Science.gov

Sample records for 2d pic code

  1. Development of an Implicit, Charge and Energy Conserving 2D Electromagnetic PIC Code on Advanced Architectures

    NASA Astrophysics Data System (ADS)

    Payne, Joshua; Taitano, William; Knoll, Dana; Liebs, Chris; Murthy, Karthik; Feltman, Nicolas; Wang, Yijie; McCarthy, Colleen; Cieren, Emanuel

    2012-10-01

    In order to solve problems such as the ion coalescence and slow MHD shocks fully kinetically we developed a fully implicit 2D energy and charge conserving electromagnetic PIC code, PlasmaApp2D. PlasmaApp2D differs from previous implicit PIC implementations in that it will utilize advanced architectures such as GPUs and shared memory CPU systems, with problems too large to fit into cache. PlasmaApp2D will be a hybrid CPU-GPU code developed primarily to run on the DARWIN cluster at LANL utilizing four 12-core AMD Opteron CPUs and two NVIDIA Tesla GPUs per node. MPI will be used for cross-node communication, OpenMP will be used for on-node parallelism, and CUDA will be used for the GPUs. Development progress and initial results will be presented.

  2. Low-temperature plasma simulations with the LSP PIC code

    NASA Astrophysics Data System (ADS)

    Carlsson, Johan; Khrabrov, Alex; Kaganovich, Igor; Keating, David; Selezneva, Svetlana; Sommerer, Timothy

    2014-10-01

    The LSP (Large-Scale Plasma) PIC-MCC code has been used to simulate several low-temperature plasma configurations, including a gas switch for high-power AC/DC conversion, a glow discharge and a Hall thruster. Simulation results will be presented with an emphasis on code comparison and validation against experiment. High-voltage, direct-current (HVDC) power transmission is becoming more common as it can reduce construction costs and power losses. Solid-state power-electronics devices are presently used, but it has been proposed that gas switches could become a compact, less costly, alternative. A gas-switch conversion device would be based on a glow discharge, with a magnetically insulated cold cathode. Its operation is similar to that of a sputtering magnetron, but with much higher pressure (0.1 to 0.3 Torr) in order to achieve high current density. We have performed 1D (axial) and 2D (axial/radial) simulations of such a gas switch using LSP. The 1D results were compared with results from the EDIPIC code. To test and compare the collision models used by the LSP and EDIPIC codes in more detail, a validation exercise was performed for the cathode fall of a glow discharge. We will also present some 2D (radial/azimuthal) LSP simulations of a Hall thruster. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  3. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  4. 2-D and 3-D PIC simulations of a SLAC Klystrino

    NASA Astrophysics Data System (ADS)

    Spencer, Thomas; Luginsland, John; Hackett, Kirk; Haworth, Michael; Song, Liqun; Scheitrum, Glenn

    2000-10-01

    The Air Force Research Laboratory is collaborating with the Stanford Linear Accelerator Center in performing 3-D PIC simulations using ARGUS and ICEPIC on a klystrino with the following parameters: voltage of 110 kV, current of 2.4 A, frequency of 94 GHz, peak magnetic field of 4 kG. Results wll be presented and will be compared to 2-D MAGIC simulations, as well as to experimental test data. This work is supported in part by the Air Force Office of Scientific Research.

  5. Progress on the development of a 2-D PIC/Monte Carlo model of glow discharges

    NASA Astrophysics Data System (ADS)

    Greene, A. E.; Faehl, R. J.; Keinigs, R. K.; Oliphant, T. A., Jr.; Shanahan, W. R.

    There are several computational approaches that have been and are being implemented for the investigation of plasma processing discharges. One-dimensional electrostatic PIC calculations have proven useful in modeling the bulk properties of discharges far from the edges and have yielded good agreement with experiment for ion distributions in the sheath region. The value of PIC methods is that they follow the evolution of an N-body system unconstrained by equilibrium requirements. Gaseous discharges are in general far from equilibrium. Electrons in the bulk region and ions in the sheath can have energies greatly exceeding the neutral gas temperature and can be distributed in a highly non-Maxwellian fashion. One dimensional models are incapable of treating flow and transport of reactants in reactors properly. Geometrical features are also neglected. Modeling the more recently developed high density reactors, such as the Hitachi ECRH source, requires at least two-dimensional and possibly three-dimensional electromagnetic models. Therefore, at Los Alamos we have chosen to address these problems with the MERLIN code. In this paper we will discuss our progress toward developing this code. We will describe, briefly the physics that we are including in this model. We will discuss a test problem that is being used to exercise most of the new features that have recently been added to MERLIN. Finally, we will discuss our future efforts.

  6. 2D electrostatic PIC algorithm for laser induced studying plasma in vacuum

    NASA Astrophysics Data System (ADS)

    Álvarez, C. A.; Riascos, H.; Gonzalez, C.

    2016-02-01

    Particle-In-Cell(PIC) method is widely used for simulating plasma kinetic models. A 2D-PIC electrostatic algorithm is implemented for simulating the expansion of a laser- induced plasma plume. For potential and Electric Field calculation, Dirichlet and periodic boundary conditions are used in the X (perpendicular to the ablated material) and Y directions, respectively. Poisson-solver employs FFTW3 library and the five-point Laplacian to compute the electric potential. Electric field calculation is made by central finite differences method. Leap-frog scheme updates particle positions and velocities at each iteration. Plume expansion anlysis is done for the Emission and Post-Emission stages. In the Emission phase (while the laser is turned on), fast electron expansion is observed and ion particles remain near the surface of the ablated material. In the post-emission stage (with the laser turned off) the charge separation produces an electric field that accelerates the ions leading to the formation of a KeV per particle Ion-Front. At the end of the expansion, fastest electrons escape from the simulation space; an almost homogeneous ion-electron distribution is observed, decreasing the electric field value and the Coulomb interactions.

  7. Catalog of velocity distributions around a reconnection site in 2D PIC simulations

    NASA Astrophysics Data System (ADS)

    Lechner, Lukas; Bourdin, Philippe-A.; Nakamura, Takuma K. M.; Nakamura, Rumi; Narita, Yasuhito

    2016-04-01

    The velocity distribution of electrons and ions are known to be a marker for regions where magnetic reconnection develops. Past theoretical and computational works demonstrated that non-gyrotropic and anisotropic distributions depending on particle meandering motions and accelerations are seen around the reconnection point. The Magnetospheric Multiscale (MMS) mission is expected to resolve such kinetic scale reconnection regions. We present a catalog of velocity distribution functions that can give hints on the location within the current sheet relative to the reconnection point, which is sometimes unclear from pure spacecraft observations. We use 2D PIC simulations of anti-parallel magnetic reconnection to obtain velocity distributions at different locations, like in the center of the reconnection site, the ion and electron diffusion regions, or the reconnection inflow and outflow regions. With sufficiently large number of particles we resolve the distribution functions also in rather small regions. Such catalog may be compared with future MMS observations of the Earth's magnetotail.

  8. Evaluation of the Aleph PIC Code on Benchmark Simulations

    NASA Astrophysics Data System (ADS)

    Boerner, Jeremiah; Pacheco, Jose; Grillet, Anne

    2016-09-01

    Aleph is a massively parallel, 3D unstructured mesh, Particle-in-Cell (PIC) code, developed to model low temperature plasma applications. In order to verify and validate performance, Aleph is benchmarked against a series of canonical problems to demonstrate statistical indistinguishability in the results. Here, a series of four problems is studied: Couette flows over a range of Knudsen number, sheath formation in an undriven plasma, the two-stream instability, and a capacitive discharge. These problems respectively exercise collisional processes, particle motion in electrostatic fields, electrostatic field solves coupled to particle motion, and a fully coupled reacting plasma. Favorable comparison with accepted results establishes confidence in Aleph's capability and accuracy as a general purpose PIC code. Finally, Aleph is used to investigate the sensitivity of a triggered vacuum gap switch to the particle injection conditions associated with arc breakdown at the trigger. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. What Can We Learn about Magnetotail Reconnection from 2D PIC Harris-Sheet Simulations?

    NASA Astrophysics Data System (ADS)

    Goldman, M. V.; Newman, D. L.; Lapenta, G.

    2016-03-01

    The Magnetosphere Multiscale Mission (MMS) will provide the first opportunity to probe electron-scale physics during magnetic reconnection in Earth's magnetopause and magnetotail. This article will address only tail reconnection—as a non-steady-state process in which the first reconnected field lines advance away from the x-point in flux pile-up fronts directed Earthward and anti-Earthward. An up-to-date microscopic physical picture of electron and ion-scale collisionless tail reconnection processes is presented based on 2-D Particle-In-Cell (PIC) simulations initiated from a Harris current sheet and on Cluster and Themis measurements of tail reconnection. The successes and limitations of simulations when compared to measured reconnection are addressed in detail. The main focus is on particle and field diffusion region signatures in the tail reconnection geometry. The interpretation of these signatures is vital to enable spacecraft to identify physically significant reconnection events, to trigger meaningful data transfer from MMS to Earth and to construct a useful overall physical picture of tail reconnection. New simulation results and theoretical interpretations are presented for energy transport of particles and fields, for the size and shape of electron and ion diffusion regions, for processes occurring near the fronts and for the j × B (Hall) electric field.

  10. Modeling of Ionization Physics with the PIC Code OSIRIS

    SciTech Connect

    Deng, S.; Tsung, F.; Lee, S.; Lu, W.; Mori, W.B.; Katsouleas, T.; Muggli, P.; Blue, B.E.; Clayton, C.E.; O'Connell, C.; Dodd, E.; Decker, F.J.; Huang, C.; Hogan, M.J.; Hemker, R.; Iverson, R.H.; Joshi, C.; Ren, C.; Raimondi, P.; Wang, S.; Walz, D.; /Southern California U. /UCLA /SLAC

    2005-09-27

    When considering intense particle or laser beams propagating in dense plasma or gas, ionization plays an important role. Impact ionization and tunnel ionization may create new plasma electrons, altering the physics of wakefield accelerators, causing blue shifts in laser spectra, creating and modifying instabilities, etc. Here we describe the addition of an impact ionization package into the 3-D, object-oriented, fully parallel PIC code OSIRIS. We apply the simulation tool to simulate the parameters of the upcoming E164 Plasma Wakefield Accelerator experiment at the Stanford Linear Accelerator Center (SLAC). We find that impact ionization is dominated by the plasma electrons moving in the wake rather than the 30 GeV drive beam electrons. Impact ionization leads to a significant number of trapped electrons accelerated from rest in the wake.

  11. Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration Simulations

    SciTech Connect

    Paul, K.; Bruhwiler, D. L.; Cowan, B.; Cary, J. R.; Huang, C.; Mori, W. B.; Tsung, F. S.; Cormier-Michel, E.; Geddes, C. G. R.; Esarey, E.; Fonseca, R. A.; Martins, S. F.; Silva, L. O.

    2009-01-22

    Three-dimensional laser wakefield acceleration (LWFA) simulations have recently been performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and QuickPIC. The simulations were run in parallel on over 100 processors, using parameters relevant to LWFA with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and second-order particle shapes were employed. We present the results of this benchmarking exercise, and show that accelerating gradients from full PIC agree for all values of a{sub 0} and that full and reduced PIC agree well for values of a{sub 0} approaching 4.

  12. Validation and testing of the VAM2D computer code

    SciTech Connect

    Kool, J.B.; Wu, Y.S. )

    1991-10-01

    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.

  13. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  14. 2D PIC simulations of a curved supercritical shock: dynamics of the whistler precursor

    NASA Astrophysics Data System (ADS)

    Stienlet, Joël.; Savoini, Philippe; Lembege, Bertrand

    2010-05-01

    The whistler precursor emitted from the curved terrestrial shock front plays an important role in pre-decelerating and heating the incoming solar wind. Most previous works have mainly analyzed the features of the whistler precursor emission for a 1D planar shock where it is forced to propagate along the shock normal (Liewer and al, 1991) or to propagate obliquely with respect to a fixed shock normal direction in 2D planar shock simulation (Krauss-Varban et al., 1995). In the present case, the dynamics of the precursor is analyzed with the help of a 2D full particle simulation for a continuously curved shock within the angular range 90o ≥ ?Bn ≥ 45o where ?Bn is the angle between the shock normal and the upstream magnetostatic field. Both electrons and ions dynamics are described by a self consistent approach. Our results show that (i) the whistler precursor extends far from the shock front mainly along the magnetostatic field (projected on the simulation plane) and not along the shock normal; (ii) the width of these curved wave fronts (precursor) strongly decreases when moving far from the shock front; (iii) at the shock front, the precursor is emitted within an angular range much larger than that predicted by linear theory; (iv) the damping rate of the whistler precursor is analyzed for different directions of the shock normal. Wave particle energy transfer is analysed, and these results will be discussed and compared with previous 1D and 2D simulations of planar shocks; (v) the whistler precursor is not monochromatic, and interferences between modes are evidenced by beats and wave-packets in front of the shock. The impact of this effect on damping rate measurements will be discussed.

  15. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  16. 2D PIC simulations of a curved supercritical shock: dynamics of the whistler precursor

    NASA Astrophysics Data System (ADS)

    Stienlet, J.; Lembege, B.; Savoini, P.

    2009-12-01

    The whistler precursor emitted from the curved terrestrial shock front plays an important role in pre-decelerating and heating the incoming solar wind. Most previous works have mainly analyzed the features of the whistler precursor emission for a 1D planar shock where it is forced to propagate along the shock normal (Liewer and al, 1991) or to propagate obliquely with respect to a fixed shock normal direction in 2D planar shock simulation (Krauss-Varban et al., 1995). In the present case, the dynamics of the precursor is analyzed for a full curved shock with the help of a 2D full particle simulation where full curvature effects and both electrons and ions dynamics are described by a self consistent approach. Curvature effects continously cover all shock normal directions within the angular range 90° ≤ θBn ≤ 45° where θBn is the angle between the shock normal and the upstream magnetostatic field. This approach allows a free accessibility of the whistler precursor to a large angular range without any constraint. Preliminary results show that : (i) the whistler precursor strongly extends far from the shock front mainly along the magnetostatic field (projected on the simulation plane) but this extension is progressively reduced outside this privileged direction; (ii) wave fronts of the whistler precursor have a curvature similar to that of the main curved shock front but the width of these curved wave fronts strongly decreases when moving far from the shock front; (iii) near the shock front, the precursor is emitted within an angular range much larger than that predicted by linear theory; (iv) the critical angle of occurrence of the precursor fits with the theoretical value expected from Krasnoselskikh et al. (2002) model but this angle is not associated to a transition between stationary and non-stationary shocks in contrast with a statement announced by this theoretical model; and (v) the damping rate of the whistler precursor is analyzed for different

  17. Simulation of Laser Wake Field Acceleration using a 2.5D PIC Code

    SciTech Connect

    An, W. M.; Hua, J. F.; Huang, W. H.; Tang, Ch. X.; Lin, Y. Z.

    2006-11-27

    A 2.5D PIC simulation code is developed to study the LWFA( Laser WakeField Acceleration ). The electron self-injection and the generation of mono-energetic electron beam in LWFA is briefly discussed through the simulation. And the experiment of this year at SILEX-I laser facility is also introduced.

  18. 2D FEM Heat Transfer & E&M Field Code

    SciTech Connect

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  19. Ligand Efficiency Outperforms pIC50 on Both 2D MLR and 3D CoMFA Models: A Case Study on AR Antagonists.

    PubMed

    Li, Jiazhong; Bai, Fang; Liu, Huanxiang; Gramatica, Paola

    2015-12-01

    The concept of ligand efficiency is defined as biological activity in each molecular size and is widely accepted throughout the drug design community. Among different LE indices, surface efficiency index (SEI) was reported to be the best one in support vector machine modeling, much better than the generally and traditionally used end-point pIC50. In this study, 2D multiple linear regression and 3D comparative molecular field analysis methods are employed to investigate the structure-activity relationships of a series of androgen receptor antagonists, using pIC50 and SEI as dependent variables to verify the influence of using different kinds of end-points. The obtained results suggest that SEI outperforms pIC50 on both MLR and CoMFA models with higher stability and predictive ability. After analyzing the characteristics of the two dependent variables SEI and pIC50, we deduce that the superiority of SEI maybe lie in that SEI could reflect the relationship between molecular structures and corresponding bioactivities, in nature, better than pIC50. This study indicates that SEI could be a more rational parameter to be optimized in the drug discovery process than pIC50.

  20. A portable platform for accelerated PIC codes and its application to GPUs using OpenACC

    NASA Astrophysics Data System (ADS)

    Hariri, F.; Tran, T. M.; Jocksch, A.; Lanti, E.; Progsch, J.; Messmer, P.; Brunner, S.; Gheller, C.; Villard, L.

    2016-10-01

    We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this development is efficient simulations on future exascale systems by allowing different parallelization strategies depending on the application problem and the specific architecture. To this end, this platform contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic options and data structures. Among the architectures that this engine can explore, particular attention is given here to systems equipped with GPUs. The study demonstrates that our portable PIC implementation based on the OpenACC programming model can achieve performance closely matching theoretical predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel Sandy bridge 8-core CPU by a factor of 3.4.

  1. CFD code comparison for 2D airfoil flows

    NASA Astrophysics Data System (ADS)

    Sørensen, Niels N.; Méndez, B.; Muñoz, A.; Sieros, G.; Jost, E.; Lutz, T.; Papadakis, G.; Voutsinas, S.; Barakos, G. N.; Colonia, S.; Baldacchino, D.; Baptista, C.; Ferreira, C.

    2016-09-01

    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × 106 and 15 × 106. The necessary grid resolution, domain size, and iterative convergence criteria to have consistent results are discussed, and suggestions are given for best practice. For the fully turbulent results four out of seven codes provide consistent results. For the laminar-turbulent transitional results only three out of seven provided results, and the agreement is generally lower than for the fully turbulent case.

  2. Comparisons of time explicit hybrid kinetic-fluid code Architect for Plasma Wakefield Acceleration with a full PIC code

    NASA Astrophysics Data System (ADS)

    Massimo, F.; Atzeni, S.; Marocchino, A.

    2016-12-01

    Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for the solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.

  3. PIC codes for plasma accelerators on emerging computer architectures (GPUS, Multicore/Manycore CPUS)

    NASA Astrophysics Data System (ADS)

    Vincenti, Henri

    2016-03-01

    The advent of exascale computers will enable 3D simulations of a new laser-plasma interaction regimes that were previously out of reach of current Petasale computers. However, the paradigm used to write current PIC codes will have to change in order to fully exploit the potentialities of these new computing architectures. Indeed, achieving Exascale computing facilities in the next decade will be a great challenge in terms of energy consumption and will imply hardware developments directly impacting our way of implementing PIC codes. As data movement (from die to network) is by far the most energy consuming part of an algorithm future computers will tend to increase memory locality at the hardware level and reduce energy consumption related to data movement by using more and more cores on each compute nodes (''fat nodes'') that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, CPU machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. GPU's also have a reduced clock speed per core and can process Multiple Instructions on Multiple Datas (MIMD). At the software level Particle-In-Cell (PIC) codes will thus have to achieve both good memory locality and vectorization (for Multicore/Manycore CPU) to fully take advantage of these upcoming architectures. In this talk, we present the portable solutions we implemented in our high performance skeleton PIC code PICSAR to both achieve good memory locality and cache reuse as well as good vectorization on SIMD architectures. We also present the portable solutions used to parallelize the Pseudo-sepctral quasi-cylindrical code FBPIC on GPUs using the Numba python compiler.

  4. A grid-based coulomb collision model for PIC codes

    SciTech Connect

    Jones, M.E.; Lemons, D.S.; Mason, R.J.; Thomas, V.A.; Winske, D.

    1996-01-01

    A new method is presented to model the intermediate regime between collisionless and Coulobm collision dominated plasmas in particle-in-cell codes. Collisional processes between particles of different species are treated throuqh the concept of a grid-based {open_quotes}collision field,{close_quotes} which can be particularly efficient for multi-dimensional applications. In this method, particles are scattered using a force which is determined from the moments of the distribution functions accumulated on the grid. The form of the force is such to reproduce themulti-fluid transport equations through the second (energy) moment. Collisions between particles of the same species require a separate treatment. For this, a Monte Carlo-like scattering method based on the Langevin equation is used. The details of both methods are presented, and their implementation in a new hybrid (particle ion, massless fluid electron) algorithm is described. Aspects of the collision model are illustrated through several one- and two-dimensional test problems as well as examples involving laser produced colliding plasmas.

  5. Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition

    SciTech Connect

    Witherspoon, F. Douglas; Welch, Dale R.; Thompson, John R.; MacFarlane, Joeseph J.; Phillips, Michael W.; Bruner, Nicki; Mostrom, Chris; Thoma, Carsten; Clark, R. E.; Bogatu, Nick; Kim, Jin-Soo; Galkin, Sergei; Golovkin, Igor E.; Woodruff, P. R.; Wu, Linchun; Messer, Sarah J.

    2014-05-20

    Computational Sciences, Inc. and Advanced Energy Systems Inc. joined efforts to develop new physics and numerical models for LSP in several key areas to enhance the ability of LSP to model high energy density plasmas (HEDP). This final report details those efforts. Areas addressed in this research effort include: adding radiation transport to LSP, first in 2D and then fully 3D, extending the EMHD model to 3D, implementing more advanced radiation and electrode plasma boundary conditions, and installing more efficient implicit numerical algorithms to speed complex 2-D and 3-D computations. The new capabilities allow modeling of the dominant processes in high energy density plasmas, and further assist the development and optimization of plasma jet accelerators, with particular attention to MHD instabilities and plasma/wall interaction (based on physical models for ion drag friction and ablation/erosion of the electrodes). In the first funding cycle we implemented a solver for the radiation diffusion equation. To solve this equation in 2-D, we used finite-differencing and applied the parallelized sparse-matrix solvers in the PETSc library (Argonne National Laboratory) to the resulting system of equations. A database of the necessary coefficients for materials of interest was assembled using the PROPACEOS and ATBASE codes from Prism. The model was benchmarked against Prism's 1-D radiation hydrodynamics code HELIOS, and against experimental data obtained from HyperV's separately funded plasma jet accelerator development program. Work in the second funding cycle focused on extending the radiation diffusion model to full 3-D, continued development of the EMHD model, optimizing the direct-implicit model to speed up calculations, add in multiply ionized atoms, and improved the way boundary conditions are handled in LSP. These new LSP capabilities were then used, along with analytic calculations and Mach2 runs, to investigate plasma jet merging, plasma detachment and transport, restrike

  6. H-VLPL: A three-dimensional relativistic PIC/fluid hybrid code

    NASA Astrophysics Data System (ADS)

    Tückmantel, T.; Pukhov, A.

    2014-07-01

    The novel PIC/fluid hybrid plasma simulation code H-VLPL3D is introduced. In addition to the particle-in-cell algorithm, it uses a new numerical fluid scheme for wake field simulations. Specially designed for the accurate simulation of very long wake fields, this scheme is capable of simulating ∼1000 plasma oscillations of the wake. A comprehensive description of the discretization schemes is given, and we demonstrate the code's correctness and its order of accuracy. Also, its superior efficiency in the plasma wake field acceleration (PWFA) regime is shown.

  7. Spacecraft charging analysis with the implicit particle-in-cell code iPic3D

    SciTech Connect

    Deca, J.; Lapenta, G.; Marchand, R.; Markidis, S.

    2013-10-15

    We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.

  8. Particle-In-Cell (PIC) code simulation results and comparison with theory scaling laws for photoelectron-generated radiation

    SciTech Connect

    Dipp, T.M. |

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface was explored using Particle-In-Cell (PIC) code computer simulations. Using the MAGIC PIC code, the simulations were performed in one dimension to handle the diverse scale lengths of the particles and fields in the problem. The simulations involved monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. A sinusoidal, 100% modulated, 6.3263 ns pulse train, as well as unmodulated emission, were used to explore the behavior of the particles, fields, and generated radiation. A special postprocessor was written to convert the PIC code simulated electron sheath into far-field radiation parameters by means of rigorous retarded time calculations. The results of the small-spot PIC simulations were used to generate various graphs showing resonance and nonresonance radiation quantities such as radiated lobe patterns, frequency, and power. A database of PIC simulation results was created and, using a nonlinear curve-fitting program, compared with theoretical scaling laws. Overall, the small-spot behavior predicted by the theoretical scaling laws was generally observed in the PIC simulation data, providing confidence in both the theoretical scaling laws and the PIC simulations.

  9. Development and Test of 2.5-Dimensional Electromagnetic PIC Simulation Code

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Seon, Jongho; Lee, Dong-Hun; Ryu, Kwang-Sun

    2015-03-01

    We have developed a 2.5-dimensional electromagnetic particle simulation code using the particle-in-cell (PIC) method to investigate electromagnetic phenomena that occur in space plasmas. Our code is based on the leap-frog method and the centered difference method for integration and differentiation of the governing equations. We adopted the relativistic Buneman-Boris method to solve the Lorentz force equation and the Esirkepov method to calculate the current density while maintaining charge conservation. Using the developed code, we performed test simulations for electron two-stream instability and electron temperature anisotropy induced instability with the same initial parameters as used in previously reported studies. The test simulation results are almost identical with those of the previous papers.

  10. Methods used in WARP3d, a three-dimensional PIC/accelerator code

    SciTech Connect

    Grote, D.P.; Friedman, A.; Haber, I.

    1997-02-28

    WARP-3d(1,2), a three-dimensional PIC/accelerator code, has been developed over several years and has played a major role in the design and analysis of space-charge dominated beam experiments being carried out by the heavy-ion fusion programs at LLNL and LBNL. Major features of the code will be reviewed, including: residence corrections which allow large timesteps to be taken, electrostatic field solution with subgrid scale resolution of internal conductor boundaries, and a beat beam algorithm. Emphasis will be placed on new features and capabilities of the code, which include: a port to parallel processing environments, space-charge limited injection, and the linking of runs covering different sections of an accelerator. Representative applications in which the new features and capabilities are used will be presented along with the important results.

  11. Preliminary investigations on 3D PIC simulation of DPHC structure using NEPTUNE3D code

    NASA Astrophysics Data System (ADS)

    Zhao, Hailong; Dong, Ye; Zhou, Haijing; Zou, Wenkang; Wang, Qiang

    2016-10-01

    Cubic region (34cm × 34cm × 18cm) including the double post-hole convolute (DPHC) structure was chosen to perform a series of fully 3D PIC simulations using NEPTUNE3D codes, massive data ( 200GB) could be acquired and solved in less than 5 hours. Cold-chamber tests were performed during which only cathode electron emission was considered without temperature rise or ion emission, current loss efficiency was estimated by comparisons between output magnetic field profiles with or without electron emission. PIC simulation results showed three stages of current transforming process with election emission in DPHC structure, the maximum ( 20%) current loss was 437kA at 15ns, while only 0.46% 0.48% was lost when driving current reached its peak. DPHC structure proved valuable functions during energy transform process in PTS facility, and NEPTUNE3D provided tools to explore this sophisticated physics. Project supported by the National Natural Science Foundation of China, Grant No. 11571293, 11505172.

  12. Analysis of the beam halo in negative ion sources by using 3D3V PIC code.

    PubMed

    Miyamoto, K; Nishioka, S; Goto, I; Hatayama, A; Hanada, M; Kojima, A; Hiratsuka, J

    2016-02-01

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.

  13. Analysis of the beam halo in negative ion sources by using 3D3V PIC code

    SciTech Connect

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.; Hiratsuka, J.

    2016-02-15

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.

  14. 2D Axisymmetric vs 1D: A PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps

    NASA Astrophysics Data System (ADS)

    Moore, Stan; Moore, Chris; Boerner, Jeremiah

    2015-09-01

    Last year at GEC14, we presented results of one-dimensional PIC/DSMC simulations of breakdown in triggered vacuum spark gaps. In this talk, we extend the model to two-dimensional axisymmetric and compare the results to the previous 1D case. Specially, we vary the fraction of the cathode that emits electrons and neutrals (holding the total injection rates over the cathode surface constant) and show the effects of the higher dimensionality on the time to breakdown. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. MPI parallelization of full PIC simulation code with Adaptive Mesh Refinement

    NASA Astrophysics Data System (ADS)

    Matsui, Tatsuki; Nunami, Masanori; Usui, Hideyuki; Moritaka, Toseo

    2010-11-01

    A new parallelization technique developed for PIC method with adaptive mesh refinement (AMR) is introduced. In AMR technique, the complicated cell arrangements are organized and managed as interconnected pointers with multiple resolution levels, forming a fully threaded tree structure as a whole. In order to retain this tree structure distributed over multiple processes, remote memory access, an extended feature of MPI2 standards, is employed. Another important feature of the present simulation technique is the domain decomposition according to the modified Morton ordering. This algorithm can group up the equal number of particle calculation loops, which allows for the better load balance. Using this advanced simulation code, preliminary results for basic physical problems are exhibited for the validity check, together with the benchmarks to test the performance and the scalability.

  16. Numerical solution to the Vlasov equation: The 2D code

    NASA Astrophysics Data System (ADS)

    Fijalkow, Eric

    1999-02-01

    The present code solves the two-dimensional Vlasov equation for a periodic in space system, in presence of an external magnetic field B O. The self coherent electric field given by Poisson equation is computed by Fast Fourier Transform (FFT). The output of the code consist of a list of diagnostics, such as total mass conservation, total momentum and energies, and of projections of the distribution function in different subspaces as the x- v x space, the x- y space and so on.

  17. Numerical modelling of spallation in 2D hydrodynamics codes

    NASA Astrophysics Data System (ADS)

    Maw, J. R.; Giles, A. R.

    1996-05-01

    A model for spallation based on the void growth model of Johnson has been implemented in 2D Lagrangian and Eulerian hydrocodes. The model has been extended to treat complete separation of material when voids coalesce and to describe the effects of elevated temperatures and melting. The capabilities of the model are illustrated by comparison with data from explosively generated spall experiments. Particular emphasis is placed on the prediction of multiple spall effects in weak, low melting point, materials such as lead. The correlation between the model predictions and observations on the strain rate dependence of spall strength is discussed.

  18. Towards the optimization of a gyrokinetic Particle-In-Cell (PIC) code on large-scale hybrid architectures

    NASA Astrophysics Data System (ADS)

    Ohana, N.; Jocksch, A.; Lanti, E.; Tran, T. M.; Brunner, S.; Gheller, C.; Hariri, F.; Villard, L.

    2016-11-01

    With the aim of enabling state-of-the-art gyrokinetic PIC codes to benefit from the performance of recent multithreaded devices, we developed an application from a platform called the “PIC-engine” [1, 2, 3] embedding simplified basic features of the PIC method. The application solves the gyrokinetic equations in a sheared plasma slab using B-spline finite elements up to fourth order to represent the self-consistent electrostatic field. Preliminary studies of the so-called Particle-In-Fourier (PIF) approach, which uses Fourier modes as basis functions in the periodic dimensions of the system instead of the real-space grid, show that this method can be faster than PIC for simulations with a small number of Fourier modes. Similarly to the PIC-engine, multiple levels of parallelism have been implemented using MPI+OpenMP [2] and MPI+OpenACC [1], the latter exploiting the computational power of GPUs without requiring complete code rewriting. It is shown that sorting particles [3] can lead to performance improvement by increasing data locality and vectorizing grid memory access. Weak scalability tests have been successfully run on the GPU-equipped Cray XC30 Piz Daint (at CSCS) up to 4,096 nodes. The reduced time-to-solution will enable more realistic and thus more computationally intensive simulations of turbulent transport in magnetic fusion devices.

  19. Dynamic load balancing in a concurrent plasma PIC code on the JPL/Caltech Mark III hypercube

    SciTech Connect

    Liewer, P.C.; Leaver, E.W.; Decyk, V.K.; Dawson, J.M.

    1990-12-31

    Dynamic load balancing has been implemented in a concurrent one-dimensional electromagnetic plasma particle-in-cell (PIC) simulation code using a method which adds very little overhead to the parallel code. In PIC codes, the orbits of many interacting plasma electrons and ions are followed as an initial value problem as the particles move in electromagnetic fields calculated self-consistently from the particle motions. The code was implemented using the GCPIC algorithm in which the particles are divided among processors by partitioning the spatial domain of the simulation. The problem is load-balanced by partitioning the spatial domain so that each partition has approximately the same number of particles. During the simulation, the partitions are dynamically recreated as the spatial distribution of the particles changes in order to maintain processor load balance.

  20. Modeling the longitudinal wall impedance instability in heavy ion beams using an R-Z PIC code

    SciTech Connect

    Callahan, D.A.; Langdon, A.B.; Friedman, A.; Grote, D.P. ); Haber, I. )

    1991-02-22

    The effects of the longitudinal wall impedance instability in a heavy ion beam are of great interest for heavy ion fusion drivers. We are studying this instability using the R-Z thread of the WARP PIC code. We describe the code and our model of the impedance due to the accelerating modules of the induction LINAC as a resistive wall. We present computer simulations which illustrate this instability. 2 refs., 2 figs., 1 tab.

  1. A hybrid kinetic hot ion PIC module for the M3D-C1 Code

    NASA Astrophysics Data System (ADS)

    Breslau, J. A.; Ferraro, N.; Jardin, S. C.; Kalyanaraman, K.

    2016-10-01

    Building on the success of the original M3D code with the addition of efficient high-order, high-continuity finite elements and a fully implicit time advance making use of cutting-edge numerical techniques, M3D-C1 has become a flagship code for realistic time-dependent 3D MHD and two-fluid calculations of the nonlinear evolution of macroinstabilities in tokamak plasmas. It is therefore highly desirable to introduce to M3D-C1 one of the most-used features of its predecessor: the option to use a drift-kinetic delta- f PIC model for a minority population of energetic ions (representing, e.g., beam ions or fusion alpha particles) coupled with the usual finite element advance of the bulk ion and electron fluids through its pressure tensor. We describe the implementation of a module for this purpose using high-order-of-accuracy numerical integration and carefully tuned to take advantage of state-of-the-art multicore processing elements. Verification results for a toroidal Alfvén eigenmode test problem will be presented, along with a demonstration of favorable parallel scaling to large numbers of supercomputer nodes.

  2. CAST2D: A finite element computer code for casting process modeling

    SciTech Connect

    Shapiro, A.B.; Hallquist, J.O.

    1991-10-01

    CAST2D is a coupled thermal-stress finite element computer code for casting process modeling. This code can be used to predict the final shape and stress state of cast parts. CAST2D couples the heat transfer code TOPAZ2D and solid mechanics code NIKE2D. CAST2D has the following features in addition to all the features contained in the TOPAZ2D and NIKE2D codes: (1) a general purpose thermal-mechanical interface algorithm (i.e., slide line) that calculates the thermal contact resistance across the part-mold interface as a function of interface pressure and gap opening; (2) a new phase change algorithm, the delta function method, that is a robust method for materials undergoing isothermal phase change; (3) a constitutive model that transitions between fluid behavior and solid behavior, and accounts for material volume change on phase change; and (4) a modified plot file data base that allows plotting of thermal variables (e.g., temperature, heat flux) on the deformed geometry. Although the code is specialized for casting modeling, it can be used for other thermal stress problems (e.g., metal forming).

  3. Numerical Simulation of Supersonic Compression Corners and Hypersonic Inlet Flows Using the RPLUS2D Code

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1994-01-01

    A two-dimensional computational code, PRLUS2D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for two-dimensional shock-wave/turbulent-boundary-layer interactions. The problem of compression corners at supersonic speeds was solved using the RPLUS2D code. To validate the RPLUS2D code for hypersonic speeds, it was applied to a realistic hypersonic inlet geometry. Both the Baldwin-Lomax and the Chien two-equation turbulence models were used. Computational results showed that the RPLUS2D code compared very well with experimentally obtained data for supersonic compression corner flows, except in the case of large separated flows resulting from the interactions between the shock wave and turbulent boundary layer. The computational results compared well with the experiment results in a hypersonic NASA P8 inlet case, with the Chien two-equation turbulence model performing better than the Baldwin-Lomax model.

  4. TOPAZ2D heat transfer code users manual and thermal property data base

    SciTech Connect

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

  5. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    NASA Astrophysics Data System (ADS)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  6. Seepage and Piping through Levees and Dikes using 2D and 3D Modeling Codes

    DTIC Science & Technology

    2016-06-01

    Modeling Codes Co as ta l a nd H yd ra ul ic s La bo ra to ry Hwai-Ping Cheng, Stephen M. England, and Clarissa M. Murray June 2016...Flood & Coastal Storm Damage Reduction Program ERDC/CHL TR-16-6 June 2016 Seepage and Piping through Levees and Dikes Using 2D and 3D Modeling Codes ...TYPE Final Report 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Seepage and Piping through Levees and Dikes using 2D and 3D Modeling Codes

  7. Optical CDMA system using 2-D run-length limited code

    NASA Astrophysics Data System (ADS)

    Liu, Maw-Yang; Jiang, Joe-Air

    2010-10-01

    In this paper, time-spreading wavelength-hopping optical CDMA system using 2-D run-length limited code is investigated. The run-length limited code we use here is predicated upon spatial coding scheme, which can improve system performance significantly. In our proposed system, we employ carrier-hopping prime code and its shifted version as signature sequences. Based on the zero auto-correlation sidelobes property of signature sequence, we propose a two-state trellis coding architecture, which utilizes 2-D parallel detection scheme. The proposed scheme is compact and simple that can be applied to more complicated trellis to further enhance system performance. Multiple access interference is the main deterioration factor in optical CDMA system that affects system performance adversely. Aside from the multiple access interference, some of the adverse impacts of system performance are also taken into consideration, which include thermal noise, shot noise, relative intensity noise, and beat noise.

  8. PiCode: A New Picture-Embedding 2D Barcode.

    PubMed

    Chen, Changsheng; Huang, Wenjian; Zhou, Baojian; Liu, Chenchen; Mow, Wai Ho

    2016-08-01

    Nowadays, 2D barcodes have been widely used as an interface to connect potential customers and advertisement contents. However, the appearance of a conventional 2D barcode pattern is often too obtrusive for integrating into an aesthetically designed advertisement. Besides, no human readable information is provided before the barcode is successfully decoded. This paper proposes a new picture-embedding 2D barcode, called PiCode, which mitigates these two limitations by equipping a scannable 2D barcode with a picturesque appearance. PiCode is designed with careful considerations on both the perceptual quality of the embedded image and the decoding robustness of the encoded message. Comparisons with the existing beautified 2D barcodes show that PiCode achieves one of the best perceptual qualities for the embedded image, and maintains a better tradeoff between image quality and decoding robustness in various application conditions. PiCode has been implemented in the MATLAB on a PC and some key building blocks have also been ported to Android and iOS platforms. Its practicality for real-world applications has been successfully demonstrated.

