proposed and demonstrated. The three dimensional coordinate of receiver was calculated if its horizontal angle, vertical angle and the coordinate of vertical direction are given. In order to get the receiver's horizontal and vertical angle, a serious of mathematical formulas was derived from a model of single transmitter with two rotating laser planes. The coordinate of vertical direction was obtained by the laser tracker and mapped from laser tracker coordinates to transmitter coordinates. Concerning that the coordinate of the vertical direction remains almost the same if the object moves in the level ground, a series of vertical-direction coordinates of moving object was measured beforehand and the average value of coordinates was the approximate vertical-direction coordinates of every point. To verify this method, the points acquired by the transmitter were remeasured by the laser tracker. Finally, the coordinates were compared and the results were analyzed. The experiment results show that the method's measuring accuracy has reached 5mm.
Stability of Bose-Einstein condensates in two-dimensional optical lattices
Chen Zhu; Wu Biao
2010-04-15
Both Landau instability and dynamical instability of Bose-Einstein condensates in moving two-dimensional optical lattices are investigated numerically and analytically. Phase diagrams for both instabilities are obtained numerically for different system parameters. These phase diagrams show that the Landau instability does not depend on direction for weak lattices while the dynamic instability is direction dependent. These features are explained analytically.
Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties.
Island, Joshua O; Biele, Robert; Barawi, Mariam; Clamagirand, José M; Ares, José R; Sánchez, Carlos; van der Zant, Herre S J; Ferrer, Isabel J; D'Agosta, Roberto; Castellanos-Gomez, Andres
2016-01-01
We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161
Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties
Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D’Agosta, Roberto; Castellanos-Gomez, Andres
2016-01-01
We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161
Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties
NASA Astrophysics Data System (ADS)
Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D'Agosta, Roberto; Castellanos-Gomez, Andres
2016-03-01
We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance.
Grade-2 Teflon (AF1601) PCF for optical communication using 2D FDTD technique: a simplest design
NASA Astrophysics Data System (ADS)
Muduli, N.; Achary, J. S. N.; Padhy, Hemanta ku.
2016-04-01
A nonlinear ytterbium-doped rectangular proposed PCF structure of inner and outer cladding is used to analyze effective mode field area (Aeff), nonlinear coefficient (γ), dispersion (D), and confinement loss (CL) in a wide range of wavelength. The fabrication of PCF structure is due to different size doped air hole, pitch, and air hole diameter in a regular periodic geometrical array fashion. The various property of PCF structure such as mode field area, nonlinear coefficient, dispersion, and confinement loss are analyzed by implementing 2D FDTD technique. The above PCF property investigated using suitable parameters like Λ1, ?, ?, and ? in three different situations is discussed in simulation. The high nonlinear coefficient and dispersion property of PCF structure are tailored by setting the cladding parameter. However, highly nonlinear fibers with nonzero dispersion at the wavelength of 1.55 μm are very attractive for a range of optical communication application such as laser amplifier, pulse compression, wavelength conversion, all optical switching, and supercontinuum generation. So our newly proposed ytterbium-doped PCF seems to be most suitable exclusively for supercontinuum generation and nonlinear fiber optics. Finally, it is observed that ytterbium-doped Teflon (AF1601) PCF has more nonlinear coefficient (γ(λ) = 65.27 W-1 km-1) as compared to pure silica PCF (γ(λ) = 52 W-1 km-1) design to have same mode field area (Aeff) 1.7 μm2 at an operating wavelength of 1.55 μm.
A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy
Kirkby, Paul A.; Naga Srinivas, N.K.M.; Silver, R. Angus
2010-01-01
We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 μm; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space PMID:20588506
NASA Astrophysics Data System (ADS)
Berczynski, P.; Kravtsov, Yu. A.
2004-10-01
A simple and effective method to describe Gaussian beams propagation and diffraction in arbitrary smoothly inhomogeneous 2D medium has been developed based on the eikonal form of complex geometrical optics. The method assumes the eikonal equation can be solved in paraxial approximation in curvilinear frame of references, connected with the central ray. The Riccati-type ordinary differential equation is derived for complex parameter characterizing the Gaussian beam width and phase front curvature. The same parameter was proved to define both the modulus and the argument of the complex amplitude. As a result, the problem of the Gaussian beam diffraction in inhomogeneous media has been reduced to the solution of the ordinary differential equation of the first order, which can be readily calculated numerically for arbitrary profile of dielectric permittivity.
NASA Astrophysics Data System (ADS)
Youssefi, Bahar; Moravvej-Farshi, Mohammad Kazem; Granpayeh, Nosrat
2012-06-01
We have demonstrated the performance of a novel design for a single wavelength 2-bit all-optical analog-to-digital converter (ADC). This converter consists of two high efficient channel drop filters with a coupled cavity-based wavelength selective reflector in a 2D photonic crystal with total length of 15.87 μm. The A/D conversion is achieved by using nonlinear Kerr effect in the cavities. The output ports switch to state '1' at different input power levels to generate unique states preferred for an ADC. This conversion is simulated by the finite difference time domain (FDTD) method for 5 different power levels. The proposed structure can function as a two-bit ADC with a 60 mW/μm input pulse and its maximum sampling rate is found to be ~ 45 GS/s.
NASA Astrophysics Data System (ADS)
Zhao, Yaqin; Zhong, Xin; Wu, Di; Zhang, Ye; Ren, Guanghui; Wu, Zhilu
2013-09-01
Optical code-division multiple access (OCDMA) systems usually allocate orthogonal or quasi-orthogonal codes to the active users. When transmitting through atmospheric scattering channel, the coding pulses are broadened and the orthogonality of the codes is worsened. In truly asynchronous case, namely both the chips and the bits are asynchronous among each active user, the pulse broadening affects the system performance a lot. In this paper, we evaluate the performance of a 2D asynchronous hard-limiting wireless OCDMA system through atmospheric scattering channel. The probability density function of multiple access interference in truly asynchronous case is given. The bit error rate decreases as the ratio of the chip period to the root mean square delay spread increases and the channel limits the bit rate to different levels when the chip period varies.
Ferromagnetism of a Repulsive Atomic Fermi Gas in an Optical Lattice: A Quantum Monte Carlo Study
NASA Astrophysics Data System (ADS)
Pilati, Sebastiano; Zintchenko, Ilia; Troyer, Matthias
2015-05-01
We investigate the ferromagnetic behavior of a two-component repulsive Fermi gas under the influence of a periodic potential that describes the effect of a 3D optical lattice, using continuous-space quantum Monte Carlo simulations. We find that a shallow optical lattice below half-filling strongly favors the ferromagnetic instability compared to the homogeneous Fermi gas. Instead, in the regime of deep optical lattices and weak interactions, where the conventional description in terms of single-band tight-binding models is reliable, our results indicate that the paramagnetic state is stable, in agreement with previous quantum Monte Carlo simulations of the Hubbard model. Our findings shed light on the important role played by multi-band effects and by interaction-induced hopping in the physics of atomic gases trapped in optical lattices.
Observation of Landau-Zener tunneling through atomic current in the optical lattices
Yan Jieyun; Duan Suqing; Zhang Wei; Zhao Xiangeng
2009-05-15
The atomic current in the Fourier-synthesized optical lattices under a constant external force is investigated theoretically. Based on a two-band model, the atomic current is derived by solving the Boltzmann equations. We find that the stationary atomic current changes with the probability of Landau-Zener tunneling, depending on the adjustable energy structure of the optical lattices. In contrast to the classical results of an electron in superlattices given by the Esaki-Tsu equations, the relation between the stationary atomic current and the strength of the external force in optical lattices is modified significantly. Both these characteristics can be taken as an effective way to observe the Landau-Zener tunneling in the optical lattices.
NASA Technical Reports Server (NTRS)
Joseph, Rose; Goorjian, Peter; Taflove, Allen
1993-01-01
Experimentalists have produced all-optical switches capable of 100-fs responses. To adequately model such switches, nonlinear effects in optical materials (both instantaneous and dispersive) must be included. In principle, the behavior of electromagnetic fields in nonlinear dielectrics can be determined by solving Maxwell's equations subject to the assumption that the electric polarization has a nonlinear relation to the electric field. However, until our previous work, the resulting nonlinear Maxwell's equations have not been solved directly. Rather, approximations have been made that result in a class of generalized nonlinear Schrodinger equations (GNLSE) that solve only for the envelope of the optical pulses. In this paper, we present first-time calculations from the vector nonlinear Maxwell's equations of femtosecond soliton propagation and scattering, including carrier waves, in two-dimensional systems of dielectric waveguides exhibiting the Kerr and Raman quantum effects. We use the finite-difference time-domain (FD-TD) method in an extension of our 1-D work. There, in a fundamental innovation, we treated the linear and nonlinear convolutions for the electric polarization as new dependent variables. By differentiating these convolutions in the time domain, we derived an equivalent system of coupled, nonlinear second-order ODE's. These equations together with Maxwell's equations form the system that is solved to determine the electromagnetic fields in inhomogeneous nonlinear dispersive media. Backstorage in time is limited to only that needed by the time-integration algorithm for the ODE's, rather than that needed to store the time-history of the kernel functions of the convolutions (1000-10,000 time steps). Thus, a 2-D nonlinear optics model from Maxwell's equations is now feasible.
NASA Astrophysics Data System (ADS)
Teo, Selin H. G.; Liu, A. Q.; Yu, M. B.; Singh, J.
2006-05-01
This paper reports fabrication and demonstration of optical intersections in two-dimensional (2D) rod-type photonic crystal (PhC) structures. High resolution and aspect ratio 2D square lattice PhC waveguide intersections were designed and fabricated for application at the optical communication wavelengths centered at 1550 nm. In the silicon processing front, challenges resolved to overcome issues of drastically reduced process windows caused by the dense PhC rods arrays with critical dimensions (CDs) reduced to only a few hundred nanometers were addressed not only in terms of critical process flow design but also in the development of each processing module. In the lithographic process of deep ultraviolet laser system working at 248 nm, PhC rods of sub-lithographic wavelength CDs (115 nm in radii) were realized in high resolution, even near periphery regions where proximity errors were prone. In the deep etching module, stringent requirements on etch angle control and low sidewall scallops (undulations arising from time multiplexed etch and passivation actions) were satisfied, to prevent catastrophic etch failures, and enable optical quality facets. The successfully fabricated PhCs were also monolithically integrated with large scale optical testing fiber grooves that enabled macro optical fiber assisted coupling to the micro scale PhC devices. In the optical experiments, the transmission and crosstalk properties for the PhC intersection devices with different rod radii at the center of the PhC optical waveguides crossings were measured with repeatability. The properties of the PhC intersections were therefore optimized and verified to correspond well with first principle finite difference time domain simulations.
Observation of long-lived van der Waals molecules in an optical lattice
NASA Astrophysics Data System (ADS)
Kato, Shinya; Yamazaki, Rekishu; Shibata, Kosuke; Yamamoto, Ryuta; Yamada, Hirotaka; Takahashi, Yoshiro
2012-10-01
We observe long-lived tightly bound van der Waals molecules of ytterbium in a three-dimensional optical lattice with a lifetime of 8.0 s. The molecules, state-selectively produced by a photoassociation technique from a Bose-Einstein condensate or an atomic Mott insulator, are successfully detected with a photodissociation method where the molecules are photodissociated into two atoms and the atoms are captured by a magneto-optical trap or optical molasses, for the fluorescence detection. This work will open up various possibilities of research with van der Waals molecules in an optical lattice.
Systematic Study of the {sup 87}Sr Clock Transition in an Optical Lattice
Ludlow, Andrew D.; Boyd, Martin M.; Zelevinsky, Tanya; Foreman, Seth M.; Blatt, Sebastian; Notcutt, Mark; Ido, Tetsuya; Ye Jun
2006-01-27
With ultracold {sup 87}Sr confined in a magic wavelength optical lattice, we present the most precise study (2.8 Hz statistical uncertainty) to date of the {sup 1}S{sub 0}-{sup 3}P{sub 0} optical clock transition with a detailed analysis of systematic shifts (19 Hz uncertainty) in the absolute frequency measurement of 429 228 004 229 869 Hz. The high resolution permits an investigation of the optical lattice motional sideband structure. The local oscillator for this optical atomic clock is a stable diode laser with its hertz-level linewidth characterized by an octave-spanning femtosecond frequency comb.
Optical Lattice Bose-Einstein Condensates and the dd Fusion - Iwamura Connection
NASA Astrophysics Data System (ADS)
Chubb, Talbot
2003-03-01
My conjecture: LENR dd fusion occurs in PdDx when a subset of the interstitial deuterons occupy tetrahedral sites in a PdDx crystallite. The tetrahedral deuterons(d's), which occupy shallow potential wells, behave as a superfluid, similar to ultracold Na atoms in shallow-well optical traps, as modeled by Jaksch et al.(D. Jaksch, et al, Phys. Rev. Lett., 81, 3108 (1998).) The tetrahedral d's form a deuteron (d) subsystem, which is neutralized by an electron subsystem containing an equal number of electrons. In the superfluid all the properties of each quasiparticle d are partitioned among N_s_i_te equivalent sites. The partitioning of the d point charge reduces the Coulomb self-repulsion within each quasiparticle pair, which causes wave function overlap at large N_s_i_t_e, allowing d-d fusion. Similarly, partitioning of the point charge of each single quasiparticle d reduces the Coulomb repulsion between it and an obstructing impurity atom, which causes wave function overlap between quasiparticle and atom at large N_s_i_t_e, allowing transmutation of the impurity atom. The Iwamura reaction(Y. Iwamura, et al, Japan J. of Appl. Physics, 41A, 4642 (2002).) is 4 ^2D^+_B_l_o_ch + 4 e^-_B_l_o_ch + ^1^3^3Cs arrow ^1^4^1Pr, with the reaction energy incoherently transferred to the lattice.
Yan Hui
2010-05-15
A robust type of three-dimensional magnetic trap lattice on an atom chip combining optically induced fictitious magnetic field with microcurrent-carrying wires is proposed. Compared to the regular optical lattice, the individual trap in this three-dimensional magnetic trap lattice can be easily addressed and manipulated.
Higher-order effects on the precision of clocks of neutral atoms in optical lattices
NASA Astrophysics Data System (ADS)
Ovsiannikov, V. D.; Marmo, S. I.; Palchikov, V. G.; Katori, H.
2016-04-01
The recent progress in designing optical lattice clocks with fractional uncertainties below 10-17 requires unprecedented precision in estimating the role of higher-order effects of atom-lattice interactions. In this paper, we present results of systematic theoretical evaluations of the multipole, nonlinear, and anharmonic effects on the optical-lattice-based clocks of alkaline-earth-like atoms. Modifications of the model-potential approach are introduced to minimize discrepancies of theoretical evaluations from the most reliable experimental data. Dipole polarizabilities, hyperpolarizabilities, and multipolar polarizabilities for neutral Ca, Sr, Yb, Zn, Cd, and Hg atoms are calculated in the modified approach.
Vortex formation of a Bose-Einstein condensate in a rotating deep optical lattice
Kato, Akira; Nakano, Yuki; Kasamatsu, Kenichi; Matsui, Tetsuo
2011-11-15
We study the dynamics of vortex nucleation and lattice formation in a Bose-Einstein condensate in a rotating square optical lattice by numerical simulations of the Gross-Pitaevskii equation. Different dynamical regimes of vortex nucleation are found, depending on the depth and period of the optical lattice. We make an extensive comparison with the experiments by R. A. Williams et al.[Phys. Rev. Lett. 104, 050404 (2010)], especially focusing on the issues of the critical rotation frequency for the first vortex nucleation and the vortex number as a function of rotation frequency.
Critical frequency for vortex nucleation in Bose-Fermi mixtures in optical lattices
NASA Astrophysics Data System (ADS)
Guilleumas, M.; Centelles, M.; Barranco, M.; Mayol, R.; Pi, M.
2005-11-01
We investigate within mean-field theory the influence of a one-dimensional optical lattice and of trapped degenerate fermions on the critical rotational frequency for vortex line creation in a Bose-Einstein condensate. We consider laser intensities of the lattice such that quantum coherence across the condensate is ensured. We find a sizable decrease of the thermodynamic critical frequency for vortex nucleation with increasing applied laser strength and suggest suitable parameters for experimental observation. Since Rb87-K40 mixtures may undergo collapse, we analyze the related question of how the optical lattice affects the mechanical stability of the system.
Kafka, Gene
2015-05-01
The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.
NASA Astrophysics Data System (ADS)
Kafka, Gene
The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with significant flexibility in mind, but without compromising cost efficiency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of different variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of-flight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.
Ultrasensitive and compact tunable electro-optic filter in a 2D silicon photonic-crystal cavity
NASA Astrophysics Data System (ADS)
Ebrahimy, Mehdi N.; Naziri, Mohammad; Andalib, Alireza; Daie Kuzekanani, Ziaddin
2016-06-01
In this work, we designed and simulated a high Q-factor photonic crystal cavity with a PN junction to demonstrate a high-sensitivity and high tunable electro-optic filter (EOF). For this purpose, we used a cavity based on 2D photonic crystal structures and created a PN junction with 1 μm width in the center of the cavity to change the refractive index of it. The electro-optic sensitivity of the cavity was improved by reducing modal volume and scattering power. Reverse bias in the range of (‑3.88 V–0.288 V) is applied to the PN junction and the output spectrum is investigated for various bias voltages. The output wavelengths of designed EOF can be tuned by manipulating cavity cells. In final response of EOF the maximum transmission efficiency is more than 93%, the overall Q-factor is more than 14 500. The whole device fits in a compact 102.6 μm2 (17.4 μm × 5.9 μm) footprint.
1 kHz 2D Visual Motion Sensor Using 20 × 20 Silicon Retina Optical Sensor and DSP Microcontroller.
