Phase Behavior of 2D Charged Hydrophobic Colloids in Flat and Curved Space
NASA Astrophysics Data System (ADS)
Kelleher, Colm; Guerra, Rodrigo; Chaikin, Paul
Charged hydrophobic colloids, when dispersed in oil with a relatively high dielectric constant, can become highly charged. In the presence of an interface with a conducting aqueous phase, particles bind strongly to the interface via image-charge attraction. At sufficiently high density, these charged interfacial particles self-organize into a 2D repulsive (Wigner) crystalline solid phase, while at lower densities, the particles form a 2D fluid. By observing samples prepared at different densities, we can probe various points in the phase diagram of this soft 2D material, and compare our results with applicable theory and simulations. In this talk, we present two sets of experiments we have performed on this system: first, we show how we can use gravity as an external force to create a controlled density gradient, and thereby directly measure the equation of state and other quantities of interest. Second, we discuss how, by observing particles which are bound to the surface of spherical droplets, we can explore how the presence of finite background curvature affects the phase behavior of the system.
NASA Astrophysics Data System (ADS)
Neicu, Toni; Aljarrah, Khaled M.; Jiang, Steve B.
2005-10-01
A computer program has been developed for novel 2D/3D visualization and analysis of the phase-space parameters of Monte Carlo simulations of medical accelerator radiation beams. The software is written in the IDL language and reads the phase-space data generated in the BEAMnrc/BEAM Monte Carlo code format. Contour and colour-wash plots of the fluence, mean energy, energy fluence, mean angle, spectra distribution, energy fluence distribution, angular distribution, and slices and projections of the 3D ZLAST distribution can be calculated and displayed. Based on our experience of using it at Massachusetts General Hospital, the software has proven to be a useful tool for analysis and verification of the Monte Carlo generated phase-space files. The software is in the public domain.
Phase Engineering of 2D Tin Sulfides.
Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S
2016-06-01
Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950
Phase Engineering of 2D Tin Sulfides.
Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S
2016-06-01
Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations.
Competing coexisting phases in 2D water
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-01-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018
Competing coexisting phases in 2D water
NASA Astrophysics Data System (ADS)
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-05-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.
2D ice from first principles: structures and phase transitions
NASA Astrophysics Data System (ADS)
Chen, Ji; Schusteritsch, Georg; Pickard, Chris J.; Salzmann, Christoph G.; Michaelides, Angelos
Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression the pentagonal structure becomes the most stable and persists up to ca. 2 GPa at which point square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. We also find a double layer AA stacked square ice phase, which clarifies the difference between experimental observations and earlier force field simulations. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and width.
Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies
NASA Astrophysics Data System (ADS)
Subrahmanyam, M.
2016-05-01
In this study, phase angle (inverse tangent of the ratio of the horizontal to vertical gradients of magnetic anomalies) profile over two-dimensional tabular bodies has been subjected to detailed analysis for determining the source parameters. Distances between certain characteristic positions on this phase curve are related to the parameters of two-dimensional tabular magnetic sources. In this paper, I have derived the mathematical expressions for these relations. It has been demonstrated here that for locating the origin of the 2D tabular source, knowledge on the type of the model (contact, sheet, dyke, and fault) is not necessary. A procedure is evolved to determine the location, depth, width and magnetization angle of the 2D sources from the mathematical expressions. The method is tested on real field data. The effect of the overlapping bodies is also discussed with two synthetic examples. The interpretation technique is developed for contact, sheet, dike and inclined fault bodies.
2-D scalable optical controlled phased-array antenna system
NASA Astrophysics Data System (ADS)
Chen, Maggie Yihong; Howley, Brie; Wang, Xiaolong; Basile, Panoutsopoulos; Chen, Ray T.
2006-02-01
A novel optoelectronically-controlled wideband 2-D phased-array antenna system is demonstrated. The inclusion of WDM devices makes a highly scalable system structure. Only (M+N) delay lines are required to control a M×N array. The optical true-time delay lines are combination of polymer waveguides and optical switches, using a single polymeric platform and are monolithically integrated on a single substrate. The 16 time delays generated by the device are measured to range from 0 to 175 ps in 11.6 ps. Far-field patterns at different steering angles in X-band are measured.
Quantum spin Hall phase in 2D trigonal lattice.
Wang, Z F; Jin, Kyung-Hwan; Liu, Feng
2016-01-01
The quantum spin Hall (QSH) phase is an exotic phenomena in condensed-matter physics. Here we show that a minimal basis of three orbitals (s, px, py) is required to produce a QSH phase via nearest-neighbour hopping in a two-dimensional trigonal lattice. Tight-binding model analyses and calculations show that the QSH phase arises from a spin-orbit coupling (SOC)-induced s-p band inversion or p-p bandgap opening at Brillouin zone centre (Γ point), whose topological phase diagram is mapped out in the parameter space of orbital energy and SOC. Remarkably, based on first-principles calculations, this exact model of QSH phase is shown to be realizable in an experimental system of Au/GaAs(111) surface with an SOC gap of ∼73 meV, facilitating the possible room-temperature measurement. Our results will extend the search for substrate supported QSH materials to new lattice and orbital types. PMID:27599580
Quantum spin Hall phase in 2D trigonal lattice
NASA Astrophysics Data System (ADS)
Wang, Z. F.; Jin, Kyung-Hwan; Liu, Feng
2016-09-01
The quantum spin Hall (QSH) phase is an exotic phenomena in condensed-matter physics. Here we show that a minimal basis of three orbitals (s, px, py) is required to produce a QSH phase via nearest-neighbour hopping in a two-dimensional trigonal lattice. Tight-binding model analyses and calculations show that the QSH phase arises from a spin-orbit coupling (SOC)-induced s-p band inversion or p-p bandgap opening at Brillouin zone centre (Γ point), whose topological phase diagram is mapped out in the parameter space of orbital energy and SOC. Remarkably, based on first-principles calculations, this exact model of QSH phase is shown to be realizable in an experimental system of Au/GaAs(111) surface with an SOC gap of ~73 meV, facilitating the possible room-temperature measurement. Our results will extend the search for substrate supported QSH materials to new lattice and orbital types.
Quantum spin Hall phase in 2D trigonal lattice
Wang, Z. F.; Jin, Kyung-Hwan; Liu, Feng
2016-01-01
The quantum spin Hall (QSH) phase is an exotic phenomena in condensed-matter physics. Here we show that a minimal basis of three orbitals (s, px, py) is required to produce a QSH phase via nearest-neighbour hopping in a two-dimensional trigonal lattice. Tight-binding model analyses and calculations show that the QSH phase arises from a spin–orbit coupling (SOC)-induced s–p band inversion or p–p bandgap opening at Brillouin zone centre (Γ point), whose topological phase diagram is mapped out in the parameter space of orbital energy and SOC. Remarkably, based on first-principles calculations, this exact model of QSH phase is shown to be realizable in an experimental system of Au/GaAs(111) surface with an SOC gap of ∼73 meV, facilitating the possible room-temperature measurement. Our results will extend the search for substrate supported QSH materials to new lattice and orbital types. PMID:27599580
Local Probing of Phase Coherence in a Strongly Interacting 2D Quantum Gas
NASA Astrophysics Data System (ADS)
Luick, Niclas; Siegl, Jonas; Hueck, Klaus; Morgener, Kai; Lompe, Thomas; Weimer, Wolf; Moritz, Henning
2016-05-01
The dimensionality of a quantum system has a profound impact on its coherence and superfluid properties. In 3D superfluids, bosonic atoms or Cooper pairs condense into a macroscopic wave function exhibiting long-range phase coherence. Meanwhile, 2D superfluids show a strikingly different behavior: True long-range coherence is precluded by thermal fluctuations, nevertheless Berezinskii-Kosterlitz-Thouless (BKT) theory predicts that 2D systems can still become superfluid. The superfluid state is characterized by an algebraic decay of phase correlations g1(r) ~r - τ / 4 , where the decay exponent τ is directly related to the superfluid density ns according to τ = 4 /(nsλdB2) . I will present local coherence measurements in a strongly interacting 2D gas of diatomic 6 Li molecules. A self-interference technique allows us to locally extract the algebraic decay exponent and to reconstruct the superfluid density. We determine the scaling of the decay exponent with phase space density to provide a benchmark for studies of 2D superfluids in the strongly interacting regime.
Spreading dynamics of 2D dipolar Langmuir monolayer phases.
Heinig, P; Wurlitzer, S; Fischer, Th M
2004-07-01
We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory. PMID:15278693
Phase Separation and Pair Condensation in a Spin-Imbalanced 2D Fermi Gas
NASA Astrophysics Data System (ADS)
Mitra, Debayan; Brown, Peter T.; Schauß, Peter; Kondov, Stanimir S.; Bakr, Waseem S.
2016-08-01
We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced core surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions.
Phase Separation and Pair Condensation in a Spin-Imbalanced 2D Fermi Gas.
Mitra, Debayan; Brown, Peter T; Schauß, Peter; Kondov, Stanimir S; Bakr, Waseem S
2016-08-26
We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced core surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions. PMID:27610853
Phase Separation and Pair Condensation in a Spin-Imbalanced 2D Fermi Gas.
Mitra, Debayan; Brown, Peter T; Schauß, Peter; Kondov, Stanimir S; Bakr, Waseem S
2016-08-26
We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced core surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions.
2-D weighted least-squares phase unwrapping
Ghiglia, Dennis C.; Romero, Louis A.
1995-01-01
Weighted values of interferometric signals are unwrapped by determining the least squares solution of phase unwrapping for unweighted values of the interferometric signals; and then determining the least squares solution of phase unwrapping for weighted values of the interferometric signals by preconditioned conjugate gradient methods using the unweighted solutions as preconditioning values. An output is provided that is representative of the least squares solution of phase unwrapping for weighted values of the interferometric signals.
2-D weighted least-squares phase unwrapping
Ghiglia, D.C.; Romero, L.A.
1995-06-13
Weighted values of interferometric signals are unwrapped by determining the least squares solution of phase unwrapping for unweighted values of the interferometric signals; and then determining the least squares solution of phase unwrapping for weighted values of the interferometric signals by preconditioned conjugate gradient methods using the unweighted solutions as preconditioning values. An output is provided that is representative of the least squares solution of phase unwrapping for weighted values of the interferometric signals. 6 figs.
Givehchi, Alireza; Bender, Andreas; Glen, Robert C
2006-01-01
The effect of multitarget dependent descriptor transformation on classification performance is explored in this work. To this end decision trees as well as neural net QSAR in combination with PLS were applied to predict the activity class of 5HT3 ligands, angiotensin converting enzyme inhibitors, 3-hydroxyl-3-methyl glutaryl coenzyme A reductase inhibitors, platelet activating factor antagonists, and thromboxane A2 antagonists. Physicochemical descriptors calculated by MOE and fragment-based descriptors (MOLPRINT 2D) were employed to generate descriptor vectors. In a subsequent step the physicochemical descriptor vectors were transformed to a lower dimensional space using multitarget dependent descriptor transformation. Cross-validation of the original physicochemical descriptors in combination with decision trees and neural net QSAR as well as cross-validation of PLS multitarget transformed descriptors with neural net QSAR were performed. For comparison this was repeated using fragment-based descriptors in combination with decision trees.
Chao, Alexander Wu; /SLAC
2012-03-01
As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this list are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.
Application Of Metric Space Technique (mst) In 2-d And 3-d To Sdss Dr5
NASA Astrophysics Data System (ADS)
Wu, Yongfeng; Batuski, D. J.; Khalil, A.
2009-01-01
The Metric Space Technique (MST) is a 2-D analysis method using multiple measures for quantitative analysis of any type of structure in an `image'. All potential values of the measures for such distributions are thus coordinates in a multi-parameter space, and the analysis is based on considering a sample's measures (called `output functions'), and their distance from the origin, which corresponds to the measures of the observed SDSS sample, in this multi-parameter space. Applications of this method to thin (approximately 2-D) slices of SDSS DR5 have yielded a detailed comparison of numerical models (Berlind et al. 2006, Croton et al. 2005) against the SDSS galaxy 2-D distribution structure in multi-parameter space. We present those results, including discussion of the effects of transforming from physical space to redshift space on the statistics at different scales. We also extended this 2-D method into 3-D, and we present comparisons of the SDSS galaxy 3-D distribution versus the same numerical simulations.
RADON reconstruction in longitudinal phase space
Mane, V.; Peggs, S.; Wei, J.
1997-07-01
Longitudinal particle motion in circular accelerators is typically monitoring by one dimensional (1-D) profiles. Adiabatic particle motion in two dimensional (2-D) phase space can be reconstructed with tomographic techniques, using 1-D profiles. A computer program RADON has been developed in C++ to process digitized mountain range data and perform the phase space reconstruction for the AGS, and later for Relativistic Heavy Ion Collider (RHIC).
Shen, Jianfeng; Wu, Jingjie; Wang, Man; Dong, Pei; Xu, Jingxuan; Li, Xiaoguang; Zhang, Xiang; Yuan, Junhua; Wang, Xifan; Ye, Mingxin; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M
2016-05-01
A proper design of direct liquid phase exfoliation (LPE) for 2D materials as graphene, MoS2 , WS2 , h-BN, Bi2 Se3 , MoSe2 , SnS2 , and TaS2 with common cosolvents is carried out based on considering the polar and dispersive components of surface tensions of various cosolvents and 2D materials. It has been found that the exfoliation efficiency is enhanced by matching the ratio of surface tension components of cosolvents to that of the targeted 2D materials, based on which common cosolvents composed of IPA/water, THF/water, and acetone/water can be designed for sufficient LPE process. In this context, the library of low-toxic and low-cost solvents with low boiling points for LPE is infinitely enlarged when extending to common cosolvents. Polymer-based composites reinforced with a series of different 2D materials are compared with each other. It is demonstrated that the incorporation of cosolvents-exfoliated 2D materials can substantially improve the mechanical and thermal properties of polymer matrices. Typically, with the addition of 0.5 wt% of such 2D material as MoS2 nanosheets, the tensile strength and Young's modulus increased up to 74.85% and 136.97%, respectively. The different enhancement effect of 2D materials is corresponded to the intrinsic properties and LPE capacity of 2D materials. PMID:27059403
Shen, Jianfeng; Wu, Jingjie; Wang, Man; Dong, Pei; Xu, Jingxuan; Li, Xiaoguang; Zhang, Xiang; Yuan, Junhua; Wang, Xifan; Ye, Mingxin; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M
2016-05-01
A proper design of direct liquid phase exfoliation (LPE) for 2D materials as graphene, MoS2 , WS2 , h-BN, Bi2 Se3 , MoSe2 , SnS2 , and TaS2 with common cosolvents is carried out based on considering the polar and dispersive components of surface tensions of various cosolvents and 2D materials. It has been found that the exfoliation efficiency is enhanced by matching the ratio of surface tension components of cosolvents to that of the targeted 2D materials, based on which common cosolvents composed of IPA/water, THF/water, and acetone/water can be designed for sufficient LPE process. In this context, the library of low-toxic and low-cost solvents with low boiling points for LPE is infinitely enlarged when extending to common cosolvents. Polymer-based composites reinforced with a series of different 2D materials are compared with each other. It is demonstrated that the incorporation of cosolvents-exfoliated 2D materials can substantially improve the mechanical and thermal properties of polymer matrices. Typically, with the addition of 0.5 wt% of such 2D material as MoS2 nanosheets, the tensile strength and Young's modulus increased up to 74.85% and 136.97%, respectively. The different enhancement effect of 2D materials is corresponded to the intrinsic properties and LPE capacity of 2D materials.
Compactification on phase space
NASA Astrophysics Data System (ADS)
Lovelady, Benjamin; Wheeler, James
2016-03-01
A major challenge for string theory is to understand the dimensional reduction required for comparison with the standard model. We propose reducing the dimension of the compactification by interpreting some of the extra dimensions as the energy-momentum portion of a phase-space. Such models naturally arise as generalized quotients of the conformal group called biconformal spaces. By combining the standard Kaluza-Klein approach with such a conformal gauge theory, we may start from the conformal group of an n-dimensional Euclidean space to form a 2n-dimensional quotient manifold with symplectic structure. A pair of involutions leads naturally to two n-dimensional Lorentzian manifolds. For n = 5, this leaves only two extra dimensions, with a countable family of possible compactifications and an SO(5) Yang-Mills field on the fibers. Starting with n=6 leads to 4-dimensional compactification of the phase space. In the latter case, if the two dimensions each from spacetime and momentum space are compactified onto spheres, then there is an SU(2)xSU(2) (left-right symmetric electroweak) field between phase and configuration space and an SO(6) field on the fibers. Such a theory, with minor additional symmetry breaking, could contain all parts of the standard model.
Robust 2D phase correction for echo planar imaging under a tight field-of-view.
Xu, Dan; King, Kevin F; Zur, Yuval; Hinks, R Scott
2010-12-01
Nyquist ghost artifacts are a serious issue in echo planar imaging. These artifacts primarily originate from phase difference between even and odd echo images and can be removed or reduced using phase correction methods. The commonly used 1D phase correction can only correct phase difference along readout axis. 2D correction is, therefore, necessary when phase difference presents along both readout and phase encoding axes. However, existing 2D methods have several unaddressed issues that affect their practicality. These issues include uncharacterized noise behavior, image artifact due to unoptimized phase estimation, Gibbs ringing artifact when directly applying to partial k(y) data, and most seriously a new image artifact under tight field-of-view (i.e., field-of-view slightly smaller than object size). All these issues are addressed in this article. Specifically, theoretical analysis of noise amplification and effect of phase estimation error is provided, and tradeoff between noise and ghost is studied. A new 2D phase correction method with improved polynomial fitting, joint homodyne processing and phase correction, compatibility with tight field-of-view is then proposed. Various results show that the proposed method can robustly generate images free of Nyquist ghosts and other image artifacts even in oblique scans or when cross-term eddy current terms are significant. PMID:20806354
Gil, Bomi; Hwang, Eo-Jin; Lee, Song; Jang, Jinhee; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo
2016-01-01
Introduction To compare the diagnostic accuracy of contrast-enhanced 3D(dimensional) T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions (T1-SPACE), 2D fluid attenuated inversion recovery (FLAIR) images and 2D contrast-enhanced T1-weighted image in detection of leptomeningeal metastasis except for invasive procedures such as a CSF tapping. Materials and Methods Three groups of patients were included retrospectively for 9 months (from 2013-04-01 to 2013-12-31). Group 1 patients with positive malignant cells in CSF cytology (n = 22); group 2, stroke patients with steno-occlusion in ICA or MCA (n = 16); and group 3, patients with negative results on MRI, whose symptom were dizziness or headache (n = 25). A total of 63 sets of MR images are separately collected and randomly arranged: (1) CE 3D T1-SPACE; (2) 2D FLAIR; and (3) CE T1-GRE using a 3-Tesla MR system. A faculty neuroradiologist with 8-year-experience and another 2nd grade trainee in radiology reviewed each MR image- blinded by the results of CSF cytology and coded their observations as positives or negatives of leptomeningeal metastasis. The CSF cytology result was considered as a gold standard. Sensitivity and specificity of each MR images were calculated. Diagnostic accuracy was compared using a McNemar’s test. A Cohen's kappa analysis was performed to assess inter-observer agreements. Results Diagnostic accuracy was not different between 3D T1-SPACE and CSF cytology by both raters. However, the accuracy test of 2D FLAIR and 2D contrast-enhanced T1-weighted GRE was inconsistent by the two raters. The Kappa statistic results were 0.657 (3D T1-SPACE), 0.420 (2D FLAIR), and 0.160 (2D contrast-enhanced T1-weighted GRE). The 3D T1-SPACE images showed the highest inter-observer agreements between the raters. Conclusions Compared to 2D FLAIR and 2D contrast-enhanced T1-weighted GRE, contrast-enhanced 3D T1 SPACE showed a better detection rate of
NASA Astrophysics Data System (ADS)
Błaszak, Maciej; Domański, Ziemowit
2012-02-01
This paper develops an alternative formulation of quantum mechanics known as the phase space quantum mechanics or deformation quantization. It is shown that the quantization naturally arises as an appropriate deformation of the classical Hamiltonian mechanics. More precisely, the deformation of the point-wise product of observables to an appropriate noncommutative ⋆-product and the deformation of the Poisson bracket to an appropriate Lie bracket are the key elements in introducing the quantization of classical Hamiltonian systems. The formalism of the phase space quantum mechanics is presented in a very systematic way for the case of any smooth Hamiltonian function and for a very wide class of deformations. The considered class of deformations and the corresponding ⋆-products contains as a special case all deformations which can be found in the literature devoted to the subject of the phase space quantum mechanics. Fundamental properties of ⋆-products of observables, associated with the considered deformations are presented as well. Moreover, a space of states containing all admissible states is introduced, where the admissible states are appropriate pseudo-probability distributions defined on the phase space. It is proved that the space of states is endowed with a structure of a Hilbert algebra with respect to the ⋆-multiplication. The most important result of the paper shows that developed formalism is more fundamental than the axiomatic ordinary quantum mechanics which appears in the presented approach as the intrinsic element of the general formalism. The equivalence of two formulations of quantum mechanics is proved by observing that the Wigner-Moyal transform has all properties of the tensor product. This observation allows writing many previous results found in the literature in a transparent way, from which the equivalence of the two formulations of quantum mechanics follows naturally. In addition, examples of a free particle and a simple harmonic
Phase states of a 2D easy-plane ferromagnet with strong inclined anisotropy
Fridman, Yu. A. Klevets, F. N.; Gorelikov, G. A.; Meleshko, A. G.
2012-12-15
We investigate the spin states of a 2D film exhibiting easy-axis anisotropy and a strong single-ion inclined anisotropy whose axis forms a certain angle with the normal to the film surface. Such a system may have an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase, whose realization depends substantially on the inclined anisotropy and the orientation of the wavevector in the film plane.
Evidence for a New Intermediate Phase in a Strongly Correlated 2D System near Wigner Crystallization
NASA Astrophysics Data System (ADS)
Gao, Xuan; Qiu, Richard; Goble, Nicholas; Serafin, Alex; Yin, Liang; Xia, Jian-Sheng; Sullivan, Neil; Pfeiffer, Loren; West, Ken
How the two dimensional (2D) quantum Wigner crystal (WC) transforms into the metallic liquid phase remains an outstanding problem in physics. In theories considering the 2D WC to liquid transition in the clean limit, it was suggested that a number of intermediate phases might exist. We have studied the transformation between the metallic fluid phase and the low magnetic field reentrant insulating phase (RIP) which was interpreted as due to the WC [Qiu et al., PRL 108, 106404 (2012)], in a strongly correlated 2D hole system in GaAs quantum well with large interaction parameter rs (~20-30) and high mobility. Instead of a sharp transition, we found that increasing density (or lowering rs) drives the RIP into a state where the incipient RIP coexists with Fermi liquid. This apparent mixture phase intermediate between Fermi liquid and WC also exhibits a non-trivial temperature dependent resistivity behavior which can be qualitatively understood by the reversed melting of WC in the mixture, in analogy to the Pomeranchuk effect in the solid-liquid mixture of Helium-3. X.G. thanks NSF (DMR-0906415) for supporting work at CWRU. Experiments at the NHMFL High B/T Facility were supported by NSF Grant 0654118 and the State of Florida. L.P. thanks the Gordon and Betty Moore Foundation and NSF MRSEC (DMR-0819860) for support.
Blue Phosphorene Oxide: Strain-Tunable Quantum Phase Transitions and Novel 2D Emergent Fermions
NASA Astrophysics Data System (ADS)
Zhu, Liyan; Wang, Shan-Shan; Guan, Shan; Liu, Ying; Zhang, Tingting; Chen, Guibin; Yang, Shengyuan A.
2016-10-01
Tunable quantum phase transitions and novel emergent fermions in solid state materials are fascinating subjects of research. Here, we propose a new stable two-dimensional (2D) material, the blue phosphorene oxide (BPO), which exhibits both. Based on first-principles calculations, we show that its equilibrium state is a narrow-bandgap semiconductor with three bands at low energy. Remarkably, a moderate strain can drive a semiconductor-to-semimetal quantum phase transition in BPO. At the critical transition point, the three bands cross at a single point at Fermi level, around which the quasiparticles are a novel type of 2D pseudospin-1 fermions. Going beyond the transition, the system becomes a symmetry-protected semimetal, for which the conduction and valence bands touch quadratically at a single Fermi point that is protected by symmetry, and the low-energy quasiparticles become another novel type of 2D double Weyl fermions. We construct effective models characterizing the phase transition and these novel emergent fermions, and we point out several exotic effects, including super Klein tunneling, supercollimation, and universal optical absorbance. Our result reveals BPO as an intriguing platform for the exploration of fundamental properties of quantum phase transitions and novel emergent fermions, and also suggests its great potential in nanoscale device applications.
Beam Tomography in Longitudinal Phase Space
NASA Astrophysics Data System (ADS)
Mane, V.; Wei, J.; Peggs, S.
1997-05-01
Longitudinal particle motion in circular accelerators is typically monitored by one dimensional (1-D) profiles. Adiabatic particle motion in 2-D phase space can be reconstructed with tomographic techniques, using 1-D profiles. In this paper, we discuss a filtered backprojection algorithm, with a high pass ramp or Hann filter, for phase space reconstruction. The algorithm uses several projections of the beam at equally spaced angles over half a synchrotron period. A computer program RADON has been developed to process digitized mountain range data and do the phase space reconstruction for the AGS, and later for Relativistic Heavy Ion Collider (RHIC). Analysis has been performed to determine the sensitivity to machine parameters and data acquisition errors. During the Sextant test of RHIC in early 1997, this program has been successfully employed to reconstruct the motion of Au^77+ beam in the AGS.
On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces
NASA Astrophysics Data System (ADS)
Dong, Hongjie; Li, Dong
We prove the local smoothing effect of the 2D critical and supercritical dissipative quasi-geostrophic equations in critical Besov spaces. As an application, a global well-posedness result is established by adapting a method in Kiselev, Nazarov, and Volberg (2007) [16] and an idea in Dong and Du (2008) [15] with suitable modifications. Moreover, we show that the unique solution obtained in Chen, Miao, and Zhang (2007) [11] is a classical solution. These generalize some previous results in Dong (2010) [13], Dong and Du (2008) [15]. The main ingredients of the proofs are two commutator estimates and the preservation of suitable modulus of continuity of the solutions.
Inspection design using 2D phased array, TFM and cueMAP software
McGilp, Ailidh; Dziewierz, Jerzy; Lardner, Tim; Mackersie, John; Gachagan, Anthony
2014-02-18
A simulation suite, cueMAP, has been developed to facilitate the design of inspection processes and sparse 2D array configurations. At the core of cueMAP is a Total Focusing Method (TFM) imaging algorithm that enables computer assisted design of ultrasonic inspection scenarios, including the design of bespoke array configurations to match the inspection criteria. This in-house developed TFM code allows for interactive evaluation of image quality indicators of ultrasonic imaging performance when utilizing a 2D phased array working in FMC/TFM mode. The cueMAP software uses a series of TFM images to build a map of resolution, contrast and sensitivity of imaging performance of a simulated reflector, swept across the inspection volume. The software takes into account probe properties, wedge or water standoff, and effects of specimen curvature. In the validation process of this new software package, two 2D arrays have been evaluated on 304n stainless steel samples, typical of the primary circuit in nuclear plants. Thick section samples have been inspected using a 1MHz 2D matrix array. Due to the processing efficiency of the software, the data collected from these array configurations has been used to investigate the influence sub-aperture operation on inspection performance.
Interpretation of Line-Integrated Signals from 2-D Phase Contrast Imaging on LHD
NASA Astrophysics Data System (ADS)
Michael, Clive; Tanaka, Kenji; Vyacheslavov, Leonid; Sanin, Andrei; Kawahata, Kazuo; Okajima, S.
Two dimensional (2D) phase contrast imaging (PCI) is an excellent method to measure core and edge turbulence with good spatial resolution (Δρ ˜ 0.1). General analytical consideration is given to the signal interpretation of the line-integrated signals, with specific application to images from 2D PCI. It is shown that the Fourier components of fluctuations having any non-zero component propagating along the line of sight are not detected. The ramifications of this constraint are discussed, including consideration of the angle between the sight line and flux surface normal. In the experimental geometry, at the point where the flux surfaces are tangent to the sight line, it is shown that it may be possible to detect large poloidally extended (though with small radial wavelength) structures, such as GAMS. The spatial localization technique of this diagnostic is illustrated with experimental data.
Overview of Phase Space Manipulations of Relativistic Electron Beams
Xiang, Dao; /SLAC
2012-08-31
Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R&D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.
Orsi, Davide; Guzmán, Eduardo; Liggieri, Libero; Ravera, Francesca; Ruta, Beatrice; Chushkin, Yuriy; Rimoldi, Tiziano; Cristofolini, Luigi
2015-01-01
We investigate the interfacial dynamics of a 2D self-organized mixed layer made of silica nanoparticles interacting with phospholipid (DPPC) monolayers at the air/water interface. This system has biological relevance, allowing investigation of toxicological effects of nanoparticles on model membranes and lung surfactants. It might also provide bio-inspired technological solutions, exploiting the self-organization of DPPC to produce a non-trivial 2D structuration of nanoparticles. The characterization of interfacial dynamics yields information on the effects of NPs on the mechanical properties, important to improve performances of systems such as colloidosomes, foams, creams. For this, we combine micro-tracking in real-space with measurement in momentum-space via x-ray photon-correlation spectroscopy and Digital Fourier Microscopy. Using these complementary techniques, we extend the spatial range of investigation beyond the limits of each one. We find a dynamical transition from Brownian diffusion to an arrested state driven by compression, characterized by intermittent rearrangements, compatible with a repulsive glass phase. The rearrangement and relaxation of the monolayer structure results dramatically hindered by the presence of NPs, which is relevant to explain some the mechanical features observed for the dynamic surface pressure response of these systems and which can be relevant for the respiratory physiology and for future drug-delivery composite systems. PMID:26658474
Orsi, Davide; Guzmán, Eduardo; Liggieri, Libero; Ravera, Francesca; Ruta, Beatrice; Chushkin, Yuriy; Rimoldi, Tiziano; Cristofolini, Luigi
2015-01-01
We investigate the interfacial dynamics of a 2D self-organized mixed layer made of silica nanoparticles interacting with phospholipid (DPPC) monolayers at the air/water interface. This system has biological relevance, allowing investigation of toxicological effects of nanoparticles on model membranes and lung surfactants. It might also provide bio-inspired technological solutions, exploiting the self-organization of DPPC to produce a non-trivial 2D structuration of nanoparticles. The characterization of interfacial dynamics yields information on the effects of NPs on the mechanical properties, important to improve performances of systems such as colloidosomes, foams, creams. For this, we combine micro-tracking in real-space with measurement in momentum-space via x-ray photon-correlation spectroscopy and Digital Fourier Microscopy. Using these complementary techniques, we extend the spatial range of investigation beyond the limits of each one. We find a dynamical transition from Brownian diffusion to an arrested state driven by compression, characterized by intermittent rearrangements, compatible with a repulsive glass phase. The rearrangement and relaxation of the monolayer structure results dramatically hindered by the presence of NPs, which is relevant to explain some the mechanical features observed for the dynamic surface pressure response of these systems and which can be relevant for the respiratory physiology and for future drug-delivery composite systems. PMID:26658474
NASA Astrophysics Data System (ADS)
Orsi, Davide; Guzmán, Eduardo; Liggieri, Libero; Ravera, Francesca; Ruta, Beatrice; Chushkin, Yuriy; Rimoldi, Tiziano; Cristofolini, Luigi
2015-12-01
We investigate the interfacial dynamics of a 2D self-organized mixed layer made of silica nanoparticles interacting with phospholipid (DPPC) monolayers at the air/water interface. This system has biological relevance, allowing investigation of toxicological effects of nanoparticles on model membranes and lung surfactants. It might also provide bio-inspired technological solutions, exploiting the self-organization of DPPC to produce a non-trivial 2D structuration of nanoparticles. The characterization of interfacial dynamics yields information on the effects of NPs on the mechanical properties, important to improve performances of systems such as colloidosomes, foams, creams. For this, we combine micro-tracking in real-space with measurement in momentum-space via x-ray photon-correlation spectroscopy and Digital Fourier Microscopy. Using these complementary techniques, we extend the spatial range of investigation beyond the limits of each one. We find a dynamical transition from Brownian diffusion to an arrested state driven by compression, characterized by intermittent rearrangements, compatible with a repulsive glass phase. The rearrangement and relaxation of the monolayer structure results dramatically hindered by the presence of NPs, which is relevant to explain some the mechanical features observed for the dynamic surface pressure response of these systems and which can be relevant for the respiratory physiology and for future drug-delivery composite systems.
Flow Quantification from 2D Phase Contrast MRI in Renal Arteries Using Clustering
NASA Astrophysics Data System (ADS)
Zöllner, Frank G.; Monnsen, Jan Ankar; Lundervold, Arvid; Rørvik, Jarle
We present an approach based on clustering to segment renal arteries from 2D PC Cine MR images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percutan transluminal angioplasty. Results show that the renal arteries could be extracted automatically and the corresponding velocity profiles could be calculated. Furthermore, the clustering could detect possible phase wrap effects automatically as well as differences in the blood flow patterns within the vessel.
GMC COLLISIONS AS TRIGGERS OF STAR FORMATION. I. PARAMETER SPACE EXPLORATION WITH 2D SIMULATIONS
Wu, Benjamin; Loo, Sven Van; Tan, Jonathan C.; Bruderer, Simon
2015-09-20
We utilize magnetohydrodynamic (MHD) simulations to develop a numerical model for giant molecular cloud (GMC)–GMC collisions between nearly magnetically critical clouds. The goal is to determine if, and under what circumstances, cloud collisions can cause pre-existing magnetically subcritical clumps to become supercritical and undergo gravitational collapse. We first develop and implement new photodissociation region based heating and cooling functions that span the atomic to molecular transition, creating a multiphase ISM and allowing modeling of non-equilibrium temperature structures. Then in 2D and with ideal MHD, we explore a wide parameter space of magnetic field strength, magnetic field geometry, collision velocity, and impact parameter and compare isolated versus colliding clouds. We find factors of ∼2–3 increase in mean clump density from typical collisions, with strong dependence on collision velocity and magnetic field strength, but ultimately limited by flux-freezing in 2D geometries. For geometries enabling flow along magnetic field lines, greater degrees of collapse are seen. We discuss observational diagnostics of cloud collisions, focussing on {sup 13}CO(J = 2–1), {sup 13}CO(J = 3–2), and {sup 12}CO(J = 8–7) integrated intensity maps and spectra, which we synthesize from our simulation outputs. We find that the ratio of J = 8–7 to lower-J emission is a powerful diagnostic probe of GMC collisions.
Surface delta interaction in the g7/2 - d5/2 model space
NASA Astrophysics Data System (ADS)
Yu, Xiaofei; Zamick, Larry
2016-05-01
Using an attractive surface delta interaction we obtain wave functions for 2 neutrons (or neutron holes) in the g7/2 -d5/2 model space. If we take the single particle energies to be degenerate we find that the g factors for I = 2 , 4 and 6 are all the same G (J) =gl, the orbital g factor of the nucleon. For a free neutron gl = 0, so in this case all 2 particles or 2 holes' g factors are equal to zero. Only the orbital part of the g-factors contributes - the spin part cancels out. We then consider the effects of introducing a single energy splitting between the 2 orbits. We make a linear approximation for all other n values.
Combining the switched-beam and beam-steering capabilities in a 2-D phased array antenna system
NASA Astrophysics Data System (ADS)
Tsai, Yi-Che; Chen, Yin-Bing; Hwang, Ruey-Bing
2016-01-01
This paper presents the development, fabrication, and measurement of a novel beam-forming system consisting of 16 subarray antennas, each containing four aperture-coupled patch antennas, and the application of this system in smart wireless communication systems. The beam patterns of each of the subarray antennas can be switched toward one of nine zones over a half space by adjusting the specific phase delay angles among the four antenna elements. Furthermore, when all subarrays are pointed at the same zone, slightly continuous beam steering in around 1° increments can be achieved by dynamically altering the progressive phase delay angle among the subarrays. Phase angle calibration was implemented by coupling each transmitter output and down converter into the in-phase/quadrature baseband to calculate the correction factor to the weight. In addition, to validate the proposed concepts and the fabricated 2-D phased array antenna system, this study measured the far-field radiation patterns of the aperture-coupled patch array integrated with feeding networks and a phase-calibration system to carefully verify its spatially switched-beam and beam-steering characteristics at a center frequency of 2.4 GHz which can cover the industrial, scientific, and medical band and some long-term evolution applications. In addition, measured results were compared with calculated results, and agreement between them was observed.
Coherent beam combining using a 2D internally sensed optical phased array.
Roberts, Lyle E; Ward, Robert L; Sutton, Andrew J; Fleddermann, Roland; de Vine, Glenn; Malikides, Emmanuel A; Wuchenich, Danielle M R; McClelland, David E; Shaddock, Daniel A
2014-08-01
Coherent combination of multiple lasers using an optical phased array (OPA) is an effective way to scale optical intensity in the far field beyond the capabilities of single fiber lasers. Using an actively phase locked, internally sensed, 2D OPA we demonstrate over 95% fringe visibility of the interfered beam, λ/120 RMS output phase stability over a 5 Hz bandwidth, and quadratic scaling of intensity in the far field using three emitters. This paper presents a new internally sensed OPA architecture that employs a modified version of digitally enhanced heterodyne interferometry (DEHI) based on code division multiplexing to measure and control the phase of each emitter. This internally sensed architecture can be implemented with no freespace components, offering improved robustness to shock and vibration exhibited by all-fiber devices. To demonstrate the concept, a single laser is split into three channels/emitters, each independently controlled using separate electro-optic modulators. The output phase of each channel is measured using DEHI to sense the small fraction of light that is reflected back into the fiber at the OPA's glass-air interface. The relative phase between emitters is used to derive the control signals needed to stabilize their relative path lengths and maintain coherent combination in the far field.
Disentangling redshift-space distortions and non-linear bias using the 2D power spectrum
NASA Astrophysics Data System (ADS)
Jennings, Elise; Wechsler, Risa H.; Skillman, Samuel W.; Warren, Michael S.
2016-03-01
We present the 2D redshift-space galaxy power spectrum, P(k, μ), measured from the Dark Sky simulations, using catalogues constructed with halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual μ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of non-linear growth and redshift-space distortion (RSD) effects. Using the μ < 0.2 simulation data, which is not impacted by RSD, we can successfully measure the non-linear bias to ˜5 per cent at k < 0.6 h Mpc-1. Using the low μ simulation data to constrain the non-linear bias, and μ ≥ 0.2 to constrain the growth rate, we show that f can be constrained to ˜26(22) per cent to a kmax < 0.4(0.6) h Mpc-1 from clustering alone using a dispersion model, for a range of galaxy models. Our analysis of individual μ bins reveals interesting physical effects which arise from different methods of populating haloes with galaxies. We find a prominent turnaround scale, at which RSD damping effects are greater than the non-linear growth, which differs for each galaxy model. The idea of separating non-linear growth and RSD effects making use of the full information in the 2D galaxy power spectrum yields significant improvements in constraining cosmological parameters and may be a promising probe of galaxy formation models.
Disentangling Redshift-Space Distortions and Nonlinear Bias using the 2D Power Spectrum
Jennings, Elise; Wechsler, Risa H.
2015-08-07
We present the nonlinear 2D galaxy power spectrum, P(k, µ), in redshift space, measured from the Dark Sky simulations, using galaxy catalogs constructed with both halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual µ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of nonlinear growth and redshift space distortion (RSD) effects. Using the µ < 0.2 simulation data, which we show is not impacted by RSD effects, we can successfully measure the nonlinear bias to an accuracy of ~ 5% at k < 0.6hMpc-1 . This use of individual µ bins to extract the nonlinear bias successfully removes a large parameter degeneracy when constraining the linear growth rate of structure. We carry out a joint parameter estimation, using the low µ simulation data to constrain the nonlinear bias, and µ > 0.2 to constrain the growth rate and show that f can be constrained to ~ 26(22)% to a kmax < 0.4(0.6)hMpc-1 from clustering alone using a simple dispersion model, for a range of galaxy models. Our analysis of individual µ bins also reveals interesting physical effects which arise simply from different methods of populating halos with galaxies. We also find a prominent turnaround scale, at which RSD damping effects are greater then the nonlinear growth, which differs not only for each µ bin but also for each galaxy model. These features may provide unique signatures which could be used to shed light on the galaxy–dark matter connection. Furthermore, the idea of separating nonlinear growth and RSD effects making use of the full information in the 2D galaxy power spectrum yields significant improvements in constraining cosmological parameters and may be a promising probe of galaxy formation models.
Wave Propagation in 2-D Granular Matrix and Dust Mitigation of Fabrics for Space Exploration Mission
NASA Technical Reports Server (NTRS)
Thanh, Phi Hung X.
2004-01-01
Wave Propagation study is essential to exploring the soil on Mars or Moon and Dust Mitigation is a necessity in terms of crew's health in exploration missions. The study of Dust Mitigation has a significant impact on the crew s health when astronauts track dust back into their living space after exploration trips. We are trying to use piezoelectric fiber to create waves and vibrations at certain critical frequencies and amplitudes so that we can shake the particles off from the astronaut s fabrics. By shaking off the dust and removing it, the astronauts no longer have to worry about breathing in small and possibly hazardous materials, when they are back in their living quarters. The Wave Propagation in 2-D Granular Matrix studies how the individual particles interact with each other when a pressure wave travels through the matrix. This experiment allows us to understand how wave propagates through soils and other materials. By knowing the details about the interactions of particles when they act as a medium for waves, we can better understand how wave propagates through soils and other materials. With this experiment, we can study how less gravity effects the wave propagation and hence device a way to study soils in space and on Moon or Mars. Some scientists treat the medium that waves travel through as a "black box", they did not pay much attention to how individual particles act as wave travels through them. With this data, I believe that we can use it to model ways to measure the properties of different materials such as density and composition. In order to study how the particles interact with each other, I have continued Juan Agui's experiment of the effects of impacts on a 2-D matrix. By controlling the inputs and measuring the outputs of the system, I will be able to study now the particles in that system interact with each other. I will also try to model this with the software called PFC2D in order to obtain theoretical data to compare with the experiment
Dubey, Abhinav; Mondal, Somnath; Chandra, Kousik; Atreya, Hanudatta S
2016-06-01
We present a simple approach to rapidly identify amino acid types in proteins from a 2D spectrum. The method is based on the fact that (13)C(β) chemical shifts of different amino acid types fall in distinct spectral regions. By evolving the (13)C chemical shifts in the conventional HNCACB or HN(CO)CACB type experiment for a single specified delay period, the phase of the cross peaks of different amino acid residues are modulated depending on their (13)C(β) shift values. Following this specified evolution period, the 2D HN projections of these experiments are acquired. The (13)C evolution period can be chosen such that all residues belonging to a given set of amino acid types have the same phase pattern (positive or negative) facilitating their identification. This approach does not require the preparation of any additional samples, involves the analysis of 2D [(15)N-(1)H] HSQC-type spectra obtained from the routinely used triple resonance experiments with minor modifications, and is applicable to deuterated proteins. The method will be useful for quick assignment of signals that shift during ligand binding or in combination with selective labeling/unlabeling approaches for identification of amino acid types to aid the sequential assignment process. PMID:27078090
NASA Astrophysics Data System (ADS)
Tymoczko, Jakub; Colic, Viktor; Bandarenka, Aliaksandr S.; Schuhmann, Wolfgang
2015-01-01
The capacitance of the electric double layer, CDL, formed at the electrode/electrolyte interface is generally determined by electrochemical impedance spectroscopy (EIS). However, CDL values obtained using EIS data often depend on the ac frequency of the potential perturbation used in EIS. The reasons for the observed frequency dispersions can be various, and hence extracting valuable information about the status of the electrified interface is not possible with the required certainty. In this work, using well-understood electrochemical systems, namely Pt(111) electrodes in contact with a series of acidic sulfate ions containing electrolytes, we provide strong evidence that 2D phase transitions in the adsorbate layers and, in general, structural effects at the electrode/electrolyte interface are in many cases responsible for the frequency dispersion of the double layer capacitance. These empirical findings open new opportunities for the detection and evaluation of 2D phase transition processes and other structural effects using EIS, even in presence of simultaneously occurring electrochemical processes. However, further theoretical elaboration of this effect is necessary.
Local electronic structures and 2D topological phase transition of ultrathin Sb films
NASA Astrophysics Data System (ADS)
Kim, Sunghwan; Jin, Kyung-Hwan; Park, Joonbum; Kim, Jun Sung; Jhi, Seung-Hoon; Yeom, Han Woong
We investigate local electronic structures of ultrathin Sb islands and their edges grown on Bi2Te2Se by scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) calculations. The Sb islands of various thickness are grown with atomically well ordered edge structure over the 3 bilayers (BL). On the surfaces and edges of these islands, we clearly resolve edge-localized electronic states by STS measurements, which depend on the thickness. The DFT calculations identify that the strongly localized edge states of 4 and 5 BL films correspond to a quantum spin Hall (QSH) states while the edge states of 3 BL are trivial. Our experimental and theoretical results confirm the 2D topological phase transition of the ultrathin Sb films from trivial to QSH phase. Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science and Department of Physics, Pohang University of Science and Technology, Korea.
Truncated conformal space approach for 2D Landau–Ginzburg theories
Coser, A.; Beria, M.; Brandino, G. P.; Konik, R. M.; Mussardo, G.
2014-12-10
In this study, We examine the spectrum of Landau–Ginzburg theories in 1 + 1 dimensions using the truncated conformal space approach employing a compactified boson. We study these theories both in their broken and unbroken phases. We first demonstrate that we can reproduce the expected spectrum of a Φ² theory (i.e. a free massive boson) in this framework. We then turn to Φ⁴ in its unbroken phase and compare our numerical results with the predictions of two-loop perturbation theory, finding excellent agreement. We then analyze the broken phase of Φ⁴ where kink excitations together with their bound states are present.more » We confirm the semiclassical predictions for this model on the number of stable kink-antikink bound states. We also test the semiclassics in the double well phase of Φ⁶ Landau-Ginzburg theory, again finding agreement.« less
Truncated conformal space approach for 2D Landau–Ginzburg theories
Coser, A.; Beria, M.; Brandino, G. P.; Konik, R. M.; Mussardo, G.
2014-12-10
In this study, We examine the spectrum of Landau–Ginzburg theories in 1 + 1 dimensions using the truncated conformal space approach employing a compactified boson. We study these theories both in their broken and unbroken phases. We first demonstrate that we can reproduce the expected spectrum of a Φ² theory (i.e. a free massive boson) in this framework. We then turn to Φ⁴ in its unbroken phase and compare our numerical results with the predictions of two-loop perturbation theory, finding excellent agreement. We then analyze the broken phase of Φ⁴ where kink excitations together with their bound states are present. We confirm the semiclassical predictions for this model on the number of stable kink-antikink bound states. We also test the semiclassics in the double well phase of Φ⁶ Landau-Ginzburg theory, again finding agreement.
Numerical Real Space Renormalization of a 2D Random Boson Model
NASA Astrophysics Data System (ADS)
Iyer, Shankar; Refael, Gil
2011-03-01
Interest in the random boson problem originated in experiments on Helium adsorbed in Vycor, but the problem arises in many contexts, including Josephson junction arrays and disordered cold atom systems. Recently, Altman, Kafri, Polkovnikov, and Refael have studied a rotor model description of interacting bosons subjected to quenched disorder in one dimension. Using a real space renormalization approach, they have identified a random fixed point that marks the transition between superfluid and Mott-glass phases. Here, we describe work that numerically extends their approach to the random boson problem in two dimensions. We first test the validity of the real space renormalization by comparison to exact diagonalization of small systems. Then, we move to larger systems and explore what the renormalization scheme can tell us about the nature of the insulating and superfluid phases.