  9. A PIC-MCC code for simulation of streamer propagation in air

    SciTech Connect

    Chanrion, O. Neubert, T.

    2008-07-20

    A particle code has been developed to study the distribution and acceleration of electrons in electric discharges in air. The code can follow the evolution of a discharge from the initial stage of a single free electron in a background electric field to the formation of an electron avalanche and its transition into a streamer. The code is in 2D axi-symmetric coordinates, allowing quasi 3D simulations during the initial stages of streamer formation. This is important for realistic simulations of problems where space charge fields are essential such as in streamer formation. The charged particles are followed in a Cartesian mesh and the electric field is updated with Poisson's equation from the charged particle densities. Collisional processes between electrons and air molecules are simulated with a Monte Carlo technique, according to cross section probabilities. The code also includes photoionisation processes of air molecules by photons emitted by excited constituents. The paper describes the code and presents some results of streamer development at 70 km altitude in the mesosphere where electrical discharges (sprites) are generated above severe thunderstorms and at {approx}10 km relevant for lightning and thundercloud electrification. The code is used to study acceleration of thermal seed electrons in streamers and to understand the conditions under which electrons may reach energies in the runaway regime. This is the first study in air, with a particle model with realistic spatial dependencies of the electrostatic field. It is shown that at 1 atm pressure the electric field must exceed {approx}7.5 times the breakdown field to observe runaway electrons in a constant electric field. This value is close to the field where the electric force on an electron equals the maximum frictional force on an electron - found at {approx}100 eV. It is also found that this value is reached in a negative streamer tip at 10 km altitude when the background electric field equals

  10. Snapshot 2D tomography via coded aperture x-ray scatter imaging

    PubMed Central

    MacCabe, Kenneth P.; Holmgren, Andrew D.; Tornai, Martin P.; Brady, David J.

    2015-01-01

    This paper describes a fan beam coded aperture x-ray scatter imaging system which acquires a tomographic image from each snapshot. This technique exploits cylindrical symmetry of the scattering cross section to avoid the scanning motion typically required by projection tomography. We use a coded aperture with a harmonic dependence to determine range, and a shift code to determine cross-range. Here we use a forward-scatter configuration to image 2D objects and use serial exposures to acquire tomographic video of motion within a plane. Our reconstruction algorithm also estimates the angular dependence of the scattered radiance, a step toward materials imaging and identification. PMID:23842254

  11. SMILEI: A collaborative, open-source, multi-purpose PIC code for the next generation of super-computers

    NASA Astrophysics Data System (ADS)

    Grech, Mickael; Derouillat, J.; Beck, A.; Chiaramello, M.; Grassi, A.; Niel, F.; Perez, F.; Vinci, T.; Fle, M.; Aunai, N.; Dargent, J.; Plotnikov, I.; Bouchard, G.; Savoini, P.; Riconda, C.

    2016-10-01

    Over the last decades, Particle-In-Cell (PIC) codes have been central tools for plasma simulations. Today, new trends in High-Performance Computing (HPC) are emerging, dramatically changing HPC-relevant software design and putting some - if not most - legacy codes far beyond the level of performance expected on the new and future massively-parallel super computers. SMILEI is a new open-source PIC code co-developed by both plasma physicists and HPC specialists, and applied to a wide range of physics-related studies: from laser-plasma interaction to astrophysical plasmas. It benefits from an innovative parallelization strategy that relies on a super-domain-decomposition allowing for enhanced cache-use and efficient dynamic load balancing. Beyond these HPC-related developments, SMILEI also benefits from additional physics modules allowing to deal with binary collisions, field and collisional ionization and radiation back-reaction. This poster presents the SMILEI project, its HPC capabilities and illustrates some of the physics problems tackled with SMILEI.

  12. Field depth extension of 2D barcode scanner based on wavefront coding and projection algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Tingyu; Ye, Zi; Zhang, Wenzi; Huang, Weiwei; Yu, Feihong

    2008-03-01

    Wavefront coding (WFC) used in 2D barcode scanners can extend the depth of field into a great extent with simpler structure compared to the autofocus microscope system. With a cubic phase mask (CPM) employed in the STOP, blurred images will be obtained in charge coupled device (CCD), which can be restored by digital filters. Direct methods are used widely in real-time restoration with good computational efficiency but with details smoothed. Here, the results of direct method are firstly filtered by hard-threshold function. The positions of the steps can be detected by simple differential operators. With the positions corrected by projection algorithm, the exact barcode information is restored. A wavefront coding system with 7mm effective focal length and 6 F-number is designed as an example. Although with the different magnification, images of different object distances can be restored by one point spread function (PSF) with 200mm object distance. A QR code (Quickly Response Code) of 31mm X 27mm is used as a target object. The simulation results showed that the sharp imaging objective distance is from 80mm to 355mm. The 2D barcode scanner with wavefront coding extends field depth with simple structure, low cost and large manufacture tolerance. This combination of the direct filter and projection algorithm proposed here could get the exact 2D barcode information with good computational efficiency.

  13. TWANG-PIC, a novel gyro-averaged one-dimensional particle-in-cell code for interpretation of gyrotron experiments

    SciTech Connect

    Braunmueller, F. Tran, T. M.; Alberti, S.; Genoud, J.; Hogge, J.-Ph.; Tran, M. Q.; Vuillemin, Q.

    2015-06-15

    A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is the case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.

  14. Influence of electron-neutral elastic collisions on the instability of an ion-contaminated cylindrical electron cloud: 2D3V PIC-with-MCC simulations

    NASA Astrophysics Data System (ADS)

    Sengupta, M.; Ganesh, R.

    2016-10-01

    This paper is a simulation based investigation of the effect of elastic collisions and effectively elastic-like excitation collisions between electrons and background neutrals on the dynamics of a cylindrically trapped electron cloud that also has an ion contaminant mixed in it. A cross section of the trapped non neutral cloud composed of electrons mixed uniformly with a fractional population of ions is loaded on a 2D PIC grid with the plasma in a state of unstable equilibrium due to differential rotation between the electron and the ion component. The electrons are also loaded with an axial velocity component, vz, that mimics their bouncing motion between the electrostatic end plugs of a Penning-Malmberg trap. This vz loading facilitates 3D elastic and excitation collisions of the electrons with background neutrals under a MCC scheme. In the present set of numerical experiments, the electrons do not ionize the neutrals. This helps in separating out only the effect of non-ionizing collisions of electrons on the dynamics of the cloud. Simulations reveal that these non-ionizing collisions indirectly influence the ensuing collisionless ion resonance instability of the contaminated electron cloud by a feedback process. The collisional relaxation reduces the average density of the electron cloud and thereby increases the fractional density of the ions mixed in it. The dynamically changing electron density and fractional density of ions feed back on the ongoing ion-resonance (two-stream) instability between the two components of the nonneutral cloud and produce deviations in the paths of progression of the instability that are uncorrelated at different background gas pressures. Effects of the collisions on the instability are evident from alteration in the growth rate and energetics of the instability caused by the presence of background neutrals as compared to a vacuum background. Further in order to understand if the non-ionizing collisions can independently be a cause

  15. Destabilization of a cylindrically confined electron cloud by impact ionization of background neutrals: 2D3v PIC simulation with Monte-Carlo-collisions

    NASA Astrophysics Data System (ADS)

    Sengupta, M.; Ganesh, R.

    2017-03-01

    In this paper, we have investigated, through simulation, the process of destabilization of a cylindrically confined electron cloud due to the presence of a single species of neutral atoms, Ar in the background of the trap at a pressure relevant to experiments. The destabilization occurs because of a gradual accumulation of Ar+ in the cloud by the electron-impact ionization of the background neutrals. The trapped ions gradually collectively form a sizeable ion cloud which engages in a rotational two-stream instability (the ion resonance instability) with the electron cloud. The instability excites a growing fundamental diocotron mode on both components of the mixed non-neutral cloud. With the help of a set of numerical diagnostics, we have investigated the nonlinear evolution of the excited fundamental mode under the combined influence of two ongoing processes viz, (i) the changing electron and ion populations caused by electron impact ionization of the background Ar, and also by the radial loss of both charged species to the grounded trap wall at later stages and (ii) the elastic scattering of electrons and ions that make non-ionizing collisions with the background neutrals. The 2D collisionless dynamics of the instability has been simulated using a 2D Particle-in-Cell code operating on a Cartesian grid laid out on the cylindrical trap's cross-section, and the 3D ionizing and non-ionizing collisions between charged particles and background neutrals have been simulated using the technique of Monte-Carlo-Collisions.

  16. Customized finite difference Maxwell solver for elimination of numerical Cherenkov instability in EM-PIC code

    NASA Astrophysics Data System (ADS)

    Yu, Peicheng; Li, Fei; Dalichaouch, Thamine; Fiuza, Frederico; Decyk, Viktor; Davidson, Asher; Tableman, Adam; An, Weiming; Tsung, Frank; Fonseca, Ricardo; Lu, Wei; Vieira, Jorge; Silva, Luis; Mori, Warren

    2016-10-01

    we present a finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm, which is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1& circ; direction). We show that this eliminates the main NCI modes with moderate | k1 | , while keeps additional main NCI modes well outside the range of physical interest with higher | k1 | . These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1& circ; which typically has many more cells than other directions for the problems of interest.

  17. Performance of the UCAN2 Gyrokinetic Particle In Cell (PIC) Code on Two Massively Parallel Mainframes with Intel ``Sandy Bridge'' Processors

    NASA Astrophysics Data System (ADS)

    Leboeuf, Jean-Noel; Decyk, Viktor; Newman, David; Sanchez, Raul

    2013-10-01

    The massively parallel, 2D domain-decomposed, nonlinear, 3D, toroidal, electrostatic, gyrokinetic, Particle in Cell (PIC), Cartesian geometry UCAN2 code, with particle ions and adiabatic electrons, has been ported to two emerging mainframes. These two computers, one at NERSC in the US built by Cray named Edison and the other at the Barcelona Supercomputer Center (BSC) in Spain built by IBM named MareNostrum III (MNIII) just happen to share the same Intel ``Sandy Bridge'' processors. The successful port of UCAN2 to MNIII which came online first has enabled us to be up and running efficiently in record time on Edison. Overall, the performance of UCAN2 on Edison is superior to that on MNIII, particularly at large numbers of processors (>1024) for the same Intel IFORT compiler. This appears to be due to different MPI modules (OpenMPI on MNIII and MPICH2 on Edison) and different interconnection networks (Infiniband on MNIII and Cray's Aries on Edison) on the two mainframes. Details of these ports and comparative benchmarks are presented. Work supported by OFES, USDOE, under contract no. DE-FG02-04ER54741 with the University of Alaska at Fairbanks.

  18. Performance Evaluation of the Electrostatic Particle-in-Cell Code hPIC on the Blue Waters Supercomputer

    NASA Astrophysics Data System (ADS)

    Khaziev, Rinat; Mokos, Ryan; Curreli, Davide

    2016-10-01

    The newly-developed hPIC code is a kinetic-kinetic electrostatic Particle-in-Cell application, targeted at large-scale simulations of Plasma-Material Interactions. The code can simulate multi-component strongly-magnetized plasmas in a region close to the wall, including the magnetic sheath/presheath and the first surface layers, which release material impurities. The Poisson solver is based on PETSc conjugate gradient with BoomerAMG algebraic multigrid preconditioners. Scaling tests on the Blue Waters supercomputer have demonstrated good strong-scaling up to 262,144 cores and excellent weak-scaling (tested up to 64,000 cores). In this presentation, we will make an overview of the on-node optimization activities and the main code features, as well as provide a detailed analysis of the results of the verification tests performed. Work supported by the NCSA Faculty Fellowship Program at the National Center for Supercomputing Applications; supercomputing resources provided by Exploratory Blue Waters Allocation.

  19. Simulations of 3D LPI's relevant to IFE using the PIC code OSIRIS

    NASA Astrophysics Data System (ADS)

    Tsung, F. S.; Mori, W. B.; Winjum, B. J.

    2014-10-01

    We will study three dimensional effects of laser plasma instabilities, including backward raman scattering, the high frequency hybrid instability, and the two plasmon instability using OSIRIS in 3D Cartesian geometry and cylindrical 2D OSIRIS with azimuthal mode decompositions. With our new capabilities we hope to demonstrate that we are capable of studying single speckle physics relevant to IFE in an efficent manner.

  20. Simulation of Ionospheric E-Region Plasma Turbulence with a Massively Parallel Hybrid PIC/Fluid Code

    NASA Astrophysics Data System (ADS)

    Young, M.; Oppenheim, M. M.; Dimant, Y. S.

    2015-12-01

    The Farley-Buneman (FB) and gradient drift (GD) instabilities are plasma instabilities that occur at roughly 100 km in the equatorial E-region ionosphere. They develop when ion-neutral collisions dominate ion motion while electron motion is affected by both electron-neutral collisions and the background magnetic field. GD drift waves grow when the background density gradient and electric field are aligned; FB waves grow when the background electric field causes electrons to E × B drift with a speed slightly larger than the ion acoustic speed. Theory predicts that FB and GD turbulence should develop in the same plasma volume when GD waves create a perturbation electric field that exceeds the threshold value for FB turbulence. However, ionospheric radars, which regularly observe meter-scale irregularities associated with FB turbulence, must infer kilometer-scale GD dynamics rather than observe them directly. Numerical simulations have been unable to simultaneously resolve GD and FB structure. We present results from a parallelized hybrid simulation that uses a particle-in-cell (PIC) method for ions while modeling electrons as an inertialess, quasi-neutral fluid. This approach allows us to reach length scales of hundreds of meters to kilometers with sub-meter resolution, but requires solving a large linear system derived from an elliptic PDE that depends on plasma density, ion flux, and electron parameters. We solve the resultant linear system at each time step via the Portable Extensible Toolkit for Scientific Computing (PETSc). We compare results of simulated FB turbulence from this model to results from a thoroughly tested PIC code and describe progress toward the first simultaneous simulations of FB and GD instabilities. This model has immediate applications to radar observations of the E-region ionosphere, as well as potential applications to the F-region ionosphere and the chromosphere of the Sun.

  1. Nonlinear PIC Simulation in a Penning Trap

    DTIC Science & Technology

    2002-06-24

    including the effect of the finite length and end curvature of the plasma column. A new cylindrical PIC code, called KANDINSKY , has been implemented by...present simulations of the nonlinear dynamics obtained with the cylindrical PIC Code KANDINSKY , showing that GFD can be actually simulated in Penning...term which retains curvature and thermal effects, while in GFD the velocity field is determined by the vorticity ý. PIC CODE The PIC code KANDINSKY has

  2. A New Family of 2-D Optical Orthogonal Codes and Analysis of Its Performance in Optical CDMA Access Networks

    NASA Astrophysics Data System (ADS)

    Shurong, Sun; Yin, Hongxi; Wang, Ziyu; Xu, Anshi

    2006-04-01

    A new family of two-dimensional optical orthogonal code (2-D OOC), one-coincidence frequency hop code (OCFHC)/OOC, which employs OCFHC and OOC as wavelengthhopping and time-spreading patterns, respectively, is proposed in this paper. In contrary to previously constructed 2-D OOCs, OCFHC/OOC provides more choices on the number of available wavelengths and its cardinality achieves the upper bound in theory without sacrificing good auto-and-cross correlation properties, i.e., the correlation properties of the code is still ideal. Meanwhile, we utilize a new method, called effective normalized throughput, to compare the performance of diverse codes applicable to optical code division multiple access (OCDMA) systems besides conventional measure bit error rate, and the results indicate that our code performs better than obtained OCDMA codes and is truly applicable to OCDMA networks as multiaccess codes and will greatly facilitate the implementation of OCDMA access networks.

  3. Transport simulations of the C-2 and C-2U Field Reversed Configurations with the Q2D code

    NASA Astrophysics Data System (ADS)

    Onofri, Marco; Dettrick, Sean; Barnes, Daniel; Tajima, Toshiki; TAE Team

    2016-10-01

    The Q2D code is a 2D MHD code, which includes a neutral fluid and separate ion and electron temperatures, coupled with a 3D Monte Carlo code, which is used to calculate source terms due to neutral beams. Q2D has been benchmarked against the 1D transport code Q1D and is used to simulate the evolution of the C-2 and C-2U field reversed configuration experiments [1]. Q2D simulations start from an initial equilibrium and transport coefficients are chosen to match C-2 experimental data. C-2U is an upgrade of C-2, with more beam power and angled beam injection, which demonstrates plasma sustainment for 5 + ms. The simulations use the same transport coefficients for C-2 and C-2U, showing the formation of a steady state in C-2U, sustained by fast ion pressure and current drive.

  4. Status report on the 'Merging' of the Electron-Cloud Code POSINST with the 3-D Accelerator PIC CODE WARP

    SciTech Connect

    Vay, J.-L.; Furman, M.A.; Azevedo, A.W.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Stoltz, P.H.

    2004-04-19

    We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.

  5. Computation of nozzle flow fields using the PARC2D Navier-Stokes code

    NASA Technical Reports Server (NTRS)

    Collins, Frank G.

    1986-01-01

    Supersonic nozzles which operate at low Reynolds numbers and have large expansion ratios have very thick boundary layers at their exit. This leads to a very strong viscous/inviscid interaction upon the flow within the nozzle and the traditional nozzle design techniques which correct the inviscid core with a boundary layer displacement do not accurately predict the nozzle exit conditions. A full Navier-Stokes code (PARC2D) was used to compute the nozzle flow field. Grids were generated using the interactive grid generator code TBGG. All computations were made on the NASA MSFC CRAY X-MP computer. Comparison was made between the computations and in-house wall pressure measurements for CO2 flow through a conical nozzle having an area ratio of 40. Satisfactory agreement existed between the computations and measurements for a stagnation pressure of 29.4 psia and stagnation temperature of 1060 R. However, agreement did not exist at a stagnation pressure of 7.4 psia. Several reasons for the lack of agreement are possible. The computational code assumed a constant gas gamma whereas gamma for CO2 varied from 1.22 in the plenum chamber to 1.38 at the nozzle exit. Finally, it is possible that condensation occurred during the expansion at the lower stagnation pressure.

  6. Numerical Instability in a 2D Gyrokinetic Code Caused by Divergent E × B Flow

    NASA Astrophysics Data System (ADS)

    Byers, J. A.; Dimits, A. M.; Matsuda, Y.; Langdon, A. B.

    1994-12-01

    In this paper, a numerical instability first observed in a 2D electrostatic gyrokinetic code is described. The instability should also be present in some form in many versons of particle-in-cell simulation codes that employ guiding center drifts. A perturbation analysis of the instability is given and its results agree quantitatively with the observations from the gyrokinetic code in all respects. The basic mechanism is a false divergence of the E × B flow caused by the interpolation between the grid and the particles as coupled with the specific numerical method for calculating E - ∇φ. Stability or instability depends in detail on the specific choice of particle interpolation method and field method. One common interpolation method, subtracted dipole, is stable. Other commonly used interpolation methods, linear and quadratic, are unstable when combined with a finite difference for the electric field. Linear and quadratic interpolation can be rendered stable if combined with another method for the electric field, the analytic differential of the interpolated potential.

  7. Position coding effects in a 2D scenario: the case of musical notation.

    PubMed

    Perea, Manuel; García-Chamorro, Cristina; Centelles, Arnau; Jiménez, María

    2013-07-01

    How does the cognitive system encode the location of objects in a visual scene? In the past decade, this question has attracted much attention in the field of visual-word recognition (e.g., "jugde" is perceptually very close to "judge"). Letter transposition effects have been explained in terms of perceptual uncertainty or shared "open bigrams". In the present study, we focus on note position coding in music reading (i.e., a 2D scenario). The usual way to display music is the staff (i.e., a set of 5 horizontal lines and their resultant 4 spaces). When reading musical notation, it is critical to identify not only each note (temporal duration), but also its pitch (y-axis) and its temporal sequence (x-axis). To examine note position coding, we employed a same-different task in which two briefly and consecutively presented staves contained four notes. The experiment was conducted with experts (musicians) and non-experts (non-musicians). For the "different" trials, the critical conditions involved staves in which two internal notes that were switched vertically, horizontally, or fully transposed--as well as the appropriate control conditions. Results revealed that note position coding was only approximate at the early stages of processing and that this encoding process was modulated by expertise. We examine the implications of these findings for models of object position encoding.

  8. Simulation and calculation of particle trapping using a quasistatic 2D simulation code

    NASA Astrophysics Data System (ADS)

    Morshed, Sepehr; Antonsen, Thomas; Huang, Chengkun; Mori, Warren

    2008-11-01

    In LWFA schemes the laser pulse must propagate several centimeters and maintain its coherence over this distance, which corresponds to many Rayleigh lengths. These Wakefields and their effect on the laser can be simulated in quasistatic approximation [1, 2]. In this approximation the assumption is that the driver (laser) does not change shape during the time it takes for it to pass by a plasma particle. As a result the particles that are trapped and moving with near-luminal velocity can not be treated with this approximation. Here we have modified the 2D code WAKE with an alternate algorithm so that when a plasma particle gains sufficient energy from wakefields it is promoted to beam particle status which later on may become trapped in the wakefields of laser. Similar implementations have been made in the 3D code QUICKPIC [2]. We also have done comparison between WAKE and results from 200 TW laser simulations using OSIRIS [3]. These changes in WAKE will give users a tool that can be used on a desk top machine to simulate GeV acceleration.[0pt] [1] P. Mora and T. M. Antonsen Jr., Phys Plasma 4, 217 (1997)[0pt] [2] C. Huang et al. Comp Phys. 217 (2006)[0pt] [3] W. Lu et al. PRST, Accelerators and Beams 10, 061301 (2007)

  9. Modelling 2001 lahars at Popocatépetl volcano using FLO2D numerical code

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Capra, L.

    2013-12-01

    Popocatépetl volcano is located on the central part of the Transmexican Volcanic Belt. It is one of the most active volcanoes in Mexico and endanger more than 25 million people that lives in its surroundings. In the last months, the renewal of its volcanic activity put into alert scientific community. One of the possible scenarios is the 2001 explosive activity, which was characterized by a 8 km eruptive column and the subsequent formation of pumice flows up to 4 km from the crater. Lahars were generated few hours after, remobilizing the new deposits towards NE flank of the volcano, along Huiloac Gorge, almost reaching Santiago Xalitzintla town (Capra et al., 2004). The occurrence of a similar scenario makes very important to reproduce this event to delimitate accurately lahar hazard zones. In this work, 2001 lahar deposit is modeled using FLO2D numerical code. Geophone data is used to reconstruct initial hydrograph and sediment concentration. Sensitivity study of most important parameters used by this code like Manning, and α and β coefficients was conducted in order to achieve a good simulation. Results obtained were compared with field data and demonstrated a good agreement in thickness and flow distribution. A comparison with previously published data with laharZ program (Muñoz-Salinas, 2009) is also made. Additionally, lahars with fluctuating sediment concentrations but with similar volume are simulated to observe the influence of the rheological behavior on lahar distribution.

  10. Embedded morphological dilation coding for 2D and 3D images

    NASA Astrophysics Data System (ADS)

    Lazzaroni, Fabio; Signoroni, Alberto; Leonardi, Riccardo

    2002-01-01

    Current wavelet-based image coders obtain high performance thanks to the identification and the exploitation of the statistical properties of natural images in the transformed domain. Zerotree-based algorithms, as Embedded Zerotree Wavelets (EZW) and Set Partitioning In Hierarchical Trees (SPIHT), offer high Rate-Distortion (RD) coding performance and low computational complexity by exploiting statistical dependencies among insignificant coefficients on hierarchical subband structures. Another possible approach tries to predict the clusters of significant coefficients by means of some form of morphological dilation. An example of a morphology-based coder is the Significance-Linked Connected Component Analysis (SLCCA) that has shown performance which are comparable to the zerotree-based coders but is not embedded. A new embedded bit-plane coder is proposed here based on morphological dilation of significant coefficients and context based arithmetic coding. The algorithm is able to exploit both intra-band and inter-band statistical dependencies among wavelet significant coefficients. Moreover, the same approach is used both for two and three-dimensional wavelet-based image compression. Finally we the algorithms are tested on some 2D images and on a medical volume, by comparing the RD results to those obtained with the state-of-the-art wavelet-based coders.

  11. DOD-SBIR Structured Multi-Resolution PIC Code for Electromagnetic Plasma Simulations, Final Report

    SciTech Connect

    Vay, J L; Grote, D P; Friedman, A

    2010-04-22

    A novel electromagnetic solver with mesh refinement capability was implemented in Warp. The solver allows for calculations in 2-1/2 and 3 dimensions, includes the standard Yee stencil, and the Cole-Karkkainen stencil for lower numerical dispersion along the principal axes. Warp implementation of the Cole-Karkkainen stencil includes an extension to perfectly matched layers (PML) for absorption of waves, and is preserving the conservation property of charge conserving current deposition schemes, like the Buneman-Villanesor and Esirkepov methods. Warp's mesh refinement framework (originally developed for electrostatic calculations) was augmented to allow for electromagnetic capability, following the methodology presented in [1] extended to an arbitrary number of refinement levels. Other developments include a generalized particle injection method, internal conductors using stair-cased approximation, and subcycling of particle pushing. The solver runs in parallel using MPI message passing, with a choice at runtime of 1D, 2D and 3D domain decomposition, and is shown to scale linearly on a test problem up-to 32,768 CPUs. The novel solver was tested on the modeling of filamentation instability, fast ignition, ion beam induced plasma wake, and laser plasma acceleration.

  12. Ion cyclotron emission calculations using a 2D full wave numerical code

    NASA Astrophysics Data System (ADS)

    Batchelor, D. B.; Jaeger, E. F.; Colestock, P. L.

    1987-09-01

    Measurement of radiation in the HF band due to cyclotron emission by energetic ions produced by fusion reactions or neutral beam injection promises to be a useful diagnostic on large devices which are entering the reactor regime of operation. A number of complications make the modelling and interpretation of such measurements difficult using conventional geometrical optics methods. In particular the long wavelength and lack of high directivity of antennas in this frequency regime make observation of a single path across the plasma into a viewing dump impractical. Pickup antennas effectively see the whole plasma and wall reflection effects are important. We have modified our 2D full wave ICRH code2 to calculate wave fields due to a distribution of energetic ions in tokamak geometry. The radiation is modeled as due to an ensemble of localized source currents distributed in space. The spatial structure of the coherent wave field is then calculated including cyclotron harmonic damping as compared to the usual procedure of incoherently summing powers of individual radiators. This method has the advantage that phase information from localized radiating currents is globally retained so the directivity of the pickup antennas is correctly represented. Also standing waves and wall reflections are automatically included.

  13. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Key, Kerry

    2016-10-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data

  14. Numerical experiments on unstructured PIC stability.

    SciTech Connect

    Day, David Minot

    2011-04-01

    Particle-In-Cell (PIC) is a method for plasmas simulation. Particles are pushed with Verlet time integration. Fields are modeled using finite differences on a tensor product mesh (cells). The Unstructured PIC methods studied here use instead finite element discretizations on unstructured (simplicial) meshes. PIC is constrained by stability limits (upper bounds) on mesh and time step sizes. Numerical evidence (2D) and analysis will be presented showing that similar bounds constrain unstructured PIC.

  15. NEPHTIS: Core depletion validation relying on 2D transport core calculations with the APOLLO2 code

    SciTech Connect

    Damian, F.; Raepsaet, X.; Groizard, M.; Poinot, C.

    2006-07-01

    The CEA, in collaboration with EDF and AREVA-NP, is developing a core modelling tool called NEPHTIS, for Neutronic Process for HTGR Innovating Systems and dedicated at present day to the prismatic block-type HTGR (High Temperature Gas-Cooled Reactors). Due to the lack of usable HTGR experimental results, the confidence in this neutronic computational tool relies essentially on comparisons to reference or best-estimate calculations. In the present analysis, the Aleppo deterministic transport code has been selected as reference for validating core depletion simulations carried out within NEPHTIS. These reference calculations were performed on fully detailed 2D core configurations using the Method of Characteristics. The latter has been validated versus Monte Carlo method for different static core configurations [1], [2] and [3]. All the presented results come from an annular HTGR core loaded with uranium-based fuel (15% enrichment). During the core depletion validation, reactivity, reaction rates distributions and nuclei concentrations have been compared. In addition, the impact of various physical and geometrical parameters such as the core loading (one-through or batch-wise reloading) and the amount of burnable poison has been investigated during the validation phases. The results confirm that NEPHTIS is able to predict the core reactivity with uncertainties of {+-}350 pcm. At the end of the core irradiation, the U-235 consumption is calculated within {+-} 0, 7 % while the plutonium mass discharged from the core is calculated within {+-}1 %. As far as the core power distributions are concerned, small discrepancies ( and < 2.3 %) can be observed on the fuel block-averaged power distribution in the core. (authors)

  16. Analytic Grad-Shafranov test criteria and checks of a 1-1/2-D BALDUR code

    SciTech Connect

    Seidl, F.G.P.

    1986-05-01

    As discussed by Shafranov, Solov'ev, and others, two special constraints allow the Grad-Shafranov equation to yield simple analytic solutions. From the simplest solution, formulae are derived for properties of the corresponding toroidally symmetric plasma and for the space profile of poloidal magnetic flux density. These formulae constitute test criteria for code performance once the code is made consistent with the two constraints. Obtaining consistency with the first constraint is straightforward, but with the second it is circumstantial. Moreover, the poloidal flux profile of the analytic solution implies a certain artificial form for the resistivity, which is also derived. These criteria have been used to check a composite code which had been assembled by linking a geometrically generalized 1-D BALDUR transport code with a computationally efficient 2-D equilibrium code. A brief description of the composite code is given as well as of its performance with respect to the Grad-Shafranov test criteria.

  17. CHEM2D: a two-dimensional, three-phase, nine-component chemical flood simulator. Volume I. CHEM2D technical description and FORTRAN code

    SciTech Connect

    Fanchi, J.R.

    1985-04-01

    Under the sponsorship of the US Department of Energy, a publicly available chemical simulator has been evaluated and substantially enhanced to serve as a useful tool for projecting polymer or chemical flood performance. The program, CHEM2D, is a two-dimensional, three-phase, nine-component finite-difference numerical simulator. It can model primary depletion, waterfloods, polymer floods, and micellar/polymer floods using heterogeneous linear, areal, or cross-sectional reservoir descriptions. The user may specify well performance as either pressure or rate constrained. Both a constant time step size and a variable time step size based on extrapolation of concentration changes are available as options. A solution technique which is implicit in pressure and explicit in saturations and concentrations is used. The major physical mechanisms that are modeled include adsorption, capillary trapping, cation exchange, dilution, dispersion, interfacial tension, binary or ternary phase behavior, non-Newtonian polymer rheology, and two-phase or three-phase relative permeability. Typical components include water, oil, surfactant, polymer, and three ions (chloride, calcium, and sodium). Components may partition amongst the aqueous, oleic, and microemulsion phases. Volume I of this report provides a discussion of the formulation and algorithms used within CHEM2D. Included in Volume I are a number of validation and illustrative examples, as well as the FORTRAN code. The CHEM2D user's manual, Volume II, contains both the input data sets for the examples presented in Volume I and an example output. All appendices and a phase behavior calculation program are collected in Volume III. 20 references.

  18. Comparison between 1D and 1 1/2D Eulerian Vlasov codes for the numerical simulation of stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Ghizzo, A.; Bertrand, P.; Lebas, J.; Shoucri, M.; Johnston, T.; Fijalkow, E.; Feix, M. R.

    1992-10-01

    The present 1 1/2D relativistic Euler-Vlasov code has been used to check the validity of a hydrodynamic description used in a 1D version of the Vlasov code. By these means, detailed numerical results can be compared; good agreement furnishes full support for the 1D electromagnetic Vlasov code, which runs faster than the 1 1/2D code. The results obtained assume a nonrelativistic v(y) velocity.

  19. Numerical simulations of hydrodynamic instabilities: Perturbation codes PANSY, PERLE, and 2D code CHIC applied to a realistic LIL target

    NASA Astrophysics Data System (ADS)

    Hallo, L.; Olazabal-Loumé, M.; Maire, P. H.; Breil, J.; Morse, R.-L.; Schurtz, G.

    2006-06-01

    This paper deals with ablation front instabilities simulations in the context of direct drive ICF. A simplified DT target, representative of realistic target on LIL is considered. We describe here two numerical approaches: the linear perturbation method using the perturbation codes Perle (planar) and Pansy (spherical) and the direct simulation method using our Bi-dimensional hydrodynamic code Chic. Numerical solutions are shown to converge, in good agreement with analytical models.

  20. Simulation of 2D Kinetic Effects in Plasmas using the Grid Based Continuum Code LOKI

    NASA Astrophysics Data System (ADS)

    Banks, Jeffrey; Berger, Richard; Chapman, Tom; Brunner, Stephan

    2016-10-01

    Kinetic simulation of multi-dimensional plasma waves through direct discretization of the Vlasov equation is a useful tool to study many physical interactions and is particularly attractive for situations where minimal fluctuation levels are desired, for instance, when measuring growth rates of plasma wave instabilities. However, direct discretization of phase space can be computationally expensive, and as a result there are few examples of published results using Vlasov codes in more than a single configuration space dimension. In an effort to fill this gap we have developed the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space. The code is designed to reduce the cost of phase-space computation by using fully 4th order accurate conservative finite differencing, while retaining excellent parallel scalability that efficiently uses large scale computing resources. In this poster I will discuss the algorithms used in the code as well as some aspects of their parallel implementation using MPI. I will also overview simulation results of basic plasma wave instabilities relevant to laser plasma interaction, which have been obtained using the code.

  1. Reliability of astrophysical jet simulations in 2D. On inter-code reliability and numerical convergence

    NASA Astrophysics Data System (ADS)

    Krause, M.; Camenzind, M.

    2001-12-01

    In the present paper, we examine the convergence behavior and inter-code reliability of astrophysical jet simulations in axial symmetry. We consider both pure hydrodynamic jets and jets with a dynamically significant magnetic field. The setups were chosen to match the setups of two other publications, and recomputed with the MHD code NIRVANA. We show that NIRVANA and the two other codes give comparable, but not identical results. We explain the differences by the different application of artificial viscosity in the three codes and numerical details, which can be summarized in a resolution effect, in the case without magnetic field: NIRVANA turns out to be a fair code of medium efficiency. It needs approximately twice the resolution as the code by Lind (Lind et al. 1989) and half the resolution as the code by Kössl (Kössl & Müller 1988). We find that some global properties of a hydrodynamical jet simulation, like e.g. the bow shock velocity, converge at 100 points per beam radius (ppb) with NIRVANA. The situation is quite different after switching on the toroidal magnetic field: in this case, global properties converge even at 10 ppb. In both cases, details of the inner jet structure and especially the terminal shock region are still insufficiently resolved, even at our highest resolution of 70 ppb in the magnetized case and 400 ppb for the pure hydrodynamic jet. The magnetized jet even suffers from a fatal retreat of the Mach disk towards the inflow boundary, which indicates that this simulation does not converge, in the end. This is also in definite disagreement with earlier simulations, and challenges further studies of the problem with other codes. In the case of our highest resolution simulation, we can report two new features: first, small scale Kelvin-Helmholtz instabilities are excited at the contact discontinuity next to the jet head. This slows down the development of the long wavelength Kelvin-Helmholtz instability and its turbulent cascade to smaller

  2. TOPAZ - a finite element heat conduction code for analyzing 2-D solids

    SciTech Connect

    Shapiro, A.B.

    1984-03-01

    TOPAZ is a two-dimensional implicit finite element computer code for heat conduction analysis. This report provides a user's manual for TOPAZ and a description of the numerical algorithms used. Sample problems with analytical solutions are presented. TOPAZ has been implemented on the CRAY and VAX computers.

  3. ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests.

    NASA Astrophysics Data System (ADS)

    Stone, James M.; Norman, Michael L.

    1992-06-01

    A detailed description of ZEUS-2D, a numerical code for the simulation of fluid dynamical flows including a self-consistent treatment of the effects of magnetic fields and radiation transfer is presented. Attention is given to the hydrodynamic (HD) algorithms which form the foundation for the more complex MHD and radiation HD algorithms. The effect of self-gravity on the flow dynamics is accounted for by an iterative solution of the sparse-banded matrix resulting from discretizing the Poisson equation in multidimensions. The results of an extensive series of HD test problems are presented. A detailed description of the MHD algorithms in ZEUS-2D is presented. A new method of computing the electromotive force is developed using the method of characteristics (MOC). It is demonstrated through the results of an extensive series of MHD test problems that the resulting hybrid MOC-constrained transport method provides for the accurate evolution of all modes of MHD wave families.

  4. Novel security enhancement technique against eavesdropper for OCDMA system using 2-D modulation format with code switching scheme

    NASA Astrophysics Data System (ADS)

    Singh, Simranjit; Kaur, Ramandeep; Singh, Amanvir; Kaler, R. S.

    2015-03-01

    In this paper, security of the spectrally encoded-optical code division multiplexed access (OCDMA) system is enhanced by using 2-D (orthogonal) modulation technique. This is an effective approach for simultaneous improvement of the system capacity and security. Also, the results show that the hybrid modulation technique proved to be a better option to enhance the data confidentiality at higher data rates using minimum utilization of bandwidth in a multiuser environment. Further, the proposed system performance is compared with the current state-of-the-art OCDMA schemes.

  5. A 2D Benchmark for the Verification of the PEBBED Code

    SciTech Connect

    Barry D. Ganapol; Hans A. Gougar; A. O. Ougouag

    2008-09-01

    A new benchmarking concept is presented for verifying the PEBBED 3D multigroup finite difference/nodal diffusion code with application to pebble bed modular reactors (PBMRs). The key idea is to perform convergence acceleration, also called extrapolation to zero discretization, of a basic finite difference numerical algorithm to give extremely high accuracy. The method is first demonstrated on a 1D cylindrical shell and then on an r,8 wedge where the order of the second order finite difference scheme is confirmed to four places.

  6. Efficient simulation of pitch angle collisions in a 2+2-D Eulerian Vlasov code

    NASA Astrophysics Data System (ADS)

    Banks, Jeff; Berger, R.; Brunner, S.; Tran, T.

    2014-10-01

    Here we discuss pitch angle scattering collisions in the context of the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space. The collision operator is discretized using 4th order accurate conservative finite-differencing. The treatment of the Vlasov operator in phase-space uses an approach based on a minimally diffuse, fourth-order-accurate discretization (Banks and Hittinger, IEEE T. Plasma Sci. 39, 2198). The overall scheme is therefore discretely conservative and controls unphysical oscillations. Some details of the numerical scheme will be presented, and the implementation on modern highly concurrent parallel computers will be discussed. We will present results of collisional effects on linear and non-linear Landau damping of electron plasma waves (EPWs). In addition we will present initial results showing the effect of collisions on the evolution of EPWs in two space dimensions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LDRD program at LLNL under project tracking code 12-ERD-061.