Liu, Shih-Chii; Yang, MinHao; Steiner, Andreas; Moeckel, Rico; Delbruck, Tobi
2015-04-01
Optical flow sensors have been a long running theme in neuromorphic vision sensors which include circuits that implement the local background intensity adaptation mechanism seen in biological retinas. This paper reports a bio-inspired optical motion sensor aimed towards miniature robotic and aerial platforms. It combines a 20 × 20 continuous-time CMOS silicon retina vision sensor with a DSP microcontroller. The retina sensor has pixels that have local gain control and adapt to background lighting. The system allows the user to validate various motion algorithms without building dedicated custom solutions. Measurements are presented to show that the system can compute global 2D translational motion from complex natural scenes using one particular algorithm: the image interpolation algorithm (I2A). With this algorithm, the system can compute global translational motion vectors at a sample rate of 1 kHz, for speeds up to ±1000 pixels/s, using less than 5 k instruction cycles (12 instructions per pixel) per frame. At 1 kHz sample rate the DSP is 12% occupied with motion computation. The sensor is implemented as a 6 g PCB consuming 170 mW of power. PMID:25879969
NASA Astrophysics Data System (ADS)
Engheta, Nader; Alu, Andrea
2006-03-01
In recent years metamaterials have offered new possibilities for overcoming some of the intrinsic limitations in wave propagation. Their realization at microwave frequencies has followed two different paths; one consisting of embedding resonant inclusions in a host dielectric, and the other following a transmission-line approach, i.e., building 1-D, 2-D, or 3-D cascades of circuit elements, respectively, as linear, planar or bulk right- or left-handed metamaterials. The latter is known to provide larger bandwidth and better robustness to ohmic losses. Extending these concepts to optical frequencies is a challenging task, due to changes in material response to electromagnetic waves at these frequencies. However, recently we have studied theoretically how it may be possible to have circuit nano-elements at these frequencies by properly exploiting plasmonic resonances. Here we present our theoretical work on translating the circuit concepts of right- and left-handed metamaterials into optical frequencies by applying the analogy between nanoparticles and nanocircuit elements in transmission lines. We discuss how it is possible to synthesize optical negative-refraction metamaterials by properly cascading plasmonic and non-plasmonic elements in 1-D, 2-D and 3-D geometries.
Suppression of ion transport due to long-lived subwavelength localization by an optical lattice.
Karpa, Leon; Bylinskii, Alexei; Gangloff, Dorian; Cetina, Marko; Vuletić, Vladan
2013-10-18
We report the localization of an ion by a one-dimensional optical lattice in the presence of an applied external force. The ion is confined radially by a radio frequency trap and axially by a combined electrostatic and optical-lattice potential. Using a resolved Raman sideband technique, one or several ions are cooled to a mean vibrational number
Suppression of Ion Transport due to Long-Lived Subwavelength Localization by an Optical Lattice
NASA Astrophysics Data System (ADS)
Karpa, Leon; Bylinskii, Alexei; Gangloff, Dorian; Cetina, Marko; Vuletić, Vladan
2013-10-01
We report the localization of an ion by a one-dimensional optical lattice in the presence of an applied external force. The ion is confined radially by a radio frequency trap and axially by a combined electrostatic and optical-lattice potential. Using a resolved Raman sideband technique, one or several ions are cooled to a mean vibrational number ⟨n⟩=(0.1±0.1) along the optical lattice. We measure the average position of a periodically driven ion with a resolution down to λ/40, and demonstrate localization to a single lattice site for up to 10 ms. This opens new possibilities for studying many-body systems with long-range interactions in periodic potentials, as well as fundamental models of friction.
NASA Astrophysics Data System (ADS)
Liu, Hongyi; Zhou, Jun; Chen, Yijian
2015-03-01
To break through 1-D IC layout limitations, we develop computationally efficient 2-D layout decomposition and stitching techniques which combine the optical and self-aligned multiple patterning (SAMP) processes. A polynomial time algorithm is developed to decompose the target layout into two components, each containing one or multiple sets of unidirectional features that can be formed by a SAMP+cut/block process. With no need of connecting vias, the final 2-D features are formed by directly stitching two components together. This novel patterning scheme is considered as a hybrid approach as the SAMP processes offer the capability of density scaling while the stitching process creates 2-D design freedom as well as the multiple-CD/pitch capability. Its technical advantages include significant reduction of via steps and avoiding the interdigitating types of multiple patterning (for density multiplication) to improve the processing yield. The developed decomposition and synthesis algorithms are tested using 2-D layouts from NCSU open cell library. Statistical and computational characteristics of these public layout data are investigated and discussed.
Transfer of Bose-Einstein condensates through discrete breathers in an optical lattice
Hennig, H.; Dorignac, J.; Campbell, D. K.
2010-11-15
We study the effect of discrete breathers (DBs) on the transfer of a Bose-Einstein condensate (BEC) in an optical lattice using the discrete nonlinear Schroedinger equation. In previous theoretical (primarily numerical) investigations of the dynamics of BECs in leaking optical lattices, collisions between a DB and a lattice excitation, e.g., a moving breather (MB) or phonon, were studied. These collisions led to the transmission of a fraction of the incident (atomic) norm of the MB through the DB, while the DB can be shifted in the direction of the incident lattice excitation. Here we develop an analytic understanding of this phenomenon, based on the study of a highly localized system--namely, a nonlinear trimer--which predicts that there exists a total energy threshold of the trimer, above which the lattice excitation can trigger the destabilization of the DB and that this is the mechanism leading to the movement of the DB. Furthermore, we give an analytic estimate of upper bound to the norm that is transmitted through the DB. We then show numerically that a qualitatively similar threshold exists in extended lattices. Our analysis explains the results of the earlier numerical studies and may help to clarify functional operations with BECs in optical lattices such as blocking and filtering coherent (atomic) beams.
Optical Study of Interactions in a d-Electron Kondo Lattice with Ferromagnetism
Burch, K. S.; Schafgans, A.; Butch, N. P.; Sayles, T. A.; Maple, M. B.; Sales, Brian C; Mandrus, David; Basov, D. N.
2005-01-01
We report on a comprehensive optical, transport, and thermodynamic study of the Zintl compound Yb{sub 14}MnSb{sub 11}, demonstrating that it is the first ferromagnetic Kondo lattice compound in the underscreened limit. We propose a scenario whereby the combination of Kondo and Jahn-Teller effects provides a consistent explanation of both transport and optical data.
Controlling dipole-dipole frequency shifts in a lattice-based optical atomic clock
Chang, D.E.; Lukin, M.D.; Ye Jun
2004-02-01
Motivated by the ideas of using cold alkaline-earth atoms trapped in an optical lattice for realization of optical atomic clocks, we investigate theoretically the perturbative effects of atom-atom interactions on a clock transition frequency. These interactions are mediated by the dipole fields associated with the optically excited atoms. We predict resonancelike features in the frequency shifts when constructive interference among atomic dipoles occur. We theoretically demonstrate that by fine tuning the coherent dipole-dipole couplings in appropriately designed lattice geometries, the undesirable frequency shifts can be greatly suppressed.
Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks
Hachisu, H.; Takamoto, M.; Katori, H.; Miyagishi, K.; Porsev, S. G.; Derevianko, A.; Ovsiannikov, V. D.; Pal'chikov, V. G.
2008-02-08
We report vapor-cell magneto-optical trapping of Hg isotopes on the {sup 1}S{sub 0}-{sup 3}P{sub 1} intercombination transition. Six abundant isotopes, including four bosons and two fermions, were trapped. Hg is the heaviest nonradioactive atom trapped so far, which enables sensitive atomic searches for ''new physics'' beyond the standard model. We propose an accurate optical lattice clock based on Hg and evaluate its systematic accuracy to be better than 10{sup -18}. Highly accurate and stable Hg-based clocks will provide a new avenue for the research of optical lattice clocks and the time variation of the fine-structure constant.
Light-scattering detection of quantum phases of ultracold atoms in optical lattices
Ye Jinwu; Zhang, J. M.; Liu, W. M.; Zhang Keye; Li Yan; Zhang Weiping
2011-05-15
Ultracold atoms loaded on optical lattices can provide unprecedented experimental systems for the quantum simulations and manipulations of many quantum phases. However, so far, how to detect these quantum phases effectively remains an outstanding challenge. Here, we show that the optical Bragg scattering of cold atoms loaded on optical lattices can be used to detect many quantum phases, which include not only the conventional superfluid and Mott insulating phases, but also other important phases, such as various kinds of charge density wave (CDW), valence bond solid (VBS), CDW supersolid (CDW-SS) and Valence bond supersolid (VB-SS).
Trapping of neutral mercury atoms and prospects for optical lattice clocks.
Hachisu, H; Miyagishi, K; Porsev, S G; Derevianko, A; Ovsiannikov, V D; Pal'chikov, V G; Takamoto, M; Katori, H
2008-02-01
We report vapor-cell magneto-optical trapping of Hg isotopes on the (1)S(0)-(3)P(1) intercombination transition. Six abundant isotopes, including four bosons and two fermions, were trapped. Hg is the heaviest nonradioactive atom trapped so far, which enables sensitive atomic searches for "new physics" beyond the standard model. We propose an accurate optical lattice clock based on Hg and evaluate its systematic accuracy to be better than 10;{-18}. Highly accurate and stable Hg-based clocks will provide a new avenue for the research of optical lattice clocks and the time variation of the fine-structure constant. PMID:18352368
p-Wave Cold Collisions in an Optical Lattice Clock
Lemke, N. D.; Sherman, J. A.; Oates, C. W.; Ludlow, A. D.; Stecher, J. von; Rey, A. M.
2011-09-02
We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts they impart on the atoms' internal clock states. Exploiting Fermi statistics, we uncover p-wave collisions, in both weakly and strongly interacting regimes. With the higher density afforded by two-dimensional lattice confinement, we demonstrate that strong interactions can lead to a novel suppression of this collision shift. In addition to reducing the systematic errors of lattice clocks, this work has application to quantum information and quantum simulation with alkaline-earth atoms.
Cooling and long-lived single-site localization of an ion in an optical lattice
NASA Astrophysics Data System (ADS)
Bylinskii, Alexei; Karpa, Leon; Gangloff, Dorian; Cetina, Marko; Vuletic, Vladan
2013-05-01
We report on localization of a continuously cooled single ion by a one-dimensional optical lattice. The ion is confined in a hybrid trap formed by an optical dipole potential produced by the standing-wave field of an optical cavity and a two-dimensional radio-frequency Paul trap transverse to the cavity axis. A lattice-assisted resolved Raman sideband process cools the ion to energies 20 times lower than the depth of the lattice potential, close to the vibrational ground state. We observe ion localization by measuring its displacement in the presence of a periodically driven electric field parallel to the lattice. We demonstrate full suppression of the driven ion motion due to optical localization to a single lattice site on a time-scale of 100 μs, which is 100 times longer than the vibrational period of the ion in the lattice site. At a longer time scale of 1 ms, driven motion is suppressed to 50%. The presented system paves the way to the realization of novel experiments studying classical and quantum friction models, and many-body physics with long-range interactions in periodic potentials. Army Research Office, National Science Foundation, National Science and Engineering Research Council of Canada, Alexander von Humboldt Foundation.
NASA Astrophysics Data System (ADS)
Goldman, N.; Gerbier, F.; Lewenstein, M.
2013-07-01
We describe a scheme to engineer non-Abelian gauge potentials on a square optical lattice using laser-induced transitions. We emphasize the case of two-electron atoms, where the electronic ground state g is laser-coupled to a metastable state e within a state-dependent optical lattice. In this scheme, the alternating pattern of lattice sites hosting g and e states depicts a chequerboard structure, allowing for laser-assisted tunnelling along both spatial directions. In this configuration, the nuclear spin of the atoms can be viewed as a ‘flavour’ quantum number undergoing non-Abelian tunnelling along nearest-neighbour links. We show that this technique can be useful to simulate the equivalent of the Haldane quantum Hall model using cold atoms trapped in square optical lattices, offering an interesting route to realize Chern insulators. The emblematic Haldane model is particularly suited to investigate the physics of topological insulators, but requires, in its original form, complex hopping terms beyond nearest-neighbouring sites. In general, this drawback inhibits a direct realization with cold atoms, using standard laser-induced tunnelling techniques. We demonstrate that a simple mapping allows us to express this model in terms of matrix hopping operators that are defined on a standard square lattice. This mapping is investigated for two models that lead to anomalous quantum Hall phases. We discuss the practical implementation of such models, exploiting laser-induced tunnelling methods applied to the chequerboard optical lattice.
Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices
NASA Astrophysics Data System (ADS)
da Luz, H. L. F.; Abdullaev, F. Kh.; Gammal, A.; Salerno, M.; Tomio, Lauro
2010-10-01
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices
Luz, H. L. F. da; Gammal, A.; Abdullaev, F. Kh.; Salerno, M.; Tomio, Lauro
2010-10-15
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
Negative refraction of ultra-cold atoms in optical lattices with nonuniform artificial gauge fields
NASA Astrophysics Data System (ADS)
Zhang, Ai-Xia; Xue, Ju-Kui
2016-07-01
We theoretically study the reflection and refraction of ultra-cold atoms in optical lattices exposed to a nonuniform artificial magnetic field. The introduction of the nonuniform artificial magnetic field to the optical lattice for suitable designer magnetic potential barrier can lead to a series of intriguing reflection and refraction phenomena of atoms, including reflection, positive refraction, negative refraction and atomic matter wave splitting. Both the occurrence and the distribution of these reflection and refraction scenarios can be coherently controlled by the nonuniform artificial magnetic field. In particular, the regions close to the boundary of reflection demonstrate two more interesting propagation modes, i.e., a reflected branch of atoms comprising a positive or negative refracted branch of atoms with almost same atom population will be excited simultaneously at the magnetic potential barrier. The results can be a guide for the coherent control of the matter waves in optical lattices and the design of new atom optics devices.
Towards quantum simulation with two-electron 173Yb fermions in an optical lattice
NASA Astrophysics Data System (ADS)
Song, Bo; Zou, Yueyang; He, Chengdong; Haciyev, Elnur; Cai, Geyue; Chan, Wing Kin; Huang, Wei; Jo, Gyu-Boong
2016-05-01
Recent development of cooling and manipulating Ytterbium atoms opens a new avenue to investigate unprecedented atomic systems with SU(N) spin symmetry and orbital degrees of freedom. The available metastable states and narrow-line optical transitions of Ytterbium atoms allow for the versatile control of the system. Here, we first describe our apparatus for producing ultracold Ytterbium-173 quantum gases in an optical lattice. A gas of 3 ×104 Ytterbium-173 atoms is routinely produced at T /TF ~ 0 . 3 , and loaded into an optical lattice potential. Then we report our recent progress on the spin orbital (SO) coupling interaction realized in optical lattice. As a novel quantum simulator, cold Ytterbium atoms with SO coupling provide a platform to explore the intriguing topological physics. Funded by the Research Grants Council (RGC) of Hong Kong Project# 16300215.
All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal
NASA Astrophysics Data System (ADS)
Goudarzi, Kiyanoosh; Mir, Ali; Chaharmahali, Iman; Goudarzi, Dariush
2016-04-01
In this paper, we have proposed an all-optical logic gate structure based on line and point defects created in the two dimensional square lattice of silicon rods in air photonic crystals (PhCs). Line defects are embedded in the ГX and ГZ directions of the momentum space. The device has two input and two output ports. It has been shown analytically whether the initial phase difference between the two input beams is π/2, they interfere together constructively or destructively to realize the logical functions. The simulation results show that the device can acts as a XOR and an OR logic gate. It is applicable in the frequency range of 0-0.45 (a/λ), however we set it at (a/λ=) 0.419 for low dispersion condition, correspondingly the lambda is equal to 1.55 μm. The maximum delay time to response to the input signals is about 0.4 ps, hence the speed of the device is about 2.5 THz. Also 6.767 dB is the maximum contrast ratio of the device.
Ultracold Nonreactive Molecules in an Optical Lattice: Connecting Chemistry to Many-Body Physics.
Doçaj, Andris; Wall, Michael L; Mukherjee, Rick; Hazzard, Kaden R A
2016-04-01
We derive effective lattice models for ultracold bosonic or fermionic nonreactive molecules (NRMs) in an optical lattice, analogous to the Hubbard model that describes ultracold atoms in a lattice. In stark contrast to the Hubbard model, which is commonly assumed to accurately describe NRMs, we find that the single on-site interaction parameter U is replaced by a multichannel interaction, whose properties we elucidate. Because this arises from complex short-range collisional physics, it requires no dipolar interactions and thus occurs even in the absence of an electric field or for homonuclear molecules. We find a crossover between coherent few-channel models and fully incoherent single-channel models as the lattice depth is increased. We show that the effective model parameters can be determined in lattice modulation experiments, which, consequently, measure molecular collision dynamics with a vastly sharper energy resolution than experiments in a free-space ultracold gas. PMID:27081984
Ultracold Nonreactive Molecules in an Optical Lattice: Connecting Chemistry to Many-Body Physics
NASA Astrophysics Data System (ADS)
Doçaj, Andris; Wall, Michael L.; Mukherjee, Rick; Hazzard, Kaden R. A.
2016-04-01
We derive effective lattice models for ultracold bosonic or fermionic nonreactive molecules (NRMs) in an optical lattice, analogous to the Hubbard model that describes ultracold atoms in a lattice. In stark contrast to the Hubbard model, which is commonly assumed to accurately describe NRMs, we find that the single on-site interaction parameter U is replaced by a multichannel interaction, whose properties we elucidate. Because this arises from complex short-range collisional physics, it requires no dipolar interactions and thus occurs even in the absence of an electric field or for homonuclear molecules. We find a crossover between coherent few-channel models and fully incoherent single-channel models as the lattice depth is increased. We show that the effective model parameters can be determined in lattice modulation experiments, which, consequently, measure molecular collision dynamics with a vastly sharper energy resolution than experiments in a free-space ultracold gas.