Absorption and scattering 2-D volcano images from numerically calculated space-weighting functions
NASA Astrophysics Data System (ADS)
Del Pezzo, Edoardo; Ibañez, Jesus; Prudencio, Janire; Bianco, Francesca; De Siena, Luca
2016-08-01
Short-period small magnitude seismograms mainly comprise scattered waves in the form of coda waves (the tail part of the seismogram, starting after S waves and ending when the noise prevails), spanning more than 70 per cent of the whole seismogram duration. Corresponding coda envelopes provide important information about the earth inhomogeneity, which can be stochastically modeled in terms of distribution of scatterers in a random medium. In suitable experimental conditions (i.e. high earth heterogeneity), either the two parameters describing heterogeneity (scattering coefficient), intrinsic energy dissipation (coefficient of intrinsic attenuation) or a combination of them (extinction length and seismic albedo) can be used to image Earth structures. Once a set of such parameter couples has been measured in a given area and for a number of sources and receivers, imaging their space distribution with standard methods is straightforward. However, as for finite-frequency and full-waveform tomography, the essential problem for a correct imaging is the determination of the weighting function describing the spatial sensitivity of observable data to scattering and absorption anomalies. Due to the nature of coda waves, the measured parameter couple can be seen as a weighted space average of the real parameters characterizing the rock volumes illuminated by the scattered waves. This paper uses the Monte Carlo numerical solution of the Energy Transport Equation to find approximate but realistic 2-D space-weighting functions for coda waves. Separate images for scattering and absorption based on these sensitivity functions are then compared with those obtained with commonly used sensitivity functions in an application to data from an active seismic experiment carried out at Deception Island (Antarctica). Results show that these novel functions are based on a reliable and physically grounded method to image magnitude and shape of scattering and absorption anomalies. Their
Disentangling Redshift-Space Distortions and Nonlinear Bias using the 2D Power Spectrum
Jennings, Elise; Wechsler, Risa H.
2015-08-07
We present the nonlinear 2D galaxy power spectrum, P(k, µ), in redshift space, measured from the Dark Sky simulations, using galaxy catalogs constructed with both halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual µ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of nonlinear growth and redshift space distortion (RSD) effects. Using the µ < 0.2 simulation data, which we show ismore » not impacted by RSD effects, we can successfully measure the nonlinear bias to an accuracy of ~ 5% at k < 0.6hMpc-1 . This use of individual µ bins to extract the nonlinear bias successfully removes a large parameter degeneracy when constraining the linear growth rate of structure. We carry out a joint parameter estimation, using the low µ simulation data to constrain the nonlinear bias, and µ > 0.2 to constrain the growth rate and show that f can be constrained to ~ 26(22)% to a kmax < 0.4(0.6)hMpc-1 from clustering alone using a simple dispersion model, for a range of galaxy models. Our analysis of individual µ bins also reveals interesting physical effects which arise simply from different methods of populating halos with galaxies. We also find a prominent turnaround scale, at which RSD damping effects are greater then the nonlinear growth, which differs not only for each µ bin but also for each galaxy model. These features may provide unique signatures which could be used to shed light on the galaxy–dark matter connection. Furthermore, the idea of separating nonlinear growth and RSD effects making use of the full information in the 2D galaxy power spectrum yields significant improvements in constraining cosmological parameters and may be a promising probe of galaxy formation models.« less
Numerical Simulations of 2-D Phase-Field Model with Convection
NASA Astrophysics Data System (ADS)
Xu, Ying; McDonough, J. M.; Tagavi, K. A.
2003-11-01
We present a 2-D isotropic phase-field model with convection induced by a flow field applied to freezing into a supercooled melt of pure substance, nickle. Numerical procedures and details of numerical parameters employed are provided, and the convergence of the numerical method is demonstrated by conducting grid-function convergence tests. Dendrite structures, temperature fields, pressure fields, streamlines and velocity vector fields are presented at several different times during the dendrite growth process. Comparisons of dendrites and temperature fields with and without convection indicate that the flow field has a significant effect on the growth rate of the dendrites; in particular, it inhibits the growth. In addition, the flow field influences the dendritic structural morphologies and thickness of the interface. Moreover, the dendrites behave as a solid body in the flow leading to stagnation points and other interesting flow features.
Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles
2013-01-01
2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131
Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles
2012-01-01
2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists' demands for qualitative analysis of confocal microscopy data.
Superfluid Onset and 2D phase transitions of Helium-4 on Lithium and Sodium
NASA Astrophysics Data System (ADS)
Velasco, Angel; Huisman, Fawn; van Cleve, Eli; Taborek, Peter
2012-02-01
We have fabricated lithium and sodium films on quartz crystal microbalances (QCM) using in situ low temperature pulsed laser deposition. The frequency shift and dissipation of the QCM was measured as a function of helium pressure and chemical potential and used to construct the phase diagram of helium films on these substrates. Pressure measurement techniques based on an RGA mass spectrometer, which provides accurate measurement below 10-8 Torr will be described. Lithium and sodium are predicted to be intermediate strength substrates which are strong enough to be wetted by He-4 but weak enough that solid-like layers do not form, so they are candidates for observing sub-monolayer superfluidity in direct contact with a metallic surface. Helium adsorption isotherms and quenches between 0.5K and 1.6K on both lithium and sodium indicated continuous, sub-monolayer helium film growth and superfluid onsets in sub-monolayer films. Features below 1K indicate a collision between a classical 2D liquid/vapor phase transition and the Kosterlitz-Thouless superfluid phase transition. We see no evidence for the pre-wetting step instability predicted for helium on sodium.
Magnetic phase diagram of quasi-2D quantum Heisenberg antiferromagnets with XY anisotropy
NASA Astrophysics Data System (ADS)
Xiao, Fan; Landee, Christopher; Turnbull, Mark; Fortune, Nathanael; Hannahs, Scott
2012-02-01
The magnetic phase diagram of a quasi-2D quantum Heisenberg antiferromagnetic compound Cu(pz)2(ClO4)2 [1] has been determined by experimental measurements; TN shows a strong field dependence. The data reveal the presence of a small (0.5%) amount of XY anisotropy. QMC simulations have been performed to examine the role of the anisotropy and the interlayer exchange (') upon the phase diagram [2,3]. Comparison of the QMC results with the experimental phase diagram will be presented. [4pt] [1] F. Xiao, F. M. Woodward, C. P. Landee, M. M. Turnbull, C. Mielke, N. Harrison, T. Lancaster, S. J. Blundell, P. J. Baker, P. Babkevich, and F. L. Pratt. Phys. Rev. B, 79(13): 134412 (2009) [0pt] [2] A. Cuccoli, T. Roscilde, R. Vaia, and P. Verrucchi. Phys. Rev. B, 68(6):060402 (2003). [0pt] [3] A. Cuccoli, T. Roscilde, R. Vaia, and P. Verrucchi. Phys. Rev. Lett., 90(16): 167205 (2003).
High speed phase-resolved 2-d UBV photometry of the Crab pulsar
NASA Astrophysics Data System (ADS)
Golden, A.; Shearer, A.; Redfern, R. M.; Beskin, G. M.; Neizvestny, S. I.; Neustroev, V. V.; Plokhotnichenko, V. L.; Cullum, M.
2000-11-01
We report a phase-resolved photometric and morphological analysis of UBV data of the Crab pulsar obtained with the 2-d TRIFFID high speed optical photometer mounted on the Russian 6m telescope. By being able to accurately isolate the pulsar from the nebular background at an unprecedented temporal resolution (1 μs), the various light curve components were accurately fluxed via phase-resolved photometry. Within the UBV range, our datasets are consistent with the existing trends reported elsewhere in the literature. In terms of flux and phase duration, both the peak Full Width Half Maxima and Half Width Half Maxima decrease as a function of photon energy. This is similarly the case for the flux associated with the bridge of emission. Power-law fits to the various light curve components are as follows; alpha = 0.07 +/- 0.19 (peak 1), alpha = -0.06 +/- 0.19 (peak 2) and alpha = -0.44 +/- 0.19 (bridge) - the uncertainty here being dominated by the integrated CCD photometry used to independently reference the TRIFFID data. Temporally, the main peaks are coincident to <= 10 μs although an accurate phase lag with respect to the radio main peak is compromised by radio timing uncertainties. The plateau on the Crab's main peak was definitively determined to be <= 55 μs in extent and may decrease as a function of photon energy. There is no evidence for non-stochastic activity over the light curves or within various phase regions, nor is there evidence of anything akin to the giant pulses noted in the radio. Finally, there is no evidence to support the existence of a reported 60 second modulation suggested to be as a consequence of free precession. Based on observations taken at SAO, Karachai-Cherkessia, Russia
A model for smooth viewing and navigation of large 2D information spaces.
van Wijk, Jarke J; Nuij, Wim A A
2004-01-01
Large 2D information spaces, such as maps, images, or abstract visualizations, require views at various level of detail: close ups to inspect details, overviews to maintain (literally) an overview. Users often change their view during a session. Smooth animations enable the user to maintain an overview during interactive viewing and to understand the context of separate views. We present a generic model to handle smooth image viewing. The core of the model is a metric on the effect of simultaneous zooming and panning, based on an estimate of the perceived velocity. Using this metric, solutions for various problems are derived, such as the optimal animation between two views, automatic zooming, and the parametrization of arbitrary camera paths. Optimal is defined here as smooth and efficient. Solutions are based on the shortest paths of a virtual camera, given the metric. The model has two free parameters: animation speed and zoom/pan trade off. A user experiment to find good values for these is described. Finally, it is shown how the model can be extended to deal also with rotation and nonuniform scaling. PMID:18579972
The continuum phase diagram of the 2d non-commutative λϕ 4 model
NASA Astrophysics Data System (ADS)
Mejía-Díaz, Héctor; Bietenholz, Wolfgang; Panero, Marco
2014-10-01
We present a non-perturbative study of the λ ϕ 4 model on a non-commutative plane. The lattice regularised form can be mapped onto a Hermitian matrix model, which enables Monte Carlo simulations. Numerical data reveal the phase diagram; at large λ it contains a "striped phase", which is absent in the commutative case. We explore the question whether or not this phenomenon persists in a Double Scaling Limit (DSL), which extrapolates simultaneously to the continuum and to infinite volume, at a fixed non-commutativity parameter. To this end, we introduce a dimensional lattice spacing based on the decay of the correlation function. Our results provide evidence for the existence of a striped phase even in the DSL, which implies the spontaneous breaking of translation symmetry. Due to the non-locality of this model, this does not contradict the Mermin-Wagner theorem.
Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate
NASA Astrophysics Data System (ADS)
Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey
2014-05-01
We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The
Phase microscope imaging in phase space
NASA Astrophysics Data System (ADS)
Sheppard, Colin J. R.; Mehta, Shalin B.
2016-03-01
Imaging in a bright field or phase contrast microscope is partially coherent. We have found that the image can be conveniently considered and modeled in terms of the Wigner distribution function (WDF) of the object transmission. The WDF of the object has a simple physical interpretation for the case of a slowly varying object. Basically, the image intensity is the spatial marginal of the spatial convolution of the object WDF with the phase space imager kernel (PSIkernel), a rotated version of the transmission cross-coefficient. The PSI-kernel can be regarded as a partially-coherent generalization of the point spread function. This approach can be extended to consider the partial coherence of the image itself. In particular, we can consider the mutual intensity, WDF or ambiguity function of the image. It is important to note that the spatial convolution of the object WDF with the PSI-kernel is not a WDF, and not the WDF of the image. The phase space representations of the image have relevance to phase reconstruction methods such as phase space tomography, or the transport of intensity equation approach, and to the three-dimensional image properties.
2D-FFT implementation on FPGA for wavefront phase recovery from the CAFADIS camera
NASA Astrophysics Data System (ADS)
Rodríguez-Ramos, J. M.; Magdaleno Castelló, E.; Domínguez Conde, C.; Rodríguez Valido, M.; Marichal-Hernández, J. G.
2008-07-01
The CAFADIS camera is a new sensor patented by Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can measure the wavefront phase and the distance to the light source at the same time in a real time process. It uses specialized hardware: Graphical Processing Units (GPUs) and Field Programmable Gates Arrays (FPGAs). These two kinds of electronic hardware present an architecture capable of handling the sensor output stream in a massively parallel approach. Of course, FPGAs are faster than GPUs, this is why it is worth it using FPGAs integer arithmetic instead of GPUs floating point arithmetic. GPUs must not be forgotten, as we have shown in previous papers, they are efficient enough to resolve several problems for AO in Extremely Large Telescopes (ELTs) in terms of time processing requirements; in addition, the GPUs show a widening gap in computing speed relative to CPUs. They are much more powerful in order to implement AO simulation than common software packages running on top of CPUs. Our paper shows an FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera. This is done in two steps: the estimation of the telescope pupil gradients from the telescope focus image, and then the very novelty 2D-FFT over the FPGA. Time processing results are compared to our GPU implementation. In fact, what we are doing is a comparison between the two different arithmetic mentioned above, then we are helping to answer about the viability of the FPGAs for AO in the ELTs.
Dallas, Panagiotis; Georgakilas, Vasilios
2015-10-01
In the recent advances in the field of conductive polymers, the fibrillar or needle shaped nanostructures of polyaniline and polypyrrole have attracted significant attention due to the potential advantages of organic conductors that exhibit low-dimensionality, uniform size distribution, high crystallinity and improved physical properties compared to their bulk or spherically shaped counterparts. Carrying the polymerization reaction in a restricted two dimensional space, instead of the three dimensional space of the one phase solution is an efficient method for the synthesis of polymeric nanostructures with narrow size distribution and small diameter. Ultra-thin nanowires and nanofibers, single crystal nanoneedles, nanocomposites with noble metals or carbon nanotubes and layered materials can be efficiently synthesized with high yield and display superior performance in sensors and energy storage applications. In this critical review we will focus not only on the interfacial polymerization methods that leads to polymeric nanostructures and composites and their properties, but also on the mechanism and the physico-chemical processes that govern the diffusion and reactivity of molecules and nanomaterials at an interface. Recent advances for the synthesis of conductive polymer composites with an interfacial method for energy storage applications and future perspectives are presented. PMID:26272721
Dallas, Panagiotis; Georgakilas, Vasilios
2015-10-01
In the recent advances in the field of conductive polymers, the fibrillar or needle shaped nanostructures of polyaniline and polypyrrole have attracted significant attention due to the potential advantages of organic conductors that exhibit low-dimensionality, uniform size distribution, high crystallinity and improved physical properties compared to their bulk or spherically shaped counterparts. Carrying the polymerization reaction in a restricted two dimensional space, instead of the three dimensional space of the one phase solution is an efficient method for the synthesis of polymeric nanostructures with narrow size distribution and small diameter. Ultra-thin nanowires and nanofibers, single crystal nanoneedles, nanocomposites with noble metals or carbon nanotubes and layered materials can be efficiently synthesized with high yield and display superior performance in sensors and energy storage applications. In this critical review we will focus not only on the interfacial polymerization methods that leads to polymeric nanostructures and composites and their properties, but also on the mechanism and the physico-chemical processes that govern the diffusion and reactivity of molecules and nanomaterials at an interface. Recent advances for the synthesis of conductive polymer composites with an interfacial method for energy storage applications and future perspectives are presented.
Quantum phase transition in space
Damski, Bogdan; Zurek, Wojciech H
2008-01-01
A quantum phase transition between the symmetric (polar) phase and the phase with broken symmetry can be induced in a ferromagnetic spin-1 Bose-Einstein condensate in space (rather than in time). We consider such a phase transition and show that the transition region in the vicinity of the critical point exhibits scalings that reflect a compromise between the rate at which the transition is imposed (i.e., the gradient of the control parameter) and the scaling of the divergent healing length in the critical region. Our results suggest a method for the direct measurement of the scaling exponent {nu}.
Bernardini, C; Stoyanov, S D; Arnaudov, L N; Cohen Stuart, M A
2013-03-01
In 1861 Thomas Graham gave birth to a new field of science, today known as colloid science. Nowadays, the notion "colloid" is often used referring to systems consisting of two immiscible phases, one of which is finely dispersed into the other. Research on colloids deals mostly with sols (solids dispersed in a liquid), emulsions (liquids dispersed in liquid), and foams (gas dispersed in a liquid). Because the dispersed particles are small, there is a lot of interface per unit mass. Not surprisingly, therefore, the properties of the interface have often a decisive effect on the behaviour of colloids. Water-air interfaces have a special relevance in this field: many water-insoluble molecules can be spread on water and, given the right spreading conditions and enough available surface area, their spreading proceeds until a monolayer (a one-molecule thick layer) eventually remains. Several 2D phases have been identified for such monolayers, like "gas", "liquid expanded", "liquid condensed", and "solid". The central question of this review is whether these 2D phases can also exist as colloidal systems, and what stabilizes the dispersed state in such systems. We shall present several systems capable of yielding 2D phase separation, from those based on either natural or fluorinated amphiphiles, to polymer-based ones. We shall seek for analogies in 3D and we shall try to clarify if the lines between these 2D objects play a similar role as the interfaces between 3D colloidal systems. In particular, we shall consider the special role of molecules that tend to accumulate at the phase boundaries, that is, at the contact lines, which will therefore be denoted "line-actants" (molecules that adsorb at a 1D interface, separating two 2D colloidal entities), by analogy to the term "surfactant" (which indicates a molecule that adsorbs at a 2D interface separating two 3D colloidal entities).
Buechler, H. P.; Micheli, A.; Pupillo, G.; Zoller, P.; Demler, E.; Lukin, M.; Prokof'ev, N.
2007-02-09
We discuss techniques to tune and shape the long-range part of the interaction potentials in quantum gases of bosonic polar molecules by dressing rotational excitations with static and microwave fields. This provides a novel tool towards engineering strongly correlated quantum phases in combination with low-dimensional trapping geometries. As an illustration, we discuss the 2D superfluid-crystal quantum phase transition for polar molecules interacting via an electric-field-induced dipole-dipole potential.
4D phase-space multiplexing for fluorescent microscopy
NASA Astrophysics Data System (ADS)
Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura
2016-03-01
Phase-space measurements enable characterization of second-order spatial coherence properties and can be used for digital aberration removal or 3D position reconstruction. Previous methods use a scanning aperture to measure the phase space spectrogram, which is slow and light inefficient, while also attenuating information about higher-order correlations. We demonstrate a significant improvement of speed and light throughput by incorporating multiplexing techniques into our phase-space imaging system. The scheme implements 2D coded aperture patterning in the Fourier (pupil) plane of a microscope using a Spatial Light Modulator (SLM), while capturing multiple intensity images in real space. We compare various multiplexing schemes to scanning apertures and show that our phase-space reconstructions are accurate for experimental data with biological samples containing many 3D fluorophores.
Longitudinal phase space tomography with space charge
NASA Astrophysics Data System (ADS)
Hancock, S.; Lindroos, M.; Koscielniak, S.
2000-12-01
Tomography is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. In an extension in the domain of particle accelerators, one of the simplest algorithms has been modified to take into account the nonlinearity of large-amplitude synchrotron motion. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The method is a hybrid one which incorporates particle tracking. Hitherto, a very simple tracking algorithm has been employed because only a brief span of measured profile data is required to build a snapshot of phase space. This is one of the strengths of the method, as tracking for relatively few turns relaxes the precision to which input machine parameters need to be known. The recent addition of longitudinal space charge considerations as an optional refinement of the code is described. Simplicity suggested an approach based on the derivative of bunch shape with the properties of the vacuum chamber parametrized by a single value of distributed reactive impedance and by a geometrical coupling coefficient. This is sufficient to model the dominant collective effects in machines of low to moderate energy. In contrast to simulation codes, binning is not an issue since the profiles to be differentiated are measured ones. The program is written in Fortran 90 with high-performance Fortran extensions for parallel processing. A major effort has been made to identify and remove execution bottlenecks, for example, by reducing floating-point calculations and recoding slow intrinsic functions. A pointerlike mechanism which avoids the problems associated with pointers and parallel processing has been implemented. This is required to handle the large, sparse matrices that the algorithm employs. Results obtained with and without the inclusion of space charge are presented and compared for proton beams in the CERN protron synchrotron booster. Comparisons
Roton Excitations and the Fluid-Solid Phase Transition in Superfluid 2D Yukawa Bosons
NASA Astrophysics Data System (ADS)
Molinelli, S.; Galli, D. E.; Reatto, L.; Motta, M.
2016-10-01
We compute several ground-state properties and the dynamical structure factor of a zero-temperature system of Bosons interacting with the 2D screened Coulomb (2D-SC) potential. We resort to the exact shadow path integral ground state (SPIGS) quantum Monte Carlo method to compute the imaginary-time correlation function of the model, and to the genetic algorithm via falsification of theories (GIFT) to retrieve the dynamical structure factor. We provide a detailed comparison of ground-state properties and collective excitations of 2D-SC and ^4He atoms. The roton energy of the 2D-SC system is an increasing function of density, and not a decreasing one as in ^4He. This result is in contrast with the view that the roton is the soft mode of the fluid-solid transition. We uncover a remarkable quasi-universality of backflow and of other properties when expressed in terms of the amount of short-range order as quantified by the height of the first peak of the static structure factor.
Roton Excitations and the Fluid-Solid Phase Transition in Superfluid 2D Yukawa Bosons
NASA Astrophysics Data System (ADS)
Molinelli, S.; Galli, D. E.; Reatto, L.; Motta, M.
2016-05-01
We compute several ground-state properties and the dynamical structure factor of a zero-temperature system of Bosons interacting with the 2D screened Coulomb (2D-SC) potential. We resort to the exact shadow path integral ground state (SPIGS) quantum Monte Carlo method to compute the imaginary-time correlation function of the model, and to the genetic algorithm via falsification of theories (GIFT) to retrieve the dynamical structure factor. We provide a detailed comparison of ground-state properties and collective excitations of 2D-SC and ^4 He atoms. The roton energy of the 2D-SC system is an increasing function of density, and not a decreasing one as in ^4 He. This result is in contrast with the view that the roton is the soft mode of the fluid-solid transition. We uncover a remarkable quasi-universality of backflow and of other properties when expressed in terms of the amount of short-range order as quantified by the height of the first peak of the static structure factor.
Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei
2014-01-01
We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490
NASA Astrophysics Data System (ADS)
Guan, Zhen; Heinonen, Vili; Lowengrub, John; Wang, Cheng; Wise, Steven M.
2016-09-01
In this paper we construct an energy stable finite difference scheme for the amplitude expansion equations for the two-dimensional phase field crystal (PFC) model. The equations are formulated in a periodic hexagonal domain with respect to the reciprocal lattice vectors to achieve a provably unconditionally energy stable and solvable scheme. To our knowledge, this is the first such energy stable scheme for the PFC amplitude equations. The convexity of each part in the amplitude equations is analyzed, in both the semi-discrete and fully-discrete cases. Energy stability is based on a careful convexity analysis for the energy (in both the spatially continuous and discrete cases). As a result, unique solvability and unconditional energy stability are available for the resulting scheme. Moreover, we show that the scheme is point-wise stable for any time and space step sizes. An efficient multigrid solver is devised to solve the scheme, and a few numerical experiments are presented, including grain rotation and shrinkage and grain growth studies, as examples of the strength and robustness of the proposed scheme and solver.
Quantum shuttle in phase space.
Novotný, Tomás; Donarini, Andrea; Jauho, Antti-Pekka
2003-06-27
We present a quantum theory of the shuttle instability in electronic transport through a nanostructure with a mechanical degree of freedom. A phase space formulation in terms of the Wigner function allows us to identify a crossover from the tunneling to the shuttling regime, thus extending the previously found classical results to the quantum domain. Further, a new dynamical regime is discovered, where the shuttling is driven exclusively by the quantum noise.
Menezes, J W; Cescato, L; de Carvalho, E J; Braga, E S
2006-09-18
2D hexagonal patterns can be generated by the superimposition of two or three fringe patterns that have been formed by two-wave interference and that have rotations of 60 degrees between them. Superimposing three exposures solves the problem of asymmetry in the cross section of structures, which is caused by double exposure. The resulting structure, however, depends on the phase shift of the third fringe pattern in relation to the previous two. We propose a method for controlling the phase shift, and we demonstrate that three different lattice geometries of hexagonal photonic crystals can be recorded when the phase is chosen.
Analysis of 2D Phase Contrast MRI in Renal Arteries by Self Organizing Maps
NASA Astrophysics Data System (ADS)
Zöllner, Frank G.; Schad, Lothar R.
We present an approach based on self organizing maps to segment renal arteries from 2D PC Cine MR, images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percu-tan transluminal angioplasty. Results show that the renal arteries could be extracted automatically. The corresponding velocity profiles show high correlation (r=0.99) compared those from manual delineated vessels. Furthermore, the method could detect possible blood flow patterns within the vessel.
Projecting 2D gene expression data into 3D and 4D space.
Gerth, Victor E; Katsuyama, Kaori; Snyder, Kevin A; Bowes, Jeff B; Kitayama, Atsushi; Ueno, Naoto; Vize, Peter D
2007-04-01
Video games typically generate virtual 3D objects by texture mapping an image onto a 3D polygonal frame. The feeling of movement is then achieved by mathematically simulating camera movement relative to the polygonal frame. We have built customized scripts that adapt video game authoring software to texture mapping images of gene expression data onto b-spline based embryo models. This approach, known as UV mapping, associates two-dimensional (U and V) coordinates within images to the three dimensions (X, Y, and Z) of a b-spline model. B-spline model frameworks were built either from confocal data or de novo extracted from 2D images, once again using video game authoring approaches. This system was then used to build 3D models of 182 genes expressed in developing Xenopus embryos and to implement these in a web-accessible database. Models can be viewed via simple Internet browsers and utilize openGL hardware acceleration via a Shockwave plugin. Not only does this database display static data in a dynamic and scalable manner, the UV mapping system also serves as a method to align different images to a common framework, an approach that may make high-throughput automated comparisons of gene expression patterns possible. Finally, video game systems also have elegant methods for handling movement, allowing biomechanical algorithms to drive the animation of models. With further development, these biomechanical techniques offer practical methods for generating virtual embryos that recapitulate morphogenesis.
Projecting 2D gene expression data into 3D and 4D space.
Gerth, Victor E; Katsuyama, Kaori; Snyder, Kevin A; Bowes, Jeff B; Kitayama, Atsushi; Ueno, Naoto; Vize, Peter D
2007-04-01
Video games typically generate virtual 3D objects by texture mapping an image onto a 3D polygonal frame. The feeling of movement is then achieved by mathematically simulating camera movement relative to the polygonal frame. We have built customized scripts that adapt video game authoring software to texture mapping images of gene expression data onto b-spline based embryo models. This approach, known as UV mapping, associates two-dimensional (U and V) coordinates within images to the three dimensions (X, Y, and Z) of a b-spline model. B-spline model frameworks were built either from confocal data or de novo extracted from 2D images, once again using video game authoring approaches. This system was then used to build 3D models of 182 genes expressed in developing Xenopus embryos and to implement these in a web-accessible database. Models can be viewed via simple Internet browsers and utilize openGL hardware acceleration via a Shockwave plugin. Not only does this database display static data in a dynamic and scalable manner, the UV mapping system also serves as a method to align different images to a common framework, an approach that may make high-throughput automated comparisons of gene expression patterns possible. Finally, video game systems also have elegant methods for handling movement, allowing biomechanical algorithms to drive the animation of models. With further development, these biomechanical techniques offer practical methods for generating virtual embryos that recapitulate morphogenesis. PMID:17366623
An Indoor Navigation Approach Considering Obstacles and Space Subdivision of 2d Plan
NASA Astrophysics Data System (ADS)
Xu, Man; Wei, Shuangfeng; Zlatanova, Sisi
2016-06-01
The demand for indoor navigation is increasingly urgent in many applications such as safe management of underground spaces or location services in complex indoor environment, e.g. shopping centres, airports, museums, underground parking lot and hospitals. Indoor navigation is still a challenging research field, as currently applied indoor navigation algorithms commonly ignore important environmental and human factors and therefore do not provide precise navigation. Flexible and detailed networks representing the connectivity of spaces and considering indoor objects such as furniture are very important to a precise navigation. In this paper we concentrate on indoor navigation considering obstacles represented as polygons. We introduce a specific space subdivision based on a simplified floor plan to build the indoor navigation network. The experiments demonstrate that we are able to navigate around the obstacles using the proposed network. Considering to well-known path-finding approaches based on Medial Axis Transform (MAT) or Visibility Graph (VG), the approach in this paper provides a quick subdivision of space and routes, which are compatible with the results of VG.
Harmon, Katherine J; Bennett, Eric E; Gomella, Andrew A; Wen, Han
2014-01-01
The ability to map the phase distribution and lateral coherence of an x-ray wavefront offers the potential for imaging the human body through phase contrast, without the need to deposit significant radiation energy. The classic means to achieve this goal is structured illumination, in which a periodic intensity modulation is introduced into the image, and changes in the phase distribution of the wavefront are detected as distortions of the modulation pattern. Two-dimensional periodic patterns are needed to fully characterize a transverse wavefront. Traditionally, the information in a 2D pattern is retrieved at high resolution by acquiring multiple images while shifting the pattern over a 2D matrix of positions. Here we describe a method to decode 2D periodic patterns with single-axis phase stepping, without either a loss of information or increasing the number of sampling steps. The method is created to reduce the instrumentation complexity of high-resolution 2D wavefront sensing in general. It is demonstrated with motionless electromagnetic phase stepping and a flexible processing algorithm in x-ray dark-field and phase contrast imaging.
Dong, Jianping
2014-03-15
The 2D space-fractional Schrödinger equation in the time-independent and time-dependent cases for the scattering problems in the fractional quantum mechanics is studied. We define the Green's functions for the two cases and give the mathematical expression of them in infinite series form and in terms of some special functions. The asymptotic formulas of the Green's functions are also given, and applied to get the approximate wave functions for the fractional quantum scattering problems. These results contain those in the standard (integer) quantum mechanics as special cases, and can be applied to study the complex quantum systems.
Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory
NASA Astrophysics Data System (ADS)
Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun
2010-09-01
We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2% , and the growth-rate parameter by ˜5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.
Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory
Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun
2010-09-15
We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.
Detecting 2D symmetry-protected topological phases with the tensor-network method
NASA Astrophysics Data System (ADS)
Huang, Ching-Yu; Wei, Tzu-Chieh
Symmetry-protected topological (SPT) phases exhibit nontrivial order if symmetry is respected but are adiabatically connected to the trivial product phase if symmetry is not respected. However, unlike the symmetry breaking phase, there is no local order parameter for SPT phases. Here we employ a tensor-network method to compute the topological invariants characterized by the simulated modular S and T matrices proposed by Hung and Wen to study a transition in a one-parameter family of wavefunctions which are Z2 symmetric. The studied wavefunctions are in some sense the SPT analog of Z2 topological states under a string tension. The numerically obtained S and T matrices are able to characterize the two different phases and identify the transition point.
A general formalism for phase space calculations
NASA Technical Reports Server (NTRS)
Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.
1988-01-01
General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.
Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment
NASA Astrophysics Data System (ADS)
Jeevanesan, Bhilahari; Chandra, Premala; Coleman, Piers; Orth, Peter P.
2015-10-01
In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z6 order.
Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment.
Jeevanesan, Bhilahari; Chandra, Premala; Coleman, Piers; Orth, Peter P
2015-10-23
In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z(6) order.
Preliminary 2-D shell analysis of the space shuttle solid rocket boosters
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Gillian, Ronnie E.; Nemeth, Michael P.
1987-01-01
A two-dimensional shell model of an entire solid rocket booster (SRB) has been developed using the STAGSC-1 computer code and executed on the Ames CRAY computer. The purpose of these analyses is to calculate the overall deflection and stress distributions for the SRB when subjected to mechanical loads corresponding to critical times during the launch sequence. The mechanical loading conditions for the full SRB arise from the external tank (ET) attachment points, the solid rocket motor (SRM) pressure load, and the SRB hold down posts. The ET strut loads vary with time after the Space Shuttle main engine (SSME) ignition. The SRM internal pressure varies axially by approximately 100 psi. Static analyses of the full SRB are performed using a snapshot picture of the loads. The field and factory joints are modeled by using equivalent stiffness joints instead of detailed models of the joint. As such, local joint behavior cannot be obtained from this global model.
Qi, Yuhang; Xu, Qun; Wang, Yun; Yan, Bo; Ren, Yumei; Chen, Zhimin
2016-02-23
Molybdenum disulfide (MoS2) is a promising non-precious-metal catalyst, but its performance is limited by the density of active sites and poor electrical transport. Its metallic 1T phase possesses higher photoelectrocatalytic activity. Thus, how to efficiently increase the concentration of the 1T phase in the exfoliated two-dimensiaonal (2D) MoS2 nanosheets is an important premise. In this work, we propose a strategy to prepare a 2D heterostructure of MoS2 nanosheets using supercritical CO2-induced phase engineering to form metallic 1T-MoS2. Theoretical calculations and experimental results demonstrate that the introduced CO2 in the 2H-MoS2 host can prompt the transformation of partial 2H-MoS2 lattices into 1T-MoS2. Moreover, the electrical coupling and synergistic effect between 2H and 1T phases can greatly facilitate the efficient electron transfer from the active sites of MoS2, which significantly improves the photocatalytic performance. PMID:26840941
Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun
2016-01-01
For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835
Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun
2016-01-20
For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.
Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun
2016-01-01
For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835
Pulling at the fabric of the exotic phase diagram for a simple 2D model
NASA Astrophysics Data System (ADS)
Almudallal, Ahmad; Saika-Voivod, Ivan; Buldyrev, Sergey
2014-03-01
We use computer simulation to study a simple, two-dimensional off-lattice model that was originally devised to understand the anomalous properties of water. The model comprises core-softened disks interacting through a repulsive square shoulder located inside a longer attractive square well. In calculating the phase diagram for the model we discover that the system exhibits the truly remarkable phenomenon of inverse melting, for which the system crystallizes upon isobaric heating, over a small range in pressure. Despite occurring in two dimensions, the melting transition is first order and to a liquid, rather than to a hexatic or quasicrystal phase. We find that by increasing the extent of the shoulder, we increase the pressure range over which inverse melting occurs. But as this range increases, the stability fields of other crystal phases must bend to accommodate the changing inverse melting line. This continues until the phase diagram breaks, with a triple point disappearing, new phases appearing, and a channel of liquid stability to low temperatures forming. We acknowledge support from NSERC, ACEnet, CFI and the Dr. Bernard W. Gamson Computational Science Center at Yeshiva College.
Registration of 2D to 3D joint images using phase-based mutual information
NASA Astrophysics Data System (ADS)
Dalvi, Rupin; Abugharbieh, Rafeef; Pickering, Mark; Scarvell, Jennie; Smith, Paul
2007-03-01
Registration of two dimensional to three dimensional orthopaedic medical image data has important applications particularly in the area of image guided surgery and sports medicine. Fluoroscopy to computer tomography (CT) registration is an important case, wherein digitally reconstructed radiographs derived from the CT data are registered to the fluoroscopy data. Traditional registration metrics such as intensity-based mutual information (MI) typically work well but often suffer from gross misregistration errors when the image to be registered contains a partial view of the anatomy visible in the target image. Phase-based MI provides a robust alternative similarity measure which, in addition to possessing the general robustness and noise immunity that MI provides, also employs local phase information in the registration process which makes it less susceptible to the aforementioned errors. In this paper, we propose using the complex wavelet transform for computing image phase information and incorporating that into a phase-based MI measure for image registration. Tests on a CT volume and 6 fluoroscopy images of the knee are presented. The femur and the tibia in the CT volume were individually registered to the fluoroscopy images using intensity-based MI, gradient-based MI and phase-based MI. Errors in the coordinates of fiducials present in the bone structures were used to assess the accuracy of the different registration schemes. Quantitative results demonstrate that the performance of intensity-based MI was the worst. Gradient-based MI performed slightly better, while phase-based MI results were the best consistently producing the lowest errors.
NASA Astrophysics Data System (ADS)
Yoo, Byungseok
2011-12-01
In almost all industries of mechanical, aerospace, and civil engineering fields, structural health monitoring (SHM) technology is essentially required for providing the reliable information of structural integrity of safety-critical structures, which can help reduce the risk of unexpected and sometimes catastrophic failures, and also offer cost-effective inspection and maintenance of the structures. State of the art SHM research on structural damage diagnosis is focused on developing global and real-time technologies to identify the existence, location, extent, and type of damage. In order to detect and monitor the structural damage in plate-like structures, SHM technology based on guided Lamb wave (GLW) interrogation is becoming more attractive due to its potential benefits such as large inspection area coverage in short time, simple inspection mechanism, and sensitivity to small damage. However, the GLW method has a few critical issues such as dispersion nature, mode conversion and separation, and multiple-mode existence. Phased array technique widely used in all aspects of civil, military, science, and medical industry fields may be employed to resolve the drawbacks of the GLW method. The GLW-based phased array approach is able to effectively examine and analyze complicated structural vibration responses in thin plate structures. Because the phased sensor array operates as a spatial filter for the GLW signals, the array signal processing method can enhance a desired signal component at a specific direction while eliminating other signal components from other directions. This dissertation presents the development, the experimental validation, and the damage detection applications of an innovative signal processing algorithm based on two-dimensional (2-D) spiral phased array in conjunction with the GLW interrogation technique. It starts with general backgrounds of SHM and the associated technology including the GLW interrogation method. Then, it is focused on the
Reorientation of the Stripe Phase of 2D Electrons by a Minute Density Modulation
NASA Astrophysics Data System (ADS)
Mueed, M. A.; Hossain, Md. Shafayat; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.
2016-08-01
Interacting two-dimensional electrons confined in a GaAs quantum well exhibit isotropic transport when the Fermi level resides in the first excited (N =1 ) Landau level. Adding an in-plane magnetic field (B||) typically leads to an anisotropic, stripelike (nematic) phase of electrons with the stripes oriented perpendicular to the B|| direction. Our experimental data reveal how a periodic density modulation, induced by a surface strain grating from strips of negative electron-beam resist, competes against the B||-induced orientational order of the stripe phase. Even a minute (<0.25 %) density modulation is sufficient to reorient the stripes along the direction of the surface grating.
Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D.
Tóth, Gyula I; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László
2010-09-15
We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model. PMID:21386517
NASA Astrophysics Data System (ADS)
Ma, Z.; Masters, G.
2014-12-01
We have developed a technique that uses a cluster analysis method to measure Rayleigh wave phase and amplitude anomalies. The measurements are made on the vertical components of all permanent stations recording LHZ data from IRIS. We currently consider earthquakes with Ms>5.5 between 1990 and 2007. Joint inversions for 2D phase velocity and attenuation maps are performed, allowing the coupling through physical dispersion (e.g. Zhou 2009). As demonstrated in Dalton and Ekstrom (2006), correcting the effect of focusing-defocusing is crucial in order to obtain reliable attenuation structures. Ray theory, which has been used to date, may not give reliable predictions of such effects, because it depends strongly on short wavelength velocity structures and so is very sensitive to how the phase velocity maps are smoothed. Instead, we use the 2D finite frequency amplitude kernel (Zhou et al, 2004) to model the focusing-defocusing effect. Attenuation models and evaluations of model error and resolution will be presented.
NASA Astrophysics Data System (ADS)
Hwang, Sungyoul; Kim, Youngkeol; Kwon, Dokyeong; Char, Kookheon
There have been many studies to investigate the phase behavior of block copolymers (BCPs) in cylindrical confinement. In the nanometer scale 2D confinement, the phase behavior of BCPs is mainly dependent upon commensurability and interfacial interaction. However, most studies have focused only on the effects of commensurability on the microdomains of BCP. In this study, we employed organosilicate (OS) which has tunable surface energy upon adjusting curing temperature as interlayer to examine the phase behavior of BCPs as a function of interfacial energy. The OS interlayer was coated in the inner surface of anodized aluminum oxide (AAO) pores by template-wetting method and cured in a range of temperature to control the surface energy of the interlayer. Lamellae-forming poly(styrene-b-methyl methacrylate) (PS-b-PMMA) (SMA) in the melt was injected into the OS-coated AAO pores by capillary forces. With the detailed analysis, we note that the self-assembly of SMA within 2D confinement is competitively affected by both entropic and enthalpic effects as the contact interfacial energy is varied. Simply by controlling the curing temperature of the OS interlayer, various morphologies arising from both preferential and neutral wetting were identified.
Lee, J; Kellaway, I W
2000-02-15
The ex vivo buccal permeability of a [D-Ala(2), D-Leu(5)]enkephalin (DADLE) and glyceryl monooleate (GMO) was examined from the cubic and lamellar liquid crystalline phases of GMO and aqueous phosphate-buffered saline (pH 7.4, PBS) solution across excised porcine buccal mucosa mounted in a Franz cell. GMO was released in vitro from the liquid crystalline phases indicating the erosion of the liquid crystal matrices. GMO released from the liquid crystalline matrices permeated the porcine buccal mucosa with fluxes of 0.10+/-0.03 and 0.07+/-0.00%/cm(2) per h for the cubic and lamellar phases, respectively. The flux of DADLE (1.21+/-0.32 and 1. 15+/-0.11%/cm(2) per h for the cubic and lamellar phases, respectively) from the liquid crystalline phases was significantly enhanced by the GMO compared with PBS solution (0.43+/-0.08%/cm(2) per h) during the initial permeation phase (t<3 h). Our results suggest that the cubic and lamellar liquid crystalline phases can be considered as promising buccal drug carriers for peptide drugs as well as acting as permeation enhancers.
Ye, Xingwei; Zhang, Fangzheng; Pan, Shilong
2016-09-01
A hardware-compressive optical true time delay architecture for 2D beam steering in a planar phased array antenna is proposed using fiber-Bragg-grating-based tunable dispersive elements (TDEs). For an M×N array, the proposed system utilizes N TDEs and M wavelength-fixed optical carriers to control the time delays. Both azimuth and elevation beam steering are realized by programming the settings of the TDEs. An experiment is carried out to demonstrate the delay controlling in a 2×2 array, which is fed by a wideband pulsed signal. Radiation patterns calculated from the experimentally measured waveforms at the four antennas match well with the theoretical results.
High pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis
Yang, Feng; Shen, Yufeng; Camp, David G.; Smith, Richard D.
2012-04-01
Orthogonal high-resolution separations are critical for attaining improved analytical dynamic ranges of proteome measurements. Concatenated high pH reversed phase liquid chromatography affords better separations than the strong cation exchange conventionally applied for two-dimensional shotgun proteomic analysis. For example, concatenated high pH reversed phase liquid chromatography increased identification coverage for peptides (e.g., by 1.8-fold) and proteins (e.g., by 1.6-fold) in shotgun proteomics analyses of a digested human protein sample. Additional advantages of concatenated high pH RPLC include improved protein sequence coverage, simplified sample processing, and reduced sample losses, making this an attractive first dimension separation strategy for two-dimensional proteomics analyses.
2D transition-metal diselenides: phase segregation, electronic structure, and magnetism.
Manchanda, Priyanka; Skomski, Ralph
2016-02-17
Density-functional theory is used to investigate the phase-segregation behavior of two-dimensional transition-metal dichalcogenides, which are of current interest as beyond-graphene materials for optoelectronic and spintronic applications. Our focus is on the behavior of W1-x V x Se2 monolayers, whose end members are semiconducting WSe2 and ferromagnetic VSe2. The energetics favors phase segregation, but the spinodal decomposition temperature is rather low, about 420 K. The addition of V leads to a transition from a nonmagnetic semiconductor to a metallic ferromagnet, with a ferromagnetic moment of about 1.0 μ B per V atom. The transition is caused by a p-type doping mechanism, which shifts the Fermi level into the valence band. The finite-temperature structure and magnetism of the diselenide systems are discussed in terms of Onsager-type critical fluctuations and Bruggeman effective-medium behavior.
2D transition-metal diselenides: phase segregation, electronic structure, and magnetism
NASA Astrophysics Data System (ADS)
Manchanda, Priyanka; Skomski, Ralph
2016-02-01
Density-functional theory is used to investigate the phase-segregation behavior of two-dimensional transition-metal dichalcogenides, which are of current interest as beyond-graphene materials for optoelectronic and spintronic applications. Our focus is on the behavior of W1-x V x Se2 monolayers, whose end members are semiconducting WSe2 and ferromagnetic VSe2. The energetics favors phase segregation, but the spinodal decomposition temperature is rather low, about 420 K. The addition of V leads to a transition from a nonmagnetic semiconductor to a metallic ferromagnet, with a ferromagnetic moment of about 1.0 μ B per V atom. The transition is caused by a p-type doping mechanism, which shifts the Fermi level into the valence band. The finite-temperature structure and magnetism of the diselenide systems are discussed in terms of Onsager-type critical fluctuations and Bruggeman effective-medium behavior.
Development of a 2-D algorithm to simulate convection and phase transition efficiently
NASA Astrophysics Data System (ADS)
Evans, Katherine J.; Knoll, D. A.; Pernice, Michael
2006-11-01
We develop a Jacobian-Free Newton-Krylov (JFNK) method for the solution of a two-dimensional convection phase change model using the incompressible Navier-Stokes equation set and enthalpy as the energy conservation variable. The SIMPLE algorithm acts as a physics-based preconditioner to JFNK. This combined algorithm is compared to solutions using SIMPLE as the main solver. Algorithm performance is assessed for two benchmark problems of phase change convection of a pure material, one melting and one freezing. The JFNK-SIMPLE method is shown to be more efficient per time step and more robust at larger time steps. Overall CPU savings of more than an order of magnitude are realized.
Phase Diagram of a 2-D Plane Rotator Model with Integer and Half-Integer Vortices
NASA Astrophysics Data System (ADS)
de Souza, Adauto J. F.; Landau, D. P.
1996-03-01
A two-dimensional plane rotator spin model is simulated by employing the single cluster embeding Monte Carlo technique and the re-weighting histogram analysis. The system is described by the Hamiltonian^1 \\cal H = -J1 sum_< i,j > Si \\cdot Sj - J2 sum_< i,j > ( Si \\cdot Sj )^2. In adition to the familiar integer vortices, this model possesses half-integer vortex excitations as well. The system exhibits three low-temperature phases which may be identified by the behavior of suitably defined two-point correlation functions. The half- and integer-vortex densities as a function of temperature are calculated for several values of the parameter α = J_2/J_1. The phase boundaries are determined and the nature of the phase transitions is investigated. Research supported in part by the CNPq and the NSF. Permanent address: Departmento de Física e Matemática, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco, Brazil ^1 D.H. Lee and G. Grinstein Phys. Rev. Lett. \\underline55, 541, (1985)
Quantum phase-space representation for curved configuration spaces
NASA Astrophysics Data System (ADS)
Gneiting, Clemens; Fischer, Timo; Hornberger, Klaus
2013-12-01
We extend the Wigner-Weyl-Moyal phase-space formulation of quantum mechanics to general curved configuration spaces. The underlying phase space is based on the chosen coordinates of the manifold and their canonically conjugate momenta. The resulting Wigner function displays the axioms of a quasiprobability distribution, and any Weyl-ordered operator gets associated with the corresponding phase-space function, even in the absence of continuous symmetries. The corresponding quantum Liouville equation reduces to the classical curved space Liouville equation in the semiclassical limit. We demonstrate the formalism for a point particle moving on two-dimensional manifolds, such as a paraboloid or the surface of a sphere. The latter clarifies the treatment of compact coordinate spaces, as well as the relation of the presented phase-space representation to symmetry groups of the configuration space.
Yang, Yang; Wang, Dong; Wu, Yongjin; Tian, Xiaorui; Qin, Haili; Hu, Liang; Zhang, Ting; Ni, Weihai; Jin, Jian
2016-04-01
Herein, the use of a 2D soft template system composed of hundred-nanometer-thick water/ethanol mixed layers sandwiched by lamellar bilayer membranes of a self-assembled amphiphilic molecule to produce ultrathin polyprrole (PPy) with a uniform thickness as thin as 3.8 nm and with large dimensions (>2 μm(2)) is presented. The obtained PPy nanosheets exhibit regioregularity with ordered chain alignment where the polymer chains in the nanosheets produced are well aligned with a clear interchain spacing as confirmed by small-angle X-ray scattering measurement. The molecular-level-thick PPy nanosheets exhibit extremely high conductivity up to 1330 S m(-1), thanks to the ordered alignment of polymer chains in the nanosheets, and a high transparency in both the visible region (transmittance >99%) and near-infrared region (transmittance >93%).