  7. 2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Jones, Gregory S.; Allan, Brian G.; Lin, Johb C.

    2009-01-01

    A current NASA Research Announcement (NRA) project being conducted by Georgia Tech Research Institute (GTRI) personnel and NASA collaborators includes the development of Circulation Control (CC) blown airfoils to improve subsonic aircraft high-lift and cruise performance. The emphasis of this program is the development of CC active flow control concepts for both high-lift augmentation, drag control, and cruise efficiency. A collaboration in this project includes work by NASA research engineers, whereas CFD validation and flow physics experimental research are part of NASA s systematic approach to developing design and optimization tools for CC applications to fixed-wing aircraft. The design space for CESTOL type aircraft is focusing on geometries that depend on advanced flow control technologies that include Circulation Control aerodynamics. The ability to consistently predict advanced aircraft performance requires improvements in design tools to include these advanced concepts. Validation of these tools will be based on experimental methods applied to complex flows that go beyond conventional aircraft modeling techniques. This paper focuses on recent/ongoing benchmark high-lift experiments and CFD efforts intended to provide 2-D CFD validation data sets related to NASA s Cruise Efficient Short Take Off and Landing (CESTOL) study. Both the experimental data and related CFD predictions are discussed.

  8. Electromagnetic direct implicit PIC simulation

    SciTech Connect

    Langdon, A.B.

    1983-03-29

    Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes.

  9. 2D Resistive Magnetohydrodynamics Calculations with an Arbitrary Lagrange Eulerian Code

    NASA Astrophysics Data System (ADS)

    Rousculp, C. L.; Gianakon, T. A.; Lipnikov, K. N.; Nelson, E. M.

    2015-11-01

    Single fluid resistive MHD is useful for modeling Z-pinch configurations in cylindrical geometry. One such example is thin walled liners for shock physics or HEDP experiments driven by capacitor banks such as the LANL's PHELIX or Sandia-Z. MHD is also useful for modeling high-explosive-driven flux compression generators (FCGs) and their high-current switches. The resistive MHD in our arbitrary Lagrange Eulerian (ALE) code operates in one and two dimensions in both Cartesian and cylindrical geometry. It is implemented as a time-step split operator, which consists of, ideal MHD connected to the explicit hydro momentum and energy equations and a second order mimetic discretization solver for implicit solution of the magnetic diffusion equation. In a staggered grid scheme, a single-component of cell-centered magnetic flux is conserved in the Lagrangian frame exactly, while magnetic forces are accumulated at the nodes. Total energy is conserved to round off. Total flux is conserved under the ALE relaxation and remap. The diffusion solver consistently computes Ohmic heating. Both Neumann and Dirichlet boundary conditions are available with coupling to external circuit models. Example calculations will be shown.

  10. The 1963 Vajont landslide (Italy) simulated through a numerical 2D code

    NASA Astrophysics Data System (ADS)

    Zaniboni, Filippo; Ausilia Paparo, Maria; Elsen, Katharina; Tinti, Stefano

    2013-04-01

    On October 9th, 1963, a huge mass of about 260 million m3 collapsed along Mt. Toc flank into the artificial lake called Vajont and generated a gigantic wave that invested the town of Longarone (North-East Italy, about 100 km north of Venice), provoking about 2000 casualties. The event started a public debate on the responsibilities for the disaster, and also raised crucial issues for the scientific and engineering community, regarding reservoir flank instability and safety of the hydroelectric plant. The peculiar features of the event were immediately evident. The clay layers remained uncovered in the upper part of the detachment niche, supporting the hypothesis of a well-defined pre-existing sliding surface, that could explain the high falling velocity (around 20 m/s as a maximum) and the compactness of the deposit layers that were found to sit almost unperturbed on the bottom of the valley. The numerical study presented here contributes to the understanding of dynamics of the Vajont landslide. It is found that the accurate knowledge of the pre- and post-slide morphology provides tight constraints on the parameters of the numerical model, that are tuned to fit the observed deposit. Numerical simulations are carried out by means of the in-house built code UBO-BLOCK2. The initial sliding body is divided into a mesh of interacting volume-conserving blocks, whose motion is computed numerically. The friction coefficient at the base of the landslide is determined through a best fit search by maximizing the degree of overlapping between the calculated and observed deposits. Our best solution is also able to account for the observed slight easterly rotation of the mass, the different behaviors of the eastern and western part of the sliding surface and the retrogressive motion of the slide that after climbing up the opposite flank of the valley reverted velocity to settle down on the bottom of the valley.

  11. Validation and Comparison of 2D and 3D Codes for Nearshore Motion of Long Waves Using Benchmark Problems

    NASA Astrophysics Data System (ADS)

    Velioǧlu, Deniz; Cevdet Yalçıner, Ahmet; Zaytsev, Andrey

    2016-04-01

    Tsunamis are huge waves with long wave periods and wave lengths that can cause great devastation and loss of life when they strike a coast. The interest in experimental and numerical modeling of tsunami propagation and inundation increased considerably after the 2011 Great East Japan earthquake. In this study, two numerical codes, FLOW 3D and NAMI DANCE, that analyze tsunami propagation and inundation patterns are considered. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. NAMI DANCE uses finite difference computational method to solve 2D depth-averaged linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In order to validate these two codes and analyze the differences between 3D-NS and 2D depth-averaged NSWE equations, two benchmark problems are applied. One benchmark problem investigates the runup of long waves over a complex 3D beach. The experimental setup is a 1:400 scale model of Monai Valley located on the west coast of Okushiri Island, Japan. Other benchmark problem is discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. It is a field dataset, recording the Japan 2011 tsunami in Hilo Harbor, Hawaii. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. The differences between 3D-NS and 2D depth-averaged NSWE equations are highlighted. All results are presented with discussions and comparisons. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD Turkey, 108Y227, 113M556 and 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT

  12. ZEUS-2D: A Radiation Magnetohydrodynamics Code for Astrophysical Flows in Two Space Dimensions. II. The Magnetohydrodynamic Algorithms and Tests

    NASA Astrophysics Data System (ADS)

    Stone, James M.; Norman, Michael L.

    1992-06-01

    In this, the second of a series of three papers, we continue a detailed description of ZEUS-2D, a numerical code for the simulation of fluid dynamical flows in astrophysics including a self-consistent treatment of the effects of magnetic fields and radiation transfer. In this paper, we give a detailed description of the magnetohydrodynamical (MHD) algorithms in ZEUS-2D. The recently developed constrained transport (CT) algorithm is implemented for the numerical evolution of the components of the magnetic field for MHD simulations. This formalism guarantees the numerically evolved field components will satisfy the divergence-free constraint at all times. We find, however, that the method used to compute the electromotive forces must be chosen carefully to propagate accurately all modes of MHD wave families (in particular shear Alfvén waves). A new method of computing the electromotive force is developed using the method of characteristics (MOC). It is demonstrated through the results of an extensive series of MHD test problems that the resulting hybrid MOC-CT method provides for the accurate evolution of all modes of MHD wave families.

  13. Linear hybrid kinetic-MHD model of rotating plasmas via the interface of MINERVA stability and VENUS-LEVIS delta-f PIC codes

    NASA Astrophysics Data System (ADS)

    Pfefferle, David; Aiba, Nobuyuki; Graves, Jonathan P.; Cooper, Wilfred A.

    2014-10-01

    In the framework of hybrid kinetic-MHD with plasma rotation, this project focuses on computing, via a delta-f PIC scheme, the non-adiabatic contribution to the MHD pressure tensor from supra-thermal populations. The orbit code VENUS-LEVIS is employed to evolve an ensemble of weighted markers in the rotating magnetic equilibria produced by the MHD stability code MINERVA. The linearly perturbed Vlasov equation is solved by evolving the marker weights in the presence of MINERVA's most unstable MHD modes. Moments of the perturbed distribution are sequenced to yield the hot ion kinetic response. The Laplace transform of the perturbed parallel and perpendicular pressure is calculated at the resonance as a function of the radial position and the poloidal and toroidal mode number. The resulting profiles are fed back into MINERVA as an additional source term in the MHD force balance equation. The mode structure, the frequency and the growth rate of the perturbations are modified due to resonances with the hot particles' bounce/transit motion and their toroidal precession drift. The effect of toroidal plasma rotation on the mode stability is assessed.

  14. Efficient simulation of 2+2-D multi-species plasmas waves using an Eulerian Vlasov code

    NASA Astrophysics Data System (ADS)

    Banks, Jeffrey; Berger, Richard; Chapman, Thomas; Hittinger, Jeffrey; Bruner, Stephan

    2013-10-01

    We discuss multi-species aspects of the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space (Banks et al., Phys. Plasmas 18, 052102 (2011)). In order to control the inherent cost associated with phase-space simulation, our approach uses a minimally diffuse, fourth-order-accurate finite-volume discretization (Banks and Hittinger, IEEE T. Plasma Sci. 39, 2198-2207). The scheme is discretely conservative and controls unphysical oscillations. The details of the numerical scheme will be presented, and the implementation on modern highly concurrent parallel computers will be discussed. We will present results of 2D simulations of propagating ion acoustic waves (IAWs) created using an external driving potential. The evolution of the plasma wave field and associated self-consistent distribution of trapped electrons and ions is studied after the external drive is turned off. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061.

  15. Verification and benchmarking of MAGNUM-2D: a finite element computer code for flow and heat transfer in fractured porous media

    SciTech Connect

    Eyler, L.L.; Budden, M.J.

    1985-03-01

    The objective of this work is to assess prediction capabilities and features of the MAGNUM-2D computer code in relation to its intended use in the Basalt Waste Isolation Project (BWIP). This objective is accomplished through a code verification and benchmarking task. Results are documented which support correctness of prediction capabilities in areas of intended model application. 10 references, 43 figures, 11 tables.

  16. Modelling of ELM-averaged power exhaust on JET using the EDGE2D code with variable transport coefficients

    NASA Astrophysics Data System (ADS)

    Kirnev, G.; Fundamenski, W.; Corrigan, G.

    2007-06-01

    The scrape-off layer (SOL) of the JET tokamak has been modelled using a two-dimensional plasma/neutral code, EDGE2D/NIMBUS, with variable transport coefficients, chosen according to nine candidate theories for radial heat transport in the SOL. Comparison of the radial power width on the outer divertor plates, λq, predicted by modelling and measured experimentally in L-mode and ELM-averaged H-mode at JET is presented. Transport coefficients based on classical and neo-classical ion conduction are found to offer the best agreement with experimentally measured λq magnitude and scaling with target power, upstream density and toroidal field. These results reinforce the findings of an earlier study, based on a simplified model of the SOL (Chankin 1997 Plasma Phys. Control. Fusion 39 1059), and support the earlier estimate of the power width at the entrance of the outer divertor volume in ITER, λq ap 4 mm mapped to the outer mid-plane (Fundamenski et al 2004 Nucl. Fusion 44 20).

  17. Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code

    NASA Astrophysics Data System (ADS)

    Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia

    2015-04-01

    boundary to the wall of the crack (so that the solute can accumulate due to evaporation on the crack block wall, and infiltrating fresh water can push the solute further down) - in order to do so, HYDRUS 2D/3D code had to be modified by its developers. Unconventionally, the main fitting parameters were: parameter a and n in the soil water retention curve and saturated hydraulic conductivity. The amount of infiltrated water (within a reasonable range), the infiltration function in the crack and the actual evaporation from the crack were also used as secondary fitting parameters. The model supports the previous findings that significant amount (~90%) of water from rain events must infiltrate through the crack. It was also noted that infiltration from the crack has to be increasing with depth and that the highest infiltration rate should be somewhere between 1-3m. This paper suggests a new way how to model vertisols in semi-arid regions. It also supports the previous findings about vertisols: especially, the utmost importance of soil cracks as preferential pathways for water and contaminants and soil cracks as deep evaporators.

  18. PIC code modeling of spacecraft charging potential during electron beam injection into a background of neutral gas and plasma, part 1

    NASA Technical Reports Server (NTRS)

    Koga, J. K.; Lin, C. S.; Winglee, R. M.

    1989-01-01

    Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.

  19. PIC Detector for Piano Chords

    NASA Astrophysics Data System (ADS)

    Barbancho, Ana M.; Tardón, Lorenzo J.; Barbancho, Isabel

    2010-12-01

    In this paper, a piano chords detector based on parallel interference cancellation (PIC) is presented. The proposed system makes use of the novel idea of modeling a segment of music as a third generation mobile communications signal, specifically, as a CDMA (Code Division Multiple Access) signal. The proposed model considers each piano note as a CDMA user in which the spreading code is replaced by a representative note pattern. The lack of orthogonality between the note patterns will make necessary to design a specific thresholding matrix to decide whether the PIC outputs correspond to the actual notes composing the chord or not. An additional stage that performs an octave test and a fifth test has been included that improves the error rate in the detection of these intervals that are specially difficult to detect. The proposed system attains very good results in both the detection of the notes that compose a chord and the estimation of the polyphony number.

  20. Coupled 2-dimensional cascade theory for noise an d unsteady aerodynamics of blade row interaction in turbofans. Volume 2: Documentation for computer code CUP2D

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    1994-01-01

    A two dimensional linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.

  1. An improved iteration loop for the three dimensional quasi-static particle-in-cell algorithm: QuickPIC

    SciTech Connect

    An, Weiming; Decyk, Viktor K.; Mori, Warren B.; Antonsen, Thomas M.

    2013-10-01

    We present improvements to the three-dimensional (3D) quasi-static particle-in-cell (PIC) algorithm, which is used to efficiently model short-pulse laser and particle beam–plasma interactions. In this algorithm the fields including the index of refraction created by a static particle/laser beam are calculated. These fields are then used to advance the particle/laser beam forward in time (distance). For a 3D quasi-static code, calculating the wake fields is done using a two-dimensional (2D) PIC code where the time variable is ξ=ct-z and z is the propagation direction of the particle/laser beam. When calculating the wake, the fields, particle positions and momenta are not naturally time centered so an iterative predictor corrector loop is required. In the previous iterative loop in QuickPIC (currently the only 3D quasi-static PIC code), the field equations are derived using the Lorentz gauge. Here we describe a new algorithm which uses gauge independent field equations. It is found that with this new algorithm, the results converge to the results from fully explicitly PIC codes with far fewer iterations (typically 1 iteration as compared to 2–8) for a wide range of problems. In addition, we describe a new deposition scheme for directly depositing the time derivative of the current that is needed in one of the field equations. The new deposition scheme does not require message passing for the particles inside the iteration loop, which greatly improves the speed for parallelized calculations. Comparisons of results from the new and old algorithms and to fully explicit PIC codes are also presented.

  2. DSD2D-FLS 2010: Bdzil's 2010 DSD Code Base; Computing tb and Dn with Edits to Reduce the Noise in the Dn Field Near HE Boundaries

    SciTech Connect

    Bdzil, John Bohdan

    2016-09-21

    The full level-set function code, DSD3D, is fully described in LA-14336 (2007) [1]. This ASCI-supported, DSD code project was the last such LANL DSD code project that I was involved with before my retirement in 2007. My part in the project was to design and build the core DSD3D solver, which was to include a robust DSD boundary condition treatment. A robust boundary condition treatment was required, since for an important local “customer,” the only description of the explosives’ boundary was through volume fraction data. Given this requirement, the accuracy issues I had encountered with our “fast-tube,” narrowband, DSD2D solver, and the difficulty we had building an efficient MPI-parallel version of the narrowband DSD2D, I decided DSD3D should be built as a full level-set function code, using a totally local DSD boundary condition algorithm for the level-­set function, phi, which did not rely on the gradient of the level-­set function being one, |grad(phi)| = 1. The narrowband DSD2D solver was built on the assumption that |grad(phi)| could be driven to one, and near the boundaries of the explosive this condition was not being satisfied. Since the narrowband is typically no more than10*dx wide, narrowband methods are discrete methods with a fixed, non-­resolvable error, where the error is related to the thickness of the band: the narrower the band the larger the errors. Such a solution represents a discrete approximation to the true solution and does not limit to the solution of the underlying PDEs under grid resolution.The full level-­set function code, DSD3D, is fully described in LA-14336 (2007) [1]. This ASCI-­supported, DSD code project was the last such LANL DSD code project that I was involved with before my retirement in 2007. My part in the project was to design and build the core DSD3D solver, which was to include a robust DSD boundary condition treatment. A robust boundary condition treatment was required, since for an important local

  3. FACET: a radiation view factor computer code for axisymmetric, 2D planar, and 3D geometries with shadowing

    SciTech Connect

    Shapiro, A.B.

    1983-08-01

    The computer code FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors for input to finite-element heat-transfer analysis codes. The first section of this report is a brief review of previous radiation-view-factor computer codes. The second section presents the defining integral equation for the geometric view factor between two surfaces and the assumptions made in its derivation. Also in this section are the numerical algorithms used to integrate this equation for the various geometries. The third section presents the algorithms used to detect self-shadowing and third-surface shadowing between the two surfaces for which a view factor is being calculated. The fourth section provides a user's input guide followed by several example problems.

  4. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  5. TRAC code assessment using data from SCTF Core-III, a large-scale 2D/3D facility

    SciTech Connect

    Boyack, B.E.; Shire, P.R.; Harmony, S.C.; Rhee, G.

    1988-01-01

    Nine tests from the SCTF Core-III configuration have been analyzed using TRAC-PF1/MOD1. The objectives of these assessment activities were to obtain a better understanding of the phenomena occurring during the refill and reflood phases of a large-break loss-of-coolant accident, to determine the accuracy to which key parameters are calculated, and to identify deficiencies in key code correlations and models that provide closure for the differential equations defining thermal-hydraulic phenomena in pressurized water reactors. Overall, the agreement between calculated and measured values of peak cladding temperature is reasonable. In addition, TRAC adequately predicts many of the trends observed in both the integral effect and separate effect tests conducted in SCTF Core-III. The importance of assessment activities that consider potential contributors to discrepancies between the measured and calculated results arising from three sources are described as those related to (1) knowledge about the facility configuration and operation, (2) facility modeling for code input, and (3) deficiencies in code correlations and models. An example is provided. 8 refs., 7 figs., 2 tabs.

  6. ZORNOC: a 1 1/2-D tokamak data analysis code for studying noncircular high beta plasmas

    SciTech Connect

    Zurro, B.; Wieland, R.M.; Murakami, M.; Swain, D.W.

    1980-03-01

    A new tokamak data analysis code, ZORNOC, was developed to study noncircular, high beta plasmas in the Impurity Study Experiment (ISX-B). These plasmas exhibit significant flux surface shifts and elongation in both ohmically heated and beam-heated discharges. The MHD equilibrium flux surface geometry is determined by solving the Grad-Shafranov equation based on: (1) the shape of the outermost flux surface, deduced from the magnetic loop probes; (2) a pressure profile, deduced by means of Thomson scattering data (electrons), charge exchange data (ions), and a Fokker-Planck model (fast ions); and (3) a safety factor profile, determined from the experimental data using a simple model (Z/sub eff/ = const) that is self-consistently altered while the plasma equilibrium is iterated. For beam-heated discharches the beam deposition profile is determined by means of a Monte Carlo scheme and the slowing down of the fast ions by means of an analytical solution of the Fokker-Planck equation. The code also carries out an electron power balance and calculates various confinement parameters. The code is described and examples of its operation are given.

  7. A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de

    NASA Technical Reports Server (NTRS)

    Lopez Ortega, Alejandro; Mikellides, Ioannis G.

    2014-01-01

    We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.

  8. The FlatModel: a 2D numerical code to evaluate debris flow dynamics. Eastern Pyrenees basins application.

    NASA Astrophysics Data System (ADS)

    Bateman, A.; Medina, V.; Hürlimann, M.

    2009-04-01

    Debris flows are present in every country where a combination of high mountains and flash floods exists. In the northern part of the Iberian Peninsula, at the Pyrenees, sporadic debris events occur. We selected two different events. The first one was triggered at La Guingueta by the big exceptional flood event that produced many debris flows in 1982 which were spread all over the Catalonian Pyrenees. The second, more local event occurred in 2000 at the mountain Montserrat at the Pre-litoral mountain chain. We present here some results of the FLATModel, entirely developed at the Research Group in Sediment Transport of the Hydraulic, Marine and Environmental Engineering Department (GITS-UPC). The 2D FLATModel is a Finite Volume method that uses the Godunov scheme. Some numerical arranges have been made to analyze the entrainment process during the events, the Stop & Go phenomena and the final deposit of the material. The material rheology implemented is the Voellmy approach, because it acts very well evaluating the frictional and turbulent behavior. The FLATModel uses a GIS environment that facilitates the data analysis as the comparison between field and numerical data. The two events present two different characteristics, one is practically a one dimensional problem of 1400 m in length and the other has a more two dimensional behavior that forms a big fan.

  9. Assessment of the effects of scrape-off layer fluctuations on first wall sputtering with the TOKAM-2D turbulence code

    NASA Astrophysics Data System (ADS)

    Marandet, Y.; Nace, N.; Valentinuzzi, M.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Genesio, P.; Mellet, N.

    2016-11-01

    Plasma material interactions on the first wall of future tokamaks such as ITER and DEMO are likely to play an important role, because of turbulent radial transport. The latter results to a large extent from the radial propagation of plasma filaments through a tenuous background. In such a situation, mean field descriptions (on which transport codes rely) become questionable. First wall sputtering is of particular interest, especially in a full W machine, since it has been shown experimentally that first wall sources control core contamination. In ITER, beryllium sources will be one of the important actors in determining the fuel retention level through codeposition. In this work, we study the effect of turbulent fluctuations on mean sputtering yields and fluxes, relying on a new version of the TOKAM-2D code which includes ion temperature fluctuations. We show that fluctuations enhance sputtering at sub-threshold impact energies, by more than an order of magnitude when fluctuation levels are of order unity.

  10. Metadata, PICS and Quality.

    ERIC Educational Resources Information Center

    Armstrong, C. J.

    1997-01-01

    Discusses PICS (Platform for Internet Content Selection), the Centre for Information Quality Management (CIQM), and metadata. Highlights include filtering networked information; the quality of information; and standardizing search engines. (LRW)

  11. Smart time-pulse coding photoconverters as basic components 2D-array logic devices for advanced neural networks and optical computers

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Michalnichenko, Nikolay N.

    2004-04-01

    The article deals with a conception of building arithmetic-logic devices (ALD) with a 2D-structure and optical 2D-array inputs-outputs as advanced high-productivity parallel basic operational training modules for realization of basic operation of continuous, neuro-fuzzy, multilevel, threshold and others logics and vector-matrix, vector-tensor procedures in neural networks, that consists in use of time-pulse coding (TPC) architecture and 2D-array smart optoelectronic pulse-width (or pulse-phase) modulators (PWM or PPM) for transformation of input pictures. The input grayscale image is transformed into a group of corresponding short optical pulses or time positions of optical two-level signal swing. We consider optoelectronic implementations of universal (quasi-universal) picture element of two-valued ALD, multi-valued ALD, analog-to-digital converters, multilevel threshold discriminators and we show that 2D-array time-pulse photoconverters are the base elements for these devices. We show simulation results of the time-pulse photoconverters as base components. Considered devices have technical parameters: input optical signals power is 200nW_200μW (if photodiode responsivity is 0.5A/W), conversion time is from tens of microseconds to a millisecond, supply voltage is 1.5_15V, consumption power is from tens of microwatts to a milliwatt, conversion nonlinearity is less than 1%. One cell consists of 2-3 photodiodes and about ten CMOS transistors. This simplicity of the cells allows to carry out their integration in arrays of 32x32, 64x64 elements and more.

  12. Nonlinear PIC Simulations for Nonneutral Plasmas

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Luca Delzanno, Gian; Finn, John M.

    2002-11-01

    We present nonlinear simulations of the low frequency dynamics of electrons in a Malmberg-Penning trap, including compressional and thermal effects [1,2]. First, we consider a 2D model where we assume the effective plasma length constant in time. In this framework, we further neglect the thermal effect on the velocity field, and show with the PIC code KANDINSKY that Penning traps could be used to perform geophysical fluid dynamics experiments [3]. We also observe that, due to the presence of the nonlinear m=1 instability, the initially hollow density profile becomes peaked, as in the experiments. Then, we show 2D results including thermal effects. In this case, the development of the m=1 instability is slowed since the equilibrium plasma length profile is closer to the integrable profile, namely the length profile for which there are no discrete unstable modes [4]. Finally, we present simulations of the 3D fluiddynamics model of Ref. [2]. In particular, we investigate the evolution of a m=1 perturbation for different electron temperatures, when compressional and thermal effects are included. [1] J.M. Finn, D. del-Castillo-Negrete, D.C. Barnes,Phys. Plasmas, 6, 3744, 1999. [2] G.G.M. Coppa, A. D'Angola, G.L. Delzanno, G. Lapenta, Phys. Plasmas, 8, 1133, 2001. [3] G.L. Delzanno, J.M. Finn, G. Lapenta, "Nonlinear Phase of the Compressional m=1 Diocotron Instability: Saturation and Analogy with Geophysical Fluid Dynamics", submitted to Phys. Plasmas. [4] G.L. Delzanno, V.I. Pariev, J.M. Finn, G. Lapenta, "Stability Analysis of Hollow Electron Columns Including Compression and Thermal Effects: Integrability Condition and Numerical Simulations", submitted to Phys. Plasmas.

  13. Vlasov simulation of 2D Modulational Instability of Ion Acoustic Waves and Prospects for Modeling such instabilities in Laser Propagation Codes

    NASA Astrophysics Data System (ADS)

    Berger, Richard; Chapman, T.; Banks, J. W.; Brunner, S.

    2015-11-01

    We present 2D+2V Vlasov simulations of Ion Acoustic waves (IAWs) driven by an external traveling-wave potential, ϕ0 (x , t) , with frequency, ω, and wavenumber, k, obeying the kinetic dispersion relation. Both electrons and ions are treated kinetically. Simulations with ϕ0 (x , t) , localized transverse to the propagation direction, model IAWs driven in a laser speckle. The waves bow with a positive or negative curvature of the wave fronts that depends on the sign of the nonlinear frequency shift ΔωNL , which is in turn determined by the magnitude of ZTe /Ti where Z is the charge state and Te , i is the electron, ion temperature. These kinetic effects result can cause modulational and self-focusing instabilities that transfer wave energy to kinetic energy. Linear dispersion properties of IAWs are used in laser propagation codes that predict the amount of light reflected by stimulated Brillouin scattering. At high enough amplitudes, the linear dispersion is invalid and these kinetic effects should be incorporated. Including the spatial and time scales of these instabilities is computationally prohibitive. We report progress including kinetic models in laser propagation codes. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 15.

  14. PIC Simulation of Relativistic Electromagnetic Plasma Expansion with Radiation Damping

    NASA Astrophysics Data System (ADS)

    Noguchi, Koichi; Liang, Edison; Wilks, Scott

    2004-11-01

    One of the unsolved problems in astrophysics is the acceleration of nonthermal high-energy particles. Nonthermal radiation is observed from pulsars, blazers, gamma-ray bursts and black holes. Recently, a new mechanism of relativistic nonthermal particle acceleration, called the Diamagnetic Relativistic Pulse Accelerator(DRPA), discovered using multi-dimensional Particle-in-Cell(PIC) simulations. When a plasma-loaded electromagnetic pulse expands relativistically, the self-induced drift current creates ponderomotive trap, which drags only the fast particles in the trap and leave slow ones behind. Here we study the effect of radiation on an electron-positron plasma accelerated by the DRPA, by introducing the radiation force in our 2D PIC code. In the radiation case, particles are accelerated by the EM pulse but decelerated by the radiation reaction simultaneously, whereas particles are accelerated indefinitely in the non-radiation case. We find that even with the radiation dumping the DRPA mechanism remains robust and particles are accelerated to over γ>100. After the simulation reaches the quasi-equilibrium state, kinetic energy becomes constant, and field energy is converted to radiation using particles as the transfer agent. We will also produce sample light waves of the radiation output.

  15. Validation of TITAN2D flow model code for pyroclastic flows and debris avalanches at Soufrière Hills Volcano, Montserrat, BWI

    NASA Astrophysics Data System (ADS)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Patra, A.; Pitman, E.

    2004-12-01

    Soufrière Hills Volcano (SHV), Montserrat, has experienced numerous episodes of dome collapses since 1996. They range from relatively small rockfalls to major dome collapses, several >10x106 m3, and one >100x106 m3 (Calder, Luckett, Sparks and Voight 2002; Voight et al. 2002). The hazard implications for such events are significant at both local and regional scales, and include pyroclastic surges, explosions, and tsunami. Problems arise in forecasting and hazards mitigation, particularly in zoning for populated areas. Determining the likely extent of flow deposits is important for hazard zonation. For this, detailed mapping (topography of source areas and paths, material properties, structure, track roughness and erosion) has an important role, giving clues on locations of future collapse and runout paths. Here we present an application of a numerical computation model of geophysical mass flow using the TITAN2D code (Patra et al. 2004; Pitman et al. 2004), to simulate dome collapses at SHV. The majority of collapse-type pyroclastic flows at SHV are consistent with an initiation by gravitational collapse of oversteepened flanks of the dome. If the gravity controls the energy for such processes, then the flow tracks can be predicted on the basis of topography, and friction influences runout. TITAN2D is written to simulate this type of volcanic flow, and the SHV database is used to validate the code and provide calibrated data on friction properties. The topographic DEM was successively updated by adding flow deposit thicknesses for previous collapses. Simulation results were compared to observed flow parameters, including flow path, deposit volume, duration, velocity, and runout distance of individual flows, providing calibration data on internal and bed friction, and demonstrating the validity and limitations of such modeling for practical volcanic hazard assessment.

  16. Modeling relativistic plasmas with PIC using VORPAL

    NASA Astrophysics Data System (ADS)

    Nieter, Chet; Cary, John R.

    2002-11-01

    VORPAL, a fully object-oriented, dimension-free plasma simulation code, now has a fully developed PIC model. This PIC model has been applied to studies of Laser Wake Field Acceleration, including the nonlinear structure of the wake field generated in the colliding pulse injection scheme and in the development of a new injection scheme that reduces timing requirements. (See Giacone et al. and Cary et al. at this conference). Since the PIC model was developed using VORPAL's object oriented architecture, it works in any dimension and with both serial and parallel runs. Several different update methods are available, including both relativistic and non-relativistic Boris push and an electrostatic update as well.

  17. Personal identification credential system (PICS)

    NASA Astrophysics Data System (ADS)

    Pressley, Jackson R.; Cantrell, Thomas; Page, Lochlin; Cudlitz, Stephen; Higgins, Roy

    2005-03-01

    A pilot Personal Identification Credential System (PICS) has been developed and fielded. The PICS is a wireless biometric credential that interfaces with access control systems. The PICS consists of individual handheld Personal Identification Credentials (PIC), a PICS Reader located at a facility entry control point that interfaces with the facility entry control system, and a PICS Enrollment Station. In operation, an individual approaching a facility entry point in a vehicle picks up the PIC handheld unit and places a finger on its sensor. The PIC then authenticates the user and from within the vehicle initiates two-way, secure RF communication with the PICS Reader as the vehicle approaches the gate. The PICS Reader then verifies that the individual is authorized for admittance and notifies the facility gate entry control system, which informs the sentry that the request for access was successful or unsuccessful. If the request for access is unsuccessful, the gate entry control system automatically will close the gate. This sequence of events takes place while the car is moving through a normally open entry lane. The PIC is a small, handheld device which contains the biometric sensor (fingerprint sensor), wireless RF transceiver, processor, encryption and battery. The PIC may be used while traveling in a vehicle or may be used while on foot for access to a PICS controlled man gate or secure area access portal. The PIC is small enough to be carried in a shirt pocket, or it can be left in the user's vehicle. The PIC battery will power the PIC for months and is rechargeable. Up to 10 fingers may be stored in the PIC.

  18. Icarus: A 2D direct simulation Monte Carlo (DSMC) code for parallel computers. User`s manual - V.3.0

    SciTech Connect

    Bartel, T.; Plimpton, S.; Johannes, J.; Payne, J.

    1996-10-01

    Icarus is a 2D Direct Simulation Monte Carlo (DSMC) code which has been optimized for the parallel computing environment. The code is based on the DSMC method of Bird and models from free-molecular to continuum flowfields in either cartesian (x, y) or axisymmetric (z, r) coordinates. Computational particles, representing a given number of molecules or atoms, are tracked as they have collisions with other particles or surfaces. Multiple species, internal energy modes (rotation and vibration), chemistry, and ion transport are modelled. A new trace species methodology for collisions and chemistry is used to obtain statistics for small species concentrations. Gas phase chemistry is modelled using steric factors derived from Arrhenius reaction rates. Surface chemistry is modelled with surface reaction probabilities. The electron number density is either a fixed external generated field or determined using a local charge neutrality assumption. Ion chemistry is modelled with electron impact chemistry rates and charge exchange reactions. Coulomb collision cross-sections are used instead of Variable Hard Sphere values for ion-ion interactions. The electrostatic fields can either be externally input or internally generated using a Langmuir-Tonks model. The Icarus software package includes the grid generation, parallel processor decomposition, postprocessing, and restart software. The commercial graphics package, Tecplot, is used for graphics display. The majority of the software packages are written in standard Fortran.

  19. What Makes a PIC Tick?

    ERIC Educational Resources Information Center

    Montgomery, H. Wynn

    1988-01-01

    The author discusses the establishment and objectives of private industry councils (PICs). Such topics as local decision making, private sector representation, on-site evaluations, and summer jobs programs are covered. Emphasis is on the Atlanta, Georgia PIC. (CH)

  20. [PIC Program Evaluation Forms.

    ERIC Educational Resources Information Center

    Short, N. J.

    These 4 questionnaires are designed to elicit teacher and parent evaluations of the Prescriptive Instruction Center (PIC) program. Included are Teacher Evaluation of Program Effectiveness (14 items), M & M Evaluation of Program Implementation (methods and materials specialists; 11 items), Teacher Evaluation of Program Effectiveness--Case Study…

  1. Solution of the field equations for 2-D electromagnetic direct implicit plasma simulation

    NASA Astrophysics Data System (ADS)

    Hewett, D. W.; Langdon, A. B.

    1985-01-01

    A direct implicit particle-in-cell (PIC) simulation model with full electromagnetic (EM) effects has been implemented in 2-D Cartesian geometry. The model, implemented with the D1 time differencing scheme, was first implemented in a 1-D electrostatic (ES) version to gain some experience with spatial differencing in forms suitable for extension to the full EM field in two dimensions. The implicit EM field solve is considerably different from the implicit ES code. The EM field calculation requires an inductive part as well as the electrostatic and the B field must be self-consistently advanced.

  2. PIC: Protein Interactions Calculator

    PubMed Central

    Tina, K. G.; Bhadra, R.; Srinivasan, N.

    2007-01-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic–aromatic interactions, aromatic–sulphur interactions and cation–π interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar–apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791

  3. PIC: Protein Interactions Calculator.

    PubMed

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside.

  4. PIC simulations of the MagnetoRotational instability in electron-positron plasmas

    NASA Astrophysics Data System (ADS)

    Inchingolo, Giannandrea; Grismayer, Thomas; Loureiro, Nuno F.; Fonseca, Ricardo A.; Silva, Luis O.

    2016-10-01

    The magnetorotational instability (MRI) is a crucial mechanism of angular momentum transport in a variety of astrophysical scenarios, as e-e+ plasmas accretion disks nearness neutron stars and black holes. The MRI has been widely studied using MHD models and simulations, in order to understand the behavior of astrophysical fluids in a state of differential rotation. When the timescale for electron and ion collisions is longer than the inflow time in the disk, the plasma is macroscopically collisionless and MHD breaks down. This is the case of the limit of weak magnetic field, i.e., as the ratio of the ion cyclotron frequency to orbital frequency becomes small. Leveraging on the recent addition of the shearing co-rotating frames equations of motion and Maxwell's equations modules in our PIC code OSIRIS 3.0, we intend to present our recent results of the analysis of MRI in electron-positron plasma in the limit of weak magnetic field. We will recall the theoretical 1D linear model of Krolik et Zweibel that describes the behavior of MRI in the limit of weak magnetic field and use it to support our results. Moving to 2D simulations, the analysis of MRI via PIC code permits to investigate also how MRI will act in comparison with other Kinetic instabilities, like mirror instability.

  5. Nonlinear PIC simulation in a Penning trap

    NASA Astrophysics Data System (ADS)

    Lapenta, G.; Delzanno, G. L.; Finn, J. M.

    2002-01-01

    We study the nonlinear dynamics of a Penning trap plasma, including the effect of the finite length and end curvature of the plasma column. A new cylindrical PIC code, called KANDINSKY, has been implemented by using a new interpolation scheme. The principal idea is to calculate the volume of each cell from a particle volume, in the same manner as it is done for the cell charge. With this new method, the density is conserved along streamlines and artificial sources of compressibility are avoided. The code has been validated with a reference Eulerian fluid code. We compare the dynamics of three different models: a model with compression effects, the standard Euler model and a geophysical fluid dynamics model. The results of our investigation prove that Penning traps can really be used to simulate geophysical fluids.

  6. The use of FLO2D numerical code in lahar hazard evaluation at Popocatépetl volcano: a 2001-lahar scenario

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Capra, L.

    2014-07-01

    Lahar modelling represents an excellent tool to design hazard maps. It allows the definition of potential inundation zones for different lahar magnitude scenarios and sediment concentrations. Here we present the results obtained for the 2001 syneruptive lahar at Popocatépetl volcano, based on simulations performed with FLO2D software. An accurate delineation of this event is needed since it is one of the possible scenarios considered during a volcanic crisis. One of the main issues for lahar simulation using FLO2D is the calibration of the input hydrograph and rheologic flow properties. Here we verified that geophone data can be properly calibrated by means of peak discharge calculations obtained by superelevation method. Simulation results clearly show the influence of concentration and rheologic properties on lahar depth and distribution. Modifying rheologic properties during lahar simulation strongly affect lahar distribution. More viscous lahars have a more restricted aerial distribution, thicker depths, and resulting velocities are noticeable smaller. FLO2D proved to be a very successful tool to delimitate lahar inundation zones as well as to generate different lahar scenarios not only related to lahar volume or magnitude but also to take into account different sediment concentrations and rheologies widely documented to influence lahar prone areas.