Ultracold nonreactive molecules in an optical lattice: connecting chemistry to many-body physics
NASA Astrophysics Data System (ADS)
Mukherjee, Rick; Ewart, Kevin; Alam, Shah; Wall, Michael; Doçaj, Andris; Hazzard, Kaden
2016-05-01
We derive effective lattice models for ultracold bosonic or fermionic nonreactive molecules (NRMs) in an optical lattice. In stark contrast to the standard Hubbard model, which is commonly assumed to accurately describe NRMs, we find that the single on-site interaction parameter U is replaced by a multi-channel interaction. The complex, multi-channel collisional physics is unrelated to dipolar interactions, and so occurs even in the absence of an electric field or for homonuclear molecules. We find a crossover between coherent few-channel models and fully incoherent single-channel models as the lattice depth is increased. We devise ways to control the effective model parameters using external fields and lattice anisotropy. We show that these parameters can be determined in lattice modulation experiments, which measure molecular collision dynamics with a vastly sharper energy resolution than experiments in an ultracold gas. We will report our progress calculating this novel model's ground state phase diagram.
Resolved Sideband Spectroscopy and Cooling of Strontium in a 532-nm Optical Lattice
NASA Astrophysics Data System (ADS)
Aman, James; Hill, Joshua; Killian, T. C.
2016-05-01
Resolved sideband cooling is a powerful and well established technique for driving ultracold atoms in optical lattices to the motional ground state of individual lattice sites. Here we present spectroscopy of the narrow 5s21S0 --> 5 s 5 p3P1 transition for neutral strontium-84 in a 532nm optical lattice. Resolved red- and blue-detuned sidebands are observed corresponding to changes in the motional state in the lattice sites. Driving the red sideband, we demonstrate cooling into the ground state, which increases the initial phase-space density before forced evaporative cooling. This is a promising technique for improving the production of strontium quantum degenerate gases. Research supported by the Robert A, Welch Foundation under Grant No. C-1844.
Dynamics of cold bosons in optical lattices: effects of higher Bloch bands
NASA Astrophysics Data System (ADS)
Łącki, Mateusz; Delande, Dominique; Zakrzewski, Jakub
2013-01-01
The extended effective multiorbital Bose-Hubbard-type Hamiltonian which takes into account higher Bloch bands is discussed for boson systems in optical lattices, with emphasis on dynamical properties, in relation to current experiments. It is shown that the renormalization of Hamiltonian parameters depends on the dimension of the problem studied. Therefore, mean-field phase diagrams do not scale with the coordination number of the lattice. The effect of Hamiltonian parameters renormalization on the dynamics in reduced one-dimensional optical lattice potential is analyzed. We study both the quasi-adiabatic quench through the superfluid-Mott insulator transition and the absorption spectroscopy, that is, the energy absorption rate when the lattice depth is periodically modulated.
Weyl points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space
NASA Astrophysics Data System (ADS)
Buljan, Hrvoje; Dubcek, Tena; Kennedy, Colin; Lu, Ling; Ketterle, Wolfgang; Soljacic, Marin
2015-05-01
We show that Hamiltonians with Weyl points can be realized for ultracold atoms using laser-assisted tunneling in three-dimensional (3D) optical lattices. Weyl points are synthetic magnetic monopoles that exhibit a robust, 3D linear dispersion (e.g., see). They are associated with many interesting topological states of matter, such as Weyl semimetals and chiral Weyl fermions. However, Weyl points have yet to be experimentally observed in any system. We show that this elusive goal is well-within experimental reach with an extension of the techniques recently used to obtain the Harper Hamiltonian. We propose using laser assisted tunneling to create a 3D optical lattice, with specifically designed hopping between lattice sites that breaks inversion symmetry. The design leads to creation of four Weyl points in the Brillouin zone of the lattice, which are verified to be monopoles of the synthetic magnetic field. Supported by the Unity through Knowledge Fund (Grant 5/13).
Mechanical and electronic energy eigenstates of neutral Rb atoms in deep optical lattices
NASA Astrophysics Data System (ADS)
Neuzner, Andreas; Koerber, Matthias; Morin, Olivier; Ritter, Stephan; Rempe, Gerhard
2015-05-01
Optical lattices allow for tight three-dimensional confinement of neutral atoms in quasi-harmonic potentials and have become a standard tool in experimental quantum optics. Applications range from fundamental topics like metrology to applications in quantum communication and quantum information processing. Here we present an experimental characterization of the motional and internal energy eigenstates of optically trapped 87Rb atoms. We implement different spectroscopy techniques based on non-destructive hyperfine state detection using an optical cavity. Applying these techniques, we observe and explain a series of effects like the decoupling of the hyperfine spin due to a tensor lightshift and mechanical effects associated with a small non-orthogonality of the lattice axes. Furthermore, we succeed to exploit the latter for optical cooling of a single atom into the two-dimensional mechanical groundstate in an environment with restricted optical access.
Light scattering from ultracold atoms in optical lattices as an optical probe of quantum statistics
Mekhov, Igor B.; Maschler, Christoph; Ritsch, Helmut
2007-11-15
We study off-resonant collective light scattering from ultracold atoms trapped in an optical lattice. Scattering from different atomic quantum states creates different quantum states of the scattered light, which can be distinguished by measurements of the spatial intensity distribution, quadrature variances, photon statistics, or spectral measurements. In particular, angle-resolved intensity measurements reflect global statistics of atoms (total number of radiating atoms) as well as local statistical quantities (single-site statistics even without optical access to a single site) and pair correlations between different sites. As a striking example we consider scattering from transversally illuminated atoms into an optical cavity mode. For the Mott-insulator state, similar to classical diffraction, the number of photons scattered into a cavity is zero due to destructive interference, while for the superfluid state it is nonzero and proportional to the number of atoms. Moreover, we demonstrate that light scattering into a standing-wave cavity has a nontrivial angle dependence, including the appearance of narrow features at angles, where classical diffraction predicts zero. The measurement procedure corresponds to the quantum nondemolition measurement of various atomic variables by observing light.
NASA Astrophysics Data System (ADS)
Hong, Woo-Pyo; Jung, Young-Dae
2013-10-01
We find the existence conditions for stationary dipole and tripole surface solitons formed at the interface of a nonlocal nonlinear medium and a lattice with linearly modulated frequency. We investigate how the degree of nonlocality, the depth, and the modulation frequency of the optical lattice field affect on the existence of the surface solitons and their dynamics. The relationship between the power and the model parameters is identified. The stability of the surface dipole and tripole solitons is numerically investigated.
Rice-Mele model with topological solitons in an optical lattice
NASA Astrophysics Data System (ADS)
Przysiężna, Anna; Dutta, Omjyoti; Zakrzewski, Jakub
2015-01-01
Attractive ultracold fermions trapped in a one-dimensional periodically shaken optical lattice are considered. For an appropriate resonant shaking, a dimerized structure emerges for which the system realizes paradigmatic physics described by the Rice-Mele model. The emergent nature of the system together with density fluctuations or controlled modifications of lattice filling allow for the creation of defects. Those defects lead to topologically protected localized modes carrying the fractional particle number. Their possible experimental signatures are discussed.
Interacting bosons in an optical lattice: Bose-Einstein condensates and Mott insulator
Fialko, O.; Moseley, Ch.; Ziegler, K.
2007-05-15
A dense Bose gas with hard-core interaction is considered in an optical lattice. We study the phase diagram in terms of a special mean-field theory that describes a Bose-Einstein condensate and a Mott insulator with a single particle per lattice site for zero as well as for nonzero temperatures. We calculate the densities, the excitation spectrum, and the static structure factor for each of these phases.
Quantum fluctuations of a 1D bosonic gas in an optical lattice
NASA Astrophysics Data System (ADS)
Ruostekoski, Janne
2005-05-01
We numerically study the quantum dynamics of a 1D bosonic gas in a shallow optical lattice for both static and time-dependent lattices. In particular, we model the strongly damped dipole oscillations which have recently been observed experimentally at NIST by Fertig et al. cond-mat/0410491. We find a qualitative agreement with the experimentally observed damping rates which can be explained as being due to zero temperature quantum fluctuations.
Pulsating Instability of a Bose-Einstein Condensate in an Optical Lattice
Shrestha, Uttam; Kostrun, Marijan; Javanainen, Juha
2008-08-15
We find numerically that in the limit of weak atom-atom interactions a Bose-Einstein condensate in an optical lattice may develop a pulsating dynamical instability in which the atoms nearly periodically form a peak in the occupation numbers of the lattice sites, and then return to the unstable initial state. Multiple peaks behaving similarly are also found. Simple arguments show that the pulsating instability is a remnant of integrability, and give a handle on the relevant physical scales.
Spin-orbit-coupled Bose-Einstein condensates in a one-dimensional optical lattice.
Hamner, C; Zhang, Yongping; Khamehchi, M A; Davis, Matthew J; Engels, P
2015-02-20
We investigate a spin-orbit-coupled Bose-Einstein condensate loaded into a translating optical lattice. We experimentally demonstrate the lack of Galilean invariance in the spin-orbit-coupled system, which leads to anisotropic behavior of the condensate depending on the direction of translation of the lattice. The anisotropy is theoretically understood by an effective dispersion relation. We experimentally confirm this theoretical picture by probing the dynamical instability of the system. PMID:25763940
NASA Astrophysics Data System (ADS)
Guangwei, Li; Haotong, Zhang; Zhongrui, Bai
2015-06-01
Bolton & Schlegel presented a promising deconvolution method to extract one-dimensional (1D) spectra from a two-dimensional (2D) optical fiber spectral CCD (charge-coupled device) image. The method could eliminate the PSF (point-spread function) difference between fibers, extract spectra to the photo noise level, as well as improve the resolution. But the method is limited by its huge computation requirement and thus can not be implemented in actual data reduction. In this article, we develop a practical computation method to solve the computation problem. The new computation method can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. Our method does not require large amounts of memory and can extract a 4 k × 4 k noise-free CCD image with 250 fibers in 2 hr. To make our method more practical, we further consider the influence of noise, which is thought to be an intrinsic ill-posed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. We do a series of simulations to test how our method performs under more real situations with Poisson noise and extreme cross talk. Compared with the results of traditional extraction methods, i.e., the Aperture Extraction Method and the Profile Fitting Method, our method has the least residual and influence by cross talk. For the noise-added image, the computation speed does not depend very much on fiber distance, the signal-to-noise ratio converges in 2-4 iterations, and the computation times are about 3.5 hr for the extreme fiber distance and about 2 hr for nonextreme cases. A better balance between the computation time and result precision could be achieved by setting the precision threshold similar to the noise level. Finally, we apply our method to real LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope; a.k.a. Guo Shou Jing Telescope) data. We find that the 1D spectrum extracted by our
One-dimensional Bose gas in optical lattices of arbitrary strength
NASA Astrophysics Data System (ADS)
Astrakharchik, Grigory E.; Krutitsky, Konstantin V.; Lewenstein, Maciej; Mazzanti, Ferran
2016-02-01
One-dimensional Bose gas with contact interaction in optical lattices at zero temperature is investigated by means of the exact diffusion Monte Carlo algorithm. The results obtained from the fundamental continuous model are compared with those obtained from the lattice (discrete) Bose-Hubbard model, using exact diagonalization, and from the quantum sine-Gordon model. We map out the complete phase diagram of the continuous model and determine the regions of applicability of the Bose-Hubbard model. Various physical quantities characterizing the systems are calculated, and it is demonstrated that the sine-Gordon model used for shallow lattices is inaccurate.
Alkali-metal gases in optical lattices: Possible new type of quantum crystals
NASA Astrophysics Data System (ADS)
Meyerovich, A. E.
2003-11-01
Similarities between alkali-metal gases in optical lattices with noninteger occupation of the lattice sites and quantum crystals are explored. The analogy with the vacancy liquid (VL) provides an alternative explanation to the Mott transition for the recent experiment on the phase transition in the lattice. The VL can undergo Bose-Einstein condensation (BEC) with Tc within experimental reach. Direct and vacancy-assisted mechanisms of the band motion for hyperfine impurities are discussed. A large concentration of vacancies can result in the spatial decomposition of the system into pure hyperfine components. Below the vacancy condensation the impurity component resembles 3He in 3He He II mixtures.
Increasing the filling of ultracold KRb molecules in a 3D optical lattice
NASA Astrophysics Data System (ADS)
Moses, Steven; Covey, Jacob; Gadway, Bryce; Yan, Bo; Miecnikowski, Matthew; Ye, Jun; Jin, Deborah
2015-05-01
Ultracold polar molecules, with their long-range electric dipolar interactions, offer new opportunities for studying quantum magnetism and many-body physics. Recently, our group observed spin exchange interactions between KRb molecules in a 3D optical lattice, which is one of the first steps towards studying lattice spin models with polar molecules. The lattice fillings were about 10% or less in these experiments. Future experiments will benefit greatly from lower entropies and higher lattice fillings. Here, we have investigated the molecular creation process in a 3D optical lattice with the goal of maximizing the filling fraction. We start by loading a BEC of Rb and a degenerate Fermi gas of K into a 3D optical lattice. In the absence of K, Rb is a Mott insulator. We study how the Mott insulator and the filling of Rb are affected by the presence of K and develop a strategy to maintain high Rb filling throughout the molecule production process. We also find that we can convert a large fraction of these Rb to molecules when we operate with low Rb numbers. We acknowledge funding from DARPA, DOE, NIST, NSF, AFOSR, and the NDSEG Graduate Fellowship.
Signatures of spatial inversion asymmetry of an optical lattice observed in matter-wave diffraction
NASA Astrophysics Data System (ADS)
Thomas, Claire K.; Barter, Thomas H.; Leung, Tsz Him; Okano, Masayuki; Stamper-Kurn, Dan M.
2016-05-01
The structure of a two-dimensional honeycomb optical lattice potential with small inversion asymmetry is characterized using coherent diffraction of 87 Rb atoms. We demonstrate that even a small potential asymmetry, with peak-to-peak amplitude of <= 2 . 3 % of the overall lattice potential, can lead to pronounced inversion asymmetry in the momentum-space diffraction pattern. The observed asymmetry is explained quantitatively by considering both Kaptiza-Dirac scattering in the Raman-Nath regime, and also either perturbative or full-numerical treatment of the band structure of a periodic potential with a weak inversion symmetry breaking term. Our results have relevance both for the experimental development of coherent atom optics and also for the proper interpretation of time-of-flight assays of atomic materials in optical lattices. This work was supported by the NSF and the AFOSR through the MURI program.
Time-normalized correlation function of ultracold atomic gas released from an optical lattice
Li Yan; Chen Lisheng; Xiong Hongwei
2007-12-15
The time-correlation function of ultracold atomic gas is theoretically investigated. Atoms are initially confined in an optical lattice and in a Mott insulator regime. We consider the effect of gravity on the time correlation among atomic wave functions when the atomic cloud is released from the optical lattice. The time-correlation function in this process displays sharp peaks, a feature that is analogous to the spatial-normalized correlation observed in recent experiments. The origin and properties of the interference pattern are theoretically investigated in detail. Similar to the spatial correlation, the time correlation in expanding atomic clouds reveals the ordering of indistinguishable particles in an optical lattice. Experimental detection scheme and its potential use in the measurement of gravitational acceleration are briefly discussed.
Signatures of spatial inversion asymmetry of an optical lattice observed in matter-wave diffraction
NASA Astrophysics Data System (ADS)
Thomas, C. K.; Barter, T. H.; Leung, T.-H.; Daiss, S.; Stamper-Kurn, D. M.
2016-06-01
The structure of a two-dimensional honeycomb optical lattice potential with small inversion asymmetry is characterized using coherent diffraction of 87Rb atoms. We demonstrate that even a small potential asymmetry, with peak-to-peak amplitude of ≤2.3 % of the overall lattice potential, can lead to pronounced inversion asymmetry in the momentum-space diffraction pattern. The observed asymmetry is explained quantitatively by considering both Kapitza-Dirac scattering in the Raman-Nath regime and also either perturbative or full-numerical treatment of the band structure of a periodic potential with a weak inversion-symmetry-breaking term. Our results have relevance for both the experimental development of coherent atom optics and the proper interpretation of time-of-flight assays of atomic materials in optical lattices.
NASA Astrophysics Data System (ADS)
Zhao, Qiang
2016-02-01
Motivated by recent experiments carried out by Spielman's group at NIST, we study the vortex formation in a rotating Bose-Einstein condensate in synthetic magnetic field confined in a harmonic potential combined with an optical lattice. We obtain numerical solutions of the two-dimensional Gross-Pitaevskii equation and compare the vortex formation by synthetic magnetic field method with those by rotating frame method. We conclude that a large angular momentum indeed can be created in the presence of the optical lattice. However, it is still more difficult to rotate the condensate by the synthetic magnetic field than by the rotating frame even if the optical lattice is added, and the chemical potential and energy remain almost unchanged by increasing rotational frequency.
Creation of a low-entropy quantum gas of polar molecules in an optical lattice
NASA Astrophysics Data System (ADS)
Moses, Steven A.; Covey, Jacob P.; Miecnikowski, Matthew T.; Yan, Bo; Gadway, Bryce; Ye, Jun; Jin, Deborah S.
2015-11-01
Ultracold polar molecules, with their long-range electric dipolar interactions, offer a unique platform for studying correlated quantum many-body phenomena. However, realizing a highly degenerate quantum gas of molecules with a low entropy per particle is challenging. We report the synthesis of a low-entropy quantum gas of potassium-rubidium molecules (KRb) in a three-dimensional optical lattice. We simultaneously load into the optical lattice a Mott insulator of bosonic Rb atoms and a single-band insulator of fermionic K atoms. Then, using magnetoassociation and optical state transfer, we efficiently produce ground-state molecules in the lattice at those sites that contain one Rb and one K atom. The achieved filling fraction of 25% should enable future studies of transport and entanglement propagation in a many-body system with long-range dipolar interactions.
Atomic Bloch-Zener oscillations and Stückelberg interferometry in optical lattices.