NASA Astrophysics Data System (ADS)
Coelho, João; Mendoza-Sánchez, Beatriz; Pettersson, Henrik; Pokle, Anuj; McGuire, Eva K.; Long, Edmund; McKeon, Lorcan; Bell, Alan P.; Nicolosi, Valeria
2015-06-01
Manganese oxide nanosheets were synthesized using liquid-phase exfoliation that achieved suspensions in isopropanol (IPA) with concentrations of up to 0.45 mg ml-1. A study of solubility parameters showed that the exfoliation was optimum in N,N-dimethylformamide followed by IPA and diethylene glycol. IPA was the solvent of choice due to its environmentally friendly nature and ease of use for further processing. For the first time, a hybrid of graphene and manganese oxide nanosheets was synthesized using a single-step co-exfoliation process. The two-dimensional (2D) hybrid was synthesized in IPA suspensions with concentrations of up to 0.5 mg ml-1 and demonstrated stability against re-aggregation for up to six months. The co-exfoliation was found to be a energetically favorable process in which both solutes, graphene and manganese oxide nanosheets, exfoliate with an improved yield as compared to the single-solute exfoliation procedure. This work demonstrates the remarkable versatility of liquid-phase exfoliation with respect to the synthesis of hybrids with tailored properties, and it provides proof-of-concept ground work for further future investigation and exploitation of hybrids made of two or more 2D nanomaterials that have key complementary properties for various technological applications.
Liu, Hao-Li; Lin, Win-Li; Chen, Yung-Yaw
2007-02-01
The treatment conformability and the total treatment time of large tumors are both important issues in ultrasound thermal therapy. Previous heating strategies all show their restrictions in achieving these two issues to satisfactory levels simultaneously. This work theoretically presents a new heating strategy which is capable of both increasing the treatment conformability and shortening the treatment time, when using a 2D ultrasound phased array transducer. To perform this, a set of the multiple-foci patterns (considered the basic heating units) were temporally switched to steer the beam at different focal planes with the lesion length being well-controlled. Then, to conformally cover an irregular target volume, the 2D phased array was laterally shifted by a positioning system to deposit a suitable heating unit to cover a subvolume part. Results demonstrated that the totally treatment time can be largely reduced. The heating rate can be increased up to 0.96 cm3/min compared to the previously reported 0.26 cm3/min. Also, the proposed scheme showed that the tumor regions can be completely treated with the normal tissue damage at satisfactory level. The feasibility of the proposed strategy for irregular tumor treatment was also demonstrated. This study offers useful information in large tumor treatment in ultrasound thermal therapy.
NASA Astrophysics Data System (ADS)
Panov, Yu. D.; Moskvin, A. S.; Rybakov, F. N.; Borisov, A. B.
2016-01-01
We made use of a special algorithm for compute unified device architecture for NVIDIA graphics cards, a nonlinear conjugate-gradient method to minimize energy functional, and Monte-Carlo technique to directly observe the forming of the ground state configuration for the 2D hard-core bosons by lowering the temperature and its evolution with deviation away from half-filling. The novel technique allowed us to examine earlier implications and uncover novel features of the phase transitions, in particular, look upon the nucleation of the odd domain structure, emergence of filamentary superfluidity nucleated at the antiphase domain walls of the charge-ordered phase, and nucleation and evolution of different topological structures.
Phase-space quantization of field theory.
Curtright, T.; Zachos, C.
1999-04-20
In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.
Impact of phase change kinetics on the Mariana slab within the framework of 2-D mantle convection
NASA Astrophysics Data System (ADS)
Yoshioka, Shoichi; Torii, Yoku; Riedel, Michael R.
2015-03-01
Recent high-pressure and high-temperature experiments indicate that metastable olivine might persist in the cold core of a slab due to the low reaction rate of the olivine-wadsleyite phase transformation. Recent seismological observations detected a metastable olivine wedge that survives to a depth of 630 km in the Mariana slab. To consider the problem of non-equilibrium phase transformation, we developed a two-dimensional (2-D) Cartesian numerical code that incorporates the effects of kinetics into a thermal convection model. We consider the kinetics of the 410-km olivine-wadsleyite and the 660-km ringwoodite-Pv + Mw phase transformations, including the effects of water content at the 410-km phase boundary. The latent heat release of the 410-km non-equilibrium phase transformations inside the slab is also considered. The results show positive correlations between some of the controlling parameters and the length of the metastable olivine wedge: the faster the subducting velocity, and the lower the water content, the deeper is the metastable olivine wedge. With increasing depth of phase transformation, the effect of latent heat release is enhanced: heating of, at most, 100 °C occurs if olivine transforms into wadsleyite at a depth of approximately 570 km in our model setting. Temperature increase due to the latent heat released stimulates further phase transformation, resulting in further temperature increase, acting as a positive feedback effect. We also attempt to explain the seismological observations by calculating the temperature and phase structures in the Mariana slab. If we assume that the age of the Mariana slab is 150 Myr, the subduction velocity is 9.5 cm/yr, phase transformation occurs from the grain boundary of the parental phase, and the water content is 250 wt. ppm for a grain size of 1 mm, 300 wt. ppm for one of 5 mm, and 100 wt. ppm for intracrystalline transformation, then the metastable olivine wedge survives to a depth of 630 km, which is in
An Efficient Solution-Phase Synthesis of 4,5,7-Trisubstituted Pyrrolo[3,2-d]pyrimidines
Zhang, Weihe; Liu, Jing; Stashko, Michael A.; Wang, Xiaodong
2013-01-01
We have developed an efficient and robust route to synthesize 4,5,7-trisubstituted pyrrolo[3,2-d]pyrimidines as potent kinase inhibitors. This solution-phase synthesis features a SNAr substitution reaction, cross-coupling reaction, one-pot reduction/reductive amination and N-alkylation reaction. These reactions occur rapidly with high yields and have broad substrate scopes. A variety of groups can be selectively introduced into the N5 and C7 positions of 4,5,7-trisubstituted pyrrolopyrimidines at a late stage of the synthesis, thereby providing a highly efficient approach to explore the structure-activity relationships of pyrrolopyrimidine derivatives. Four synthetic analogs have been profiled against a panel of 48 kinases and a new and selective FLT3 inhibitor 9 is identified. PMID:23181516
NASA Astrophysics Data System (ADS)
Hou, Qing; Goldenfeld, Nigel; Sasa, Shin-Ichi
1996-03-01
We study the kinetics of a phase transition in a 2D system quenched from a uniform state to one whose ground state is spatially periodic; examples include Rayleigh-Benard convection, isotropic-smectic and nematic-smectic transitions in liquid crystals and the Swift-Hohenberg model. Computer simulation(K.R. Elder, J. Vinals and M. Grant, Phys. Rev. A), 46, 7618 (1992). shows that dynamical scaling occurs; by exploring different models, we show that power law depends upon the presence of grain-boundaries (Q. Hou, N. Goldenfeld and S. Sasa, unpublished.) We measure the scaling exponents and give a scaling theory for their dependence on defect dynamics and bulk relaxation. Crossover phenomena corresponding to different physical mechanisms for pattern relaxation are also discussed.
Ye, Xingwei; Zhang, Fangzheng; Pan, Shilong
2016-09-01
A hardware-compressive optical true time delay architecture for 2D beam steering in a planar phased array antenna is proposed using fiber-Bragg-grating-based tunable dispersive elements (TDEs). For an M×N array, the proposed system utilizes N TDEs and M wavelength-fixed optical carriers to control the time delays. Both azimuth and elevation beam steering are realized by programming the settings of the TDEs. An experiment is carried out to demonstrate the delay controlling in a 2×2 array, which is fed by a wideband pulsed signal. Radiation patterns calculated from the experimentally measured waveforms at the four antennas match well with the theoretical results. PMID:27607946
NASA Astrophysics Data System (ADS)
Bondarev, Igor
A configuration space method, pioneered by Landau and Herring in studies of molecular binding and magnetism, is developed to obtain universal asymptotic relations for lowest energy exciton complexes (trion, biexciton) in confined semiconductor nanostructures such as nanowires and nanotubes, as well as coupled quantum wells. Trions are shown to be more stable (have greater binding energy) than biexcitons in strongly confined quasi-1D structures with small reduced electron-hole masses. Biexcitons are more stable in less confined quasi-1D structures with large reduced electron-hole masses. The theory predicts a crossover behavior, whereby trions become less stable than biexcitons as the transverse size of the quasi-1D nanostructure increases, which might be observed on semiconducting carbon nanotubes of increasing diameters. This method is also efficient in calculating binding energies for trion-type electron-hole complexes formed by indirect excitons in double coupled quantum wells, quasi-2D nanostructures that show new interesting electroabsorption/refraction phenomena. Supported by DOE-DE-SC0007117.
The Way to Phase Space Crystals
NASA Astrophysics Data System (ADS)
Guo, Lingzhen; Michael, Marthaler; Schön, Gerd
A novel way to create a band structure of the quasienergy spectrum for driven systems is proposed based on the discrete symmetry in phase space. The system, e.g., an ion or ultracold atom trapped in a potential, shows no spatial periodicity, but it is driven by a time-dependent field. Under rotating wave approximation, the system can produce a periodic lattice structure in phase space. The band structure in quasienergy arises as a consequence of the n-fold discrete periodicity in phase space induced by this driving field. We propose explicit models to realize such a phase space crystal and analyze its band structure in the frame of a tightbinding approximation. The phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry. The phase space crystal opens new ways to engineer energy band structures, with the added advantage that its properties can be changed in situ by tuning the driving field's parameters. Carl-Zeiss Stiftung.
Impact of Phase Change Kinetics on the Mariana Slab Within the Framework of 2-D Mantle Convection
NASA Astrophysics Data System (ADS)
Riedel, M. R.; Yoshioka, S.; Torii, Y.
2014-12-01
Recent studies of high pressure and high temperature experiments indicate that metastable olivine might persist in a cold core of a slab due to the low rate of reaction of olivine to wadsleyite phase transformation. These experimental results correlate with recent seismological observations that a metastable olivine wedge may survive up to a depth of 630 km in the Mariana slab. To study the problem of a non-equilibrium phase transformation in detail, we developed a 2D Cartesian numerical code which incorporates self-consistently transition kinetic effects into a thermo-mechanical convection model. The kinetics of the 410-km olivine to wadsleyite and the 660-km ringwoodite to Pv+Mw phase transformations, including effects of water content at the 410-km phase boundary and latent heat release (respectively absorption), are taken into account. The results show a positive correlation for some of the controlling parameter with respect to the size of the metastable olivine wedge: A thicker and deeper metastable olivine wedge is obtainable by a higher dip angle, a faster subduction velocity, an older slab age, and/or by less water content of the subducting mantle lithosphere. The effects of latent heat release is enhanced with increasing depth; heating of about 100 °C occurs when olivine transforms into wadsleyite at depths deeper than 550 km. We also attempted to explain the recent seismological observations, by calculating the temperature and phase structures in the Mariana slab. Assuming an age of 150 Myr and a subducting velocity of 10 cm/yr for the Mariana slab, a grain-boundary nucleated reaction for the olivine to wadsleyite transformation and a water content of 700 wt. ppm, the metastable olivine wedge survives to a depth of 630 km, which is in good agreement with the seismological observation and available experimental data. This suggests that the Mariana slab is relatively dry. Furthermore, assuming that depression of the 660-km discontinuity by ~ 20-30 km
Phase space correlation to improve detection accuracy.
Carroll, T L; Rachford, F J
2009-09-01
The standard method used for detecting signals in radar or sonar is cross correlation. The accuracy of the detection with cross correlation is limited by the bandwidth of the signals. We show that by calculating the cross correlation based on points that are nearby in phase space rather than points that are simultaneous in time, the detection accuracy is improved. The phase space correlation technique works for some standard radar signals, but it is especially well suited to chaotic signals because trajectories that are adjacent in phase space move apart from each other at an exponential rate.
Deformed phase spaces with group valued momenta
NASA Astrophysics Data System (ADS)
Arzano, Michele; Nettel, Francisco
2016-10-01
We introduce a general framework for describing deformed phase spaces with group valued momenta. Using techniques from the theory of Poisson-Lie groups and Lie bialgebras we develop tools for constructing Poisson structures on the deformed phase space starting from the minimal input of the algebraic structure of the generators of the momentum Lie group. The tools developed are used to derive Poisson structures on examples of group momentum space much studied in the literature such as the n -dimensional generalization of the κ -deformed momentum space and the S L (2 ,R ) momentum space in three space-time dimensions. We discuss classical momentum observables associated to multiparticle systems and argue that these combine according the usual four-vector addition despite the non-Abelian group structure of momentum space.
Gabbour, Maya; Schnell, Susanne; Jarvis, Kelly; Robinson, Joshua D.; Markl, Michael
2015-01-01
Background Doppler echocardiography (echo) is the reference standard for blood flow velocity analysis, and two-dimensional (2-D) phase-contrast magnetic resonance imaging (MRI) is considered the reference standard for quantitative blood flow assessment. However, both clinical standard-of-care techniques are limited by 2-D acquisitions and single-direction velocity encoding and may make them inadequate to assess the complex three-dimensional hemodynamics seen in congenital heart disease. Four-dimensional flow MRI (4-D flow) enables qualitative and quantitative analysis of complex blood flow in the heart and great arteries. Objectives The objectives of this study are to compare 4-D flow with 2-D phase-contrast MRI for quantification of aortic and pulmonary flow and to evaluate the advantage of 4-D flow-based volumetric flow analysis compared to 2-D phase-contrast MRI and echo for peak velocity assessment in children and young adults. Materials and methods Two-dimensional phase-contrast MRI of the aortic root, main pulmonary artery (MPA), and right and left pulmonary arteries (RPA, LPA) and 4-D flow with volumetric coverage of the aorta and pulmonary arteries were performed in 50 patients (mean age: 13.1±6.4 years). Four-dimensional flow analyses included calculation of net flow and regurgitant fraction with 4-D flow analysis planes similarly positioned to 2-D planes. In addition, 4-D flow volumetric assessment of aortic root/ascending aorta and MPA peak velocities was performed and compared to 2-D phase-contrast MRI and echo. Results Excellent correlation and agreement were found between 2-D phase-contrast MRI and 4-D flow for net flow (r=0.97, P<0.001) and excellent correlation with good agreement was found for regurgitant fraction (r= 0.88, P<0.001) in all vessels. Two-dimensional phase-contrast MRI significantly underestimated aortic (P= 0.032) and MPA (P<0.001) peak velocities compared to echo, while volumetric 4-D flow analysis resulted in higher (aortic: P=0
Bollache, Emilie; van Ooij, Pim; Powell, Alex; Carr, James; Markl, Michael; Barker, Alex J
2016-10-01
The purpose of this study was to compare aortic flow and velocity quantification using 4D flow MRI and 2D CINE phase-contrast (PC)-MRI with either one-directional (2D-1dir) or three-directional (2D-3dir) velocity encoding. 15 healthy volunteers (51 ± 19 years) underwent MRI including (1) breath-holding 2D-1dir and (2) free breathing 2D-3dir PC-MRI in planes orthogonal to the ascending (AA) and descending (DA) aorta, as well as (3) free breathing 4D flow MRI with full thoracic aorta coverage. Flow quantification included the co-registration of the 2D PC acquisition planes with 4D flow MRI data, AA and DA segmentation, and calculation of AA and DA peak systolic velocity, peak flow and net flow volume for all sequences. Additionally, the 2D-3dir velocity taking into account the through-plane component only was used to obtain results analogous to a free breathing 2D-1dir acquisition. Good agreement was found between 4D flow and 2D-3dir peak velocity (differences = -3 to 6 %), peak flow (-7 %) and net volume (-14 to -9 %). In contrast, breath-holding 2D-1dir measurements exhibited indices significantly lower than free breathing 2D-3dir and 2D-1dir (differences = -35 to -7 %, p < 0.05). Finally, high correlations (r ≥ 0.97) were obtained for indices estimated with or without eddy current correction, with the lowest correlation observed for net volume. 4D flow and 2D-3dir aortic hemodynamic indices were in concordance. However, differences between respiration state and 2D-1dir and 2D-3dir measurements indicate that reference values should be established according to the PC-MRI sequence, especially for the widely used net flow (e.g. stroke volume in the AA). PMID:27435230
Bollache, Emilie; van Ooij, Pim; Powell, Alex; Carr, James; Markl, Michael; Barker, Alex J
2016-10-01
The purpose of this study was to compare aortic flow and velocity quantification using 4D flow MRI and 2D CINE phase-contrast (PC)-MRI with either one-directional (2D-1dir) or three-directional (2D-3dir) velocity encoding. 15 healthy volunteers (51 ± 19 years) underwent MRI including (1) breath-holding 2D-1dir and (2) free breathing 2D-3dir PC-MRI in planes orthogonal to the ascending (AA) and descending (DA) aorta, as well as (3) free breathing 4D flow MRI with full thoracic aorta coverage. Flow quantification included the co-registration of the 2D PC acquisition planes with 4D flow MRI data, AA and DA segmentation, and calculation of AA and DA peak systolic velocity, peak flow and net flow volume for all sequences. Additionally, the 2D-3dir velocity taking into account the through-plane component only was used to obtain results analogous to a free breathing 2D-1dir acquisition. Good agreement was found between 4D flow and 2D-3dir peak velocity (differences = -3 to 6 %), peak flow (-7 %) and net volume (-14 to -9 %). In contrast, breath-holding 2D-1dir measurements exhibited indices significantly lower than free breathing 2D-3dir and 2D-1dir (differences = -35 to -7 %, p < 0.05). Finally, high correlations (r ≥ 0.97) were obtained for indices estimated with or without eddy current correction, with the lowest correlation observed for net volume. 4D flow and 2D-3dir aortic hemodynamic indices were in concordance. However, differences between respiration state and 2D-1dir and 2D-3dir measurements indicate that reference values should be established according to the PC-MRI sequence, especially for the widely used net flow (e.g. stroke volume in the AA).
NASA Astrophysics Data System (ADS)
Frey, Randy W.; Rawlins, Greg; Zepkin, Neil; Bohlin, John
1989-03-01
A pseudo-ranging laser radar (PRLADAR) concept is proposed to provide extended range capability to tracking LADAR systems meeting the long-range requirements of SDI mission scenarios such as the SIE midcourse program. The project will investigate the payoff of several transmitter modulation techniques and a feasibility demonstration using a breadboard implementation of a new receiver concept called the Phase Multiplexed Correlator (PMC) will be accomplished. The PRLADAR concept has specific application to spaceborne LADAR tracking missions where increased CNR/SNR performance gained by the proposed technique may reduce the laser power and/or optical aperture requirement for a given mission. The reduction in power/aperture has similar cost reduction advantages in commercial ranging applications. A successful Phase 1 program will lay the groundwork for a quick reaction upgrade to the AMOS/LASE system in support of near term SIE measurement objectives.
c2d Spitzer IRS spectra of embedded low-mass young stars: gas-phase emission lines
NASA Astrophysics Data System (ADS)
Lahuis, F.; van Dishoeck, E. F.; Jørgensen, J. K.; Blake, G. A.; Evans, N. J.
2010-09-01
Context. A survey of mid-infrared gas-phase emission lines of H2, H2O and various atoms toward a sample of 43 embedded low-mass young stars in nearby star-forming regions is presented. The sources are selected from the Spitzer “Cores to Disks” (c2d) legacy program. Aims: The environment of embedded protostars is complex both in its physical structure (envelopes, outflows, jets, protostellar disks) and the physical processes (accretion, irradiation by UV and/or X-rays, excitation through slow and fast shocks) which take place. The mid-IR spectral range hosts a suite of diagnostic lines which can distinguish them. A key point is to spatially resolve the emission in the Spitzer-IRS spectra to separate extended PDR and shock emission from compact source emission associated with the circumstellar disk and jets. Methods: An optimal extraction method is used to separate both spatially unresolved (compact, up to a few hundred AU) and spatially resolved (extended, thousand AU or more) emission from the IRS spectra. The results are compared with the c2d disk sample and literature PDR and shock models to address the physical nature of the sources. Results: Both compact and extended emission features are observed. Warm (T_ex few hundred K) H2, observed through the pure rotational H2 S(0), S(1) and S(2) lines, and [S i] 25 μm emission is observed primarily in the extended component. [S i] is observed uniquely toward truly embedded sources and not toward disks. On the other hand hot (T_ex ⪆ 700 K) H2, observed primarily through the S(4) line, and [Ne ii] emission is seen mostly in the spatially unresolved component. [Fe ii] and [Si ii] lines are observed in both spatial components. Hot H2O emission is found in the spatially unresolved component of some sources. Conclusions: The observed emission on ≥1000 AU scales is characteristic of PDR emission and likely originates in the outflow cavities in the remnant envelope created by the stellar wind and jets from the embedded
Liquid crystal phase shifters for space applications
NASA Astrophysics Data System (ADS)
Woehrle, Christopher D.
Space communication satellites have historically relied heavily on high gain gimbal dish antennas for performing communications. Reflector dish antennas lack flexibility in anti-jamming capabilities, and they tend to have a high risk associated to them given the need for mechanical mechanisms to beam steer. In recent years, a great amount of investment has been made into phased array antenna technologies. Phased arrays offer increased signal flexibility at reduced financial cost and in system risk. The problem with traditional phased arrays is the significant program cost and overall complexity added to the satellite by integrating antenna elements that require many dedicated components to properly perform adaptive beam steering. Several unique methods have been proposed to address the issues that plague traditional phase shifters slated for space applications. Proposed approaches range from complex mechanical switches (MEMS) and ferroelectric devices to more robust molecular changes. Nematic liquid crystals offer adaptive beam steering capabilities that traditional phased arrays have; however, with the added benefit of reduced system cost, complexity, and increased resilience to space environmental factors. The objective of the work presented is to investigate the feasibility of using nematic liquid crystals as a means of phase shifting individual phased array elements slated for space applications. Significant attention is paid to the survivability and performance of liquid crystal and associated materials in the space environment. Performance regarding thermal extremes and interactions with charged particles are the primary factors addressed.
Single phase space laundry development
NASA Technical Reports Server (NTRS)
Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold
1993-01-01
This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.
NASA Astrophysics Data System (ADS)
Gelis, C.; Virieux, J.; Grandjean, G.; Operto, S.
2005-12-01
The superficial weathered zone, few hundreds meters thick, presents highly variable and complex near-surface structures. Energetic seismic surface waves, often called ground roll, may hide information coming from deeper areas. Moreover near-surface anomalies (cavities, overthrusts) are quite important and, therefore, detecting heterogeneities in near-surface areas and quantifying their physical properties is still a challenge for seismic imaging. Since heterogeneities are located in near-surface areas, both surface and body waves induce complex footprints in seismic data. The propagation of 2D P-SV is performed in a frequency domain modeling. This frequency formulation takes into account attenuating behavior and efficiently takes benefit of multisource and multireceiver configurations. A new finite-difference stencil of second order using rotated derivatives axes (Saenger et al., 2000) simulates surface waves precisely and remains stable nearby the free surface and/or rapidly-varying zones. It will be the forward problem kernel of our approach. We follow the matrix formalism of Pratt et al. (1998) and perform a linearized inversion in the least-square sense, since heterogeneities of reasonable amplitudes towards the surrounding medium are considered. We use the gradient method to perform the full waveform inversion for elastic waves. In this formulation we take only the Hessian diagonal part and use a parabolic approximation to find the stepping in the gradient direction. To compute Fréchet derivatives, we resort to the Born and the Rytov approximations and evaluate their performances in transmission and reflection acquisitions geometries. We test as well the influence of the inverted parameters choice. Moreover we highlight the influence of data preconditioning that must be particularly efficient to deal with both body and surface waves. We apply this elastic full waveform inversion to near-surface data, containing strong surface waves and acquired just above a
Joint Estimation of 2D-DOA and Frequency Based on Space-Time Matrix and Conformal Array
Wan, Liang-Tian; Liu, Lu-Tao; Si, Wei-Jian; Tian, Zuo-Xi
2013-01-01
Each element in the conformal array has a different pattern, which leads to the performance deterioration of the conventional high resolution direction-of-arrival (DOA) algorithms. In this paper, a joint frequency and two-dimension DOA (2D-DOA) estimation algorithm for conformal array are proposed. The delay correlation function is used to suppress noise. Both spatial and time sampling are utilized to construct the spatial-time matrix. The frequency and 2D-DOA estimation are accomplished based on parallel factor (PARAFAC) analysis without spectral peak searching and parameter pairing. The proposed algorithm needs only four guiding elements with precise positions to estimate frequency and 2D-DOA. Other instrumental elements can be arranged flexibly on the surface of the carrier. Simulation results demonstrate the effectiveness of the proposed algorithm. PMID:24453856
NASA Astrophysics Data System (ADS)
Oh, Seongshik
Topological insulator (TI) is one of the rare systems in the history of condensed matter physics that is initiated by theories and followed by experiments. Although this theory-driven advance helped move the field quite fast despite its short history, apparently there exist significant gaps between theories and experiments. Many of these discrepancies originate from the very fact that the worlds readily accessible to theories are often far from the real worlds that are available in experiments. For example, the very paradigm of topological protection of the surface states on Z2 TIs such as Bi2Se3, Bi2Te3, Sb2Te3, etc, is in fact valid only if the sample size is infinite and the crystal momentum is well-defined in all three dimensions. On the other hand, many widely studied forms of TIs such as thin films and nano-wires have significant confinement in one or more of the dimensions with varying level of disorders. In other words, many of the real world topological systems have some important parameters that are not readily captured by theories, and thus it is often questionable how far the topological theories are valid to real systems. Interestingly, it turns out that this very uncertainty of the theories provides additional control knobs that allow us to explore hidden topological territories. In this talk, I will discuss how these additional knobs in thin film topological insulators reveal surprising, at times beautiful, landscapes at the boundaries between order and disorder, 2D and 3D, normal and topological phases. This work is supported by Gordon and Betty Moore Foundation's EPiQS Initiative (GBMF4418).
Space Phase III - The commercial era dawns
NASA Technical Reports Server (NTRS)
Allnutt, R. F.
1983-01-01
After the 'Phase I' of space activities, the period bounded by Sputnik and Apollo, 'Phase II', has been entered, a phase in which concerns over the use and the protection of space assets which support national security predominate. However, it is only when the commercial motive becomes prominent that human activity in new regions truly prospers and enters periods of exponential growth. It is believed that there are increasing signs that such a period, called 'Space Phase III', may be coming soon. A description is presented of developments and results upon which this conclusion is based. Since 1980, there have been three developments of great importance for the future of space activities. Six highly successful flights have demonstrated that the Space Shuttle concept works. A series of Soviet missions are related to the emergence of a capability to construct and service modular space stations. Successful tests of the European Ariane 1 indicate an end to U.S. monopoly with respect to the provision of launch services to the Western World.
Space Fence PDR Concept Development Phase
NASA Astrophysics Data System (ADS)
Haines, L.; Phu, P.
2011-09-01
The Space Fence, a major Air Force acquisition program, will become the dominant low-earth orbit uncued sensor in the space surveillance network (SSN). Its primary objective is to provide a 24/7 un-cued capability to find, fix, and track small objects in low earth orbit to include emerging and evolving threats, as well as the rapidly growing population of orbital debris. Composed of up to two geographically dispersed large-scale S-band phased array radars, this new system-of-systems concept will provide comprehensive Space Situational Awareness through net-centric operations and integrated decision support. Additionally, this program will facilitate cost saving force structure changes in the SSN, specifically including the decommissioning of very-high frequency VHF Air Force Space Surveillance System (AFSSS). The Space Fence Program Office entered a Preliminary Design Review (PDR) concept development phase in January 2011 to achieve the delivery of the Initial Operational Capability (IOC) expected in FY17. Two contractors were awarded to perform preliminary system design, conduct radar performance analyses and evaluations, and develop a functional PDR radar system prototype. The key objectives for the Phase A PDR effort are to reduce Space Fence total program technical, cost, schedule, and performance risk. The overall program objective is to achieve a preliminary design that demonstrates sufficient technical and manufacturing maturity and that represents a low risk, affordable approach to meet the Space Fence Technical Requirements Document (TRD) requirements for the final development and production phase to begin in 3QFY12. This paper provides an overview of the revised Space Fence program acquisition strategy for the Phase-A PDR phase to IOC, the overall program milestones and major technical efforts. In addition, the key system trade studies and modeling/simulation efforts undertaken during the System Design Requirement (SDR) phase to address and mitigate
Positive phase space distributions and uncertainty relations
NASA Technical Reports Server (NTRS)
Kruger, Jan
1993-01-01
In contrast to a widespread belief, Wigner's theorem allows the construction of true joint probabilities in phase space for distributions describing the object system as well as for distributions depending on the measurement apparatus. The fundamental role of Heisenberg's uncertainty relations in Schroedinger form (including correlations) is pointed out for these two possible interpretations of joint probability distributions. Hence, in order that a multivariate normal probability distribution in phase space may correspond to a Wigner distribution of a pure or a mixed state, it is necessary and sufficient that Heisenberg's uncertainty relation in Schroedinger form should be satisfied.
Phase space distributions tailored for dispersive media.
Petruccelli, Jonathan C; Alonso, Miguel A
2010-05-01
New phase space distributions are proposed for describing pulse propagation in dispersive media for one spatial dimension. These distributions depend on time, position, and velocity, so that the pulse's spatial propagation or temporal evolution is described by a free-particle-like transformation followed by integration over velocity. Examples are considered for approximate Lorentz-model dielectrics and metallic waveguides. PMID:20448787
Characterizing maximally singular phase-space distributions
NASA Astrophysics Data System (ADS)
Sperling, J.
2016-07-01
Phase-space distributions are widely applied in quantum optics to access the nonclassical features of radiations fields. In particular, the inability to interpret the Glauber-Sudarshan distribution in terms of a classical probability density is the fundamental benchmark for quantum light. However, this phase-space distribution cannot be directly reconstructed for arbitrary states, because of its singular behavior. In this work, we perform a characterization of the Glauber-Sudarshan representation in terms of distribution theory. We address important features of such distributions: (i) the maximal degree of their singularities is studied, (ii) the ambiguity of representation is shown, and (iii) their dual space for nonclassicality tests is specified. In this view, we reconsider the methods for regularizing the Glauber-Sudarshan distribution for verifying its nonclassicality. This treatment is supported with comprehensive examples and counterexamples.
Phase spaces for asymptotically de Sitter cosmologies
NASA Astrophysics Data System (ADS)
Kelly, William R.; Marolf, Donald
2012-10-01
We construct two types of phase spaces for asymptotically de Sitter Einstein-Hilbert gravity in each spacetime dimension d ⩾ 3. One type contains solutions asymptotic to the expanding spatially-flat (k = 0) cosmological patch of de Sitter space while the other is asymptotic to the expanding hyperbolic (k = -1) patch. Each phase space has a non-trivial asymptotic symmetry group (ASG) which includes the isometry group of the corresponding de Sitter patch. For d = 3 and k = -1 our ASG also contains additional generators and leads to a Virasoro algebra with vanishing central charge. Furthermore, we identify an interesting algebra (even larger than the ASG) containing two Virasoro algebras related by a reality condition and having imaginary central charges +/- i \\frac{3\\ell }{2G}. Our charges agree with those obtained previously using dS/CFT methods for the same asymptotic Killing fields showing that (at least some of) the dS/CFT charges act on a well-defined phase space. Along the way we show that, despite the lack of local degrees of freedom, the d = 3, k = -1 phase space is non-trivial even in pure Λ > 0 Einstein-Hilbert gravity due to the existence of a family of ‘wormhole’ solutions labeled by their angular momentum, a mass-like parameter θ0, the topology of future infinity (I+), and perhaps additional internal moduli. These solutions are Λ > 0 analogues of BTZ black holes and exhibit a corresponding mass gap relative to empty de Sitter.
Searching for fractal phenomena in multidimensional phase-spaces
NASA Astrophysics Data System (ADS)
Blažek, Mikuláš
2000-07-01
A unified point of view on the fractal analysis in d-dimensional phase-spaces is presented. It is applicable to the data coming from the counting experiments. Explicit expressions are formulated for the fundamental types of factorial moments characterizing the presence of the fractal phenomena, their number being given by (2 d+1 - 1), as well as for a variety of associated statistical moments; special attention is paid to two and three dimensions. In particular, it is found that scaling properties of the modified dispersion moments are directly related with the presence of empty bins in the corresponding distributions. As to the high-energy experiments, those expressions can be applied to the data presently available, e.g. from LEP, as well as to the data arising in the near future from heavy-ion collisions performed at the CERN collider and from the pp collisions observed at the Tevatron, Fermilab.
Rockstar: Phase-space halo finder
NASA Astrophysics Data System (ADS)
Behroozi, Peter; Wechsler, Risa; Wu, Hao-Yi
2012-10-01
Rockstar (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement) identifies dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure. Our method is massively parallel (up to 10^5 CPUs) and runs on the largest current simulations (>10^10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). Rockstar offers significant improvement in substructure recovery as compared to several other halo finders.
Space market model development project, phase 3
NASA Technical Reports Server (NTRS)
Bishop, Peter C.; Hamel, Gary P.
1989-01-01
The results of a research project investigating information needs for space commercialization is described. The Space Market Model Development Project (SMMDP) was designed to help NASA identify the information needs of the business community and to explore means to meet those needs. The activity of the SMMDP is reviewed and a report of its operation via three sections is presented. The first part contains a brief historical review of the project since inception. The next part reports results of Phase 3, the most recent stage of activity. Finally, overall conclusions and observations based on the SMMDP research results are presented.
Stratakis, D.; Kishek, R. A.; Bernal, S.; Walter, M.; Haber, I.; Fiorito, R.; Thangaraj, J. C. T.; Quinn, B.; Reiser, M.; O'Shea, P. G.; Li, H.
2006-11-27
In order to understand the charged particle dynamics, e.g. the halo formation, emittance growth, x-y energy transfer and coupling, knowledge of the actual phase space is needed. Other the past decade there is an increasing number of articles who use tomography to map the beam phase space and measure the beam emittance. These studies where performed at high energy facilities where the effect of space charge was neglible and therefore not considered in the analysis. This work extends the tomography technique to beams with space charge. In order to simplify the analysis linear forces where assumed. By carefully modeling the tomography process using the particle-in-cell code WARP we test the validity of our assumptions and the accuracy of the reconstructed phase space. Finally, we report experimental results of phase space mapping at the University of Maryland Electron Ring (UMER) using tomography.
Analytical satellite theory in extended phase space
NASA Technical Reports Server (NTRS)
Bond, V.; Broucke, R.
1980-01-01
It is noted that a satellite theory, based on extended phase space and on the true anomaly, was introduced by Scheifele (1970). In the present paper a simple canonical transformation is shown that makes the transition from the classical Delaunay elements to the Scheifele variables. It is stressed that neither spherical coordinates nor Hamilton-Jacobi theory is used. Finally, attention is given to the meaning of the new variables, especially the use of the true anomaly as one of the variables.
Analytical satellite theory in extended phase space
NASA Astrophysics Data System (ADS)
Bond, V.; Broucke, R.
1980-05-01
It is noted that a satellite theory, based on extended phase space and on the true anomaly, was introduced by Scheifele (1970). In the present paper a simple canonical transformation is shown that makes the transition from the classical Delaunay elements to the Scheifele variables. It is stressed that neither spherical coordinates nor Hamilton-Jacobi theory is used. Finally, attention is given to the meaning of the new variables, especially the use of the true anomaly as one of the variables.
Bohlin, Alexis; Kliewer, Christopher J
2013-06-14
Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15,000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm(2). PMID:23781772
NASA Astrophysics Data System (ADS)
Bohlin, Alexis; Kliewer, Christopher J.
2013-06-01
Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.
Bohlin, Alexis; Kliewer, Christopher J.
2013-01-01
Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N_{2} and air over a 2D field of 40 mm^{2}.
Chirp-driven giant phase space vortices
NASA Astrophysics Data System (ADS)
Trivedi, Pallavi; Ganesh, Rajaraman
2016-06-01
In a collisionless, unbounded, one-dimensional plasma, modelled using periodic boundary conditions, formation of steady state phase space coherent structures or phase space vortices (PSV) is investigated. Using a high resolution one-dimensional Vlasov-Poisson solver based on piecewise-parabolic advection scheme, the formation of giant PSV is addressed numerically. For an infinitesimal external drive amplitude and wavenumber k, we demonstrate the existence of a window of chirped external drive frequency that leads to the formation of giant PSV. The linear, small amplitude, external drive, when chirped, is shown to couple effectively to the plasma and increase both streaming of "untrapped" and "trapped" particle fraction. The steady state attained after the external drive is turned off and is shown to lead to a giant PSV with multiple extrema and phase velocities, with excess density fraction, defined as the deviation from the Maxwellian background, Δ n / n 0 ≃ 20 % - 25 % . It is shown that the process depends on the chirp time duration Δt. The excess density fraction Δn/n0, which contains both trapped and untrapped particle contribution, is also seen to scale with Δt, only inhibited by the gradient of the distribution in velocity space. Both single step drive and multistep chirp processes are shown to lead to steady state giant PSV, with multiple extrema due to embedded holes and clumps, long after the external drive is turned off.
Measurement of Phase Coherence in Space Turbulence
NASA Astrophysics Data System (ADS)
Belmont, G.; Panis, J.; Rezeau, L.; Sahraoui, F.
2008-12-01
In many space plasmas such as Magnetosheath, intense magnetic fluctuations are permanently observed, with power law spectra. Assuming these fluctuations belong to some kind of turbulence, which can legitimately be suspected, spectra are clearly not sufficient to characterize it. Is this turbulence made of non linear "phase-coherent" structures, like in the classical Kolmogorov image, or is it made of incoherent waves as in weak turbulence? Is it homogeneous in space and scales or is it intermittent? " Many methods allow analyzing the statistical properties of turbulence, and the results obtained by tools such as structure functions or wavelets are of course influenced by all these properties, such providing indirect information about them. But few of them are specifically dedicated to the study of phase coherence so that the consequences that can be inferred from them are generally not univocal for this point of view. We will review those few tools existing in the literature that allow measuring more directly the phase coherence and present a new method, called "phase gradient analysis", which we are presently developing for this analysis. Preliminary results of this new tool will be presented.
NASA Astrophysics Data System (ADS)
Itoyama, H.; Oota, T.; Yoshioka, R.
2013-12-01
We propose and demonstrate a limiting procedure in which, starting from the q-lifted version (or K-theoretic five-dimensional version) of the (W)AGT conjecture to be assumed in this paper, the Virasoro/W block is generated in the r-th root of unity limit in q in the 2d side, while the same limit automatically generates the projection of the five-dimensional instanton partition function onto that on the ALE space R4/Zr. This circumvents case-by-case conjectures to be made in a wealth of examples found so far. In the 2d side, we successfully generate the super-Virasoro algebra and the proper screening charge in the q→-1, t→-1 limit, from the defining relation of the q-Virasoro algebra and the q-deformed Heisenberg algebra. The central charge obtained coincides with that of the minimal series carrying odd integers of the N=1 superconformal algebra. In the r-th root of unity limit in q in the 2d side, we give some evidence of the appearance of the parafermion-like currents. Exploiting the q-analysis literatures, q-deformed su(n) block is readily generated both at generic q,t and the r-th root of unity limit. In the 4d side, we derive the proper normalization function for general (n,r) that accomplishes the automatic projection through the limit.
NASA Astrophysics Data System (ADS)
Nishiyama, Yusuke; Zhang, Rongchun; Ramamoorthy, Ayyalusamy
2014-06-01
The first-order recoupling sequence radio frequency driven dipolar recoupling (RFDR) is commonly used in single-quantum/single-quantum homonuclear correlation 2D experiments under magic angle spinning (MAS) to determine homonuclear proximities. From previously reported analysis of the use of XY-based super-cycling schemes to enhance the efficiency of the finite-pulse-RFDR (fp-RFDR) pulse sequence, XY814 phase cycling was found to provide the optimum performance for 2D correlation experiments on low-γ nuclei. In this study, we analyze the efficiency of different phase cycling schemes for proton-based fp-RFDR experiments. We demonstrate the advantages of using a short phase cycle, XY4, and its super-cycle XY414 that only recouples the zero-quantum homonuclear dipolar coupling, for the fp-RFDR sequence in 2D 1H/1H correlation experiments at ultrafast MAS frequencies. The dipolar recoupling efficiencies of XY4, XY414 and XY814 phase cycling schemes are compared based on results obtained from 2D 1H/1H correlation experiments, utilizing the fp-RFDR pulse sequence, on powder samples of U-13C,15N-L-alanine, N-acetyl-15N-L-valyl-15N-L-leucine, and glycine. Experimental results and spin dynamics simulations show that XY414 performs the best when a high RF power is used for the 180° pulse, whereas XY4 renders the best performance when a low RF power is used. The effects of RF field inhomogeneity and chemical shift offsets are also examined. Overall, our results suggest that a combination of fp-RFDR-XY414 employed in the recycle delay with a large RF-field to decrease the recycle delay, and fp-RFDR-XY4 in the mixing period with a moderate RF-field, is a robust and efficient method for 2D single-quantum/single-quantum 1H/1H correlation experiments at ultrafast MAS frequencies.
Formation of phase space holes and clumps.
Lilley, M K; Nyqvist, R M
2014-04-18
It is shown that the formation of phase space holes and clumps in kinetically driven, dissipative systems is not restricted to the near threshold regime, as previously reported and widely believed. Specifically, we observe hole-clump generation from the edges of an unmodulated phase space plateau, created via excitation, phase mixing and subsequent dissipative decay of a linearly unstable bulk plasma mode in the electrostatic bump-on-tail model. This has now allowed us to elucidate the underlying physics of the hole-clump formation process for the first time. Holes and clumps develop from negative energy waves that arise due to the sharp gradients at the interface between the plateau and the nearly unperturbed, ambient distribution and destabilize in the presence of dissipation in the bulk plasma. We confirm this picture by demonstrating that the formation of such nonlinear structures in general does not rely on a "seed" wave, only on the ability of the system to generate a plateau. In addition, we observe repetitive cycles of plateau generation and erosion, the latter due to hole-clump formation and detachment, which appear to be insensitive to initial conditions and can persist for a long time. We present an intuitive discussion of why this continual regeneration occurs. PMID:24785043
NASA Astrophysics Data System (ADS)
Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye
2015-11-01
In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.
Optical image encryption in phase space
NASA Astrophysics Data System (ADS)
Liu, Jun; Xu, Xiaobin; Situ, Guohai; Wu, Quanying
2014-11-01
In the field of optical information security, the research of double random phase encoding is becoming deeper with each passing day, however the encryption system is linear, and the dependencies between plaintext and ciphertext is not complicated, with leaving a great hidden danger to the security of the encryption system. In this paper, we encrypted the higher dimensional Wigner distribution function of low dimensional plaintext by using the bilinear property of Wigner distribution function. Computer simulation results show that this method can not only enlarge the key space, but also break through the linear characteristic of the traditional optical encryption technology. So it can significantly improve the safety of the encryption system.
Space Transportation Engine Program (STEP), phase B
NASA Technical Reports Server (NTRS)
1990-01-01
The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.
Space Transportation Engine Program (STEP), phase B
NASA Astrophysics Data System (ADS)
1990-10-01
The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.
Mehlig, B; Müller, K; Eckhardt, B
1999-05-01
We consider distributions of diagonal matrix elements for smooth observables in systems whose classical phase space has a mixture of chaotic and nearly integrable regions. The quantum distributions agree very well with distributions obtained from classical trajectory segments whose length is the Heisenberg time. Non-Gaussian wings in the distributions can be linked to classical trapping in certain parts of phase space, sometimes connected to islands, but also to regions separated by other barriers to transport. Thus classical deviations from ergodicity are quantitatively reflected in quantum matrix elements. The relation to scars is discussed.
Phase space representation of quantum dynamics
Polkovnikov, Anatoli
2010-08-15
We discuss a phase space representation of quantum dynamics of systems with many degrees of freedom. This representation is based on a perturbative expansion in quantum fluctuations around one of the classical limits. We explicitly analyze expansions around three such limits: (i) corpuscular or Newtonian limit in the coordinate-momentum representation, (ii) wave or Gross-Pitaevskii limit for interacting bosons in the coherent state representation, and (iii) Bloch limit for the spin systems. We discuss both the semiclassical (truncated Wigner) approximation and further quantum corrections appearing in the form of either stochastic quantum jumps along the classical trajectories or the nonlinear response to such jumps. We also discuss how quantum jumps naturally emerge in the analysis of non-equal time correlation functions. This representation of quantum dynamics is closely related to the phase space methods based on the Wigner-Weyl quantization and to the Keldysh technique. We show how such concepts as the Wigner function, Weyl symbol, Moyal product, Bopp operators, and others automatically emerge from the Feynmann's path integral representation of the evolution in the Heisenberg representation. We illustrate the applicability of this expansion with various examples mostly in the context of cold atom systems including sine-Gordon model, one- and two-dimensional Bose-Hubbard model, Dicke model and others.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Ye, S.; Wu, J.
2013-12-01
Immiscible two-phase flows in fractured media are encountered in many engineering processes such as recovery of oil and gas, exploitation of geothermal energy, and groundwater contamination by immiscible chemicals. A two-dimensional rough wall parallel plate fracture model was set up and light transmission method (LTM) was applied to study two-phase flow system in fractured media. The fracture model stood with up and bottom flow and no flow on other two sides. A charge-coupled device (CCD) camera was used to monitor the migration of DNAPL and gas bubbles in the fracture model. To simulate two-phase system in fracture media, air was injected into the water saturated cell (C1) through the middle of the bottom and NAPL was injected into another water saturated cell (C2) through the middle of the top of the cell. The results show LTM was an effective way in monitoring the migration of DNAPL and gas bubbles in the fracture models. Gas moved upwards quickly to the top of C1 in the way of air bubbles generated at the injection position and formed a continuous distribution. The migration of TCE was controlled by its own weight and fracture aperture. TCE migrated to large aperture firstly when moving downwards, and intruded into smaller one with accumulation of TCE. Light Intensity-Saturation Models (LISMs) were developed to estimate the gas or NAPL saturation in two-phase system. The volume amount of infiltration of gas bubbles or NAPL could be estimated from light intensities by LISMs. There were strong correlations between the added and calculated amounts of gas or TCE. It is feasible to use the light transmission method to characterize the movement and spatial distribution of gas or NAPL in fractured media.
Phase-space networks of geometrically frustrated systems.
Han, Yilong
2009-11-01
We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.
Phase-space networks of geometrically frustrated systems
NASA Astrophysics Data System (ADS)
Han, Yilong
2009-11-01
We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.
Orbital dependent Rashba splitting and electron-phonon coupling of 2D Bi phase on Cu(100) surface
Gargiani, Pierluigi; Lisi, Simone; Betti, Maria Grazia; Ibrahimi, Amina Taleb; Bertran, François; Le Fèvre, Patrick; Chiodo, Letizia
2013-11-14
A monolayer of bismuth deposited on the Cu(100) surface forms a highly ordered c(2×2) reconstructed phase. The low energy single particle excitations of the c(2×2) Bi/Cu(100) present Bi-induced states with a parabolic dispersion in the energy region close to the Fermi level, as observed by angle-resolved photoemission spectroscopy. The electronic state dispersion, the charge density localization, and the spin-orbit coupling have been investigated combining photoemission spectroscopy and density functional theory, unraveling a two-dimensional Bi phase with charge density well localized at the interface. The Bi-induced states present a Rashba splitting, when the charge density is strongly localized in the Bi plane. Furthermore, the temperature dependence of the spectral density close to the Fermi level has been evaluated. Dispersive electronic states offer a large number of decay channels for transitions coupled to phonons and the strength of the electron-phonon coupling for the Bi/Cu(100) system is shown to be stronger than for Bi surfaces and to depend on the electronic state symmetry and localization.
Leong, Andrew F. T.; Islam, M. Sirajul; Kitchen, Marcus J.; Fouras, Andreas; Wallace, Megan J.; Hooper, Stuart B.