  7. PIC Simulations of direct laser accelerated electron from underdense plasmas using the OMEGA EP Laser

    NASA Astrophysics Data System (ADS)

    Hussein, Amina; Batson, Thomas; Krushelnick, Karl; Willingale, Louise; Arefiev, Alex; Wang, Tao; Nilson, Phil; Froula, Dustin; Haberberger, Dan; Davies, Andrew; Theobald, Wolfgang; Williams, Jackson; Chen, Hui

    2016-10-01

    The OMEGA EP laser system is used to study channeling phenomena and direct laser acceleration (DLA) through an underdense plasma. The interaction of a ps laser pulse with a subcritical density CH plasma plume results in the expulsion of electron along the laser axis, forming a positively charged channel. Electrons confined within this channel are subject to the action of the laser field as well as the transverse electric field of the channel, resulting the DLA of these electrons and the formation of a high energy electron beam. We have performed 2D simulations of ultra-intense laser radiation with underdense plasma using the PIC code EPOCH to investigate electron densities and self-consistently generated electric fields, as well as electron trajectories. This work was supported by the National Laser Users' Facility (NLUF), DOE.

  8. Adapting hierarchical bidirectional inter prediction on a GPU-based platform for 2D and 3D H.264 video coding

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, Rafael; Martínez, José Luis; Cock, Jan De; Fernández-Escribano, Gerardo; Pieters, Bart; Sánchez, José L.; Claver, José M.; de Walle, Rik Van

    2013-12-01

    The H.264/AVC video coding standard introduces some improved tools in order to increase compression efficiency. Moreover, the multi-view extension of H.264/AVC, called H.264/MVC, adopts many of them. Among the new features, variable block-size motion estimation is one which contributes to high coding efficiency. Furthermore, it defines a different prediction structure that includes hierarchical bidirectional pictures, outperforming traditional Group of Pictures patterns in both scenarios: single-view and multi-view. However, these video coding techniques have high computational complexity. Several techniques have been proposed in the literature over the last few years which are aimed at accelerating the inter prediction process, but there are no works focusing on bidirectional prediction or hierarchical prediction. In this article, with the emergence of many-core processors or accelerators, a step forward is taken towards an implementation of an H.264/AVC and H.264/MVC inter prediction algorithm on a graphics processing unit. The results show a negligible rate distortion drop with a time reduction of up to 98% for the complete H.264/AVC encoder.

  9. [PICS: pharmaceutical inspection cooperation scheme].

    PubMed

    Morénas, J

    2009-01-01

    The pharmaceutical inspection cooperation scheme (PICS) is a structure containing 34 participating authorities located worldwide (October 2008). It has been created in 1995 on the basis of the pharmaceutical inspection convention (PIC) settled by the European free trade association (EFTA) in1970. This scheme has different goals as to be an international recognised body in the field of good manufacturing practices (GMP), for training inspectors (by the way of an annual seminar and experts circles related notably to active pharmaceutical ingredients [API], quality risk management, computerized systems, useful for the writing of inspection's aide-memoires). PICS is also leading to high standards for GMP inspectorates (through regular crossed audits) and being a room for exchanges on technical matters between inspectors but also between inspectors and pharmaceutical industry.

  10. The Langley Stability and Transition Analysis Code (LASTRAC) : LST, Linear and Nonlinear PSE for 2-D, Axisymmetric, and Infinite Swept Wing Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2003-01-01

    During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Subsonic Technology (AST). Experimental, theoretical, as well as computational efforts on various issues such as receptivity and linear and nonlinear evolution of instability waves take part in broadening our knowledge base for this intricate flow phenomenon. Despite all these advances, transition prediction remains a nontrivial task for engineers due to the lack of a widely available, robust, and efficient prediction tool. The design and development of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the state-of-the-art numerical methods for stability analysis and modem software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory (LST) or linear parabolized stability equations (LPSE) method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance environment based on first principles. This paper describes the governing equations, numerical methods, code development, and case studies for the current release of LASTRAC. Practical applications of LASTRAC are demonstrated for linear stability calculations, N-factor transition correlation, non-linear breakdown simulations, and controls of stationary crossflow instability in supersonic swept wing boundary

  11. PIC Reading Readiness Test Form.

    ERIC Educational Resources Information Center

    Short, N. J.

    This rating form concerns the measurement of basic skills in connection with assessing reading readiness. Motor skills, ability to adjust to learning situations, familiarity with the alphabet, and general knowledge are assessed. See TM 001 111 for details of the Regional PIC program in which it is used. (DLG)

  12. Application of surface-harmonics code SUHAM-U and Monte-Carlo code UNK-MC for calculations of 2D light water benchmark-experiment VENUS-2 with UO{sub 2} and MOX fuel

    SciTech Connect

    Boyarinov, V. F.; Davidenko, V. D.; Nevinitsa, V. A.; Tsibulsky, V. F.

    2006-07-01

    Verification of the SUHAM-U code has been carried out by the calculation of two-dimensional benchmark-experiment on critical light-water facility VENUS-2. Comparisons with experimental data and calculations by Monte-Carlo code UNK with the same nuclear data library B645 for basic isotopes have been fulfilled. Calculations of two-dimensional facility were carried out with using experimentally measured buckling values. Possibility of SUHAM code application for computations of PWR reactor with uranium and MOX fuel has been demonstrated. (authors)

  13. SPECT Imaging of 2-D and 3-D Distributed Sources with Near-Field Coded Aperture Collimation: Computer Simulation and Real Data Validation.

    PubMed

    Mu, Zhiping; Dobrucki, Lawrence W; Liu, Yi-Hwa

    The imaging of distributed sources with near-field coded aperture (CA) remains extremely challenging and is broadly considered unsuitable for single-photon emission computerized tomography (SPECT). This study proposes a novel CA SPECT reconstruction approach and evaluates the feasibilities of imaging and reconstructing distributed hot sources and cold lesions using near-field CA collimation and iterative image reconstruction. Computer simulations were designed to compare CA and pinhole collimations in two-dimensional radionuclide imaging. Digital phantoms were created and CA images of the phantoms were reconstructed using maximum likelihood expectation maximization (MLEM). Errors and the contrast-to-noise ratio (CNR) were calculated and image resolution was evaluated. An ex vivo rat heart with myocardial infarction was imaged using a micro-SPECT system equipped with a custom-made CA module and a commercial 5-pinhole collimator. Rat CA images were reconstructed via the three-dimensional (3-D) MLEM algorithm developed for CA SPECT with and without correction for a large projection angle, and 5-pinhole images were reconstructed using the commercial software provided by the SPECT system. Phantom images of CA were markedly improved in terms of image quality, quantitative root-mean-squared error, and CNR, as compared to pinhole images. CA and pinhole images yielded similar image resolution, while CA collimation resulted in fewer noise artifacts. CA and pinhole images of the rat heart were well reconstructed and the myocardial perfusion defects could be clearly discerned from 3-D CA and 5-pinhole SPECT images, whereas 5-pinhole SPECT images suffered from severe noise artifacts. Image contrast of CA SPECT was further improved after correction for the large projection angle used in the rat heart imaging. The computer simulations and small-animal imaging study presented herein indicate that the proposed 3-D CA SPECT imaging and reconstruction approaches worked reasonably

  14. Multi-laser QED cascades in 2D and 3D geometry

    NASA Astrophysics Data System (ADS)

    Vranic, Marija; Grismayer, Thomas; Fonseca, Ricardo A.; Silva, Luis O.

    2015-11-01

    Studying the plasma dynamics in the presence of extreme laser fields requires taking into account physics beyond classical electrodynamics. Pair production seeded by an electron has a lowest threshold among the first quantum mechanisms that appear as the intensity increases, which makes it relevant for the future experiments planned at ELI and other facilities. We have included the two-step pair production process (non linear Compton scattering + Breit-Wheeler) in a massively parallel PIC code (Osiris 2.0 framework) via a Monte Carlo module. With this approach, we take self-consistently into account the interaction of the intense fields with the generated pair plasma. We have also developed a macroparticle merging algorithm that reduces the number of macroparticles in the simulations, while conserving local particle distributions. This algorithm is crucial for simulating scenarios where a large number of pairs are being created, such as QED cascades. We present 2D and 3D PIC-QED study of pair cascades induced with multiple laser pulses. The polarization dependence is discussed, together with the properties of the emitted radiation and experimental signatures. Supported by PRACE and ERC-2010-AdG Grant 267841.

  15. 2D modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    SciTech Connect

    Faudot, E.; Heuraux, S.; Colas, L.

    2005-09-26

    Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.

  16. [Accession to the PIC/S and pharmaceutical quality system in Japan].

    PubMed

    Katori, Noriko

    2014-01-01

    In March, 2012, Japan made the application for membership of the Pharmaceutical Inspection convention and Pharmaceutical Inspection Co-operation scheme (PIC/S) which is an international body of a GMP inspection. The globalization of pharmaceutical manufacturing and sales has been a driving force behind the decision to become a PIC/S member. For the application for membership, Japan's GMP inspectorate needs to fulfill PIC/S requirements, for example, the inspection organization has to have a quality system as a global standard. One of the other requirements is that the GMP inspectorate can access Official Medicines Control Laboratories (OMCL) having high analytical skills and also have a quality system based on ISO 17025. I would like to describe the process to make up a quality system in the National Institute of Health Sciences and also the circumstances around the PIC/S application in Japan.

  17. PIC simulations of the trapped electron filamentation instability in finite-width electron plasma waves

    NASA Astrophysics Data System (ADS)

    Winjum, B. J.; Banks, J. W.; Berger, R. L.; Cohen, B. I.; Chapman, T.; Hittinger, J. A. F.; Rozmus, W.; Strozzi, D. J.; Brunner, S.

    2012-10-01

    We present results on the kinetic filamentation of finite-width nonlinear electron plasma waves (EPW). Using 2D simulations with the PIC code BEPS, we excite a traveling EPW with a Gaussian transverse profile and a wavenumber k0λDe= 1/3. The transverse wavenumber spectrum broadens during transverse EPW localization for small width (but sufficiently large amplitude) waves, while the spectrum narrows to a dominant k as the initial EPW width increases to the plane-wave limit. For large EPW widths, filaments can grow and destroy the wave coherence before transverse localization destroys the wave; the filaments in turn evolve individually as self-focusing EPWs. Additionally, a transverse electric field develops that affects trapped electrons, and a beam-like distribution of untrapped electrons develops between filaments and on the sides of a localizing EPW. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061. Supported also under Grants DE-FG52-09NA29552 and NSF-Phy-0904039. Simulations were performed on UCLA's Hoffman2 and NERSC's Hopper.

  18. Numerical simulations of gyro-devices with hybrid-PIC formulation

    SciTech Connect

    Nguyen, K.T.; Zaidman, E.G.; Ganguly, A.K.

    1995-12-31

    Recent strong interest in the development of compact, efficient, high power, millimeter wave gyro-devices has accentuated the need for advanced design tools capable of accurately predicting the device actual performance. At the Naval Research Laboratory, the studies of the nonlinear saturation gain, efficiency, and bandwidth for gyro-devices are approached from two different formulations: (1) slow-time scale (SLT) formulation and (2) hybrid particle-in-cell (PIC) formulation. The SLT formulation is a computationally efficient, well-proven approach suitable for the accurate modeling of steady-state, single-mode, amplifier operations. For time-dependent multimode design problems where frequencies are arbitrary (e.g. mode competition and spurious oscillations), the hybrid-PIC formulation is the appropriate approach. This formulation is the basis for a 3-D, finite difference, time domain, PIC code recently developed at NRL. Numerical simulations of both gyrotron and peniotron interactions have been performed with the new hybrid-PIC code. Comparisons between the SLT and hybrid-PIC formulations in appropriate cases have shown good agreement. Current code modeling capabilities include uniform and vaned interaction circuits, gyro-traveling-wave amplifiers, gyro-klystron amplifiers, and gyro-oscillators. Further details on the code and its modeling capabilities will be presented and discussed at the conference.

  19. EXPERIMENTAL INVESTIGATION OF PIC FORMATION ...

    EPA Pesticide Factsheets

    The report gives results of experiments to assess: (1) the effect of residual copper retained in an incineration facility on polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF) formation during incineration of non-copper-containing chlorofluorocarbons (CFCs); and (2) the formation of chlorinated and aromatic products of incomplete combustion (PICs), including PCDD/PCDFs, during incineration of CFC recycling residue and hydrochlorofluorocarbons (HCFCs). High concentrations of PCDD/PCDFs (23,800 ng/dscm at 7% O2) measured in FY91 during incineration of CFC-12 in a turbulent flame reactor (TFR) could not be repeated in the present study. Repetition tests conducted in the same facility under similar operating conditions resulted in PCDD/PCDF concentrations of 118ng/dscm at 7% O2. However, results of the present study suggest that residual copper retained in an incineration facility possibly promotes the formation of PCDD/PCDFs during incineration of CFC-12 which does not contain copper. Tests conducted in the TFR resulted in measured PCDD/PCDF concentrations of 386-454 ng/dscm at 7% O2 during incineration of CFC-12 which followed incineration of copper-containing compounds. These results suggest that CFCs may best be incinerated in incinerators which do not treat any copper-containing waste prior to CFC incineration. Report available at NTIS as PB96152186. To share information

  20. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  1. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  2. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  3. In-flight calibrations of IBIS/PICsIT

    NASA Astrophysics Data System (ADS)

    Malaguti, G.; Bazzano, A.; Bird, A. J.; Di Cocco, G.; Foschini, L.; Laurent, P.; Segreto, A.; Stephen, J. B.; Ubertini, P.

    2003-11-01

    PICsIT (Pixellated Imaging CaeSium Iodide Telescope) is the high energy detector of the IBIS telescope on-board the INTEGRAL satellite. It consists of 4096 independent detection units, ~ 0.7 cm2 in cross-section, operating in the energy range between 175 keV and 10 MeV. The intrinsically low signal to noise ratio in the gamma-ray astronomy domain implies very long observations, lasting 105-106 s. Moreover, the image formation principle on which PICsIT works is that of coded imaging in which the entire detection plane contributes to each decoded sky pixel. For these two main reasons, the monitoring, and possible correction, of the spatial and temporal non-uniformity of pixel performances, expecially in terms of gain and energy resolution, is of paramount importance. The IBIS on-board 22Na calibration source allows the calibration of each pixel at an accuracy of <0.5% by integrating the data from a few revolutions at constant temperature. The two calibration lines, at 511 and 1275 keV, allow also the measurement and monitoring of the PICsIT energy resolution which proves to be very stable at ~ 19% and ~ 9% (FWHM) respectively, and consistent with the values expected analytical predictions checked against pre-launch tests. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA.

  4. Pulsar magnetosphere: a new view from PIC simulations

    NASA Astrophysics Data System (ADS)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Harding, Alice; Kazanas, Demosthenes

    2017-01-01

    Pulsar emission is produced by charged particles that are accelerated as they flow in the star's magnetosphere. The magnetosphere is populated by electrons and positrons while the physical conditions are characterized by the so called force-free regime. However, the magnetospheric plasma configuration is still unknown, besides some general features, which inhibits the understanding of the emission generation. Here we show the closest to force-free solution ever obtained with a particle-in-cell (PIC) code. The importance of obtaining a force-free solution with PIC is that we can understand how the different particle species support the corresponding magnetosphere structure. Moreover, some aspects of the emission generation are captured. These are the necessary steps to go toward a self consistent modeling of the magnetosphere, connecting the microphysics of the pair plasma to its macroscopic quantities. Understanding the pulsar magnetosphere is essential for interpreting the broad neutron star phenomenology (young pulsars, magnetars, millisecond pulsars, etc.). The study of these plasma physics processes is also crucial for putting limits on the ability of these objects to accelerate particles.

  5. Challenges of PIC Simulations at High Laser Intensity

    NASA Astrophysics Data System (ADS)

    Luedtke, Scott V.; Arefiev, Alexey V.; Toncian, Toma; Hegelich, Bjorn Manuel

    2015-11-01

    New lasers with very high intensity pulses (I >1022 W/cm2) are being commissioned to explore new regimes of laser-matter interactions. These lasers require accurate particle-in-cell (PIC) simulations, which may require new computational approaches to efficiently produce physically accurate results. We examine the constraints on PIC simulations at high field intensity imposed by both the particle pusher and field solver. As proposed by Arefiev, et al. (Physics of Plasmas 22, 013103 (2015)), we implement adaptive sub-cycling in the Boris pusher of the EPOCH code and demonstrate its effectiveness in efficiently reducing errors from the pusher. It is well know that the use of a finite-difference scheme also modifies the electromagnetic wave dispersion relation. We examine the effect of the resulting discrepancy in the phase velocity on electron acceleration, and demonstrate that relatively small errors in the phase velocity lead to substantial changes in the electron energy gain from the laser pulse. We discuss the corresponding conditions for the field solver. These results are relevant to direct laser acceleration and underdense ionization experiments. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014) and the Air Force Office of Scientific Research (FA9550-14-1-0045).

  6. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  7. Electromagnetic 2D/3D Particle-in-Cell simulations of the solar wind interaction with lunar crustal anomalies.

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Lapenta, Giovanni; Lembège, Bertrand; Divin, Andrey; Markidis, Stefano; Amaya, Jorge

    2013-04-01

    We present the first 2D/3D fully kinetic Particle-in-Cell simulations of the solar wind interaction with lunar crustal magnetic anomalies. The simulations are performed using the implicit electromagnetic Particle-in-Cell code iPIC3D [Markidis, Lapenta & Rizwan-uddin, 2010]. Multiscale physics is resolved for all plasma components (heavy ions, protons and electrons) in the code, recently updated with a set of open boundary conditions designed for solar wind-body interactions. We use a dipole to model the crustal anomaly. The dipole center is located outside the computational domain and the boundary representing the lunar surface is modeled as a particle-absorbing plane. Photo-emission from the lunar surface is at this point not included, but will be in future work. We study the behaviour of the dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD simulations [Harnett & Winglee, 2000, 2002, 2003] and spacecraft observations [Kurata et al., 2005; Halekas et al., 2008; Wieser et al., 2010]. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Finally we will present preliminary results on the interaction of the solar wind with weaker magnetic anomalies in which highly non-adiabatic interactions are expected.

  8. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  9. PIC simulation of electrodeless plasma thruster with rotating electric field

    SciTech Connect

    Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki

    2012-11-27

    For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.

  10. Electron hole tracking PIC simulation

    NASA Astrophysics Data System (ADS)

    Zhou, Chuteng; Hutchinson, Ian

    2016-10-01

    An electron hole is a coherent BGK mode solitary wave. Electron holes are observed to travel at high velocities relative to bulk plasmas. The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code with fully kinetic ions. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. The electron hole signal is detected and the simulation domain moves by a carefully designed feedback control law to follow its propagation. This approach has the advantage that the length of the simulation domain can be significantly reduced to several times the hole width, which makes high resolution simulations tractable. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and energization effects we call ``jetting''. The work was partially supported by the NSF/DOE Basic Plasma Science Partnership under Grant DE-SC0010491. Computer simulations were carried out on the MIT PSFC parallel AMD Opteron/Infiniband cluster Loki.

  11. The TESS (Tandem Experiment Simulation Studies) computer code user's manual

    SciTech Connect

    Procassini, R.J. . Dept. of Nuclear Engineering); Cohen, B.I. )

    1990-06-01

    TESS (Tandem Experiment Simulation Studies) is a one-dimensional, bounded particle-in-cell (PIC) simulation code designed to investigate the confinement and transport of plasma in a magnetic mirror device, including tandem mirror configurations. Mirror plasmas may be modeled in a system which includes an applied magnetic field and/or a self-consistent or applied electrostatic potential. The PIC code TESS is similar to the PIC code DIPSI (Direct Implicit Plasma Surface Interactions) which is designed to study plasma transport to and interaction with a solid surface. The codes TESS and DIPSI are direct descendants of the PIC code ES1 that was created by A. B. Langdon. This document provides the user with a brief description of the methods used in the code and a tutorial on the use of the code. 10 refs., 2 tabs.

  12. Performance and capacity analysis of Poisson photon-counting based Iter-PIC OCDMA systems.

    PubMed

    Li, Lingbin; Zhou, Xiaolin; Zhang, Rong; Zhang, Dingchen; Hanzo, Lajos

    2013-11-04

    In this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.1 nats of capacity improvement over the conventional chip-level OCDMA systems at a coding rate of 1/10.

  13. A multi-dimensional nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell (PIC) algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacón, Luis; CoCoMans Team

    2014-10-01

    For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.

  14. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  15. Radiation in 1.5 GeV and 12 GeV Laser Wakefield Acceleration Stages from PIC Simulations

    SciTech Connect

    Martins, J. L.; Martins, S. F.; Silva, L. O.

    2010-11-04

    A massivelly parallel post-processing radiation diagnostic for PIC codes is presented, which is then used to study the main features of the radiation from single LWFA stages (1.5 GeV and 12 GeV). This diagnostic also allows to examine radiation signatures associated with the physics of self-injection.

  16. Defragged Binary I Ching Genetic Code Chromosomes Compared to Nirenberg's and Transformed into Rotating 2D Circles and Squares and into a 3D 100% Symmetrical Tetrahedron Coupled to a Functional One to Discern Start From Non-Start Methionines through a Stella Octangula.

    PubMed

    Castro-Chavez, Fernando

    2012-01-01

    BACKGROUND: Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. METHODS: Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. RESULTS: One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. CONCLUSIONS: We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as

  17. Defragged Binary I Ching Genetic Code Chromosomes Compared to Nirenberg’s and Transformed into Rotating 2D Circles and Squares and into a 3D 100% Symmetrical Tetrahedron Coupled to a Functional One to Discern Start From Non-Start Methionines through a Stella Octangula

    PubMed Central

    Castro-Chavez, Fernando

    2012-01-01

    Background Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. Methods Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. Results One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. Conclusions We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as seen

  18. PIC Activation through Functional Interplay between Mediator and TFIIH.

    PubMed

    Malik, Sohail; Molina, Henrik; Xue, Zhu

    2017-01-06

    The multiprotein Mediator coactivator complex functions in large part by controlling the formation and function of the promoter-bound preinitiation complex (PIC), which consists of RNA polymerase II and general transcription factors. However, precisely how Mediator impacts the PIC, especially post-recruitment, has remained unclear. Here, we have studied Mediator effects on basal transcription in an in vitro transcription system reconstituted from purified components. Our results reveal a close functional interplay between Mediator and TFIIH in the early stages of PIC development. We find that under conditions when TFIIH is not normally required for transcription, Mediator actually represses transcription. TFIIH, whose recruitment to the PIC is known to be facilitated by the Mediator, then acts to relieve Mediator-induced repression to generate an active form of the PIC. Gel mobility shift analyses of PICs and characterization of TFIIH preparations carrying mutant XPB translocase subunit further indicate that this relief of repression is achieved through expending energy via ATP hydrolysis, suggesting that it is coupled to TFIIH's established promoter melting activity. Our interpretation of these results is that Mediator functions as an assembly factor that facilitates PIC maturation through its various stages. Whereas the overall effect of the Mediator is to stimulate basal transcription, its initial engagement with the PIC generates a transcriptionally inert PIC intermediate, which necessitates energy expenditure to complete the process.

  19. Storage of Maize in Purdue Improved Crop Storage (PICS) Bags.

    PubMed

    Williams, Scott B; Murdock, Larry L; Baributsa, Dieudonne

    2017-01-01

    Interest in using hermetic technologies as a pest management solution for stored grain has risen in recent years. One hermetic approach, Purdue Improved Crop Storage (PICS) bags, has proven successful in controlling the postharvest pests of cowpea. This success encouraged farmers to use of PICS bags for storing other crops including maize. To assess whether maize can be safely stored in PICS bags without loss of quality, we carried out laboratory studies of maize grain infested with Sitophilus zeamais (Motshulsky) and stored in PICS triple bags or in woven polypropylene bags. Over an eight month observation period, temperatures in the bags correlated with ambient temperature for all treatments. Relative humidity inside PICS bags remained constant over this period despite the large changes that occurred in the surrounding environment. Relative humidity in the woven bags followed ambient humidity closely. PICS bags containing S. zeamais-infested grain saw a significant decline in oxygen compared to the other treatments. Grain moisture content declined in woven bags, but remained high in PICS bags. Seed germination was not significantly affected over the first six months in all treatments, but declined after eight months of storage when infested grain was held in woven bags. Relative damage was low across treatments and not significantly different between treatments. Overall, maize showed no signs of deterioration in PICS bags versus the woven bags and PICS bags were superior to woven bags in terms of specific metrics of grain quality.

  20. Storage of Maize in Purdue Improved Crop Storage (PICS) Bags

    PubMed Central

    2017-01-01

    Interest in using hermetic technologies as a pest management solution for stored grain has risen in recent years. One hermetic approach, Purdue Improved Crop Storage (PICS) bags, has proven successful in controlling the postharvest pests of cowpea. This success encouraged farmers to use of PICS bags for storing other crops including maize. To assess whether maize can be safely stored in PICS bags without loss of quality, we carried out laboratory studies of maize grain infested with Sitophilus zeamais (Motshulsky) and stored in PICS triple bags or in woven polypropylene bags. Over an eight month observation period, temperatures in the bags correlated with ambient temperature for all treatments. Relative humidity inside PICS bags remained constant over this period despite the large changes that occurred in the surrounding environment. Relative humidity in the woven bags followed ambient humidity closely. PICS bags containing S. zeamais-infested grain saw a significant decline in oxygen compared to the other treatments. Grain moisture content declined in woven bags, but remained high in PICS bags. Seed germination was not significantly affected over the first six months in all treatments, but declined after eight months of storage when infested grain was held in woven bags. Relative damage was low across treatments and not significantly different between treatments. Overall, maize showed no signs of deterioration in PICS bags versus the woven bags and PICS bags were superior to woven bags in terms of specific metrics of grain quality. PMID:28072835

  1. NIKE2D96. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Raboin, P.; Engelmann, B.; Halquist, J.O.

    1992-01-24

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  2. Advanced fluid modeling and PIC/MCC simulations of low-pressure ccrf discharges

    NASA Astrophysics Data System (ADS)

    Becker, M. M.; Kählert, H.; Sun, A.; Bonitz, M.; Loffhagen, D.

    2017-04-01

    Comparative studies of capacitively coupled radio-frequency discharges in helium and argon at pressures between 10 and 80 Pa are presented applying two different fluid modeling approaches as well as two independently developed particle-in-cell/Monte Carlo collision (PIC/MCC) codes. The focus is on the analysis of the range of applicability of a recently proposed fluid model including an improved drift-diffusion approximation for the electron component as well as its comparison with fluid modeling results using the classical drift-diffusion approximation and benchmark results obtained by PIC/MCC simulations. Main features of this time- and space-dependent fluid model are given. It is found that the novel approach shows generally quite good agreement with the macroscopic properties derived by the kinetic simulations and is largely able to characterize qualitatively and quantitatively the discharge behavior even at conditions when the classical fluid modeling approach fails. Furthermore, the excellent agreement between the two PIC/MCC simulation codes using the velocity Verlet method for the integration of the equations of motion verifies their accuracy and applicability.

  3. A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions

    SciTech Connect

    Chacon, L.; Chen, G.

    2016-04-19

    Here, we extend a recently proposed fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (Φ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ • A = 0 exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.

  4. A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions

    DOE PAGES

    Chacon, L.; Chen, G.

    2016-04-19

    Here, we extend a recently proposed fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (Φ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ • A = 0 exactly. Anmore » asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.« less

  5. A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions

    NASA Astrophysics Data System (ADS)

    Chacón, L.; Chen, G.

    2016-07-01

    We extend a recently proposed fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (ϕ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ ṡ A = 0 exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.

  6. On the ensemble averaging of PIC simulations

    NASA Astrophysics Data System (ADS)

    Codur, R. J. B.; Tsung, F. S.; Mori, W. B.

    2016-10-01

    Particle-in-cell simulations are used ubiquitously in plasma physics to study a variety of phenomena. They can be an efficient tool for modeling the Vlasov or Vlasov Fokker Planck equations in multi-dimensions. However, the PIC method actually models the Klimontovich equation for finite size particles. The Vlasov Fokker Planck equation can be derived as the ensemble average of the Klimontovich equation. We present results of studying Landau damping and Stimulated Raman Scattering using PIC simulations where we use identical ``drivers'' but change the random number generator seeds. We show that even for cases where a plasma wave is excited below the noise in a single simulation that the plasma wave can clearly be seen and studied if an ensemble average over O(10) simulations is made. Comparison between the results from an ensemble average and the subtraction technique are also presented. In the subtraction technique two simulations, one with the other without the ``driver'' are conducted with the same random number generator seed and the results are subtracted. This work is supported by DOE, NSF, and ENSC (France).

  7. The Pic du Midi solar survey

    NASA Astrophysics Data System (ADS)

    Koechlin, L.

    2015-12-01

    We carry a long term survey of the solar activity with our coronagraphic system at Pic du Midi de Bigorre in the French Pyrenees (CLIMSO). It is a set of two solar telescopes and two coronagraphs, taking one frame per minute for each of the four channels : Solar disk in H-α (656.28 nm), prominences in H-α, disk in Ca II (393.3 nm), prominences in He I (1083 nm), all year long, weather permitting. Since 2015 we also take images of the FeXIII corona (1074.7 nm) at the rate of one every 10 minutes. These images cover a large field: 1.25 solar diameter, 2k*2K pixels, and are freely downloadable form a database. The improvements made since 2015 concern an autoguiding system for better centering of the solar disk behind the coronagraphic masks, and a new Fe XIII channel at λ=1074.7 nm. In the near future we plan to provide radial velocity maps of the disc and polarimetry maps of the disk and corona. This survey took its present form in 2007 and we plan to maintain image acquisition in the same or better experimental conditions for a long period: one or several solar cycles if possible. During the partial solar eclipse of March 20, 2015, the CLIMSO instruments and the staff at Pic du Midi operating it have provided several millions internet users with real time images of the Sun and Moon during all the phenomenon.

  8. Constructing a short form of the hierarchical personality inventory for children (HiPIC): the HiPIC-30.

    PubMed

    Vollrath, Margarete E; Hampson, Sarah E; Torgersen, Svenn

    2016-05-01

    Children's personality traits are invaluable predictors of concurrent and later mental and physical health. Several validated longer inventories for assessing the widely recognized Five-Factor Model of personality in children are available, but short forms are scarce. This study aimed at constructing a 30-item form of the 144-item Hierarchical Personality Inventory for Children (HiPIC) (Mervielde & De Fruyt, ). Participants were 1543 children aged 6-12 years (sample 1) and 3895 children aged 8 years (sample 2). Sample 1 completed the full HiPIC, from which we constructed the HiPIC-30, and the Child Behaviour Checklist (Achenbach, ). Sample 2 completed the HiPIC-30. The HiPIC-30 personality domains correlated over r = .90 with the full HiPIC domains, had good Cronbach's alphas and correlated similarly with CBCL behaviour problems and gender as the full HiPIC. The factor structures of the HiPIC-30 were convergent across samples, but the imagination factor was not clear-cut. We conclude that the HiPIC-30 is a reliable and valid questionnaire for the Five-Factor personality traits in children. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Parallel 3D Finite Element Particle-in-Cell Simulations with Pic3P

    SciTech Connect

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; Ben-Zvi, I.; Kewisch, J.; /Brookhaven

    2009-06-19

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic Particle-In-Cell code Pic3P. Designed for simulations of beam-cavity interactions dominated by space charge effects, Pic3P solves the complete set of Maxwell-Lorentz equations self-consistently and includes space-charge, retardation and boundary effects from first principles. Higher-order Finite Element methods with adaptive refinement on conformal unstructured meshes lead to highly efficient use of computational resources. Massively parallel processing with dynamic load balancing enables large-scale modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of next-generation accelerator facilities. Applications include the LCLS RF gun and the BNL polarized SRF gun.

  10. Simulation Of Electron Cloud Effects On Electron Beam At ERL With Pipelined QuickPIC

    SciTech Connect

    Feng, B.; Muggli, P.; Huang, C.; Decyk, V.; Mori, W. B.; Hoffstaetter, G. H.; Katsouleas, T.

    2009-01-22

    With the successful implementation of pipelining algorithm to the QuickPIC code, the number of processors used is increased by 2 to 3 orders of magnitude, and the speed of the simulation is improved by a similar factor. The pipelined QuickPIC is used to simulate the electron cloud effect on electron beam in the Cornell Energy Recovery Linac (ERL) due to extremely small emittance and high peak currents anticipated in the machine. A tune shift is found due to electron cloud on electron beams, which is of equal magnitude to that on positron beams but in an opposite direction; however, emittance growth of the electron beam in an electron cloud is not observed for ERL parameters.

  11. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  12. A portable approach for PIC on emerging architectures

    NASA Astrophysics Data System (ADS)

    Decyk, Viktor

    2016-03-01

    A portable approach for designing Particle-in-Cell (PIC) algorithms on emerging exascale computers, is based on the recognition that 3 distinct programming paradigms are needed. They are: low level vector (SIMD) processing, middle level shared memory parallel programing, and high level distributed memory programming. In addition, there is a memory hierarchy associated with each level. Such algorithms can be initially developed using vectorizing compilers, OpenMP, and MPI. This is the approach recommended by Intel for the Phi processor. These algorithms can then be translated and possibly specialized to other programming models and languages, as needed. For example, the vector processing and shared memory programming might be done with CUDA instead of vectorizing compilers and OpenMP, but generally the algorithm itself is not greatly changed. The UCLA PICKSC web site at http://www.idre.ucla.edu/ contains example open source skeleton codes (mini-apps) illustrating each of these three programming models, individually and in combination. Fortran2003 now supports abstract data types, and design patterns can be used to support a variety of implementations within the same code base. Fortran2003 also supports interoperability with C so that implementations in C languages are also easy to use. Finally, main codes can be translated into dynamic environments such as Python, while still taking advantage of high performing compiled languages. Parallel languages are still evolving with interesting developments in co-Array Fortran, UPC, and OpenACC, among others, and these can also be supported within the same software architecture. Work supported by NSF and DOE Grants.

  13. It's about Time: The Literacy TopPics Awards.

    ERIC Educational Resources Information Center

    And Others; Swafford, Jeanne

    1997-01-01

    Examines the last five years of articles in this journal to show what topics were most often written about (the "Top Picks" or "TopPics"). Discusses these results and makes recommendations that deserve considerable attention in the future. Notes that integrated language arts was a perennial TopPic. (SR)

  14. phase_space_cosmo_fisher: Fisher matrix 2D contours

    NASA Astrophysics Data System (ADS)

    Stark, Alejo

    2016-11-01

    phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.

  15. ePLAS code improvements for short pulse laser-matter interaction studies

    NASA Astrophysics Data System (ADS)

    Mason, R. J.; Ambrosiano, J.; Atchison, W.; Faehl, R.; Henderson, D.; Kirkpatrick, R.; Barnes, D.

    2009-11-01

    We detail new features for ePLAS, a 2D implicit/hybrid simulation model in use for Fast Ignition. The hybrid/PIC code tracks laser light with ponderomotive force, depositing at critical into relativistic hot particle electrons, while pulling cold collisional, return-current Van Leer fluid electrons through fluid ions by means of self-consistent Implicit Momentfootnotetext{R. J. Mason, J. Comp. Phys. {71,} 429 (1987).} E- and B-fields. The new features include: a 1D formulation for light absorption studies with generalized {E- and B-} fields, multiple laser beams, real EOS data from analytic models or the Sesame tables, K/α imaging, generalized cold electron elevation to hots, particle ions for fast ion fusion, improved graphical options, and new Linux and Mac OS X implementations. The focus of the talk is code enhancements.

  16. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  17. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  18. A revision of the genus Macrolygistopterus Pic, 1929 (Coleoptera, Lycidae, Calochromini).

    PubMed

    Ferreira, Vinicius S

    2016-04-21

    A taxonomic review of the Lycid genus Macrolygistopterus Pic, 1929 with illustrations of diagnostic characters, geographic distribution maps and an identification key to the species is presented. Also, a key to the world Calochromini is given. Of the 12 species of the genus, 9 were studied: M. succinctus (Latreille, 1811), M. quadricostatus (Buquet, 1842), M. caeruleus (Gorham, 1884), M. germaini Pic, 1930, M. grandjeani Pic, 1930, M. subparallelus Pic, 1930, M. testaceirostris Pic, 1930, M. simoni Pic, 1930 and M. kirschi Pic, 1931 were redescribed and their status as valid species is confirmed. The lectotypes and paralectotypes were designated for all those examined species. M. bilineatus (Pic, 1923), M. diversicornis Pic, 1930 and M. bipartitus Pic, 1933 remain as valid species since these specimens were not available for this study. M. succinctus var. scutelaris Pic, 1930 is proposed here as new junior synonym of M. succinctus (Latreille, 1811).

  19. The DIPSI (Direct Implicit Plasma Surface Interactions) computer code user's manual

    SciTech Connect

    Procassini, R.J. . Dept. of Nuclear Engineering); Cohen, B.I. )

    1990-06-01

    DIPSI (Direct Implicit Plasma Surface Interactions) is a one-dimensional, bounded particle-in-cell (PIC) simulation code designed to investigate the interaction of plasma with a solid surface, such as a limiter or divertor plate in a tokamak fusion device. Plasma confinement and transport may be studied in a system which includes an applied magnetic field (oriented normal to the solid surface) and/or a self-consistent electrostatic potential. The PIC code DIPSI is an offshoot of the PIC code TESS (Tandem Experiment Simulation Studies) which was developed to study plasma confinement in mirror devices. The codes DIPSI and TESS are direct descendants of the PIC code ES1 that was created by A. B. Langdon. This document provides the user with a brief description of the methods used in the code and a tutorial on the use of the code. 11 refs., 2 tabs.

  20. Polyion complex (PIC) particles: Preparation and biomedical applications.

    PubMed

    Insua, Ignacio; Wilkinson, Andrew; Fernandez-Trillo, Francisco

    2016-08-01

    Oppositely charged polyions can self-assemble in solution to form colloidal polyion complex (PIC) particles. Such nanomaterials can be loaded with charged therapeutics such as DNA, drugs or probes for application as novel nanomedicines and chemical sensors to detect disease markers. A comprehensive discussion of the factors affecting PIC particle self-assembly and their response to physical and chemical stimuli in solution is described herein. Finally, a collection of key examples of polyionic nanoparticles for biomedical applications is discussed to illustrate their behaviour and demonstrate the potential of PIC nanoparticles in medicine.