Kling, Sebastian; Salger, Tobias; Grossert, Christopher; Weitz, Martin
2010-11-19
We report on experiments investigating quantum transport and band interferometry of an atomic Bose-Einstein condensate in an optical lattice with a two-band miniband structure, realized with a Fourier-synthesized optical lattice potential. Bloch-Zener oscillations, the coherent superposition of Bloch oscillations and Landau-Zener tunneling between the two bands, are observed. When the relative phase between paths in different bands is varied, an interference signal is observed, demonstrating the coherence of the dynamics in the miniband system. Measured fringe patterns of this Stückelberg interferometer allow us to interferometrically map out the band structure of the optical lattice over the full Brillouin zone. PMID:21231316
Creation of a low-entropy quantum gas of polar molecules in an optical lattice.
Moses, Steven A; Covey, Jacob P; Miecnikowski, Matthew T; Yan, Bo; Gadway, Bryce; Ye, Jun; Jin, Deborah S
2015-11-01
Ultracold polar molecules, with their long-range electric dipolar interactions, offer a unique platform for studying correlated quantum many-body phenomena. However, realizing a highly degenerate quantum gas of molecules with a low entropy per particle is challenging. We report the synthesis of a low-entropy quantum gas of potassium-rubidium molecules (KRb) in a three-dimensional optical lattice. We simultaneously load into the optical lattice a Mott insulator of bosonic Rb atoms and a single-band insulator of fermionic K atoms. Then, using magnetoassociation and optical state transfer, we efficiently produce ground-state molecules in the lattice at those sites that contain one Rb and one K atom. The achieved filling fraction of 25% should enable future studies of transport and entanglement propagation in a many-body system with long-range dipolar interactions. PMID:26542566
A quantum gas of polar KRb molecules in an optical lattice
NASA Astrophysics Data System (ADS)
Covey, Jacob; Miecnikowski, Matthew; Moses, Steven; Fu, Zhengkun; Jin, Deborah; Ye, Jun
2016-05-01
Ultracold polar molecules provide new opportunities for investigation of strongly correlated many-body spin systems such as many-body localization and quantum magnetism. In an effort to access such phenomena, we load polar KRb molecules into a three-dimensional optical lattice. In this system, we observed many-body spin dynamics between molecules pinned in a deep lattice, even though the filling fraction of the molecules was only 5%. We have recently performed a thorough investigation of the molecule creation process in an optical lattice, and consequently improved our filling fraction to 30% by preparing and overlapping Mott and band insulators of the initial atomic gases. More recently, we switched to a second generation KRb apparatus that will allow application of large, stable electric fields as well as high-resolution addressing and detection of polar molecules in optical lattices. We plan to use these capabilities to study non-equilibrium spin dynamics in an optical lattice with nearly single site resolution. I will present the status and direction of the second generation apparatus.
Detection of antiferromagnetic order by cooling atoms in an optical lattice
NASA Astrophysics Data System (ADS)
Yang, Tsung-Lin; Teles, Rafael; Hazzard, Kaden; Hulet, Randall; Rice University Collaboration
2016-05-01
We have realized the Fermi-Hubbard model with fermionic 6 Li atoms in a three-dimensional compensated optical lattice. The compensated optical lattice has provided low enough temperatures to produce short-range antiferromagnetic (AF) spin correlations, which we detect via Bragg scattering of light. Previously, we reached temperatures down to 1.4 times that of the AFM phase transition, more than a factor of 2 below temperatures obtained previously in 3D optical lattices with fermions. In order to further reduce the entropy in the compensated lattice, we implement an entropy conduit - which is a single blue detuned laser beam with a waist size smaller than the overall atomic sample size. This repulsive narrow potential provides a conductive metallic path between the low entropy core and the edges of the atomic sample where atoms may be evaporated. In addition, the entropy conduit may store entropy, thus further lowering the entropy in the core. We will report on the status of these efforts to further cool atoms in the optical lattice. Work supported by ARO MURI Grant, NSF and The Welch Foundation.
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168
Dipole-dipole interactions in optical lattices do not follow an inverse cube power law
NASA Astrophysics Data System (ADS)
Wall, M. L.; Carr, L. D.
2013-12-01
We study the effective dipole-dipole interactions in ultracold quantum gases on optical lattices as a function of asymmetry in confinement along the principal axes of the lattice. In particular, we study the matrix elements of the dipole-dipole interaction in the basis of lowest band Wannier functions which serve as a set of low-energy states for many-body physics on the lattice. We demonstrate that, for shallow lattices in quasi-reduced dimensional scenarios, the effective interaction between dipoles in an optical lattice is non-algebraic in the inter-particle separation at short to medium distance on the lattice scale and has a long-range power-law tail, in contrast to the pure power-law behavior of the dipole-dipole interaction in free space. The modifications to the free-space interaction can be sizable; we identify differences of up to 36% from the free-space interaction at the nearest-neighbor distance in quasi-one-dimensional arrangements. The interaction difference depends essentially on asymmetry in confinement, due to the d-wave anisotropy of the dipole-dipole interaction. Our results do not depend on statistics, applying to both dipolar Bose-Einstein condensates and degenerate Fermi gases. Using matrix product state simulations, we demonstrate that use of the correct lattice dipolar interaction leads to significant deviations from many-body predictions using the free-space interaction. Our results are relevant to up and coming experiments with ultracold heteronuclear molecules, Rydberg atoms and strongly magnetic atoms in optical lattices.
Self-consistent Hartree-Fock approach for interacting bosons in optical lattices
NASA Astrophysics Data System (ADS)
Lü, Qin-Qin; Patton, Kelly R.; Sheehy, Daniel E.
2014-12-01
A theoretical study of interacting bosons in a periodic optical lattice is presented. Instead of the commonly used tight-binding approach (applicable near the Mott-insulating regime of the phase diagram), the present work starts from the exact single-particle states of bosons in a cubic optical lattice, satisfying the Mathieu equation, an approach that can be particularly useful at large boson fillings. The effects of short-range interactions are incorporated using a self-consistent Hartree-Fock approximation, and predictions for experimental observables such as the superfluid transition temperature, condensate fraction, and boson momentum distribution are presented.
Response to dynamical modulation of the optical lattice for fermions in the Hubbard model
Xu Zhaoxin; Yang Shuxiang; Sheehy, Daniel E.; Moreno, Juana; Jarrell, Mark; Chiesa, Simone; Su Shiquan; Scalettar, Richard T.
2011-08-15
Fermionic atoms in a periodic optical lattice provide a realization of the single-band Hubbard model. Using quantum Monte Carlo simulations along with the maximum-entropy method, we evaluate the effect of a time-dependent perturbative modulation of the optical lattice amplitude on atomic correlations, revealed in the fraction of doubly occupied sites. We find that the effect of modulation depends strongly on the filling--the response of the double occupation is significantly different in the half-filled Mott insulator from that in the doped Fermi liquid region.
Possibility of Stark-insensitive cotrapping of two atomic species in optical lattices
Morrison, Muir J.; Derevianko, A.; Dzuba, V. A.
2011-01-15
Much effort has been devoted to removing differential Stark shifts for atoms trapped in specially tailored ''magic'' optical lattices, but thus far work has focused on a single trapped atomic species. In this work, we extend these ideas to include two atomic species sharing the same optical lattice. We show qualitatively that, in particular, scalar J=0 divalent atoms paired with nonscalar state atoms have the necessary characteristics to achieve such Stark shift cancellation. We then present numerical results on ''magic'' trapping conditions for {sup 27}Al paired with {sup 87}Sr, as well as several other divalent atoms.
Possibility of Stark-insensitive cotrapping of two atomic species in optical lattices
NASA Astrophysics Data System (ADS)
Morrison, Muir J.; Dzuba, V. A.; Derevianko, A.
2011-01-01
Much effort has been devoted to removing differential Stark shifts for atoms trapped in specially tailored “magic” optical lattices, but thus far work has focused on a single trapped atomic species. In this work, we extend these ideas to include two atomic species sharing the same optical lattice. We show qualitatively that, in particular, scalar J=0 divalent atoms paired with nonscalar state atoms have the necessary characteristics to achieve such Stark shift cancellation. We then present numerical results on “magic” trapping conditions for Al27 paired with Sr87, as well as several other divalent atoms.
Possibility of Stark-insensitive cotrapping of two atomic species in optical lattices
NASA Astrophysics Data System (ADS)
Morrison, Muir; Dzuba, V. A.; Derevianko, A.
2011-05-01
Much effort has been devoted to removing differential Stark shifts for atoms trapped in specially tailored ``magic'' optical lattices, but thus far work has focused on a single trapped atomic species. In this work, we extend these ideas to include two atomic species sharing the same optical lattice. We show qualitatively that, in particular, scalar J = 0 divalent atoms paired with non-scalar state atoms have the necessary characteristics to achieve such Stark shift cancellation. We then present numerical results on ``magic'' trapping conditions for 27Al paired with 87Sr, as well as several other divalent atoms.
Quantum Entangled Dark Solitons Formed by Ultracold Atoms in Optical Lattices
Mishmash, R. V.; Carr, L. D.
2009-10-02
Inspired by experiments on Bose-Einstein condensates in optical lattices, we study the quantum evolution of dark soliton initial conditions in the context of the Bose-Hubbard Hamiltonian. An extensive set of quantum measures is utilized in our analysis, including von Neumann and generalized quantum entropies, quantum depletion, and the pair correlation function. We find that quantum effects cause the soliton to fill in. Moreover, soliton-soliton collisions become inelastic, in strong contrast to the predictions of mean-field theory. These features show that the lifetime and collision properties of dark solitons in optical lattices provide clear signals of quantum effects.
Hidden-symmetry-protected quantum pseudo-spin Hall effect in optical lattices
NASA Astrophysics Data System (ADS)
Hou, Jing-Min; Chen, Wei
2016-06-01
We propose a scheme to realize a Z2 topological insulator in a square optical lattice. Different from the conventional topological insulator protected by the time-reversal symmetry, here the optical lattice possesses a hidden symmetry, which is responsible for the present Z2 topological order. With a properly defined pseudospin, such a topological insulator is characterized by the helical edge states that exhibits pseudo-spin-momentum locking, so it can be considered as a quantum pseudo-spin Hall insulator. The Z2 topological invariant is derived and its experimental detection is discussed as well.
Stability of Superfluid and Supersolid Phases of Dipolar Bosons in Optical Lattices
Danshita, Ippei; Sa de Melo, Carlos A. R.
2009-11-27
We perform a stability analysis of superfluid (SF) and supersolid (SS) phases of polarized dipolar bosons in two-dimensional optical lattices at high filling factors and zero temperature, and obtain the phase boundaries between SF, checkerboard SS (CSS), striped SS (SSS), and collapse. We show that the phase diagram can be explored through the application of an external field and the tuning of its direction with respect to the optical lattice plane. In particular, we find a transition between the CSS and SSS phases.
Linear optics design of negative momentum compaction lattices for PS2
Papaphilippou,Y.; de Maria,R.; Barranco, J.; Bartmann, W.; Benedikt, M.; Carli, C.; Goddard, B.; Peggs, S.; Trbojevic, D.
2009-05-04
In view of the CERN Proton Synchrotron proposed replacement with a new ring (PS2), a detailed optics design has been undertaken following the evaluation of several lattice options. The basic arc module consists of cells providing negative momentum compaction. The straight section is formed with a combination of FODO and quadrupole triplet cells, to accommodate the injection and extraction systems, in particular the H{sup -} injection elements. The arc is matched to the straight section with a dispersion suppressor and matching module. Different lattices are compared with respect to their linear optics functions, tuning flexibility and geometrical acceptance properties.
High-precision spectroscopy of ultracold molecules in an optical lattice
NASA Astrophysics Data System (ADS)
McGuyer, B. H.; McDonald, M.; Iwata, G. Z.; Tarallo, M. G.; Grier, A. T.; Apfelbeck, F.; Zelevinsky, T.
2015-05-01
The study of ultracold molecules tightly trapped in an optical lattice can expand the frontier of precision measurement and spectroscopy, and provide a deeper insight into molecular and fundamental physics. Here we create, probe, and image microkelvin 88Sr2 molecules in a lattice, and demonstrate precise measurements of molecular parameters as well as coherent control of molecular quantum states using optical fields. We discuss the sensitivity of the system to dimensional effects, a new bound-to-continuum spectroscopy technique for highly accurate binding energy measurements, and prospects for new physics with this rich experimental system.
Dynamics of polarized vortex solitons in nonlocal media with Bessel optical lattices.
Zhang, Bingzhi; Chen, Zhifeng
2015-09-21
We investigate the formation of polarized vortex solitons in nonlocal media with Bessel optical lattices and show the various dynamics of these solitons. Particularly, the stable high-order polarized vortex solitons, which are not found in local media with Bessel optical lattices, are found in nonlocal media. It is found that the nonlocal nonlinearity plays an important role in the stability of these solitons which is similar to that of phase vortex solitons. However, we show that the dynamics of these polarized vortex solitons are quite different from the phase vortex solitons. PMID:26406632
Multiphoton interband excitations of quantum gases in driven optical lattices
NASA Astrophysics Data System (ADS)
Weinberg, M.; Ölschläger, C.; Sträter, C.; Prelle, S.; Eckardt, A.; Sengstock, K.; Simonet, J.
2015-10-01
We report on the observation of multiphoton interband absorption processes for quantum gases in shaken light crystals. Periodic inertial forcing, induced by a spatial motion of the lattice potential, drives multiphoton interband excitations of up to the ninth order. The occurrence of such excitation features is systematically investigated with respect to the potential depth and the driving amplitude. Ab initio calculations of resonance positions as well as numerical evaluation of their strengths exhibit good agreement with experimental data. In addition our findings could make it possible to reach novel phases of quantum matter by tailoring appropriate driving schemes.
Imaging and addressing of individual fermionic atoms in an optical lattice
NASA Astrophysics Data System (ADS)
Edge, G. J. A.; Anderson, R.; Jervis, D.; McKay, D. C.; Day, R.; Trotzky, S.; Thywissen, J. H.
2015-12-01
We demonstrate fluorescence microscopy of individual fermionic potassium atoms in a 527-nm-period optical lattice. Using electromagnetically induced transparency cooling on the 770.1-nm D1 transition of 40K , we find that atoms remain at individual sites of a 0.2-mK-deep lattice, with a 1 /e pinning lifetime of 67 (9 )s , while scattering ˜103 photons per second. The plane to be imaged is isolated using microwave spectroscopy in a magnetic-field gradient, and can be chosen at any depth within the three-dimensional lattice. With a similar protocol, we also demonstrate patterned selection within a single lattice plane. High-resolution images are acquired using a microscope objective with 0.8 numerical aperture, from which we determine the occupation of lattice sites in the imaging plane with 94(2)% fidelity per atom. Imaging with single-atom sensitivity and addressing with single-site accuracy are key steps towards the search for unconventional superfluidity of fermions in optical lattices, the initialization and characterization of transport and nonequilibrium dynamics, and the observation of magnetic domains.
Relaxation Dynamics Of Bose-Fermi Doublons In Optical Lattices
NASA Astrophysics Data System (ADS)
Safavi-Naini, Arghavan; Gärttner, Martin; Schachenmayer, Johannes; Wall, Michael L.; Covey, Jacob P.; Moses, Steven A.; Miecnikowski, Matthew T.; Fu, Zhengkun; Rey, Ana Maria; Jin, Deborah S.; Ye, Jun
2016-05-01
Motivated by a recent experiment at JILA we investigate the out-of-equilibrium dynamics of a dilute Fermi-Bose mixture, starting from a well-defined initial state, where each lattice site is either empty or occupied by a Bose-Fermi doublon. Utilizing analytical techniques and numerical simulations using the t-DRMG method, we identify the leading relaxation mechanisms of the doublons. At short times strong interactions tend to hold the doublons together, as previously reported in similar type of experiments made with identical bosons or two component fermions. Since the fermions feel a much shallower lattice than the bosons, the bosons can be visualized as random localization centers for the fermions. However, at longer times the boson tunneling cannot be ignored and additional decay channels unique to Bose-Fermi mixtures become relevant. While cluster expansion allows us to characterize the short time dynamics for dilute arrays, the long time relaxation dynamics at higher densities is strongly correlated. In this regime exact numerical techniques are employed. JILA-NSF-PFC-1125844, NSF-PIF-1211914, ARO, AFOSR, AFOSR-MURI.
The Sr optical lattice clock at JILA: A new record in atomic clock performance
NASA Astrophysics Data System (ADS)
Nicholson, Travis; Bloom, Benjamin; Williams, Jason; Campbell, Sara; Bishof, Michael; Zhang, Xibo; Zhang, Wei; Bromley, Sarah; Hutson, Ross; McNally, Rees; Ye, Jun
2014-05-01
The exquisite control exhibited over quantum states of individual particles has revolutionized the field of precision measurement, as exemplified by highly accurate atomic clocks. Optical clocks have been the most accurate frequency standards for the better part of a decade, surpassing even the cesium microwave fountains upon which the SI second is based. Two classes of optical clocks have outperformed cesium: single-ion clocks and optical lattice clocks. Historically ion clocks have always been more accurate, and the precision of ion clocks and lattice clocks has been comparable. For years it has been unclear if lattice clocks can overcome key systematics and become more accurate than ion clocks. In this presentation I report the first lattice clock that has surpassed ion clocks in both precision and accuracy. These measurements represent a tenfold improvement in precision and a factor of 20 improvement in accuracy over the previous best lattice clock results. This work paves the way for a better realization of SI units, the development of more sophisticated quantum sensors, and precision tests of the fundamental laws of nature.
Short-range quantum magnetism of ultracold fermions in an optical lattice.
Greif, Daniel; Uehlinger, Thomas; Jotzu, Gregor; Tarruell, Leticia; Esslinger, Tilman
2013-06-14
Quantum magnetism originates from the exchange coupling between quantum mechanical spins. Here, we report on the observation of nearest-neighbor magnetic correlations emerging in the many-body state of a thermalized Fermi gas in an optical lattice. The key to obtaining short-range magnetic order is a local redistribution of entropy, which allows temperatures below the exchange energy for a subset of lattice bonds. When loading a repulsively interacting gas into either dimerized or anisotropic simple cubic configurations of a tunable-geometry lattice, we observe an excess of singlets as compared with triplets consisting of two opposite spins. For the anisotropic lattice, the transverse spin correlator reveals antiferromagnetic correlations along one spatial axis. Our work facilitates addressing open problems in quantum magnetism through the use of quantum simulation. PMID:23704375
Dicke superradiance as nondestructive probe for the state of atoms in optical lattices
NASA Astrophysics Data System (ADS)
ten Brinke, Nicolai; Schützhold, Ralf
2016-04-01
We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dynamics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics - which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.