2013-04-15
Purpose: Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. Methods: The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions {approx}16.2 {mu}m). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Results: Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. Conclusions: This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using
Corrections to Wigner type phase space methods
NASA Astrophysics Data System (ADS)
Gaim, Wolfgang; Lasser, Caroline
2014-12-01
Over decades, the time evolution of Wigner functions along classical Hamiltonian flows has been used for approximating key signatures of molecular quantum systems. Such approximations are for example the Wigner phase space method, the linearized semiclassical initial value representation, or the statistical quasiclassical method. The mathematical backbone of these approximations is Egorov's theorem. In this paper, we reformulate the well-known second order correction to Egorov's theorem as a system of ordinary differential equations and derive an algorithm with improved asymptotic accuracy for the computation of expectation values. For models with easily evaluated higher order derivatives of the classical Hamiltonian, the new algorithm's corrections are computationally less expensive than the leading order Wigner method. Numerical test calculations for a two-dimensional torsional system confirm the theoretical accuracy and efficiency of the new method.
Uncertainty relations for general phase spaces
NASA Astrophysics Data System (ADS)
Werner, Reinhard F.
2016-04-01
We describe a setup for obtaining uncertainty relations for arbitrary pairs of observables related by a Fourier transform. The physical examples discussed here are the standard position and momentum, number and angle, finite qudit systems, and strings of qubits for quantum information applications. The uncertainty relations allow for an arbitrary choice of metric for the outcome distance, and the choice of an exponent distinguishing, e.g., absolute and root mean square deviations. The emphasis of this article is on developing a unified treatment, in which one observable takes on values in an arbitrary locally compact Abelian group and the other in the dual group. In all cases, the phase space symmetry implies the equality of measurement and preparation uncertainty bounds. There is also a straightforward method for determining the optimal bounds.
Unal, O; Korosec, F R; Frayne, R; Strother, C M; Mistretta, C A
1998-09-01
A new, fast, 2D MR imaging technique allowing passive catheter visualization adequate for use as a tool for guiding the movement of a catheter during endovascular procedures is described. This imaging technique samples low spatial frequencies more often than high spatial frequencies; it also uses both k-space view sharing and temporal interpolation. Unlike other techniques for passive visualization that exploit magnetic-susceptibility-induced artifacts, we have adopted a strategy that takes advantage of the T1-shortening effect of paramagnetic contrast agents, such as Gd-DTPA and a projection dephaser. This not only permits visualization of the entire catheter length but also minimizes the risk of intravascular heating. Using this method, a temporal frame rate of up to eight images per second and a tip localization accuracy of +/- 1mm (root mean square difference) can be achieved.
NASA Astrophysics Data System (ADS)
Kim, Bae-Hyung; Lee, Seunghun; Song, Jongkeun; Kim, Youngil; Jeon, Taeho; Cho, Kyungil
2013-03-01
Up-to-date capacitive micromachined ultrasonic transducer (CMUT) technologies provide us unique opportunities to minimize the size and cost of ultrasound scanners by integrating front-end circuits into CMUT arrays. We describe a design prototype of a portable ultrasound scan-head probe using 2-D phased CMUT-on-ASIC arrays of 3-MHz 250 micrometer-pitch by fabricating and integrating front-end electronics with 2-D CMUT array elements. One of the objectives of our work is to design a receive beamformer architecture for the smart probe with compact size and comparable performance. In this work, a phase-rotation based receive beamformer using the sampling frequency of 4 times the center frequency and a hybrid beamforming to reduce the channel counts of the system-side are introduced. Parallel beamforming is considered for the purpose of saving power consumption of battery (by firing fewer times per image frame). This architecture has the advantage of directly obtaining I and Q components. By using the architecture, the interleaved I/Q data from the storage is acquired and I/Q demodulation for baseband processing is directly achieved without demodulators including sin and cosine lookup tables and mixers. Currently, we are extending the presented architecture to develop a true smart probe by including lower power devices and cooling systems, and bringing wireless data transmission into consideration.
NASA Astrophysics Data System (ADS)
Chen, Shaohua; Kirubanandham, Antony; Chawla, Nikhilesh; Jiao, Yang
2016-03-01
An accurate knowledge of the 3D polycrystalline microstructure of a material is crucial to its property prediction, performance optimization, and design. Here, we present a multi-scale computational scheme that allows one to stochastically reconstruct the 3D microstructure of a highly heterogeneous polycrystalline material with large variation in grain size, morphology, and spatial distribution, as well as the distribution of second-phase particles, from single-2D electron back-scattered diffraction (EBSD) micrograph. Specifically, the two-point correlation functions S 2 are employed to statistically characterize grain morphology, orientation, and spatial distribution and are incorporated into the simulated annealing procedure for microstructure reconstruction. During the reconstruction, the original polycrystalline microstructure is coarsened such that the large grains are reconstructed first and the smaller ones are generated later. The second-phase particles are then inserted into the reconstructed polycrystalline material based on the pair-correlation function g 2 sampled from the 2D back-scattered electron micrograph. The utility of our multi-scale scheme is demonstrated by successfully reconstructing a highly heterogeneous polycrystalline Sn-rich solder joint with Cu6Sn5 intermetallic particles. The accuracy of our reconstruction is ascertained by comparing the virtual microstructure with the actual 3D structure of the joint obtained via serial sectioning techniques.
NASA Astrophysics Data System (ADS)
Klymchenko, Andrey S.; Furukawa, Shuhei; Balandina, Tanya; Müllen, Klaus; van der Auweraer, Mark; de Feyter, Steven
2010-09-01
Self-assembly of organic molecules at solid-liquid interfaces is a route for developing novel functional materials on surfaces and modeling assembly phenomena in 3D. 5-Alkoxylated isophthalic acids (ISA) are known to self-assemble into two-dimensional (2D) lamellae at the interface between a surface of Au(111) or HOPG (highly oriented pyrolytic graphite) and a solvent. Presently, the self-assembly of 4,6-dialkoxylated isophthalic acid derivatives with variable alkyl chain length is investigated at Au(111)-water, Au(111)-tetradecane and HOPG-tetradecane interfaces with a particular focus on the first one. The main aspect of this study is to evaluate the role of the molecular geometry and different interactions in the 2D assembly of amphiphilic molecules. In contrast to 5-alkoxylated ISA, 4,6-dialkoxylated ISA derivatives self-assemble preferentially into arrays of cyclic pentameric/hexameric structures, which appear as 2D analogues of the inverted hexagonal phase of lipids. As a general trend, the derivatives bearing shorter alkyl chains show a higher level of ordering at Au(111)-liquid interfaces. In particular, at the Au(111)-water interface, the 4,6-diheptyloxy ISA derivative forms exclusively pentamers, which are arranged in a quasi-hexagonal lattice. Moreover, the cyclic pentameric features are not empty but host a single isophthalic acid residue which is found to be dynamic. Finally, the packing of the diheptyloxy derivative shows a distinct potential dependence: while at more negative potentials the pentameric arrangement is converted into lamellae, at more positive potentials a loosely packed zig-zag pattern is formed. The present results show that at different solid-liquid interfaces 4,6-dialkoxylated ISA derivatives tend to form cyclic structures that are 2D analogues of an inverted hexagonal phase, akin to lipids having two hydrophobic alkyl chains and a small polar head group. Moreover, the substrate potential at the Au(111)-water interface can tune the
Space-time geometry of topological phases
Burnell, F.J.; Simon, Steven H.
2010-11-15
The 2 + 1 dimensional lattice models of Levin and Wen (2005) provide the most general known microscopic construction of topological phases of matter. Based heavily on the mathematical structure of category theory, many of the special properties of these models are not obvious. In the current paper, we present a geometrical space-time picture of the partition function of the Levin-Wen models which can be described as doubles (two copies with opposite chiralities) of underlying anyon theories. Our space-time picture describes the partition function as a knot invariant of a complicated link, where both the lattice variables of the microscopic Levin-Wen model and the terms of the Hamiltonian are represented as labeled strings of this link. This complicated link, previously studied in the mathematical literature, and known as Chain-Mail, can be related directly to known topological invariants of 3-manifolds such as the so-called Turaev-Viro invariant and the Witten-Reshitikhin-Turaev invariant. We further consider quasi-particle excitations of the Levin-Wen models and we see how they can be understood by adding additional strings to the Chain-Mail link representing quasi-particle world-lines. Our construction gives particularly important new insight into how a doubled theory arises from these microscopic models.
NASA Astrophysics Data System (ADS)
Mazhari, Najmeh Al Sadat; Momeni, Davood; Myrzakulov, Ratbay; Gholizade, Hosein; Raza, Muhammad
2016-10-01
An alternative method of developing the theory of non-equilibrium two dimensional holographic superconductor is to start from the definition of a time dependent $AdS_3$ background. As originally proposed, many of these formulae were cast in exponential form, but the adoption of the numeric method of expression throughout the bulk serves to show more clearly the relationship between the various parameters. The time dependence behaviour of the scalar condensation and Maxwell fields are fitted numerically. A usual value for Maxwell field on AdS horizon is $\\exp(-bt)$, and the exponential $\\log$ ratio is therefore $10^{-8} s^{-1}$. The coefficient $b$ of the time in the exponential term $\\exp(-bt)$ can be interpreted as a tool to measure the degree of dynamical instability, its reciprocal $\\frac{1}{b}$ is the time in which the disturbance is multiplied in the ratio. A discussion of some of the exponential formulae is given by the scalar field $\\psi(z,t)$ near the AdS boundary. It might be possible that a long interval would elapse the system which tends to the equilibrium state when the normal mass and conformal dimensions emerged. A somewhat curious calculation has been made, to illustrate the holographic entanglement entropy for this system. The foundation of all this calculation is, of course, a knowledge of multiple (connected and disconnected) extremal surfaces. There are several cases in which exact and approximate solutions are jointly used, a variable numerical quantity is represented by a graph, and the principles of approximation are then applied to determine related numerical quantities. In the case of the disconnected phase with a finite extremal are, we find a discontinuity in the first derivative of the entanglement entropy as the conserved charge $J$ is increased.
Chouhan, Manil D; Mookerjee, Rajeshwar P; Bainbridge, Alan; Walker-Samuel, Simon; Davies, Nathan; Halligan, Steve; Lythgoe, Mark F; Taylor, Stuart A
2016-09-01
Purpose To validate caval subtraction two-dimensional (2D) phase-contrast magnetic resonance (MR) imaging measurements of total liver blood flow (TLBF) and hepatic arterial fraction in an animal model and evaluate consistency and reproducibility in humans. Materials and Methods Approval from the institutional ethical committee for animal care and research ethics was obtained. Fifteen Sprague-Dawley rats underwent 2D phase-contrast MR imaging of the portal vein (PV) and infrahepatic and suprahepatic inferior vena cava (IVC). TLBF and hepatic arterial flow were estimated by subtracting infrahepatic from suprahepatic IVC flow and PV flow from estimated TLBF, respectively. Direct PV transit-time ultrasonography (US) and fluorescent microsphere measurements of hepatic arterial fraction were the standards of reference. Thereafter, consistency of caval subtraction phase-contrast MR imaging-derived TLBF and hepatic arterial flow was assessed in 13 volunteers (mean age, 28.3 years ± 1.4) against directly measured phase-contrast MR imaging PV and proper hepatic arterial inflow; reproducibility was measured after 7 days. Bland-Altman analysis of agreement and coefficient of variation comparisons were undertaken. Results There was good agreement between PV flow measured with phase-contrast MR imaging and that measured with transit-time US (mean difference, -3.5 mL/min/100 g; 95% limits of agreement [LOA], ±61.3 mL/min/100 g). Hepatic arterial fraction obtained with caval subtraction agreed well with those with fluorescent microspheres (mean difference, 4.2%; 95% LOA, ±20.5%). Good consistency was demonstrated between TLBF in humans measured with caval subtraction and direct inflow phase-contrast MR imaging (mean difference, -1.3 mL/min/100 g; 95% LOA, ±23.1 mL/min/100 g). TLBF reproducibility at 7 days was similar between the two methods (95% LOA, ±31.6 mL/min/100 g vs ±29.6 mL/min/100 g). Conclusion Caval subtraction phase-contrast MR imaging is a simple and clinically
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
Zhou, Jingwen; Qin, Jian; Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun; Zhao, Naiqin; He, Chunnian
2015-04-28
A facile and scalable 2D spatial confinement strategy is developed for in situ synthesizing highly crystalline MoS2 nanosheets with few layers (≤5 layers) anchored on 3D porous carbon nanosheet networks (3D FL-MoS2@PCNNs) as lithium-ion battery anode. During the synthesis, 3D self-assembly of cubic NaCl particles is adopted to not only serve as a template to direct the growth of 3D porous carbon nanosheet networks, but also create a 2D-confined space to achieve the construction of few-layer MoS2 nanosheets robustly lain on the surface of carbon nanosheet walls. In the resulting 3D architecture, the intimate contact between the surfaces of MoS2 and carbon nanosheets can effectively avoid the aggregation and restacking of MoS2 as well as remarkably enhance the structural integrity of the electrode, while the conductive matrix of 3D porous carbon nanosheet networks can ensure fast transport of both electrons and ions in the whole electrode. As a result, this unique 3D architecture manifests an outstanding long-life cycling capability at high rates, namely, a specific capacity as large as 709 mAh g(-1) is delivered at 2 A g(-1) and maintains ∼95.2% even after 520 deep charge/discharge cycles. Apart from promising lithium-ion battery anode, this 3D FL-MoS2@PCNN composite also has immense potential for applications in other areas such as supercapacitor, catalysis, and sensors.
Space market model development project, phase 2
NASA Technical Reports Server (NTRS)
Bishop, Peter C.
1988-01-01
The results of the prototype operations of the Space Business Information Center are presented. A clearinghouse for space business information for members of the U.S. space industry composed of public, private, and academic sectors was conducted. Behavioral and evaluation statistics were recorded from the clearinghouse and the conclusions from these statistics are presented. Business guidebooks on major markets in space business are discussed. Proprietary research and briefings for firms and agencies in the space industry are also discussed.
Constructing Phase Space Distributions within the Heliosheath
NASA Astrophysics Data System (ADS)
Roelof, E. C.
2014-12-01
The key function in the description of the dynamics of the heliosheath (HS) is the phase space distribution (PSD) of the protons, i.e., how the interaction between the thermal and non-thermal (heated pick-up) proton populations evolves from the termination shock to the heliopause (HP) in this high-beta plasma. Voyager 1 found the heliopause to be essentially a (compound) magnetic separatrix, because the intensity of the non-thermal particle population became undetectably small beyond the HP, whereas the anisotropy characteristics of the galactic cosmic rays were consistent with no re-entry of the magnetic field lines into the HS (at either end). This paper attempts to synthesize in situ observations from Voyagers 1 and 2 (thermal plasma, magnetic field, energetic ions, and cosmic rays) with global ENA images from IBEX and Cassini/INCA into a self-consistent representation of the PSD within the noseward HS from thermal energies to several MeV/nuc. The interpretation of the ENA images requires assumptions on the global behavior of the bulk plasma flow throughout the HS that are self-consistent with all the available data (e.g., the spatial and energy dependence of the IBEX ribbon), because the Compton-Getting effects produced by the flows strongly affect the intensities (and thereby the partial densities and pressures) inferred from the ENA images.
Continuous-time quantum walks in phase space
Muelken, Oliver; Blumen, Alexander
2006-01-15
We formulate continuous time quantum walks (CTQW) in a discrete quantum mechanical phase space. We define and calculate the Wigner function (WF) and its marginal distributions for CTQWs on circles of arbitrary length N. The WF of the CTQW shows characteristic features in phase space. Revivals of the probability distributions found for continuous and for discrete quantum carpets do manifest themselves as characteristic patterns in phase space.
NASA Astrophysics Data System (ADS)
Larche, M. R.; Baldwin, D. L.; Edwards, M. K.; Mathews, R. A.; Prowant, M. S.; Diaz, A. A.
2016-02-01
Optically opaque liquid sodium used in liquid metal fast reactors poses a unique set of challenges for nondestructive evaluation. The opaque nature of the sodium prevents visual examinations of components within this medium, but ultrasonic waves are able to propagate through sodium so an ultrasonic testing (UT) technique can be applied for imaging objects in sodium. A UT sensor used in liquid sodium during a refueling outage must be capable of withstanding the 260°C corrosive environment and must also be able to wet (couple the ultrasonic waves) so that sound can propagate into the sodium. A multi-year iterative design effort, based on earlier work in the 1970s, has set out to improve the design and fabrication processes needed for a UT sensor technology capable of overcoming the temperature and wetting issues associated with this environment. Robust materials and improved fabrication processes have resulted in single-element sensors and two different linear-array sensors that have functioned in liquid sodium. More recent efforts have been focused on improving signal-to-noise ratio and image resolution in the highly attenuating liquid sodium. In order to accomplish this, modeling and simulation tools were used to design a 60-element 2D phased-array sensor operating at 2 MHz that features a separate transmitter and receiver. This design consists of 30 transmit elements and another 30 receive elements, each arranged in a rectangular matrix pattern that is 10 rows tall and 3 wide. The fabrication of this 2D array is currently underway and will be followed by a series of performance tests in water, hot oil, and finally in liquid sodium at 260°C. The performance testing cycle will evaluate multiple characteristics of the sensor that are crucial to performance including: transmit-uniformity, element sensitivity variations, element-to-element energy leakage, sound field dimensions, and spatial resolution. This paper will present a summary of results from the previous UT
NASA Technical Reports Server (NTRS)
Miller, Franklin; Bagdanove, paul; Blake, Peter; Canavan, Ed; Cofie, Emmanuel; Crane, J. Allen; Dominquez, Kareny; Hagopian, John; Johnston, John; Madison, Tim; Miller, Dave; Oaks, Darrell; Williams, Pat; Young, Dan; Zukowski, Barbara; Zukowski, Tim
2007-01-01
The James Webb Space Telescope Instrument Support Integration Module (ISIM) is being designed and developed at the Goddard Space Flight Center. The ISM Thermal Distortion Testing (ITDT) program was started with the primary objective to validate the ISM mechanical design process. The ITDT effort seeks to establish confidence and demonstrate the ability to predict thermal distortion in composite structures at cryogenic temperatures using solid element models. This-program's goal is to better ensure that ISIM meets all the mechanical and structural requirements by using test results to verify or improve structural modeling techniques. The first step to accomplish the ITDT objectives was to design, and then construct solid element models of a series 2-D test assemblies that represent critical building blocks of the ISIM structure. Second, the actual test assemblies consisting of composite tubes and invar end fittings were fabricated and tested for thermal distortion. This paper presents the development of the GSFC Cryo Distortion Measurement Facility (CDMF) to meet the requirements of the ISIM 2-D test. assemblies, and other future ISIM testing needs. The CDMF provides efficient cooling with both a single, and two-stage cryo-cooler. Temperature uniformity of the test assemblies during thermal transients and at steady state is accomplished by using sapphire windows for all of the optical ports on the radiation shields and by using .thermal straps to cool the test assemblies. Numerical thermal models of the test assemblies were used to predict the temperature uniformity of the parts during cooldown and at steady state. Results of these models are compared to actual temperature data from the tests. Temperature sensors with a 0.25K precision were used to insure that test assembly gradients did not exceed 2K lateral, and 4K axially. The thermal distortions of two assemblies were measured during six thermal cycles from 320K to 35K using laser interferometers. The standard
Space shuttle phase B study plan
NASA Technical Reports Server (NTRS)
Hello, B.
1971-01-01
Phase B emphasis was directed toward development of data which would facilitate selection of the booster concept, and main propulsion system for the orbiter. A shuttle system is also defined which will form the baseline for Phase C program activities.
Space Shuttle aerothermodynamic data report, phase C
NASA Technical Reports Server (NTRS)
1985-01-01
Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration are included. An up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program is provided. Tables are designed to provide suvery information to the various space shuttle managerial and technical levels.
Quasi-Hermitian quantum mechanics in phase space
Curtright, Thomas; Veitia, Andrzej
2007-10-15
We investigate quasi-Hermitian quantum mechanics in phase space using standard deformation quantization methods: Groenewold star products and Wigner transforms. We focus on imaginary Liouville theory as a representative example where exact results are easily obtained. We emphasize spatially periodic solutions, compute various distribution functions and phase-space metrics, and explore the relationships between them.
NASA Technical Reports Server (NTRS)
1976-01-01
Developments required to support the space power, SETI, solar system exploration and global services programs are identified. Instrumentation and calibration sensors (rather than scientific) are needed for the space power system. Highly sophisticated receivers for narrowband detection of microwave sensors and sensors for automated stellar cataloging to provide a mapping data base for SETI are needed. Various phases of solar system exploration require large area solid state imaging arrays from UV to IR; a long focal plane telescope; high energy particle detectors; advanced spectrometers; a gravitometer; and atmospheric distanalyzer; sensors for penetrometers; in-situ sensors for surface chemical analysis, life detection, spectroscopic and microscopic analyses of surface soils, and for meteorological measurements. Active and passive multiapplication sensors, advanced multispectral scanners with improved resolution in the UV and IR ranges, and laser techniques for advanced probing and oceanographic characterization will enhance for global services.
Space law information system design, phase 2
NASA Technical Reports Server (NTRS)
Morenoff, J.; Roth, D. L.; Singleton, J. W.
1973-01-01
Design alternatives were defined for the implementation of a Space Law Information System for the Office of the General Counsel, NASA. A thesaurus of space law terms was developed and a selected document sample indexed on the basis of that thesaurus. Abstracts were also prepared for the sample document set.
Real-space Berry phases: Skyrmion soccer (invited)
Everschor-Sitte, Karin Sitte, Matthias
2014-05-07
Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.
Real-space Berry phases: Skyrmion soccer (invited)
NASA Astrophysics Data System (ADS)
Everschor-Sitte, Karin; Sitte, Matthias
2014-05-01
Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.
Cryptanalysis of an information encryption in phase space
NASA Astrophysics Data System (ADS)
Wang, Y.; Quan, C.; Tay, C. J.
2016-10-01
In this paper, we evaluate the security of an information encryption in phase space. We show that the scheme is vulnerable to two kinds of attack, namely, a chosen-ciphertext attack and a known-plaintext attack which is based on an iterative phase-retrieval algorithm using multiple plaintext-ciphertext pairs. The validity of the proposed methods of attack is verified by numerical simulations. The results cast doubts on the present security of information encryption in phase space.
Tracing the dark matter sheet in phase space
NASA Astrophysics Data System (ADS)
Abel, Tom; Hahn, Oliver; Kaehler, Ralf
2012-11-01
The primordial velocity dispersion of dark matter is small compared to the velocities attained during structure formation. The initial density distribution is close to uniform, and it occupies an initial sheet in phase space that is single valued in velocity space. Because of gravitational forces, this 3D manifold evolves in phase space without ever tearing, conserving phase-space volume and preserving the connectivity of nearby points. N-body simulations already follow the motion of this sheet in phase space. This fact can be used to extract full fine-grained phase-space structure information from existing cosmological N-body simulations. Particles are considered as the vertices of an unstructured 3D mesh moving in 6D phase space. On this mesh, mass density and momentum are uniquely defined. We show how to obtain the space density of the fluid, detect caustics and count the number of streams as well as their individual contributions to any point in configuration space. We calculate the bulk velocity, local velocity dispersions and densities from the sheet - all without averaging over control volumes. This gives a wealth of new information about dark matter fluid flow which had previously been thought of as inaccessible to N-body simulations. We outline how this mapping may be used to create new accurate collisionless fluid simulation codes that may be able to overcome the sparse sampling and unphysical two-body effects that plague current N-body techniques.
Unequally spaced four levels phase encoding in holographic data storage
NASA Astrophysics Data System (ADS)
Xu, Ke; Huang, Yong; Lin, Xiao; Cheng, Yabin; Li, Xiaotong; Tan, Xiaodi
2016-09-01
Holographic data storage system is a candidate for the information recording due to its large storage capacity and high transfer rate. We propose an unequally spaced four levels phase encoding in the holographic data storage system here. Compared with two levels or three levels phase encoding, four levels phase encoding effectively improves the code rate. While more phase levels can further improve code rate, it also puts higher demand for the camera to differentiate the resulting smaller grayscale difference. Unequally spaced quaternary level phases eliminates the ambiguity of pixels with same phase difference relative to reference light compared to equally spaced quaternary levels. Corresponding encoding pattern design with phase pairs as the data element and decoding method were developed. Our encoding improves the code rate up to 0.875, which is 1.75 times of the conventional amplitude method with an error rate of 0.13 % according to our simulation results.
NASA Astrophysics Data System (ADS)
Bouchiat, Marie-Anne; Bouchiat, Claude
2012-10-01
We have constructed the geometric phases emerging from the non-trivial topology of a space-dependent magnetic field B(r), interacting with the spin magnetic moment of a neutral particle. Our basic tool, adapted from a previous work on Berry’s phases, is the space-dependent unitary transformation {U}({\\mathbf {r}}), which leads to the identity, {U}({\\mathbf {r}})^{\\dag }\\, {\\mathbf {S}}\\,{\\bm \\cdot}\\, {\\mathbf {B}}({\\mathbf {r}}) \\, {U}({\\mathbf {r}}) = \\vert {\\mathbf {B}}({\\mathbf {r}}) \\vert \\, S_z, at each point r. In the ‘rotated’ Hamiltonian \\widehat{ H}, \\frac{ \\partial }{\\partial {\\mathbf {r}}} is replaced by the non-Abelian covariant derivative \\frac{ \\partial }{\\partial {\\mathbf {r}}}- \\frac{i}{\\hbar } {A}({\\mathbf {r}}) where {A}({\\mathbf {r}}) = i \\hbar \\, {U}^{\\dag }\\,{\\bm\\cdot}\\, \\frac{ \\partial }{\\partial {\\mathbf {r}}} {U} can be written as A1(r)Sx + A2(r)Sy + A3(r)Sz. The Abelian differentials Ak(r)·dr are given in terms of the Euler angles defining the orientation of B(r). The non-Abelian field {A}({\\mathbf {r}}) transforms as a Yang-Mills field; however, its vanishing ‘curvature’ reveals its purely geometric character. We have defined a perturbation scheme based upon the assumption that in \\widehat{ H} the longitudinal field A3(r) dominates the transverse field A1, 2(r) contributions, evaluated to second order. The geometry embedded in both the vector field A3(r) and the geometric magnetic field \\mathbf { B}_3 ({\\mathbf {r}}) = \\frac{ \\partial }{\\partial {\\mathbf {r}}}\\wedge {{\\mathbf {A}}}_3({\\mathbf {r}}) is described by their associated Aharonov-Bohm phase. As an illustration we study the physics of cold 171Yb atoms dressed by overlaying two circularly polarized stationary waves with orthogonal directions, which form a 2D square optical lattice. The frequency is tuned midway between the two hyperfine levels of the (6s6p)3P1 states to protect the optical B(r) field generated by the
κ-deformed covariant quantum phase spaces as Hopf algebroids
NASA Astrophysics Data System (ADS)
Lukierski, Jerzy; Škoda, Zoran; Woronowicz, Mariusz
2015-11-01
We consider the general D = 4 (10 + 10)-dimensional κ-deformed quantum phase space as given by Heisenberg double H of D = 4κ-deformed Poincaré-Hopf algebra H. The standard (4 + 4)-dimensional κ-deformed covariant quantum phase space spanned by κ-deformed Minkowski coordinates and commuting momenta generators (xˆμ ,pˆμ) is obtained as the subalgebra of H. We study further the property that Heisenberg double defines particular quantum spaces with Hopf algebroid structure. We calculate by using purely algebraic methods the explicit Hopf algebroid structure of standard κ-deformed quantum covariant phase space in Majid-Ruegg bicrossproduct basis. The coproducts for Hopf algebroids are not unique, determined modulo the coproduct gauge freedom. Finally we consider the interpretation of the algebraic description of quantum phase spaces as Hopf algebroids.
NASA Astrophysics Data System (ADS)
Moreno-García, Pavel; Grimaudo, Valentine; Riedo, Andreas; Neuland, Maike B.; Tulej, Marek; Broekmann, Peter; Wurz, Peter
2016-04-01
Direct quantitative chemical analysis with high lateral and vertical resolution of solid materials is of prime importance for the development of a wide variety of research fields, including e.g., astrobiology, archeology, mineralogy, electronics, among many others. Nowadays, studies carried out by complementary state-of-the-art analytical techniques such as Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), Secondary Ion Mass Spectrometry (SIMS), Glow Discharge Time-of-Flight Mass Spectrometry (GD-TOF-MS) or Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) provide extensive insight into the chemical composition and allow for a deep understanding of processes that might have fashioned the outmost layers of an analyte due to its interaction with the surrounding environment. Nonetheless, these investigations typically employ equipment that is not suitable for implementation on spacecraft, where requirements concerning weight, size and power consumption are very strict. In recent years Laser Ablation/Ionization Mass Spectrometry (LIMS) has re-emerged as a powerful analytical technique suitable not only for laboratory but also for space applications.[1-3] Its improved performance and measurement capabilities result from the use of cutting edge ultra-short femtosecond laser sources, improved vacuum technology and fast electronics. Because of its ultimate compactness, simplicity and robustness it has already proven to be a very suitable analytical tool for elemental and isotope investigations in space research.[4] In this contribution we demonstrate extended capabilities of our LMS instrument by means of three case studies: i) 2D chemical imaging performed on an Allende meteorite sample,[5] ii) depth profiling with unprecedented sub-nm vertical resolution on Cu electrodeposited interconnects[6,7] and iii) preliminary molecular desorption of polymers without assistance of matrix or functionalized substrates.[8] On the whole
Selected tether applications in space: Phase 2
NASA Technical Reports Server (NTRS)
Thorsen, M. H.; Lippy, L. J.
1985-01-01
System characteristics and design requirements are assessed for tether deployment. Criteria are established for comparing alternate concepts for: (1) deployment of 220 klb space shuttle from the space station; (2) tether assisted launch of a 20,000 lb payload to geosynchronous orbit; (3) placement of the 20,000 lb AXAF into 320 nmi orbit via orbiter; (4) retrieval of 20,000 lb AXAF from 205 nmi circular orbit for maintenance and reboost to 320 nmi; and (5) tethered OMV rendezvous and retrieval of OTV returning from a geosynchronous mission. Tether deployment systems and technical issues are discussed.
Longitudinal phase space experiments on the ELSA photoinjector
Dowell, D.H.; Joly, S.; Brion, J.P. de
1995-12-31
The excellent beam quality produced by RF photocathode injectors is well established, andhas been verified by numerous measurements of the transverse emittance. However, there are few experimental determinations of the longitudinal phase space. This paper reports on experiments performed at the ELSA FEL facility to emasure the longitudinal phase space distribution at the exit of the 144 MHz photoinjector cavity. Phase spaces were determined by the analysis of beam energy spectra and pulse shapes at 17.5 MeV for micropulse charges between 0.5 and 5 nC.
A Simple, Low Cost Longitudinal Phase Space Diagnostic
Bertsche, Kirk; Emma, Paul; Shevchenko, Oleg; /Novosibirsk, IYF
2009-05-15
For proper operation of the LCLS [1] x-ray free-electron laser (FEL), and other similar machines, measurement and control of the electron bunch longitudinal phase space is critical. The LCLS accelerator includes two bunch compressor chicanes to magnify the peak current. These magnetic chicanes can generate significant coherent synchrotron radiation (CSR), which can distort the phase space distribution. We propose a diagnostic scheme by exciting a weak skew quadrupole at an energy-chirped, high dispersion point in the first LCLS bunch compressor (BC1) to reconstruct longitudinal phase space on an OTR screen after BC1, allowing a time-resolved characterization of CSR effects.
Quantum gravity, dynamical phase-space and string theory
NASA Astrophysics Data System (ADS)
Freidel, Laurent; Leigh, Robert G.; Minic, Djordje
2014-08-01
In a natural extension of the relativity principle, we speculate that a quantum theory of gravity involves two fundamental scales associated with both dynamical spacetime as well as dynamical momentum space. This view of quantum gravity is explicitly realized in a new formulation of string theory which involves dynamical phase-space and in which spacetime is a derived concept. This formulation naturally unifies symplectic geometry of Hamiltonian dynamics, complex geometry of quantum theory and real geometry of general relativity. The spacetime and momentum space dynamics, and thus dynamical phase-space, is governed by a new version of the renormalization group (RG).
The space transportation main engine phase A' study
NASA Technical Reports Server (NTRS)
1987-01-01
The Space Transportation Main Engine Phase A prime study was conducted over a 7 month period as an extension to the Phase A study. The Phase A prime program was designed to expand the study effort completed in Phase A, focusing on the baseline engine configuration selected. Analysis and trade studies were conducted to further optimize some of the major engine subsystems. These changes resulted in improvements to the baseline engine. Several options were evaluated for consideration by vehicle contractors.
Liquid phase sintered compacts in space
NASA Technical Reports Server (NTRS)
Mookherji, T. K.; Mcanelly, W. B.
1974-01-01
A model that will explain the effect of gravity on liquid phase sintering was developed. Wetting characteristics and density segregation which are the two important phenomena in liquid phase sintering are considered in the model development. Experiments were conducted on some selected material combinations to study the gravity effects on liquid phase sintering, and to verify the validity of the model. It is concluded that: (1) The surface tension forces acting on solid particles in a one-g environment are not appreciably different from those anticipated in a 0.00001g/g sub 0 (or lower) environment. (2) The capillary forces are dependent on the contact angle, the quantity of the liquid phase, and the distance between solid particles. (3) The pores (i.e., bubbles) do not appear to be driven to the surface by gravity-produced buoyancy forces. (4) The length of time to produce the same degree of settling in a low-gravity environment will be increased significantly. (5) A low gravity environment would appear to offer a unique means of satisfactorily infiltrating a larger and/or complex shaped compact.
An extensive phase space for the potential martian biosphere.
Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D
2011-12-01
We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.
Phase Space Structures Explain Hydrogen Atom Roaming in Formaldehyde Decomposition.
Mauguière, Frédéric A L; Collins, Peter; Kramer, Zeb C; Carpenter, Barry K; Ezra, Gregory S; Farantos, Stavros C; Wiggins, Stephen
2015-10-15
We re-examine the prototypical roaming reaction--hydrogen atom roaming in formaldehyde decomposition--from a phase space perspective. Specifically, we address the question "why do trajectories roam, rather than dissociate through the radical channel?" We describe and compute the phase space structures that define and control all possible reactive events for this reaction, as well as provide a dynamically exact description of the roaming region in phase space. Using these phase space constructs, we show that in the roaming region, there is an unstable periodic orbit whose stable and unstable manifolds define a conduit that both encompasses all roaming trajectories exiting the formaldehyde well and shepherds them toward the H2···CO well.
Design and applications of a phase space analyzer
NASA Astrophysics Data System (ADS)
Rausch, Denise; Herkommer, Alois
2016-04-01
In the last few years the requirement of more special and complex optical system increases as the demand in industries for higher eﬃciency increases. To satisfy the demand more complex optical elements substitute continuously standard components. Therefore it is of high interest to develop new methods in evaluating optical systems. In classical illumination design a huge number of rays has to be traced to get enough information to evaluate the performance of the system. An other method is to investigate the transport of etendue in the phase space picture where we have direct access to the radiance, irradiance and radiant intensity without extensive ray tracing. The phase space analyzer oﬀers a diﬀerent way to illustrate directly the phase space diagram of an arbitrary light distribution restricted to two dimensions. This method is much faster than traditional ray tracing. Most often used illumination components like integrator rods and optical arrays can be understood in the phase space approach.
An extensive phase space for the potential martian biosphere.
Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D
2011-12-01
We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life. PMID:22149914
Two-Phase Thermal Management Systems for Space
NASA Astrophysics Data System (ADS)
Downing, Scott; Andres, Mike; Nguyen, Dam; Halsey, Dave; Bauch, Tim
2006-01-01
Active two-phase thermal management systems have been shown to be weight and power effective for space platforms dissipating over 20 kWt of waste heat. A two-phase thermal management system can provide nearly isothermal heat transport at mass flows significantly lower than required for single-phase systems by employing a working fluid's latent heat rather than absorbing the heat sensibly in temperature change. Phase management issues specific to reduced gravity include pump cavitation, loop inventory control and potential dry out in the evaporator. Hamilton Sundstrand has developed and demonstrated in a reduced gravity aircraft environment, a suite of two-phase technologies that manage the liquid-vapor phase distribution. These technologies keep the liquid phase available at the pump inlet for pumping and present at heat acquisition boundaries for evaporation. This paper reviews these technologies for future high power, long duration space platforms.
Group theoretical construction of planar noncommutative phase spaces
Ngendakumana, Ancille Todjihoundé, Leonard; Nzotungicimpaye, Joachim
2014-01-15
Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given.
Kac Moody theories for colored phase space (quantum Hall) droplets
NASA Astrophysics Data System (ADS)
Polychronakos, Alexios P.
2005-04-01
We derive the canonical structure and Hamiltonian for arbitrary deformations of a higher-dimensional (quantum Hall) droplet of fermions with spin or color on a general phase space manifold. Gauge fields are introduced via a Kaluza-Klein construction on the phase space. The emerging theory is a nonlinear higher-dimensional generalization of the gauged Kac-Moody algebra. To leading order in ℏ this reproduces the edge state chiral Wess-Zumino-Witten action of the droplets.
Wigner function and Schroedinger equation in phase-space representation
Chruscinski, Dariusz; Mlodawski, Krzysztof
2005-05-15
We discuss a family of quasidistributions (s-ordered Wigner functions of Agarwal and Wolf [Phys. Rev. D 2, 2161 (1970); Phys. Rev. D 2, 2187 (1970); Phys. Rev. D 2, 2206 (1970)]) and its connection to the so-called phase space representation of the Schroedinger equation. It turns out that although Wigner functions satisfy the Schroedinger equation in phase space, they have a completely different interpretation.
Computational methods for microfluidic microscopy and phase-space imaging
NASA Astrophysics Data System (ADS)
Pegard, Nicolas Christian Richard
design that is minimally invasive yet optimizes the transfer of information from sample to detector. This optimization best responds to the desired imaging application. We present three microfluidic devices which can all be implemented as a compact add-on device for commercial microscopes. The first is a flow-scanning structured illumination microfluidic microscopy device demonstrating enhanced resolution in 2D. The second is a method for 3D deconvolution microscopy with a tilted channel to acquire and deconvolve gradually defocused images. Finally, we demonstrate optical projection microscopic tomography with simultaneous phase and intensity imaging capabilities in 3D by combining flow-scanning and optical acquisition in phase space. Experimental results utilize yeast cells as well as live C.elegans.. In the fourth part, we show that optical system optimization also has non-imaging applications such as solar cell engineering. Instead of looking for an optical setup that maximizes the transfer of information, we implement inexpensive surface wrinkles and folds in the layered structure of organic solar cells and optimize their surface density. This strategy enhances light trapping and further improves the electric conversion of solar energy.
Tracing, Analyzing and Visualizing Dark Matter in Phase Space
NASA Astrophysics Data System (ADS)
Hahn, Oliver; Abel, Tom; Kaehler, Ralf
2015-01-01
In a Universe dominated by cold dark matter, structure forms from foldings of a three-dimensional sheet permeating six-dimensional phase space. The dynamics of the sheet is governed by gravity alone, and it never tears or intersects itself in phase space. In position space, these foldings lead to the formation of pancakes, filaments and finally dark matter halos: the cosmic web. N-body simulations already follow the motion of this sheet in phase space. This fact can be used to extract full fine-grained phase-space-structure information from existing cosmological N-body simulations. Particles are considered as the vertices of an unstructured three dimensional mesh, moving in six dimensional phase-space. On this mesh, mass density and momentum are uniquely defined. We show how to obtain the space density of the fluid, local velocity dispersion and detect caustics. We also discuss how information about the sheet can be used to create highly accurate volume visualizations and devise new simulation codes to evolve cold collisionless fluids under self-gravity.
Space power demonstrator engine, phase 1
NASA Technical Reports Server (NTRS)
1987-01-01
The design, analysis, and preliminary test results for a 25 kWe Free-Piston Stirling engine with integral linear alternators are described. The project is conducted by Mechanical Technology under the direction of LeRC as part of the SP-100 Nuclear Space Power Systems Program. The engine/alternator system is designed to demonstrate the following performance: (1) 25 kWe output at a specific weight less than 8 kg/kW; (2) 25 percent efficiency at a temperature ratio of 2.0; (3) low vibration (amplitude less than .003 in); (4) internal gas bearings (no wear, no external pump); and (5) heater temperature/cooler temperature from 630 to 315 K. The design approach to minimize vibration is a two-module engine (12.5 kWe per module) in a linearly-opposed configuration with a common expansion space. The low specific weight is obtained at high helium pressure (150 bar) and high frequency (105 Hz) and by using high magnetic strength (samarium cobalt) alternator magnets. Engine tests began in June 1985; 16 months following initiation of engine and test cell design. Hydrotest and consequent engine testing to date has been intentionally limited to half pressure, and electrical power output is within 15 to 20 percent of design predictions.
Phase space evolution in linear instabilities
Pantellini, F.G.E.; Burgess, D.; Schwartz, S.J. )
1994-12-01
A simple and powerful way to investigate the linear evolution of particle distribution functions in kinetic instabilities in a homogeneous collisionless plasma is presented. The method can be applied to any kind of instability, provided the characteristics (growth rate, frequency, wave vector, and polarization) of the mode are known and can also be used to estimate the amplitude of the waves at the end of the linear phase of growth. Two didactic examples are used to illustrate the versatility of the technique: the Alfven Ion Cyclotron (AIC) instability, which is electromagnetic, and the Electron Ion Cyclotron (EIC) instability, which is electrostatic.
Space transfer concepts and analyses for exploration missions, phase 3
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.
1993-01-01
This report covers the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 2, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from Stafford Committee Synthesis Report. The major effort of the study was the development of the first Lunar Outpost (FLO) baseline which evolved from the Space Station Freedom Hab Module. Modifications for the First Lunar Outpost were made to meet mission requirements and technology advancements.
2001-01-31
This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.
Phase-Space Detection of Cyber Events
Hernandez Jimenez, Jarilyn M; Ferber, Aaron E; Prowell, Stacy J; Hively, Lee M
2015-01-01
Energy Delivery Systems (EDS) are a network of processes that produce, transfer and distribute energy. EDS are increasingly dependent on networked computing assets, as are many Industrial Control Systems. Consequently, cyber-attacks pose a real and pertinent threat, as evidenced by Stuxnet, Shamoon and Dragonfly. Hence, there is a critical need for novel methods to detect, prevent, and mitigate effects of such attacks. To detect cyber-attacks in EDS, we developed a framework for gathering and analyzing timing data that involves establishing a baseline execution profile and then capturing the effect of perturbations in the state from injecting various malware. The data analysis was based on nonlinear dynamics and graph theory to improve detection of anomalous events in cyber applications. The goal was the extraction of changing dynamics or anomalous activity in the underlying computer system. Takens' theorem in nonlinear dynamics allows reconstruction of topologically invariant, time-delay-embedding states from the computer data in a sufficiently high-dimensional space. The resultant dynamical states were nodes, and the state-to-state transitions were links in a mathematical graph. Alternatively, sequential tabulation of executing instructions provides the nodes with corresponding instruction-to-instruction links. Graph theorems guarantee graph-invariant measures to quantify the dynamical changes in the running applications. Results showed a successful detection of cyber events.
Phase space quantization, noncommutativity, and the gravitational field
NASA Astrophysics Data System (ADS)
Chatzistavrakidis, Athanasios
2014-07-01
In this paper we study the structure of the phase space in noncommutative geometry in the presence of a nontrivial frame. Our basic assumptions are that the underlying space is a symplectic and parallelizable manifold. Furthermore, we assume the validity of the Leibniz rule and the Jacobi identities. We consider noncommutative spaces due to the quantization of the symplectic structure and determine the momentum operators that guarantee a set of canonical commutation relations, appropriately extended to include the nontrivial frame. We stress the important role of left vs right acting operators and of symplectic duality. This enables us to write down the form of the full phase space algebra on these noncommutative spaces, both in the noncompact and in the compact case. We test our results against the class of four-dimensional and six-dimensional symplectic nilmanifolds, thus presenting a large set of nontrivial examples that realizes the general formalism.
Metallic phase of the quantum Hall effect in four-dimensional space
NASA Astrophysics Data System (ADS)
Edge, Jonathan; Tworzydlo, Jakub; Beenakker, Carlo
2013-03-01
We study the phase diagram of the quantum Hall effect in four-dimensional (4D) space. Unlike in 2D, in 4D there exists a metallic as well as an insulating phase, depending on the disorder strength. The critical exponent ν ~ 1 . 2 of the diverging localization length at the quantum Hall insulator-to-metal transition differs from the semiclassical value ν = 1 of 4D Anderson transitions in the presence of time-reversal symmetry. Our numerical analysis is based on a mapping of the 4D Hamiltonian onto a 1D dynamical system, providing a route towards the experimental realization of the 4D quantum Hall effect. NanoCTM, FOM/NWO, ERC
Multivariable Hermite polynomials and phase-space dynamics
NASA Technical Reports Server (NTRS)
Dattoli, G.; Torre, Amalia; Lorenzutta, S.; Maino, G.; Chiccoli, C.
1994-01-01
The phase-space approach to classical and quantum systems demands for advanced analytical tools. Such an approach characterizes the evolution of a physical system through a set of variables, reducing to the canonically conjugate variables in the classical limit. It often happens that phase-space distributions can be written in terms of quadratic forms involving the above quoted variables. A significant analytical tool to treat these problems may come from the generalized many-variables Hermite polynomials, defined on quadratic forms in R(exp n). They form an orthonormal system in many dimensions and seem the natural tool to treat the harmonic oscillator dynamics in phase-space. In this contribution we discuss the properties of these polynomials and present some applications to physical problems.
The role of phase space geometry in Heisenberg's uncertainty relation
NASA Astrophysics Data System (ADS)
Anastopoulos, Charis; Savvidou, Ntina
2003-11-01
Aiming towards a geometric description of quantum theory, we study the coherent states-induced metric on the phase space, which provides a geometric formulation of the Heisenberg uncertainty relations (both the position-momentum and the time-energy ones). The metric also distinguishes the original uncertainty relations of Heisenberg from the ones that are obtained from non-commutativity of operators. Conversely, the uncertainty relations can be written in terms of this metric only, hence they can be formulated for any physical system, including ones with non-trivial phase space. Moreover, the metric is a key ingredient of the probability structure of continuous-time histories on phase space. This fact allows a simple new proof the impossibility of the physical manifestation of the quantum Zeno and anti-Zeno paradoxes. Finally, we construct the coherent states for a spinless relativistic particle, as a non-trivial example by which we demonstrate our results.
Exact Quantum Dynamics Calculations Using Phase Space Wavelets
NASA Astrophysics Data System (ADS)
Halverson, Thomas; Poirier, Bill
2013-06-01
In a series of earlier papers, the authors introduced the first exact quantum dynamics method that defeats the exponential scaling of CPU effort with system dimensionality. The method used a ``weylet'' basis set (orthogonalized Weyl-Heisenberg wavelets), combined with a phase space truncation scheme first proposed by M. Davis and E. Heller. Here, we use a related, but much simpler, wavelet basis consisting of momentum-symmetrized phase space Gaussians. Despite being non-orthogonal, symmetrized Gaussians exhibit collective locality, allowing for effective phase space truncation and the defeat of exponential scaling. A ``universal'' and remarkably simple code has been written, which is dimensionally independent, and which also exploits massively parallel algorithms. The codes have been used to calculate the vibrational spectra of several molecules of varying dimensionality.
Phase-space approach to continuous variable quantum teleportation
Ban, Masashi
2004-05-01
The phase-space method is applied for considering continuous variable quantum teleportation. It is found that the continuous variable quantum teleportation transforms the s-parametrized phase-space function of an input state into the (s+{delta})-parametrized phase-space function, where the parameter {delta} is determined by the shared quantum entanglement. It is shown from this result that the Wigner function of the teleported state is always non-negative for F{sub c}{<=}2/3 and the Glauber-Sudarshan P function non-negative for F{sub c}{<=}1/2, where F{sub c} is the fidelity of the coherent-state teleportation. Furthermore the fidelity between input and output states is calculated when Gaussian states are teleported.
Phase-space evolution of x-ray coherence in phase-sensitive imaging.
Wu, Xizeng; Liu, Hong
2008-08-01
X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.
Grid Cell Responses in 1D Environments Assessed as Slices through a 2D Lattice.