  1. Modifications to the XBR-2D Heat Conduction Code

    DTIC Science & Technology

    1994-04-01

    for & 25-me barrel (750 Shots/min) is A mbient Tm 4R), Pr fpsi), gas vel (in/s) z : -....-.. -... .... : 530.0 14.70 0.00 b Sarrel Gemetry : ; zchrom...Ausomotive Command U.S. Army Maeiel Cummand ATTN: AMSTA-JSK (Armor Eeg . Br.) ATII: AMCAM Wre, MI 4897.5000 5001 Eisenhower Ave. Alexandria, VA 22333.001 1...and Engeering Center A er Prving ATTN.4 SMCAR- TDC Picauinny Arsenal l 07806-5000 2 Dir, USAMSAA ATTN: AMXSY-D Direcior AMXSY-MP, IL Cohe DenK Weapomn

  2. 3D PIC Modeling of Microcavity Discharge

    NASA Astrophysics Data System (ADS)

    Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew

    2015-09-01

    We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  3. 2-D Finite Element Cable and Box IEMP Analysis

    SciTech Connect

    Scivner, G.J.; Turner, C.D.

    1998-12-17

    A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.

  4. 46 CFR 13.201 - Original application for tankerman-PIC endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Original application for tankerman-PIC endorsement. 13... SEAMEN CERTIFICATION OF TANKERMEN Requirements for Tankerman-PIC Endorsement § 13.201 Original application for tankerman-PIC endorsement. Each applicant for an original tankerman-PIC endorsement must—...

  5. 46 CFR 13.301 - Original application for tankerman-PIC (barge) endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Original application for tankerman-PIC (barge... OFFICERS AND SEAMEN CERTIFICATION OF TANKERMEN Requirements for Tankerman-PIC (Barge) Endorsement § 13.301 Original application for tankerman-PIC (barge) endorsement. Each applicant for a tankerman-PIC...

  6. Recovering 3D particle size distributions from 2D sections

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Olson, Daniel M.

    2017-03-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.

  7. FPCAS2D user's guide, version 1.0

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    1994-01-01

    The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.

  8. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  9. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  10. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  11. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  12. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  13. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  14. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  15. RNA folding pathways and kinetics using 2D energy landscapes.

    PubMed

    Senter, Evan; Dotu, Ivan; Clote, Peter

    2015-01-01

    RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.

  16. Boltzmann Transport in Hybrid PIC HET Modeling

    DTIC Science & Technology

    2015-07-01

    the device. Experimental measurements and computational simulations have consistently indicated that the electron transport perpendicular to the...plasma conditions experienced in HPHall. 1. Electron mobility in HET simulation The most widely used computational simulations of HETs, including HPHall...Figure 1: Cartoon schematic of anomalous electron trans- port regions in typical HET II. Computational setup As the stalwart HET simulation code in the EP

  17. Applications of Doppler Tomography in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.

    2010-12-01

    Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.

  18. FRANC2D: A two-dimensional crack propagation simulator. Version 2.7: User's guide

    NASA Technical Reports Server (NTRS)

    Wawrzynek, Paul; Ingraffea, Anthony

    1994-01-01

    FRANC 2D (FRacture ANalysis Code, 2 Dimensions) is a menu driven, interactive finite element computer code that performs fracture mechanics analyses of 2-D structures. The code has an automatic mesh generator for triangular and quadrilateral elements. FRANC2D calculates the stress intensity factor using linear elastic fracture mechanics and evaluates crack extension using several methods that may be selected by the user. The code features a mesh refinement and adaptive mesh generation capability that is automatically developed according to the predicted crack extension direction and length. The code also has unique features that permit the analysis of layered structure with load transfer through simulated mechanical fasteners or bonded joints. The code was written for UNIX workstations with X-windows graphics and may be executed on the following computers: DEC DecStation 3000 and 5000 series, IBM RS/6000 series, Hewlitt-Packard 9000/700 series, SUN Sparc stations, and most Silicon Graphics models.

  19. A Delta-f to Full-F PIC Simulation Scheme for Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Lee, W. W.; Ethier, S.

    2012-03-01

    A generalized weight-based particle simulation schemes suitable for simulating microturbulence in magnetic fusion plasmas, where the zeroth-order inhomogeneity is important, has recently been developed [1]. The schemes is a generalization of the perturbative simulation schemes developed earlier for PIC simulations [2]. The new two-weight scheme, which can simulate both the perturbed distribution and the full distribution within the same code, has now been implemented to simulate tokamak plasmas using the GTC code [3]. Its development is based on the concept of multiscale expansion, which separates the scale lengths of the background inhomogeneity from those associated with the perturbed distributions. The code starts out as a delta-f code and gradually evolves into a full-F code, as such the delta-f part can help us with the noise issue in the linear stage and the full-F part can be useful in the fully nonlinear stage when the particle weights become too large or it becomes necessary to simulate realistic situations where sinks and sources become important.[4pt] [1] W. W. Lee, T. G. Jenkins and S. Ethier, Comp. Phys. Comm. 182, 564 (2011).[0pt] [2] S. E. Parker and W. W. Lee, Phys. Fluids B 5, 77 (1993).[0pt] [3] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang and R. White, Science 281, 1835 (1998).

  20. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  1. Effects from switching on PIC simulations: Geospace Environmental Modeling (GEM) reconnection setup revisited

    NASA Astrophysics Data System (ADS)

    Bourdin, P. A.; Nakamura, T.; Narita, Y.

    2015-12-01

    Electromagnetic Parcile-In-Cell (PIC) simulations are widely used to study plasma phenomena where kinetic scales are coupled to fluid scales. One of these phenomena is the evolution of magnetic reconnection. Switch-on effects have been described earlier for magneto-/hydrodynamic (MHD and HD) simulations, where oscillations are ignited by the initial condition and the usual instantaneous way of starting a simulation run. Here we revisit the GEM setup (a Harris current sheet) and demonstrate the immediate generation of oscillations propagating perpendicular to the magnetic shear layer (in Bz). Also we show how these oscillations do not dissipate quickly and will later be mode-converted to generate wave power, first in By, much later also in Bx (pointing along the shear direction). One needs to take care not to interpret these oscillations as physical wave modes associated with the nature of reconnection. We propose a method to prevent such switch-on effects from the beginning, that should be considered for implementation in other PIC simulation codes as well.

  2. Multi-scale simulations of space problems with iPIC3D

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Bettarini, Lapo; Markidis, Stefano

    The implicit Particle-in-Cell method for the computer simulation of space plasma, and its im-plementation in a three-dimensional parallel code, called iPIC3D, are presented. The implicit integration in time of the Vlasov-Maxwell system removes the numerical stability constraints and enables kinetic plasma simulations at magnetohydrodynamics scales. Simulations of mag-netic reconnection in plasma are presented to show the effectiveness of the algorithm. In particular we will show a number of simulations done for large scale 3D systems using the physical mass ratio for Hydrogen. Most notably one simulation treats kinetically a box of tens of Earth radii in each direction and was conducted using about 16000 processors of the Pleiades NASA computer. The work is conducted in collaboration with the MMS-IDS theory team from University of Colorado (M. Goldman, D. Newman and L. Andersson). Reference: Stefano Markidis, Giovanni Lapenta, Rizwan-uddin Multi-scale simulations of plasma with iPIC3D Mathematics and Computers in Simulation, Available online 17 October 2009, http://dx.doi.org/10.1016/j.matcom.2009.08.038

  3. SPACE CHARGE DYNAMICS SIMULATED IN 3 - D IN THE CODE ORBIT.

    SciTech Connect

    LUCCIO,A.U.; DIMPERIO,N.L.; BEEBE - WANG,J.

    2002-06-02

    Several improvements have been done on space charge calculations in the PIC code ORBIT, specialized for high intensity circular hadron accelerators. We present results of different Poisson solvers in the presence of conductive walls.

  4. IBIS/PICsIT in-flight performances

    NASA Astrophysics Data System (ADS)

    Di Cocco, G.; Caroli, E.; Celesti, E.; Foschini, L.; Gianotti, F.; Labanti, C.; Malaguti, G.; Mauri, A.; Rossi, E.; Schiavone, F.; Spizzichino, A.; Stephen, J. B.; Traci, A.; Trifoglio, M.

    2003-11-01

    PICsIT (Pixellated Imaging CaeSium Iodide Telescope) is the high energy detector of the IBIS telescope on-board the INTEGRAL satellite. PICsIT operates in the gamma-ray energy range between 175 keV and 10 MeV, with a typical energy resolution of 10% at 1 MeV, and an angular resolution of 12 arcmin within a ~ 100 square degree field of view, with the possibility to locate intense point sources in the MeV region at the few arcmin level. PICsIT is based upon a modular array of 4096 independent CsI(Tl) pixels, ~ 0.70 cm2 in cross-section and 3 cm thick. In this work, the PICsIT on-board data handling and science operative modes are described. This work presents the in-flight performances in terms of background count spectra, sensitivity limit, and imaging capabilities. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA.

  5. The first Pic du Midi photographs of Mars, 1909

    NASA Astrophysics Data System (ADS)

    Dollfus, A.

    2010-08-01

    This short paper comprises an English translation of the article '1909; Premieres photographies de Mars au Pic du Midi', by Audouin Dollfus, published in l'Astronomie, 2009 November, pp. 27-30, and printed here with the assistance of the Director of the BAA Mars Section, Dr Richard McKim.

  6. EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC-12 INCINERATION

    EPA Science Inventory

    The report gives results of experiments to determine the effect of flame zone temperature on gas-phase flame formation and destruction of products of incomplete combustion (PICS) during dichlorodi-fluoromethane (CFC-12) incineration. The effect of water injection into the flame ...

  7. The PIC [Process Individualization Curriculum] Model: Structure with Humanistic Goals.

    ERIC Educational Resources Information Center

    Gow, Doris T.

    This paper describes a curriculum design model to train research and development personnel under USOE-NIE funding. This design model, called PIC (Process Individualization Curriculum), was chosen for coverting on-campus courses to extra-mural self-instructional courses. The curriculum specialists who work with professors to individualize their…

  8. The PIC Youth Primer: Improving JTPA Programs for Youth.

    ERIC Educational Resources Information Center

    Snedeker, Bonnie; And Others

    This guide for Private Industry Council (PIC) officers, members, and staff is written to assist in planning and overseeing effective programs for youth at risk in the local labor market using resources allocated under the Job Training Partnership Act (JTPA). Section I takes a broad view of the problem of building effective employability…

  9. PICS: probabilistic inference for ChIP-seq.

    PubMed

    Zhang, Xuekui; Robertson, Gordon; Krzywinski, Martin; Ning, Kaida; Droit, Arnaud; Jones, Steven; Gottardo, Raphael

    2011-03-01

    ChIP-seq combines chromatin immunoprecipitation with massively parallel short-read sequencing. While it can profile genome-wide in vivo transcription factor-DNA association with higher sensitivity, specificity, and spatial resolution than ChIP-chip, it poses new challenges for statistical analysis that derive from the complexity of the biological systems characterized and from variability and biases in its sequence data. We propose a method called PICS (Probabilistic Inference for ChIP-seq) for identifying regions bound by transcription factors from aligned reads. PICS identifies binding event locations by modeling local concentrations of directional reads, and uses DNA fragment length prior information to discriminate closely adjacent binding events via a Bayesian hierarchical t-mixture model. It uses precalculated, whole-genome read mappability profiles and a truncated t-distribution to adjust binding event models for reads that are missing due to local genome repetitiveness. It estimates uncertainties in model parameters that can be used to define confidence regions on binding event locations and to filter estimates. Finally, PICS calculates a per-event enrichment score relative to a control sample, and can use a control sample to estimate a false discovery rate. Using published GABP and FOXA1 data from human cell lines, we show that PICS' predicted binding sites were more consistent with computationally predicted binding motifs than the alternative methods MACS, QuEST, CisGenome, and USeq. We then use a simulation study to confirm that PICS compares favorably to these methods and is robust to model misspecification.

  10. Mediator coordinates PIC assembly with recruitment of CHD1.

    PubMed

    Lin, Justin J; Lehmann, Lynn W; Bonora, Giancarlo; Sridharan, Rupa; Vashisht, Ajay A; Tran, Nancy; Plath, Kathrin; Wohlschlegel, James A; Carey, Michael

    2011-10-15

    Murine Chd1 (chromodomain helicase DNA-binding protein 1), a chromodomain-containing chromatin remodeling protein, is necessary for embryonic stem (ES) cell pluripotency. Chd1 binds to nucleosomes trimethylated at histone 3 Lys 4 (H3K4me3) near the beginning of active genes but not to bivalent domains also containing H3K27me3. To address the mechanism of this specificity, we reproduced H3K4me3- and CHD1-stimulated gene activation in HeLa extracts. Multidimensional protein identification technology (MuDPIT) and immunoblot analyses of purified preinitiation complexes (PICs) revealed the recruitment of CHD1 to naive chromatin but enhancement on H3K4me3 chromatin. Studies in depleted extracts showed that the Mediator coactivator complex, which controls PIC assembly, is also necessary for CHD1 recruitment. MuDPIT analyses of CHD1-associated proteins support the recruitment data and reveal numerous components of the PIC, including Mediator. In vivo, CHD1 and Mediator are recruited to an inducible gene, and genome-wide binding of the two proteins correlates well with active gene transcription in mouse ES cells. Finally, coimmunoprecipitation of CHD1 and Mediator from cell extracts can be ablated by shRNA knockdown of a specific Mediator subunit. Our data support a model in which the Mediator coordinates PIC assembly along with the recruitment of CHD1. The combined action of the PIC and H3K4me3 provides specificity in targeting CHD1 to active genes.

  11. Australian Validation of the Hierarchical Personality Inventory for Children (HiPIC)

    ERIC Educational Resources Information Center

    Hopkinson, Laura; Watt, Dianne; Roodenburg, John

    2014-01-01

    The Hierarchical Personality Inventory for Children (HiPIC) is a developmentally appropriate parent-report measure of the Five Factor Model (FFM) that has been validated in several European languages but only recently in English. The English translation of the HiPIC was evaluated in an Australian context. Parent-rated HiPIC scores were obtained…

  12. 46 CFR 13.301 - Original application for “Tankerman-PIC (Barge)” endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Original application for âTankerman-PIC (Barge)â... OFFICERS AND SEAMEN CERTIFICATION OF TANKERMEN Requirements for âTankerman-PIC (Barge)â Endorsement § 13.301 Original application for “Tankerman-PIC (Barge)” endorsement. Each applicant for a...

  13. 46 CFR 13.205 - Proof of service for tankerman-PIC endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Proof of service for tankerman-PIC endorsement. 13.205... CERTIFICATION OF TANKERMEN Requirements for Tankerman-PIC Endorsement § 13.205 Proof of service for tankerman-PIC endorsement. Proof of service must be provided in a letter on company letterhead from the...

  14. 46 CFR 13.305 - Proof of service for tankerman-PIC (barge).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Proof of service for tankerman-PIC (barge). 13.305... CERTIFICATION OF TANKERMEN Requirements for Tankerman-PIC (Barge) Endorsement § 13.305 Proof of service for tankerman-PIC (barge). Proof of service must be provided in a letter on company letterhead from the owner...

  15. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  16. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1989-03-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  17. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1988-08-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  18. PIC Simulations in Low Energy Part of PIP-II Proton Linac

    SciTech Connect

    Romanov, Gennady

    2014-07-01

    The front end of PIP-II linac is composed of a 30 keV ion source, low energy beam transport line (LEBT), 2.1 MeV radio frequency quadrupole (RFQ), and medium energy beam transport line (MEBT). This configuration is currently being assembled at Fermilab to support a complete systems test. The front end represents the primary technical risk with PIP-II, and so this step will validate the concept and demonstrate that the hardware can meet the specified requirements. SC accelerating cavities right after MEBT require high quality and well defined beam after RFQ to avoid excessive particle losses. In this paper we will present recent progress of beam dynamic study, using CST PIC simulation code, to investigate partial neutralization effect in LEBT, halo and tail formation in RFQ, total emittance growth and beam losses along low energy part of the linac.

  19. A study of dc discharge in cylindrical magnetron - comparison of experiment and PIC model

    NASA Astrophysics Data System (ADS)

    Behnke, J. F.; Csambal, C.; Tichy, M.; Kudrna, P.; Rusz, J.

    2000-10-01

    We present experimental and numerical study of the DC discharge in cylindrical magnetron in argon. The grounded discharge chamber-anode has 110 mm in length and 60 mm inner diameter. The co-axially placed cathode has 10 mm in diameter. The magnetic field is created by couple of coils. Experimental results have been obtained by radially movable planar Langmuir probe with its plane perpendicular to the magnetic field lines. The radial profiles of the floating and plasma potential, plasma density, and the electron energy distribution function have been measured. Numerical results were obtained using the modified 1D PIC code (Berkeley). The comparison between experiment and model results computed at similar conditions shows reasonable agreement in plasma density and electron mean energy. The computed electric field is usually higher than the experimental one. This difference we explain by the end effects that are not taken into account in 1D model.

  20. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    SciTech Connect

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  1. The Serine Protease Autotransporter Pic Modulates Citrobacter rodentium Pathogenesis and Its Innate Recognition by the Host.

    PubMed

    Bhullar, Kirandeep; Zarepour, Maryam; Yu, Hongbing; Yang, Hong; Croxen, Matthew; Stahl, Martin; Finlay, B Brett; Turvey, Stuart E; Vallance, Bruce A

    2015-07-01

    Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed "protein involved in colonization," or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system.

  2. Hybrid codes: Methods and applications

    SciTech Connect

    Winske, D. ); Omidi, N. )

    1991-01-01

    In this chapter we discuss hybrid'' algorithms used in the study of low frequency electromagnetic phenomena, where one or more ion species are treated kinetically via standard PIC methods used in particle codes and the electrons are treated as a single charge neutralizing massless fluid. Other types of hybrid models are possible, as discussed in Winske and Quest, but hybrid codes with particle ions and massless fluid electrons have become the most common for simulating space plasma physics phenomena in the last decade, as we discuss in this paper.

  3. Sensor Authentication: Embedded Processor Code

    SciTech Connect

    Svoboda, John

    2012-09-25

    Described is the c code running on the embedded Microchip 32bit PIC32MX575F256H located on the INL developed noise analysis circuit board. The code performs the following functions: Controls the noise analysis circuit board preamplifier voltage gains of 1, 10, 100, 000 Initializes the analog to digital conversion hardware, input channel selection, Fast Fourier Transform (FFT) function, USB communications interface, and internal memory allocations Initiates high resolution 4096 point 200 kHz data acquisition Computes complex 2048 point FFT and FFT magnitude. Services Host command set Transfers raw data to Host Transfers FFT result to host Communication error checking

  4. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  5. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  6. Persistent inflammatory, immunosuppressed, catabolic syndrome (PICS): A new phenotype of multiple organ failure

    PubMed Central

    Rosenthal, Martin D.; Moore, Frederick A.

    2015-01-01

    A new phenotype of multiple organ failure has appeared: Persistent Inflammatory, Immunosuppressed, Catabolic Syndrome (PICS). Comorbidities and age >65 years have been established as the leading risk factors for PICS. As the percentage of elderly people continues to increase the prevalence of PICS in our ICUs will surely grow. Malnutrition (despite appropriate supplementation), recurrent nosocomial infections, frailty, ventilator dependence, and an indolent death depicts the central theme that plagues PICS patients. Aligned with the recently awarded P50 grant by NIGMS entitled, “PICS: A New Horizon for Surgical Critical Care”, and the University Of Florida’s Sepsis and Critical Illness Research Center will investigate the genetic make-up of PICS patients, better understand frailty and the implication in trauma patients, and hopefully elucidate new therapies. Currently, there are no therapies to combat PICS aside from nutritional inference elaborated after reviewing the literature on Burns, Cachexia, and Sarcopenia. PMID:26086042

  7. Low dimensional gyrokinetic PIC simulation by δf method

    NASA Astrophysics Data System (ADS)

    Chen, C. M.; Nishimura, Yasutaro; Cheng, C. Z.

    2015-11-01

    A step by step development of our low dimensional gyrokinetic Particle-in-Cell (PIC) simulation is reported. One dimensional PIC simulation of Langmuir wave dynamics is benchmarked. We then take temporal plasma echo as a test problem to incorporate the δf method. Electrostatic driftwave simulation in one dimensional slab geometry is resumed in the presence of finite density gradients. By carefully diagnosing contour plots of the δf values in the phase space, we discuss the saturation mechanism of the driftwave instabilities. A v∥ formulation is employed in our new electromagnetic gyrokinetic method by solving Helmholtz equation for time derivative of the vector potential. Electron and ion momentum balance equations are employed in the time derivative of the Ampere's law. This work is supported by Ministry of Science and Technology of Taiwan, MOST 103-2112-M-006-007 and MOST 104-2112-M-006-019.

  8. Kinetic Simulations - Oshun (Vlasov-Fokker-Planck) and PIC (Osiris) - Physics and Open Source Software In The UCLA PICKSE Initiative

    NASA Astrophysics Data System (ADS)

    Tableman, Adam; Tzoufras, Michail; Fonseca, Ricardo; Mori, W. B.

    2016-10-01

    We present physics results and general updates for two plasma kinetic simulation codes developed under the UCLA PICKSE initiative. We also discuss the issues around making these codes open source such that they can be used (and contributed too) by a large audience. The first code discussed is Oshun - a Vlasov-Fokker-Planck (VFP) code. Recent simulations with the VFP code OSHUN will be presented for all of the aforementioned problems. The algorithmic improvements that have facilitated these studies will be also be discussed. The second code discussed is the PIC code Osiris. Osiris is a widely respected code used in hundreds of papers. Osiris was first developed for laser-plasma interactions but has grown into a robust framework covering most areas of plasma research. One defining feature of Osiris is that it is highly optimized for a variety of hardware configurations and scales linearly over 1 million + CPU nodes. We will discuss the recently released version 4.0 written in modern, fully-object oriented FORTRAN. Funding provided by Grants NSF ACI 1339893 and DOE DE NA 0001833.

  9. Transition to chaos in an open unforced 2D flow

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.; Vastano, John A.

    1993-01-01

    The present numerical study of unsteady, low Reynolds number flow past a 2D airfoil attempts to ascertain the bifurcation sequence leading from simple periodic to complex aperiodic flow with rising Reynolds number, as well as to characterize the degree of chaos present in the aperiodic flow and assess the role of numerics in the modification and control of the observed bifurcation scenario. The ARC2D Navier-Stokes code is used in an unsteady time-accurate mode for most of these computations. The system undergoes a period-doubling bifurcation to chaos as the Reynolds number is increased from 800 to 1600; its chaotic attractors are characterized by estimates of the fractal dimension and partial Liapunov exponent spectra.

  10. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  11. Phototriggered sulfoxide isomerization in [Ru(pic)2(dmso)2].

    PubMed

    Rachford, Aaron A; Petersen, Jeffrey L; Rack, Jeffrey J

    2007-08-14

    We report the characterization and photochemistry of a simple ruthenium coordination complex containing only picolinate (pic) and dmso, which exhibits a large isomerization quantum yield (Phi(SS-->OO) = 0.50) in various solvents. The picolinate ligands of [Ru(pic)(2)(dmso)(2)] are in a cis arrangement so that the carboxylate oxygen of one pic ligand (O1) is trans to the pyridine of the second picolinate (N2). One dmso ligand (S1) is trans to a pyridine nitrogen (N1), while the second dmso (S2) is trans to a carboxylate oxygen (O3). The cyclic voltammetry, (1)H NMR, IR, and UV-vis spectroscopy data suggest that while both dmso ligands isomerize photochemically, only one dmso ligand isomerizes electrochemically. Isomerization quantum yields for each dmso ligand differ by an order of magnitude (Phi(SS-->SO) = 0.46 and Phi(SO-->OO) = 0.036). In agreement with previous results, the isomerization quantum yield for each dmso is dependent on the ligand that is trans to the dmso.

  12. Topological subsystem codes

    SciTech Connect

    Bombin, H.

    2010-03-15

    We introduce a family of two-dimensional (2D) topological subsystem quantum error-correcting codes. The gauge group is generated by two-local Pauli operators, so that two-local measurements are enough to recover the error syndrome. We study the computational power of code deformation in these codes and show that boundaries cannot be introduced in the usual way. In addition, we give a general mapping connecting suitable classical statistical mechanical models to optimal error correction in subsystem stabilizer codes that suffer from depolarizing noise.

  13. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  14. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  15. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  16. Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.

    2009-01-01

    VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.

  17. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  18. X-ray FEL Simulation with the MPP version of the GINGER Code

    NASA Astrophysics Data System (ADS)

    Fawley, William

    2001-06-01

    GINGER is a polychromatic, 2D (r-z) PIC code originally developed in the 1980's to examine sideband growth in FEL amplifiers. In the last decade, GINGER simulations have examined various aspects of x-ray and XUV FEL's based upon initiation by self-amplified spontaneous emission (SASE). Recently, GINGER's source code has been substantially updated to exploit many modern features of the Fortran90 language and extended to exploit multiprocessor hardware with the result that the code now runs effectively on platforms ranging from single processor workstations in serial mode to MPP hardware at NERSC such as the Cray-T3E and IBM-SP in full parallel mode. This poster discusses some of the numerical algorithms and structural details of GINGER which permitted relatively painless porting to parallel architectures. Examples of some recent SASE FEL modeling with GINGER will be given including both existing experiments such as the LEUTL UV FEL at Argonne and proposed projects such as the LCLS x-ray FEL at SLAC.

  19. VIEWNET: a neural architecture for learning to recognize 3D objects from multiple 2D views

    NASA Astrophysics Data System (ADS)

    Grossberg, Stephen; Bradski, Gary

    1994-10-01

    A self-organizing neural network is developed for recognition of 3-D objects from sequences of their 2-D views. Called VIEWNET because it uses view information encoded with networks, the model processes 2-D views of 3-D objects using the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and removes noise from the images. A log-polar transform is taken with respect to the centroid of the resulting figure and then re-centered to achieve 2-D scale and rotation invariance. The invariant images are coarse coded to further reduce noise, reduce foreshortening effects, and increase generalization. These compressed codes are input into a supervised learning system based on the Fuzzy ARTMAP algorithm which learns 2-D view categories. Evidence from sequences of 2-D view categories is stored in a working memory. Voting based on the unordered set of stored categories determines object recognition. Recognition is studied with noisy and clean images using slow and fast learning. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of 2-D views of aircraft with and without additive noise. A recognition rate of up to 90% is achieved with one 2-D view category and of up to 98.5% correct with three 2-D view categories.

  20. Boltzmann electron PIC simulation of the E-sail effect

    NASA Astrophysics Data System (ADS)

    Janhunen, P.

    2015-12-01

    The solar wind electric sail (E-sail) is a planned in-space propulsion device that uses the natural solar wind momentum flux for spacecraft propulsion with the help of long, charged, centrifugally stretched tethers. The problem of accurately predicting the E-sail thrust is still somewhat open, however, due to a possible electron population trapped by the tether. Here we develop a new type of particle-in-cell (PIC) simulation for predicting E-sail thrust. In the new simulation, electrons are modelled as a fluid, hence resembling hybrid simulation, but in contrast to normal hybrid simulation, the Poisson equation is used as in normal PIC to calculate the self-consistent electrostatic field. For electron-repulsive parts of the potential, the Boltzmann relation is used. For electron-attractive parts of the potential we employ a power law which contains a parameter that can be used to control the number of trapped electrons. We perform a set of runs varying the parameter and select the one with the smallest number of trapped electrons which still behaves in a physically meaningful way in the sense of producing not more than one solar wind ion deflection shock upstream of the tether. By this prescription we obtain thrust per tether length values that are in line with earlier estimates, although somewhat smaller. We conclude that the Boltzmann PIC simulation is a new tool for simulating the E-sail thrust. This tool enables us to calculate solutions rapidly and allows to easily study different scenarios for trapped electrons.

  1. A new species of Pseudopyrochroa Pic, 1906 (Coleoptera: Pyrochroidae: Pyrochroinae) from the Mae Chaem District, Thailand.

    PubMed

    Young, Daniel K

    2014-04-02

    A new species of the fire-colored beetle genus Pseudopyrochroa Pic, 1906, is described from the Mae Chaem District, Chiang Mai Province, Thailand. The new species, Pseudopyrochroa inthanonensis sp. nov., is superficially similar to Pseudopyrochroa basalis (Pic), Pseudopyrochroa cardoni (Fairmaire) and Pseudopyrochroa fainanensis (Pic) by virtue of body color, antennal form and prothoracic shape. It is the second species of the genus known from Thailand, the other being Pseudopyrochroa diversicornis (Blair).

  2. Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel

    2010-01-01

    HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.

  3. Energy Dependence of Electron Anisotropy and Agyrotropy from PIC Simulations of Tail Reconnection

    NASA Astrophysics Data System (ADS)

    Newman, D. L.; Goldman, M. V.; Lapenta, G.; Eastwood, J. P.

    2015-12-01

    MMS is capable of measuring particle distributions with unprecedented temporal resolution. These distributions will aid in the identification of key regions of the reconnecting plasma, such as the electron diffusion region and dipolarization fronts (DFs) in Earth's magnetotail. Electron anisotropy and agyrotropy are particularly useful diagnostics for this purpose. Normally, anisotropy and agyrotropy are defined as properties of the total pressure tensor. However, such global velocity-space measures of the electron distribution can hide detailed energy-dependent variations. Using electron distributions from 2D and 3D PIC simulations of tail reconnection, we employ a combination of 3D velocity-space visualization techniques and energy-dependent anisotropy and agyrotropy measures to analyze the distributions from regions in the vicinity of the reconnection x-line, the magnetic separatricies, and DFs. For example, regions of the reconnection exhaust near a DF can exhibit a nearly isotropic pressure tensor due to the competing influences of low-energy electrons, which contribute disproportionately to the parallel pressure, and high-energy electron, which contribute disproportionately to the perpendicular pressure.

  4. Temperature and Light Control of Three phase Induction Motor Speed Drive by PIC

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2010-06-01

    PIC is a family of Harvard architecture microcontrollers made by Microchip Technology, derived from the PIC1640 originally developed by General Instrument's Microelectronics Division. The name PIC initially referred to "Peripheral Interface Controller". PICs are popular with the developers and the hobbyists due to their low cost, wide availability, large user base, extensive collection of application notes, free development tools, and serial programming (and re-programming with flash memory) capability. In modern days, PIC microcontrollers are used in the industrial world to control many types of equipment, ranging from consumer to specialized devices. They have replaced older types of controllers, including microprocessors. Also, there is a growing need for off-line support of a computer's main processor. The demand is going to grow with more equipment uses more intelligence. In the engineering field for instance, PIC has brought a very positive impact in designing an automation control system and controlling industrial machineries. Accordingly, this paper shows the change in the motor speed by the use of PIC in accordance to the light and level of temperature. The project focuses on programming the PIC by embedded software that detects the temperature and light signals and send it to 3 phase induction motor of 240 volt. A theoretical analysis and the practical approach in achieving this work goal have proved that PIC plays an important role in the field of electronics control.

  5. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  6. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  7. Orthotropic Piezoelectricity in 2D Nanocellulose.

    PubMed

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  8. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  9. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  10. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  11. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    PubMed

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  12. 2-D magnetotelluric modeling using finite element method incorporating unstructured quadrilateral elements

    NASA Astrophysics Data System (ADS)

    Sarakorn, Weerachai

    2017-04-01

    In this research, the finite element (FE) method incorporating quadrilateral elements for solving 2-D MT modeling was presented. The finite element software was developed, employing a paving algorithm to generate the unstructured quadrilateral mesh. The accuracy, efficiency, reliability, and flexibility of our FE forward modeling are presented, compared and discussed. The numerical results indicate that our FE codes using an unstructured quadrilateral mesh provide good accuracy when the local mesh refinement is applied around sites and in the area of interest, with superior results when compared to other FE methods. The reliability of the developed codes was also confirmed when comparing both analytical solutions and COMMEMI2D model. Furthermore, our developed FE codes incorporating an unstructured quadrilateral mesh showed useful and powerful features such as handling irregular and complex subregions and providing local refinement of the mesh for a 2-D domain as closely as unstructured triangular mesh but it requires less number of elements in a mesh.

  13. 2D Distributed Sensing Via TDR

    DTIC Science & Technology

    2007-11-02

    plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC

  14. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  15. Codesign approach towards an Exascale scalable plasma simulation code

    NASA Astrophysics Data System (ADS)

    Amaya, J.; Deca, J.; Innocenti, M. E.; Johnson, A.; Lapenta, G.; Markidis, S.; Olshevsky, V.; Vapirev, A.

    2013-10-01

    Particle in cell simulations represent an excellent paradigm for codesign efforts. PIC codes are simple and flexible with many variants addressing different physics applications (e.g. explicit, implicit, hybrid, gyrokinetic, fluid) and different architecture (e.g. vector, parallel, GPU). It is relatively easy to consider radical changes and test them in a short time. For this reason, the project DEEP funded by the European Commission (www.deep-project.eu) and the Intel Exascience Lab (www.exascience.com) have used PIC as one of their target application for a codesign approach aiming at developing PIC methods for future exascale comupters. The starting point is the iPic3D implicit PIC approach. Here we report on the analysis of code performance, on the use of GPUs and the new MICs (Intel Xeon processors). We describe how the method can be rethinked for hybrid architectures composed of MICs and CPUs (as in the new Deep Supercomputer in Juelich, as well as in others). The focus is on a codesign approach where computer science issue motivate modifications of the algorithms used while physics constraints what should be eventually achieved.

  16. Stellar Diameters in the Beta Pic Moving Group

    NASA Astrophysics Data System (ADS)

    Simon, M.; Schaefer, G. H.

    2014-09-01

    Members of the Beta Pic Moving Group (BPMG) are young enough (10-20 MY) and near enough (< 50 pc) that some are resolvable with the CHARA Interferometric Array in the H and K bands. The capability to measure the radius of a star as it contracts is important because it provides a new way to measure the stars age by reference to models of its evolution. We measured the angular diameters of the BPMG members HIP 560 (F3V) and HIP 21547 (F0V) using the interferometer with the CLASSIC beam combiner. Our observing assignment was in the time the CHARA administration made publicly available through the NOAO application process. The limb-darkened angular diameters of HIP 560 and 21547 are 0.492±0.032 and 0.518±0.009 mas, respectively. The corresponding stellar radii are 2.1 (HIP 560) and 1.6 Rsun (HIP 21547). These values indicate that HIP 560 and 21547 are truly young. Comparison to theoretical evolutionary models indicates their age is 13±2 MY. We describe our observations and results briefly here and discuss the studies that will become possible in the near future. A more detailed account is given in our paper “Measured Diameters of 2 F-stars in the Beta Pic Moving Group,” submitted to the Astrophysical Journal.

  17. PIC microcontroller-based RF wireless ECG monitoring system.

    PubMed

    Oweis, R J; Barhoum, A

    2007-01-01

    This paper presents a radio-telemetry system that provides the possibility of ECG signal transmission from a patient detection circuit via an RF data link. A PC then receives the signal through the National Instrument data acquisition card (NIDAQ). The PC is equipped with software allowing the received ECG signals to be saved, analysed, and sent by email to another part of the world. The proposed telemetry system consists of a patient unit and a PC unit. The amplified and filtered ECG signal is sampled 360 times per second, and the A/D conversion is performed by a PIC16f877 microcontroller. The major contribution of the final proposed system is that it detects, processes and sends patients ECG data over a wireless RF link to a maximum distance of 200 m. Transmitted ECG data with different numbers of samples were received, decoded by means of another PIC microcontroller, and displayed using MATLAB program. The designed software is presented in a graphical user interface utility.

  18. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  19. The basics of 2D DIGE.

    PubMed

    Beckett, Phil

    2012-01-01

    The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).

  20. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  1. Study on the After Cavity Interaction in a 140 GHz Gyrotron Using 3D CFDTD PIC Simulations

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Illy, S.; Avramidis, K.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on after cavity interaction (ACI) in a 140 GHz gryotron for fusion research has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. The ACI, i.e. beam wave interaction in the non-linear uptaper after the cavity has attracted a lot of attention and been widely investigated in recent years. In a dynamic ACI, a TE mode is excited by the electron beam at the same frequency as in the cavity, and the same mode is also interacting with the spent electron beam at a different frequency in the non-linear uptaper after the cavity while in a static ACI, a mode interacts with the beam both at the cavity and at the uptaper, but at the same frequency. A previous study on the dynamic ACI on a 140 GHz gyrotron has concluded that more advanced numerical simulations such as particle-in-cell (PIC) modeling should be employed to study or confirm the dynamic ACI in addition to using trajectory codes. In this work, we use a 3-D full wave time domain simulation based on the CFDTD PIC method to include the rippled-wall launcher of the quasi-optical output coupler into the simulations which breaks the axial symmetry of the original model employing a symmetric one. A preliminary simulation result has confirmed the dynamic ACI effect in this 140 GHz gyrotron in good agreement with the former study. A realistic launcher will be included in the model for studying the dynamic ACI and compared with the homogenous one.

  2. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  3. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  4. Micro-PIC. A Simple Form of the Profile of Interaction in the Classroom.

    ERIC Educational Resources Information Center

    Forbes, Joan

    The Profile of Interaction in the Classroom (PIC) is a feedback method of interaction analysis, based on the Flanders System, created for supervisors of pre-service and in-service teacher education. The Micro-PIC is an abbreviated simplified form for analysis of shorter periods of interaction, particularly in microteaching. The Micro-PIC…

  5. Screening Preschoolers with Special Problems: Use of the Personality Inventory for Children (PIC).

    ERIC Educational Resources Information Center

    Keenan, P. A.; Lachar, David

    The Personality Inventory for Children (PIC) is an objectively scored, multidimensional measure of child and adolescent behavior, affect, and cognitive ability and can be completed by parents. The overall goal of this project was to evaluate the psychometric characteristics of the PIC as a screening device for use with preschool populations. The…

  6. Preparation of PLLA/bpV(pic) microspheres and their effect on nerve cells.

    PubMed

    Lin, Qiang; Chen, Hai-yun; Li, Hao-shen; Cai, Yang-ting

    2014-02-01

    In this study, we prepared PLLA/bpV(pic) microspheres, a bpV(pic) controlled release system and examined their ability to protect nerve cells and promote axonal growth. PLLA microspheres were prepared by employing the o/w single emulsification-evaporation technique. Neural stem cells and dorsal root ganglia were divided into 3 groups in terms of the treatment they received: a routine medium group (cultured in DMEM), a PLLA microsphere group (DMEM containing PLLA microspheres alone) and a PLLA/bpV(pic) group [DMEM containing PLLA/bpV(pic) microspheres]. The effects of PLLA/bpV(pic) microspheres were evaluated by the live-dead test and measurement of axonal length. Our results showed that PLLA/bpV(pic) granulation rate was (88.2±5.6)%; particle size was (16.8±3.1)%, drug loading was (4.05±0.3)%; encapsulation efficiency was (48.5±1.8)%. The release time lasted for 30 days. In PLLA/bpV(pic) microsphere group, the cell survival rate was (95.2 ±4.77)%, and the length of dorsal root ganglion (DRG) was 718±95 μm, which were all significantly greater than those in ordinary routine medium group and PLLA microsphere group. This preliminary test results showed the PLLA/bpV(pic) microspheres were successfully prepared and they could promote the survival and growth of neural cells in DRG.