Dicke superradiance as nondestructive probe for the state of atoms in optical lattices
NASA Astrophysics Data System (ADS)
Brinke, Nicolai ten; Schützhold, Ralf
2016-05-01
We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dynamics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics - which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.
Optical increase of photo-integrated micro- and nano-periodic susceptibility lattices
NASA Astrophysics Data System (ADS)
Smirnov, Vitaly A.; Vostrikova, Liubov I.
2015-03-01
It is demonstrated that the nonlinear photo-integrated micro- and nano-periodic second-order susceptibility lattices with very small amplitudes which were preliminarily recorded using bi-chromatic powerful laser light in amorphous glass materials can be increased up to some orders of magnitude under the action of a simple coherent monochromatic radiation. The optical increase of the small lattices takes place independent of the polarization and direction of propagation of the optical amplifying radiation and is achieved at various wavelengths. The observed phenomenon is not be explained only by nonlinear wave interaction in medium and also may be related to the microscopic asymmetry processes of the optical transitions between local centers in an isotropic medium that leads to the appearance and growth of the all-optically induced small micro- and nano-periodic electrical charges separations inside the sample. Possible mechanisms that may be responsible for the observed effects in the studied phosphate glasses are discussed.
Heterodimer of two distinguishable atoms in a one-dimensional optical lattice
Odong, Otim; Sanders, Jerome C.; Javanainen, Juha
2011-09-15
Within the Bose-Hubbard model, we theoretically determine the stationary states of two distinguishable atoms in a one-dimensional optical lattice and compare with the case of two identical bosons. A heterodimer has odd-parity dissociated states that do not depend on the interactions between the atoms, and the lattice momenta of the two atomic species may have different averages even for a bound state of the dimer. We discuss methods to detect the dimer. The different distributions of the quasimomenta of the two species may be observed in suitable time-of-flight experiments. Also, an asymmetry in the lineshape as a function of the modulation frequency may reveal the presence of the odd-parity dissociated states when a heterodimer is dissociated by modulating the depth of the optical lattice.
Hidden nonsymmorphic symmetry in optical lattices with one-dimensional spin-orbit coupling
NASA Astrophysics Data System (ADS)
Chen, Hua; Liu, Xiong-Jun; Xie, X. C.
2016-05-01
We uncover the nonsymmorphic symmetry and investigate its effects on the noncollinear band structures of a quasi-two-dimensional optical lattice with synthetic one-dimensional spin-orbit coupling and a tunable Zeeman field. The perpendicular Zeeman field breaks time-reversal symmetry and lifts the Kramers degeneracy which is protected by time-reversal and generalized inversion symmetries. Interestingly, we find that the degeneracy of Bloch bands on the border of the Brillouin zone is immune to the Zeeman field. This degeneracy, reminiscent of that in nonsymmorphic crystals, is protected by the hidden glide-plane symmetry that comprises a physical reflection involving both spatial and spin degrees of freedom followed by a nonprimitive lattice translation. Furthermore, we show that the band degeneracy can be lifted by the glide-plane-symmetry-breaking lattice potential. Finally, we propose to detect these effects by measuring a dynamical structure factor with optical Bragg spectroscopy.
Bose-Einstein quantum phase transition in an optical lattice model
Aizenman, Michael; Lieb, Elliott H.; Seiringer, Robert; Solovej, Jan Philip; Yngvason, Jakob
2004-08-01
Bose-Einstein condensation (BEC) in cold gases can be turned on and off by an external potential, such as that presented by an optical lattice. We present a model of this phenomenon which we are able to analyze rigorously. The system is a hard core lattice gas at half of the maximum density and the optical lattice is modeled by a periodic potential of strength {lambda}. For small {lambda} and temperature, BEC is proved to occur, while at large {lambda} or temperature there is no BEC. At large {lambda} the low-temperature states are in a Mott insulator phase with a characteristic gap that is absent in the BEC phase. The interparticle interaction is essential for this transition, which occurs even in the ground state. Surprisingly, the condensation is always into the p=0 mode in this model, although the density itself has the periodicity of the imposed potential.
Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices.
Aidelsburger, M; Atala, M; Lohse, M; Barreiro, J T; Paredes, B; Bloch, I
2013-11-01
We demonstrate the experimental implementation of an optical lattice that allows for the generation of large homogeneous and tunable artificial magnetic fields with ultracold atoms. Using laser-assisted tunneling in a tilted optical potential, we engineer spatially dependent complex tunneling amplitudes. Thereby, atoms hopping in the lattice accumulate a phase shift equivalent to the Aharonov-Bohm phase of charged particles in a magnetic field. We determine the local distribution of fluxes through the observation of cyclotron orbits of the atoms on lattice plaquettes, showing that the system is described by the Hofstadter model. Furthermore, we show that for two atomic spin states with opposite magnetic moments, our system naturally realizes the time-reversal-symmetric Hamiltonian underlying the quantum spin Hall effect; i.e., two different spin components experience opposite directions of the magnetic field. PMID:24237530
NASA Astrophysics Data System (ADS)
Diebel, F.; Boguslawski, M.; Lučić, Nemanja M.; Jović Savić, Dragana M.; Denz, C.
2015-03-01
Light propagation in structured photonic media covers many fascinating wave phenomena resulting from the band structure of the underlying lattice. Recently, the focus turned towards deterministic aperiodic structures exhibiting distinctive band gap properties. To experimentally study these effects, optical induction of photonic refractive index landscapes turned out to be the method of choice to fabricate these structures. In this contribution, we present a paradigm change of photonic lattice design by introducing a holographic optical induction method based on pixel-like spatially multiplexed single-site nondiffracting Bessel beams. This technique allows realizing a huge class of two-dimensional photonic structures, including deterministic aperiodic golden-angle Vogel spirals, as well as Fibonacci lattices.
Fulde-Ferrell Superfluids without Spin Imbalance in Driven Optical Lattices.
Zheng, Zhen; Qu, Chunlei; Zou, Xubo; Zhang, Chuanwei
2016-03-25
Spin-imbalanced ultracold Fermi gases have been widely studied recently as a platform for exploring the long-sought Fulde-Ferrell-Larkin-Ovchinnikov superfluid phases, but so far conclusive evidence has not been found. Here we propose to realize an Fulde-Ferrell (FF) superfluid without spin imbalance in a three-dimensional fermionic cold atom optical lattice, where s- and p-orbital bands of the lattice are coupled by another weak moving optical lattice. Such coupling leads to a spin-independent asymmetric Fermi surface, which, together with the s-wave scattering interaction between two spins, yields an FF type of superfluid pairing. Unlike traditional schemes, our proposal does not rely on the spin imbalance (or an equivalent Zeeman field) to induce the Fermi surface mismatch and provides a completely new route for realizing FF superfluids. PMID:27058062
Semiclassical solitons in strongly correlated systems of ultracold bosonic atoms in optical lattices
Demler, Eugene; Maltsev, Andrei
2011-07-15
Highlights: > Dynamics of their formation in strongly correlated systems of ultracold bosonic atoms in optical lattices. > Regime of very strong interactions between atoms, the so-called hard core bosons regime. > Character of soliton excitations is dramatically different from the usual Gross-Pitaevskii regime. - Abstract: We investigate theoretically soliton excitations and dynamics of their formation in strongly correlated systems of ultracold bosonic atoms in two and three dimensional optical lattices. We derive equations of nonlinear hydrodynamics in the regime of strong interactions and incommensurate fillings, when atoms can be treated as hard core bosons. When parameters change in one direction only we obtain Korteweg-de Vries type equation away from half-filling and modified KdV equation at half-filling. We apply this general analysis to a problem of the decay of the density step. We consider stability of one dimensional solutions to transverse fluctuations. Our results are also relevant for understanding nonequilibrium dynamics of lattice spin models.
NASA Astrophysics Data System (ADS)
Tang, Cheng; Zhang, Teng; Weiss, David
2015-05-01
We present our progress towards measuring the electron EDM using laser-cooled cesium and rubidium atoms trapped in a one dimensional optical lattice. To date, we have collected Cs atoms in two parallel 1D optical lattices that thread three glass electric field plates in a region of well-shielded magnetic fields. As a precursor to the EDM measurement, we have performed a variant of a Hanle effect measurement and used it to study the vector light shifts due to the cavity-built up lattice beams. This gives us a very high sensitivity to the absolute linear polarization of the light, which we have demonstrated to be as good as ~10-8 in fractional power. NSF PHY-13-07096.
Bending light via adiabatic optical transition in longitudinally modulated photonic lattices
Han, Bin; Xu, Lei; Dou, Yiling; Xu, Jingjun; Zhang, Guoquan
2015-01-01
Bending light in a controllable way is desired in various applications such as beam steering, navigating and cloaking. Different from the conventional way to bend light by refractive index gradient, transformation optics or special beams through wavefront design such as Airy beams and surface plasmons, we proposed a mechanism to bend light via resonant adiabatic optical transition between Floquet-Bloch (FB) modes from different FB bands in longitudinally modulated photonic lattices. The band structure of longitudinally modulated photonic lattices was calculated by employing the concept of quasi-energy based on the Floquet-Bloch theory, showing the existence of band discontinuities at specific resonant points which cannot be revealed by the coupled-mode theory. Interestingly, different FB bands can be seamlessly connected at these resonant points in longitudinally modulated photonic lattices driven by adiabatically varying the longitudinal modulation period along the propagation direction, which stimulates the adiabatic FB mode transition between different FB bands. PMID:26511890
Simulation of non-Abelian gauge theories with optical lattices.
Tagliacozzo, L; Celi, A; Orland, P; Mitchell, M W; Lewenstein, M
2013-01-01
Many phenomena occurring in strongly correlated quantum systems still await conclusive explanations. The absence of isolated free quarks in nature is an example. It is attributed to quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally, we have no definitive theory of high-temperature superconductivity. Though we have theories that could underlie such physics, we lack the tools to determine the experimental consequences of these theories. Quantum simulators may provide such tools. Here we show how to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we consider have several applications: they can be used to mimic quark confinement or to study dimer and valence-bond states (which may be relevant for high-temperature superconductors). PMID:24162080
Simulation of non-Abelian gauge theories with optical lattices
NASA Astrophysics Data System (ADS)
Tagliacozzo, L.; Celi, A.; Orland, P.; Mitchell, M. W.; Lewenstein, M.
2013-10-01
Many phenomena occurring in strongly correlated quantum systems still await conclusive explanations. The absence of isolated free quarks in nature is an example. It is attributed to quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally, we have no definitive theory of high-temperature superconductivity. Though we have theories that could underlie such physics, we lack the tools to determine the experimental consequences of these theories. Quantum simulators may provide such tools. Here we show how to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we consider have several applications: they can be used to mimic quark confinement or to study dimer and valence-bond states (which may be relevant for high-temperature superconductors).
Atom-optics simulator of lattice transport phenomena
NASA Astrophysics Data System (ADS)
Meier, Eric J.; An, Fangzhao Alex; Gadway, Bryce
2016-05-01
We experimentally investigate a scheme for studying lattice transport phenomena, based on the controlled momentum-space dynamics of ultracold atomic matter waves. In the effective tight-binding models that can be simulated, we demonstrate that this technique allows for a local and time-dependent control over all system parameters, and additionally allows for single-site resolved detection of atomic populations. We demonstrate full control over site-to-site off-diagonal tunneling elements (amplitude and phase) and diagonal site energies, through the observation of continuous-time quantum walks, Bloch oscillations, and negative tunneling. These capabilities open up new prospects in the experimental study of disordered and topological systems.
Katori, Hidetoshi; Takamoto, Masao; Hachisu, Hidekazu; Fujiki, Jun; Higashi, Ryoichi; Yasuda, Masami; Kishimoto, Tetsuo
2005-05-05
Employing the engineered electric fields, we demonstrate novel platforms for precision measurements with neutral atoms. (1) Applying the light shift cancellation technique, atoms trapped in an optical lattice reveal 50-Hz-narrow optical spectrum, yielding nearly an order of magnitude improvement over existing neutral-atom-based clocks. (2) Surface Stark trap has been developed to manipulate scalar atoms that are intrinsically robust to decoherence.
NASA Astrophysics Data System (ADS)
Andriyash, I. A.; Tikhonchuk, V. T.; Malka, V.; D'Humières, E.; Balcou, Ph.
2015-05-01
The scheme of the x-ray free electron laser based on the optical undulator created by two overlapped transverse laser beams is analyzed. A kinetic theoretical description and an ad hoc numerical model are developed to account for the finite energy spread, angular divergence, and the spectral properties of the electron beam in the optical lattice. The theoretical findings are compared to the results of the one- and three-dimensional numerical modeling with the spectral free electron laser code plares.
Landau-Zener tunneling of Bose-Einstein condensates in an optical lattice
Konotop, V.V.; Kevrekidis, P.G.; Salerno, M.
2005-08-15
A theory of the nonsymmetric Landau-Zener tunneling of Bose-Einstein condensates in deep optical lattices is presented. It is shown that periodic exchange of matter between the bands is described by a set of linearly coupled nonlinear Schroedinger equations. The key role of the modulational instability in rendering the interband transitions irreversible is highlighted.
Rakhimov, Abdulla; Askerzade, Iman N
2014-09-01
We have shown that the critical temperature of a Bose-Einstein condensate to a normal phase transition of noninteracting bosons in cubic optical lattices has a linear dependence on the filling factor, especially at large densities. The condensed fraction exhibits a linear power law dependence on temperature in contrast to the case of ideal homogeneous Bose gases. PMID:25314412
Control of diffusion of nanoparticles in an optical vortex lattice.
Zapata, Ivar; Delgado-Buscalioni, Rafael; Sáenz, Juan José
2016-06-01
A two-dimensional periodic optical force field, which combines conservative dipolar forces with vortices from radiation pressure, is proposed in order to influence the diffusion properties of optically susceptible nanoparticles. The different deterministic flow patterns are identified. In the low-noise limit, the diffusion coefficient is computed from a mean first passage time and the most probable escape paths are identified for those flow patterns which possess a stable stationary point. Numerical simulations of the associated Langevin equations show remarkable agreement with the analytically deduced expressions. Modifications of the force field are proposed so that a wider range of phenomena could be tested. PMID:27415231
Optical Signatures of Antiferromagnetic Ordering of Fermionic Atoms in an Optical Lattice
NASA Astrophysics Data System (ADS)
Cordobes Aguilar, Francisco; Ho, Andrew F.; Ruostekoski, Janne
2014-07-01
We show how off-resonant light scattering can provide quantitative information on antiferromagnetic ordering of a two-species fermionic atomic gas in a tightly-confined two-dimensional optical lattice. We analyze the emerging magnetic ordering of atoms in the mean-field and in random phase approximations and show how the many-body static and dynamic correlations, evaluated in the standard Feynman-Dyson perturbation series, can be detected in the scattered light signal. The staggered magnetization reveals itself in the magnetic Bragg peaks of the individual spin components. These magnetic peaks, however, can be considerably suppressed in the absence of a true long-range antiferromagnetic order. The light scattered outside the diffraction orders can be collected by a lens with highly improved signal-to-shot-noise ratio when the diffraction maxima are blocked. The collective and single-particle excitations are identified in the spectrum of the scattered light. We find that the spin-conserving and spin-exchanging atomic transitions convey information on density, longitudinal spin, and transverse spin correlations. The different correlations and scattering processes exhibit characteristic angular distribution profiles for the scattered light, and e.g., the diagnostic signal of transverse spin correlations could be separated from the optical response by the scattering direction, frequency, or polarization. We also analyze the detection accuracy by estimating the number of required measurements, constrained by the heating rate that is determined by inelastic light-scattering events. The imaging technique could be extended to the two-species fermionic states in other regions of the phase diagram where the ground-state properties are still not fully understood.
Chan, Kenneth H; Chan, Andrew C; Fried, William A; Simon, Jacob C; Darling, Cynthia L; Fried, Daniel
2015-01-01
Several studies have demonstrated the potential of cross-polarization optical coherence tomography (CP-OCT) to quantify the severity of early caries lesions (tooth decay) on tooth surfaces. The purpose of this study is to show that 2D images of the lesion depth and the integrated reflectivity can be used to accurately represent the severity of early lesions. Simulated early lesions of varying severity were produced on tooth samples using simulated lesion models. Methods were developed to convert the 3D CP-OCT images of the samples to 2D images of the lesion depth and lesion integrated reflectivity. Calculated lesion depths from OCT were compared with lesion depths measured from histological sections examined using polarized light microscopy. The 2D images of the lesion depth and integrated reflectivity are well suited for visualization of early demineralization. PMID:24307350
Imaging and addressing of individual fermionic atoms in an optical lattice
NASA Astrophysics Data System (ADS)
Trotzky, Stefan; Edge, Graham; Anderson, Rhys; Xu, Peihang; Venu, Vijin; Jervis, Dylan; McKay, Dave; Day, Ryan; Thywissen, Joseph
2016-05-01
The implementation of site-resolved imaging of atoms in short-period optical lattices constitutes a milestone achievement in the study of strongly correlated matter with these systems. Its realization with bosons six years ago has boosted progress in the field. In the last year, site-resolved imaging was demonstrated for fermions in five independent experiments. We present our newest results on site-resolved microscopy of ultracold 40 K in a 527nm-period optical lattice. Atoms remain pinned during imaging due to EIT cooling on the 770nm D1 transition. We observe pinning fidelities of up to 96% for an illumination time of 2.6s during which the atoms scatter > 2000 photons. A 0.8NA objective collects the fluorescence light to be imaged onto a EMCCD camera, giving a 600nm -wide PSF. In conjunction with the known lattice geometry, this allows us to reconstruct the lattice-site occupations from the images. The imaging technique is implemented in an apparatus capable of simulating the Fermi-Hubbard model. The use of tomographic tools enables us to select single lattice planes for background free imaging. We also address in-plane patterns with straight and circular boundaries in order to eliminate inhomogeneity effects on the imaging fidelity, or for controlled entropy removal.
Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.
2006-01-15
For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters.
Three-level Haldane-like model on a dice optical lattice
NASA Astrophysics Data System (ADS)
Andrijauskas, T.; Anisimovas, E.; RačiÅ«nas, M.; Mekys, A.; Kudriašov, V.; Spielman, I. B.; JuzeliÅ«nas, G.
2015-09-01
We consider ultracold atoms in a two-dimensional optical lattice of the dice geometry in a tight-binding regime. The atoms experience a laser-assisted tunneling between the nearest neighbor sites of the dice lattice accompanied by the momentum recoil. This allows one to engineer staggered synthetic magnetic fluxes over plaquettes, and thus pave a way towards the realization of topologically nontrivial band structures. In such a lattice the real-valued next-nearest neighbor transitions are not needed to reach a topological regime. Yet, such transitions can increase a variety of the obtained topological phases. The dice lattice represents a triangular Bravais lattice with a three-site basis consisting of a hub site connected to two rim sites. As a consequence, the dice lattice supports three energy bands. From this point of view, our model can be interpreted as a generalization of the paradigmatic Haldane model which is reproduced if one of the two rim sublattices is eliminated. We demonstrate that the proposed upgrade of the Haldane model creates a significant added value, including an easy access to topological semimetal phases relying only on the nearest neighbor coupling, as well as enhanced topological band structures featuring Chern numbers higher than one leading to physics beyond the usual quantum Hall effect. The numerical investigation is supported and complemented by an analytical scheme based on the study of singularities in the Berry connection.
Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays
Kataja, M.; Hakala, T. K.; Julku, A.; Huttunen, M. J.; van Dijken, S.; Törmä, P.
2015-01-01
Structuring metallic and magnetic materials on subwavelength scales allows for extreme confinement and a versatile design of electromagnetic field modes. This may be used, for example, to enhance magneto-optical responses, to control plasmonic systems using a magnetic field, or to tailor magneto-optical properties of individual nanostructures. Here we show that periodic rectangular arrays of magnetic nanoparticles display surface plasmon modes in which the two directions of the lattice are coupled by the magnetic field-controllable spin–orbit coupling in the nanoparticles. When breaking the symmetry of the lattice, we find that the optical response shows Fano-type surface lattice resonances whose frequency is determined by the periodicity orthogonal to the polarization of the incident field. In striking contrast, the magneto-optical Kerr response is controlled by the period in the parallel direction. The spectral separation of the response for longitudinal and orthogonal excitations provides versatile tuning of narrow and intense magneto-optical resonances. PMID:25947368
NASA Astrophysics Data System (ADS)
Topcu, T.; Derevianko, A.
2016-07-01
We predict the possibility of ‘triply magic’ optical lattice trapping of neutral divalent atoms. In such a lattice, the {}1{{{S}}}0 and {}3{{{P}}}0 clock states and an additional Rydberg state experience identical optical potentials, fully mitigating detrimental effects of the motional decoherence. In particular, we show that this triply magic trapping condition can be satisfied for Yb atom at optical wavelengths and for various other divalent systems (Ca, Mg, Hg and Sr) in the UV region. We assess the quality of triple magic trapping conditions by estimating the probability of excitation out of the motional ground state as a result of the excitations between the clock and the Rydberg states. We also calculate trapping laser-induced photoionization rates of divalent Rydberg atoms at magic frequencies. We find that such rates are below the radiative spontaneous-emission rates, due to the presence of Cooper minima in photoionization cross-sections.
Nie, Weijie; He, Ruiyun; Cheng, Chen; Rocha, Uéslen; Rodríguez Vázquez de Aldana, Javier; Jaque, Daniel; Chen, Feng
2016-05-15
We report on the fabrication of optical lattice-like waveguide structures in an Nd:YAP laser crystal by using direct femtosecond laser writing. With periodically arrayed laser-induced tracks, the waveguiding cores can be located in either the regions between the neighbored tracks or the central zone surrounded by a number of tracks as outer cladding. The polarization of the femtosecond laser pulses for the inscription has been found to play a critical role in the anisotropic guiding behaviors of the structures. The confocal photoluminescence investigations reveal different stress-induced modifications of the structures inscribed by different polarization of the femtosecond laser beam, which are considered to be responsible for the refractive index changes of the structures. Under optical pump at 808 nm, efficient waveguide lasing at ∼1 μm wavelength has been realized from the optical lattice-like structure, which exhibits potential applications as novel miniature light sources. PMID:27176954
Wave propagation through photonic waveguide lattices in the presence of optical gain and loss.
Ardakani, Abbas Ghasempour
2016-05-01
We investigate the effects of gain and loss on the light propagation through a lattice of coupled optical waveguides. We demonstrate that superdiffusive transport becomes diffusive in the presence of optical loss after a critical propagation distance as in [Phys. Rev. Lett.113, 123903 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.123903]. However, when optical gain is introduced in the lattice of coupled waveguides, the beam broadening slows down from a superdiffusive to a highly subdiffusive regime after another critical distance. The critical distance decreases with increase of loss or gain in the waveguide lattice. For equal gain and loss, the value of critical distance in the array of active waveguides is much smaller than that in the case of lattice of lossy waveguides. Furthermore, we find that the effective width in the case of lossy waveguides decreases with increase of loss at the same propagation distance. Our results confirm that the regime of beam broadening does not depend on whether the gain is introduced in the waveguides or in their surroundings. PMID:27140375
Systematic Study of the ^87Sr Clock Transition in an Optical Lattice
NASA Astrophysics Data System (ADS)
Boyd, Martin; Ludlow, Andrew; Zelevinsky, Tanya; Foreman, Seth; Blatt, Sebastian; Notcutt, Mark; Ido, Tetsuya; Ye, Jun
2006-05-01
The ^1S0-^3P0 transition in ^87Sr is studied for the realization of an optical atomic clock, using μK atoms in a magic wavelength optical lattice [1]. The probe laser frequency is measured with an octave-spanning fs comb, which is referenced to a hydrogen maser (directly calibrated by the NIST primary Cs fountain clock) allowing high precision evaluation of potential systematic frequency shifts . By varying the lattice wavelength and trapping depth we find that the magic wavelength for the clock transition is 813.418(10) with a clock sensitivity to lattice deviations of ˜2 mHz/MHz for lattice intensities of 10 kW/cm^2. To explore the effect of atomic collisions on the clock frequency we varied the atomic density by a factor of 50 and did not find any shifts at the 3 x10-14 level. Dependence of the clock transition on magnetic fields has been examined as the hyperfine interaction (I = 9/2), which provides the small transition moment for the doubly forbidden clock transition, also results in a differential g factor of the ^3P0 and ^1S0 levels. We will report the latest results of this optical clock system. [1] A.D. Ludlow et al., Phys Rev Lett 96, 033003 (2006).
Micromagic Clock: Microwave Clock Based on Atoms in an Engineered Optical Lattice
Beloy, K.; Derevianko, A.; Dzuba, V. A.; Flambaum, V. V.
2009-03-27
We propose a new class of atomic microwave clocks based on the hyperfine transitions in the ground state of aluminum or gallium atoms trapped in optical lattices. For such elements magic wavelengths exist at which both levels of the hyperfine doublet are shifted at the same rate by the lattice laser field, canceling its effect on the clock transition. A similar mechanism for the magic wavelengths may work in microwave hyperfine transitions in other atoms which have the fine-structure multiplets in the ground state.
Collisional Losses, Decoherence, and Frequency Shifts in Optical Lattice Clocks with Bosons
Lisdat, Ch.; Winfred, J. S. R. Vellore; Middelmann, T.; Riehle, F.; Sterr, U.
2009-08-28
We have quantified collisional losses, decoherence and the collision shift in a one-dimensional optical lattice clock on the highly forbidden transition {sup 1}S{sub 0}-{sup 3}P{sub 0} at 698 nm with bosonic {sup 88}Sr. We were able to distinguish two loss channels: inelastic collisions between atoms in the upper and lower clock state and atoms in the upper clock state only. Based on the measured coefficients, we determine the operation parameters at which a 1D-lattice clock with {sup 88}Sr shows no degradation due to collisions on the fractional uncertainty level of 10{sup -16}.
Magic Wavelength to Make Optical Lattice Clocks Insensitive to Atomic Motion
Katori, Hidetoshi; Hashiguchi, Koji; Il'inova, E. Yu.; Ovsiannikov, V. D.
2009-10-09
In a standing wave of light, a difference in spatial distributions of multipolar atom-field interactions may introduce atomic-motion dependent clock uncertainties in optical lattice clocks. We show that the magic wavelength can be defined so as to eliminate the spatial mismatch in electric dipole, magnetic dipole, and electric quadrupole interactions for specific combinations of standing waves by allowing a spatially constant light shift arising from the latter two interactions. Experimental prospects of such lattices used with a blue magic wavelength are discussed.
Quantum Two-breathers Formed by Ultracold Bosonic Atoms in Optical Lattices
NASA Astrophysics Data System (ADS)
Tang, Bing
2016-06-01
Two-discrete breathers are the bound states of two localized modes that can appear in classical nonlinear lattices. I investigate the quantum signature of two-discrete breathers in the system of ultracold bosonic atoms in optical lattices, which is modeled as Bose-Hubbard model containing n bosons. When the number of bosons is small, I find numerically quantum two-breathers by making use of numerical diagonalization and perturbation theory. For the cases of a large number of bosons, I can successfully construct quantum two-breather states in the Hartree approximation.
Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices.
Miyake, Hirokazu; Siviloglou, Georgios A; Kennedy, Colin J; Burton, William Cody; Ketterle, Wolfgang
2013-11-01
We experimentally implement the Harper Hamiltonian for neutral particles in optical lattices using laser-assisted tunneling and a potential energy gradient provided by gravity or magnetic field gradients. This Hamiltonian describes the motion of charged particles in strong magnetic fields. Laser-assisted tunneling processes are characterized by studying the expansion of the atoms in the lattice. The band structure of this Hamiltonian should display Hofstadter's butterfly. For fermions, this scheme should realize the quantum Hall effect and chiral edge states. PMID:24237531
Shchesnovich, Valery S.
2007-09-15
Nonresonant Zener tunneling in decagonal quasiperiodic structures in two spatial dimensions is defined by its relation to Bragg resonance and is studied by direct numerical simulations and an analytical approach. It is shown that, in the shallow lattice limit, the tunneling dynamics about the Bragg resonances is described by the multilevel Landau-Zener-Majorana models, which capture the essential peaks of the complicated Fourier spectrum. The results have applications to dynamics of cold atoms and Bose-Einstein condensates in quasiperiodic optical lattices, light propagation in quasiperiodic photonic crystals, and ultrasonic experiments with quasiperiodic structures.
Atomic Landau-Zener Tunneling in Fourier-Synthesized Optical Lattices
Salger, Tobias; Geckeler, Carsten; Kling, Sebastian; Weitz, Martin
2007-11-09
We report on an experimental study of quantum transport of atoms in variable periodic optical potentials. The band structure of both ratchet-type asymmetric and symmetric lattice potentials is explored. The variable atom potential is realized by superimposing a conventional standing wave potential of {lambda}/2 spatial periodicity with a fourth-order multiphoton potential of {lambda}/4 periodicity. We find that the Landau-Zener tunneling rate between the first and the second excited Bloch band depends critically on the relative phase between the two spatial lattice harmonics.
High-fidelity rapid ground-state loading of an ultracold gas into an optical lattice.
Masuda, Shumpei; Nakamura, Katsuhiro; del Campo, Adolfo
2014-08-01
A protocol is proposed for the rapid coherent loading of a Bose-Einstein condensate into the ground state of an optical lattice, without residual excitation associated with the breakdown of adiabaticity. The driving potential required to assist the rapid loading is derived using the fast-forward technique, and generates the ground state in any desired short time. We propose an experimentally feasible loading scheme using a bichromatic lattice potential, which approximates the fast-forward driving potential with high fidelity. PMID:25148323
Optical lattices of excitons in InGaN/GaN quantum well systems
Chaldyshev, V. V. Bolshakov, A. S. Zavarin, E. E.; Sakharov, A. V.; Lundin, V. V.; Tsatsulnikov, A. F.; Yagovkina, M. A.
2015-01-15
Optical lattices of excitons in periodic systems of InGaN quantum wells with GaN barriers are designed, implemented, and investigated. Due to the collective interaction of quasi-two-dimensional excitons with light and a fairly high binding energy of excitons in GaN, optical Bragg reflection at room temperature is significantly enhanced. To increase the resonance optical response of the system, new structures with two quantum wells in a periodic supercell are designed and implemented. Resonance reflection of 40% at room temperatures for structures with 60 periods is demonstrated.
Frequency ratios of optical lattice clocks at the 17th decimal place
NASA Astrophysics Data System (ADS)
Katori, Hidetoshi
2016-05-01
Optical lattice clocks benefit from a low quantum-projection noise by simultaneously interrogating a large number of atoms, which are trapped in an optical lattice tuned to the ``magic wavelength'' to largely cancel out light shift perturbation in the clock transition. About a thousand atoms enable the clocks to achieve 10-18 instability in a few hours of operation, allowing intensive investigation and control of systematic uncertainties. As optical lattice clocks have reached inaccuracies approaching 10-18, it is now the uncertainty of the SI second (~ 10-16) itself that restricts the measurement of the absolute frequencies of such optical clocks. Direct comparisons of optical clocks are, therefore, the only way to investigate and utilize their superb performance beyond the SI second. In this presentation, we report on frequency comparisons of optical lattice clocks with neutral strontium (87 Sr), ytterbium (171 Yb) and mercury (199 Hg) atoms. By referencing cryogenic Sr clocks, we determine frequency ratios, νYb/νSr and νHg/νSr, of a cryogenic Yb clock and a Hg clock with uncertainty at the mid 10-17 level. Such ratios provide an access to search for temporal variation of the fundamental constants. We also present remote comparisons between cryogenic Sr clocks located at RIKEN and the University of Tokyo over a 30-km-long phase-stabilized fiber link. The gravitational red shift Δν /ν0 ~ 1.1× 10-18 Δh cm-1 reads out the height difference of Δh ~ 15 m between the two clocks with uncertainty of 5 cm, which demonstrates a step towards relativistic geodesy. ERATO, JST.
Endo, Tatsuro; Kajita, Hiroshi; Kawaguchi, Yukio; Kosaka, Terumasa; Himi, Toshiyuki
2016-06-01
The development of high-sensitive, and cost-effective novel biosensors have been strongly desired for future medical diagnostics. To develop novel biosensor, the authors focused on the specific optical characteristics of photonic crystal. In this study, a label-free optical biosensor, polymer-based two-dimensional photonic crystal (2D-PhC) film fabricated using nanoimprint lithography (NIL), was developed for detection of C-reactive protein (CRP) in human serum. The nano-hole array constructed NIL-based 2D-PhC (hole diameter: 230 nm, distance: 230, depth: 200 nm) was fabricated on a cyclo-olefin polymer (COP) film (100 µm) using thermal NIL and required surface modifications to reduce nonspecific adsorption of target proteins. Antigen-antibody reactions on the NIL-based 2D-PhC caused changes to the surrounding refractive index, which was monitored as reflection spectrum changes in the visible region. By using surface modified 2D-PhC, the calculated detection limit for CRP was 12.24 pg/mL at an extremely short reaction time (5 min) without the need for additional labeling procedures and secondary antibody. Furthermore, using the dual-functional random copolymer, CRP could be detected in a pooled blood serum diluted 100× with dramatic reduction of nonspecific adsorption. From these results, the NIL-based 2D-PhC film has great potential for development of an on-site, high-sensitivity, cost-effective, label-free biosensor for medical diagnostics applications. PMID:27150702
Coexistence of Mott and superfluid domains of bosons confined in optical lattice
NASA Astrophysics Data System (ADS)
Khanore, Mukesh; Dey, Bishwajyoti
2015-06-01
We investigate ground state properties of the attractive Bose-gas confined on square optical lattice and superimposed wine-bottle-bottom or Mexican hat trap potential. The system is modeled by two-dimensional Bose-Hubbard model with attractive interactions and inhomogeneous lattice potential. We calculate the energy spectrum, the on-site number fluctuation, local density and local compressibility using numerical exact diagonalization method for incommensurate lattice filling. The trap potential has several degenerate minimum sites distributed along a ring at the wine-bottle-bottom. It is shown that beyond a certain value of the attractive interaction strength there is phase coherent condensate on these degenerate sites with finite value of the on-site number fluctuation and local compressibility giving rise to localized superfluidity or superfluidity on a ring. For the same value of the interaction strength the non-degenerate sites produces Mott region.
NASA Astrophysics Data System (ADS)
Clements, Ethan; Ross, Preston; Rapp, Anthony; Cai, Hong; Reigle, Alex; Schlonsky, Eli; Lee, Hoseong; Clemens, James; Bali, Samir
2016-05-01
We experimentally investigate optical lattices using three different methods: pump-probe spectroscopy of vibrational energy levels, photon correlation of light scattered by cold atoms, and fluorescence imaging. Photon correlations of the scattered light can be used to measure lattice dwell times and crossover times between lattice sites. From this information we can derive the diffusion constant which can then be compared to direct measurement via fluorescence imaging. Furthermore, by Fourier transforming the time delayed photon correlations we can obtain the intensity spectrum which can be compared directly to pump-probe spectroscopy of the vibrational energy levels. We plan to carefully study situations in which the atomic transport properties deviate from Boltzman Gibbs statistics.