Yoon, KiJung; Lewallen, Sam; Kinkhabwala, Amina A; Tank, David W; Fiete, Ila R
2016-03-01
Grid cells, defined by their striking periodic spatial responses in open 2D arenas, appear to respond differently on 1D tracks: the multiple response fields are not periodically arranged, peak amplitudes vary across fields, and the mean spacing between fields is larger than in 2D environments. We ask whether such 1D responses are consistent with the system's 2D dynamics. Combining analytical and numerical methods, we show that the 1D responses of grid cells with stable 1D fields are consistent with a linear slice through a 2D triangular lattice. Further, the 1D responses of comodular cells are well described by parallel slices, and the offsets in the starting points of the 1D slices can predict the measured 2D relative spatial phase between the cells. From these results, we conclude that the 2D dynamics of these cells is preserved in 1D, suggesting a common computation during both types of navigation behavior. PMID:26898777
Explicit methods in extended phase space for inseparable Hamiltonian problems
NASA Astrophysics Data System (ADS)
Pihajoki, Pauli
2015-03-01
We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.
κ-Deformed Phase Space, Hopf Algebroid and Twisting
NASA Astrophysics Data System (ADS)
Jurić; , Tajron; Kovačević, Domagoj; Meljanac, Stjepan
2014-11-01
Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion of twist is analyzed for κ-deformed phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid setting reproduces the full Hopf algebra structure of κ-Poincaré algebra. Several examples of realizations are worked out in details.
Phase space analysis of metamaterial-based optical systems
NASA Astrophysics Data System (ADS)
Mihaescu, T.; Dragoman, D.
2014-06-01
Phase space analysis of light refraction in optical systems consisting of slabs or thin lenses from either metamaterials with negative refractive indices or common materials is performed with the aim of finding the conditions of perfect imaging for metamaterial-based optical systems. The analysis in the paraxial approximation uses ABCD matrices, whereas full ray tracing is employed in the non-paraxial case. The phase space analysis reveals that the ideality of planar metamaterial lenses only occurs when the absolute value of the refractive index in metamaterials is the same as in the surrounding medium.
Classical phase-space descriptions of continuous-variable teleportation.
Caves, Carlton M; Wódkiewicz, Krzysztof
2004-07-23
The non-negative Wigner function of all quantum states involved in teleportation of Gaussian states using the standard continuous-variable teleportation protocol means that there is a local realistic phase-space description of the process. This includes the coherent states teleported up to now in experiments. We extend the phase-space description to teleportation of non-Gaussian states using the standard protocol and conclude that teleportation of non-Gaussian pure states with a fidelity of 2/3 is a "gold standard" for this kind of teleportation.
The solidification of monotectic alloys - Microstructures and phase spacings
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Hellawell, A.; Lograsso, T. A.
1984-01-01
The microstructures of directionally grown monotectic alloys in metallic and organic systems fall into two categories those which can form aligned fibrous composite structures with even phase spacings and fiber sections, and those in which the phase distribution is coarser and less regular. This division appears to relate to the form of the phase diagram and has been rationalized by Cahn (1977, 1979) in terms of the relative surface energies between solid and two liquids to give steady state or nonsteady state profiles. The transition in growth behavior occurs when the ratio of the monotectic temperature to that of the upper consolute temperature is approximately 0.9. Differences in phase spacings between a range of monotectic and eutectic systems are discussed in terms of the expected growth interface shapes and the factors which will influence them.
Adaptive optics and phase diversity imaging for responsive space applications.
Smith, Mark William; Wick, David Victor
2004-11-01
The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.
Grassmann phase space theory and the Jaynes–Cummings model
Dalton, B.J.; Garraway, B.M.; Jeffers, J.; Barnett, S.M.
2013-07-15
The Jaynes–Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes–Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker–Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker–Planck equations from which c-number Langevin equations are
Dahm, Liane; Klugmann, Fanny; Gonzalez-Algaba, Angeles
2010-01-01
Gap junctions (GJ) represent a cellular communication system known to influence neuronal differentiation and survival. To assess a putative role of this system for neural effects of tamoxifen (TAM) and raloxifene (RAL), we used the human teratocarcinoma cell line NTera2/D1, retinoic acid (RA)-dependent neuronal differentiation of which is regulated by gap junctions formed of connexin43 (Cx43). As demonstrated by Western blot analysis, concentrations above 1 µmol/l for TAM, and 0.1 µmol/l for RAL lead to a temporary time- and concentration-dependent increase in Cx43 immunoreactivity, which reached a peak for TAM after 1 day and for RAL after 2 days. Immunocytochemical stainings revealed the increase in Cx43 immunoreactivity to result from an accumulation in intracellular compartments such as the Golgi apparatus or lysosomes. In addition, TAM and RAL were able to prevent the RA-dependent decrease of Cx43 immunoreactivity in NTera2/D1 cells, normally observed during neuronal differentiation. This suggested a suppression of neuronal differentiation to result from these substances. According to this, treatment of NTera2/D1 cells with 10 µmol/l TAM or RAL during weeks 1 and 2 of a 6 weeks RA-driven differentiation schedule impaired, whereas treatment during weeks 5 and 6 did not impair, neuronal differentiation of these cells. Modulation of GJ coupling between NTera2/D1 cells by TAM and RAL seems therefore to perturb early neuronal differentiation, whereas differentiated neurons in the mature brain seem to be not affected. These effects could be of importance for actions of TAM and RAL on early embryonic steps of nervous system formation. PMID:20437090
Two Phase Flow and Space-Based Applications
NASA Technical Reports Server (NTRS)
McQuillen, John
1999-01-01
A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.
Dimension of quantum phase space measured by photon correlations
NASA Astrophysics Data System (ADS)
Leuchs, Gerd; Glauber, Roy J.; Schleich, Wolfgang P.
2015-06-01
We show that the different values 1, 2 and 3 of the normalized second-order correlation function {g}(2)(0) corresponding to a coherent state, a thermal state and a highly squeezed vacuum originate from the different dimensionality of these states in phase space. In particular, we derive an exact expression for {g}(2)(0) in terms of the ratio of the moments of the classical energy evaluated with the Wigner function of the quantum state of interest and corrections proportional to the reciprocal of powers of the average number of photons. In this way we establish a direct link between {g}(2)(0) and the shape of the state in phase space. Moreover, we illuminate this connection by demonstrating that in the semi-classical limit the familiar photon statistics of a thermal state arise from an area in phase space weighted by a two-dimensional Gaussian, whereas those of a highly squeezed state are governed by a line-integral of a one-dimensional Gaussian. We dedicate this article to Margarita and Vladimir Man’ko on the occasion of their birthdays. The topic of our contribution is deeply rooted in and motivated by their love for non-classical light, quantum mechanical phase space distribution functions and orthogonal polynomials. Indeed, through their articles, talks and most importantly by many stimulating discussions and intensive collaborations with us they have contributed much to our understanding of physics. Happy birthday to you both!
Depositing spacing layers on magnetic film with liquid phase epitaxy
NASA Technical Reports Server (NTRS)
Moody, J. W.; Shaw, R. W.; Sanfort, R. M.
1975-01-01
Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided.
Phase-space reconstruction of focused x-ray fields
Tran, Chanh Q.; Mancuso, Adrian P.; Dhal, Bipin B.; Nugent, Keith A.; Peele, Andrew G.; Cai, Zhonghou; Paterson, David
2006-01-01
The phase-space tomography is used to reconstruct x-ray beams focused using a compound refractive lens, showing that it is possible to decouple the effect of aberrations in the optical system from the field and therefore measure both them and the original field. The complex coherence function is recovered and found to be consistent with expectations.
Phase-space reconstruction of focused x-ray fields
NASA Astrophysics Data System (ADS)
Tran, Chanh Q.; Mancuso, Adrian P.; Dhal, Bipin B.; Nugent, Keith A.; Peele, Andrew G.; Cai, Zhonghou; Paterson, David
2006-07-01
We apply the method of phase-space tomography to reconstruct x-ray beams focused using a compound refractive lens. We show that it is possible to decouple the effect of aberrations in the optical system from the field and hence measure both them and the original field. We recover the complex coherence function and find that it is consistent with expectations.
Geometrical Series and Phase Space in a Finite Oscillatory Motion
ERIC Educational Resources Information Center
Mareco, H. R. Olmedo
2006-01-01
This article discusses some interesting physical properties of oscillatory motion of a particle on two joined inclined planes. The geometrical series demonstrates that the particle will oscillate during a finite time. Another detail is the converging path to the origin of the phase space. Due to its simplicity, this motion may be used as a…
Strong Field Double Ionization: The Phase Space Perspective
Mauger, F.; Chandre, C.; Uzer, T.
2009-05-01
We identify the phase-space structures that regulate atomic double ionization in strong ultrashort laser pulses. The emerging dynamical picture complements the recollision scenario by clarifying the distinct roles played by the recolliding and core electrons, and leads to verifiable predictions on the characteristic features of the 'knee', a hallmark of the nonsequential process.
2005-07-01
Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.
NASA Astrophysics Data System (ADS)
Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve
2015-03-01
Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.
Vital phase of space science. [solar terrestrial interactions
NASA Technical Reports Server (NTRS)
Parker, E. N.
1994-01-01
Space science began with the indirect phase where the activity in space was inferred from such terrestrial phenomena as geomagnetic storms, ionospheric variations, and fluctuations in the cosmic ray intensity. The direct phase was initiated with spaceflight placing instruments directly in space and permitting the direct observation of UV and X rays, as well as precision observations of solar luminosity variations. The evidence from these many direct studies, together with the historical record of terrestrial conditions, shows that the variations of the luminosity of the Sun affect the terrestrial atmosphere at all levels, with devastating changes in climate tracking the major changes in the activity level and luminosity of the Sun. The quantification and understanding of this vital connection should be the first priority of space science and geophysics, from oceans and atmosphere through the ionosphere, magnetosphere, and all the way to the convective zone of the Sun. It becomes the vital phase of space science, focused on the basic science of the changing habitability of Earth.
Extended phase space description of human-controlled systems dynamics
NASA Astrophysics Data System (ADS)
Zgonnikov, Arkady; Lubashevsky, Ihor
2014-03-01
Humans are often incapable of precisely identifying and implementing the desired control strategy in controlling unstable dynamical systems. That is, the operator of a dynamical system treats the current control effort as acceptable even if it deviates slightly from the desired value, and starts correcting the actions only when the deviation has become evident. We argue that the standard Newtonian approach does not allow such behavior to be modeled. Instead, the physical phase space of a controlled system should be extended with an independent phase variable characterizing the motivated actions of the operator. The proposed approach is illustrated via a simple non-Newtonian model capturing the operators' fuzzy perception of their own actions. The properties of the model are investigated analytically and numerically; the results confirm that the extended phase space may aid in capturing the intricate dynamical properties of human-controlled systems.
Gravitational phase transitions with an exclusion constraint in position space
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri
2014-01-01
We discuss the statistical mechanics of a system of self-gravitating particles with an exclusion constraint in position space in a space of dimension d. The exclusion constraint puts an upper bound on the density of the system and can stabilize it against gravitational collapse. We plot the caloric curves giving the temperature as a function of the energy and investigate the nature of phase transitions as a function of the size of the system and of the dimension of space in both microcanonical and canonical ensembles. We consider stable and metastable states and emphasize the importance of the latter for systems with long-range interactions. For d ≤ 2, there is no phase transition. For d > 2, phase transitions can take place between a "gaseous" phase unaffected by the exclusion constraint and a "condensed" phase dominated by this constraint. The condensed configurations have a core-halo structure made of a "rocky core" surrounded by an "atmosphere", similar to a giant gaseous planet. For large systems there exist microcanonical and canonical first order phase transitions. For intermediate systems, only canonical first order phase transitions are present. For small systems there is no phase transition at all. As a result, the phase diagram exhibits two critical points, one in each ensemble. There also exist a region of negative specific heats and a situation of ensemble inequivalence for sufficiently large systems. We show that a statistical equilibrium state exists for any values of energy and temperature in any dimension of space. This differs from the case of the self-gravitating Fermi gas for which there is no statistical equilibrium state at low energies and low temperatures when d ≥ 4. By a proper interpretation of the parameters, our results have application for the chemotaxis of bacterial populations in biology described by a generalized Keller-Segel model including an exclusion constraint in position space. They also describe colloids at a fluid
Grassmann phase space theory and the Jaynes-Cummings model
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Garraway, B. M.; Jeffers, J.; Barnett, S. M.
2013-07-01
The Jaynes-Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes-Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker-Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker-Planck equations from which c-number Langevin equations are often
Steuer, Andrea E; Schmidhauser, Corina; Tingelhoff, Eva H; Schmid, Yasmin; Rickli, Anna; Kraemer, Thomas; Liechti, Matthias E
2016-01-01
3,4-methylenedioxymethamphetamine (MDMA; ecstasy) metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA), followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs), intermediate metabolizers (IMs), and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs) up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg) dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC24) of R-MDMA (9% and 25%, respectively) and S-MDMA (16% and 38%, respectively). Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide) by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism. PMID:26967321
Steuer, Andrea E.; Schmidhauser, Corina; Tingelhoff, Eva H.; Schmid, Yasmin; Rickli, Anna; Kraemer, Thomas; Liechti, Matthias E.
2016-01-01
3,4-methylenedioxymethamphetamine (MDMA; ecstasy) metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA), followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs), intermediate metabolizers (IMs), and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs) up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg) dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC24) of R-MDMA (9% and 25%, respectively) and S-MDMA (16% and 38%, respectively). Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide) by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism. PMID:26967321
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less
Fischer, J
2003-01-23
The final report for Phase 1 of this research effort (ORNL/SUB/94-SV004/1) concluded that a significant market opportunity would exist for active desiccant systems if it could be demonstrated that they can remove a significant proportion of common airborne contaminants while simultaneously performing the primary function of dehumidifying a stream of outdoor air or recirculated building air. If the engineering community begins to follow the intent of ASHRAE Standard 62, now part of all major building codes, the outdoor air in many major cities may need to be pre-cleaned before it is introduced into occupied spaces. Common air contaminant cosorption capability would provide a solution to three important aspects of the ASHRAE 62-89 standard that have yet to be effectively addressed by heating, ventilation, and air-conditioning (HVAC) equipment manufacturers: (1) The ASHRAE standard defines acceptable outdoor air quality. If the outdoor air contains unacceptable levels of certain common outdoor air contaminants (e.g., sulfur dioxide, ozone), then the standard requires that these contaminants be removed from the outdoor air stream to reach compliance with the acceptable outdoor air quality guidelines. (2) Some engineers prefer to apply a filtration or prescriptive approach rather than a ventilation approach to solving indoor air quality problems. The ASHRAE standard recognizes this approach provided that the filtration technology exists to remove the gaseous contaminants encountered. The performance of current gaseous filtration technologies is not well documented, and they can be costly to maintain because the life of the filter is limited and the cost is high. Moreover, it is not easy to determine when the filters need changing. In such applications, an additional advantage provided by the active desiccant system would be that the same piece of equipment could control space humidity and provide filtration, even during unoccupied periods, if the active desiccant system
NASA Technical Reports Server (NTRS)
1976-01-01
Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.
Phase space structure and dynamics for the Hamiltonian isokinetic thermostat.
Collins, Peter; Ezra, Gregory S; Wiggins, Stephen
2010-07-01
We investigate the phase space structure and dynamics of a Hamiltonian isokinetic thermostat, for which ergodic thermostat trajectories at fixed (zero) energy generate a canonical distribution in configuration space. Model potentials studied consist of a single bistable mode plus transverse harmonic modes. Interpreting the bistable mode as a reaction (isomerization) coordinate, we establish connections with the theory of unimolecular reaction rates, in particular the formulation of isomerization rates in terms of gap times. In the context of molecular reaction rates, the distribution of gap times (or associated lifetimes) for a microcanonical ensemble initiated on the dividing surface is of great dynamical significance; an exponential lifetime distribution is usually taken to be an indicator of "statistical" behavior. Moreover, comparison of the magnitude of the phase space volume swept out by reactive trajectories as they pass through the reactant region with the total phase space volume (classical density of states) for the reactant region provides a necessary condition for ergodic dynamics. We compute gap times, associated lifetime distributions, mean gap times, reactive fluxes, reactive volumes, and total reactant phase space volumes for model thermostat systems with three and four degrees of freedom at three different temperatures. At all three temperatures, the necessary condition for ergodicity is approximately satisfied. At high temperatures a nonexponential lifetime distribution is found, while at low temperatures the lifetime is more nearly exponential. The degree of exponentiality of the lifetime distribution is quantified by computing the information entropy deficit with respect to pure exponential decay. The efficacy of the Hamiltonian isokinetic thermostat is examined by computing coordinate distributions averaged over single long trajectories initiated on the dividing surface.
Kinetic solvers with adaptive mesh in phase space.
Arslanbekov, Robert R; Kolobov, Vladimir I; Frolova, Anna A
2013-12-01
An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a "tree of trees" (ToT) data structure. The r mesh is automatically generated around embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems.
Space transfer vehicle concepts and requirements study, phase 2
NASA Technical Reports Server (NTRS)
Cannon, Jeffrey H.; Vinopal, Tim; Andrews, Dana; Richards, Bill; Weber, Gary; Paddock, Greg; Maricich, Peter; Bouton, Bruce; Hagen, Jim; Kolesar, Richard
1992-01-01
This final report is a compilation of the Phase 1 and Phase 2 study findings and is intended as a Space Transfer Vehicle (STV) 'users guide' rather than an exhaustive explanation of STV design details. It provides a database for design choices in the general areas of basing, reusability, propulsion, and staging; with selection criteria based on cost, performance, available infrastructure, risk, and technology. The report is organized into the following three parts: (1) design guide; (2) STV Phase 1 Concepts and Requirements Study Summary; and (3) STV Phase 2 Concepts and Requirements Study Summary. The overall objectives of the STV study were to: (1) define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner; (2) determine the level of technology development required to perform these missions in the most cost effective manner; and (3) develop a decision database of programmatic approaches for the development of an STV concept.
Asteroid orbital inversion using uniform phase-space sampling
NASA Astrophysics Data System (ADS)
Muinonen, K.; Pentikäinen, H.; Granvik, M.; Oszkiewicz, D.; Virtanen, J.
2014-07-01
We review statistical inverse methods for asteroid orbit computation from a small number of astrometric observations and short time intervals of observations. With the help of Markov-chain Monte Carlo methods (MCMC), we present a novel inverse method that utilizes uniform sampling of the phase space for the orbital elements. The statistical orbital ranging method (Virtanen et al. 2001, Muinonen et al. 2001) was set out to resolve the long-lasting challenges in the initial computation of orbits for asteroids. The ranging method starts from the selection of a pair of astrometric observations. Thereafter, the topocentric ranges and angular deviations in R.A. and Decl. are randomly sampled. The two Cartesian positions allow for the computation of orbital elements and, subsequently, the computation of ephemerides for the observation dates. Candidate orbital elements are included in the sample of accepted elements if the χ^2-value between the observed and computed observations is within a pre-defined threshold. The sample orbital elements obtain weights based on a certain debiasing procedure. When the weights are available, the full sample of orbital elements allows the probabilistic assessments for, e.g., object classification and ephemeris computation as well as the computation of collision probabilities. The MCMC ranging method (Oszkiewicz et al. 2009; see also Granvik et al. 2009) replaces the original sampling algorithm described above with a proposal probability density function (p.d.f.), and a chain of sample orbital elements results in the phase space. MCMC ranging is based on a bivariate Gaussian p.d.f. for the topocentric ranges, and allows for the sampling to focus on the phase-space domain with most of the probability mass. In the virtual-observation MCMC method (Muinonen et al. 2012), the proposal p.d.f. for the orbital elements is chosen to mimic the a posteriori p.d.f. for the elements: first, random errors are simulated for each observation, resulting in
Space shuttle phase B wind tunnel test database
NASA Technical Reports Server (NTRS)
Glynn, J. L.; Poucher, D. E.
1988-01-01
Archived wind tunnel test data are available for flyback booster or other alternate recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data were acquired by competing contractors and NASA centers for an extensive variety of configurations with an array of wing and body planforms. This wind tunnel test data has been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retro-glide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks and double delta wings.
Large space telescope, phase A. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
The Phase A study of the Large Space Telescope (LST) is reported. The study defines an LST concept based on the broad mission guidelines provided by the Office of Space Science (OSS), the scientific requirements developed by OSS with the scientific community, and an understanding of long range NASA planning current at the time the study was performed. The LST is an unmanned astronomical observatory facility, consisting of an optical telescope assembly (OTA), scientific instrument package (SIP), and a support systems module (SSM). The report consists of five volumes. The report describes the constraints and trade off analyses that were performed to arrive at a reference design for each system and for the overall LST configuration. A low cost design approach was followed in the Phase A study. This resulted in the use of standard spacecraft hardware, the provision for maintenance at the black box level, growth potential in systems designs, and the sharing of shuttle maintenance flights with other payloads.
Liouville`s theorem and phase-space cooling
Mills, R.L.; Sessler, A.M.
1993-09-28
A discussion is presented of Liouville`s theorem and its consequences for conservative dynamical systems. A formal proof of Liouville`s theorem is given. The Boltzmann equation is derived, and the collisionless Boltzmann equation is shown to be rigorously true for a continuous medium. The Fokker-Planck equation is derived. Discussion is given as to when the various equations are applicable and, in particular, under what circumstances phase space cooling may occur.
Torus as phase space: Weyl quantization, dequantization, and Wigner formalism
NASA Astrophysics Data System (ADS)
Ligabò, Marilena
2016-08-01
The Weyl quantization of classical observables on the torus (as phase space) without regularity assumptions is explicitly computed. The equivalence class of symbols yielding the same Weyl operator is characterized. The Heisenberg equation for the dynamics of general quantum observables is written through the Moyal brackets on the torus and the support of the Wigner transform is characterized. Finally, a dequantization procedure is introduced that applies, for instance, to the Pauli matrices. As a result we obtain the corresponding classical symbols.
Phase space representation of spatially partially coherent imaging.
Castaneda, Roman
2008-08-01
The phase space representation of imaging with optical fields in any state of spatial coherence is developed by using spatial coherence wavelets. It leads to new functions for describing the optical transfer and response of imaging systems when the field is represented by Wigner distribution functions. Specific imaging cases are analyzed in this context, and special attention is devoted to the imaging of two point sources.
Phase-space structure of cold dark matter halos
Sikivie, P.; Ipser, J.R.
1991-12-31
A galactic halo of cold dark matter particles has a sheet-like structure in phase-space. The energy and momentum spectra of such particles on earth has a set of peaks whose central values and intensities form a record of the formation of the Galaxy. Scattering of the dark matter particles by stars and globular clusters broadens the peaks but does not erase them entirely. The giant shells around some elliptical galaxies may be a manifestation of this structure.
The ESA Virtual Space Weather Modelling Centre - Phase 1
NASA Astrophysics Data System (ADS)
Poedts, Stefaan
The ESA ITT project (AO/1-6738/11/NL/AT) to develop Phase 1 of a Virtual Space Weather Modelling Centre has the following objectives and scope: 1. The construction of a long term (~10 yrs) plan for the future development of a European virtual space weather modelling centre consisting of a new ‘open’ and distributed framework for the coupling of physics based models for space weather phenomena; 2. The assessment of model capabilities and the amount of work required to make them operational by integrating them in this framework and the identification of computing and networking requirements to do so. 3. The design of a system to enable models and other components to be installed locally or geographically distributed and the creation of a validation plan including a system of metrics for testing results. The consortium that took up this challenge involves: 1)the Katholieke Universiteit Leuven (Prime Contractor, coordinator: Prof. S. Poedts); 2) the Belgian Institute for Space Aeronomy (BIRA-IASB); 3) the Royal Observatory of Belgium (ROB); 4) the Von Karman Institute (VKI); 5) DH Consultancy (DHC); 6) Space Applications Services (SAS). The project started on May 14 2012, and will finish in May 2014. Thus, by the time of the meeting, both Phase 1A and Phase 1B (the development of the prototype) will be finished. The final report will be presented incl. the architecture decisions made, the framework, the current models integrated already as well as the model couplers installed. The prototype VSWMC will be demonstrated.
Medical care capabilities for Space Station Freedom: A phase approach
NASA Technical Reports Server (NTRS)
Doarn, C. R.; Lloyd, C. W.
1992-01-01
As a result of Congressional mandate Space Station Freedom (SSF) was restructured. This restructuring activity has affected the capabilities for providing medical care on board the station. This presentation addresses the health care facility to be built and used on the orbiting space station. This unit, named the Health Maintenance Facility (HMF) is based on and modeled after remote, terrestrial medical facilities. It will provide a phased approach to health care for the crews of SSF. Beginning with a stabilization and transport phase, HMF will expand to provide the most advanced state of the art therapeutic and diagnostic capabilities. This presentation details the capabilities of such a phased HMF. As Freedom takes form over the next decade there will be ever-increasing engineering and scientific developmental activities. The HMF will evolve with this process until it eventually reaches a mature, complete stand-alone health care facility that provides a foundation to support interplanetary travel. As man's experience in space continues to grow so will the ability to provide advanced health care for Earth-orbital and exploratory missions as well.
Hawking radiation and classical tunneling: A ray phase space approach
NASA Astrophysics Data System (ADS)
Tracy, E. R.; Zhigunov, D.
2016-01-01
Acoustic waves in fluids undergoing the transition from sub- to supersonic flow satisfy governing equations similar to those for light waves in the immediate vicinity of a black hole event horizon. This acoustic analogy has been used by Unruh and others as a conceptual model for "Hawking radiation." Here, we use variational methods, originally introduced by Brizard for the study of linearized MHD, and ray phase space methods, to analyze linearized acoustics in the presence of background flows. The variational formulation endows the evolution equations with natural Hermitian and symplectic structures that prove useful for later analysis. We derive a 2 × 2 normal form governing the wave evolution in the vicinity of the "event horizon." This shows that the acoustic model can be reduced locally (in ray phase space) to a standard (scalar) tunneling process weakly coupled to a unidirectional non-dispersive wave (the "incoming wave"). Given the normal form, the Hawking "thermal spectrum" can be derived by invoking standard tunneling theory, but only by ignoring the coupling to the incoming wave. Deriving the normal form requires a novel extension of the modular ray-based theory used previously to study tunneling and mode conversion in plasmas. We also discuss how ray phase space methods can be used to change representation, which brings the problem into a form where the wave functions are less singular than in the usual formulation, a fact that might prove useful in numerical studies.
Relativistic algebraic spinors and quantum motions in phase space
Holland, P.R.
1986-08-01
Following suggestions of Schonberg and Bohm, we study the tensorial phase space representation of the Dirac and Feynman-Gell-Mann equations in terms of the complex Dirac algebra C/sub 4/, a Jordan-Wigner algebra G/sub 4/, and Wigner transformations. To do this we solve the problem of the conditions under which elements in C/sub 4/ generate minimal ideals, and extend this to G/sub 4/. This yields the linear theory of Dirac spin spaces and tensor representations of Dirac spinors, and the spin-1/2 wave equations are represented through fermionic state vectors in a higher space as a set of interconnected tensor relations.
Calculation of a fluctuating entropic force by phase space sampling.
Waters, James T; Kim, Harold D
2015-07-01
A polymer chain pinned in space exerts a fluctuating force on the pin point in thermal equilibrium. The average of such fluctuating force is well understood from statistical mechanics as an entropic force, but little is known about the underlying force distribution. Here, we introduce two phase space sampling methods that can produce the equilibrium distribution of instantaneous forces exerted by a terminally pinned polymer. In these methods, both the positions and momenta of mass points representing a freely jointed chain are perturbed in accordance with the spatial constraints and the Boltzmann distribution of total energy. The constraint force for each conformation and momentum is calculated using Lagrangian dynamics. Using terminally pinned chains in space and on a surface, we show that the force distribution is highly asymmetric with both tensile and compressive forces. Most importantly, the mean of the distribution, which is equal to the entropic force, is not the most probable force even for long chains. Our work provides insights into the mechanistic origin of entropic forces, and an efficient computational tool for unbiased sampling of the phase space of a constrained system. PMID:26274308
Comparison of 1D and 2D CSR Models with Application to the FERMI@ELETTRA Bunch Compressors
Bassi, G.; Ellison, J.A.; Heinemann, K.
2011-03-28
We compare our 2D mean field (Vlasov-Maxwell) treatment of coherent synchrotron radiation (CSR) effects with 1D approximations of the CSR force which are commonly implemented in CSR codes. In our model we track particles in 4D phase space and calculate 2D forces [1]. The major cost in our calculation is the computation of the 2D force. To speed up the computation and improve 1D models we also investigate approximations to our exact 2D force. As an application, we present numerical results for the Fermi{at}Elettra first bunch compressor with the configuration described in [1].
Geometric Phase of Phase Space Trajectories:Mobius Strip and Nonlinear Oscillators
NASA Astrophysics Data System (ADS)
Balakrishnan, Radha; Satija, Indubala
2005-03-01
We present a gauge invariant formulation of associating a geometric phase with classical phase space trajectories. This geometric phase which depends upon the integrated torsion of the trajectory, bears a close analogy to the generalized Berry phase associated with the time evolution of the quantum wave functions. This topological quantity serves as an order parameter signalling phase transitions including novel geometrical transitions. One of the interesting aspects seen in Duffing and other nonlinear oscillators is the sudden jumps in the geometric phase which is accompanied by the divergence of the local torsion and the vanishing of the local curvature. Intriguingly, the analogous phenomenon was seen in a mobius strip when the ratio of the width to the length of the strip exceeds beyound a critical value.
Deep Space Habitat Team: HEFT Phase 2 Effects
NASA Technical Reports Server (NTRS)
Toups, Larry D.; Smitherman, David; Shyface, Hilary; Simon, Matt; Bobkill, Marianne; Komar, D. R.; Guirgis, Peggy; Bagdigian, Bob; Spexarth, Gary
2011-01-01
HEFT was a NASA-wide team that performed analyses of architectures for human exploration beyond LEO, evaluating technical, programmatic, and budgetary issues to support decisions at the highest level of the agency in HSF planning. HEFT Phase I (April - September, 2010) and Phase II (September - December, 2010) examined a broad set of Human Exploration of Near Earth Objects (NEOs) Design Reference Missions (DRMs), evaluating such factors as elements, performance, technologies, schedule, and cost. At end of HEFT Phase 1, an architecture concept known as DRM 4a represented the best available option for a full capability NEO mission. Within DRM4a, the habitation system was provided by Deep Space Habitat (DSH), Multi-Mission Space Exploration Vehicle (MMSEV), and Crew Transfer Vehicle (CTV) pressurized elements. HEFT Phase 2 extended DRM4a, resulting in DRM4b. Scrubbed element-level functionality assumptions and mission Concepts of Operations. Habitation Team developed more detailed concepts of the DSH and the DSH/MMSEV/CTV Conops, including functionality and accommodations, mass & volume estimates, technology requirements, and DDT&E costs. DRM 5 represented an effort to reduce cost by scaling back on technologies and eliminating the need for the development of an MMSEV.
Parametric Modeling of Transverse Phase Space of an RF Photoinjector
Hartman, E.; Sayyar-Rodsari, B.; Schweiger, C.A.; Lee, M.J.; Lui, P.; Paterson, Ewan; Schmerge, J.F.; /SLAC
2008-01-24
High brightness electron beam sources such as rf photo-injectors as proposed for SASE FELs must consistently produce the desired beam quality. We report the results of a study in which a combined neural network (NN) and first-principles (FP) model is used to model the transverse phase space of the beam as a function of quadrupole strength, while beam charge, solenoid field, accelerator gradient, and linac voltage and phase are kept constant. The parametric transport matrix between the exit of the linac section and the spectrometer screen constitutes the FP component of the combined model. The NN block provides the parameters of the transport matrix as functions of quad current. Using real data from SLAC Gun Test Facility, we will highlight the significance of the constrained training of the NN block and show that the phase space of the beam is accurately modeled by the combined NN and FP model, while variations of beam matrix parameters with the quad current are correctly captured. We plan to extend the combined model in the future to capture the effects of variations in beam charge, solenoid field, and accelerator voltage and phase.
The structure of the extended phase space of the Sitnikov problem
NASA Astrophysics Data System (ADS)
Kovács, T.; Érdi, B.
2007-10-01
The extended phase space of the Sitnikov problem is studied by using a stroboscopic map and computing escape times. Comparisons of phase portraits and plots of escape times reveal the intrinsic connection between the geometry of the phase space and the dynamical behaviour of the system. Properties of the phase space are analysed both in the central regular region and far from it.
Grassmann phase space methods for fermions. I. Mode theory
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Jeffers, J.; Barnett, S. M.
2016-07-01
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggest the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. The theory of Grassmann phase space methods for fermions based on separate modes is developed, showing how the distribution function is defined and used to determine quantum correlation functions, Fock state populations and coherences via Grassmann phase space integrals, how the Fokker-Planck equations are obtained and then converted into equivalent Ito equations for stochastic Grassmann variables. The fermion distribution function is an even Grassmann function, and is unique. The number of c-number Wiener increments involved is 2n2, if there are n modes. The situation is somewhat different to the bosonic c-number case where only 2 n Wiener increments are involved, the sign of the drift term in the Ito equation is reversed and the diffusion matrix in the Fokker-Planck equation is anti-symmetric rather than symmetric. The un-normalised B distribution is of particular importance for determining Fock state populations and coherences, and as pointed out by Plimak, Collett and Olsen, the drift vector in its Fokker-Planck equation only depends linearly on the Grassmann variables. Using this key feature we show how the Ito stochastic equations can be solved numerically for finite times in terms of c-number stochastic
NASA Astrophysics Data System (ADS)
Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji
2014-10-01
We report reaction paths starting from N(2D) + H2O for doublet spin states, D0 and D1. The potential energy surfaces are explored in an automated fashion using the global reaction route mapping strategy. The critical points and reaction paths have been fully optimized at the complete active space second order perturbation theory level taking all valence electrons in the active space. In addition to direct dissociation pathways that would be dominant, three roaming processes, two roaming dissociation, and one roaming isomerization: (1) H2ON → H-O(H)N → H-HON → NO(2Π) + H2, (2) cis-HNOH → HNO-H → H-HNO → NO + H2, (3) H2NO → H-HNO → HNO-H → trans-HNOH, are confirmed on the D0 surface.
Oh, Chin Wan; Cao, Zizheng; Tangdiongga, Eduward; Koonen, Ton
2016-08-22
In order to circumvent radio spectrum congestion, we propose an innovative system which can provide multiple infrared optical wireless beams simultaneously where each beam supports multi-gigabit-per-second communication. Scalable two-dimensional beam steering by means of wavelength tuning is proposed. A passive beam-steering module constructed with cascaded reflection gratings is designed for simultaneous multi-user coverage. We experimentally characterized the beam-steered system and thoroughly evaluated the performance of steered channels using the spectrally efficient and robust discrete multitone modulation in a bandwidth-limited system deploying 10 GHz telecom transceivers. This study reports the achievement of at least 37 Gbps free-space transmission per beam over a distance of up to 2 m over 5.61° × 12.66° scanning angles. PMID:27557201
Linearization of the longitudinal phase space without higher harmonic field
NASA Astrophysics Data System (ADS)
Zeitler, Benno; Floettmann, Klaus; Grüner, Florian
2015-12-01
Accelerator applications like free-electron lasers, time-resolved electron diffraction, and advanced accelerator concepts like plasma acceleration desire bunches of ever shorter longitudinal extent. However, apart from space charge repulsion, the internal bunch structure and its development along the beam line can limit the achievable compression due to nonlinear phase space correlations. In order to improve such a limited longitudinal focus, a correction by properly linearizing the phase space is required. At large scale facilities like Flash at Desy or the European Xfel, a higher harmonic cavity is installed for this purpose. In this paper, another method is described and evaluated: Expanding the beam after the electron source enables a higher order correction of the longitudinal focus by a subsequent accelerating cavity which is operated at the same frequency as the electron gun. The elaboration of this idea presented here is based on a ballistic bunching scheme, but can be extended to bunch compression based on magnetic chicanes. The core of this article is an analytic model describing this approach, which is verified by simulations, predicting possible bunch length below 1 fs at low bunch charge. Minimizing the energy spread down to σE/E <1 0-5 while keeping the bunch long is another interesting possibility, which finds applications, e.g., in time resolved transmission electron microscopy concepts.
A fast phase space method for computing creeping rays
Motamed, Mohammad . E-mail: mohamad@nada.kth.se; Runborg, Olof . E-mail: olofr@nada.kth.se
2006-11-20
Creeping rays can give an important contribution to the solution of medium to high frequency scattering problems. They are generated at the shadow lines of the illuminated scatterer by grazing incident rays and propagate along geodesics on the scatterer surface, continuously shedding diffracted rays in their tangential direction. In this paper, we show how the ray propagation problem can be formulated as a partial differential equation (PDE) in a three-dimensional phase space. To solve the PDE we use a fast marching method. The PDE solution contains information about all possible creeping rays. This information includes the phase and amplitude of the field, which are extracted by a fast post-processing. Computationally, the cost of solving the PDE is less than tracing all rays individually by solving a system of ordinary differential equations. We consider an application to mono-static radar cross section problems where creeping rays from all illumination angles must be computed. The numerical results of the fast phase space method and a comparison with the results of ray tracing are presented.
NASA Astrophysics Data System (ADS)
Yang, Qingjie; Mao, Weijian
2016-10-01
The poroelastodynamic equations are used to describe the dynamic solid-fluid interaction in the reservoir. To obtain the intrinsic properties of reservoir rocks from geophysical data measured in both laboratory and field, we need an accurate solution of the wave propagation in porous media. At present, the poroelastic wave equations are mostly solved in the time domain, which involves a difficult and complicated time convolution. In order to avoid the issues caused by the time convolution, we propose a frequency-space domain method. The poroelastic wave equations are composed of a linear system in the frequency domain, which easily takes into account the effects of all frequencies on the dispersion and attenuation of seismic wave. A 25-point weighted-averaging finite different scheme is proposed to discretize the equations. For the finite model, the perfectly matched layer technique is applied at the model boundaries. We validated the proposed algorithm by testing three numerical examples of poroelastic models, which are homogenous, two-layered and heterogeneous with different fluids, respectively. The testing results are encouraging in the aspects of both computational accuracy and efficiency.
Tomographic measurement of the phase space distribution of a space-charge-dominated beam
NASA Astrophysics Data System (ADS)
Stratakis, Diktys
Many applications of accelerators, such as free electron lasers, pulsed neutron sources, and heavy ion fusion, require a good quality beam with high intensity. In practice, the achievable intensity is often limited by the dynamics at the low-energy, space-charge dominated end of the machine. Because low-energy beams can have complex distribution functions, a good understanding of their detailed evolution is needed. To address this issue, we have developed a simple and accurate tomographic method to map the beam phase using quadrupole magnets, which includes the effects from space charge. We extend this technique to use also solenoidal magnets which are commonly used at low energies, especially in photoinjectors, thus making the diagnostic applicable to most machines. We simulate our technique using a particle in cell code (PIC), to ascertain accuracy of the reconstruction. Using this diagnostic we report a number of experiments to study and optimize injection, transport and acceleration of intense space charge dominated beams. We examine phase mixing, by studying the phase-space evolution of an intense beam with a transversely nonuniform initial density distribution. Experimental measurements, theoretical predictions and PIC simulations are in good agreement each other. Finally, we generate a parabolic beam pulse to model those beams from photoinjectors, and combine tomography with fast imaging techniques to investigate the time-sliced parameters of beam current, size, energy spread and transverse emittance. We found significant differences between the slice emittance profiles and slice orientation as the beam propagates downstream. The combined effect of longitudinal nonuniform profiles and fast imaging of the transverse phase space provided us with information about correlations between longitudinal and transverse dynamics that we report within this dissertation.
Invulnerability, coping, salutogenesis, integration: four phases of space psychology.
Suedfeld, Peter
2005-06-01
The relationship between NASA and the psychological research community has progressed through a number of phases during the past four decades. This paper summarizes how the relationship has developed as data have accumulated and space missions and crews have changed. In the beginning, most NASA astronauts and staff considered possible psychological problems during space missions to be a non-issue. It was assumed that people with "the right stuff" would not experience any such problems. A more realistic recognition of stress and its consequences has led to a concern with prevention and countermeasures, a concern that has come to dominate NASA's involvement with psychology. Very recently, space psychologists have started to import the concepts of positive psychology, and consider the benefits of participation in the space program, including the self-enhancing aspects of stressful experiences (salutogenesis). Both the agency and psychologists now need to broaden their thinking and their research to cover the gamut of empirical data and theoretical concepts. These include human strengths as well as vulnerabilities, both negative and positive impacts of spaceflight, long- as well as short-term effects, and the reactions not only of the astronauts themselves but also of ground personnel and the families of both groups.
Multimegawatt space nuclear power supply, Phase 1 Final report
Not Available
1989-02-17
This Specification establishes the performance, design, development, and test requirements for the Boeing Multimegawatt Space Nuclear Power System (MSNPS). The Boeing Multimegawatt Space Power System is part of the DOE/SDIO Multimegawatt Space Nuclear Power Program. The purpose of this program is to provide a space-based nuclear power system to meet the needs of SDIO missions. The Boeing MSNPS is a category 1 concept which is capable of delivering 10's of MW(e) for 100's of seconds with effluent permitted. A design goal is for the system to have growth or downscale capability for other power system concepts. The growth objective is to meet the category 3 capability of 100's of MW(e) for 100's of seconds, also with effluent permitted. The purpose of this preliminary document is to guide the conceptual design effort throughout the Phase 1 study effort. This document will be updated through out the study. It will thus result in a record of the development of the design effort.
Georgi, Howard; Kats, Yevgeny
2008-09-26
We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.
Quantum information processing in phase space: A modular variables approach
NASA Astrophysics Data System (ADS)
Ketterer, A.; Keller, A.; Walborn, S. P.; Coudreau, T.; Milman, P.
2016-08-01
Binary quantum information can be fault-tolerantly encoded in states defined in infinite-dimensional Hilbert spaces. Such states define a computational basis, and permit a perfect equivalence between continuous and discrete universal operations. The drawback of this encoding is that the corresponding logical states are unphysical, meaning infinitely localized in phase space. We use the modular variables formalism to show that, in a number of protocols relevant for quantum information and for the realization of fundamental tests of quantum mechanics, it is possible to loosen the requirements on the logical subspace without jeopardizing their usefulness or their successful implementation. Such protocols involve measurements of appropriately chosen modular variables that permit the readout of the encoded discrete quantum information from the corresponding logical states. Finally, we demonstrate the experimental feasibility of our approach by applying it to the transverse degrees of freedom of single photons.
A gauge theory of gravity in curved phase-spaces
NASA Astrophysics Data System (ADS)
Castro, Carlos
2016-06-01
After a cursory introduction of the basic ideas behind Born’s Reciprocal Relativity theory, the geometry of the cotangent bundle of spacetime is studied via the introduction of nonlinear connections associated with certain nonholonomic modifications of Riemann-Cartan gravity within the context of Finsler geometry. A novel gauge theory of gravity in the 8D cotangent bundle T∗M of spacetime is explicitly constructed and based on the gauge group SO(6, 2) ×sR8 which acts on the tangent space to the cotangent bundle T(x,p)T∗M at each point (x,p). Several gravitational actions involving curvature and torsion tensors and associated with the geometry of curved phase-spaces are presented. We conclude with a brief discussion of the field equations, the geometrization of matter, quantum field theory (QFT) in accelerated frames, T-duality, double field theory, and generalized geometry.
A phase-space beam position monitor for synchrotron radiation.
Samadi, Nazanin; Bassey, Bassey; Martinson, Mercedes; Belev, George; Dallin, Les; de Jong, Mark; Chapman, Dean
2015-07-01
The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam's position and angle, and thus infer the electron beam's position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement.
Testing gravity with the stacked phase space around galaxy clusters.
Lam, Tsz Yan; Nishimichi, Takahiro; Schmidt, Fabian; Takada, Masahiro
2012-08-01
In general relativity, the average velocity field of dark matter around galaxy clusters is uniquely determined by the mass profile. The latter can be measured through weak lensing. We propose a new method of measuring the velocity field (phase space density) by stacking redshifts of surrounding galaxies from a spectroscopic sample. In combination with lensing, this yields a direct test of gravity on scales of 1-30 Mpc. Using N-body simulations, we show that this method can improve upon current constraints on f(R) and Dvali-Gabadadze-Porrati model parameters by several orders of magnitude when applied to upcoming imaging and redshift surveys. PMID:23006162
The Simpsons program 6-D phase space tracking with acceleration
Machida, S. )
1993-12-25
A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.
The Simpsons program 6-D phase space tracking with acceleration
Machida, S.
1993-02-01
A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.
The Simpsons program 6-D phase space tracking with acceleration
NASA Astrophysics Data System (ADS)
Machida, S.
1993-12-01
A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.
Space shuttle phase B. Volume 2: Technical summary, addendum A
NASA Technical Reports Server (NTRS)
1971-01-01
A study was conducted to analyze the characteristics and performance data for the booster vehicles to be used with the space shuttle operations. It was determined that the single pressure-fed booster offered the lowest program cost per flight of the pressure-fed booster arrangements studied. The fly back booster required the highest peak annual funding and highest program cost. It was recommended that the pressure-fed booster, series burn with liquid oxygen phase, be continued for further study. The flyback booster study was discontinued. Both solid and liquid propelled booster vehicles with 14 by 45 foot and 15 by 60 foot payload orbiters were considered.
Constraining sterile neutrino dark matter with phase space density observations
Gorbunov, D; Khmelnitsky, A; Rubakov, V E-mail: khmeln@ms2.inr.ac.ru
2008-10-15
We apply phase space density considerations to obtain lower bounds on the mass of the sterile neutrino as a dark matter candidate. The bounds are different for non-resonant production, resonant production in the presence of lepton asymmetry and production in decays of heavier particles. In the former case our bound is comparable to but independent of the Lyman-{alpha} bound, and together with the x-ray upper limit it disfavors non-resonantly produced sterile neutrino dark matter. An interesting feature of the latter case is that warm dark matter may be composed of heavy particles.
Values of the phase space factors for double beta decay
Stoica, Sabin Mirea, Mihai
2015-10-28
We report an up-date list of the experimentally most interesting phase space factors for double beta decay (DBD). The electron/positron wave functions are obtained by solving the Dirac equations with a Coulomb potential derived from a realistic proton density distribution in nucleus and with inclusion of the finite nuclear size (FNS) and electron screening (ES) effects. We build up new numerical routines which allow us a good control of the accuracy of calculations. We found several notable differences as compared with previous results reported in literature and possible sources of these discrepancies are discussed.
Heisenberg-Weyl Observables: Bloch vectors in phase space
NASA Astrophysics Data System (ADS)
Asadian, Ali; Erker, Paul; Huber, Marcus; Klöckl, Claude
2016-07-01
We introduce a Hermitian generalization of Pauli matrices to higher dimensions which is based on Heisenberg-Weyl operators. The complete set of Heisenberg-Weyl observables allows us to identify a real-valued Bloch vector for an arbitrary density operator in discrete phase space, with a smooth transition to infinite dimensions. Furthermore, we derive bounds on the sum of expectation values of any set of anticommuting observables. Such bounds can be used in entanglement detection and we show that Heisenberg-Weyl observables provide a first nontrivial example beyond the dichotomic case.
Advanced microelectronics research for space applications, phase 2
NASA Technical Reports Server (NTRS)
Gaertner, W. W.
1971-01-01
Negative-resistance circuits with possible space flight applications are discussed. The basic design approach is to use impedance rotation, i.e., the conversion from capacitance to negative resistance, and from resistance to inductance by the phase shift of the transistor current gain at high frequencies. The subjects discussed in detail are the following: hybrid fabrication of VHF and UHF negative-resistance stages with lumped passive elements; formulation of measurement techniques to characterize transistors and to extend the frequency of negative-resistance transistor amplifiers to higher microwave frequencies; and derivation of transistor characteristics required to increase the frequency range of negative-resistance transistor stages.
The Helmholtz Hierarchy: phase space statistics of cold dark matter
Tassev, Svetlin V.