  7. Assessment of PIC and MMPI Scales in Adolescent Psychosis: A Caution.

    ERIC Educational Resources Information Center

    Davies, Allison; And Others

    1987-01-01

    Investigated sensitivity of Personality Inventory for Children (PIC) and Minnesota Multiphasic Personality Inventory (MMPI) in assessing psychotic states in adolescents. Results from comparison of 29 psychotic and 58 nonpsychotic adolescent psychiatric inpatients suggest the need for a profile-analytic approach to PIC and MMPI interpretation in…

  8. Evaluation of Age, Sex, and Race Bias in the Personality Inventory for Children (PIC).

    ERIC Educational Resources Information Center

    Kline, Rex B.; Lachar, David

    1992-01-01

    Whether the external validity of the Personality Inventory for Children (PIC) was moderated by age, sex, or race was studied using 1,333 children and adolescents referred for mental health services. Race and sex generally did not moderate the relation of PIC scales to symptom checklists. Some relationships were age modified. (SLD)

  9. PIC. Profile of Interaction in the Classroom. A Quick Feedback of Interaction Analysis.

    ERIC Educational Resources Information Center

    Brunner, Ellen

    The Profile of Interaction in the Classroom (PIC) is a short-cut method of interaction analysis that can provide the quick feedback essential to effective supervision of instruction. And because the PIC contains a record of all the behaviors that occurred in the classroom, as well as the sequence, the data may be used to build a traditional…

  10. Planning, Management and Evaluation: Realizing PIC Potential. Private Industry Council Guide. Working Draft.

    ERIC Educational Resources Information Center

    National Alliance of Business, Inc., Washington, DC.

    This Planning, Management, and Evaluation (PME) guide was developed by the National Alliance of Business as part of its program of management assistance for Private Industry Councils (PICs). The guide is a tool which PICs can use to improve their capability to plan, manage, and evaluate the programs which they administer, and to establish locally…

  11. The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli.

    PubMed

    Abreu, Afonso G; Abe, Cecilia M; Nunes, Kamila O; Moraes, Claudia T P; Chavez-Dueñas, Lucia; Navarro-Garcia, Fernando; Barbosa, Angela S; Piazza, Roxane M F; Elias, Waldir P

    2016-01-01

    Autotransporter proteins (AT) are associated with bacterial virulence attributes. Originally identified in enteroaggregative Escherichia coli (EAEC), Shigella flexneri 2a and uropathogenic E. coli, the serine protease Pic is one of these AT. We have previously detected one atypical enteropathogenic E. coli strain (BA589) carrying the pic gene. In the present study, we characterized the biological activities of Pic produced by BA589 both in vitro and in vivo. Contrarily to other Pic-producers bacteria, pic in BA589 is located on a high molecular weight plasmid. PicBA589 was able to agglutinate rabbit erythrocytes, cleave mucin and degrade complement system molecules. BA589 was able to colonize mice intestines, and an intense mucus production was observed. The BA589Δpic mutant lost the capacity to colonize as well as the above-mentioned in vitro activities. Thus, Pic represents an additional virulence factor in aEPEC strain BA589, associated with adherence, colonization and evasion from the innate immune system.

  12. Compatible embedding for 2D shape animation.

    PubMed

    Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi

    2009-01-01

    We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.

  13. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  14. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  15. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  16. Improved constructions for quantum maximum distance separable codes

    NASA Astrophysics Data System (ADS)

    Qian, Jianfa; Zhang, Lina

    2017-01-01

    In this work, we further improve the distance of the quantum maximum distance separable (MDS) codes of length n=q^2+1/10. This yields new families of quantum MDS codes. We also construct a family of new quantum MDS codes with parameters [[q^2-1/3, q^2-1/3-2d+2, d

  17. Quasiparticle interference in unconventional 2D systems

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  18. 2D Metals by Repeated Size Reduction.

    PubMed

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  19. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  20. Inertial electrostatic confinement and DD fusion at interelectrode media of nanosecond vacuum discharge. PIC simulations and experiment

    NASA Astrophysics Data System (ADS)

    Kurilenkov, Yu K.; Tarakanov, V. P.; Skowronek, M.; Guskov, S. Yu; Dufty, J.

    2009-05-01

    The generation of energetic ions and DD neutrons from microfusion at the interelectrode space of a low-energy nanosecond vacuum discharge has been demonstrated recently [1, 2]. However, the physics of fusion processes and some results regarding the neutron yield from the database accumulated were poorly understood. The present work presents a detailed particle-in-cell (PIC) simulation of the discharge experimental conditions using a fully electrodynamic code. The dynamics of all charge particles was reconstructed in time and anode-cathode (AC) space. The principal role of a virtual cathode (VC) and the corresponding single and double potential wells formed in the interelectrode space are recognized. The calculated depth of the quasistationary potential well (PW) of the VC is about 50-60 keV, and the D+ ions being trapped by this well accelerate up to energy values needed to provide collisional DD nuclear synthesis. The correlation between the calculated potential well structures (and dynamics) and the neutron yield observed is discussed. In particular, ions in the potential well undergo high-frequency (~80 MHz) harmonic oscillations accompanied by a corresponding regime of oscillatory neutron yield. Both experiment and PIC simulations illustrate favorable scaling of the fusion power density for the chosen IECF scheme based on nanosecond vacuum discharge.

  1. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  2. Irreversibility-inversions in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  3. Origin of the different energetic ion populations in the quasi-perpendicular Ion Foreshock: 2D Full-particle simulation

    NASA Astrophysics Data System (ADS)

    Savoini, P.; Lembege, B.; Stienlet, J.

    2012-04-01

    The foreshock region is located upstream of the terrestrial bow shock and is characterized by energetic backstreaming particles (electrons and ions) issued from the shock and by an important wave activity as observed by many space missions. In order to analyse the foreshock region, a curved shock is simulated with the help of a 2 - D full particle (PIC) code, where full curvature and time of flight effects, and where both electrons and ions dynamics are fully described by a self consistent approach. The analysis is presently restricted to the quasi-perpendicular angular range defined by 45°≤ θBn ≤ 90°, where θBn is the angle between the shock normal and the upstream magnetostatic field, and we focus only on the ion foreshock. In a good agreement with experimental data, present preliminary results evidence two distinct ion populations collimated along the interplanetary magnetic field (IMF): (i) the Field-Aligned Beam population (hereafter named "FAB") and (ii) the gyro-phase bunch population (hereafter named "GPB") which differ from each other by their gyrotropic or non-gyrotropic behavior, respectively. Additionally, the "FAB" population is observed at the edge of the ion foreshock and near the curved shock front, while the "'GPB" population is observed deeper in the foreshock and further from the shock front. The analysis shows that no pitch angle scattering mechanism needs to be invoked to account for the generation of the "GPB", but rather additional criteria are necessary namely: the interaction time Δtint of backstreaming ions with the shock front and their downstream penetration depth. These criteria allow to evidence that (i) the "FAB" population corresponds to particles which move back and forth between the upstream edge of the front and the overshoot, and are characterized by a quite large Δtint (covering several local gyro-periods, 4 ≤ τci ≤ 12). In contrast, (ii) the "GPB" ions have suffered a very short interaction time (i.e. Δtint < 1

  4. PIC simulation of reactive radio-frequency plasma

    NASA Astrophysics Data System (ADS)

    Matthias, Paul; Kahnfeld, Daniel; Lueskow, Karl; Bandelow, Gunnar; Schneider, Ralf; Kemnitz, Stefan; Duras, Julia

    2016-10-01

    Reactive plasmas are important for industrial applications. For sputter processes and plasma etching especially asymmetric capacitively coupled plasmas with a radio-frequency modulated voltage are used. The latest experimental results show an unexpected high-energy peak of negative ions at the grounded anode, depending on the cathode material. Here the Particle-in-Cell (PIC) method was used to simulate this experiment. The main mechanism for the effect is identified as the production of negative ions near the surface of the cathode. In a one dimensional simulation the negative ions are trapped inside the plasma because of the symmetric potential. Thus it was shown that these high-energy peaks of negative ions at the anode only appear in asymmetric discharges, due to the self-bias voltage. To reproduce the asymmetry a two dimensional model will be used in the future. German Space Agency DLR Project 50 RS 1510.

  5. Measures Of Diffusion Regions Applied To PIC Reconnection Simulations

    NASA Astrophysics Data System (ADS)

    Goldman, M. V.; Newman, D. L.; Lapenta, G.

    2015-12-01

    The primary goal of the current NASA-MMS mission is to "identify and study diffusion regions during magnetic reconnection in Earth's magnetopause and magnetotail. Yet the term diffusion region is often misunderstood and can be ambiguous. Different conditions for a region to be a "diffusion region" are interpreted theoretically, related to each other and applied to PIC simulations of tail reconnection(a) (and to MMS measurements, if possible, at time of AGU). None of the conditions is both necessary and sufficient for topological reconnection to occur. During magnetic reconnection in a kinetic plasma key differences exist between the locations of diffusion regions in the electron fluid, the ion fluid and a single (MHD) fluid. (a)M.V. Goldman, D.L. Newman and G. Lapenta, Space Science Reviews, 2015

  6. Octree particle management for DSMC and PIC simulations

    NASA Astrophysics Data System (ADS)

    Martin, Robert Scott; Cambier, Jean-Luc

    2016-12-01

    The ratio of physical to computationally modeled particles is of critical importance to the fidelity of particle-based simulation methods such as Direct Simulation Monte Carlo (DSMC) and Particle-in-Cell (PIC). Like adaptive mesh refinement for continuum/grid-based simulations, particle remapping enables dynamic control of simulation fidelity in regions of interest so that computational resources can be efficiently distributed within the problem. This is particularly important for simulations involving high dynamic range in the density for one or more species such as problems involving chain-branching reactions like combustion and ionizing breakdown. In this work, a new method of particle remapping is presented which strictly conserves mass, momentum, and energy while simultaneously remaining faithful to the original velocity distribution function through the use of octree binning in velocity space.

  7. High temperature decreases the PIC / POC ratio and increases phosphorus requirements in Coccolithus pelagicus (Haptophyta)

    NASA Astrophysics Data System (ADS)

    Gerecht, A. C.; Šupraha, L.; Edvardsen, B.; Probert, I.; Henderiks, J.

    2014-01-01

    Rising ocean temperatures will likely increase stratification of the water column and reduce nutrient input into the photic zone. This will increase the likelihood of nutrient limitation in marine microalgae, leading to changes in the abundance and composition of phytoplankton communities, which in turn will affect global biogeochemical cycles. Calcifying algae, such as coccolithophores, influence the carbon cycle by fixing CO2 into particulate organic carbon (POC) through photosynthesis and into particulate inorganic carbon (PIC) through calcification. As calcification produces a net release of CO2, the ratio of PIC / POC determines whether coccolithophores act as a source (PIC / POC > 1) or a sink (PIC / POC < 1) of atmospheric CO2. We studied the effect of phosphorus (P-) limitation and temperature stress on the physiology and PIC / POC ratios of two subspecies of Coccolithus pelagicus. This large and heavily calcified species (PIC / POC generally > 1.5) is a major contributor to calcite export from the photic zone into deep-sea reservoirs. Phosphorus limitation did not influence exponential growth rates in either subspecies, but P-limited cells had significantly lower cellular P-content. A 5 °C temperature increase did not affect exponential growth rates either, but nearly doubled cellular P-content under both high and low phosphate availability. The PIC / POC ratios did not differ between P-limited and nutrient-replete cultures, but at elevated temperature (from 10 to 15 °C) PIC / POC ratios decreased by 40-60%. Our results suggest that elevated temperature may intensify P-limitation due to a higher P-requirement to maintain growth and POC production rates, possibly reducing abundances in a warmer ocean. Under such a scenario C. pelagicus may decrease its calcification rate relative to photosynthesis, resulting in PIC / POC ratios < 1 and favouring CO2-sequestration over release. Phosphorus limitation by itself is unlikely to cause changes in the PIC / POC

  8. PICS: Simulations of Strong Gravitational Lensing in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Li, Nan; Gladders, Michael D.; Rangel, Esteban M.; Florian, Michael K.; Bleem, Lindsey E.; Heitmann, Katrin; Habib, Salman; Fasel, Patricia

    2016-09-01

    Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that of the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.

  9. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  10. Polar Codes

    DTIC Science & Technology

    2014-12-01

    density parity check (LDPC) code, a Reed–Solomon code, and three convolutional codes. iii CONTENTS EXECUTIVE SUMMARY...the most common. Many civilian systems use low density parity check (LDPC) FEC codes, and the Navy is planning to use LDPC for some future systems...other forward error correction methods: a turbo code, a low density parity check (LDPC) code, a Reed–Solomon code, and three convolutional codes

  11. 2D Optical Streaking for Ultra-Short Electron Beam Diagnostics

    SciTech Connect

    Ding, Y.T.; Huang, Z.; Wang, L.; /SLAC

    2011-12-14

    field ionization, which occurs in plasma case, gases species with high field ionization threshold should be considered. For a linear polarized laser, the kick to the ionized electrons depends on the phase of the laser when the electrons are born and the unknown timing jitter between the electron beam and laser beam makes the data analysis very difficult. Here we propose to use a circular polarized laser to do a 2-dimensional (2D) streaking (both x and y) and measure the bunch length from the angular distribution on the screen, where the phase jitter causes only a rotation of the image on the screen without changing of the relative angular distribution. Also we only need to know the laser wavelength for calibration. A similar circular RF deflecting mode was used to measure long bunches. We developed a numerical particle-in-Cell (PIC) code to study the dynamics of ionization electrons with the high energy beam and the laser beam.

  12. A 2D histogram representation of images for pooling

    NASA Astrophysics Data System (ADS)

    Yu, Xinnan; Zhang, Yu-Jin

    2011-03-01

    Designing a suitable image representation is one of the most fundamental issues of computer vision. There are three steps in the popular Bag of Words based image representation: feature extraction, coding and pooling. In the final step, current methods make an M x K encoded feature matrix degraded to a K-dimensional vector (histogram), where M is the number of features, and K is the size of the codebook: information is lost dramatically here. In this paper, a novel pooling method, based on 2-D histogram representation, is proposed to retain more information from the encoded image features. This pooling method can be easily incorporated into state-of- the-art computer vision system frameworks. Experiments show that our approach improves current pooling methods, and can achieve satisfactory performance of image classification and image reranking even when using a small codebook and costless linear SVM.

  13. Adaptive superplastic forming using NIKE2D with ISLAND

    SciTech Connect

    Engelmann, B.E.; Whirley, R.G.; Raboin, P.J.

    1992-07-30

    Superplastic forming has emerged as an important manufacturing process for producing near-net-shape parts. The design of a superplastic forming process is more difficult than conventional manufacturing operations, and is less amenable to trial and error approaches. This paper describes a superplastic forming process design capability incorporating nonlinear finite element analysis. The material constraints to allow superplastic behavior are integrated into an external constraint equation which is solved concurrently with the nonlinear finite element equations. The implementation of this approach using the ISLAND solution control language with the nonlinear finite element code NIKE2D is discussed in detail. Superplastic forming process design problems with one and two control parameters are presented as examples.

  14. The Anatomy of High-Performance 2D Similarity Calculations

    PubMed Central

    Haque, Imran S.; Pande, Vijay S.

    2011-01-01

    Similarity measures based on the comparison of dense bit-vectors of two-dimensional chemical features are a dominant method in chemical informatics. For large-scale problems, including compound selection and machine learning, computing the intersection between two dense bit-vectors is the overwhelming bottleneck. We describe efficient implementations of this primitive, as well as example applications, using features of modern CPUs that allow 20-40x performance increases relative to typical code. Specifically, we describe fast methods for population count on modern x86 processors and cache-efficient matrix traversal and leader clustering algorithms that alleviate memory bandwidth bottlenecks in similarity matrix construction and clustering. The speed of our 2D comparison primitives is within a small factor of that obtained on GPUs, and does not require specialized hardware. PMID:21854053

  15. areaDetector: Software for 2-D Detectors in EPICS

    SciTech Connect

    Rivers, M.

    2011-09-23

    areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.

  16. TOPAZ2D validation status report, August 1990

    SciTech Connect

    Davis, B.

    1990-08-01

    Analytic solutions to two heat transfer problems were used to partially evaluate the performance TOPAZ, and LLNL finite element heat transfer code. The two benchmark analytic solutions were for: 2D steady state slab, with constant properties, constant uniform temperature boundary conditions on three sides, and constant temperature distribution according to a sine function on the fourth side; 1D transient non-linear, with temperature dependent conductivity and specific heat (varying such that the thermal diffusivity remained constant), constant heat flux on the front face and adiabatic conditions on the other face. The TOPAZ solution converged to the analytic solution in both the transient and the steady state problem. Consistent mass matrix type of analysis yielded best performance for the transient problem, in the late-time response; but notable unnatural anomalies were observed in the early-time temperature response at nodal locations near the front face. 5 refs., 22 figs.

  17. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.

    2001-01-01

    We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on an equal footing. Electron bandstructure is treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are consistent with 1D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller leakage current than the longer gate length device without a significant trade-off in on-current.

  18. Mass loss in 2D rotating stellar models

    SciTech Connect

    Lovekin, Caterine; Deupree, Bob

    2010-10-05

    Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.

  19. Hybrid-PIC Modeling of a High-Voltage, High-Specific-Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani; Huang, Wensheng

    2013-01-01

    The primary life-limiting mechanism of Hall thrusters is the sputter erosion of the discharge channel walls by high-energy propellant ions. Because of the difficulty involved in characterizing this erosion experimentally, many past efforts have focused on numerical modeling to predict erosion rates and thruster lifespan, but those analyses were limited to Hall thrusters operating in the 200-400V discharge voltage range. Thrusters operating at higher discharge voltages (V(sub d) >= 500 V) present an erosion environment that may differ greatly from that of the lower-voltage thrusters modeled in the past. In this work, HPHall, a well-established hybrid-PIC code, is used to simulate NASA's High-Voltage Hall Accelerator (HiVHAc) at discharge voltages of 300, 400, and 500V as a first step towards modeling the discharge channel erosion. It is found that the model accurately predicts the thruster performance at all operating conditions to within 6%. The model predicts a normalized plasma potential profile that is consistent between all three operating points, with the acceleration zone appearing in the same approximate location. The expected trend of increasing electron temperature with increasing discharge voltage is observed. An analysis of the discharge current oscillations shows that the model predicts oscillations that are much greater in amplitude than those measured experimentally at all operating points, suggesting that the differences in oscillation amplitude are not strongly associated with discharge voltage.

  20. Kinetic PIC simulations of reconnection signal propagation parallel to magnetic field lines: Implifications for substorms

    NASA Astrophysics Data System (ADS)

    Shay, M. A.; Drake, J. F.

    2009-12-01

    In a recent substorm case study using THEMIS data [1], it was inferred that auroral intensification occurred 96 seconds after reconnection onset initiated a substorm in the magnetotail. These conclusions have been the subject of some controversy [2,3]. The time delay between reconnection and auroral intensification requires a propagation speed significantly faster than can be explained by Alfvén waves. Kinetic Alfvén waves, however, can be much faster and could possibly explain the time lag. To test this possiblity, we simulate large scale reconnection events with the kinetic PIC code P3D and examine the disturbances on a magnetic field line as it propagates through a reconnection region. In the regions near the separatrices but relatively far from the x-line, the propagation physics is expected to be governed by the physics of kinetic Alfvén waves. Indeed, we find that the propagation speed of the magnetic disturbance roughly scales with kinetic Alfvén speeds. We also examine energization of electrons due to this disturbance. Consequences for our understanding of substorms will be discussed. [1] Angelopoulos, V. et al., Science, 321, 931, 2008. [2] Lui, A. T. Y., Science, 324, 1391-b, 2009. [3] Angelopoulos, V. et al., Science, 324, 1391-c, 2009.

  1. 46 CFR 13.305 - Proof of service for “Tankerman-PIC (Barge)” endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Proof of service for âTankerman-PIC (Barge)â endorsement... AND SEAMEN CERTIFICATION OF TANKERMEN Requirements for âTankerman-PIC (Barge)â Endorsement § 13.305 Proof of service for “Tankerman-PIC (Barge)” endorsement. Service must be proved by a letter on...

  2. 46 CFR 13.305 - Proof of service for “Tankerman-PIC (Barge)” endorsement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Proof of service for âTankerman-PIC (Barge)â endorsement... AND SEAMEN CERTIFICATION OF TANKERMEN Requirements for âTankerman-PIC (Barge)â Endorsement § 13.305 Proof of service for “Tankerman-PIC (Barge)” endorsement. Service must be proved by a letter on...

  3. 46 CFR 13.305 - Proof of service for “Tankerman-PIC (Barge)” endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Proof of service for âTankerman-PIC (Barge)â endorsement... AND SEAMEN CERTIFICATION OF TANKERMEN Requirements for âTankerman-PIC (Barge)â Endorsement § 13.305 Proof of service for “Tankerman-PIC (Barge)” endorsement. Service must be proved by a letter on...

  4. 46 CFR 13.305 - Proof of service for “Tankerman-PIC (Barge)” endorsement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Proof of service for âTankerman-PIC (Barge)â endorsement... AND SEAMEN CERTIFICATION OF TANKERMEN Requirements for âTankerman-PIC (Barge)â Endorsement § 13.305 Proof of service for “Tankerman-PIC (Barge)” endorsement. Service must be proved by a letter on...

  5. Response of plasma facing components in Tokamaks due to intense energy deposition using Particle-In-Cell (PIC) methods

    NASA Astrophysics Data System (ADS)

    Genco, Filippo

    complex dynamics problems involving distorted plasma hydrodynamic problems and plasma physics. The PIC method solves the hydrodynamic equations solving all field equations tracking at the same time "sample particles" or pseudo-particles (representative of the much more numerous real ones) as the move under the influence of diffusion or magnetic force. The superior behavior of the PIC techniques over the more classical Lagrangian finite difference methods stands in the fact that detailed information about the particles are available at all times as well as mass and momentum transport values are constantly provided. This allows with a relative small number of particles to well describe the behavior of plasma even in presence of highly distorted flows without losing accuracy. The radiation transport equation is solved at each time step calculating for each cell the opacity and emissivity coefficients. Photon radiation continuum and line fluxes are also calculated per the entire domain and provide useful information for the entire energetic calculation of the system which in the end provides the total values of erosion and lifetime of the target material. In this thesis, a new code named HEIGHTS-PIC code has been created and modified using a new approach of the PIC technique to solve the three physics problems involved integrating each of them as a continuum providing insight on the plasma behavior, evolution along time and physical understanding of the very complex phenomena taking place. The results produced with the models are compared with the well-known and benchmarked HEIGHTS package and also with existing experimental results especially produced in Russia at the TRINITI facility. Comparisons with LASER experiments are also discussed.

  6. ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

    NASA Astrophysics Data System (ADS)

    Akca, Irfan

    2016-04-01

    ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discre-tized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.

  7. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    SciTech Connect

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  8. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  9. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  10. Codon Constraints on Closed 2D Shapes,

    DTIC Science & Technology

    2014-09-26

    19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure

  11. PIC Simulations of mini-magnetospheres above the lunar surface and the formation of Lunar Swirls

    NASA Astrophysics Data System (ADS)

    Bamford, R. A.; Alves, E. P.; Kellett, B.; Bradford, W. J.; Silva, L.; Crawford, I. A.; Trines, R. M. G. M.; Fonseca, R. A.; Gargate, L.; Bingham, R.

    2013-09-01

    the shock altitude). In this small scale regime below the ion gyro radius (which is generally ›› 100km), the plasma has to be treated by kinetic theory and a particle-in-a-cell (PIC) code is necessary to model the complex dynamics taking place between the solar wind and the crustal magnetic fields. We will describe results of PIC simulations and compare them to in-situ observations from multiple lunar missions as well as laboratory experiments.

  12. Preliminary Study of Electron Emission for Use in the PIC Portion of MAFIA

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2001-01-01

    This memorandum summarizes a study undertaken to apply the program MAFIA to the modeling of an electron gun in a traveling wave tube (TWT). The basic problem is to emit particles from the cathode in the proper manner. The electrons are emitted with the classical Maxwell-Boltzmann (M-B) energy distribution; and for a small patch of emitting surface; the distribution with angle obeys Lambert's law. This states that the current density drops off as the cosine of the angle from the normal. The motivation for the work is to extend the analysis beyond that which has been done using older codes. Some existing programs use the Child-Langmuir, or 3/2 power law, for the description of the gun. This means the current varies as the 3/2 power of the anode voltage. The proportionality constant is termed the perveance of the gun. This is limited, however, since the 3/2 variation is only an approximation. Also, if the cathode is near saturation, the 3/2 law definitely will not hold. In most of the older codes, the electron beam is decomposed into current tubes, which imply laminar flow in the beam; even though experiments show the flow to be turbulent. Also, the proper inclusion of noise in the beam is not possible. These older methods of calculation do, however, give reasonable values for parameters of the electron beam and the overall gun, and these values will be used as the starting point for a more precise particle-in-cell (PIC) calculation. To minimize the time needed for a given computer run, all beams will use the same number of particles in a simulation. This is accomplished by varying the mass and charge of the emitted particles (macroparticles) in a certain manner, to be consistent with the desired beam current.

  13. Ion velocity distribution at the termination shock: 1-D PIC simulation

    SciTech Connect

    Lu Quanming; Yang Zhongwei; Lembege, Bertrand

    2012-11-20

    The Voyager 2 (V2) plasma observations of the proton temperature downstream of the quasi-perpendicular heliospheric termination shock (TS) showed that upstream thermal solar wind ions played little role in the shock dissipation mechanism and their downstream temperature is an order of magnitude smaller than predicted by MHD Rankine-Hugoniot conditions. While pickup ions (PUI) are generally expected to play an important role in energy dissipation at the shock, the details remain unclear. Here, one-dimensional (1-D) Particle-in-cell (PIC) code is used to examine kinetic properties and downstream velocity distribution functions of pickup ions (the hot supra-thermal component) and solar wind protons (SWs, the cold component) at the perpendicular heliospheric termination shock. The code treats the pickup ions self-consistently as a third component. Present results show that: (1) both of the incident SWs and PUIs can be separated into two parts: reflected (R) ions and directly transmitted (DT) ions, the energy gain of the R ions at the shock front is much larger than that of the DT ions; (2) the fraction of reflected SWs and their downstream temperature decrease with the relative percentage PUI%; (3) no matter how large the PUI% is, the downstream ion velocity distribution function always can be separated into three parts: 1. a high energy tail (i.e. the wings) dominated by the reflected PUIs, 2. a low energy core mainly contributed by the directly transmitted SWs, and 3. a middle energy part which is a complicated superposition of reflected SWs and directly transmitted PUIs. The significance of the presence of pickup ions on shock front micro-structure and nonstationarity is also discussed.

  14. CASTOR3D: linear stability studies for 2D and 3D tokamak equilibria

    NASA Astrophysics Data System (ADS)

    Strumberger, E.; Günter, S.

    2017-01-01

    The CASTOR3D code, which is currently under development, is able to perform linear stability studies for 2D and 3D, ideal and resistive tokamak equilibria in the presence of ideal and resistive wall structures and coils. For these computations ideal equilibria represented by concentric nested flux surfaces serve as input (e.g. computed with the NEMEC code). Solving an extended eigenvalue problem, the CASTOR3D code takes simultaneously plasma inertia and wall resistivity into account. The code is a hybrid of the CASTOR_3DW stability code and the STARWALL code. The former is an extended version of the CASTOR and CASTOR_FLOW code, respectively. The latter is a linear 3D code computing the growth rates of resistive wall modes in the presence of multiply-connected wall structures. The CASTOR_3DW code, and some parts of the STARWALL code have been reformulated in a general 3D flux coordinate representation that allows to choose between various types of flux coordinates. Furthermore, the implemented many-valued current potentials in the STARWALL part allow a correct treatment of the m  =  0, n  =  0 perturbation. In this paper, we outline the theoretical concept, and present some numerical results which illustrate the present status of the code and demonstrate its numerous application possibilities.

  15. Nuclear import of the pre-integration complex (PIC): the Achilles heel of HIV?

    PubMed

    Piller, S C; Caly, L; Jans, D A

    2003-07-01

    Current treatments against the Aquired immune deficiency syndrome (AIDS) are reasonably effective in reducing the amount of human immunodeficiency virus (HIV) present in infected patients, but their side-effects, and the emergence of drug-resistant HIV strains have intensified the renewed search for novel anti-HIV therapies. An essential step in HIV infection is the integration of the viral genome into the host cell chromosomes within the nucleus. Unlike other retroviruses, HIV can transport its genetic material, in the form of the large nucleoprotein pre-integration complex (PIC), into the nucleus through the intact nuclear envelope (NE). This enables HIV to infect non-dividing cells such as macrophages and microglial cells. Detailed knowledge of the signal-dependent pathways by which cellular proteins and RNAs cross the NE has accumulated in the past decade, but although several different components of the PIC have been implicated in its nuclear import, the mechanism of nuclear entry remains unclear. Since specifically inhibiting PIC nuclear import would undoubtedly block HIV infection in non-dividing cells, this critical step of HIV replication is of great interest as a drug target. This review examines the complex and controversial literature regarding three PIC components--the HIV proteins matrix, integrase and Vpr--proposed to facilitate PIC nuclear import, and existing models of HIV PIC nuclear import. It also suggests approaches to move towards a better understanding of PIC nuclear import, through examining the role of individual PIC components in the context of the intact PIC by direct visualisation, in order to develop new anti-HIV therapeutics.

  16. Remarks on thermalization in 2D CFT

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  17. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  18. Clinical coding. Code breakers.

    PubMed

    Mathieson, Steve

    2005-02-24

    --The advent of payment by results has seen the role of the clinical coder pushed to the fore in England. --Examinations for a clinical coding qualification began in 1999. In 2004, approximately 200 people took the qualification. --Trusts are attracting people to the role by offering training from scratch or through modern apprenticeships.

  19. Effects of in-plane magnetic field on the transport of 2D electron vortices in non-uniform plasmas

    NASA Astrophysics Data System (ADS)

    Angus, Justin; Richardson, Andrew; Schumer, Joseph; Pulsed Power Team

    2015-11-01

    The formation of electron vortices in current-carrying plasmas is observed in 2D particle-in-cell (PIC) simulations of the plasma-opening switch. In the presence of a background density gradient in Cartesian systems, vortices drift in the direction found by crossing the magnetic field with the background density gradient as a result of the Hall effect. However, most of the 2D simulations where electron vortices are seen and studied only allow for in-plane currents and thus only an out-of-plane magnetic field. Here we present results of numerical simulations of 2D, seeded electron vortices in an inhomogeneous background using the generalized 2D electron-magneto-hydrodynamic model that additionally allows for in-plane components of the magnetic field. By seeding vortices with a varying axial component of the velocity field, so that the vortex becomes a corkscrew, it is found that a pitch angle of around 20 degrees is sufficient to completely prevent the vortex from propagating due to the Hall effect for typical plasma parameters. This work is supported by the NRL Base Program.

  20. Taxonomy of Fissocantharis Pic (Coleoptera, Cantharidae) from Guangxi, China, with descriptions of six new species.

    PubMed

    Yang, Yuxia; Li, Limei; Guan, Kaile; Yang, Xingke

    2015-01-01

    A total of 17 species of Fissocantharis Pic is recorded from Guangxi, China. Six species are described new to science, Fissocantharissinensomima sp. n., Fissocantharissexcostata sp. n., Fissocantharisbasilaris sp. n., Fissocanthariseschara sp. n., Fissocantharislatipalpa sp. n. and Fissocantharisbiprojicientis sp. n., and two previously known species are redescribed, Fissocantharisgracilipes (Pic, 1927) and Fissocantharissinensis (Wittmer, 1988). These species are presented with habitus of males, abdominal sternites VIII of females and genitalia of both sexes. Fissocantharisflavofacialis (Pic, 1926) is synonymized with Fissocantharisangusta (Fairmaire, 1900); both were originally described in the genus Podabrus Westwood. Additionally, a key and a checklist of all the species of Fissocantharis from Guangxi are provided.

  1. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  2. Mach number validation of a new zonal CFD method (ZAP2D) for airfoil simulations

    NASA Technical Reports Server (NTRS)

    Strash, Daniel J.; Summa, Michael; Yoo, Sungyul

    1991-01-01

    A closed-loop overlapped velocity coupling procedure has been utilized to combine a two-dimensional potential-flow panel code and a Navier-Stokes code. The fully coupled two-zone code (ZAP2D) has been used to compute the flow past a NACA 0012 airfoil at Mach numbers ranging from 0.3 to 0.84 near the two-dimensional airfoil C(lmax) point for a Reynolds number of 3 million. For these cases, the grid domain size can be reduced to 3 chord lengths with less than 3-percent loss in accuracy for freestream Mach numbers through 0.8. Earlier validation work with ZAP2D has demonstrated a reduction in the required Navier-Stokes computation time by a factor of 4 for subsonic Mach numbers. For this more challenging condition of high lift and Mach number, the saving in CPU time is reduced to a factor of 2.

  3. Transition to turbulence: 2D directed percolation

    NASA Astrophysics Data System (ADS)

    Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight

    2016-11-01

    The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.

  4. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  5. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.

  6. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  7. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  8. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  9. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  10. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  11. Performance evaluation of OSIRIS EM-PIC on a Xeon Phi cluster

    NASA Astrophysics Data System (ADS)

    Fonseca, Ricardo

    2015-11-01

    The quest towards exascale computing has lead to the development of hybrid systems with add-on accelerator cards such as the Xeon Phi accelerators powering for example the Tianhe-2 system in China (currently the #1 system in the world) and the SuperMIC at LZR in Germany. In this work we report on our efforts on deploying the OSIRIS electromagnetic particle-in-cell code on the latter system, focusing not only on algorithm details and single card performance but also on multiple card use. Our benchmarks show code performance of ~ 600(2D) / 300(3D) million particle pushes per second on a single board, and above 74% (strong)/ 94% (weak) scaling efficiency up to 32 boards.

  12. Onset of Reconnection in the near Magnetotail: PIC Simulations

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Birn, Joachim; Daughton, William; Hesse, Michael; Schindler, Karl

    2014-01-01

    Using 2.5-dimensional particle-in-cell (PIC) simulations of magnetotail dynamics, we investigate the onset of reconnection in two-dimensional tail configurations with finite Bz. Reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. We found a clear distinction between stable and unstable cases, dependent on deformation amplitude and ion/electron mass ratio. The threshold appears consistent with electron tearing. The evolution prior to onset, as well as the evolution of stable cases, are largely independent of the mass ratio, governed by integral flux tube entropy conservation as imposed in MHD (magnetohydrodynamics). This suggests that ballooning instability in the tail should not be expected prior to the onset of tearing and reconnection. The onset time and other onset properties depend on the mass ratio, consistent with expectations for electron tearing. At onset,we found electron anisotropies T?/ T? (bottom tail divided by parallel tail) equals 1.1-1.3, raising growth rates and wavenumbers. Our simulations have provided a quantitative onset criterion that is easily evaluated in MHD simulations, provided the spatial resolution is sufficient. The evolution prior to onset and after the formation of a neutral line does not depend on the electron physics, which should permit an approximation by MHD simulations with appropriate dissipation terms.

  13. Subplane-based Control Rod Decusping Techniques for the 2D/1D Method in MPACT

    SciTech Connect

    Graham, Aaron M; Collins, Benjamin S; Downar, Thomas

    2017-01-01

    The MPACT transport code is being jointly developed by Oak Ridge National Laboratory and the University of Michigan to serve as the primary neutron transport code for the Virtual Environment for Reactor Applications Core Simulator. MPACT uses the 2D/1D method to solve the transport equation by decomposing the reactor model into a stack of 2D planes. A fine mesh flux distribution is calculated in each 2D plane using the Method of Characteristics (MOC), then the planes are coupled axially through a 1D NEM-P$_3$ calculation. This iterative calculation is then accelerated using the Coarse Mesh Finite Difference method. One problem that arises frequently when using the 2D/1D method is that of control rod cusping. This occurs when the tip of a control rod falls between the boundaries of an MOC plane, requiring that the rodded and unrodded regions be axially homogenized for the 2D MOC calculations. Performing a volume homogenization does not properly preserve the reaction rates, causing an error known as cusping. The most straightforward way of resolving this problem is by refining the axial mesh, but this can significantly increase the computational expense of the calculation. The other way of resolving the partially inserted rod is through the use of a decusping method. This paper presents new decusping methods implemented in MPACT that can dynamically correct the rod cusping behavior for a variety of problems.

  14. Cytochrome P450 2D6 variants in a Caucasian population: Allele frequencies and phenotypic consequences

    SciTech Connect

    Sachse, C.; Brockmoeller, J.; Bauer, S.; Roots, I.

    1997-02-01

    Cytochrome P450 2D6 (CYP2D6) metabolizes many important drugs. CYP2D6 activity ranges from complete deficiency to ultrafast metabolism, depending on at least 16 different known alleles. Their frequencies were determined in 589 unrelated German volunteers and correlated with enzyme activity measured by phenotyping with dextromethorphan or debrisoquine. For genotyping, nested PCR-RFLP tests from a PCR amplificate of the entire CYP2D6 gene were developed. The frequency of the CYP2D6*1 allele coding for extensive metabolizer (EM) phenotype was .364. The alleles coding for slightly (CYP2D6*2) or moderately (*9 and *10) reduced activity (intermediate metabolizer phenotype [IM]) showed frequencies of .324, .018, and .015, respectively. By use of novel PCR tests for discrimination, CYP2D6 gene duplication alleles were found with frequencies of.005 (*1 x 2), .013 (* 2 x 2), and .001 (*4 x 2). Frequencies of alleles with complete deficiency (poor metabolizer phenotype [PM]) were .207 (*4), .020 (*3 and *5), .009 (*6), and .001 (*7, *15, and *16). The defective CYP2D6 alleles *8, *11, *12, *13, and *14 were not found. All 41 PMs (7.0%) in this sample were explained by five mutations detected by four PCR-RFLP tests, which may suffice, together with the gene duplication test, for clinical prediction of CYP2D6 capacity. Three novel variants of known CYP2D6 alleles were discovered: *1C (T{sub 1957}C), *2B (additional C{sub 2558}T), and *4E (additional C{sub 2938}T). Analysis of variance showed significant differences in enzymatic activity measured by the dextromethorphan metabolic ratio (MR) between carriers of EN/PM (mean MR = .006) and IM/PM (mean MR = .014) alleles and between carriers of one (mean MR = .009) and two (mean MR = .003) functional alleles. The results of this study provide a solid basis for prediction of CYP2D6 capacity, as required in drug research and routine drug treatment. 35 refs., 4 figs., 5 tabs.