Three-dimensional optical lattice clock with bosonic {sup 88}Sr atoms
Akatsuka, Tomoya; Takamoto, Masao; Katori, Hidetoshi
2010-02-15
We present detailed analyses of our recent experiment on the three-dimensional (3D) optical lattice clock with bosonic {sup 88}Sr atoms in which the collisional frequency shift was suppressed by applying a single-occupancy lattice. Frequency shifts in magnetically induced spectroscopy on the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition ({lambda}=698 nm) of {sup 88}Sr were experimentally investigated by referencing a one-dimensional (1D) lattice clock based on spin-polarized {sup 87}Sr atoms. We discuss that the clock stability is limited by the current laser stability as well as the experimental sequence of the clock operation, which may be improved to {sigma}{sub y}({tau})=2x10{sup -16}/{radical}({tau}) by optimizing the cycle time of the clock operation.
Effects of Cu Dopant on Lattice and Optical Properties of ZnS Quantum Dots.
Shuhua, Lu; Aiji, Wang; Tingfang, Chen; Yinshu, Wang
2016-04-01
Doped and undoped ZnS colloidal nanocrystals have drawn much attention due to their versatile applications in the fields of optoelectronics and biotechnology. In this paper, Cu doped ZnS quantum dots were synthesized via the simple thermolysis of ethylxanthate salts. The lattice and optical properties of the nanocrystals were then studied in detail. The quantum dot lattice contracted linearly between Cu concentrations of 0.2-2%, while it continued to contract more gradually as Cu concentrations were further increased from 4 to 6%, due in part to the Cu ions located on the surface of the ZnS lattice. Cu incorporation induces a long tail in absorption at long wavelengths. The PL spectrum shows a red shift at first, and then a blue shift with increases in Cu concentration. Cu doped at low concentrations (0.2-1%) enhanced the emission, while high Cu concentrations (2-6%) quenched emissions. PMID:27451716
Instability of insulating states in optical lattices due to collective phonon excitations
NASA Astrophysics Data System (ADS)
Yukalov, V. I.; Ziegler, K.
2015-02-01
The effect of collective phonon excitations on the properties of cold atoms in optical lattices is investigated. These phonon excitations are collective excitations, whose appearance is caused by intersite atomic interactions correlating the atoms, and they do not arise without such interactions. These collective excitations should not be confused with lattice vibrations produced by an external force. No such force is assumed. But the considered phonons are purely self-organized collective excitations, characterizing atomic oscillations around lattice sites, due to intersite atomic interactions. It is shown that these excitations can essentially influence the possibility of atoms' being localized. The states that would be insulating in the absence of phonon excitations can become delocalized when these excitations are taken into account. This concerns long-range as well as local atomic interactions. To characterize the region of stability, the Lindemann criterion is used.
Spectroscopy for cold atom gases in periodically modulated optical lattice potential
NASA Astrophysics Data System (ADS)
Tokuno, Akiyuki; Giamarchi, Thierry
2011-03-01
Cold atoms in optical lattices are vigorously studied experimentally and theoretically as one of the candidates for a quantum simulator. At the same time, further development of probes to microscopic structure of systems is needed. We propose a novel spectroscopy in cold atom experiments by use of periodic phase-modulation of optical lattice potentials. Corresponding to the statistics of atoms, we formulate the different observables: The energy absorption rate for bosonic atom gases, and the doublon production rate for fermionic atom gases. These observables are formulated within the linear response theory. Interestingly they are given by the imaginary part of the retarded current-current correlation function which is familiar as a quantity corresponding to an optical conductivity. As an example, we discuss one-dimensional Mott insulating state, and also compare our spectroscopy with another known spectroscopy by amplitude-modulation of an optical lattice. This work was supported in part by the Swiss SNF under MaNEP and division II.
2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci
NASA Astrophysics Data System (ADS)
Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.
2005-06-01
3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.
Yang, Tsang-Po; Yossifon, Gilad; Yang, Ya-Tang
2016-05-01
Here, we report the characterization of the transport of micro- and nanospheres in a simple two-dimensional square nanoscale plasmonic optical lattice. The optical potential was created by exciting plasmon resonance by way of illuminating an array of gold nanodiscs with a loosely focused Gaussian beam. This optical potential produced both in-lattice particle transport behavior, which was due to near-field optical gradient forces, and high-velocity (∼μm/s) out-of-lattice particle transport. As a comparison, the natural convection velocity field from a delocalized temperature profile produced by the photothermal heating of the nanoplasmonic array was computed in numerical simulations. This work elucidates the role of photothermal effects on micro- and nanoparticle transport in plasmonic optical lattices. PMID:27226813
Approximate Wannier functions using discrete variable representation for asymmetric optical lattices
NASA Astrophysics Data System (ADS)
Paul, Saurabh; Tiesinga, Eite
2016-05-01
We propose a numerical method using discrete variable representation (DVR) for constructing real-valued approximate Wannier functions localized in a unit cell for both symmetric and asymmetric periodic potentials in the context of optical lattices. For a symmetric lattice with inversion symmetry, we construct Wannier functions for the lowest two bands as eigen states of the position operators. To ensure that the Wannier functions are real valued, we numerically obtain the band structure and real-valued eigen states using a uniform Fourier grid DVR. We then show by a comparison of tunneling energies, that the Wannier functions are accurate to better than ten significant digits when using double-precision arithmetic. The calculations are performed for a periodic double-well optical lattice having double-wells per unit cell with tunable asymmetry along the x axis and a single sinusoidal potential along the perpendicular directions. Localized functions at the two potential minima within each unit cell are similarly constructed, but using a superposition of solutions from the two lowest bands. We finally use these localized basis functions to determine the two-body interaction energies in the Bose-Hubbbard (BH) model, and show the dependence of the BH model on lattice asymmetry.
Synthetic gauge fields and many-body physics in an optical lattice clock
NASA Astrophysics Data System (ADS)
Koller, Andrew P.; Wall, Michael L.; Li, Shuming; Zhang, Xibo; Cooper, Nigel R.; Ye, Jun; Rey, Ana Maria
2015-05-01
We propose the implementation of a synthetic gauge field in a 1D optical lattice clock and explore the resulting single-particle and many-body physics. The system can realize an effective two-leg ladder by using the two clock states as a synthetic dimension, together with the tunneling-coupled 1D lattice sites. A large flux per plaquette is naturally generated because the clock laser imprints a phase that varies significantly across lattice sites. We propose to use standard spectroscopic tools - Ramsey and Rabi spectroscopy - to probe the band structure and reveal signatures of the spin-orbit coupling, including chiral edge states and the modification of single-particle physics due to s-wave and p-wave interactions. These effects can be probed in spite of the relatively high temperatures (~ micro Kelvin) and weak interactions, thanks to the exquisite precision and sensitivity of the JILA Sr optical lattice clock. We also discuss the exciting possibility of using the nuclear spin degrees of freedom to realize more exotic synthetic dimension topologies and flux patterns. Supported by JILA-NSF-PFC-1125844, NSF-PIF- 1211914, ARO, AFOSR, AFOSR-MURI, and NDSEG.
Fractional Quantum Hall Effects with Bose-gases in Rotating Optical Lattice Potentials
NASA Astrophysics Data System (ADS)
Gemelke, Nathan; Sarajlic, Edina; Chu, Steven
2008-05-01
It has previously been noted that an analog to the fractional quantum-Hall (FQH) effect for two-dimensional electron gases can be produced with harmonically trapped and rotating neutral atoms. We report progress investigating FQH-like effects in the centrifugal limit of small, rotating, two-dimensional Bose gases. An ensemble of such systems is prepared in an optical lattice with locally rotating on-site potentials, produced by manipulation only of lattice beam optical phases. The non- rotating few-atom ground states are adiabatically transformed to higher angular momentum by applying a time-dependent sweep of rotation rate and deformation of the local lattice potential. Near the centrifugal limit, where the trap rotates at its vibration frequency, correlation is expected as a result of collisions. The onset of this behavior is probed by a combination of photoassociative transitions to bound molecules, and careful analysis of time-of-flight momentum distributions of atoms suddenly released from the lattice.
Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice.
Taie, Shintaro; Ozawa, Hideki; Ichinose, Tomohiro; Nishio, Takuei; Nakajima, Shuta; Takahashi, Yoshiro
2015-11-01
Although kinetic energy of a massive particle generally has quadratic dependence on its momentum, a flat, dispersionless energy band is realized in crystals with specific lattice structures. Such macroscopic degeneracy causes the emergence of localized eigenstates and has been a key concept in the context of itinerant ferromagnetism. We report the realization of a "Lieb lattice" configuration with an optical lattice, which has a flat energy band as the first excited state. Our optical lattice potential has various degrees of freedom in its manipulation, which enables coherent transfer of a Bose-Einstein condensate into the flat band. In addition to measuring lifetime of the flat band population for different tight-binding parameters, we investigate the inter-sublattice dynamics of the system by projecting the sublattice population onto the band population. This measurement clearly shows the formation of the localized state with the specific sublattice decoupled in the flat band, and even detects the presence of flat-band breaking perturbations, resulting in the delocalization. Our results will open up the possibilities of exploring the physics of flat bands with a highly controllable quantum system. PMID:26665167
NASA Astrophysics Data System (ADS)
Ren, Jiageng; Camacho-Forero, Luis E.; Rossi, Daniel; Park, Yerok; Balbuena, Perla B.; Son, Dong Hee
2016-05-01
We report the in situ optical measurements of the rapid Li intercalation and deintercalation dynamics in 2-dimensional (2D) layered transition metal dichalcogenide (TMD) with a nanoscale lateral dimension using thin films fabricated with size-controlled colloidal TiS2 nanodiscs. The films exhibiting high optical homogeneity, where the interband absorption changes near-linearly to the amount of intercalated Li, enabled facile optical probing of the intercalation dynamics overcoming the shortcomings of amperometry susceptible to complications from non-Faradaic processes. The time scale of Li intercalation and deintercalation was on the order of seconds in the nanodiscs of ~100 nm lateral dimension, indicating sufficiently rapid dynamic control of the intercalation-induced material properties with a reduced lateral dimension. The change in the rate and reversibility of the dynamics during the multiple intercalation/deintercalation cycles was also measured, providing a unique window to observe the effect of potential structural changes on the intercalation and deintercalation dynamics in 2D layered TMD structures with a nanoscale lateral dimension.We report the in situ optical measurements of the rapid Li intercalation and deintercalation dynamics in 2-dimensional (2D) layered transition metal dichalcogenide (TMD) with a nanoscale lateral dimension using thin films fabricated with size-controlled colloidal TiS2 nanodiscs. The films exhibiting high optical homogeneity, where the interband absorption changes near-linearly to the amount of intercalated Li, enabled facile optical probing of the intercalation dynamics overcoming the shortcomings of amperometry susceptible to complications from non-Faradaic processes. The time scale of Li intercalation and deintercalation was on the order of seconds in the nanodiscs of ~100 nm lateral dimension, indicating sufficiently rapid dynamic control of the intercalation-induced material properties with a reduced lateral dimension
Systematic studies on the effect of linear lattice optics for space-charge limited beams
NASA Astrophysics Data System (ADS)
Fitterer, M.; Carli, C.; Molodozhentsev, A.; Müller, A.-S.
2015-12-01
The HL-LHC (High Luminosity LHC) project aims to an increase of the luminosity of the LHC by a factor of 10. In order to realize this ambitious goal, the LHC itself has to undergo a major upgrade accompanied by an extensive upgrade of the complete injector complex referred to as LHC injector upgrade (LIU). In the framework of the LIU project, a new rapid cycling synchrotron (RCS) as an alternative to the energy upgrade of the existing PS Booster has been proposed. Motivated by the optics studies conducted for this RCS, the more general question of the influence of the linear optics on the machine performance has been raised. In this paper, we want to investigate this question by comparing different lattices with the final aim of identifying lattice characteristics advantageous under strong space-charge effects.
Multistable particle-field dynamics in cavity-generated optical lattices
NASA Astrophysics Data System (ADS)
Winterauer, Dominik J.; Niedenzu, Wolfgang; Ritsch, Helmut
2015-05-01
Polarizable particles trapped in a resonator-sustained optical-lattice potential generate strong position-dependent backaction on the intracavity field. In the quantum regime, particles in different energy bands are connected to different intracavity light intensities and optical-lattice depths. This generates a highly nonlinear coupled particle-field dynamics. For a given pump strength and detuning, a factorizing mean-field approach predicts several self-consistent stationary solutions of strongly distinct photon numbers and motional states. Quantum Monte Carlo wave-function simulations of the master equation confirm these predictions and reveal complex multimodal photon-number and particle-momentum distributions. Using larger nanoparticles in such a setup thus constitutes a well-controllable playground to study nonlinear quantum dynamics and the buildup of macroscopic quantum superpositions at the quantum-classical boundary.
Murphy, D; Sparkes, B M
2016-08-01
We quantify the disorder-induced heating (DIH) of ultracold neutral plasmas (UCNPs) created from cold atoms in optical lattices with partial filling fractions, using a conservation of energy model involving the spatial correlations of the initial state and the equation of state in thermal equilibrium for a one-component plasma. We show, for experimentally achievable filling fractions, that the ionic Coulomb coupling parameter could be increased to a degree comparable to other proposed DIH-mitigation schemes. Molecular dynamics simulations were performed with compensation for finite-size and periodic boundary effects, which agree with calculations using the model. Reduction of DIH using optical lattices will allow for the study of strongly coupled plasma physics using low-density, low-temperature, laboratory-based plasmas, and lead to improved brightness in UCNP-based cold electron and ion beams, where DIH is otherwise a fundamental limitation to beam focal sizes and diffraction imaging capability. PMID:27627236
Controlled production of subradiant states of a diatomic molecule in an optical lattice.
Takasu, Yosuke; Saito, Yutaka; Takahashi, Yoshiro; Borkowski, Mateusz; Ciuryło, Roman; Julienne, Paul S
2012-04-27
We report the successful production of subradiant states of a two-atom system in a three-dimensional optical lattice starting from doubly occupied sites in a Mott insulator phase of a quantum gas of atomic ytterbium. We can selectively produce either a subradiant 1(g) state or a superradiant 0(u) state by choosing the excitation laser frequency. The inherent weak excitation rate for the subradiant 1(g) state is overcome by the increased atomic density due to the tight confinement in a three-dimensional optical lattice. Our experimental measurements of binding energies, linewidth, and Zeeman shift confirm the observation of subradiant levels of the 1(g) state of the Yb(2) molecule. PMID:22680859
Controlling coherence via tuning of the population imbalance in a bipartite optical lattice
Di Liberto, M.; Comparin, T.; Kock, T.; Ölschläger, M.; Hemmerich, A.; Smith, C. Morais
2014-01-01
The control of transport properties is a key tool at the basis of many technologically relevant effects in condensed matter. The clean and precisely controlled environment of ultracold atoms in optical lattices allows one to prepare simplified but instructive models, which can help to better understand the underlying physical mechanisms. Here we show that by tuning a structural deformation of the unit cell in a bipartite optical lattice, one can induce a phase transition from a superfluid into various Mott insulating phases forming a shell structure in the superimposed harmonic trap. The Mott shells are identified via characteristic features in the visibility of Bragg maxima in momentum spectra. The experimental findings are explained by Gutzwiller mean-field and quantum Monte Carlo calculations. Our system bears similarities with the loss of coherence in cuprate superconductors, known to be associated with the doping-induced buckling of the oxygen octahedra surrounding the copper sites. PMID:25501387
Atoms in the Lowest Motional Band of a Three-Dimensional Optical Lattice
Mueller-Seydlitz, T.; Hartl, M.; Brezger, B.; Haensel, H.; Keller, C.; Schnetz, A.; Spreeuw, R.; Pfau, T.; Mlynek, J.
1997-02-01
We investigate the storage of atoms in an optical lattice, using light detuned up to 2nm to the blue of an atomic transition. Argon atoms were laser cooled in the metastable state 1s{sub 5}(J=2) and optically pumped to the state 1s{sub 3}(J=0). Subsequently these atoms were confined to the nodes of a three-dimensional interference pattern and stored for up to 1s. We resolved the bands of motion in the lattice using a time-of-flight technique, and observed band-dependent losses leading to the preparation of atoms in the motional ground band. {copyright} {ital 1997} {ital The American Physical Society}
Precise realization of the thermal radiation environment for an optical lattice clock
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Sherman, Jeff; Phillips, Nathaniel; Hinkley, Nathan; Oates, Chris; Ludlow, Andrew
2013-05-01
The Stark shift due to thermal radiation contributes one of the largest known perturbations to the clock transition frequency of optical lattice clocks. Consequently, the uncertainty stemming from this shift has played a dominant role in the total uncertainty of these standards. Following recent works focused on atomic response factors (e.g., the differential polarizability), uncertainty in this perturbation is now limited by imprecise knowledge of the environment itself. Here we present progress towards precise realization of the thermal radiation environment in a Yb optical lattice clock by trapping the atoms in a highly uniform radiation shield at a well-known temperature. We characterize the non-ideal aspects of this approach, including less than unit emissivity, contamination of the blackbody environment from the ambient environment, and thermal non-uniformities.
Ferromagnetism of a repulsive atomic Fermi gas in an optical lattice: a quantum Monte Carlo study.
Pilati, S; Zintchenko, I; Troyer, M
2014-01-10
Using continuous-space quantum Monte Carlo methods, we investigate the zero-temperature ferromagnetic behavior of a two-component repulsive Fermi gas under the influence of periodic potentials that describe the effect of a simple-cubic optical lattice. Simulations are performed with balanced and with imbalanced components, including the case of a single impurity immersed in a polarized Fermi sea (repulsive polaron). For an intermediate density below half filling, we locate the transitions between the paramagnetic, and the partially and fully ferromagnetic phases. As the intensity of the optical lattice increases, the ferromagnetic instability takes place at weaker interactions, indicating a possible route to observe ferromagnetism in experiments performed with ultracold atoms. We compare our findings with previous predictions based on the standard computational method used in material science, namely density functional theory, and with results based on tight-binding models. PMID:24483906
Preparation of stable excited states in an optical lattice via sudden quantum quench
Wang, Li; Chen, Shu; Hao, Yajiang
2010-06-15
We study how stable excited many-body states of the Bose-Hubbard model, including both the gaslike state for strongly attractive bosons and bound cluster state for repulsive bosons, can be produced with cold bosonic atoms in an one-dimensional optical lattice. Starting from the initial ground states of strongly interacting bosonic systems, we can achieve stable excited states of the systems with opposite interaction strength by suddenly switching the interaction to the opposite limit. By exactly solving dynamics of the Bose-Hubbard model, we demonstrate that the produced excited state can be a very stable dynamic state. This allows the experimental study of excited state properties of ultracold atoms system in optical lattices.