2011-10-01
We present a new formalism to study large-scale structure in the universe. The result is a hierarchy (which we call the ''Helmholtz Hierarchy'') of equations describing the phase space statistics of cold dark matter (CDM). The hierarchy features a physical ordering parameter which interpolates between the Zel'dovich approximation and fully-fledged gravitational interactions. The results incorporate the effects of stream crossing. We show that the Helmholtz hierarchy is self-consistent and obeys causality to all orders. We present an interpretation of the hierarchy in terms of effective particle trajectories.
Efficient computations of quantum canonical Gibbs state in phase space
NASA Astrophysics Data System (ADS)
Bondar, Denys I.; Campos, Andre G.; Cabrera, Renan; Rabitz, Herschel A.
2016-06-01
The Gibbs canonical state, as a maximum entropy density matrix, represents a quantum system in equilibrium with a thermostat. This state plays an essential role in thermodynamics and serves as the initial condition for nonequilibrium dynamical simulations. We solve a long standing problem for computing the Gibbs state Wigner function with nearly machine accuracy by solving the Bloch equation directly in the phase space. Furthermore, the algorithms are provided yielding high quality Wigner distributions for pure stationary states as well as for Thomas-Fermi and Bose-Einstein distributions. The developed numerical methods furnish a long-sought efficient computation framework for nonequilibrium quantum simulations directly in the Wigner representation.
Efficient computations of quantum canonical Gibbs state in phase space.
Bondar, Denys I; Campos, Andre G; Cabrera, Renan; Rabitz, Herschel A
2016-06-01
The Gibbs canonical state, as a maximum entropy density matrix, represents a quantum system in equilibrium with a thermostat. This state plays an essential role in thermodynamics and serves as the initial condition for nonequilibrium dynamical simulations. We solve a long standing problem for computing the Gibbs state Wigner function with nearly machine accuracy by solving the Bloch equation directly in the phase space. Furthermore, the algorithms are provided yielding high quality Wigner distributions for pure stationary states as well as for Thomas-Fermi and Bose-Einstein distributions. The developed numerical methods furnish a long-sought efficient computation framework for nonequilibrium quantum simulations directly in the Wigner representation. PMID:27415384
Dynamical Evolution of Quintessence Cosmology in a Physical Phase Space
NASA Astrophysics Data System (ADS)
Qi, Jing-Zhao; Zhang, Ming-Jian; Liu, Wen-Biao
2016-08-01
The phase space analysis of cosmological parameters Ω ϕ and γ ϕ is given. Based on this, the well-known quintessence cosmology is studied with an exponential potential V(φ )=V0exp (-λ φ ). Given observational data, the current state of universe could be pinpointed in the phase diagrams, thus making the diagrams more informative. The scaling solution of quintessence usually is not supposed to give the cosmic accelerating expansion, but we prove it could educe the transient acceleration. We also find that the differential equations of system used widely in study of scalar field are incomplete, and then a numerical method is used to figure out the range of application.
Vengalattore, M; Conroy, R S; Prentiss, M G
2004-05-01
The phase space density of dense, cylindrical clouds of atoms in a 2D magneto-optic trap is investigated. For a large number of trapped atoms (>10(8)), the density of a spherical cloud is limited by photon reabsorption. However, as the atom cloud is deformed to reduce the radial optical density, the temperature of the atoms decreases due to the suppression of multiple scattering leading to an increase in the phase space density. A density of 2 x 10(-4) has been achieved in a magneto-optic trap containing 2 x 10(8) atoms.
The phase-space analysis of modified gravity (MOG)
NASA Astrophysics Data System (ADS)
Jamali, Sara; Roshan, Mahmood
2016-09-01
We investigate the cosmological consequences of a scalar-vector-tensor theory of gravity known as modified gravity (MOG). In MOG, in addition to metric tensor, there are two scalar fields G( x) and μ (x), and one vector field φ _{α }(x). Using the phase space analysis, we explore the cosmological consequences of a model of MOG and find some new interesting features which are absent in Λ CDM model. More specifically we study the possibility that if the extra fields of this theory behave like dark energy to explain the cosmic speedup. More interestingly, with or without cosmological constant, a strongly phantom crossing occurs. Also we find that this theory in its original form (Λ ≠ 0) possesses a true sequence of cosmological epochs. However, we show that, surprisingly, there are two radiation-dominated epochs, f_5 and f_6, two matter-dominated phases, f_3 and f_4, and two late time accelerated eras, f_{12} and f7. Depending on the initial conditions the universe will realize only three of these six eras. However, the matter-dominated phases are dramatically different from the standard matter-dominated epoch. In these phases the cosmic scale factor grows as a(t)˜ t^{0.46} and t^{0.52}, respectively, which are slower than the standard case, i.e. a(t)˜ t^{2/3}. Considering these results we discuss the cosmological viability of MOG.
Woeckel, V J; Alves, R D A M; Swagemakers, S M A; Eijken, M; Chiba, H; van der Eerden, B C J; van Leeuwen, J P T M
2010-11-01
1Alpha,25-dihydroxyitamin D(3) (1,25D3) deficiency leads to impaired bone mineralization. We used the human pre-osteoblastic cell line SV-HFO, which forms within 19 days of culture an extracellular matrix that starts to mineralize around day 12, to examine the mechanism by which 1,25D3 regulates osteoblasts and directly stimulates mineralization. Time phase studies showed that 1,25D3 treatment prior to the onset of mineralization, rather than during mineralization led to accelerated and enhanced mineralization. This is supported by the observation of unaltered stimulation by 1,25D3 even when osteoblasts were devitalized just prior to onset of mineralization and after 1,25D3 treatment. Gene Chip expression profiling identified the pre-mineralization and mineralization phase as two strongly distinctive transcriptional periods with only 0.6% overlap of genes regulated by 1,25D3. In neither phase 1,25D3 significantly altered expression of extracellular matrix genes. 1,25D3 significantly accelerated the production of mature matrix vesicles (MVs) in the pre-mineralization. Duration rather than timing determined the extent of the 1,25D3 effect. We propose the concept that besides indirect effects via intestinal calcium uptake 1,25D3 directly accelerates osteoblast-mediated mineralization via increased production of mature MVs in the period prior to mineralization. The accelerated deposition of mature MVs leads to an earlier onset and higher rate of mineralization. These effects are independent of changes in extracellular matrix protein composition. These data on 1,25D3, mineralization, and MV biology add new insights into the role of 1,25D3 in bone metabolism and emphasize the importance of MVs in bone and maintaining bone health and strength by optimal mineralization status.
NASA Astrophysics Data System (ADS)
Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin
2016-11-01
In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be
Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin
2016-11-16
In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be
Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin
2016-11-16
In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
Fast-phase space computation of multiple arrivals.
Fomel, S; Sethian, J A
2002-05-28
We present a fast, general computational technique for computing the phase-space solution of static Hamilton-Jacobi equations. Starting with the Liouville formulation of the characteristic equations, we derive "Escape Equations" which are static, time-independent Eulerian PDEs. They represent all arrivals to the given boundary from all possible starting configurations. The solution is numerically constructed through a "one-pass" formulation, building on ideas from semi-Lagrangian methods, Dijkstra-like methods for the Eikonal equation, and Ordered Upwind Methods. To compute all possible trajectories corresponding to all possible boundary conditions, the technique is of computational order O(N log N), where N is the total number of points in the computational phase-space domain; any particular set of boundary conditions then is extracted through rapid post-processing. Suggestions are made for speeding up the algorithm in the case when the particular distribution of sources is provided in advance. As an application, we apply the technique to the problem of computing first, multiple, and most energetic arrivals to the Eikonal equation. PMID:12032282
Coherent quantum squeezing due to the phase space noncommutativity
NASA Astrophysics Data System (ADS)
Bernardini, Alex E.; Mizrahi, Salomon S.
2015-06-01
The effects of general noncommutativity of operators on producing deformed coherent squeezed states is examined in phase space. A two-dimensional noncommutative (NC) quantum system supported by a deformed mathematical structure, similar to that of Hadamard billiard, is obtained and the components behaviour is monitored in time. It is assumed that the independent degrees of freedom are two free 1D harmonic oscillators (HOs), so the system Hamiltonian does not contain interaction terms. Through the NC deformation parameterized by a Seiberg-Witten transform on the original canonical variables, one gets the standard commutation relations for the new ones, such that the obtained, new, Hamiltonian represents two interacting 1D HOs. By admitting that one HO is inverted relatively to the other, we show that their effective interaction induces a squeezing dynamics for initial coherent states imaged in the phase space. A suitable pattern of logarithmic spirals is obtained and some relevant properties are discussed in terms of Wigner functions, which are essential to put in evidence the effects of the noncommutativity.
An Absolute Phase Space for the Physicality of Matter
Valentine, John S.
2010-12-22
We define an abstract and absolute phase space (''APS'') for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of 'unique solvability' and 'identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitution of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.
An Absolute Phase Space for the Physicality of Matter
NASA Astrophysics Data System (ADS)
Valentine, John S.
2010-12-01
We define an abstract and absolute phase space ("APS") for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of `unique solvability' and `identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitution of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.
Artwork: Johnson Space Center U.S./International Cooperation Phase II -- This is a representation
NASA Technical Reports Server (NTRS)
1994-01-01
Artwork: Johnson Space Center U.S./International Cooperation Phase II -- This is a representation illustrating the United States' international cooperation in space. Phase II of the International Space Station is depicted with elements provided by the United States and Russia comprising the Human Tended Space Station. The scene was produced by John Frassanito and Associates. (JSC ref: S94-30086)
Laser Interferometer Space Antenna (LISA) Far Field Phase Patterns
NASA Technical Reports Server (NTRS)
Waluschka, Eugene; Obenschain, Arthur F. (Technical Monitor)
2000-01-01
The Laser Interferometer Space Antenna (LISA) consists of three spacecraft in orbit about the sun. The orbits are chosen such that the three spacecraft are always at (roughly) the vertices of a equilateral triangle with 5 million kilometer leg lengths. Even though the distances between the three spacecraft are 5 million kilometers, the expected phase shifts between any two beams, due to a gravitational wave, only correspond to a distance change of about 10 pico meters, which is about 10(exp -5) waves for a laser wavelength of 1064 nm. To obtain the best signal-to-noise ratio, noise sources such as changes in the apparent distances due to pointing jitter must be controlled carefully. This is the main reason for determining the far-field phase patterns of a LISA type telescope. Because of torque on the LISA spacecraft and other disturbances, continuous adjustments to the pointing of the telescopes are required. These pointing adjustments will be a "jitter" source. If the transmitted wave is perfectly spherical then rotations (Jitter) about its geometric center will not produce any effect at the receiving spacecraft. However, if the outgoing wave is not perfectly spherical, then pointing jitter will produce a phase variation at the receiving spacecraft. The following sections describe the "brute force" computational approach used to determine the scalar wave front as a function of exit pupil (Zernike) aberrations and to show the results (mostly graphically) of the computations. This approach is straightforward and produces believable phase variations to sub-pico meter accuracy over distances on the order of 5 million kilometers. As such this analyzes the far field phase sensitivity to exit pupil aberrations.
Volumic omit maps in ab initio dual-space phasing.
Oszlányi, Gábor; Sütő, András
2016-07-01
Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850
Trugenberger, Carlo A
2015-12-01
Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension d(H)=4. The model has a geometric quantum phase transition with disorder parameter (d(H)-d(s)), where d(s) is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions. PMID:26764755
Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism
NASA Astrophysics Data System (ADS)
Trugenberger, Carlo A.
2015-12-01
Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.
Phase-change enabled 2D Li3V2(PO4)3/C submicron sheets for advanced lithium-ion batteries
NASA Astrophysics Data System (ADS)
Cheng, Yi; Ni, Xiao; Feng, Kai; Zhang, Hongzhang; Li, Xianfeng; Zhang, Huamin
2016-09-01
The exploration of cathode materials with high capacity and power, fast charge/discharge rate, long lifespan and broad temperature adaptability is a challenge for the practical application of lithium ion batteries. Here, submicro-sheet Li3V2(PO4)3/C (LVP/C) cathode materials have been successfully synthesized via a simple and universal phase-change method. This designed melting process increases the crystallinity and decreases the Li+ diffusion distance, which effectively enhances the cycling stability and rate performances of the LVP/C cathode materials. The LVP/C cathode materials exhibit high discharge specific capacity of 130 mAh g-1 in the first cycle. The capacity retention is almost 100% after 100 cycles. In addition, at 10 C, more than 80% of initial discharge capacity is retained after 800 cycles, indicating excellent cycle performance at high rate. Moreover, the synthesized LVP/C materials perform excellent low-temperature properties. At -20 °C, the specific capacity can reach 105 mAh g-1 at 0.5 C. This study provides a novel template-free synthesis method for nano/micro materials.
Bosire, G O; Ngila, J C; Parshotam, H
2016-01-01
The extraction and determination of aliphatic and aromatic carboxylic acids as well as their influence on the aromaticity and molecularity relationship of natural organic matter (NOM) in water are reported in this study. Three solid phase extraction (SPE) sorbents were used and their extraction efficiencies evaluated after chromatographic determinations (using gas chromatography with a time of flight mass spectrometer (GC × GC-TOFMS) and liquid chromatography with organic carbon detector (LC-OCD)). More than 42 carboxylic acids were identified in raw water from the Vaal River, which feeds the Lethabo Power Generation Station, South Africa, with cooling water. The aromatic carboxylic acid efficiency (28%) was achieved by using Strata™ X SPE while the highest aliphatic carboxylic acid efficiency (92.08%) was achieved by silica SPE. The hydrophobic nature of NOM in water depends on the nature of organic compounds in water, whether aromatic or aliphatic. The LC-OCD was used to assess the hydrophobicity levels of NOM as a function of these carboxylic acids in cooling water. The LC-OCD results showed that the aromatic nature of NOM in SPE filtered water followed the order Silica>Strata X>C-18. From the results, the hydrophobicity degree of the samples depended on the type and number of carboxylic acids that were removed by the SPE cartridges. PMID:27274730
Bosire, G O; Ngila, J C; Parshotam, H
2016-01-01
The extraction and determination of aliphatic and aromatic carboxylic acids as well as their influence on the aromaticity and molecularity relationship of natural organic matter (NOM) in water are reported in this study. Three solid phase extraction (SPE) sorbents were used and their extraction efficiencies evaluated after chromatographic determinations (using gas chromatography with a time of flight mass spectrometer (GC × GC-TOFMS) and liquid chromatography with organic carbon detector (LC-OCD)). More than 42 carboxylic acids were identified in raw water from the Vaal River, which feeds the Lethabo Power Generation Station, South Africa, with cooling water. The aromatic carboxylic acid efficiency (28%) was achieved by using Strata™ X SPE while the highest aliphatic carboxylic acid efficiency (92.08%) was achieved by silica SPE. The hydrophobic nature of NOM in water depends on the nature of organic compounds in water, whether aromatic or aliphatic. The LC-OCD was used to assess the hydrophobicity levels of NOM as a function of these carboxylic acids in cooling water. The LC-OCD results showed that the aromatic nature of NOM in SPE filtered water followed the order Silica>Strata X>C-18. From the results, the hydrophobicity degree of the samples depended on the type and number of carboxylic acids that were removed by the SPE cartridges.
Bosire, G. O.; Ngila, J. C.; Parshotam, H.
2016-01-01
The extraction and determination of aliphatic and aromatic carboxylic acids as well as their influence on the aromaticity and molecularity relationship of natural organic matter (NOM) in water are reported in this study. Three solid phase extraction (SPE) sorbents were used and their extraction efficiencies evaluated after chromatographic determinations (using gas chromatography with a time of flight mass spectrometer (GC × GC-TOFMS) and liquid chromatography with organic carbon detector (LC-OCD)). More than 42 carboxylic acids were identified in raw water from the Vaal River, which feeds the Lethabo Power Generation Station, South Africa, with cooling water. The aromatic carboxylic acid efficiency (28%) was achieved by using Strata™ X SPE while the highest aliphatic carboxylic acid efficiency (92.08%) was achieved by silica SPE. The hydrophobic nature of NOM in water depends on the nature of organic compounds in water, whether aromatic or aliphatic. The LC-OCD was used to assess the hydrophobicity levels of NOM as a function of these carboxylic acids in cooling water. The LC-OCD results showed that the aromatic nature of NOM in SPE filtered water followed the order Silica>Strata X>C-18. From the results, the hydrophobicity degree of the samples depended on the type and number of carboxylic acids that were removed by the SPE cartridges. PMID:27274730
Constraining neutron guide optimizations with phase-space considerations
NASA Astrophysics Data System (ADS)
Bertelsen, Mads; Lefmann, Kim
2016-09-01
We introduce a method named the Minimalist Principle that serves to reduce the parameter space for neutron guide optimization when the required beam divergence is limited. The reduced parameter space will restrict the optimization to guides with a minimal neutron intake that are still theoretically able to deliver the maximal possible performance. The geometrical constraints are derived using phase-space propagation from moderator to guide and from guide to sample, while assuming that the optimized guides will achieve perfect transport of the limited neutron intake. Guide systems optimized using these constraints are shown to provide performance close to guides optimized without any constraints, however the divergence received at the sample is limited to the desired interval, even when the neutron transport is not limited by the supermirrors used in the guide. As the constraints strongly limit the parameter space for the optimizer, two control parameters are introduced that can be used to adjust the selected subspace, effectively balancing between maximizing neutron transport and avoiding background from unnecessary neutrons. One parameter is needed to describe the expected focusing abilities of the guide to be optimized, going from perfectly focusing to no correlation between position and velocity. The second parameter controls neutron intake into the guide, so that one can select exactly how aggressively the background should be limited. We show examples of guides optimized using these constraints which demonstrates the higher signal to noise than conventional optimizations. Furthermore the parameter controlling neutron intake is explored which shows that the simulated optimal neutron intake is close to the analytically predicted, when assuming that the guide is dominated by multiple scattering events.
NASA Astrophysics Data System (ADS)
Trahan, Corey J.; Wyatt, Robert E.
2003-10-01
Recently, Donoso and Martens described a method for evolving both classical and quantum phase-space distribution functions, W(q,p,t), that involves the propagation of an ensemble of correlated trajectories. The trajectories are linked into a unified whole by spatial and momentum derivatives of density dependent terms in the equations of motion. On each time step, these nonlocal terms were evaluated by fitting the density around each trajectory to an assumed functional form. In the present study, we develop a different trajectory method for propagating phase-space distribution functions. A hierarchy of coupled analytic equations of motion are derived for the q and p derivatives of the density and a truncated set of these are integrated along each trajectory concurrently with the equation of motion for the density. The advantage of this approach is that individual trajectories can be propagated, one at a time, and function fitting is not required to evaluate the nonlocal terms. Regional nonlocality can be incorporated at various levels of approximation to "dress" what would otherwise be "thin" locally propagating trajectories. This derivative propagation method is used to obtain trajectory solutions for the Klein-Kramers equation, the Husimi equation, and for a smoothed version of the Caldeira-Leggett equation derived by the Diosi. Trajectory solutions are obtained for the relaxation of an oscillator in contact with a thermal bath and for the decay of a metastable state.
A phase-space beam position monitor for synchrotron radiation
Samadi, Nazanin; Bassey, Bassey; Martinson, Mercedes; Belev, George; Dallin, Les; de Jong, Mark; Chapman, Dean
2015-01-01
The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam’s position and angle, and thus infer the electron beam’s position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement. PMID:26134798
Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric
2015-10-21
We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.
Dust environment of an airless object: A phase space study with kinetic models
NASA Astrophysics Data System (ADS)
Kallio, E.; Dyadechkin, S.; Fatemi, S.; Holmström, M.; Futaana, Y.; Wurz, P.; Fernandes, V. A.; Álvarez, F.; Heilimo, J.; Jarvinen, R.; Schmidt, W.; Harri, A.-M.; Barabash, S.; Mäkelä, J.; Porjo, N.; Alho, M.
2016-01-01
The study of dust above the lunar surface is important for both science and technology. Dust particles are electrically charged due to impact of the solar radiation and the solar wind plasma and, therefore, they affect the plasma above the lunar surface. Dust is also a health hazard for crewed missions because micron and sub-micron sized dust particles can be toxic and harmful to the human body. Dust also causes malfunctions in mechanical devices and is therefore a risk for spacecraft and instruments on the lunar surface. Properties of dust particles above the lunar surface are not fully known. However, it can be stated that their large surface area to volume ratio due to their irregular shape, broken chemical bonds on the surface of each dust particle, together with the reduced lunar environment cause the dust particles to be chemically very reactive. One critical unknown factor is the electric field and the electric potential near the lunar surface. We have developed a modelling suite, Dusty Plasma Environments: near-surface characterisation and Modelling (DPEM), to study globally and locally dust environments of the Moon and other airless bodies. The DPEM model combines three independent kinetic models: (1) a 3D hybrid model, where ions are modelled as particles and electrons are modelled as a charged neutralising fluid, (2) a 2D electrostatic Particle-in-Cell (PIC) model where both ions and electrons are treated as particles, and (3) a 3D Monte Carlo (MC) model where dust particles are modelled as test particles. The three models are linked to each other unidirectionally; the hybrid model provides upstream plasma parameters to be used as boundary conditions for the PIC model which generates the surface potential for the MC model. We have used the DPEM model to study properties of dust particles injected from the surface of airless objects such as the Moon, the Martian moon Phobos and the asteroid RQ36. We have performed a (v0, m/q)-phase space study where the
Capture into resonance and phase space dynamics in optical centrifuge
NASA Astrophysics Data System (ADS)
Armon, Tsafrir; Friedland, Lazar
2016-05-01
The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 , 2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory. This work was supported by the Israel Science Foundation Grant 30/14.
ORIGAMI: Delineating Halos Using Phase-space Folds
NASA Astrophysics Data System (ADS)
Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.
2012-08-01
We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.
Interacting agegraphic dark energy models in phase space
Lemets, O.A.; Yerokhin, D.A.; Zazunov, L.G. E-mail: denyerokhin@gmail.com
2011-01-01
Agegraphic dark energy, has been recently proposed, based on the so-called Karolyhazy uncertainty relation, which arises from quantum mechanics together with general relativity. In the first part of the article we study the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. The phase space analysis was made and the critical points were found, one of which is the attractor corresponding to an accelerated expanding Universe. Recent observations of near supernova show that the acceleration of Universe decreases. This phenomenon is called the transient acceleration. In the second part of Article we consider the 3-component Universe composed of a scalar field, interacting with the dark matter on the agegraphic dark energy background. We show that the transient acceleration appears in frame of such a model. The obtained results agree with the observations.
ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS
Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.
2012-08-01
We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.
Hubble Space Telescope characterized by using phase-retrieval algorithms.
Fienup, J R; Marron, J C; Schulz, T J; Seldin, J H
1993-04-01
We describe several results characterizing the Hubble Space Telescope from measured point spread functions by using phase-retrieval algorithms. The Cramer-Rao lower bounds show that point spread functions taken well out of focus result in smaller errors when aberrations are estimated and that, for those images, photon noise is not a limiting factor. Reconstruction experiments with both simulated and real data show that the calculation of wave-front propagation by the retrieval algorithms must be performed with a multiple-plane propagation rather than a simple fast Fourier transform to ensure the high accuracy required. Pupil reconstruction was performed and indicates a misalignment of the optical axis of a camera relay telescope relative to the main telescope. After we accounted for measured spherical aberration in the relay telescope, our estimate of the conic constant of the primary mirror of the HST was - 1.0144.
Space shuttle electromagnetic environment experiment. Phase A: Definition study
NASA Technical Reports Server (NTRS)
Haber, F.; Showers, R. M.; Taheri, S. H.; Forrest, L. A., Jr.; Kocher, C.
1974-01-01
A program is discussed which develops a concept for measuring the electromagnetic environment on earth with equipment on board an orbiting space shuttle. Earlier work on spaceborne measuring experiments is reviewed, and emissions to be expected are estimated using, in part, previously gathered data. General relations among system parameters are presented, followed by a proposal on spatial and frequency scanning concepts. The methods proposed include a nadir looking measurement with small lateral scan and a circularly scanned measurement looking tangent to the earth's surface at the horizon. Antenna requirements are given, assuming frequency coverage from 400 MHz to 40 GHz. For the low frequency range, 400-1000 MHz, a processed, thinned array is proposed which will be more fully analyzed in the next phase of the program. Preliminary hardware and data processing requirements are presented.
The Harari Shupe preon model and nonrelativistic quantum phase space
NASA Astrophysics Data System (ADS)
Żenczykowski, P.
2008-03-01
We propose that the whole algebraic structure of the Harari-Shupe rishon model originates via a Dirac-like linearization of quadratic form x2 +p2, with position and momentum satisfying standard commutation relations. The scheme does not invoke the concept of preons as spin-1/2 subparticles, thus evading the problem of preon confinement, while fully explaining all symmetries emboded in the Harari-Shupe model. Furthermore, the concept of quark colour is naturally linked to the ordering of rishons. Our scheme leads to group U (1) ⊗ SU (3) combined with SU (2), with two of the SU (2) generators not commuting with reflections. An interpretation of intra-generation quark-lepton transformations in terms of genuine rotations and reflections in phase space is proposed.
Using a phase space statistic to identify resonant objects.
Carroll, Thomas L
2006-06-01
The identification of resonant objects in radar or sonar, important for object identification, is difficult because existing methods require that the signal have a large signal-to-noise ratio. It is shown in this article that a modified version of the Kaplan-Glass (KG) statistic, a phase space statistic used to determine if a signal is deterministic, is sensitive to the properties of resonant objects. The modified KG statistic can be used to detect the presence of a resonant object even when the radar or sonar signal does not come from a deterministic dynamical system. The use of the modified KG statistic both numerically and in a simple experiment is also demonstrated.
A study on quantum similarity in the phase space
NASA Astrophysics Data System (ADS)
Sellier, J. M.; Ivanova, D. Y.; Dimov, I.
2016-10-01
Quantum similarity represents an important concept in the context of many applied disciplines such as physical and quantum chemistry. Nowadays, two definitions exist based, respectively, on the real and the phase spaces. In this paper, we focus on the second one, which was presented recently, and investigate it. In particular, being its mathematical definition dependent on a given integer s, we study the influence of this parameter on the similarity between two systems. To keep this investigation comprehensible, while still meaningful, we focus on a very simple quantum system represented by a hydrogen atom in the ground and excited states corresponding to the quantum numbers (n , l , m) =(1 , 0 , 0) and (n , l , m) =(2 , 0 , 0) .
Nonclassicality indicator for the real phase-space distribution functions
Sadeghi, Parvin; Khademi, Siamak; Nasiri, Sadollah
2010-07-15
Benedict et al. and Kenfack et al. advocated nonclassicality indicators based on the measurement of negativity of the Wigner distribution functions. These indicators have some applications in quantum mechanics and quantum optics. In this paper we define a nonclassicality indicator in terms of the interference in phase space, which is applicable to some real distribution functions including those of Wigner. As a special case one may reproduce the previous results using our indicator for the Wigner distribution functions. This indicator is examined for cases of the Schroedinger cat state and the thermal states and the results are compared with those obtained by previous methods. It seems that the physical behavior of nonclassicality indicators originates in the uncertainty principle. This is shown by an onto correspondence between these indicators and the uncertainty principle.
Wigner phase space distribution via classical adiabatic switching
Bose, Amartya; Makri, Nancy
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
Nonlinear instabilities driven by coherent phase-space structures
NASA Astrophysics Data System (ADS)
Lesur, Maxime
2012-10-01
Coherent phase-space (PS) structures are an important feature of plasma turbulence. They can drive nonlinear instabilities [1], intermittency in drift-wave turbulence [2], and transport [3]. We aim at a comprehensive understanding of turbulence, not just as an ensemble of waves, as quasilinear theory implies, but as a mixture of coupled waves and localized structures. This work, which focuses on isolated PS structures, is a fundamental advance in this direction. We analyze the effects of self-binding negative fluctuations (PS holes) on stability, intermittency and anomalous resistivity, both analytically and numerically. We present a new theory which describes the growth of a hole or clump [4]. We find that PS holes grow nonlinearly, independently of linear stability. Numerical simulations clarify the physics of nonlinear instabilities in both subcritical and supercritical conditions. When many resonances are unstable, several holes can coalesce into one main macro-scale structure, which survives much longer than a quasilinear diffusion time, suggesting that it may be crucial to resolve phase-space turbulence in analytical and numerical studies of transport. These findings are applied to two fundamental paradigms of plasma physics: bump-on-tail instabilities in 1D electronic plasma and current-driven ion-acoustic instabilities electron-ion plasma. Our results expose important limits of routinely-used linear and quasilinear theories.[4pt] [1] T.H. Dupree, Phys. Fluids 15, 334 (1972); R.H. Berman et al., Phys. Rev. Lett. 48, 1249 (1982).[0pt] [2] P.W. Terry, P.H. Diamond, and T.S. Hahm, Phys. Fluids B 2, 2048 (1990).[0pt] [3] H. Biglari et al., Phys. Fluids 31, 2644 (1988); Y. Kosuga et al., Phys. Plasmas 18, 122305 (2011).[0pt] [4] M. Lesur, P.H. Diamond, submitted to Phys. Rev. Lett.
Generalizing the Boltzmann equation in complex phase space.
Zadehgol, Abed
2016-08-01
In this work, a generalized form of the BGK-Boltzmann equation is proposed, where the velocity, position, and time can be represented by real or complex variables. The real representation leads to the conventional BGK-Boltzmann equation, which can recover the continuity and Navier-Stokes equations. We show that the complex representation yields a different set of equations, and it can also recover the conservation and Navier-Stokes equations, at low Mach numbers, provided that the imaginary component of the macroscopic mass can be neglected. We briefly review the Constant Speed Kinetic Model (CSKM), which was introduced in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014)JCTPAH0021-999110.1016/j.jcp.2014.06.053] and Zadehgol [Phys. Rev. E 91, 063311 (2015)PLEEE81539-375510.1103/PhysRevE.91.063311]. The CSKM is then used as a basis to show that the complex-valued equilibrium distribution function of the present model can be identified with a simple singularity in the complex phase space. The virtual particles, in the present work, are concentrated on virtual "branes" which surround the computational nodes. Employing the Cauchy integral formula, it is shown that certain variations of the "branes," in the complex phase space, do not affect the local kinetic states. This property of the new model, which is referred to as the "apparent jumps" in the present work, is used to construct new models. The theoretical findings have been tested by simulating three benchmark flows. The results of the present simulations are in excellent agreement with the previous results reported by others. PMID:27627421
Generalizing the Boltzmann equation in complex phase space
NASA Astrophysics Data System (ADS)
Zadehgol, Abed
2016-08-01
In this work, a generalized form of the BGK-Boltzmann equation is proposed, where the velocity, position, and time can be represented by real or complex variables. The real representation leads to the conventional BGK-Boltzmann equation, which can recover the continuity and Navier-Stokes equations. We show that the complex representation yields a different set of equations, and it can also recover the conservation and Navier-Stokes equations, at low Mach numbers, provided that the imaginary component of the macroscopic mass can be neglected. We briefly review the Constant Speed Kinetic Model (CSKM), which was introduced in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014), 10.1016/j.jcp.2014.06.053] and Zadehgol [Phys. Rev. E 91, 063311 (2015), 10.1103/PhysRevE.91.063311]. The CSKM is then used as a basis to show that the complex-valued equilibrium distribution function of the present model can be identified with a simple singularity in the complex phase space. The virtual particles, in the present work, are concentrated on virtual "branes" which surround the computational nodes. Employing the Cauchy integral formula, it is shown that certain variations of the "branes," in the complex phase space, do not affect the local kinetic states. This property of the new model, which is referred to as the "apparent jumps" in the present work, is used to construct new models. The theoretical findings have been tested by simulating three benchmark flows. The results of the present simulations are in excellent agreement with the previous results reported by others.
Dynamics of Structures in Configuration Space and Phase Space: An Introductory Tutorial
NASA Astrophysics Data System (ADS)
Diamond, P. H.; Kosuga, Y.; Lesur, M.
2015-12-01
Some basic ideas relevant to the dynamics of phase space and real space structures are presented in a pedagogical fashion. We focus on three paradigmatic examples, namely; G. I. Taylor's structure based re-formulation of Rayleigh's stability criterion and its implications for zonal flow momentum balance relations; Dupree's mechanism for nonlinear current driven ion acoustic instability and its implication for anomalous resistivity; and the dynamics of structures in drift and gyrokinetic turbulence and their relation to zonal flow physics. We briefly survey the extension of mean field theory to calculate evolution in the presence of localized structures for regimes where Kubo number K ≃ 1 rather than K ≪ 1, as is usual for quasilinear theory.
Longitudinal phase space setup for the SLC beams
Decker, F.J.; Bane, K.L.F.; Minty, M.G.; Raimondi, P.; Holtzapple, R.L.
1998-07-01
The longitudinal phase space distribution of the SLC beams is affected by many different machine parameters and constraints. By using a technique of over-compression in the ring to linac transfer line, a small energy spread of 0.12% can be achieved at the end of the linac for a bunch length of 1.2 mm ({sigma}). In the final focus a small energy spread is desirable to reduce emittance dilution due to chromatic effects. Optimization of the bunch length is also important as a longer bunch of 1.2 mm can contribute up to 40% luminosity enhancement due to disruption. If there is a correlated energy variation along the bunch, for example due to mistuning of the optimal rf phase with respect to the beam, the bunch will be further compressed as it passes through the SLC Arcs. The resulting bunch can be too short to produce the desired disruption enhancement, but will radiate more beam-strahlung during collisions giving a false indication of higher luminosity. This paper discusses the interplay of these issues from the damping ring to the interaction point.
Quantum trajectories in complex phase space: multidimensional barrier transmission.
Wyatt, Robert E; Rowland, Brad A
2007-07-28
The quantum Hamilton-Jacobi equation for the action function is approximately solved by propagating individual Lagrangian quantum trajectories in complex-valued phase space. Equations of motion for these trajectories are derived through use of the derivative propagation method (DPM), which leads to a hierarchy of coupled differential equations for the action function and its spatial derivatives along each trajectory. In this study, complex-valued classical trajectories (second order DPM), along which is transported quantum phase information, are used to study low energy barrier transmission for a model two-dimensional system involving either an Eckart or Gaussian barrier along the reaction coordinate coupled to a harmonic oscillator. The arrival time for trajectories to reach the transmitted (product) region is studied. Trajectories launched from an "equal arrival time surface," defined as an isochrone, all reach the real-valued subspace in the transmitted region at the same time. The Rutherford-type diffraction of trajectories around poles in the complex extended Eckart potential energy surface is described. For thin barriers, these poles are close to the real axis and present problems for computing the transmitted density. In contrast, for the Gaussian barrier or the thick Eckart barrier where the poles are further from the real axis, smooth transmitted densities are obtained. Results obtained using higher-order quantum trajectories (third order DPM) are described for both thick and thin barriers, and some issues that arise for thin barriers are examined. PMID:17672677
Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji
2014-10-21
We report reaction paths starting from N({sup 2}D) + H{sub 2}O for doublet spin states, D{sub 0} and D{sub 1}. The potential energy surfaces are explored in an automated fashion using the global reaction route mapping strategy. The critical points and reaction paths have been fully optimized at the complete active space second order perturbation theory level taking all valence electrons in the active space. In addition to direct dissociation pathways that would be dominant, three roaming processes, two roaming dissociation, and one roaming isomerization: (1) H{sub 2}ON → H–O(H)N → H–HON → NO({sup 2}Π) + H{sub 2}, (2) cis-HNOH → HNO–H → H–HNO → NO + H{sub 2}, (3) H{sub 2}NO → H–HNO → HNO–H → trans-HNOH, are confirmed on the D{sub 0} surface.
NASA Astrophysics Data System (ADS)
Kurien, Binoy G.; Ashcom, Jonathan B.; Shah, Vinay N.; Rachlin, Yaron; Tarokh, Vahid
2016-09-01
Atmospheric turbulence presents a fundamental challenge to Fourier phase recovery in optical interferometry. Typical reconstruction algorithms employ Bayesian inference techniques which rely on prior knowledge of the scene under observation. In contrast, Redundant Spacing Calibration (RSC) algorithms employ redundancy in the baselines of the interferometric array to directly expose the contribution of turbulence, thereby enabling phase recovery for targets of arbitrary and unknown complexity. Traditionally RSC algorithms have been applied directly to single-exposure measurements, which are reliable only at high photon flux in general. In scenarios of low photon flux, such as those arising in the observation of dim objects in space, one must instead rely on time-averaged, atmosphere-invariant quantities such as the bispectrum. In this paper, we develop a novel RSC-based algorithm for prior-less phase recovery in which we generalize the bispectrum to higher-order atmosphere-invariants (n-spectra) for improved sensitivity. We provide a strategy for selection of a high-SNR set of n-spectra using the graph-theoretic notion of the minimum cycle basis. We also discuss a key property of this set (wrap-invariance), which then enables reliable application of standard linear estimation techniques to recover the Fourier phases from the 2π-wrapped n-spectra phases. For validation, we analyze the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures, and corroborate this analysis with simulation results showing performance near an atmosphere-oracle Cramer-Rao bound. Lastly, we apply techniques from the field of compressed sensing to perform image reconstruction from the estimated complex visibilities.
NASA Astrophysics Data System (ADS)
Wang, Jin; Ma, Jianyong; Zhou, Changhe
2014-11-01
A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.
Sanpei, Akio; Soga, Yukihiro; Ito, Kiyokazu; Himura, Haruhiko
2015-06-29
A trilinear phase space analysis is applied for dynamics of three electron clumps confined with a Penning-Malmberg trap. We show that the Aref’s concept of phase space describe the observed features of the dynamics of three point vortices qualitatively. In vacuum, phase point P moves to physical region boundary in phase space, i.e. triangular configuration cannot be kept. With the addition of a low level background vorticity distribution (BGVD), the excursion of the clumps is reduced and the distance between P and stable point does not extend in the phase space.
NASA Astrophysics Data System (ADS)
Kim, Sangroh; Yoshizumi, Terry T.; Yin, Fang-Fang; Chetty, Indrin J.
2013-04-01
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the
Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J
2013-04-21
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral
Quantum dynamics in phase space: Moyal trajectories 2
Braunss, G.
2013-01-15
Continuing a previous paper [G. Braunss, J. Phys. A: Math. Theor. 43, 025302 (2010)] where we had calculated Planck-Constant-Over-Two-Pi {sup 2}-approximations of quantum phase space viz. Moyal trajectories of examples with one and two degrees of freedom, we present in this paper the calculation of Planck-Constant-Over-Two-Pi {sup 2}-approximations for four examples: a two-dimensional Toda chain, the radially symmetric Schwarzschild field, and two examples with three degrees of freedom, the latter being the nonrelativistic spherically Coulomb potential and the relativistic cylinder symmetrical Coulomb potential with a magnetic field H. We show in particular that an Planck-Constant-Over-Two-Pi {sup 2}-approximation of the nonrelativistic Coulomb field has no singularity at the origin (r= 0) whereas the classical trajectories are singular at r= 0. In the third example, we show in particular that for an arbitrary function {gamma}(H, z) the expression {beta}{identical_to}p{sub z}+{gamma}(H, z) is classically ( Planck-Constant-Over-Two-Pi = 0) a constant of motion, whereas for Planck-Constant-Over-Two-Pi {ne} 0 this holds only if {gamma}(H, z) is an arbitrary polynomial of second order in z. This statement is shown to extend correspondingly to a cylinder symmetrical Schwarzschild field with a magnetic field. We exhibit in detail a number of properties of the radially symmetric Schwarzschild field. We exhibit finally the problems of the nonintegrable Henon-Heiles Hamiltonian and give a short review of the regular Hilbert space representation of Moyal operators.
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
F-theory and 2d (0, 2) theories
NASA Astrophysics Data System (ADS)
Schäfer-Nameki, Sakura; Weigand, Timo
2016-05-01
F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.
Phase-space surface hopping: nonadiabatic dynamics in a superadiabatic basis.
Shenvi, Neil
2009-03-28
In this paper, we construct a phase-space surface hopping algorithm for use in systems that exhibit strong nonadiabatic coupling. The algorithm is derived from a representation of the electronic basis which is a function of the nuclear phase-space coordinates rather than the nuclear position coordinates. This phase-space adiabatic basis can be understood in the context of Berry's superadiabatic basis formalism as the first-order superadiabatic correction to the conventional position-space adiabatic basis. This superadiabatic representation leads to nuclear dynamics described not by Newton's equations of motion but by generalized Hamilton's equations of motion. The phase-space surface hopping algorithm captures physical effects that cannot be described by traditional algorithms. For a simple model problem, we show that phase-space surface hopping is more accurate than position-space surface hopping, especially when the nonadiabatic coupling is strong.
PHASES: A Project to Perform Absolute Spectrophotometry from Space
NASA Astrophysics Data System (ADS)
del Burgo, C.; Vather, D.; Allende Prieto, C.; Murphy, N.
2013-04-01
This paper presents the current status of the opto-mechanical design of PHASES (Planet Hunting and AsteroSeismology Explorer Spectrophotometer), which is a project to develop a space-borne telescope to obtain absolute flux calibrated spectra of bright stars. The science payload is intended to be housed in a micro-satellite launched into a low-earth Sun-synchronous orbit with an inclination to the equator of 98.7° and a local time ascending node LTAN of 6:00 AM. PHASES will be able to measure micromagnitude photometric variations due to stellar oscillations/activity and planet/moon transits. It consists of a 20 cm aperture modified Baker telescope feeding two detectors: the tracking detector provides the fine telescope guidance system with a required pointing stability of 0.2″, and the science detector performs spectrophotometry in the wavelength range 370-960 nm with a resolving power between 200 and 900. The spectrograph is designed to provide 1% RMS flux calibrated spectra with signal-to-noise ratios > 100 for stars with V < 10 in short integration times. Our strategy to calibrate the system using A type stars is explained. From comparison with model atmospheres it would be possible to determine the stellar angular diameters with an uncertainty of approximately 0.5%. In the case of a star hosting a transiting planet it would be possible to derive its light curve, and then the planet to stellar radius ratio. Bright stars have high precision Hipparcos parallaxes and the expected level of accuracy for their fluxes will be propagated to the stellar radii, and more significantly to the planetary radii. The scientific drivers for PHASES give rise to some design challenges, which are particularly related to the opto-mechanics for extreme environmental conditions. The optical design has been developed with the primary goal of avoiding stray light reaching the science detector. Three different proposals for the opto-mechanical design are under investigation.
Phase Space Dissimilarity Measures for Structural Health Monitoring
Bubacz, Jacob A; Chmielewski, Hana T; Pape, Alexander E; Depersio, Andrew J; Hively, Lee M; Abercrombie, Robert K; Boone, Shane
2011-11-01
A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.
Phase-space estimate of satellite coverage time
Canavan, G.H.
1992-05-01
This note derives a phase-space estimate of the overlap in satellite coverage and evaluates its impact on the time for a constellation to cover some specified area. The satellites' motion is treated as random in the calculation of the overlaps. Enough passes are prescribed to assure that an adequate probability of observing each area is accumulated. For 0.9--0.99 probabilities of coverage, overlaps increase the time for coverage by factors of 2--4 over no-overlap estimates. This model also gives the probability of different vintages of data. If a given constellation covers the whole Earth in the no-overlap time T{sub 0}, the average vintage of the data over the earth will then be the average
Phase-space estimate of satellite coverage time
Canavan, G.H.
1992-05-01
This note derives a phase-space estimate of the overlap in satellite coverage and evaluates its impact on the time for a constellation to cover some specified area. The satellites` motion is treated as random in the calculation of the overlaps. Enough passes are prescribed to assure that an adequate probability of observing each area is accumulated. For 0.9--0.99 probabilities of coverage, overlaps increase the time for coverage by factors of 2--4 over no-overlap estimates. This model also gives the probability of different vintages of data. If a given constellation covers the whole Earth in the no-overlap time T{sub 0}, the average vintage of the data over the earth will then be the average
Topology of classical molecular optimal control landscapes in phase space
NASA Astrophysics Data System (ADS)
Joe-Wong, Carlee; Ho, Tak-San; Long, Ruixing; Rabitz, Herschel; Wu, Rebing
2013-03-01
Optimal control of molecular dynamics is commonly expressed from a quantum mechanical perspective. However, in most contexts the preponderance of molecular dynamics studies utilize classical mechanical models. This paper treats laser-driven optimal control of molecular dynamics in a classical framework. We consider the objective of steering a molecular system from an initial point in phase space to a target point, subject to the dynamic constraint of Hamilton's equations. The classical control landscape corresponding to this objective is a functional of the control field, and the topology of the landscape is analyzed through its gradient and Hessian with respect to the control. Under specific assumptions on the regularity of the control fields, the classical control landscape is found to be free of traps that could hinder reaching the objective. The Hessian associated with an optimal control field is shown to have finite rank, indicating the presence of an inherent degree of robustness to control noise. Extensive numerical simulations are performed to illustrate the theoretical principles on (a) a model diatomic molecule, (b) two coupled Morse oscillators, and (c) a chaotic system with a coupled quartic oscillator, confirming the absence of traps in the classical control landscape. We compare the classical formulation with the mathematically analogous quantum state-to-state transition probability control landscape.
Topology of classical molecular optimal control landscapes in phase space.
Joe-Wong, Carlee; Ho, Tak-San; Long, Ruixing; Rabitz, Herschel; Wu, Rebing
2013-03-28
Optimal control of molecular dynamics is commonly expressed from a quantum mechanical perspective. However, in most contexts the preponderance of molecular dynamics studies utilize classical mechanical models. This paper treats laser-driven optimal control of molecular dynamics in a classical framework. We consider the objective of steering a molecular system from an initial point in phase space to a target point, subject to the dynamic constraint of Hamilton's equations. The classical control landscape corresponding to this objective is a functional of the control field, and the topology of the landscape is analyzed through its gradient and Hessian with respect to the control. Under specific assumptions on the regularity of the control fields, the classical control landscape is found to be free of traps that could hinder reaching the objective. The Hessian associated with an optimal control field is shown to have finite rank, indicating the presence of an inherent degree of robustness to control noise. Extensive numerical simulations are performed to illustrate the theoretical principles on (a) a model diatomic molecule, (b) two coupled Morse oscillators, and (c) a chaotic system with a coupled quartic oscillator, confirming the absence of traps in the classical control landscape. We compare the classical formulation with the mathematically analogous quantum state-to-state transition probability control landscape.
An Effective Method to Accurately Calculate the Phase Space Factors for β - β - Decay
Neacsu, Andrei; Horoi, Mihai
2016-01-01
Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.
Phase-space dissimilarity measures for industrial and biomedical applications
NASA Astrophysics Data System (ADS)
Protopopescu, V. A.; Hively, L. M.
2005-12-01
One of the most important problems in time-series analysis is the suitable characterization of the dynamics for timely, accurate, and robust condition assessment of the underlying system. Machine and physiological processes display complex, non-stationary behaviors that are affected by noise and may range from (quasi-)periodic to completely irregular (chaotic) regimes. Nevertheless, extensive experimental evidence indicates that even when the systems behave very irregularly (e.g., severe tool chatter or cardiac fibrillation), one may assume that - for all practical purposes - the dynamics are confined to low dimensional manifolds. As a result, the behavior of these systems can be described via traditional nonlinear measures (TNM), such as Lyapunov exponents, Kolmogorov entropy, and correlation dimension. While these measures are adequate for discriminating between clear-cut regular and chaotic dynamics, they are not sufficiently sensitive to distinguish between slightly different irregular (chaotic) regimes, especially when data are noisy and/or limited. Both machine and physiological dynamics usually fall into this latter category, creating a massive stumbling block to prognostication of abnormal regimes. We present here a recently developed approach that captures more efficiently changes in the underlying dynamics. We start with process-indicative, time-serial data that are checked for quality and discarded if inadequate. Acceptable data are filtered to remove confounding artifacts (e.g., sinusoidal variation in three-phase electrical signals or eye-blinks and muscular activity in EEG). The artifact-filtered data are then used to recover the essential features of the underlying dynamics via standard time-delay, phase-space reconstruction. One of the main results of this reconstruction is a discrete approximation of the distribution function (DF) on the attractor. Unaltered dynamics yield an unchanging geometry of the attractor and the visitation frequencies of
Zhang, Lei; Wu, Chengyu; Bouvet, Michael; Yano, Shuya; Hoffman, Robert M
2015-03-10
We used the fluorescence ubiquitination-based cell cycle indicator (FUCCI) to monitor cell cycle arrest after treatment of FUCCI-expressing HeLa cells (FUCCI-HeLa) with a traditional Chinese medicine (TCM) herbal mixture LQ, previously shown to have anti-tumor and anti-metastatic activity in mouse models. Paclitaxel was used as the positive control. In 2D monolayer culture, the untreated control had approximately 45% of the cells in S/G₂/M phase. In contrast, the LQ-treated cells (9 mg/ml) were mostly in the G₀/G₁ (>90%) after 72 hours. After treatment with paclitaxel (0.01 μm), for 72 hours, 95% of the cells were in S/G₂/M. In 2.5D Matrigel culture, the colonies in the untreated control group had 40% of the cells in S/G₂/M. LQ arrested the cells in G₀/G₁ after 72 hours. Paclitaxel arrested almost all the cells in S/G₂/M after 72 hours. In 3D Gelfoam culture, the untreated control culture had approximately 45% of cells in G₂/M. In contrast, the LQ-treated cells were mostly in G₀/G₁ phase (>80%) after 72 hours treatment. Paclitaxel resulted in 90% of the cells arrested in S/G₂/M after 72 hours. The present report suggests the non-toxic LQ has potential to maintain cancers in a quiescent state for long periods of time.