  15. FWM behavior in 2-D time-spreading wavelength-hopping OCDMA systems

    NASA Astrophysics Data System (ADS)

    Bazan, Taher M.

    2017-03-01

    A new formula for the signal-to-four-wave mixing (FWM) crosstalk in 2-D time-spreading wavelength-hopping (TW) optical code division multiple access (OCDMA) systems is derived. The influence of several system parameters on the signal-to-FWM crosstalk ratio (SXR) is analyzed, including transmitted power per chip, code length, the number of active users, code weight, wavelength spacing, and transmission distance. Furthermore, for the first time, a closed-form expression for the total number of possible FWM products employing symmetric TW codes with equal wavelength spacing is investigated. The results show that SXR is sensitive to minor variations in system parameters, especially the launched power level and the code length while the wavelength spacing has a less impact on the level of the generated FWM power.

  16. Preparation and antimicrobial evaluation of polyion complex (PIC) nanoparticles loaded with polymyxin B.

    PubMed

    Insua, Ignacio; Majok, Sieta; Peacock, Anna F A; Krachler, Anne Marie; Fernandez-Trillo, Francisco

    2017-02-01

    Here, we describe novel polyion complex (PIC) particles for the delivery of Polymyxin B (Pol-B), an antimicrobial peptide currently used in the clinic as a last resort antibiotic against multidrug-resistant gram-negative bacteria. A range of conditions for the controlled assembly of Pol-B with poly(styrene sulphonate) (PSS) has been identified which let us prepare stable colloidal PIC particles. This way, PIC particles containing different Pol-B:PSS ratios have been prepared and their stability under simulated physiological conditions (i.e. pH, osmotic pressure and temperature) characterised. Furthermore, preliminary evaluation of the antimicrobial activity of these Pol-B containing PIC particles has been performed, by monitoring their effect on the growth of Pseudomonas aeruginosa, an opportunistic gram-negative bacterium.

  17. A new species of the genus Falsoibidion Pic (Coleoptera, Cerambycidae) from Korea.

    PubMed

    Lee, Seunghyun; Lee, Seunghwan

    2016-01-01

    A new species of the genus Falsoibidion Pic, 1922 (Coleoptera, Cerambycidae, Cerambycinae, Callidiopini) from Korea is described. Habitus and genitalia of male and female of the new species are illustrated.

  18. Enzyme-responsive polyion complex (PIC) nanoparticles for the targeted delivery of antimicrobial polymers.

    PubMed

    Insua, Ignacio; Liamas, Evangelos; Zhang, Zhenyu; Peacock, Anna F A; Krachler, Anne Marie; Fernandez-Trillo, Francisco

    2016-04-21

    Here we present new enzyme-responsive polyion complex (PIC) nanoparticles prepared from antimicrobial poly(ethylene imine) and an anionic enzyme-responsive peptide targeting Pseudomonas aeruginosa's elastase. The synthetic conditions used to prepare these nanomaterials allowed us to optimise particle size and charge, and their stability under physiological conditions. We demonstrate that these enzyme responsive PIC nanoparticles are selectively degraded in the presence of P. aeruginosa elastase without being affected by other endogenous elastases. This enzyme-responsive PIC particle can exert an elastase-specific antimicrobial effect against P. aeruginosa without affecting non-pathogenic strains of these bacteria. These targeted enzyme-responsive PIC nanoparticles constitute a novel platform for the delivery of antimicrobial peptides and polymers, and can be a powerful tool in the current race against antimicrobial resistance.

  19. Soft Decoding of Integer Codes and Their Application to Coded Modulation

    NASA Astrophysics Data System (ADS)

    Kostadinov, Hristo; Morita, Hiroyoshi; Iijima, Noboru; Han Vinck, A. J.; Manev, Nikolai

    Integer codes are very flexible and can be applied in different modulation schemes. A soft decoding algorithm for integer codes will be introduced. Comparison of symbol error probability (SEP) versus signal-to-noise ratio (SNR) between soft and hard decoding using integer coded modulation shows us that we can obtain at least 2dB coding gain. Also, we shall compare our results with trellis coded modulation (TCM) because of their similar decoding schemes and complexity.

  20. Real geometry gyrokinetic PIC computations of ion turbulence in tokamak discharges with SUMMIT/PG3EQ_NC

    NASA Astrophysics Data System (ADS)

    Leboeuf, Jean-Noel; Rhodes, Terry; Dimits, Andris; Shumaker, Dan

    2006-10-01

    The PG3EQ_NC module within the SUMMIT Gyrokinetic PIC FORTRAN90 Framework makes possible 3D nonlinear toroidal computations of ion turbulence in the real geometry of DIII-D discharges. This is accomplished with the use of local, field line following, quasi-ballooning coordinates and through a direct interface with DIII-D equilibrium data via the EFIT and ONETWO codes, as well as Holger Saint John's PLOTEQ code for the (R, Z) position of each flux surface. The effect of real geometry is being elucidated with CYCLONE shot by comparing results for growth rates and diffusivities from PGEQ_NC to those of its circular counterpart. The PG3EQ_NC module is also being used to model ion channel turbulence in DIII-D discharges 118561 and 120327. Linear results will be compared to growth rate calculations with the GKS code. Nonlinear results will also be compared with scattering measurements of turbulence, as well as with accessible measurements of fluctuation amplitudes and spectra from other diagnostics.

  1. Real geometry gyrokinetic PIC computations of ion turbulence in advanced tokamak discharges with SUMMIT/PG3EQ/NC

    NASA Astrophysics Data System (ADS)

    Leboeuf, Jean-Noel; Dimits, Andris; Shumaker, Dan

    2005-10-01

    Development of the PG3EQ/NC module within the SUMMIT gyrokinetic PIC FORTRAN 90 framework is largely completed. It provides SUMMIT with the capability of performing 3D nonlinear toroidal gyrokinetic computations of ion turbulence in real DIII-D geometry. PG3EQ/NC uses local, field line following, quasi-ballooning coordinates and direct interface with DIII-D equilibrium data via the EFIT and ONETWO codes. In addition, Holger Saint John's PLOTEQ code is used to determine the (r,z) position of each flux surface. The thus initialized SUMMIT computations have been carried out for shot /118561 at times 01450 and 02050 at many of the 51 flux surfaces from the core to the edge. Linear SUMMIT results will be compared to available data from calculations with the GKS code for the same discharges. Nonlinear SUMMIT results will also be compared with scattering measurements of turbulence, as well as with accessible measurements of fluctuation amplitudes and spectra from other diagnostics.

  2. Real geometry gyrokinetic PIC computations of ion turbulence in advanced tokamak discharges with SUMMIT/PG3EQ_/NC

    NASA Astrophysics Data System (ADS)

    Leboeuf, Jean-Noel; Decyk, Viktor; Rhodes, Terry; Dimits, Andris; Shumaker, Dan

    2006-04-01

    The PG3EQ_/NC module within the SUMMIT Gyrokinetic PIC FORTRAN90 Framework makes possible 3D nonlinear toroidal computations of ion turbulence in the real geometry of DIII-D discharges. This is accomplished with the use of local, field line following, quasi-ballooning coordinates and through a direct interface with DIII-D equilibrium data via the EFIT and ONETWO codes, as well as Holger Saint John's PLOTEQ code for the (R, Z) position of each flux surface. The effect of real geometry is being elucidated with CYCLONE shot 81499 by comparing results from PGEQ_/NC to those of its circular counterpart. The PG3EQ_/NC module is also being used to model ion channel turbulence in advanced tokamak discharges 118561 and 120327. Linear results will be compared to growth rate calculations with the GKS code. Nonlinear results will also be compared with scattering measurements of turbulence, as well as with accessible measurements of fluctuation amplitudes and spectra from other diagnostics.

  3. Origin of the Ion Foreshock in a Quasi-perpendicular Curved Collisionless Shock: Particles Trajectory Analysis in 2D PIC Simulations

    NASA Astrophysics Data System (ADS)

    Savoini, P.; Lembege, B.

    2015-12-01

    The ion foreshock located upstream of the Earth's shock wave is populated with ions having interacted with the shock, and then, reflected back with an high energy gain. Spacecrafts have clearly established the existence of two distinct populations in the quasi-perpendicular shock region (i.e. for 45° ≤ ΘBn ≤ 90°, where ΘBn is the angle between the shock normal and the upstream magnetic field) : (i) field-aligned ion beams or « FAB » characterized by a gyrotropic distribution, and (ii) gyro-phase bunched ions or « GPB » characterized by a NON gyrotropic distribution. One of the important unresolved problem is the exact origin of the particles contributing to these two populations. To our knowledge, it was the first time that full-particle simulations have been performed including self-consistently the shock front curvature and nonstationarity, and the time-of-flight effects. Our analysis evidences that these two backstreaming populations may be reflected by the front itself and can be differentiated both in terms of interaction time and trajectory within the shock front. In particular, simulations evidence that "GPB" population is characterized by a short interaction time (ΔTinter = 1 to 2 τci) while the "FAB" population corresponds to a much larger time range (from 1 τci to 10 τci), where tci is the upstream ion gyroperiod. Present individual ion trajectories evidence that "FAB" population shows a strong perpendicular drift at the shock front (i.e. strong dependence of the pitch angle to the perpendicular velocity) whereas the "GPB" population shows no perpendicular drift (i.e. its pitch angle is mainly driven by the parallel velocity). Such differences explain why the "FAB" population loses their gyro-phase coherency and become gyrotropic which is not the case for the "GPB". This important result was not expected and greatly simplifies the question of their origin.

  4. Multiresolution image representation using combined 2-D and 1-D directional filter banks.

    PubMed

    Tanaka, Yuichi; Ikehara, Masaaki; Nguyen, Truong Q

    2009-02-01

    In this paper, effective multiresolution image representations using a combination of 2-D filter bank (FB) and directional wavelet transform (WT) are presented. The proposed methods yield simple implementation and low computation costs compared to previous 1-D and 2-D FB combinations or adaptive directional WT methods. Furthermore, they are nonredundant transforms and realize quad-tree like multiresolution representations. In applications on nonlinear approximation, image coding, and denoising, the proposed filter banks show visual quality improvements and have higher PSNR than the conventional separable WT or the contourlet.

  5. 2-D simulation of a waveguide free electron laser having a helical undulator

    SciTech Connect

    Kim, S.K.; Lee, B.C.; Jeong, Y.U.

    1995-12-31

    We have developed a 2-D simulation code for the calculation of output power from an FEL oscillator having a helical undulator and a cylindrical waveguide. In the simulation, the current and the energy of the electron beam is 2 A and 400 keV, respectively. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. The gain per pass is 10 and the output power is calculated to be higher than 10 kW The results of the 2-D simulation are compared with those of 1-D simulation.

  6. 2D Quantum Mechanical Study of Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  7. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  8. The genus Dromanthomorphus Pic, 1921 (Coleoptera, Cleroidea: Malachiidae) in South-East Asia.

    PubMed

    Tshernyshev, Sergei E

    2016-07-22

    South-East Asian species of the genus Dromanthomorphus Pic, 1921 and several species provisionally attributed to Hadrocnemus Kraatz, 1895 are studied, and their taxonomic position is specified. Three new species are described from the Philippines: D. subflabellatus Tshernyshev, sp. n., D. restrictus Tshernyshev, sp. n. and D. subtilis Tshernyshev, sp. n. Seven species are transferred from Hadrocnemus to Dromanthomorphus, D. apoensis (Wittmer, 1999) comb. n., D. blaisei (Pic, 1926) comb. n., D. chiangensis (Wittmer, 1999) comb. n., D. depressicornis (Pic, 1919) comb. n., D. gravieri (Pic, 1923) comb. n., D. javanus (Wittmer, 1989) comb. n. and D. tonkineus (Pic, 1919) comb. n. Three species are transferred from Dromanthomorphus to Oculapalochrus Tshernyshev, 2015, O. ranuensis Wittmer 1990 comb. n., O. saigonensis (Pic, 1951) comb. n. and O. suttoni Wittmer, 1995 comb. n., and two species from Dromanthomorphus to Mimapalochrus Tshernyshev, 2015, M. cingalensis (Champion, 1921) comb. n. and M. dolokensis Wittmer, 1999 comb. n. Illustrations of male external appearance, metathoracic appendage, urites and genitalia, and distribution maps are provided. A determination key to all species of Dromanthomorphus from South-East Asia is also proposed.

  9. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-02-01

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model.

  10. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters

    PubMed Central

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-01-01

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model. PMID:28181514

  11. Crystal Structure of Human Cytochrome P450 2D6 with Prinomastat Bound*

    PubMed Central

    Wang, An; Savas, Uzen; Hsu, Mei-Hui; Stout, C. David; Johnson, Eric F.

    2012-01-01

    Human cytochrome P450 2D6 contributes to the metabolism of >15% of drugs used in clinical practice. This study determined the structure of P450 2D6 complexed with a substrate and potent inhibitor, prinomastat, to 2.85 Å resolution by x-ray crystallography. Prinomastat binding is well defined by electron density maps with its pyridyl nitrogen bound to the heme iron. The structure of ligand-bound P450 2D6 differs significantly from the ligand-free structure reported for the P450 2D6 Met-374 variant (Protein Data Bank code 2F9Q). Superposition of the structures reveals significant differences for β sheet 1, helices A, F, F′, G″, G, and H as well as the helix B-C loop. The structure of the ligand complex exhibits a closed active site cavity that conforms closely to the shape of prinomastat. The closure of the open cavity seen for the 2F9Q structure reflects a change in the direction and pitch of helix F and introduction of a turn at Gly-218, which is followed by a well defined helix F′ that was not observed in the 2F9Q structure. These differences reflect considerable structural flexibility that is likely to contribute to the catalytic versatility of P450 2D6, and this new structure provides an alternative model for in silico studies of substrate interactions with P450 2D6. PMID:22308038

  12. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters.

    PubMed

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-02-09

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model.

  13. Persistence Measures for 2d Soap Froth

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Ruskin, H. J.; Zhu, B.

    Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.

  14. SEM signal emulation for 2D patterns

    NASA Astrophysics Data System (ADS)

    Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya

    2016-03-01

    The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.

  15. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  16. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  17. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  18. Beta Pic-like Circumstellar Gas Disk Around 2 And

    NASA Technical Reports Server (NTRS)

    Cheng, Patricia

    2003-01-01

    This grant was awarded to support the data analysis and publication of results from our project entitled P Pic-like Circumstellar Gas Disk Around 2 And . We proposed to obtain FUSE observations of 2 And and study the characteristics and origin of its circumstellar gas. We observed 2 Andromedae with FUSE on 3-4 July 2001 in 11 exposures with a total exposure time of 21,289 seconds through the LWRS aperture. Our data were calibrated with Version 1.8.7 of the CALFUSE pipeline processing software. We corrected the wavelength scale for the heliocentric velocity error in this version of the CALFUSE software. The relative accuracy of the calibrated wavelength scale is +/- 9 km/s . We produced a co-added spectrum in the LiF 1B and LiF 2A channels (covering the 1100 to 1180 A region) by cross-correlating the 11 individual exposures and doing an exposure-time weighted average flux. The final co-added spectra have a signal-to-noise ratio in the stellar continuum near 1150 A of about 20. To obtain an absolute wavelength calibration, we cross-correlated our observed spectra with a model spectrum to obtain the best fit for the photospheric C I lines. Because the photospheric lines are very broad, this yields an absolute accuracy for the wavelength scale of approx.+/- 15 km/s. We then rebinned 5 original pixels to yield the optimal sampling of .033 A for each new pixel, because the calibrated spectra oversample the spectral resolution for FUSE+LWRS (R = 20,000 +/- 2,000).

  19. 1D PIC-DSMC simulations of breakdown in microscale gaps

    NASA Astrophysics Data System (ADS)

    Moore, Chris H.; Hopkins, Matthew M.; Crozier, Paul S.; Boerner, Jeremiah J.; Musson, Lawrence C.; Hooper, Russell W.; Bettencourt, Matthew T.

    2012-11-01

    An explicit electrostatic particle-in-cell (PIC) code with complex boundary conditions and direct simulation Monte Carlo (DSMC) particle collisions is utilized to investigate one dimensional direct current breakdown between two electrodes separated by air at STP. The simulation model includes Auger neutralization and cold field electron emission from the cathode as well as electron-neutral elastic, ionization, and excitation interactions. The simulated breakdown voltages at various electrode gap sizes are compared to experimental data and the Paschen curve. It is found that cold field electron emission can explain the breakdown voltage deviation from the Paschen curve measured for small gaps. Breakdown in large gaps proceeds over multiple ion transit timescales as electrons created via Auger neutralization of ions at the cathode quickly stream across the gap, creating new ions which accelerate towards the cathode and release another "pulse" of electrons. If the resultant pulse of electrons is larger than the initial pulse, then this process can build up a significant quasi-neutral plasma in the gap and the voltage drop across the gap will occur primarily across the (thin) sheath. Breakdown is accelerated if the electric field at the cathode surface is large enough for significant cold field emission flux, which increases the plasma density and decreases the Debye length and thus the sheath size, further increasing the electric field and cold field emission flux from the cathode surface. Breakdown in air pressure gaps was found to be sensitive to the differential scattering cross section for electron-neutral interactions. Isotropic scattering of elastic collisions results in lower breakdown voltages at moderate gaps (several mean free paths) and higher breakdown voltages for large gap sizes compared to when more accurate forward-biased scattering distributions are used. The dependence of breakdown voltage on the scattering distribution is due to a competition

  20. Detection of Leptomeningeal Metastasis by Contrast-Enhanced 3D T1-SPACE: Comparison with 2D FLAIR and Contrast-Enhanced 2D T1-Weighted Images

    PubMed Central

    Gil, Bomi; Hwang, Eo-Jin; Lee, Song; Jang, Jinhee; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo

    2016-01-01

    Introduction To compare the diagnostic accuracy of contrast-enhanced 3D(dimensional) T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions (T1-SPACE), 2D fluid attenuated inversion recovery (FLAIR) images and 2D contrast-enhanced T1-weighted image in detection of leptomeningeal metastasis except for invasive procedures such as a CSF tapping. Materials and Methods Three groups of patients were included retrospectively for 9 months (from 2013-04-01 to 2013-12-31). Group 1 patients with positive malignant cells in CSF cytology (n = 22); group 2, stroke patients with steno-occlusion in ICA or MCA (n = 16); and group 3, patients with negative results on MRI, whose symptom were dizziness or headache (n = 25). A total of 63 sets of MR images are separately collected and randomly arranged: (1) CE 3D T1-SPACE; (2) 2D FLAIR; and (3) CE T1-GRE using a 3-Tesla MR system. A faculty neuroradiologist with 8-year-experience and another 2nd grade trainee in radiology reviewed each MR image- blinded by the results of CSF cytology and coded their observations as positives or negatives of leptomeningeal metastasis. The CSF cytology result was considered as a gold standard. Sensitivity and specificity of each MR images were calculated. Diagnostic accuracy was compared using a McNemar’s test. A Cohen's kappa analysis was performed to assess inter-observer agreements. Results Diagnostic accuracy was not different between 3D T1-SPACE and CSF cytology by both raters. However, the accuracy test of 2D FLAIR and 2D contrast-enhanced T1-weighted GRE was inconsistent by the two raters. The Kappa statistic results were 0.657 (3D T1-SPACE), 0.420 (2D FLAIR), and 0.160 (2D contrast-enhanced T1-weighted GRE). The 3D T1-SPACE images showed the highest inter-observer agreements between the raters. Conclusions Compared to 2D FLAIR and 2D contrast-enhanced T1-weighted GRE, contrast-enhanced 3D T1 SPACE showed a better detection rate of

  1. Evidence for polymorphism in the cytochrome P450 2D50 gene in horses.

    PubMed

    Corado, C R; McKemie, D S; Young, A; Knych, H K

    2016-06-01

    Metabolism is an essential factor in the clearance of many drugs and as such plays a major role in the establishment of dosage regimens and withdrawal times. CYP2D6, the human orthologue to equine CYP2D50, is a drug-metabolizing enzyme that is highly polymorphic in humans leading to widely differing levels of metabolic activity. As CYP2D6 is highly polymorphic, in this study it was hypothesized that the gene coding for the equine orthologue, CYP2D50, may also be prone to polymorphism. Blood samples were collected from 150 horses, the CYP2D50 gene was cloned and sequenced; and full-length sequences were analyzed for single nucleotide polymorphisms (SNPs), deletions, or insertions. Pharmacokinetic data were collected from a subset of horses following the administration of a single oral dose of tramadol and probit analysis used to calculate metabolic ratios. Prior to drug administration, the ability of recombinant CYP2D50 to metabolize tramadol to O-desmethyltramadol was confirmed. Sequencing of CYP2D50 identified 126 exonic SNPs, with 31 of those appearing in multiple horses. Oral administration of tramadol to a subset of these horses revealed variable metabolic ratios (tramadol: O-desmethyltramadol) in individual horses and separation into three metabolic groups. While a limited number of horses of primarily a single breed were studied, the variability in tramadol metabolism to O-desmethyltramadol between horses and preliminary evidence of what appears to be poor, extensive, and ultra-rapid metabolizers supports further study of the potential for genetic polymorphisms in the CYP2D50 gene in horses.

  2. 2D discrete Fourier transform on sliding windows.

    PubMed

    Park, Chun-Su

    2015-03-01

    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

  3. Stability of two-dimensional (2D) natural convection flows in air-filled differentially heated cavities: 2D/3D disturbances

    NASA Astrophysics Data System (ADS)

    Xin, Shihe; Le Quéré, Patrick

    2012-06-01

    Following our previous two-dimensional (2D) studies of flows in differentially heated cavities filled with air, we studied the stability of 2D natural convection flows in these cavities with respect to 3D periodic perturbations. The basis of the numerical methods is a time-stepping code using the Chebyshev spectral collocation method and the direct Uzawa method for velocity-pressure coupling. Newton's iteration, Arnoldi's method and the continuation method have been used in order to, respectively, compute the 2D steady-state base solution, estimate the leading eigenmodes of the Jacobian and perform linear stability analysis. Differentially heated air-filled cavities of aspect ratios from 1 to 7 were investigated. Neutral curves (Rayleigh number versus wave number) have been obtained. It turned out that only for aspect ratio 7, 3D stationary instability occurs at slightly higher Rayleigh numbers than the onset of 2D time-dependent flow and that for other aspect ratios 3D instability always takes place before 2D time-dependent flows. 3D unstable modes are stationary and anti-centro-symmetric. 3D nonlinear simulations revealed that the corresponding pitchfork bifurcations are supercritical and that 3D instability leads only to weak flow in the third direction. Further 3D computations are also performed at higher Rayleigh number in order to understand the effects of the weak 3D fluid motion on the onset of time-dependent flow. 3D flow structures are responsible for the onset of time-dependent flow for aspect ratios 1, 2 and 3, while for larger aspect ratios they do not alter the transition scenario, which was observed in the 2D cases and that vertical boundary layers become unstable to traveling waves.

  4. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  5. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  6. Numerical investigation of 3D effects on a 2D-dominated shocked mixing layer

    NASA Astrophysics Data System (ADS)

    Reese, Daniel; Weber, Christopher

    2016-11-01

    A nominally two-dimensional interface, unstable to the Rayleigh-Taylor or Richtmyer-Meshkov instability, will become three-dimensional at high Reynolds numbers due to the growth of background noise and 3D effects like vortex stretching. This three-dimensionality changes macroscopic features, such as the perturbation growth rate and mixing, as it enhances turbulent dissipation. In this study, a 2D perturbation with small-scale, 3D fluctuations is modeled using the hydrodynamics code Miranda. A Mach 1.95 shockwave accelerates a helium-over-SF6 interface, similar to the experiments of Motl et al. ["Experimental validation of a Richtmyer-Meshkov scaling law over large density ratio and shock strength ranges," Phys. Fluids 21(12), 126102 (2009)], to explore the regime where a 2D dominated flow will experience 3D effects. We report on the structure, growth, and mixing of the post-shocked interface in 2D and 3D.

  7. Gravitational Wave Signals from 2D and 3D Core Collapse Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Yakunin, Konstantin; Mezzacappa, Anthony; Marronetti, Pedro; Bruenn, Stephen; Hix, W. Raphael; Lentz, Eric J.; Messer, O. E. Bronson; Harris, J. Austin; Endeve, Eirik; Blondin, John

    2016-03-01

    We study two- and three-dimensional (2D and 3D) core-collapse supernovae (CCSN) using our first-principles CCSN simulations performed with the neutrino hydrodynamics code CHIMERA. The following physics is included: Newtonian hydrodynamics with a nuclear equation of state capable of describing matter in both NSE and non-NSE, MGFLD neutrino transport with realistic neutrino interactions, an effective GR gravitational potential, and a nuclear reaction network. Both our 2D and 3D models achieve explosion, which in turn enables us to determine their complete gravitational wave signals. In this talk, we present them, and we analyze the similarities and differences between the 2D and 3D signals.

  8. Evaluation of help model replacement codes

    SciTech Connect

    Whiteside, Tad; Hang, Thong; Flach, Gregory

    2009-07-01

    This work evaluates the computer codes that are proposed to be used to predict percolation of water through the closure-cap and into the waste containment zone at the Department of Energy closure sites. This work compares the currently used water-balance code (HELP) with newly developed computer codes that use unsaturated flow (Richards’ equation). It provides a literature review of the HELP model and the proposed codes, which result in two recommended codes for further evaluation: HYDRUS-2D3D and VADOSE/W. This further evaluation involved performing actual simulations on a simple model and comparing the results of those simulations to those obtained with the HELP code and the field data. From the results of this work, we conclude that the new codes perform nearly the same, although moving forward, we recommend HYDRUS-2D3D.

  9. A Novel 2-D OFDM-DS-CDMA Receiver with Frequency-Time Spreading

    NASA Astrophysics Data System (ADS)

    Chen, Joy Iong-Zong

    This paper presents a novel 2-D (2-dimension) receiver that adopts the reception scheme to promote OFDM-DS-CDMA (orthogonal frequency division multiplexing multi-carrier coded-division multiple-access) system performance. The system model includes spread coding and a system block diagram of the 2-D receiver shown graphically with 3-D (three dimensions) plots. The analytical calculation of system performance for an OFDM-DS-CDMA system combined with the proposed receiver equipment is investigated. To evaluate the results from the channel fading effect is considered over the correlated fading environments. The correlated-Nakagami-m statistical distribution is taken into account in the evaluation. The results show that the number of users, the number of subcarriers and the fading channel correlation generally affect OFDM-DS-CDMA systems. The system is also influenced by the Doppler shift and the signal propagation environment (fading parameter).

  10. Nonlinear soil-structure interaction calculations simulating the SIMQUAKE experiment using STEALTH 2D

    NASA Technical Reports Server (NTRS)

    Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.

    1980-01-01

    Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.

  11. 2-D Reflectometer Modeling for Optimizing the ITER Low-field Side Reflectometer System

    SciTech Connect

    Kramer, G.J.; Nazikian, R.; Valeo, E.J.; Budny, R.V.; Kessel, C.; Johnson, D.

    2005-09-02

    The response of a low-field side reflectometer system for ITER is simulated with a 2?D reflectometer code using a realistic plasma equilibrium. It is found that the reflected beam will often miss its launch point by as much as 40 cm and that a vertical array of receiving antennas is essential in order to observe a reflection on the low-field side of ITER.

  12. 2-D MHD numerical simulations of EML plasma armatures with ablation

    NASA Astrophysics Data System (ADS)

    Boynton, G. C.; Huerta, M. A.; Thio, Y. C.

    1993-01-01

    We use a 2-D) resistive MHD code to simulate an EML plasma armature. The energy equation includes Ohmic heating, radiation heat transport and the ideal gas equation of state, allowing for variable ionization using the Saha equations. We calculate rail ablation taking into account the flow of heat into the interior of the rails. Our simulations show the development of internal convective flows and secondary arcs. We use an explicit Flux Corrected Transport algorithm to advance all quantities in time.

  13. PIC simulations on the termination shock: Microstructure and electron acceleration

    NASA Astrophysics Data System (ADS)

    Matsukiyo, S.; Scholer, M.

    2013-05-01

    The ability of the termination shock as a particle accelerator is totally unknown. Voyager data and recent kinetic numerical simulations revealed that the compression ratio of the termination shock is rather low due to the presence of pickup ions, i.e., the termination shock appears to be a weak shock. Nevertheless, two Voyager spacecraft observed not only high energy ions called termination shock particles, which are non-thermal but less energetic compared to the so-called anomalous cosmic rays, but also high energy electrons. In this study we focus especially on microstructure of the termination shock and the associated electron acceleration process by performing one-dimensional full particle-in-cell (PIC) simulations for a variety of parameters. For typical solar wind parameters at the termination shock, a shock potential has no sharp ramp with the spatial scale of the order of electron inertial length which is suitable for the injection of anomalous cosmic ray acceleration. Solar wind ions are not so much heated, which is consistent with Voyager spacecraft data. If a shock angle is close to 90 deg., a shock is almost time stationary or weakly breathing when a relative pickup ion density is 30%, while it becomes non-stationary if the relative pickup ion density is 20%. When the shock angle becomes oblique, a self-reformation occurs due to the interaction of solar wind ions and whistler precursors. Here, the shock angle is defined as the angle between upstream magnetic field and shock normal. For the case with relatively low beta solar wind plasma (electron beta is 0.1 and solar wind ion temperature equals to electron temperature), modified two-stream instability (MTSI) gets excited in the extended foot sustained by reflected pickup ions, and both solar wind electrons and ions are heated. If the solar wind plasma temperature gets five times higher, on the other hand, the MTSI is weakened and the pre-heating of the solar wind plasma in the extended foot is

  14. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  15. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  16. Notes on Lycocerus kiontochananus (Pic, 1921) and description of two new species of Lycocerus Gorham from China (Coleoptera, Cantharidae).

    PubMed

    Yang, Yuxia; Yang, Xingke

    2014-03-11

    The Lycocerus kiontochananus species complex is revised; L. perroudi (Pic, 1937) stat. rev., originally in Cantharis, is resurrected from synonymy with L. kiontochananus (Pic, 1921); L. atropygidialis (Pic, 1937) stat. nov., originally in Cantharis, is upgraded from Cantharis perroudi var. atropygidialis Pic, 1937 and resurrected from synonymy with L. kiontochananus; L. kejvali Švihla, 2004 syn. nov. is considered as a junior synonym with L. kiontochananus. The male of L. perroudi and the female of L. jendeki Švihla, 2005 are described for the first time. Two new species are described under the names of L. metalliceps sp. nov. (China: Sichuan) and L. hainanus sp. nov. (China: Hainan).

  17. Pic, an autotransporter protein secreted by different pathogens in the Enterobacteriaceae family, is a potent mucus secretagogue.

    PubMed

    Navarro-Garcia, Fernando; Gutierrez-Jimenez, Javier; Garcia-Tovar, Carlos; Castro, Luis A; Salazar-Gonzalez, Hector; Cordova, Vanessa

    2010-10-01

    A hallmark of enteroaggregative Escherichia coli (EAEC) infection is a formation of biofilm, which comprises a mucus layer with immersed bacteria in the intestines of patients. While studying the mucinolytic activity of Pic in an in vivo system, rat ileal loops, we surprisingly found that EAEC induced hypersecretion of mucus, which was accompanied by an increase in the number of mucus-containing goblet cells. Interestingly, an isogenic pic mutant (EAEC Δpic) was unable to cause this mucus hypersecretion. Furthermore, purified Pic was also able to induce intestinal mucus hypersecretion, and this effect was abolished when Pic was heat denatured. Site-directed mutagenesis of the serine protease catalytic residue of Pic showed that, unlike the mucinolytic activity, secretagogue activity did not depend on this catalytic serine protease motif. Other pathogens harboring the pic gene, such as Shigella flexneri and uropathogenic E. coli (UPEC), also showed results similar to those for EAEC, and construction of isogenic pic mutants of S. flexneri and UPEC confirmed this secretagogue activity. Thus, Pic mucinase is responsible for one of the pathophysiologic features of the diarrhea mediated by EAEC and the mucoid diarrhea induced by S. flexneri.

  18. 2D-pattern matching image and video compression: theory, algorithms, and experiments.

    PubMed

    Alzina, Marc; Szpankowski, Wojciech; Grama, Ananth

    2002-01-01

    In this paper, we propose a lossy data compression framework based on an approximate two-dimensional (2D) pattern matching (2D-PMC) extension of the Lempel-Ziv (1977, 1978) lossless scheme. This framework forms the basis upon which higher level schemes relying on differential coding, frequency domain techniques, prediction, and other methods can be built. We apply our pattern matching framework to image and video compression and report on theoretical and experimental results. Theoretically, we show that the fixed database model used for video compression leads to suboptimal but computationally efficient performance. The compression ratio of this model is shown to tend to the generalized entropy. For image compression, we use a growing database model for which we provide an approximate analysis. The implementation of 2D-PMC is a challenging problem from the algorithmic point of view. We use a range of techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.5 Mbps for a baseline video compression scheme that does not use any prediction or interpolation. We also demonstrate that this asymmetric compression scheme is capable of extremely fast decompression making it particularly suitable for networked multimedia applications.

  19. Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, Michael

    2014-01-01

    Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.

  20. Percutaneous intragastric catheter (PIC) for administration of an unpalatable substance to large animals.

    PubMed

    Oleszczuk, Agnieszka; Spannbauer, Michael M; Bluher, Matthias; Ott, Rudolf; Pietsch, Uta-Carolin; Schneider, Katja; Madaj-Sterba, Petra; Furll, Manfred; Hauss, Johann P; Schön, Michael R

    2009-01-01

    We studied an easy and reliable technique for administration of an unpalatable substance to large animals. There were three groups of pigs: group I (n = 6) received 1 g ethanol/kg body weight per day orally with water for 24 days, group II (n = 6) received 2 g ethanol/kg orally with water for 24 days and 4 g ethanol/kg via percutaneous intragastric catheter (PIC) for the next 24 days, group III (n = 6) received 6 g ethanol/kg via PIC for 72 days. The catheter was placed after insufflation of the stomach using an orogastric tube. PIC was successfully placed in each pig. No complications occurred during placement. The total amount of the administrated dose was assimilated each time. PIC is a safe, effective, well tolerated, and precise method of administering ethanol that is inexpensive and easy to perform. Ethanol administration via PIC is a convenient and effective mean of exposing animals to high levels of alcohol on a long-term basis.

  1. FLAC/SPECFEM2D coupled numerical simulation of wavefields near excavation boundaries in underground mines

    NASA Astrophysics Data System (ADS)

    Wang, X.; Cai, M.

    2016-11-01

    A nonlinear velocity model that considers the influence of confinement and rock mass failure on wave velocity is developed. A numerical method, which couples FLAC and SPECFEM2D, is developed for ground motion modeling near excavation boundaries in underground mines. The motivation of developing the FLAC/SPECFEM2D coupled approach is to take merits of each code, such as the stress analysis capability in FLAC and the powerful wave propagation analysis capability in SPECFEM2D. Because stress redistribution and failure of the rock mass around an excavation are considered, realistic non-uniform velocity fields for the SPECFEM2D model can be obtained, and this is a notable feature of this study. Very large differences in wavefields and ground motion are observed between the results from the non-uniform and the uniform velocity models. If the non-uniform velocity model is used, the ground motion around a stope can be amplified up to five times larger than that given by the design scaling law. If a uniform velocity model is used, the amplification factor is only about three. Using the FLAC/SPECFEM2D coupled modeling approach, accurate velocity models can be constructed and this in turn will assist in predicting ground motions accurately around underground excavations.

  2. Ethical coding.

    PubMed

    Resnik, Barry I

    2009-01-01

    It is ethical, legal, and proper for a dermatologist to maximize income through proper coding of patient encounters and procedures. The overzealous physician can misinterpret reimbursement requirements or receive bad advice from other physicians and cross the line from aggressive coding to coding fraud. Several of the more common problem areas are discussed.

  3. Graph-Based Transform for 2D Piecewise Smooth Signals With Random Discontinuity Locations.

    PubMed

    Zhang, Dong; Liang, Jie

    2017-04-01

    The graph-based block transform recently emerged as an effective tool for compressing some special signals such as depth images in 3D videos. However, in existing methods, overheads are required to describe the graph of the block, from which the decoder has to calculate the transform via time-consuming eigendecomposition. To address these problems, in this paper, we aim to develop a single graph-based transform for a class of 2D piecewise smooth signals with similar discontinuity patterns. We first consider the deterministic case with a known discontinuity location in each row. We propose a 2D first-order autoregression (2D AR1) model and a 2D graph for this type of signals. We show that the closed-form expression of the inverse of a biased Laplacian matrix of the proposed 2D graph is exactly the covariance matrix of the proposed 2D AR1 model. Therefore, the optimal transform for the signal are the eigenvectors of the proposed graph Laplacian. Next, we show that similar results hold in the random case, where the locations of the discontinuities in different rows are randomly distributed within a confined region, and we derive the closed-form expression of the corresponding optimal 2D graph Laplacian. The theory developed in this paper can be used to design both pre-computed transforms and signal-dependent transforms with low complexities. Finally, depth image coding experiments demonstrate that our methods can achieve similar performance to the state-of-the-art method, but our complexity is much lower.

  4. Fast Acceleration of 2D Wave Propagation Simulations Using Modern Computational Accelerators

    PubMed Central

    Wang, Wei; Xu, Lifan; Cavazos, John; Huang, Howie H.; Kay, Matthew

    2014-01-01

    Recent developments in modern computational accelerators like Graphics Processing Units (GPUs) and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC) coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least faster than the sequential implementation and faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other computational models of wave propagation in

  5. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    NASA Astrophysics Data System (ADS)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  6. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics.

    PubMed

    Potter, Brittney M J; Xie, Lisa H; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T; Bandara Herath, H M T; Dhammika Nanayakkara, N P; Tekwani, Babu L; Walker, Larry A; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Marcsisin, Sean R

    2015-04-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.

  7. Saltwell PIC Skid Programmable Logic Controller (PLC) Software Configuration Management Plan

    SciTech Connect

    KOCH, M.R.