NASA Astrophysics Data System (ADS)
Murphy, D.; Sparkes, B. M.
2016-08-01
We quantify the disorder-induced heating (DIH) of ultracold neutral plasmas (UCNPs) created from cold atoms in optical lattices with partial filling fractions, using a conservation of energy model involving the spatial correlations of the initial state and the equation of state in thermal equilibrium for a one-component plasma. We show, for experimentally achievable filling fractions, that the ionic Coulomb coupling parameter could be increased to a degree comparable to other proposed DIH-mitigation schemes. Molecular dynamics simulations were performed with compensation for finite-size and periodic boundary effects, which agree with calculations using the model. Reduction of DIH using optical lattices will allow for the study of strongly coupled plasma physics using low-density, low-temperature, laboratory-based plasmas, and lead to improved brightness in UCNP-based cold electron and ion beams, where DIH is otherwise a fundamental limitation to beam focal sizes and diffraction imaging capability.
Dzyaloshinskii-Moriya Interaction and Spiral Order in Spin-orbit Coupled Optical Lattices
Gong, Ming; Qian, Yinyin; Yan, Mi; Scarola, V. W.; Zhang, Chuanwei
2015-01-01
We show that the recent experimental realization of spin-orbit coupling in ultracold atomic gases can be used to study different types of spin spiral order and resulting multiferroic effects. Spin-orbit coupling in optical lattices can give rise to the Dzyaloshinskii-Moriya (DM) spin interaction which is essential for spin spiral order. By taking into account spin-orbit coupling and an external Zeeman field, we derive an effective spin model in the Mott insulator regime at half filling and demonstrate that the DM interaction in optical lattices can be made extremely strong with realistic experimental parameters. The rich finite temperature phase diagrams of the effective spin models for fermions and bosons are obtained via classical Monte Carlo simulations. PMID:26014458
NASA Astrophysics Data System (ADS)
Bai, Xiao-Dong; Zhang, Mei; Xiong, Jun; Yang, Guo-Jian; Deng, Fu-Guo
2015-11-01
We investigate the formation of discrete breathers (DBs) and the dynamics of the mixture of two-species Bose-Einstein condensates (BECs) in open boundary optical lattices using the discrete nonlinear Schrödinger equations. The results show that the coupling of intra- and interspecies interaction can lead to the existence of pure single-species DBs and symbiotic DBs (i.e., two-species DBs). Furthermore, we find that there is a selective distillation phenomenon in the dynamics of the mixture of two-species BECs. One can selectively distil one species from the mixture of two-species BECs and can even control dominant species fraction by adjusting the intra- and interspecies interaction in optical lattices. Our selective distillation mechanism may find potential application in quantum information storage and quantum information processing based on multi-species atoms.
Bai, Xiao-Dong; Zhang, Mei; Xiong, Jun; Yang, Guo-Jian; Deng, Fu-Guo
2015-01-01
We investigate the formation of discrete breathers (DBs) and the dynamics of the mixture of two-species Bose-Einstein condensates (BECs) in open boundary optical lattices using the discrete nonlinear Schrödinger equations. The results show that the coupling of intra- and interspecies interaction can lead to the existence of pure single-species DBs and symbiotic DBs (i.e., two-species DBs). Furthermore, we find that there is a selective distillation phenomenon in the dynamics of the mixture of two-species BECs. One can selectively distil one species from the mixture of two-species BECs and can even control dominant species fraction by adjusting the intra- and interspecies interaction in optical lattices. Our selective distillation mechanism may find potential application in quantum information storage and quantum information processing based on multi-species atoms. PMID:26597592
NASA Astrophysics Data System (ADS)
Jiang, Lei; Qu, Chunlei; Zhang, Chuanwei
2016-06-01
The recent experimental realization of one-dimensional (1D) equal Rashba-Dresselhaus spin-orbit coupling (ERD-SOC) for cold atoms provides a disorder-free and highly controllable platform for the implementation and observation of Majorana fermions (MFs), analogous to the broadly studied solid-state nanowire-superconductor heterostructures. However, the corresponding 1D chains of cold atoms possess strong quantum fluctuation, which may destroy the superfluids and MFs. In this paper, we show that such 1D topological chains with MFs may be on demand generated in a two- or three-dimensional nontopological optical lattice with 1D ERD-SOC by modifying local potentials on target locations using experimentally already implemented atomic gas microscopes or patterned (e.g., double- or triple-well) optical lattices. All ingredients in our scheme have been experimentally realized, and the combination of them may pave the way for the experimental observation of MFs in a clean system.
Bai, Xiao-Dong; Zhang, Mei; Xiong, Jun; Yang, Guo-Jian; Deng, Fu-Guo
2015-01-01
We investigate the formation of discrete breathers (DBs) and the dynamics of the mixture of two-species Bose-Einstein condensates (BECs) in open boundary optical lattices using the discrete nonlinear Schrödinger equations. The results show that the coupling of intra- and interspecies interaction can lead to the existence of pure single-species DBs and symbiotic DBs (i.e., two-species DBs). Furthermore, we find that there is a selective distillation phenomenon in the dynamics of the mixture of two-species BECs. One can selectively distil one species from the mixture of two-species BECs and can even control dominant species fraction by adjusting the intra- and interspecies interaction in optical lattices. Our selective distillation mechanism may find potential application in quantum information storage and quantum information processing based on multi-species atoms. PMID:26597592
Mayteevarunyoo, Thawatchai; Malomed, Boris A.; Krairiksh, Monai
2007-11-15
In a basic physical model where two-dimensional (2D) matter-wave solitons may be stable, namely, the Gross-Pitaevskii equation with the self-attractive nonlinearity and quasi-one-dimensional (1D) optical-lattice (OL) potential, we test robustness of the solitons against periodic time modulation of the OL strength. Stability diagrams for the 2D solitons are presented in the plane of the modulation depth and frequency. Basic features of the diagrams are explained with the help of the variational approximation for the stationary counterpart of the model. In the Bose-Einstein condensate of {sup 7}Li atoms, the stable 2D solitons may contain the number of atoms in the range of 10{sup 4}-10{sup 5}, relevant values of the OL strength and modulation frequency being, respectively < or approx. 5 recoil energies and < or approx. 10 kHZ. Head-on collisions between stable 2D solitons moving in the unconfined direction are studied in detail too, for velocities up to {approx}5 cm/s. A border between quasi-elastic collisions and merger of the solitons into a single localized state is identified. In some cases, the soliton produced by the merger is stable against collapse, which was not observed before in the static OL potential either.
Controlling chaos in a Bose-Einstein condensate loaded into a moving optical lattice potential
Wang Zhixia Zhang Xihe; Shen Ke
2008-11-15
The spatial structure of a Bose-Einstein condensate loaded into an optical lattice potential is investigated, and spatially chaotic distributions of the condensates are revealed. By means of changing of the s-wave scattering length with a Feshbach resonance, the chaotic behavior can be well controlled to enter into periodicity. Numerical simulation shows that there are different periodic orbits according to different s-wave scattering lengths only if the maximal Lyapunov exponent of the system is negative.
Miyake, Hirokazu; Siviloglou, Georgios A; Puentes, Graciana; Pritchard, David E; Ketterle, Wolfgang; Weld, David M
2011-10-21
We have observed Bragg scattering of photons from quantum degenerate ^{87}Rb atoms in a three-dimensional optical lattice. Bragg scattered light directly probes the microscopic crystal structure and atomic wave function whose position and momentum width is Heisenberg limited. The spatial coherence of the wave function leads to revivals in the Bragg scattered light due to the atomic Talbot effect. The decay of revivals across the superfluid to Mott insulator transition indicates the loss of superfluid coherence. PMID:22107532
Fano Blockade by a Bose-Einstein Condensate in an Optical Lattice
Vicencio, Rodrigo A.; Brand, Joachim; Flach, Sergej
2007-05-04
We study the transport of atoms across a localized Bose-Einstein condensate in a one-dimensional optical lattice. For atoms scattering off the condensate, we predict total reflection as well as full transmission for certain parameter values on the basis of an exactly solvable model. The findings of analytical and numerical calculations are interpreted by a tunable Fano-like resonance and may lead to interesting applications for blocking and filtering atom beams.
Inaba, Kensuke; Tamaki, Kiyoshi; Igeta, Kazuhiro; Yamashita, Makoto; Tokunaga, Yuuki
2014-12-04
In this study, we propose a method for generating cluster states of atoms in an optical lattice. By utilizing the quantum properties of Wannier orbitals, we create an tunable Ising interaction between atoms without inducing the spin-exchange interactions. We investigate the cause of errors that occur during entanglement generations, and then we propose an error-management scheme, which allows us to create high-fidelity cluster states in a short time.
Visibility of cold atomic gases in optical lattices for finite temperatures
Hoffmann, Alexander; Pelster, Axel
2009-05-15
In nearly all experiments with ultracold atoms time-of-flight pictures are the only data available. In this paper we present an analytical strong-coupling calculation for those time-of-flight pictures of bosons in a three-dimensional optical lattice in the Mott phase. This allows us to determine the visibility, which quantifies the contrast of peaks in the time-of-flight pictures, and we suggest how to use it as a thermometer.
NASA Astrophysics Data System (ADS)
Ortega, I.; Coburn, S.; Kassianov, E.; Barnard, J.; Berg, L. K.; Hostetler, C. A.; Hair, J. W.; Ferrare, R. A.; Volkamer, R. M.
2012-12-01
The two Column Aerosol Project (TCAP) investigates uncertainties in the aerosol direct effect in the northern hemisphere mid-latitudes. The DOE Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Mobile Aerosol Observing System (MAOS) provide an opportunity for 1) atmospheric radiation closure studies, and 2) test retrievals of aerosol optical properties in the presence and absence of clouds. This presentation discusses innovative means to access column information about aerosol optical properties in the lower atmosphere from ground based measurements of solar stray light spectra in the hyperspectral domain, i.e., measurements of the Raman Scattering Probability (RSP, the probability that an observed photon has undergone a rotational Raman scattering event), and oxygen dimer slant column densities (O4 SCD) by means of the University of Colorado 2D scanning ground Multi AXis Differential Optical Absorption Spectroscopy (2D-GMAX-DOAS) instrument that was located at the ARM/MAOS site at Cape Cod, MA. We compare retrievals of aerosol optical properties with those retrieved from the MFRSR and the Cimel Sunphotometer, for case studies in the presence/absence of clouds, and assess the need for atmospheric correction of NO2. 2D-GMAX-DOAS also facilitates a link between the ground-based ARM/MAOS dataset and DoE's G1 aircraft, NASA's King Air aircraft, and NASA's OMI satellite (i.e., NO2 vertical column). Early results that explore these linkages are presented for a case study that combines ground based MFRSR, in-situ observations aboard the G1 aircraft, as well as High Spectral Resolution LIDAR aboard the King Air aircraft.
Quantum phases from competing short- and long-range interactions in an optical lattice
NASA Astrophysics Data System (ADS)
Landig, Renate; Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Mottl, Rafael; Donner, Tobias; Esslinger, Tilman
2016-04-01
Insights into complex phenomena in quantum matter can be gained from simulation experiments with ultracold atoms, especially in cases where theoretical characterization is challenging. However, these experiments are mostly limited to short-range collisional interactions; recently observed perturbative effects of long-range interactions were too weak to reach new quantum phases. Here we experimentally realize a bosonic lattice model with competing short- and long-range interactions, and observe the appearance of four distinct quantum phases—a superfluid, a supersolid, a Mott insulator and a charge density wave. Our system is based on an atomic quantum gas trapped in an optical lattice inside a high-finesse optical cavity. The strength of the short-range on-site interactions is controlled by means of the optical lattice depth. The long (infinite)-range interaction potential is mediated by a vacuum mode of the cavity and is independently controlled by tuning the cavity resonance. When probing the phase transition between the Mott insulator and the charge density wave in real time, we observed a behaviour characteristic of a first-order phase transition. Our measurements have accessed a regime for quantum simulation of many-body systems where the physics is determined by the intricate competition between two different types of interactions and the zero point motion of the particles.
Exploring spin-orbit coupling in a non-degenerate optical lattice clock
NASA Astrophysics Data System (ADS)
Wall, Michael L.; Koller, Andrew P.; Li, Shuming; Rey, Ana Maria
2015-05-01
Optical lattice clocks have progressed in recent years to become not only precise timekeepers, but also sensitive probes of many-body physics. We consider a 1D optical lattice clock in which the wavelength of the laser that interrogates the clock transition is comparable to the optical lattice spacing. This light-matter coupling imprints a spatially dependent phase on the atomic internal state superposition, and this phase can be interpreted as a spin-orbit coupling. We show that this spin-orbit coupling manifests itself in Ramsey spectroscopy as an s-wave density shift in otherwise identically prepared fermions, even at temperatures significantly larger than the tunneling. Further, we show that Rabi spectroscopy can be mapped to a Hofstadter model on a two-leg ladder with chiral eigenstates. Using a modified Rabi procedure, we show how to extract momentum-resolved signatures of chirality solely by spectroscopic means. The effects of finite temperature, gaussian transverse confinement, and non-separability between transverse and axial degrees of freedom are discussed. This work has been financially supported by JILA-NSF-PFC-1125844, NSF-PIF-1211914, ARO, AFOSR, AFOSR-MURI, NDSEG, and NRC.
Quantum phases from competing short- and long-range interactions in an optical lattice.
Landig, Renate; Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Mottl, Rafael; Donner, Tobias; Esslinger, Tilman
2016-04-28
Insights into complex phenomena in quantum matter can be gained from simulation experiments with ultracold atoms, especially in cases where theoretical characterization is challenging. However, these experiments are mostly limited to short-range collisional interactions; recently observed perturbative effects of long-range interactions were too weak to reach new quantum phases. Here we experimentally realize a bosonic lattice model with competing short- and long-range interactions, and observe the appearance of four distinct quantum phases--a superfluid, a supersolid, a Mott insulator and a charge density wave. Our system is based on an atomic quantum gas trapped in an optical lattice inside a high-finesse optical cavity. The strength of the short-range on-site interactions is controlled by means of the optical lattice depth. The long (infinite)-range interaction potential is mediated by a vacuum mode of the cavity and is independently controlled by tuning the cavity resonance. When probing the phase transition between the Mott insulator and the charge density wave in real time, we observed a behaviour characteristic of a first-order phase transition. Our measurements have accessed a regime for quantum simulation of many-body systems where the physics is determined by the intricate competition between two different types of interactions and the zero point motion of the particles. PMID:27064902
Resonant scattering of matter-wave gap solitons by optical lattice defects
Brazhnyi, Valeriy A.; Salerno, Mario
2011-05-15
The physical mechanism underlying scattering properties of matter-wave gap solitons (GSs) by linear-optical-lattice defects is investigated. The occurrence of repeated reflection, transmission, and trapping regions for increasing strengths of an optical-lattice defect are shown to be due to resonances with impurity modes inside the defect potential with chemical potentials and numbers of atoms matching corresponding quantities of the incoming GSs. For small amplitude GSs the number of these resonances coincides with the number of bound states existing in the defect potential for the given defect strength. The dependence of the positions and widths of the transmission resonant peaks on incoming velocities is investigated by means of defect-mode analysis and effective-mass theory. The comparisons with direct integrations of the Gross-Pitaevskii equation provide good agreement confirming the correctness of our approach. Multiple resonant transmissions through arrays of optical lattice defects are also investigated and the possibility of using them for very precise GS dynamical filters is also suggested.
Optical NOR logic gate design on square lattice photonic crystal platform
NASA Astrophysics Data System (ADS)
D'souza, Nirmala Maria; Mathew, Vincent
2016-05-01
We numerically demonstrate a new configuration of all-optical NOR logic gate with square lattice photonic crystal (PhC) waveguide using finite difference time domain (FDTD) method. The logic operations are based on interference effect of optical waves. We have determined the operating frequency range by calculating the band structure for a perfectly periodic PhC using plane wave expansion (PWE) method. Response time of this logic gate is 1.98 ps and it can be operated with speed about 513 GB/s. The proposed device consists of four linear waveguides and a square ring resonator waveguides on PhC platform.
Three-dimensional arrays of submicron particles generated by a four-beam optical lattice.
Slama-Eliau, B N; Raithel, G
2011-05-01
Using an optical lattice formed by four laser beams, we obtain three-dimensional light-induced crystals of 490-nm-diameter polystyrene spheres in solution. The setup yields face-centered orthorhombic optical crystals of a packing density of about 40%. An alignment procedure is developed in which the crystals are first prepared near a sample wall, and then in the bulk of the sample. A series of tests is performed that demonstrate particle trapping in all three dimensions. For one case, the trapping force is measured, and good agreement with a simple theoretical model is found. Possible applications are discussed. PMID:21728533
Lasing effect enhanced by optical Tamm state with in-plane lattice plasmon
NASA Astrophysics Data System (ADS)
Zhang, Zhenqing; Li, Yunhui; Liu, Wenxing; Sun, Yong; Jiang, Haitao; Chen, Hong
2016-02-01
A new type of surface-emitting laser based on in-plane lattice plasmons (LPs) and optical Tamm states (OTSs) is proposed, with arrays of metallic micro-disks followed by a photonic crystal. Due to the presence of LP modes, the reflection properties of the combined LP-OTS structure, including the spectrum linewidth, Q-factor and electromagnetic field, can be optimized for better lasing behavior. When the combined LP-OTS structure with a gain medium is optically pumped, a much lower lasing threshold and higher emission intensity can be achieved simultaneously, compared with the individual LP structure. This phenomenon successfully demonstrates the enhancement of the lasing efficiency.