Responsive ionic liquid-polymer 2D photonic crystal gas sensors.
Smith, Natasha L; Hong, Zhenmin; Asher, Sanford A
2014-12-21
We developed novel air-stable 2D polymerized photonic crystal (2DPC) sensing materials for visual detection of gas phase analytes such as water and ammonia by utilizing a new ionic liquid, ethylguanidine perchlorate (EGP) as the mobile phase. Because of the negligible ionic liquid vapor pressure these 2DPC sensors are indefinitely air stable and, therefore, can be used to sense atmospheric analytes. 2D arrays of ~640 nm polystyrene nanospheres were attached to the surface of crosslinked poly(hydroxyethyl methacrylate) (pHEMA)-based polymer networks dispersed in EGP. The wavelength of the bright 2D photonic crystal diffraction depends sensitively on the 2D array particle spacing. The volume phase transition response of the EGP-pHEMA system to water vapor or gaseous ammonia changes the 2DPC particle spacing, enabling the visual determination of the analyte concentration. Water absorbed by EGP increases the Flory-Huggins interaction parameter, which shrinks the polymer network and causes a blue shift in the diffracted light. Ammonia absorbed by the EGP deprotonates the pHEMA-co-acrylic acid carboxyl groups, swelling the polymer which red shifts the diffracted light.
NASA Technical Reports Server (NTRS)
1984-01-01
The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.
Generalised partition functions: inferences on phase space distributions
NASA Astrophysics Data System (ADS)
Treumann, Rudolf A.; Baumjohann, Wolfgang
2016-06-01
It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs-Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1/|q - 1|, with κ, q ∈ R) both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose and Fermi distributions follow for κ → ∞. For κ ≠ ∞ these are subject to the restrictions that they can be used only at temperatures far from zero. They thus, as shown earlier, have little value for quantum physics. This is reasonable, because physical κ systems imply strong correlations which are absent at zero temperature where apart from stochastics all dynamical interactions are frozen. In the classical large temperature limit one obtains physically reasonable κ distributions which depend on energy respectively momentum as well as on chemical potential. Looking for other functional dependencies, we examine Bessel functions whether they can be used for obtaining valid distributions. Again and for the same reason, no Fermi and Bose distributions exist in the low temperature limit. However, a classical Bessel-Boltzmann distribution can be constructed which is a Bessel-modified Lorentzian distribution. Whether it makes any physical sense remains an open question. This is not investigated here. The choice of Bessel functions is motivated solely by their convergence properties and not by reference to any physical demands. This result suggests that the Gibbs-Boltzmann partition function is fundamental not only to Gibbs-Boltzmann but also to a large class of generalised Lorentzian distributions as well as to the corresponding nonextensive statistical mechanics.
Correlated Electron Phenomena in 2D Materials
NASA Astrophysics Data System (ADS)
Lambert, Joseph G.
In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in
2d PDE Linear Symmetric Matrix Solver
1983-10-01
ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
2d PDE Linear Asymmetric Matrix Solver
1983-10-01
ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
2D Spinodal Decomposition in Forced Turbulence
NASA Astrophysics Data System (ADS)
Fan, Xiang; Diamond, Patrick; Chacon, Luis; Li, Hui
2015-11-01
Spinodal decomposition is a second order phase transition for binary fluid mixture, from one thermodynamic phase to form two coexisting phases. The governing equation for this coarsening process below critical temperature, Cahn-Hilliard Equation, is very similar to 2D MHD Equation, especially the conserved quantities have a close correspondence between each other, so theories for MHD turbulence are used to study spinodal decomposition in forced turbulence. Domain size is increased with time along with the inverse cascade, and the length scale can be arrested by a forced turbulence with direct cascade. The two competing mechanisms lead to a stabilized domain size length scale, which can be characterized by Hinze Scale. The 2D spinodal decomposition in forced turbulence is studied by both theory and simulation with ``pixie2d.'' This work focuses on the relation between Hinze scale and spectra and cascades. Similarities and differences between spinodal decomposition and MHD are investigated. Also some transport properties are studied following MHD theories. This work is supported by the Department of Energy under Award Number DE-FG02-04ER54738.
Deformed phase space Kaluza-Klein cosmology and late time acceleration
NASA Astrophysics Data System (ADS)
Sabido, M.; Yee-Romero, C.
2016-06-01
The effects of phase space deformations on Kaluza-Klein cosmology are studied. The deformation is introduced by modifying the symplectic structure of the minisuperspace variables. In the deformed model, we find an accelerating scale factor and therefore infer the existence of an effective cosmological constant from the phase space deformation parameter β.
NASA Astrophysics Data System (ADS)
Bazarov, Ivan V.; Dunham, Bruce M.; Gulliford, Colwyn; Li, Yulin; Liu, Xianghong; Sinclair, Charles K.; Soong, Ken; Hannon, Fay
2008-10-01
We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.
NASA Astrophysics Data System (ADS)
Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan; Feingold, Graham; Kostinski, Alexander B.; Khain, Alexander P.; Ovchinnikov, Mikhail; Fredj, Erick; Dagan, Guy; Pinto, Lital; Yaish, Ricki; Chen, Qian
2016-06-01
We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3-D cloud-tracking algorithm, and results are presented in the phase space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projected on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.
Trajectories and causal phase-space approach to relativistic quantum mechanics
Holland, P.R.; Kyprianidis, A.; Vigier, J.P.
1987-05-01
The authors analyze phase-space approaches to relativistic quantum mechanics from the viewpoint of the causal interpretation. In particular, they discuss the canonical phase space associated with stochastic quantization, its relation to Hilbert space, and the Wigner-Moyal formalism. They then consider the nature of Feynman paths, and the problem of nonlocality, and conclude that a perfectly consistent relativistically covariant interpretation of quantum mechanics which retains the notion of particle trajectory is possible.
Space Station Freedom - Approaching the critical design phase
NASA Technical Reports Server (NTRS)
Kohrs, Richard H.; Huckins, Earle, III
1992-01-01
The status and future developments of the Space Station Freedom are discussed. To date detailed design drawings are being produced to manufacture SSF hardware. A critical design review (CDR) for the man-tended capability configuration is planned to be performed in 1993 under the SSF program. The main objective of the CDR is to enable the program to make a full commitment to proceed to manufacture parts and assemblies. NASA recently signed a contract with the Russian space company, NPO Energia, to evaluate potential applications of various Russian space hardware for on-going NASA programs.
Integrated study plan for space bioprocessing (phase 1)
NASA Technical Reports Server (NTRS)
1977-01-01
Current economic evaluation and analytical techniques are applied to decision problems faced by the space bioprocessing program. NASA decision makers are enabled to choose candidate substances, after ranking them according to their potential economic benefit. The determination of appropriate evaluation techniques necessary to obtain measures of potential economic benefits which result from the pursuit of various space bioprocessing endeavors are focused upon. The treatment of each disease is impacted by a successful outcome of space bioprocessing and specify data and other input needs for each candidate substance.
Space station gas compressor technology study program, phase 1
NASA Technical Reports Server (NTRS)
Hafele, B. W.; Rapozo, R. R.
1989-01-01
The objectives were to identify the space station waste gases and their characteristics, and to investigate compressor and dryer types, as well as transport and storage requirements with tradeoffs leading to a preliminary system definition.
Research opportunities in space motion sickness, phase 2
NASA Technical Reports Server (NTRS)
Talbot, J. M.
1983-01-01
Space and motion sickness, the current and projected NASA research program, and the conclusions and suggestions of the ad hoc Working Group are summarized. The frame of reference for the report is ground-based research.
Space shuttle auxiliary power unit study, phase 2
NASA Technical Reports Server (NTRS)
Binsley, R. L.; Krause, A. A.; Maddox, R. D.; Marcy, R. D.; Siegler, R. S.
1972-01-01
A study was performed to establish the preliminary design of the space shuttle auxiliary power unit. Details of the analysis, optimizations, and design of the components, subsystems and systems are presented.
Multicolor pyrometer for materials processing in space, phase 2
NASA Technical Reports Server (NTRS)
Frish, Michael; Frank, Jonathan; Beerman, Henry
1988-01-01
The program goals were to design, construct, and program a prototype passive imaging pyrometer capable of measuring, as accurately as possible, the temperature distribution across the surface of a moving object suspended in space.
Phase C aerothermodynamic data base. [for space shuttle program
NASA Technical Reports Server (NTRS)
Moser, M., Jr.
1974-01-01
Summary listings of published documentation of SADSAC processed data arranged chronologically and by shuttle configuration are presented to provide an up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized in the course of the space shuttle program. The various tables or listings are designed to provide survey information to the various space shuttle managerial and technical levels. The various listings of the shuttle test data information, the list contents, and the purpose are described.
Efficient 2D MRI relaxometry using compressed sensing
NASA Astrophysics Data System (ADS)
Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.
2015-06-01
Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.
Brane brick models and 2 d (0 , 2) triality
NASA Astrophysics Data System (ADS)
Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong
2016-05-01
We provide a brane realization of 2 d (0 , 2) Gadde-Gukov-Putrov triality in terms of brane brick models. These are Type IIA brane configurations that are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. Triality translates into a local transformation of brane brick models, whose simplest representative is a cube move. We present explicit examples and construct their triality networks. We also argue that the classical mesonic moduli space of brane brick model theories, which corresponds to the probed Calabi-Yau 4-fold, is invariant under triality. Finally, we discuss triality in terms of phase boundaries, which play a central role in connecting Calabi-Yau 4-folds to brane brick models.
Multimegawatt space nuclear power supply: Phase 1, Final report
Not Available
1989-02-17
The preliminary safety assessment report analyzes the potential radiological risk of the integrated MSNPS with the launch vehicle including interface with the weapon system. Most emphasis will be placed the prime power concept design. Safety problems can occur any time during the entire life cycle of the system including contingency phases. The preliminary safety assessment report is to be delivered at the end of phase 2. This assessment will be the basis of the safety requirements which will be applied to the design of the MSNPS as it develops in subsequent phases. The assessment also focuses design activities on specific high-risk scenarios and missions that may impact safety.
Multimegawatt space nuclear power supply: Phase 1, Final report
Not Available
1989-02-17
The Phase 2 program objectives are to (1) demonstrate concept feasibility, (2) develop a preliminary design, and (3) complete Phase 3 engineering development and ground test plans. The approach to accomplish these objectives is to prove technical feasibility of our baseline design early in the program while maintaining flexibility to easily respond to changing requirements and advances in technology. This approach recognizes that technology is advancing rapidly while the operational phase MSNPS is 15 to 20 years in the future. This plan further recognizes that the weapons platform and Advanced Launch System (ALS) are in very early program definition stages; consequently, their requirements, interfaces, and technological basis will evolve. This document outlines the Phase 2 plan along with task scheduling of the various program aspects.
DYNA2D96. Explicit 2-D Hydrodynamic FEM Program
Whirley, R.G.
1992-04-01
DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.
Space station contamination control study: Internal combustion, phase 1
NASA Technical Reports Server (NTRS)
Ruggeri, Robert T.
1987-01-01
Contamination inside Space Station modules was studied to determine the best methods of controlling contamination. The work was conducted in five tasks that identified existing contamination control requirements, analyzed contamination levels, developed outgassing specification for materials, wrote a contamination control plan, and evaluated current materials of offgassing tests used by NASA. It is concluded that current contamination control methods can be made to function on the Space Station for up to 1000 days, but that current methods are deficient for periods longer than about 1000 days.
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
Large space telescope, phase A. Volume 3: Optical telescope assembly
NASA Technical Reports Server (NTRS)
1972-01-01
The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.
Large space telescope, phase A. Volume 5: Support systems module
NASA Technical Reports Server (NTRS)
1972-01-01
The development and characteristics of the support systems module for the Large Space Telescope are discussed. The following systems and described: (1) thermal control, (2) electrical, (3) communication and data landing, (4) attitude control system, and (5) structural features. Analyses of maintainability and reliability considerations are included.
Large space telescope, phase A. Volume 4: Scientific instrument package
NASA Technical Reports Server (NTRS)
1972-01-01
The design and characteristics of the scientific instrument package for the Large Space Telescope are discussed. The subjects include: (1) general scientific objectives, (2) package system analysis, (3) scientific instrumentation, (4) imaging photoelectric sensors, (5) environmental considerations, and (6) reliability and maintainability.
Deep Space Habitat Concept of Operations for Transit Mission Phases
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.
2011-01-01
The National Aeronautics and Space Administration (NASA) has begun evaluating various mission and system components of possible implementations of what the U.S. Human Spaceflight Plans Committee (also known as the Augustine Committee) has named the flexible path (Anon., 2009). As human spaceflight missions expand further into deep space, the duration of these missions increases to the point where a dedicated crew habitat element appears necessary. There are several destinations included in this flexible path a near Earth asteroid (NEA) mission, a Phobos/Deimos (Ph/D) mission, and a Mars surface exploration mission that all include at least a portion of the total mission in which the crew spends significant periods of time (measured in months) in the deep space environment and are thus candidates for a dedicated habitat element. As one facet of a number of studies being conducted by the Human Spaceflight Architecture Team (HAT) a workshop was conducted to consider how best to define and quantify habitable volume for these future deep space missions. One conclusion reached during this workshop was the need for a description of the scope and scale of these missions and the intended uses of a habitat element. A group was set up to prepare a concept of operations document to address this need. This document describes a concept of operations for a habitat element used for these deep space missions. Although it may eventually be determined that there is significant overlap with this concept of operations and that of a habitat destined for use on planetary surfaces, such as the Moon and Mars, no such presumption is made in this document.
Fringe spacing and phase of interfering matter waves
Vainio, O.; Vale, C. J.; Davis, M. J.; Heckenberg, N. R.; Rubinsztein-Dunlop, H.
2006-06-15
We experimentally investigate the outcoupling of atoms from Bose-Einstein condensates using two radio-frequency (rf) fields in the presence of gravity. We show that the fringe separation in the resulting interference pattern derives entirely from the energy difference between the two rf fields and not the gravitational potential difference between the two resonances. We subsequently demonstrate how the phase and polarization of the rf radiation directly control the phase of the matter wave interference and provide a semiclassical interpretation of the results.
Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector
Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Ruan, J.; /Fermilab
2011-03-01
The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods including multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.
NASA Astrophysics Data System (ADS)
Hajian, K.; Sheikh-Jabbari, M. M.
2016-02-01
We provide a general formulation for calculating conserved charges for solutions to generally covariant gravitational theories with possibly other internal gauge symmetries, in any dimensions and with generic asymptotic behaviors. These solutions are generically specified by a number of exact (continuous, global) symmetries and some parameters. We define "parametric variations" as field perturbations generated by variations of the solution parameters. Employing the covariant phase space method, we establish that the set of these solutions (up to pure gauge transformations) form a phase space, the solution phase space, and that the tangent space of this phase space includes the parametric variations. We then compute conserved charge variations associated with the exact symmetries of the family of solutions, caused by parametric variations. Integrating the charge variations over a path in the solution phase space, we define the conserved charges. In particular, we revisit "black hole entropy as a conserved charge" and the derivation of the first law of black hole thermodynamics. We show that the solution phase space setting enables us to define black hole entropy by an integration over any compact, codminesion-2, smooth spacelike surface encircling the hole, as well as to a natural generalization of Wald and Iyer-Wald analysis to cases involving gauge fields.
Inflationary perturbation theory is geometrical optics in phase space
Seery, David; Frazer, Jonathan; Mulryne, David J.; Ribeiro, Raquel H. E-mail: D.Mulryne@qmul.ac.uk E-mail: R.Ribeiro@damtp.cam.ac.uk
2012-09-01
A pressing problem in comparing inflationary models with observation is the accurate calculation of correlation functions. One approach is to evolve them using ordinary differential equations ({sup t}ransport equations{sup )}, analogous to the Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this approach to the complete set of momentum space correlation functions. A formal solution can be obtained using raytracing techniques adapted from geometrical optics. We reformulate inflationary perturbation theory in this language, and show that raytracing reproduces the familiar 'δN' Taylor expansion. Our method produces ordinary differential equations which allow the Taylor coefficients to be computed efficiently. We use raytracing methods to express the gauge transformation between field fluctuations and the curvature perturbation, ζ, in geometrical terms. Using these results we give a compact expression for the nonlinear gauge-transform part of f{sub NL} in terms of the principal curvatures of uniform energy-density hypersurfaces in field space.
Scaling and the start-up phase of space industrialization
NASA Technical Reports Server (NTRS)
Criswell, D. R.
1979-01-01
By terrestrial standards very little mass is needed to construct the space portion of a 10,000 megawatt (10 GW) power system. Use of lunar materials makes it reasonable to consider alternatives to silicon solar cells for conversion of sunlight to electricity and thereby avoid present major problems associated with solar cell production. Machinery needed on the moon to excavate lunar materials and deliver them to a transport system, to beneficiate lunar materials, to produce glasses and ceramics from lunar materials and to chemically process lunar materials into their major oxides and elements are minor mass fractions of the total mass of equipment needed in space to produce an SPS. In addition the processing equipment can throughput several hundred times their own mass each year with very little requirement for makeup mass from earth.
CSR Interaction for a 2D Energy-Chirped Bunch on a General Orbit
Rui Li
2009-05-01
When an electron bunch with initial linear energy chirp traverses a bunch compression chicane, the bunch interacts with itself via coherent synchrotron radiation (CSR) and space charge force. The effective longitudinal CSR force for such kind of 2D bunch on a circular orbit has been analyzed earlier [1]. In this paper, we present the analytical results of the effective longitudinal CSR force for a 2D energy-chirped bunch going through a general orbit, which includes the entrance and exit of a circular orbit. In particular, we will show the behavior of the force in the last bend of a chicane when the bunch is under extreme compression. This is the condition when bifurcation of bunch phase space occurs in many CSR measurements. [1] R. Li, Phys. Rev. ST Accel. Beams 11, 024401 (2008)
LDEF (Postflight), AO133 : Effect of Space Environment on Space-Based Radar Phased-Array Antenna, Tr
NASA Technical Reports Server (NTRS)
1990-01-01
LDEF (Postflight), AO133 : Effect of Space Environment on Space-Based Radar Phased-Array Antenna, Tray H07 The postflight photograph was taken in the KSC SAEF II facility after the experiment was removed from the LDEF. The Space-Based Radar (SBR) Phased-Array Antenna occupies a six (6) inch deep LDEF end corner tray located on the space end of the LDEF. A light tan discoloration is visible on the left and lower flanges of the experiment tray and also on the unpainted aluminum filler to the left of the passive part of the experiment. A darker stain has discolored the lower corners of the tray structure. The SBR Phased-Array Antenna experiment, consisting of an active part in the upper half of the tray and a passive part located in the lower half of the experiment tray, appears to be intact with no apparent physical damage. The black thermal coating on the active part of the experiment appears to have changed from a flat black to a dark gray while the coating on the passive part of the experiment appears less degraded. The exposed Kapton specimen surfaces in both the active and passive parts of the experiment appear to have changed from specular to diffuse from exposure to the space environment.
Phase-space description of plasma waves. Part 1. Linear theory
NASA Astrophysics Data System (ADS)
Biro, T.; Rönnmark, K.
1992-06-01
We develop an (r, k) phase-space description of waves in plasmas by introducing Gaussian window functions to separate short-scale oscillations from long-scale modulations of the wave fields and variations in the plasma parameters. To obtain a wave equation that unambiguously separates conservative dynamics from dissipation in an inhomogeneous and time-varying background plasma, we first discuss the proper form of the current response function. In analogy with the particle distribution function f(v, r, t), we introduce a wave density N(k, r, t) on phase space. This function is proved to satisfy a simple continuity equation. Dissipation is also included, and this allows us to describe the damping or growth of wave density along rays. Problems involving geometric optics of continuous media often appear simpler when viewed in phase space, since the flow of N in phase space is incompressible.
Emittance and Phase Space Exchange for Advanced Beam Manipulation and Diagnostics
Xiang, Dao; Chao, Alex; /SLAC
2012-04-27
Alternative chicane-type beam lines are proposed for exact emittance exchange between transverse phase space (x,x') and longitudinal phase space (z,{delta}), where x is the transverse position, x' is the transverse divergence, and z and {delta} are relative longitudinal position and energy deviation with respect to the reference particle. Methods to achieve exact phase space exchanges, i.e., mapping x to z, x' to {delta}, z to x, and {delta} to x', are suggested. Schemes to mitigate and completely compensate for the thick-lens effect of the transverse cavity on emittance exchange are studied. Some applications of the phase space exchange for advanced beam manipulation and diagnostics are discussed.
Phase-space action conservation for non-eikonal wave fields
NASA Astrophysics Data System (ADS)
Cook, Daniel R.; Flynn, William G.; Morehead, James J.; Kaufman, Allan N.
1993-03-01
We derive a local phase-space wave-action conservation law, valid for non-eikonal wave fields for which the medium and/or the wave amplitudes have rapid spatial variation. This six-dimensional conservation law leads to conservation laws on three-dimensional subspaces. The law is covariant under linear canonical transformations of phase-space, and under congruent transformations of the multi-component wave field.
Subpicosecond electron bunch train production using a phase-space exchange technique
Sun, Y.-E.; Piot, P.; Johnson, A.S.; Lumpkin, A.H.; Maxwell, T.J.; Ruan, J.; Thurman-Keup, R.M.; /Fermilab
2011-03-01
Our recent experimental demonstration of a photoinjector electron bunch train with sub-picosecond structures is reported in this paper. The experiment is accomplished by converting an initially horizontal beam intensity modulation into a longitudinal phase space modulation, via a beamline capable of exchanging phase-space coordinates between the horizontal and longitudinal degrees of freedom. The initial transverse modulation is produced by intercepting the beam with a multislit mask prior to the exchange. We also compare our experimental results with numerical simulations.
Linear processes in high dimensions: Phase space and critical properties
NASA Astrophysics Data System (ADS)
Mastromatteo, Iacopo; Bacry, Emmanuel; Muzy, Jean-François
2015-04-01
In this work we investigate the generic properties of a stochastic linear model in the regime of high dimensionality. We consider in particular the vector autoregressive (VAR) model and the multivariate Hawkes process. We analyze both deterministic and random versions of these models, showing the existence of a stable phase and an unstable phase. We find that along the transition region separating the two regimes the correlations of the process decay slowly, and we characterize the conditions under which these slow correlations are expected to become power laws. We check our findings with numerical simulations showing remarkable agreement with our predictions. We finally argue that real systems with a strong degree of self-interaction are naturally characterized by this type of slow relaxation of the correlations.
Phase 1 Space Fission Propulsion System Design Considerations
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Carter, Robert; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a "Phase 1" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.
Self-similarity of phase-space networks of frustrated spin models and lattice gas models
NASA Astrophysics Data System (ADS)
Peng, Yi; Wang, Feng; Han, Yilong
2013-03-01
We studied the self-similar properties of the phase-spaces of two frustrated spin models and two lattice gas models. The frustrated spin models included (1) the anti-ferromagnetic Ising model on a two-dimensional triangular lattice (1a) at the ground states and (1b) above the ground states and (2) the six-vertex model. The two lattice gas models were (3) the one-dimensional lattice gas model and (4) the two-dimensional lattice gas model. The phase spaces were mapped to networks so that the fractal analysis of complex networks could be applied, i.e. the box-covering method and the cluster-growth method. These phase spaces, in turn, establish new classes of networks with unique self-similar properties. Models 1a, 2, and 3 with long-range power-law correlations in real space exhibit fractal phase spaces, while models 1b and 4 with short-range exponential correlations in real space exhibit nonfractal phase spaces. This behavior agrees with one of untested assumptions in Tsallis nonextensive statistics. Hong Kong GRC grants 601208 and 601911
Space shuttle phase B. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
A study was conducted to identify the differences among total system concepts of space shuttle configurations. Emphasis was placed on concepts that lead to selection of a system that performs the missions within budget and schedule constraints. The spectrum of launch vehicle configurations is illustrated. An inboard profile of the spacecraft is presented to show the interior arrangement of the major subsystems. The performance prediction of the spacecraft during specified portions of the mission is analyzed. A cost comparison of the various concepts is included.
Development of CCD imaging sensors for space applications, phase 1
NASA Technical Reports Server (NTRS)
Antcliffe, G. A.
1975-01-01
The results of an experimental investigation to develop a large area charge coupled device (CCD) imager for space photography applications are described. Details of the design and processing required to achieve 400 X 400 imagers are presented together with a discussion of the optical characterization techniques developed for this program. A discussion of several aspects of large CCD performance is given with detailed test reports. The areas covered include dark current, uniformity of optical response, square wave amplitude response, spectral responsivity and dynamic range.
Space Fission Propulsion Testing and Development Progress. Phase 1
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems we expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans.
Phase 1 space fission propulsion system testing and development progress
NASA Astrophysics Data System (ADS)
van Dyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter
2001-02-01
Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified, MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired, they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans. .
Phase 1 Space Fission Propulsion Energy Source Design
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems with a specific mass at or below 50 kg/kWjet could enhance or enable numerous robotic outer solar system missions of interest. At the required specific mass, it is possible to develop safe, affordable systems that meet mission requirements. To help select the system design to pursue, eight evaluation criteria were identified: system integration, safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of four potential concepts was performed: a Testable, Passive, Redundant Reactor (TPRR), a Testable Multi-Cell In-Core Thermionic Reactor (TMCT), a Direct Gas Cooled Reactor (DGCR), and a Pumped Liquid Metal Reactor.(PLMR). Development of any of the four systems appears feasible. However, for power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the TPRR has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the TPRR approach. Successful development and utilization of a "Phase I" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.
Modeling of recombinant yeast cells: reduction of phase space.
Birol, G; Birol, I; Kirdar, B; Onsan, Z I
1997-01-01
The mechanism of starch fermentation by recombinant Saccharomyces cerevisiae in batch reactor is studied. Experiments were carried in the presence and absence of oxygen, with different initial starch concentrations. A variety of data concerning biotic and abiotic phases are collected. Nonlinear data analysis techniques are used to determine the block diagram of the system under study. Data analysis and processing reported here, are believed to form a basis in further work in structured modeling of biological systems, recombinant yeast cultures in particular. PMID:9603032
Latent heat induced rotation limited aggregation in 2D ice nanocrystals.
Bampoulis, Pantelis; Siekman, Martin H; Kooij, E Stefan; Lohse, Detlef; Zandvliet, Harold J W; Poelsema, Bene
2015-07-21
The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma. PMID:26203037
Latent heat induced rotation limited aggregation in 2D ice nanocrystals
NASA Astrophysics Data System (ADS)
Bampoulis, Pantelis; Siekman, Martin H.; Kooij, E. Stefan; Lohse, Detlef; Zandvliet, Harold J. W.; Poelsema, Bene
2015-07-01
The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma.
Natural environment design criteria for the space station program definition phase
NASA Technical Reports Server (NTRS)
Vaughan, W. W.
1984-01-01
The natural environment design criteria requirements for use in the Space Station and its Elements (SSPE) definition phase studies are presented. The atmospheric dynamic and thermodynamic environments, meteoroids, radiation, physical constants are addressed. It is intended to enable all groups involved in the definition phase studies to proceed with a common and consistent set of natural environment criteria requirements.
PARAS program: Phased array radio astronomy from space
NASA Technical Reports Server (NTRS)
Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael
1992-01-01
An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.
Project PARAS: Phased array radio astronomy from space
NASA Technical Reports Server (NTRS)
Nuss, Kenneth; Hoffmann, Christopher; Dungan, Michael; Madden, Michael; Bendakhlia, Monia
1992-01-01
An orbiting radio telescope is proposed which, when operated in a very long baseline interferometry (VLBI) scheme, would allow higher than currently available angular resolution and dynamic range in the maps and the ability to observe rapidly changing astronomical sources. Using passive phased array technology, the proposed design consists of 656 hexagonal modules forming a 150-m diameter antenna dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data are transmitted to telemetry stations on the ground. The truss frame supporting each observatory panel is a novel hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and the bottom triangle. Attitude control and station keeping functions will be performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and four hydrazine arcjets, the latter supported by either a photovoltaic array or a radioisotope thermoelectric generator. The total mass of the spacecraft is about 20,500 kg.
Phased Array Ultrasonic Evaluation of Space Shuttle Main Engine (SSME) Nozzle Weld
NASA Technical Reports Server (NTRS)
James, Steve; Engel, J.; Kimbrough, D.; Suits, M.; Hopson, George (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of the phased array ultrasonic evaluation of the Space Shuttle Main Engine (SSME) nozzle weld. Details are given on the nondestructive testing evaluation approach, conventional shear wave and phased array techniques, and an x-ray versus phased array risk analysis. The field set-up was duplicated to the greatest extent possible in the laboratory and the phased array ultrasonic technique was developed and validated prior to weld evaluation. Results are shown for the phased array ultrasonic evaluation and conventional ultrasonic evaluation results.
Free-space microwave power transmission study, phase 3
NASA Technical Reports Server (NTRS)
Brown, W. C.
1975-01-01
The results of an investigation of the technology of free-space power transmission by microwave beam are presented. A description of the steps that were taken to increase the overall dc to dc efficiency of microwave power transmission from 15 percent to over 50 percent is given. Included in this overall efficiency were the efficiencies of the dc to microwave conversion, the microwave transmission itself, and the microwave to dc conversion. Improvements in launching the microwave beam with high efficiency by means of a dual mode horn resulted in 95 percent of the output of the microwave generator reaching the receiving area. Emphasis was placed upon successive improvements in reception and rectification of the microwave power, resulting in the design of a rectenna device for this purpose whose efficiency was 75 percent. The procedures and the hardware developed were the basis for tests certified by the Jet Propulsion Laboratory in which an overall dc to dc efficiency of 54 percent was achieved.
Space shuttle electromagnetic environment experiment. Phase A: Definition study
NASA Technical Reports Server (NTRS)
Haber, F.; Showers, R. M.; Kocher, C.; Forrest, L. A., Jr.
1976-01-01
Methods for carrying out measurements of earth electromagnetic environment using the space shuttle as a measurement system platform are herein reported. The goal is to provide means for mapping intentional and nonintentional emitters on earth in the frequency range 0.4 to 40 GHz. A survey was made of known emitters using available data from national and international regulatory agencies, and from industry sources. The spatial distribution of sources, power levels, frequencies, degree of frequency re-use, etc., found in the survey, are here presented. A concept is developed for scanning the earth using a directive antenna whose beam is made to rotate at a fixed angle relative to the nadir; the illuminated area swept by the beam is of the form of cycloidal annulus over a sphere. During the beam's sojourn over a point, the receiver sweeps in frequency over ranges in the order of octave width using sweeping filter bandwidths sufficient to give stable readings.
3D imaging of translucent media with a plenoptic sensor based on phase space optics
NASA Astrophysics Data System (ADS)
Zhang, Xuanzhe; Shu, Bohong; Du, Shaojun
2015-05-01
Traditional stereo imaging technology is not working for dynamical translucent media, because there are no obvious characteristic patterns on it and it's not allowed using multi-cameras in most cases, while phase space optics can solve the problem, extracting depth information directly from "space-spatial frequency" distribution of the target obtained by plenoptic sensor with single lens. This paper discussed the presentation of depth information in phase space data, and calculating algorithms with different transparency. A 3D imaging example of waterfall was given at last.
A new inversion method for (T2, D) 2D NMR logging and fluid typing
NASA Astrophysics Data System (ADS)
Tan, Maojin; Zou, Youlong; Zhou, Cancan
2013-02-01
One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.
LDEF (Prelaunch), AO133 : Effect of Space Environment on Space-Based Radar Phased-Array Antenna, Tra
NASA Technical Reports Server (NTRS)
1984-01-01
LDEF (Prelaunch), AO133 : Effect of Space Environment on Space-Based Radar Phased-Array Antenna, Tray H07 The prelaunch photograph was taken in SAEF II at KSC prior to installation of the integrated tray on the LDEF. The Space-Based Radar (SBR) Phased-Array Antenna Experiment occupies a six (6) inch deep LDEF end corner tray located on the space end of the LDEF. The SBR Phased-Array Antenna experiment consists of both passive and active parts. The passive part , shown in the left half of the experiment tray, investigates the dimensional stability of Kapton when exposed to induced stresses in the space environment. Continuous and spliced specimen of both plain Kapton (127 um thick) and glass reinforced Kapton (196 um thick) will be exposed for the entire mission. The Kapton specimen array contains eight 2.54-cm-wide specimen and sixteen (16) 1.27-cm-wide specimen. The specimen are stretched over an aluminum roller assembly and utilize a spring loaded mechanism to provide preselected stresses. An aluminum support structure houses two (2) identical set of specimen, one exposed to the total environment and one shadowed. The fasteners are non-magnetic stainless steel and the black surface is a thermal control coating, 3M-Nextel 401-610 (Black Velvet). The active part of the experiment, located in the right half of the tray, investigates the interaction between high voltage and low-Earth-orbit plasma. A fourteen (14) inch wide by twenty eight (28) inch long section of the Grumman SBR Phased-Array antenna consisting of two Kapton antenna planes and a perforated aluminum ground plane mounted on an aluminum support structure. Cop- per dipole elements deposited on the Kapton antenna plane provide the high voltage electrodes. The fasteners are non-magnetic stainless steel and the black surface is a thermal control coating, 3M-Nextel 401-610 (Black Velvet).
QUENCH2D. Two-Dimensional IHCP Code
Osman, A.; Beck, J.V.
1995-01-01
QUENCH2D* is developed for the solution of general, non-linear, two-dimensional inverse heat transfer problems. This program provides estimates for the surface heat flux distribution and/or heat transfer coefficient as a function of time and space by using transient temperature measurements at appropriate interior points inside the quenched body. Two-dimensional planar and axisymmetric geometries such as turnbine disks and blades, clutch packs, and many other problems can be analyzed using QUENCH2D*.
Influence of chaotic synchronization on mixing in the phase space of interacting systems
NASA Astrophysics Data System (ADS)
Astakhov, Sergey V.; Dvorak, Anton; Anishchenko, Vadim S.
2013-03-01
Using the concept of the relative metric entropy, we study the influence of the synchronization phenomenon on mixing rate in the phase space of deterministic and noisy chaotic systems. We show that transition to both complete and phase synchronization of chaos is accompanied by the decrease of the level of mixing induced by internal nonlinear mechanisms of interacting systems as well as by external noise influence. Therefore, the decrease of the mixing rate in the phase space of interacting systems may indicate transition to synchronization. The obtained results are important for time series analysis in various types of real noisy systems (e.g., biological, social, and financial systems).
Space observations of cold-cloud phase change.
Choi, Yong-Sang; Lindzen, Richard S; Ho, Chang-Hoi; Kim, Jinwon
2010-06-22
This study examines the vertically resolved cloud measurements from the cloud-aerosol lidar with orthogonal polarization instrument on Aqua satellite from June 2006 through May 2007 to estimate the extent to which the mixed cloud-phase composition can vary according to the ambient temperature, an important concern for the uncertainty in calculating cloud radiative effects. At -20 degrees C, the global average fraction of supercooled clouds in the total cloud population is found to be about 50% in the data period. Between -10 and -40 degrees C, the fraction is smaller at lower temperatures. However, there are appreciable regional and temporal deviations from the global mean (> +/- 20%) at the isotherm. In the analysis with coincident dust aerosol data from the same instrument, it appears that the variation in the supercooled cloud fraction is negatively correlated with the frequencies of dust aerosols at the -20 degrees C isotherm. This result suggests a possibility that dust particles lifted to the cold cloud layer effectively glaciate supercooled clouds. Observations of radiative flux from the clouds and earth's radiant energy system instrument aboard Terra satellite, as well as radiative transfer model simulations, show that the 20% variation in the supercooled cloud fraction is quantitatively important in cloud radiative effects, especially in shortwave, which are 10-20 W m(-2) for regions of mixed-phase clouds affected by dust. In particular, our results demonstrate that dust, by glaciating supercooled water, can decrease albedo, thus compensating for the increase in albedo due to the dust aerosols themselves. This has important implications for the determination of climate sensitivity.
Space observations of cold-cloud phase change
Choi, Yong-Sang; Lindzen, Richard S.; Ho, Chang-Hoi; Kim, Jinwon
2010-01-01
This study examines the vertically resolved cloud measurements from the cloud-aerosol lidar with orthogonal polarization instrument on Aqua satellite from June 2006 through May 2007 to estimate the extent to which the mixed cloud-phase composition can vary according to the ambient temperature, an important concern for the uncertainty in calculating cloud radiative effects. At -20 °C, the global average fraction of supercooled clouds in the total cloud population is found to be about 50% in the data period. Between -10 and -40 °C, the fraction is smaller at lower temperatures. However, there are appreciable regional and temporal deviations from the global mean (> ± 20%) at the isotherm. In the analysis with coincident dust aerosol data from the same instrument, it appears that the variation in the supercooled cloud fraction is negatively correlated with the frequencies of dust aerosols at the -20 °C isotherm. This result suggests a possibility that dust particles lifted to the cold cloud layer effectively glaciate supercooled clouds. Observations of radiative flux from the clouds and earth’s radiant energy system instrument aboard Terra satellite, as well as radiative transfer model simulations, show that the 20% variation in the supercooled cloud fraction is quantitatively important in cloud radiative effects, especially in shortwave, which are 10 - 20 W m-2 for regions of mixed-phase clouds affected by dust. In particular, our results demonstrate that dust, by glaciating supercooled water, can decrease albedo, thus compensating for the increase in albedo due to the dust aerosols themselves. This has important implications for the determination of climate sensitivity. PMID:20534562
The effective two-dimensional phase space of cosmological scalar fields
NASA Astrophysics Data System (ADS)
Edwards, David C.
2016-08-01
It has been shown by Remmen and Carroll [1] that, for a model universe which contains only a kinetically canonical scalar field minimally coupled to gravity it is possible to choose `special coordinates' to describe a two-dimensional effective phase space. The special, non-canonical, coordinates are phi,dot phi and the ability to describe an effective phase space with these coordinates empowers the common usage of phi-dot phi as the space to define inflationary initial conditions. This paper extends the result to the full Horndeski action. The existence of a two-dimensional effective phase space is shown for the general case. Subsets of the Horndeski action, relevant to cosmology are considered as particular examples to highlight important aspects of the procedure.
Effective increase in beam emittance by phase-space expansion using asymmetric Bragg diffraction.
Chu, Chia-Hung; Tang, Mau-Tsu; Chang, Shih-Lin
2015-08-24
We propose an innovative method to extend the utilization of the phase space downstream of a synchrotron light source for X-ray transmission microscopy. Based on the dynamical theory of X-ray diffraction, asymmetrically cut perfect crystals are applied to reshape the position-angle-wavelength space of the light source, by which the usable phase space of the source can be magnified by over one hundred times, thereby "phase-space-matching" the source with the objective lens of the microscope. The method's validity is confirmed using SHADOW code simulations, and aberration through an optical lens such as a Fresnel zone plate is examined via matrix optics for nano-resolution X-ray images.
Effective increase in beam emittance by phase-space expansion using asymmetric Bragg diffraction.
Chu, Chia-Hung; Tang, Mau-Tsu; Chang, Shih-Lin
2015-08-24
We propose an innovative method to extend the utilization of the phase space downstream of a synchrotron light source for X-ray transmission microscopy. Based on the dynamical theory of X-ray diffraction, asymmetrically cut perfect crystals are applied to reshape the position-angle-wavelength space of the light source, by which the usable phase space of the source can be magnified by over one hundred times, thereby "phase-space-matching" the source with the objective lens of the microscope. The method's validity is confirmed using SHADOW code simulations, and aberration through an optical lens such as a Fresnel zone plate is examined via matrix optics for nano-resolution X-ray images. PMID:26368150
NASA Astrophysics Data System (ADS)
Meierhenrich, Uwe J.; Cason, Julie R. L.; Szopa, Cyril; Sternberg, Robert; Raulin, François; Thiemann, Wolfram H.-P.; Goesmann, Fred
2013-12-01
The European Space Agency's Rosetta mission was launched in March 2004 in order to reach comet 67P/Churyumov-Gerasimenko by August 2014. The Cometary Sampling and Composition experiment (COSAC) onboard the Rosetta mission's lander "Philae" has been designed for the cometary in situ detection and quantification of organic molecules using gas chromatography coupled to mass spectrometry (GC-MS). The GC unit of COSAC is equipped with eight capillary columns that will each provide a specific stationary phase for molecular separation. Three of these stationary phases will be used to chromatographically resolve enantiomers, as they are composed of liquid polymers of polydimethylsiloxane (PDMS) to which chiral valine or cyclodextrin units are attached. Throughout the ten years of Rosetta's journey through space to reach comet 67P, these liquid stationary phases have been exposed to space vacuum, as the capillary columns within the COSAC unit were not sealed or filled with carrier gas. Long term exposures to space vacuum can cause damage to such liquid stationary phases as key monomers, volatiles, and chiral selectors can be vaporized and lost in transit. We have therefore exposed identical spare units of COSAC's chiral stationary phases over eight years to vacuum conditions mimicking those experienced in space and we have now investigated their resolution capabilities towards different enantiomers both before and after exposure to space vacuum environments. We have observed that enantiomeric resolution capabilities of these chiral liquid enantioselective stationary phases has not been affected by exposure to space vacuum conditions. Thus we conclude that the three chiral stationary phases of the COSAC experiment onboard the Rosetta mission lander "Philae" can be considered to have maintained their resolution capacities throughout their journey prior to cometary landing in November 2014.
Phase 1 Space Fission Propulsion System Testing and Development Progress
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter; Schafer, Charles (Technical Monitor)
2001-01-01
Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core, Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans.
D Phase Space Measurements at the SLAC Gun Test Facility
NASA Astrophysics Data System (ADS)
Schmerge, J. F.; Bolton, P. R.; Clendenin, J. E.; Dowell, D. H.; Gierman, S. M.; Limborg, C. G.; Murphy, B. F.
2003-12-01
Proposed fourth generation light sources using SASE FELs to generate short pulse, coherent, X-rays require demonstration of high brightness electron sources. The Gun Test Facility (GTF) at SLAC was built to test high brightness sources for the proposed Linac Coherent Light Source at SLAC. The GTF is composed of an S-band photocathode rf gun with a Cu cathode, emittance compensating solenoid, single 3 m SLAC linac section and e-beam diagnostic section with a UV drive laser system. The longitudinal emittance exiting the gun has been determined by measuring the energy spectrum downstream of the linac as a function of the linac phase. The e-beam pulse width, correlated and uncorrelated energy spread at the linac entrance have been fit to the measured energy spectra using a least square error fitting routine. The fit yields a pulse width of 2.9 ps FWHM for a 4.3 ps FWHM laser pulsewidth and 2% rms correlated energy spread with 0.07% rms uncorrelated energy spread. The correlated energy spread is enhanced in the linac to allow slice emittance measurements by conducting a quadrupole scan in a dispersive section. The normalized slice emittance has been measured to be as low as 2 mm-mrad for beams with peak currents up to 150 A (300 pC with a laser pulse length of 1.8 ps) while the full projected emittance is 3 mm-mrad.
Surgery in space. Phase I: Basic surgical principles in a simulated space environment.
Satava, R M
1988-06-01
The venturing forth of man into space confronts the surgeon with a new weightless environment with which he will inevitably have to contend. In this study operative procedures were performed on 20 rats in a simulated space environment with use of neutral buoyancy in order to identify those factors that could actually or potentially affect operative technique. There are three general areas of difference from normal conditions in simulated microgravity: physical adaptation to gravity deprivation tissue behavior, including bleeding; and the conduct of surgery. Without gravity, the tactile "feel" of objects is changed ("heavy" and "light" are meaningless terms) and proprioception is confused so that there is past pointing and overreaching of movements. Tissue planes tend to separate, and organs float and bob in the operative field, which makes clamping, cutting, and suturing different. Bleeding is a major consideration; surface tension tends to keep venous blood oozing along surfaces, whereas pulsatile arterial blood forms droplets, streamers, and clouds, depending on the force of the bleeding. These factors and others interfere with surgical technique in a number of ways: dispersion of blood obscures the surgeon's vision, sutures become entangled, organs are not stabilized, and instruments float into the operative field. The limitations of comparing neutral buoyancy to the true zero gravity of space are addressed. There is a definite need for further investigation for development of new surgical techniques in preparation for experimental and clinical surgery in space.
NASA Technical Reports Server (NTRS)
Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa
1990-01-01
The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.
Phase-Stable Free-Space Optical Lattices for Trapped Ions.
Schmiegelow, C T; Kaufmann, H; Ruster, T; Schulz, J; Kaushal, V; Hettrich, M; Schmidt-Kaler, F; Poschinger, U G
2016-01-22
We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, and we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion. The ion is localized within the standing wave to better than 2% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion position over the 157 μm range along the trap axis at accuracies of better than 6 nm.
Performance evaluation of digital phase-locked loops for advanced deep space transponders
NASA Technical Reports Server (NTRS)
Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.
1994-01-01
The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.
Looking for phase-space structures in star-forming regions: an MST-based methodology
NASA Astrophysics Data System (ADS)
Alfaro, Emilio J.; González, Marta
2016-03-01
We present a method for analysing the phase space of star-forming regions. In particular we are searching for clumpy structures in the 3D sub-space formed by two position coordinates and radial velocity. The aim of the method is the detection of kinematic segregated radial velocity groups, that is, radial velocity intervals whose associated stars are spatially concentrated. To this end we define a kinematic segregation index, tilde{Λ }(RV), based on the Minimum Spanning Tree graph algorithm, which is estimated for a set of radial velocity intervals in the region. When tilde{Λ }(RV) is significantly greater than 1 we consider that this bin represents a grouping in the phase space. We split a star-forming region into radial velocity bins and calculate the kinematic segregation index for each bin, and then we obtain the spectrum of kinematic groupings, which enables a quick visualization of the kinematic behaviour of the region under study. We carried out numerical models of different configurations in the sub-space of the phase space formed by the coordinates and the that various case studies illustrate. The analysis of the test cases demonstrates the potential of the new methodology for detecting different kind of groupings in phase space.
Quantum phase-space picture of Bose-Einstein condensates in a double well
Mahmud, Khan W.; Perry, Heidi; Reinhardt, William P.
2005-02-01
We present a quantum phase-space model of the Bose-Einstein condensate (BEC) in a double-well potential. In a quantum two-mode approximation we examine the eigenvectors and eigenvalues and find that the energy correlation diagram indicates a transition from a delocalized to a fragmented regime. Phase-space information is extracted from the stationary quantum states using the Husimi distribution function. We show that the mean-field phase-space characteristics of a nonrigid physical pendulum arises from the exact quantum states, and that only 4-8 particles per well are needed to reach the semiclassical limit. For a driven double-well BEC, we show that the classical chaotic dynamics is manifest in the dynamics of the quantum states. Phase-space analogy also suggests that a {pi} phase-displaced wave packet put on the unstable fixed point on a separatrix bifurcates to create a superposition of two pendulum rotor states--a macroscopic superposition state of BEC. We show that the choice of initial barrier height and ramping, following a {pi} phase imprinting on the condensate, can be used to generate controlled entangled number states with tunable extremity and sharpness.
Phase and Pupil Amplitude Recovery for JWST Space-Optics Control
NASA Technical Reports Server (NTRS)
Dean, B. H.; Zielinski, T. P.; Smith, J. S.; Bolcar, M. R.; Aronstein, D. L.; Fienup, J. R.
2010-01-01
This slide presentation reviews the phase and pupil amplitude recovery for the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam). It includes views of the Integrated Science Instrument Module (ISIM), the NIRCam, examples of Phase Retrieval Data, Ghost Irradiance, Pupil Amplitude Estimation, Amplitude Retrieval, Initial Plate Scale Estimation using the Modulation Transfer Function (MTF), Pupil Amplitude Estimation vs lambda, Pupil Amplitude Estimation vs. number of Images, Pupil Amplitude Estimation vs Rotation (clocking), and Typical Phase Retrieval Results Also included is information about the phase retrieval approach, Non-Linear Optimization (NLO) Optimized Diversity Functions, and Least Square Error vs. Starting Pupil Amplitude.
Phase diagram of Model C in the parametric space of order parameter and space dimensions
NASA Astrophysics Data System (ADS)
Dudka, M.; Folk, R.; Holovatch, Yu.
2016-03-01
The scaling behavior of Model C describing the dynamical behavior of the n -component nonconserved order parameter coupled statically to a scalar conserved density is considered in d -dimensional space. Conditions for the realization of different types of scaling regimes in the (n ,d ) plane are studied within the field-theoretical renormalization group approach. Borders separating these regions are calculated on the base of high-order RG functions using ɛ expansions as well as by fixed dimension d approach with resummation.
Phase space structures in gyrokinetic simulations of fusion plasma turbulence
NASA Astrophysics Data System (ADS)
Ghendrih, Philippe; Norscini, Claudia; Cartier-Michaud, Thomas; Dif-Pradalier, Guilhem; Abiteboul, Jérémie; Dong, Yue; Garbet, Xavier; Gürcan, Ozgür; Hennequin, Pascale; Grandgirard, Virginie; Latu, Guillaume; Morel, Pierre; Sarazin, Yanick; Storelli, Alexandre; Vermare, Laure
2014-10-01
Gyrokinetic simulations of fusion plasmas give extensive information in 5D on turbulence and transport. This paper highlights a few of these challenging physics in global, flux driven simulations using experimental inputs from Tore Supra shot TS45511. The electrostatic gyrokinetic code GYSELA is used for these simulations. The 3D structure of avalanches indicates that these structures propagate radially at localised toroidal angles and then expand along the field line at sound speed to form the filaments. Analysing the poloidal mode structure of the potential fluctuations (at a given toroidal location), one finds that the low modes m = 0 and m = 1 exhibit a global structure; the magnitude of the m = 0 mode is much larger than that of the m = 1 mode. The shear layers of the corrugation structures are thus found to be dominated by the m = 0 contribution, that are comparable to that of the zonal flows. This global mode seems to localise the m = 2 mode but has little effect on the localisation of the higher mode numbers. However when analysing the pulsation of the latter modes one finds that all modes exhibit a similar phase velocity, comparable to the local zonal flow velocity. The consequent dispersion like relation between the modes pulsation and the mode numbers provides a means to measure the zonal flow. Temperature fluctuations and the turbulent heat flux are localised between the corrugation structures. Temperature fluctuations are found to exhibit two scales, small fluctuations that are localised by the corrugation shear layers, and appear to bounce back and forth radially, and large fluctuations, also readily observed on the flux, which are associated to the disruption of the corrugations. The radial ballistic velocity of both avalanche events if of the order of 0.5ρ∗c0 where ρ∗ = ρ0/a, a being the tokamak minor radius and ρ0 being the characteristic Larmor radius, ρ0 = c0/Ω0. c0 is the reference ion thermal velocity and Ω0 = qiB0/mi the reference
Defect formation and coarsening in hexagonal 2D curved crystals.
García, Nicolás A; Pezzutti, Aldo D; Register, Richard A; Vega, Daniel A; Gómez, Leopoldo R
2015-02-01
In this work we study the processes of defect formation and coarsening of two-dimensional (2D) curved crystal structures. These processes are found to strongly deviate from their counterparts in flat systems. In curved backgrounds the process of defect formation is deeply affected by the curvature, and at the onset of a phase transition the early density of defects becomes highly inhomogeneous. We observe that even a single growing crystal can produce varying densities of defects depending on its initial position and local orientation with regard to the substrate. This process is completely different from flat space, where grain boundaries are formed due to the impingement of different propagating crystals. Quenching the liquid into the crystal phase leads to the formation of a curved polycrystalline structure, characterized by complex arrays of defects. During annealing, mechanisms of geodesic curvature-driven grain boundary motion and defect annihilation lead to increasing crystalline order. Linear arrays of defects diffuse to regions of high curvature, where they are absorbed by disclinations. At the early stage of coarsening the density of dislocations is insensitive to the geometry while the population of isolated disclinations is deeply affected by curvature. The regions with high curvature act as traps for the diffusion of different structures of defects, including disclinations and domain walls.
NASA Astrophysics Data System (ADS)
Trainor, Thomas A.; Prindle, Duncan J.
2013-11-01
A two-component model (TCM) for single-particle pt spectra describes 200 GeV p-p data accurately. Based on that TCM a spectrum hard component was isolated that is related quantitatively to pQCD predictions for jet fragmentation down to low jet energies (≈3GeV). Here we address jet-related structure in 2D trigger-associated (TA) correlations as a more-detailed method to explore the kinematic limits of low-energy jet production and low-momentum jet fragment structure in p-p collisions. We derive a TCM for p-p TA correlations that can be used to isolate 2D jet-related structure. Inferred minimum-bias (mainly low-energy) jet-related TA correlations may challenge several major assumptions about jet production in p-p (and A-A) collisions. These results should be relevant to p-p underlying-event studies and Monte Carlo predictions of multiple parton interactions.
Microwave Assisted 2D Materials Exfoliation
NASA Astrophysics Data System (ADS)
Wang, Yanbin
Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.
Unified matrix approach to the description of phase-space rotators.
Gitin, Andrey V
2016-03-01
In optics, the rotation of a phase-space can be realized via light propagation through both an inhomogeneous medium with a radial gradient of refractive index and two special kinds of mirror-symmetrical optical systems suggested by Lohmann. Although light propagation through Lohmann's systems is described in terms of matrix optics, light propagation through the gradient-index medium is traditionally described as a solution of the wave equation. The difference in these descriptions hinders the understanding of the phase-space rotators. Fortunately, there is a matrix description of light propagation through a gradient-index medium too. A general description of the phase-space rotators is presented, which can be used to treat light propagation through both Lohmann's systems and the gradient-index medium in a unified matrix manner.
NASA Astrophysics Data System (ADS)
Miksovsky, J.; Raidl, A.
Time delays phase space reconstruction represents one of useful tools of nonlinear time series analysis, enabling number of applications. Its utilization requires the value of time delay to be known, as well as the value of embedding dimension. There are sev- eral methods how to estimate both these parameters. Typically, time delay is computed first, followed by embedding dimension. Our presented approach is slightly different - we reconstructed phase space for various combinations of mentioned parameters and used it for prediction by means of the nearest neighbours in the phase space. Then some measure of prediction's success was computed (correlation or RMSE, e.g.). The position of its global maximum (minimum) should indicate the suitable combination of time delay and embedding dimension. Several meteorological (particularly clima- tological) time series were used for the computations. We have also created a MS- Windows based program in order to implement this approach - its basic features will be presented as well.
From time series to complex networks: The phase space coarse graining
NASA Astrophysics Data System (ADS)
Wang, Minggang; Tian, Lixin
2016-11-01
In this paper, we present a simple and fast computational method, the phase space coarse graining algorithm that converts a time series into a directed and weighted complex network. The constructed directed and weighted complex network inherits several properties of the series in its structure. Thereby, periodic series convert into regular networks, and random series do so into random networks. Moreover, chaotic series convert into scale-free networks. It is shown that the phase space coarse graining algorithm allows us to distinguish, identify and describe in detail various time series. Finally, we apply the phase space coarse graining algorithm to the practical observations series, international gasoline regular spot price series and identify its dynamic characteristics.
Phase space and quark mass effects in neutrino emissions in a color superconductor
NASA Astrophysics Data System (ADS)
Wang, Qun; Wang, Zhi-Gang; Wu, Jian
2006-07-01
We study the phase space for neutrino emissions with massive quarks in direct Urca processes in normal and color-superconducting quark matter. We derive in QCD and the Nambu-Jona-Lasinio model the Fermi momentum reduction resulting from Fermi liquid properties which opens up the phase space for neutrino emissions. The relation between the Fermi momentum and chemical potential is found to be pF≈μ(1-κ) with κ depending on coupling constants. We find in the weak coupling regime that κ is a monotonically increasing function of the chemical potential. This implies quenched phase space for neutrino emissions at low baryon densities. We calculate neutrino emissivities with massive quarks in a spin-one color superconductor. The quark mass corrections are found to be of the same order as the contributions in the massless case, which will bring sizable effects on the cooling behavior of compact stars.
X-ray imaging: a generalized approach using phase-space tomography
NASA Astrophysics Data System (ADS)
Tran, Chanh Q.; Peele, Andrew G.; Roberts, Ann; Nugent, Keith A.; Paterson, David; McNulty, Ian
2005-08-01
We discuss the role of coherence in x-ray imaging and consider how phase-space tomography can be used to extract information about partial coherence. We describe the application of phase-space tomography to x-ray imaging and recover the spatial coherence properties of a one-dimensional soft (1.5 keV) x-ray beam from a synchrotron undulator source. We present phase-space information from a Young's experiment and observe negative regions in the quasi-probability distribution. We show that, given knowledge of the coherence of the beam, we can use partially coherent diffraction data to recover fully coherent information, and we present some simple experimental demonstrations of this capability.
Three-Phonon Phase Space as an Indicator of the Lattice Thermal Conductivity in Semiconductors
NASA Astrophysics Data System (ADS)
Lindsay, L.; Broido, D. A.
2007-03-01
The room temperature lattice thermal conductivity of many semiconductors is limited primarily by three-phonon scattering processes arising from the anharmonicity of the interatomic potential. We employ an adiabatic bond charge model [1,2] for the phonon dispersions to calculate the phase space for three-phonon scattering events of several group IV and III-V semiconductors. We find that the amount of phase space available for this scattering in materials varies inversely with their measured thermal conductivities. Anomalous behavior occurs in III-V materials having large mass differences between cation and anion, which we explain in terms of the severely restricted three-phonon phase space arising from the large gap between acoustic and optic phonon branches. [1] W. Weber, Physical Review B 15, 4789 (1977). [2] K. C. Rustagi and W. Weber, Solid State Communications 18, 673 (1976).
High-order continuum kinetic method for modeling plasma dynamics in phase space
Vogman, G. V.; Colella, P.; Shumlak, U.
2014-12-15
Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,vx,vy) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuum finite volumemore » algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,vr,vz) phase space are presented.« less
Amateur Radio on the International Space Station - Phase 2 Hardware System
NASA Technical Reports Server (NTRS)
Bauer, F.; McFadin, L.; Bruninga, B.; Watarikawa, H.
2003-01-01
The International Space Station (ISS) ham radio system has been on-orbit for over 3 years. Since its first use in November 2000, the first seven expedition crews and three Soyuz taxi crews have utilized the amateur radio station in the Functional Cargo Block (also referred to as the FGB or Zarya module) to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. Early on, the Amateur Radio on the International Space Station (ARISS) international team devised a multi-phased hardware development approach for the ISS ham radio station. Three internal development Phases. Initial Phase 1, Mobile Radio Phase 2 and Permanently Mounted Phase 3 plus an externally mounted system, were proposed and agreed to by the ARISS team. The Phase 1 system hardware development which was started in 1996 has since been delivered to ISS. It is currently operational on 2 meters. The 70 cm system is expected to be installed and operated later this year. Since 2001, the ARISS international team have worked to bring the second generation ham system, called Phase 2, to flight qualification status. At this time, major portions of the Phase 2 hardware system have been delivered to ISS and will soon be installed and checked out. This paper intends to provide an overview of the Phase 1 system for background and then describe the capabilities of the Phase 2 radio system. It will also describe the current plans to finalize the Phase 1 and Phase 2 testing in Russia and outlines the plans to bring the Phase 2 hardware system to full operation.
Designing 2D arrays for SHM of planar structures: a review
NASA Astrophysics Data System (ADS)
Stepinski, Tadeusz; Ambrozinski, Lukasz; Uhl, Tadeusz
2013-04-01
Monitoring structural integrity of large planar structures that aims at detecting and localizing impact or damage at any point of the structure requires normally a relatively dense network of uniformly distributed ultrasonic sensors. 2-D ultrasonic phased arrays, due to their beam-steering capability and all azimuth angle coverage are a very promising tool for structural health monitoring (SHM) of plate-like structures using Lamb waves (LW). Linear phased arrays that have been proposed for that purpose, produce mirrored image characterized by azimuth dependent resolution, which prevents unequivocal damage localization. 2D arrays do not have this drawback and they are even capable of mode selectivity when generating and receiving LWs. Performance of 2D arrays depends on their topology as well as the number of elements (transducers) used and their spacing in terms of wavelength. In this paper we propose a consistent methodology for three-step: theoretical, numerical and experimental investigation of a diversity of 2D array topologies in SHM applications. In the first step, the theoretical evaluation is performed using frequency-dependent structure transfer function (STF). STF that defines linear propagation of different LWs modes through the dispersive medium enables theoretical investigation of the particular array performance for a predefined tone-burst excitation signal. A dedicated software tool has been developed for the numerical evaluation of 2D array directional characteristics (beampattern) in a specific structure. The simulations are performed using local interaction simulation approach (LISA), implemented using NVIDIA CUDA graphical computation unit (GPU), which enables time-efficient 3D simulations of LWs propagation. Beampatterns of a 2D array can be to some extend evaluated analytically and using numerical simulations; in most cases, however, they require experimental verification. Using scanning laser vibrometer is proposed for that purpose, in a setup
Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle
NASA Technical Reports Server (NTRS)
1971-01-01
The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.
The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1
NASA Technical Reports Server (NTRS)
Lee, S. C.
1989-01-01
The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.
Symmetries of nonrelativistic phase space and the structure of quark-lepton generation
NASA Astrophysics Data System (ADS)
Źenczykowski, Piotr
2009-06-01
According to the Hamiltonian formalism, nonrelativistic phase space may be considered as an arena of physics, with momentum and position treated as independent variables. Invariance of x2 + p2 constitutes then a natural generalization of ordinary rotational invariance. We consider Dirac-like linearization of this form, with position and momentum satisfying standard commutation relations. This leads to the identification of a quantum-level structure from which some phase space properties might emerge. Genuine rotations and reflections in phase space are tied to the existence of new quantum numbers, unrelated to ordinary 3D space. Their properties allow their identification with the internal quantum numbers characterising the structure of a single quark-lepton generation in the Standard Model. In particular, the algebraic structure of the Harari-Shupe preon model of fundamental particles is reproduced exactly and without invoking any subparticles. Analysis of the Clifford algebra of nonrelativistic phase space singles out an element which might be associated with the concept of lepton mass. This element is transformed into a corresponding element for a single coloured quark, leading to a generalization of the concept of mass and a different starting point for the discussion of quark unobservability.
Evolution of electron beam phase space distribution in a high-gain FEL
Webb,S.D.; Litvinenko, V. N.
2009-08-23
FEL-based coherent electron cooling (CEC) offers a new avenue to achieve high luminosities in high energy colliders such as RHIC, LHC, and eRHIC. Traditional treatments consider the FEL as an amplifier of optical waves with specific initial conditions, focusing on the resulting field. CEC requires knowledge of the phase space distribution of the electron beam in the FEL. We present 1D analytical results for the phase space distribution of an electron beam with an arbitrary initial current profile, and discuss approaches of expanding to 3D results.
NASA Technical Reports Server (NTRS)
Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.
1990-01-01
A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.
Ion phase-space vortices and their relation to small amplitude double layers
NASA Technical Reports Server (NTRS)
Pecseli, Hans L.
1987-01-01
The properties of ion phase-space vortices are reviewed with particular attention to their role in the formation of small amplitude double layers in current-carrying plasmas. In a one-dimensional analysis, many such double layers simply add up to produce a large voltage drop. A laboratory experiment is carried out in order to investigate the properties of ion phase-space vortices in three dimensions. Their lifetime is significantly reduced as compared with similar results from one-dimensional numerical simulations of the problem.
The application of the phase space time evolution method to electron shielding
NASA Technical Reports Server (NTRS)
Cordaro, M. C.; Zucker, M. S.
1972-01-01
A computer technique for treating the motion of charged and neutral particles and called the phase space time evolution method was developed. This technique employs the computer's bookkeeping capacity to keep track of the time development of a phase space distribution of particles. This method was applied to a study of the penetration of electrons. A 1 MeV beam of electrons normally incident on a semi-infinite slab of aluminum was used. Results of the calculation were compared with Monte Carlo calculations and experimental results. Time-dependent PSTE electron penetration results for the same problem are presented.
GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources.
Townson, Reid W; Jia, Xun; Tian, Zhen; Graves, Yan Jiang; Zavgorodni, Sergei; Jiang, Steve B
2013-06-21
A novel phase-space source implementation has been designed for graphics processing unit (GPU)-based Monte Carlo dose calculation engines. Short of full simulation of the linac head, using a phase-space source is the most accurate method to model a clinical radiation beam in dose calculations. However, in GPU-based Monte Carlo dose calculations where the computation efficiency is very high, the time required to read and process a large phase-space file becomes comparable to the particle transport time. Moreover, due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel source implementation utilizing pre-processed patient-independent phase-spaces that are sorted by particle type, energy and position. Position bins located outside a rectangular region of interest enclosing the treatment field are ignored, substantially decreasing simulation time with little effect on the final dose distribution. The three methods were validated in absolute dose against BEAMnrc/DOSXYZnrc and compared using gamma-index tests (2%/2 mm above the 10% isodose). It was found that the PSL method has the optimal balance between accuracy and efficiency and thus is used as the default method in gDPM v3.0. Using the PSL method, open fields of 4 × 4, 10 × 10 and 30 × 30 cm
Phase-space dynamics of ionization injection in plasma-based accelerators.
Xu, X L; Hua, J F; Li, F; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Yu, P; An, W; Joshi, C; Mori, W B
2014-01-24
The evolution of beam phase space in ionization injection into plasma wakefields is studied using theory and particle-in-cell simulations. The injection process involves both longitudinal and transverse phase mixing, leading initially to a rapid emittance growth followed by oscillation, decay, and a slow growth to saturation. An analytic theory for this evolution is presented and verified through particle-in-cell simulations. This theory includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces, and it also shows how ultralow emittance beams can be produced using ionization injection methods.
Phase space analysis for a scalar-tensor model with kinetic and Gauss-Bonnet couplings
NASA Astrophysics Data System (ADS)
Granda, L. N.; Loaiza, E.
2016-09-01
We study the phase space for a scalar-tensor string inspired model of dark energy with nonminimal kinetic and Gauss-Bonnet couplings. The form of the scalar potential and of the coupling terms is of the exponential type, which gives rise to appealing cosmological solutions. The critical points describe a variety of cosmological scenarios that go from a matter or radiation dominated universe to a dark energy dominated universe. Trajectories were found in the phase space departing from unstable or saddle fixed points and arriving at the stable scalar field dominated point corresponding to late-time accelerated expansion.
Effect of the phase space factor in the breakup of composite particles
NASA Astrophysics Data System (ADS)
Paić, G.; Antolković, B.
1981-04-01
The need to include the phase space factor in the analysis of α breakup spectra according to Fermi's Golden Rule is indicated. The importance of the number of particles present in the final state is exemplified by a model calculation for proton, deuteron, and triton spectra produced by the breakup of 160 MeV alphas on zirconium. NUCLEAR REACTIONS phase space factor, model alpha breakup spectra for Zr(α,xp), Zr(α,xd), and Zr(α,xt) reactions at Eα=160 MeV.
A Gaussian wave packet phase-space representation of quantum canonical statistics
Coughtrie, David J.; Tew, David P.
2015-07-28
We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.
Double resonance rotational spectroscopy of CH2D+
NASA Astrophysics Data System (ADS)
Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar
2016-09-01
Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.
Free space optical communication link using a silicon photonic optical phased array
NASA Astrophysics Data System (ADS)
Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.
2015-03-01
Many components for free space optical communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Non-mechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. In this paper a small-scale silicon photonic optical phased array is demonstrated for both the transmitter and receiver functions in a free space optical link. The device using an array of thermo-optically controlled waveguide phase shifters and demonstrates one-dimensional steering with a single control electrode. Transmission of a digitized video data stream over the link is shown.
The principle of space coherent laser communication based on Costas phase-locked loop
NASA Astrophysics Data System (ADS)
Zheng, Yang; Zheng, Jianping; Tong, Shoufeng; Jiang, Huilin; He, Wenjun
2013-08-01
The space coherent laser communication is a very potential mean for high-speed laser communication in the future, because the excellent receiver sensitivities can be achieved by coherent detection techniques. The best coherent receiver sensitivity amounts to -59.4dBm at a data rate of 10Gbit/s and a bit error rate of 10-9, which is obtained with phase-shift keying modulation in combination with homodyne detection. In this paper, we investigated optical homodyne detection based on Costas phase-locked loop in the space coherent laser communication system. We obtain optimum loop bandwidth of Costas phase-locked loop and the maximum permissible laser line width based on Costas phase locked loop.
Phase-space description of plasma waves: Linear and nonlinear theory
NASA Astrophysics Data System (ADS)
Biro, Thomas
1992-11-01
A (r,k) phase description of waves in plasmas is developed by introducing Gaussian window functions to separate short scale oscillations from long scale modulations of the wave fields and variations in the plasma parameters. To obtain a wave equation that unambiguously separates conservative dynamics from dissipation also in an inhomogeneous and time varying background plasma, the proper form of the current response function, is discussed. On the analogy of the particle distribution function f(v,r,t), a wave density N(k,r,t) is introduced on phase space. This function is proven to satisfy a simple continuity equation. Dissipation is also included, and this allows the damping or growth of wave density along rays to be described. Problems involving geometric optics of continuous media often appear simpler when viewed in phase space, since the flow of N in phase space is incompressible. Within the phase space representation, a very general formula for the second order nonlinear current is obtained in terms of the vector potential. This formula is a convenient starting point for studies of coherent as well as turbulent nonlinear processes. Kinetic equations for weakly inhomogeneous and turbulent plasmas are derived, including the effects of inhomogeneous turbulence, wave convection and refraction.
Electrostatic 2D assembly of bionanoparticles on a cationic lipid monolayer.
NASA Astrophysics Data System (ADS)
Kewalramani, Sumit; Wang, Suntao; Fukuto, Masafumi; Yang, Lin; Niu, Zhongwei; Nguyen, Giang; Wang, Qian
2010-03-01
We present a grazing-incidence small-angle X-ray scattering (GISAXS) study on 2D assembly of cowpea mosaic virus (CPMV) under a mixed cationic-zwitterionic (DMTAP^+-DMPC) lipid monolayer at the air-water interface. The inter-particle and particle-lipid electrostatic interactions were varied by controlling the subphase pH and the membrane charge density. GISAXS data show that 2D crystals of CPMV are formed above a threshold membrane charge density and only in a narrow pH range just above CPMV's isoelectric point, where the charge on CPMV is expected to be weakly negative. The particle density for the 2D crystals is similar to that for the densest lattice plane in the 3D crystals of CPMV. The results show that the 2D crystallization is achieved in the part of the phase space where the electrostatic interactions are expected to maximize the adsorption of CPMV onto the lipid membrane. This electrostatics-based strategy for controlling interfacial nanoscale assembly should be generally applicable to other nanoparticles.
Chemical potential driven phase transition of black holes in anti-de Sitter space
NASA Astrophysics Data System (ADS)
Galante, Mario; Giribet, Gaston; Goya, Andrés; Oliva, Julio
2015-11-01
Einstein-Maxwell theory conformally coupled to a scalar field in D dimensions may exhibit a phase transition at low temperature whose end point is an asymptotically anti-de Sitter black hole with a scalar field profile that is regular everywhere outside and on the horizon. This provides a tractable model to study the phase transition of hairy black holes in anti-de Sitter space in which the backreaction on the geometry can be solved analytically.
Phase space gradient of dissipated work and information: A role of relative Fisher information
Yamano, Takuya
2013-11-15
We show that an information theoretic distance measured by the relative Fisher information between canonical equilibrium phase densities corresponding to forward and backward processes is intimately related to the gradient of the dissipated work in phase space. We present a universal constraint on it via the logarithmic Sobolev inequality. Furthermore, we point out that a possible expression of the lower bound indicates a deep connection in terms of the relative entropy and the Fisher information of the canonical distributions.
Phased Array Ultrasonic Examination of Space Shuttle Main Engine Nozzle Weld
NASA Technical Reports Server (NTRS)
James, S.; Engel, J.; Kimbrough, D.; Suits, M.; McCool, Alex (Technical Monitor)
2001-01-01
This paper describes a Phased Array Ultrasonic Examination that was developed for the examination of a limited access circumferential Inconel 718 fusion weld of a Space Shuttle Main Engine Nozzle - Cone. The paper discusses the selection and formation criteria used for the phased array focal laws, the reference standard that simulated hardware conditions, the examination concept, and results. Several unique constraints present during this examination included limited probe movement to a single axis and one-sided access to the weld.
Extending the scanning angle of a phased array antenna by using a null-space medium.
Sun, Fei; He, Sailing
2014-01-01
By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome.
NASA Technical Reports Server (NTRS)
1974-01-01
The 12 month Phase A Conceptual Design Study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload performed within the Program Development Directorate of the Marshall Space Flight Center is presented. The AMPS payload makes use of the Spacelab pressurized module and pallet, is launched by the space shuttle, and will have initial flight durations of 7 days. Scientific instruments including particle accelerators, high power transmitters, optical instruments, and chemical release devices are mounted externally on the Spacelab pallet and are controlled by the experimenters from within the pressurized module. The capability of real-time scientist interaction on-orbit with the experiment is a major characteristic of AMPS.
Extending the scanning angle of a phased array antenna by using a null-space medium.
Sun, Fei; He, Sailing
2014-01-01
By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome. PMID:25355198
Extending the scanning angle of a phased array antenna by using a null-space medium
NASA Astrophysics Data System (ADS)
Sun, Fei; He, Sailing
2014-10-01
By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome.
Extending the scanning angle of a phased array antenna by using a null-space medium
Sun, Fei; He, Sailing
2014-01-01
By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome. PMID:25355198
Phase space localization for anti-de Sitter quantum mechanics and its zero curvature limit
NASA Technical Reports Server (NTRS)
Elgradechi, Amine M.
1993-01-01
Using techniques of geometric quantization and SO(sub 0)(3,2)-coherent states, a notion of optimal localization on phase space is defined for the quantum theory of a massive and spinning particle in anti-de Sitter space time. It is shown that this notion disappears in the zero curvature limit, providing one with a concrete example of the regularizing character of the constant (nonzero) curvature of the anti-de Sitter space time. As a byproduct a geometric characterization of masslessness is obtained.
Space debris proximity analysis in powered and orbital phases during satellite launch
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Priyankar; Sharma, R. K.; Adimurthy, V.
2004-01-01
This paper describes the methodology of the space debris proximity analysis in powered and orbital phase at the time of a satellite launch. The details of the SPADEPRO analysis package, developed for this purpose, are presented. It consists of modules which provide the functions related to ephemeris generation and reconstruction of primary object (launch vehicle or its payload upon insertion), determination of close approaches with resident space objects, computation of the state vector variance of the primary and the secondary objects to represent the knowledge uncertainty, and computation of the collision risk given the variance. This has been successfully applied during the recent launches of the Indian Space Research Organization.
Holographic phase space: c-functions and black holes as renormalization group flows
NASA Astrophysics Data System (ADS)
Paulos, Miguel F.
2011-05-01
We construct a mathcal{N} -function for Lovelock theories of gravity, which yields a holographic c-function in domain-wall backgrounds, and seemingly generalizes the concept for black hole geometries. A flow equation equates the monotonicity properties of mathcal{N} with the gravitational field, which has opposite signs in the domain-wall and black hole backgrounds, due to the presence of negative/positive energy in the former/latter, and accordingly mathcal{N} monotonically decreases/increases from the UV to the IR. On AdS spaces the mathcal{N} -function is related to the Euler anomaly, and at a black hole horizon it is generically proportional to the entropy. For planar black holes, mathcal{N} diverges at the horizon, which we interpret as an order N 2 increase in the number of effective degrees of freedom. We show how mathcal{N} can be written as the ratio of the Wald entropy to an effective phase space volume, and using the flow equation relate this to Verlinde's notion of gravity as an entropic force. From the effective phase space we can obtain an expression for the dual field theory momentum cut-off, matching a previous proposal in the literature by Polchinski and Heemskerk. Finally, we propose that the area in Planck units counts states, not degrees of freedom, and identify it also as a phase space volume. Written in terms of the proper radial distance β, it takes the suggestive form of a canonical partition function at inverse temperature β, leading to a "mean energy" which is simply the extrinsic curvature of the surface. Using this we relate this definition of holographic phase space with the effective phase space appearing in the mathcal{N} -function.
Probing the low-temperature rotational population of H2D+
NASA Astrophysics Data System (ADS)
Asvany, Oskar; Hugo, Edouard; Wahed, Serjoscha; Schlemmer, Stephan
2009-11-01
The gas phase exchange reactions of isotopologues of H+3 with isotopologues of H2 are responsible for the observed deuteration in low-temperature interstellar clouds. At the prevailing cryogenic temperatures many quantum effects, as zero-point vibrational energies, large rotational level spacings and nuclear spin effects become important. In order to understand the processes on a level-to-level basis, experiments in a 22-pole ion trap are carried out accompanied by microcanonical simulations. In particular, the method of laser induced reaction (LIR) is applied to probe the four lowest rotational levels of H2D+.
Pickup Ion Phase Space Distributions at Titan in a Three Dimensional Exosphere
NASA Technical Reports Server (NTRS)
Hartle, Richard; Sittler, Edward
2006-01-01
The composition and structure of neutral exospheres imbedded in moving plasmas can be determined by measurements of the velocity distributions of their pickup ion progeny. In turn, the velocity distributions are dependent on the spatial structure of the neutral source gases. Since Titan's neutral exosphere extends into the Saturn's magnetosphere (or solar wind) and well above its ionopause, it serves as a good place to analyze such characteristics. They are analyzed using pickup ion measurements made by the Cassini Plasma Spectrometer (CAPS) at Titan [e.g., Hartle et al., 2006] and an ion kinetic model. An early version of the model [Hartle and Sittler, 2007] is an expression describing the phase space density of pickup ions, which is derived from the Vlasov equation with an ion source that explicitly accounts for the velocity and spatial variation of the exosphere source gases. The current version used here includes exosphere source gases in three dimensions. A fundamental parameter of the phase space densities is the ratio of the gyroradius to the neutral scale height alpha, = r(sub g)/H. Titan's exosphere structure yields pickup ions whose phase space distributions are beam-like when alpha >> 1 and fluid-like when alpha << 1. Downstream from the source peak, the light pickup ions, with alpha << 1, are easily observed because their phase space densities are almost uniform over the orbit phases. On the other hand, the phase space distributions of the heavier ions, with alpha >> 1, peak over narrow velocity and spatial ranges. This beam-like nature makes it considerably more difficult to observe heavy ions because their downstream positions and viewing directions are narrowly constrained. Examples of these extremes will be discussed.
Simulations of phase space distributions of storm time proton ring current
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Lyons, Larry R.; Schulz, Michael
1994-01-01
We use results of guiding-center simulations of ion transport to map phase space densities of the stormtime proton ring current. We model a storm as a sequence of substorm-associated enhancements in the convection electric field. Our pre-storm phase space distribution is an analytical solution to a steady-state transport model in which quiet-time radial diffusion balances charge exchange. This pre-storm phase space spectra at L approximately 2 to 4 reproduce many of the features found in observed quiet-time spectra. Using results from simulations of ion transport during model storms having main phases of 3, 6, and 12 hr, we map phase space distributions from the pre-storm distribution in accordance with Liouville's theorem. We find stormtime enhancements in the phase space densities at energies E approximately 30-160 keV for L approximately 2.5 to 4. These enhancements agree well with the observed stormtime ring current. For storms with shorter main phases (approximately 3 hr), the enhancements are caused mainly by the trapping of ions injected from open night side trajectories, and diffusive transport of higher-energy (greater than or approximately 160 keV) ions contributes little to the stormtime ring current. However, the stormtime ring current is augmented also by the diffusive transport of higher-energy ions (E greater than or approximately 160 keV) durinng stroms having longer main phases (greater than or approximately 6 hr). In order to account for the increase in Dst associated with the formation of the stormtime ring current, we estimate the enhancement in particle-energy content that results from stormtime ion transport in the equatorial magnetosphere. We find that transport alone cannot account for the entire increase in absolute value of Dst typical of a major storm. However, we can account for the entire increase in absolute value of Dst by realistically increasing the stormtime outer boundary value of the phase space density relative to the quiet
NASA Technical Reports Server (NTRS)
Deuser, Mark S.; Vanalstine, James M.; Vellinger, John C.; Wessling, Francis C.; Lundquist, Charles A.
1992-01-01
Traditional separation techniques are inadequate for many new bioprocessing challenges. Innovative separation methods such as aqueous two phase partitioning are needed to perpetuate bioprocess commercialization. Aqueous two phase polymer partitioning systems provide a process for separating biological materials when combined with microgravity. An innovative space qualified apparatus developed for carrying out separations by partitioning in immiscible polymer systems under mirogravity conditions is described. The apparatus offers an innovative approach to low gravity bioseparations in general and phase partitioning in particular. These capabilities support NASA's interest in serving the biotechnology research community and providing quantitative data in the gravity dependent components of separation processes.
Phase-space structure of the Buckingham's two-body problem
NASA Astrophysics Data System (ADS)
Pricopi, D.; Popescu, E.
2016-06-01
In this paper, we study the global flow for the two-body problem associated to the Buckingham potential. For this, using McGehee-type transformations, we write the regularized equations of motion. Then, reducing the 4-dimensional phase space to a 2-dimension one, the global flow in the phase plane is described for all possible values of the parameters of the potential and those of the energy and angular momentum constants. Every phase trajectory is interpreted in terms of physical motion, our problem being depicted both geometrically and physically.
Plimak, L.I.; Fleischhauer, M.; Olsen, M.K.; Collett, M.J.
2003-01-01
We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (S{delta}E). Second, we show that introducing sources into the SDE's (or S{delta}E's) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo's linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.
Numerical method for estimating the size of chaotic regions of phase space
Henyey, F.S.; Pomphrey, N.
1987-10-01
A numerical method for estimating irregular volumes of phase space is derived. The estimate weights the irregular area on a surface of section with the average return time to the section. We illustrate the method by application to the stadium and oval billiard systems and also apply the method to the continuous Henon-Heiles system. 15 refs., 10 figs. (LSP)
Kim, K.-J.; Accelerator Systems Division
2008-01-01
Emittance exchange and flat beam transform are two phase-space converting techniques being developed recently to enhance the performance of electron beams for various applications. We review these applications, the basic principles of the converters, and the status of experimental demonstration of these techniques.
Molecular phase space transport in water: Non-stationary random walk model
NASA Astrophysics Data System (ADS)
Nerukh, Dmitry; Ryabov, Vladimir; Taiji, Makoto
2009-11-01
Molecular transport in phase space is crucial for chemical reactions because it defines how pre-reactive molecular configurations are found during the time evolution of the system. Using Molecular Dynamics (MD) simulated atomistic trajectories we test the assumption of the normal diffusion in the phase space for bulk water at ambient conditions by checking the equivalence of the transport to the random walk model. Contrary to common expectations we have found that some statistical features of the transport in the phase space differ from those of the normal diffusion models. This implies a non-random character of the path search process by the reacting complexes in water solutions. Our further numerical experiments show that a significant long period of non-stationarity in the transition probabilities of the segments of molecular trajectories can account for the observed non-uniform filling of the phase space. Surprisingly, the characteristic periods in the model non-stationarity constitute hundreds of nanoseconds, that is much longer time scales compared to typical lifetime of known liquid water molecular structures (several picoseconds).
Ray tracing method in phase space for two-dimensional optical systems.
Filosa, C; Ten Thije Boonkkamp, J H M; IJzerman, W L
2016-05-01
Ray tracing is a forward method to calculate the photometric variables at the target of a non-imaging optical system. In this paper, a new ray tracing technique is presented to improve the accuracy and to reduce the computational time of the classical ray tracing approach. The method is based on the phase space representation of the source and the target of the optical system, and it is applied to a two-dimensional TIR-collimator. The strength of the method lies in tracing fewer rays through the system. Only rays that lie in the meridional plane are considered. A procedure that disregards rays in smooth regions in phase space, where the luminance is continuous, is implemented and only the rays close to discontinuities are traced. The efficiency of the method is demonstrated by numerical simulations that compare the new method with Monte Carlo ray tracing. The results show that the phase space approach is faster and more accurate than the already existing ray tracing method; moreover the phase space method converges as one over the number of rays traced unlike Monte Carlo ray tracing in which the speed of convergence is proportional to one over the square root of the number of rays.
Phase-space analysis of convection in a /sup 3/He - superfluid /sup 4/He solution
Haucke, H.; Maeno, Y.
1982-01-01
Observations have been made on thermal convection below 1K in a dilute solution of /sup 3/He in superfluid /sup 4/He contained in a cylindrical cell of aspect ratio GAMMA = 1.20. Complicated oscillatory phenomena were observed with a high degree of reproducibility using two temperature sensors. Phase-space analysis suggests a description in terms of strange-attractor dynamics.
Ray tracing method in phase space for two-dimensional optical systems.
Filosa, C; Ten Thije Boonkkamp, J H M; IJzerman, W L
2016-05-01
Ray tracing is a forward method to calculate the photometric variables at the target of a non-imaging optical system. In this paper, a new ray tracing technique is presented to improve the accuracy and to reduce the computational time of the classical ray tracing approach. The method is based on the phase space representation of the source and the target of the optical system, and it is applied to a two-dimensional TIR-collimator. The strength of the method lies in tracing fewer rays through the system. Only rays that lie in the meridional plane are considered. A procedure that disregards rays in smooth regions in phase space, where the luminance is continuous, is implemented and only the rays close to discontinuities are traced. The efficiency of the method is demonstrated by numerical simulations that compare the new method with Monte Carlo ray tracing. The results show that the phase space approach is faster and more accurate than the already existing ray tracing method; moreover the phase space method converges as one over the number of rays traced unlike Monte Carlo ray tracing in which the speed of convergence is proportional to one over the square root of the number of rays. PMID:27140377
NASA Astrophysics Data System (ADS)
Endeve, Eirik; Hauck, Cory D.; Xing, Yulong; Mezzacappa, Anthony
2015-04-01
We extend the positivity-preserving method of Zhang and Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stability-preserving, Runge-Kutta (SSP-RK) time integration. Special care is taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ∈ [ 0 , 1 ]. The combination of suitable CFL conditions and the use of the high-order limiter proposed in [49] is sufficient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergence-free property of the phase space flow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.
Phase space and jet definitions in soft-collinear effective theory
NASA Astrophysics Data System (ADS)
Cheung, William Man-Yin; Luke, Michael; Zuberi, Saba
2009-12-01
We discuss consistent power counting for integrating soft and collinear degrees of freedom over arbitrary regions of phase space in the soft-collinear effective theory, and illustrate our results at one-loop with several jet algorithms: JADE, Sterman-Weinberg and k⊥. Consistently applying soft-collinear effective theory power counting in phase space, along with nontrivial zero-bin subtractions, prevents double counting of final states. The resulting phase space integrals over soft and collinear regions are individually ultraviolet divergent, but the phase space ultraviolet divergences cancel in the sum. Whether the soft and collinear contributions are individually infrared safe depends on the jet definition. We show that while this is true at one-loop for JADE and Sterman-Weinberg, the k⊥ algorithm does not factorize into individually infrared safe soft and collinear pieces in dimensional regularization. We point out that this statement depends on the ultraviolet regulator, and that in a cutoff scheme the soft functions are infrared safe.
Phase space and jet definitions in soft-collinear effective theory
Cheung, William Man-Yin; Luke, Michael; Zuberi, Saba
2009-12-01
We discuss consistent power counting for integrating soft and collinear degrees of freedom over arbitrary regions of phase space in the soft-collinear effective theory, and illustrate our results at one-loop with several jet algorithms: JADE, Sterman-Weinberg and k{sub perpendicular}. Consistently applying soft-collinear effective theory power counting in phase space, along with nontrivial zero-bin subtractions, prevents double counting of final states. The resulting phase space integrals over soft and collinear regions are individually ultraviolet divergent, but the phase space ultraviolet divergences cancel in the sum. Whether the soft and collinear contributions are individually infrared safe depends on the jet definition. We show that while this is true at one-loop for JADE and Sterman-Weinberg, the k{sub perpendicular} algorithm does not factorize into individually infrared safe soft and collinear pieces in dimensional regularization. We point out that this statement depends on the ultraviolet regulator, and that in a cutoff scheme the soft functions are infrared safe.
Phase correction-based singularity function analysis for partial k-space reconstruction.
Luo, Jianhua; Zhu, Yuemin; Magnin, Isabelle
2008-07-01
Partial k-space acquisition is a conventional method in magnetic resonance imaging (MRI) for reducing imaging time while maintaining image quality. In this field, image reconstruction from partial k-space is a key issue. This paper proposes an approach fundamentally different from traditional techniques for reconstructing magnetic resonance (MR) images from partial k-space. It uses a so-called singularity function analysis (SFA) model based on phase correction. With such a reconstruction approach, some nonacquired negative spatial frequencies are first recovered by means of phase correction and Hermitian symmetry property, and then the other nonacquired negative and/or positive spatial frequencies are estimated using the mathematical SFA model. The method is particularly suitable for asymmetrical partial k-space acquisition owing to its ability of overcoming reconstruction limitations due to k-space truncations. The performance of this approach is evaluated using both simulated and real MR brain images, and compared with existing techniques. The results demonstrate that the proposed SFA based on phase correction achieves higher image quality than the initial SFA or the projection-onto-convex sets (POCS) method.
Design of an ammonia two-phase Prototype Thermal Bus for Space Station
NASA Astrophysics Data System (ADS)
Brown, Richard F.; Gustafson, Eric; Parish, Richard
1987-07-01
The feasibility of two-phase heat transport systems for use on Space Station was demonstrated by testing the Thermal Bus Technology Demonstrator (TBTD) as part of the Integrated Two-Phase System Test in NASA-JSC's Thermal Test Bed. Under contract to NASA-JSC, Grumman is currently developing the successor to the TBTD, the Prototype Thermal Bus System (TBS). The TBS design, which uses ammonia as the working fluid, is intended to achieve a higher fidelity level than the TBTD by incorporating both improvements based on TBTD testing and realistic design margins, and by addressing Space Station issues such as redundancy and maintenance. The TBS is currently being fabricated, with testing scheduled for late 1987/early 1988. This paper describes the TBS design which features fully redundant plumbing loops, five evaporators designed to represent different heat acquisition interfaces, 14 condensers which mate with either space radiators or facility heat exchangers, and several modular components.
Design of an ammonia two-phase Prototype Thermal Bus for Space Station
NASA Technical Reports Server (NTRS)
Brown, Richard F.; Gustafson, Eric; Parish, Richard
1987-01-01
The feasibility of two-phase heat transport systems for use on Space Station was demonstrated by testing the Thermal Bus Technology Demonstrator (TBTD) as part of the Integrated Two-Phase System Test in NASA-JSC's Thermal Test Bed. Under contract to NASA-JSC, Grumman is currently developing the successor to the TBTD, the Prototype Thermal Bus System (TBS). The TBS design, which uses ammonia as the working fluid, is intended to achieve a higher fidelity level than the TBTD by incorporating both improvements based on TBTD testing and realistic design margins, and by addressing Space Station issues such as redundancy and maintenance. The TBS is currently being fabricated, with testing scheduled for late 1987/early 1988. This paper describes the TBS design which features fully redundant plumbing loops, five evaporators designed to represent different heat acquisition interfaces, 14 condensers which mate with either space radiators or facility heat exchangers, and several modular components.
Simulated response of top-hat electrostatic analysers - importance of phase-space resolution
NASA Astrophysics Data System (ADS)
De Marco, Rossana; Bruno, Roberto; D'Amicis, Raffaella; Federica Marcucci, Maria; Servidio, Sergio; Valentini, Francesco
2016-04-01
We use a numerical code able to reproduce the angular/energy response of a typical electrostatic analyzer of top-hat type starting from velocity distribution functions (VDFs) generated by numerical imulations.The simulations are based on the Hybrid Vlasov-Maxwell (HVM) numerical algorithm which integrates the Vlasov equation for the ion distribution function in multi-dimensional geometry in phase space, while the electrons are treated as a fluid. Virtual satellites launched through the simulation box measure the particle VDFs. Such VDFs are interpolated into a spacecraft reference frame and moved from the simulation Cartesian grid to energy-angular coordinates to mimic the response of a real electrostatic sensor in the solar wind and in the magnetosheath for different conditions. We discuss the results of this study with respect to the importance of phase-space resolution for a space plasma experiment meant to investigate kinetic plasma regime.
CVMAC 2D Program: A method of converting 3D to 2D
Lown, J.
1990-06-20
This paper presents the user with a method of converting a three- dimensional wire frame model into a technical illustration, detail, or assembly drawing. By using the 2D Program, entities can be mapped from three-dimensional model space into two-dimensional model space, as if they are being traced. Selected entities to be mapped can include circles, arcs, lines, and points. This program prompts the user to digitize the view to be mapped, specify the layers in which the new two-dimensional entities will reside, and select the entities, either by digitizing or windowing. The new two-dimensional entities are displayed in a small view which the program creates in the lower left corner of the drawing. 9 figs.
Comparison of 2D and 3D gamma analyses
Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer
2014-02-15
Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must
Optical authentication based on moiré effect of nonlinear gratings in phase space
NASA Astrophysics Data System (ADS)
Liao, Meihua; He, Wenqi; Wu, Jiachen; Lu, Dajiang; Liu, Xiaoli; Peng, Xiang
2015-12-01
An optical authentication scheme based on the moiré effect of nonlinear gratings in phase space is proposed. According to the phase function relationship of the moiré effect in phase space, an arbitrary authentication image can be encoded into two nonlinear gratings which serve as the authentication lock (AL) and the authentication key (AK). The AL is stored in the authentication system while the AK is assigned to the authorized user. The authentication procedure can be performed using an optoelectronic approach, while the design process is accomplished by a digital approach. Furthermore, this optical authentication scheme can be extended for multiple users with different security levels. The proposed scheme can not only verify the legality of a user identity, but can also discriminate and control the security levels of legal users. Theoretical analysis and simulation experiments are provided to verify the feasibility and effectiveness of the proposed scheme.
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
2007-01-01
Though there are a few examples of scanning phased array antennas that have flown successfully in space, the quest for low-cost, high-efficiency, large aperture microwave phased arrays continues. Fixed and mobile applications that may be part of a heterogeneous exploration communication architecture will benefit from the agile (rapid) beam steering and graceful degradation afforded by phased array antennas. The reflectarray promises greater efficiency and economy compared to directly-radiating varieties. Implementing a practical scanning version has proven elusive. The ferroelectric reflectarray, under development and described herein, involves phase shifters based on coupled microstrip patterned on Ba(x)Sr(1-x)TiO3 films, that were laser ablated onto LaAlO3 substrates. These devices outperform their semiconductor counterparts from X- through and K-band frequencies. There are special issues associated with the implementation of a scanning reflectarray antenna, especially one realized with thin film ferroelectric phase shifters. This paper will discuss these issues which include: relevance of phase shifter loss; modulo 2(pi) effects and phase shifter transient effects on bit error rate; scattering from the ground plane; presentation of a novel hybrid ferroelectric-semiconductor phase shifter; and the effect of mild radiation exposure on phase shifter performance.