    1999-11-16

    This document provides the procedures and guidelines necessary for computer software configuration management activities during the operation and maintenance phases of the Saltwell PIC Skids as required by LMH-PRO-309, Rev. 0, Computer Software Quality Assurance, Section 2.6, Software Configuration Management. The software configuration management plan (SCMP) integrates technical and administrative controls to establish and maintain technical consistency among requirements, physical configuration, and documentation for the Saltwell PIC Skid Programmable Logic Controller (PLC) software during the Hanford application, operations and maintenance. This SCMP establishes the Saltwell PIC Skid PLC Software Baseline, status changes to that baseline, and ensures that software meets design and operational requirements and is tested in accordance with their design basis.

  8. picA, a novel plant-inducible locus on the Agrobacterium tumefaciens chromosome.

    PubMed

    Rong, L; Karcher, S J; O'Neal, K; Hawes, M C; Yerkes, C D; Jayaswal, R K; Hallberg, C A; Gelvin, S B

    1990-10-01

    We used the transposon Mu dI1681 to identify genes on the Agrobacterium tumefaciens chromosome that are inducible by extracts from carrot roots. One such locus (picA, for plant inducible chromosomal), harbored by A. tumefaciens At156, was inducible 10- to 50-fold by these extracts. Mutation of picA had no detectable effect upon bacterial growth or virulence under laboratory assay conditions. However, A. tumefaciens cells harboring a mutated picA locus aggregated into long "ropes" when incubated with pea root tip cells. Such aggregation was not displayed by the parental strain A. tumefaciens A136. A preliminary characterization of the inducing compound in the carrot root extract suggests that the active substance is an acidic polysaccharide that is most likely derived from the pectic portion of the plant cell wall.

  9. picA, a novel plant-inducible locus on the Agrobacterium tumefaciens chromosome.

    PubMed Central

    Rong, L; Karcher, S J; O'Neal, K; Hawes, M C; Yerkes, C D; Jayaswal, R K; Hallberg, C A; Gelvin, S B

    1990-01-01

    We used the transposon Mu dI1681 to identify genes on the Agrobacterium tumefaciens chromosome that are inducible by extracts from carrot roots. One such locus (picA, for plant inducible chromosomal), harbored by A. tumefaciens At156, was inducible 10- to 50-fold by these extracts. Mutation of picA had no detectable effect upon bacterial growth or virulence under laboratory assay conditions. However, A. tumefaciens cells harboring a mutated picA locus aggregated into long "ropes" when incubated with pea root tip cells. Such aggregation was not displayed by the parental strain A. tumefaciens A136. A preliminary characterization of the inducing compound in the carrot root extract suggests that the active substance is an acidic polysaccharide that is most likely derived from the pectic portion of the plant cell wall. Images PMID:2170328

  10. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  11. The chloroplast permease PIC1 regulates plant growth and development by directing homeostasis and transport of iron.

    PubMed

    Duy, Daniela; Stübe, Roland; Wanner, Gerhard; Philippar, Katrin

    2011-04-01

    The membrane-spanning protein PIC1 (for permease in chloroplasts 1) in Arabidopsis (Arabidopsis thaliana) was previously described to mediate iron transport across the inner envelope membrane of chloroplasts. The albino phenotype of pic1 knockout mutants was reminiscent of iron-deficiency symptoms and characterized by severely impaired plastid development and plant growth. In addition, plants lacking PIC1 showed a striking increase in chloroplast ferritin clusters, which function in protection from oxidative stress by sequestering highly reactive free iron in their spherical protein shell. In contrast, PIC1-overexpressing lines (PIC1ox) in this study rather resembled ferritin loss-of-function plants. PIC1ox plants suffered from oxidative stress and leaf chlorosis, most likely originating from iron overload in chloroplasts. Later during growth, plants were characterized by reduced biomass as well as severely defective flower and seed development. As a result of PIC1 protein increase in the inner envelope membrane of plastids, flower tissue showed elevated levels of iron, while the content of other transition metals (copper, zinc, manganese) remained unchanged. Seeds, however, specifically revealed iron deficiency, suggesting that PIC1 overexpression sequestered iron in flower plastids, thereby becoming unavailable for seed iron loading. In addition, expression of genes associated with metal transport and homeostasis as well as photosynthesis was deregulated in PIC1ox plants. Thus, PIC1 function in plastid iron transport is closely linked to ferritin and plastid iron homeostasis. In consequence, PIC1 is crucial for balancing plant iron metabolism in general, thereby regulating plant growth and in particular fruit development.

  12. Moment preserving adaptive particle weights using octree velocity distributions for PIC simulations

    SciTech Connect

    Martin, Robert Scott; Cambier, Jean-Luc

    2012-11-27

    The ratio of computational to physical particles is of primary concern to statistical particle based simulations such as DSMC and PIC. An adaptive computational particle weight algorithm is presented that conserves mass, momentum, and energy. This algorithm is then enhanced with an octree adaptive mesh in velocity space to mitigate artificial thermalization. The new octree merge is compared to a merge that randomly selects merge partners for a bi-Maxwellian velocity distribution. Results for crossing beams in a fixed potential well along with an electrostatic PIC version with and without MCC collisions based ionizing breakdown show the advantages of the merge algorithm to both fixed particle weights and randomly selected merge partners.

  13. High temperature decreases the PIC / POC ratio and increases phosphorus requirements in Coccolithus pelagicus (Haptophyta)

    NASA Astrophysics Data System (ADS)

    Gerecht, A. C.; Šupraha, L.; Edvardsen, B.; Probert, I.; Henderiks, J.

    2014-07-01

    Rising ocean temperatures will likely increase stratification of the water column and reduce nutrient input into the photic zone. This will increase the likelihood of nutrient limitation in marine microalgae, leading to changes in the abundance and composition of phytoplankton communities, which in turn will affect global biogeochemical cycles. Calcifying algae, such as coccolithophores, influence the carbon cycle by fixing CO2 into particulate organic carbon through photosynthesis (POC production) and into particulate inorganic carbon through calcification (PIC production). As calcification produces a net release of CO2, the ratio of PIC to POC production determines whether coccolithophores act as a source (high PIC / POC) or a sink (low PIC / POC) of atmospheric CO2. We studied the effect of phosphorus (P-) limitation and high temperature on the physiology and the PIC / POC ratio of two subspecies of Coccolithus pelagicus. This large and heavily calcified species is a major contributor to calcite export from the photic zone into deep-sea reservoirs. Phosphorus limitation did not influence exponential growth rates in either subspecies, but P-limited cells had significantly lower cellular P-content. One of the subspecies was subjected to a 5 °C temperature increase from 10 °C to 15 °C, which did not affect exponential growth rates either, but nearly doubled cellular P-content under both high and low phosphate availability. This temperature increase reduced the PIC / POC ratio by 40-60%, whereas the PIC / POC ratio did not differ between P-limited and nutrient-replete cultures when the subspecies were grown near their respective isolation temperature. Both P-limitation and elevated temperature significantly increased coccolith malformations. Our results suggest that a temperature increase may intensify P-limitation due to a higher P-requirement to maintain growth and POC production rates, possibly reducing abundances in a warmer ocean. Under such a scenario C

  14. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  15. Installed Transonic 2D Nozzle Nacelle Boattail Drag Study

    NASA Technical Reports Server (NTRS)

    Malone, Michael B.; Peavey, Charles C.

    1999-01-01

    The Transonic Nozzle Boattail Drag Study was initiated in 1995 to develop an understanding of how external nozzle transonic aerodynamics effect airplane performance and how strongly those effects are dependent on nozzle configuration (2D vs. axisymmetric). MDC analyzed the axisymmetric nozzle. Boeing subcontracted Northrop-Grumman to analyze the 2D nozzle. AU participants analyzed the AGARD nozzle as a check-out and validation case. Once the codes were checked out and the gridding resolution necessary for modeling the separated flow in this region determined, the analysis moved to the installed wing/body/nacelle/diverter cases. The boat tail drag validation case was the AGARD B.4 rectangular nozzle. This test case offered both test data and previous CFD analyses for comparison. Results were obtained for test cases B.4.1 (M=0.6) and B.4.2 (M=0.938) and compared very well with the experimental data. Once the validation was complete a CFD grid was constructed for the full Ref. H configuration (wing/body/nacelle/diverter) using a combination of patched and overlapped (Chimera) grids. This was done to ensure that the grid topologies and density would be adequate for the full model. The use of overlapped grids allowed the same grids from the full configuration model to be used for the wing/body alone cases, thus eliminating the risk of grid differences affecting the determination of the installation effects. Once the full configuration model was run and deemed to be suitable the nacelle/diverter grids were removed and the wing/body analysis performed. Reference H wing/body results were completed for M=0.9 (a=0.0, 2.0, 4.0, 6.0 and 8.0), M=1.1 (a=4.0 and 6.0) and M=2.4 (a=0.0, 2.0, 4.4, 6.0 and 8.0). Comparisons of the M=0.9 and M=2.4 cases were made with available wind tunnel data and overall comparisons were good. The axi-inlet/2D nozzle nacelle was analyzed isolated. The isolated nacelle data coupled with the wing/body result enabled the interference effects of the

  16. Computer program BL2D for solving two-dimensional and axisymmetric boundary layers

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1995-01-01

    This report presents the formulation, validation, and user's manual for the computer program BL2D. The program is a fourth-order-accurate solution scheme for solving two-dimensional or axisymmetric boundary layers in speed regimes that range from low subsonic to hypersonic Mach numbers. A basic implementation of the transition zone and turbulence modeling is also included. The code is a result of many improvements made to the program VGBLP, which is described in NASA TM-83207 (February 1982), and can effectively supersede it. The code BL2D is designed to be modular, user-friendly, and portable to any machine with a standard fortran77 compiler. The report contains the new formulation adopted and the details of its implementation. Five validation cases are presented. A detailed user's manual with the input format description and instructions for running the code is included. Adequate information is presented in the report to enable the user to modify or customize the code for specific applications.

  17. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  18. Resistivity inversion in 2-D anisotropic media: numerical experiments

    NASA Astrophysics Data System (ADS)

    Wiese, Timothy; Greenhalgh, Stewart; Zhou, Bing; Greenhalgh, Mark; Marescot, Laurent

    2015-04-01

    Many rocks and layered/fractured sequences have a clearly expressed electrical anisotropy although it is rare in practice to incorporate anisotropy into resistivity inversion. In this contribution, we present a series of 2.5-D synthetic inversion experiments for various electrode configurations and 2-D anisotropic models. We examine and compare the image reconstructions obtained using the correct anisotropic inversion code with those obtained using the false but widely used isotropic assumption. Superior reconstruction in terms of reduced data misfit, true anomaly shape and position, and anisotropic background parameters were obtained when the correct anisotropic assumption was employed for medium to high coefficients of anisotropy. However, for low coefficient values the isotropic assumption produced better-quality results. When an erroneous isotropic inversion is performed on medium to high level anisotropic data, the images are dominated by patterns of banded artefacts and high data misfits. Various pole-pole, pole-dipole and dipole-dipole data sets were investigated and evaluated for the accuracy of the inversion result. The eigenvalue spectra of the pseudo-Hessian matrix and the formal resolution matrix were also computed to determine the information content and goodness of the results. We also present a data selection strategy based on high sensitivity measurements which drastically reduces the number of data to be inverted but still produces comparable results to that of the comprehensive data set. Inversion was carried out using transversely isotropic model parameters described in two different co-ordinate frames for the conductivity tensor, namely Cartesian versus natural or eigenframe. The Cartesian frame provided a more stable inversion product. This can be simply explained from inspection of the eigenspectra of the pseudo-Hessian matrix for the two model descriptions.

  19. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-07

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs.

  20. The Serine Protease Pic From Enteroaggregative Escherichia coli Mediates Immune Evasion by the Direct Cleavage of Complement Proteins.

    PubMed

    Abreu, Afonso G; Fraga, Tatiana R; Granados Martínez, Adriana P; Kondo, Marcia Y; Juliano, Maria A; Juliano, Luiz; Navarro-Garcia, Fernando; Isaac, Lourdes; Barbosa, Angela S; Elias, Waldir P

    2015-07-01

    Enteroaggregative and uropathogenic Escherichia coli, Shigella flexneri 2a, and the hybrid enteroaggregative/Shiga toxin-producing E. coli strain (O104:H4) are important pathogens responsible for intestinal and urinary tract infections, as well as sepsis and hemolytic uremic syndrome. They have in common the production of a serine protease called Pic. Several biological roles for Pic have been described, including protection of E. coli DH5α from complement-mediated killing. Hereby we showed that Pic significantly reduces complement activation by all 3 pathways. Pic cleaves purified C3/C3b and other proteins from the classic and lectin pathways, such as C4 and C2. Cleavage fragments of C3, C4, and C2 were also observed with HB101(pPic1) culture supernatants, and C3 cleavage sites were mapped by fluorescence resonance energy transfer peptides. Experiments using human serum as a source of complement proteins confirmed Pic proteolytic activity on these proteins. Furthermore, Pic works synergistically with the human complement regulators factor I and factor H, promoting inactivation of C3b. In the presence of both regulators, further degradation of C3 α' chain was observed. Therefore, Pic may contribute to immune evasion of E. coli and S. flexneri, favoring invasiveness and increasing the severity of the disorders caused by these pathogens.

  1. Evaluation of the Parent-Implemented Communication Strategies (PiCS) Project Using the Multiattribute Utility (MAU) Approach

    ERIC Educational Resources Information Center

    Stoner, Julia B.; Meadan, Hedda; Angell, Maureen E.; Daczewitz, Marcus

    2012-01-01

    We conducted a multiattribute utility (MAU) evaluation to assess the Parent-Implemented Communication Strategies (PiCS) project which was funded by the Institute of Education Sciences (IES). In the PiCS project parents of young children with developmental disabilities are trained and coached in their homes on naturalistic and visual teaching…

  2. Evaluating CoLiDeS + Pic: The Role of Relevance of Pictures in User Navigation Behaviour

    ERIC Educational Resources Information Center

    Karanam, Saraschandra; van Oostendorp, Herre; Indurkhya, Bipin

    2012-01-01

    CoLiDeS + Pic is a cognitive model of web-navigation that incorporates semantic information from pictures into CoLiDeS. In our earlier research, we have demonstrated that by incorporating semantic information from pictures, CoLiDeS + Pic can predict the hyperlinks on the shortest path more frequently, and also with greater information scent,…

  3. Inhibition of Myeloperoxidase Activity in Cystic Fibrosis Sputum by Peptide Inhibitor of Complement C1 (PIC1)

    PubMed Central

    Hair, Pamela S.; Sass, Laura A.; Krishna, Neel K.

    2017-01-01

    Myeloperoxidase is the major peroxidase enzyme in neutrophil granules and implicated in contributing to inflammatory lung damage in cystic fibrosis. Free myeloperoxidase is present in cystic fibrosis lung fluid and generates hypochlorous acid. Here we report a new inhibitor of myeloperoxidase activity, Peptide Inhibitor of Complement C1 (PIC1). Using TMB as the oxidizing substrate, PIC1 inhibited myeloperoxidase activity in cystic fibrosis sputum soluble fractions by an average of a 3.4-fold decrease (P = 0.02). PIC1 also dose-dependently inhibited myeloperoxidase activity in a neutrophil lysate or purified myeloperoxidase by up to 28-fold (P < 0.001). PIC1 inhibited myeloperoxidase activity similarly, on a molar basis, as the specific myeloperoxidase inhibitor 4-Aminobenzoic acid hydrazide (ABAH) for various oxidizing substrates. PIC1 was able to protect the heme ring of myeloperoxidase from destruction by NaOCl, assayed by spectral analysis. PIC1 incubated with oxidized TMB reversed the oxidation state of TMB, as measured by absorbance at 450 nm, with a 20-fold reduction in oxidized TMB (P = 0.02). This result was consistent with an antioxidant mechanism for PIC1. In summary, PIC1 inhibits the peroxidase activity of myeloperoxidase in CF sputum likely via an antioxidant mechanism. PMID:28135312

  4. 50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: Coonstripe 964 Humpy 963 Northern (pink) 961 Sidestripe 962 Spot 965 Snails 890 Urchin, green sea 893 Urchin, red sea 892 ...) 142 Rockfish, blue (GOA) 167 Rockfish, dark 173 Sardine, Pacific (pilchard) 170 Sea cucumber, red...

  5. 50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... genus Careproctus) 218 Sturgeon, general 680 Wrymouths 211 Shellfish Abalone, northern (pinto) 860 Clams Arctic surf 812 Cockle 820 Eastern softshell 842 Pacific geoduck 815 Pacific littleneck 840 Pacific...

  6. 50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... genus Careproctus) 218 Sturgeon, general 680 Wrymouths 211 Shellfish Abalone, northern (pinto) 860 Clams Arctic surf 812 Cockle 820 Eastern softshell 842 Pacific geoduck 815 Pacific littleneck 840 Pacific...

  7. 50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... genus Careproctus) 218 Sturgeon, general 680 Wrymouths 211 Shellfish Abalone, northern (pinto) 860 Clams Arctic surf 812 Cockle 820 Eastern softshell 842 Pacific geoduck 815 Pacific littleneck 840 Pacific...

  8. 50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... genus Careproctus) 218 Sturgeon, general 680 Wrymouths 211 Shellfish Abalone, northern (pinto) 860 Clams Arctic surf 812 Cockle 820 Eastern softshell 842 Pacific geoduck 815 Pacific littleneck 840 Pacific...

  9. Quantitative comparisons between experimentally measured 2-D carbon radiation and Monte Carlo impurity (MCI) code simulations

    SciTech Connect

    Evans, T.E.; Leonard, A.W.; West, W.P.; Finkenthal, D.F.; Fenstermacher, M.E.; Porter, G.D.

    1998-08-01

    Experimentally measured carbon line emissions and total radiated power distributions from the DIII-D divertor and Scrape-Off Layer (SOL) are compared to those calculated with the Monte Carlo Impurity (MCI) model. A UEDGE background plasma is used in MCI with the Roth and Garcia-Rosales (RG-R) chemical sputtering model and/or one of six physical sputtering models. While results from these simulations do not reproduce all of the features seen in the experimentally measured radiation patterns, the total radiated power calculated in MCI is in relatively good agreement with that measured by the DIII-D bolometric system when the Smith78 physical sputtering model is coupled to RG-R chemical sputtering in an unaltered UEDGE plasma. Alternatively, MCI simulations done with UEDGE background ion temperatures along the divertor target plates adjusted to better match those measured in the experiment resulted in three physical sputtering models which when coupled to the RG-R model gave a total radiated power that was within 10% of measured value.

  10. An investigation of DTNS2D for use as an incompressible turbulence modelling test-bed

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.

    1992-01-01

    This paper documents an investigation of a two dimensional, incompressible Navier-Stokes solver for use as a test-bed for turbulence modelling. DTNS2D is the code under consideration for use at the Center for Modelling of Turbulence and Transition (CMOTT). This code was created by Gorski at the David Taylor Research Center and incorporates the pseudo compressibility method. Two laminar benchmark flows are used to measure the performance and implementation of the method. The classical solution of the Blasius boundary layer is used for validating the flat plate flow, while experimental data is incorporated in the validation of backward facing step flow. Velocity profiles, convergence histories, and reattachment lengths are used to quantify these calculations. The organization and adaptability of the code are also examined in light of the role as a numerical test-bed.

  11. 2-D Modeling of the Variability of the Solar Interior for Climate Studies

    NASA Astrophysics Data System (ADS)

    Sofia, S.; Li, L. H.; Spada, F.; Ventura, P.

    2012-07-01

    To establish the possible influence of solar variability on climate, it is necessary to understand the luminosity changes induced by a variable dynamo magnetic field. To accomplish this, we have developed a 2D code of the structure and evolution of the solar interior (based on the 1D YREC code), that includes rotation, magnetic fields of arbitrary configuration, and turbulence, that can be run on very short time scales (down to 1 year), and that represents all global parameters (R, L, Teff) with a relative accuracy of 1 part per million, or better. This paper discusses the motivation for this work, the structure and the physical components of the code, and its application to interpret the results of the SODISM experiment on the PICARD satellite, and of the balloon-borne Solar Disk Sextant (SDS) experiment.

  12. Sharing code.

    PubMed

    Kubilius, Jonas

    2014-01-01

    Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing.

  13. First Results of PIC Modeling of Kinetic Alfven Wave Dissipation

    NASA Technical Reports Server (NTRS)

    Chulaki, Anna; Hesse, Michael; Zenitani, Seiji

    2007-01-01

    We present first results of an investigation of the kinetic damping of Alfven wave turbulence. The methodology is based on a fully electromagnetic, three-dimensional, particle in cell code. The calculation is initialized by an Alfven wave spectrum. Subsequently, a cascade develops, and damping by coupling to both ions and electrons is observed. We discuss results of these calculations, and present first estimates of damping rates and of the effects of energy transfer on ion and electron distributions. The results pertain to solar wind heating and acceleration.

  14. Subsystem codes with spatially local generators

    SciTech Connect

    Bravyi, Sergey

    2011-01-15

    We study subsystem codes whose gauge group has local generators in two-dimensional (2D) geometry. It is shown that there exists a family of such codes defined on lattices of size LxL with the number of logical qubits k and the minimum distance d both proportional to L. The gauge group of these codes involves only two-qubit generators of type XX and ZZ coupling nearest-neighbor qubits (and some auxiliary one-qubit generators). Our proof is not constructive as it relies on a certain version of the Gilbert-Varshamov bound for classical codes. Along the way, we introduce and study properties of generalized Bacon-Shor codes that might be of independent interest. Secondly, we prove that any 2D subsystem [n,k,d] code with spatially local generators obeys upper bounds kd=O(n) and d{sup 2}=O(n). The analogous upper bound proved recently for 2D stabilizer codes is kd{sup 2}=O(n). Our results thus demonstrate that subsystem codes can be more powerful than stabilizer codes under the spatial locality constraint.

  15. Subsystem codes with spatially local generators

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey

    2011-01-01

    We study subsystem codes whose gauge group has local generators in two-dimensional (2D) geometry. It is shown that there exists a family of such codes defined on lattices of size L×L with the number of logical qubits k and the minimum distance d both proportional to L. The gauge group of these codes involves only two-qubit generators of type XX and ZZ coupling nearest-neighbor qubits (and some auxiliary one-qubit generators). Our proof is not constructive as it relies on a certain version of the Gilbert-Varshamov bound for classical codes. Along the way, we introduce and study properties of generalized Bacon-Shor codes that might be of independent interest. Secondly, we prove that any 2D subsystem [n,k,d] code with spatially local generators obeys upper bounds kd=O(n) and d2=O(n). The analogous upper bound proved recently for 2D stabilizer codes is kd2=O(n). Our results thus demonstrate that subsystem codes can be more powerful than stabilizer codes under the spatial locality constraint.

  16. Circular photogalvanic effect caused by the transitions between edge and 2D states in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Magarill, L. I.; Entin, M. V.

    2016-12-01

    The electron absorption and the edge photocurrent of a 2D topological insulator are studied for transitions between edge states to 2D states. The circular polarized light is found to produce the edge photocurrent, the direction of which is determined by light polarization and edge orientation. It is shown that the edge-state current is found to exceed the 2D current owing to the topological protection of the edge states.

  17. Improvement of the 2D/1D Method in MPACT Using the Sub-Plane Scheme

    SciTech Connect

    Graham, Aaron M; Collins, Benjamin S; Downar, Thomas

    2017-01-01

    Oak Ridge National Laboratory and the University of Michigan are jointly developing the MPACTcode to be the primary neutron transport code for the Virtual Environment for Reactor Applications (VERA). To solve the transport equation, MPACT uses the 2D/1D method, which decomposes the problem into a stack of 2D planes that are then coupled with a 1D axial calculation. MPACT uses the Method of Characteristics for the 2D transport calculations and P3 for the 1D axial calculations, then accelerates the solution using the 3D Coarse mesh Finite Dierence (CMFD) method. Increasing the number of 2D MOC planes will increase the accuracy of the alculation, but will increase the computational burden of the calculations and can cause slow convergence or instability. To prevent these problems while maintaining accuracy, the sub-plane scheme has been implemented in MPACT. This method sub-divides the MOC planes into sub-planes, refining the 1D P3 and 3D CMFD calculations without increasing the number of 2D MOC planes. To test the sub-plane scheme, three of the VERA Progression Problems were selected: Problem 3, a single assembly problem; Problem 4, a 3x3 assembly problem with control rods and pyrex burnable poisons; and Problem 5, a quarter core problem. These three problems demonstrated that the sub-plane scheme can accurately produce intra-plane axial flux profiles that preserve the accuracy of the fine mesh solution. The eigenvalue dierences are negligibly small, and dierences in 3D power distributions are less than 0.1% for realistic axial meshes. Furthermore, the convergence behavior with the sub-plane scheme compares favorably with the conventional 2D/1D method, and the computational expense is decreased for all calculations due to the reduction in expensive MOC calculations.

  18. Validation Test Report for the NRL Ocean Surface Flux (NFLUX) Quality Control and 2D Variational Analysis System

    DTIC Science & Technology

    2014-06-11

    Test Report for the NRL Ocean Surface Flux (NFLUX) Quality Control and 2D Variational Analysis System Jackie May Neil VaN de Voorde QinetiQ North...OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Validation Test ...1 2.0 VALIDATION TEST DESIGN

  19. Transcriptional activation of the SH2D2A gene is dependent on a cyclic adenosine 5'-monophosphate-responsive element in the proximal SH2D2A promoter.

    PubMed

    Dai, Ke-Zheng; Johansen, Finn-Eirik; Kolltveit, Kristin Melkevik; Aasheim, Hans-Christian; Dembic, Zlatko; Vartdal, Frode; Spurkland, Anne

    2004-05-15

    The SH2D2A gene, encoding the T cell-specific adapter protein (TSAd), is rapidly induced in activated T cells. In this study we investigate the regulation of the SH2D2A gene in Jurkat T cells and in primary T cells. Reporter gene assays demonstrated that the proximal 1-kb SH2D2A promoter was constitutively active in Jurkat TAg T cells and, to a lesser extent, in K562 myeloid cells, Reh B cells, and 293T fibroblast cells. The minimal SH2D2A promoter was located between position -236 and -93 bp from the first coding ATG, and transcriptional activity in primary T cells depended on a cAMP response element (CRE) centered around position -117. Nuclear extracts from Jurkat TAg cells and activated primary T cells contained binding activity to this CRE, as observed in an EMSA. Consistent with this observation, we found that a cAMP analog was a very potent inducer of SH2D2A mRNA expression in primary T cells as measured by real-time RT-PCR. Furthermore, activation of SH2D2A expression by CD3 stimulation required cAMP-dependent protein kinase activity. Thus, transcriptional regulation of the SH2D2A gene in activated T cells is critically dependent on a CRE in the proximal promoter region.

  20. Energy Efficiency of D2D Multi-User Cooperation.

    PubMed

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-03-28

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  1. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  2. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  3. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  4. At-sea Validation of a Birefringence Method for Determining PIC Concentrations in Seawater

    NASA Astrophysics Data System (ADS)

    Guay, C. K.; Bishop, J. K.

    2001-12-01

    We have previously described a spectrophotometer-based method for making optical measurements of particulate inorganic carbon (PIC) in seawater. This method, based on the extreme birefringence of calcium carbonate (CaCO3) relative to other major components of marine particulate matter, was developed in the laboratory using sample suspensions prepared from calcareous marine sediment material and varying amounts of non-birefringent diatomaceous earth. Here we report the first successful measurements of birefringence signals in natural seawater samples, which were obtained during a recent cruise to the North Pacific off the California coast. The spectrophotometer-based method was used onboard to measure PIC in samples collected from Niskin bottle casts in a variety of environments (nearshore to open ocean, eutrophic to oligotrophic). These samples contained a diverse mixture of particles, including calcareous, siliceous and organic material. Birefringence signals clearly above the detection level were observed in several samples, with the strongest signals occurring in productive surface waters off Point Concepcion. The spectrophotometer-based method was validated against PIC concentrations determined by chemical analysis of particulate matter collected by filtration of the Niskin bottle samples and from large-volume (1000's of L) in situ filtration performed immediately after the Niskin casts. In addition, these data were compared with in situ birefringence measurements made using a prototype profiling PIC sensor deployed on the rosette during the Niskin casts.

  5. EXPERIMENTAL INVESTIGATION OF PIC FORMATION DURING THE INCINERATION OF RECOVERED CFC-11

    EPA Science Inventory

    The report gives results of an investigation of the formation of products of incomplete combustion (PICS) during "recovered" trichlorofluoromethane (CFC-11) incineration. Tests involved burning the recovered CFC-11 in a propane gas flame. combustion gas samples were taken and an...

  6. Tissue accumulation and urinary excretion of Cr in chromium picolinate (CrPic)-supplemented lambs.

    PubMed

    Dallago, Bruno Stéfano Lima; Lima, Bárbara Alcântara Ferreira; Braz, Shélida Vasconcelos; Mustafa, Vanessa da Silva; McManus, Concepta; Paim, Tiago do Prado; Campeche, Aline; Gomes, Edgard Franco; Louvandini, Helder

    2016-05-01

    Chromium (Cr) concentrations in liver, kidney, spleen, heart, lymph node, skeletal muscle, bone, testis and urine of lambs were measured to trace the biodistribution and bioaccumulation of Cr after oral supplementation with chromium picolinate (CrPic). Twenty-four Santa Inês lambs were treated with four different concentrations of CrPic: placebo, 0.250, 0.375 and 0.500 mg of CrPic/animal/day for 84 days. The basal diet consisted of Panicum maximum cv Massai hay and concentrate. Cr concentrations were measured by ICP-MS measuring (52)Cr as collected mass. There was a positive linear relationship between dose administered and the accumulation of Cr in the heart, lungs and testis. Urinary excretion of Cr occurred in a time and dose-dependent manner, so the longer or more dietary Cr provided, the greater excretion of the element. As some non-carcass components (such as lungs or heart) are added to bone and visceral meal to feed animals, there is a risk of bioaccumulation and biomagnification due to Cr offered as CrPic in the diet.

  7. Validation of the Offending-Related Attitudes Questionnaire of CRIME-PICS II Scale (Chinese)

    ERIC Educational Resources Information Center

    Chui, Wing Hong; Wu, Joseph; Kwok, Yan Yuen; Liu, Liu

    2017-01-01

    This study examined the factor structure, reliability, and validity of the first part of the Chinese version of the CRIME-PICS II Scale, a self-administrated instrument assessing offending-related attitudes. Data were collected from three samples: male Hong Kong young offenders, female Mainland Chinese prisoners, and Hong Kong college students.…

  8. PIC--A Self-Paced Practical Communications Program for Technical/Vocational Students.

    ERIC Educational Resources Information Center

    Blicq, Ronald S.

    The Practical Industrial Communication (PIC) program is a form of individualized instruction that teaches communication skills to students in vocational/technical curricula at Red River Community College, Winnipeg, Manitoba. A placement test determines whether students begin with all or part of a ten-hour writing skills review or proceed directly…

  9. A study on the apterous genus Clytomelegena Pic, 1928 (Coleoptera, Disteniidae).

    PubMed

    Lin, Meiying; Murzin, Sergey V

    2012-01-01

    The genus Noeconia Murzin, 1988 is synonymized with Clytomelegena Pic, 1928. Clytomelegena kabakovi (Murzin, 1988), comb. n. is newly recorded from China (Guangxi Prov.). And Laos (Attapeu Prov.) is a new locality of this genus. Both sexes are apterous. Photographs and genitalic descriptions of Clytomelegena kabakovi are presented for the first time.

  10. Synopsis of Falsocis Pic (Coleoptera, Ciidae), new species, new records and an identification key.

    PubMed

    Lopes-Andrade, Cristiano; Lawrence, John F

    2011-01-01

    Three new species of Falsocis Pic are described: Falsocis aquiloniussp. n. from Panamá, Costa Rica and Colombia, Falsocis egregiussp. n. from a single locality in northern Brazil and Falsocis occultussp. n. from two localities in southeastern and southern Brazil. New records, comparative notes and an identification key for male and female specimens of Falsocis species are also provided.

  11. PIC Profiles for Learning-Disabled and Behavior-Disordered Children.

    ERIC Educational Resources Information Center

    Goh, David S.; And Others

    1984-01-01

    Compared the performance of learning-disabled and behavior-disordered children (N=60) on the Personality Inventory for Children (PIC). Results showed that learning-disabled and behavior-disordered children could be differentiated clearly on subtests that comprise the cognitive development and conduct disorder factors. However, less differentiation…

  12. The Plant Information Center (PIC): A Web-Based Learning Center for Botanical Study.

    ERIC Educational Resources Information Center

    Greenberg, J.; Daniel, E.; Massey, J.; White, P.

    The Plant Information Center (PIC) is a project funded under the Institute of Museum and Library Studies that aims to provide global access to both primary and secondary botanical resources via the World Wide Web. Central to the project is the development and employment of a series of applications that facilitate resource discovery, interactive…

  13. The Whole PIC Catalog: Organization, Planning and Service Delivery Options under JTPA.

    ERIC Educational Resources Information Center

    National Alliance of Business, Inc., Washington, DC.

    This handbook illustrates and discusses organizational options for the delivery of employment and training services within service delivery areas (SDAs) mandated by the Job Training Partnership Act (JTPA) of 1982. Addressed primarily to members of private industry councils (PICs), representatives of local governments, and employment and training…

  14. Regulation of ligands for the NKG2D activating receptor

    PubMed Central

    Raulet, David H.; Gasser, Stephan; Gowen, Benjamin G.; Deng, Weiwen; Jung, Heiyoun

    2014-01-01

    NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection. PMID:23298206

  15. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  16. New generation transistor technologies enabled by 2D crystals

    NASA Astrophysics Data System (ADS)

    Jena, D.

    2013-05-01

    The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.

  17. Inspection design using 2D phased array, TFM and cueMAP software

    SciTech Connect

    McGilp, Ailidh; Dziewierz, Jerzy; Lardner, Tim; Mackersie, John; Gachagan, Anthony

    2014-02-18

    A simulation suite, cueMAP, has been developed to facilitate the design of inspection processes and sparse 2D array configurations. At the core of cueMAP is a Total Focusing Method (TFM) imaging algorithm that enables computer assisted design of ultrasonic inspection scenarios, including the design of bespoke array configurations to match the inspection criteria. This in-house developed TFM code allows for interactive evaluation of image quality indicators of ultrasonic imaging performance when utilizing a 2D phased array working in FMC/TFM mode. The cueMAP software uses a series of TFM images to build a map of resolution, contrast and sensitivity of imaging performance of a simulated reflector, swept across the inspection volume. The software takes into account probe properties, wedge or water standoff, and effects of specimen curvature. In the validation process of this new software package, two 2D arrays have been evaluated on 304n stainless steel samples, typical of the primary circuit in nuclear plants. Thick section samples have been inspected using a 1MHz 2D matrix array. Due to the processing efficiency of the software, the data collected from these array configurations has been used to investigate the influence sub-aperture operation on inspection performance.

  18. Higher-Order Neural Networks Applied to 2D and 3D Object Recognition

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1994-01-01

    A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.

  19. Inspection design using 2D phased array, TFM and cueMAP software

    NASA Astrophysics Data System (ADS)

    McGilp, Ailidh; Dziewierz, Jerzy; Lardner, Tim; Mackersie, John; Gachagan, Anthony

    2014-02-01

    A simulation suite, cueMAP, has been developed to facilitate the design of inspection processes and sparse 2D array configurations. At the core of cueMAP is a Total Focusing Method (TFM) imaging algorithm that enables computer assisted design of ultrasonic inspection scenarios, including the design of bespoke array configurations to match the inspection criteria. This in-house developed TFM code allows for interactive evaluation of image quality indicators of ultrasonic imaging performance when utilizing a 2D phased array working in FMC/TFM mode. The cueMAP software uses a series of TFM images to build a map of resolution, contrast and sensitivity of imaging performance of a simulated reflector, swept across the inspection volume. The software takes into account probe properties, wedge or water standoff, and effects of specimen curvature. In the validation process of this new software package, two 2D arrays have been evaluated on 304n stainless steel samples, typical of the primary circuit in nuclear plants. Thick section samples have been inspected using a 1MHz 2D matrix array. Due to the processing efficiency of the software, the data collected from these array configurations has been used to investigate the influence sub-aperture operation on inspection performance.

  20. Turbulent Convection: Is 2D a good proxy of 3D?

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.

    2000-01-01

    Several authors have recently carried out 2D simulations of turbulent convection for both solar and massive stars. Fitting the 2D results with the MLT, they obtain that alpha(sub MLT) greater than 1 specifically, 1.4 less than alpha(sub MLT) less than 1.8. The authors further suggest that this methodology could be used to calibrate the MLT used in stellar evolutionary codes. We suggest the opposite viewpoint: the 2D results show that MLT is internally inconsistent because the resulting alpha(sub MLT) greater than 1 violates the MLT basic assumption that alpha(sub MLT) less than 1. When the 2D results are fitted with the CM model, alpha(sub CMT) less than 1, in accord with the basic tenet of the model. On the other hand, since both MLT and CM are local models, they should be replaced by the next generation of non-local, time dependent turbulence models which we discuss in some detail.

  1. A simple 2-D inundation model for incorporating flood damage in urban drainage planning

    NASA Astrophysics Data System (ADS)

    Pathirana, A.; Tsegaye, S.; Gersonius, B.; Vairavamoorthy, K.

    2011-08-01

    An urban inundation model was developed and coupled with 1-D drainage network model (EPA-SWMM5). The objective was to achieve a 1-D/2-D coupled model that is simple and fast enough to be consistently used in planning stages of urban drainage projects. The 2-D inundation model is based on a non-standard simplification of the shallow water equation, lays between diffusion-wave and full dynamic models. Simplifications were made in the process representation and numerical solving mechanisms and a depth scaled Manning coefficient was introduced to achieve stability in the cell wetting-drying process. The 2-D model is coupled with SWMM for simulation of both network flow and surcharge induced inundation. The coupling is archived by mass transfer from the network system to the 2-D system. A damage calculation block is integrated within the model code for assessing flood damage costs in optimal planning of urban drainage networks. The model is stable in dealing with complex flow conditions, and cell wetting/drying processes, as demonstrated by a number of idealised experiments. The model application is demonstrated by applying to a case study in Brazil.

  2. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice.

    PubMed

    Pan, Xian; Jeong, Hyunyoung

    2015-07-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼ 50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter.

  3. 3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Teunissen, Jannis; Ebert, Ute

    2016-08-01

    We investigate how photoionization, electron avalanches and space charge affect the inception of nanosecond pulsed discharges. Simulations are performed with a 3D PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive mesh refinement for the field solver. This model, whose source code is available online, is described in the first part of the paper. Then we present simulation results in a needle-to-plane geometry, using different nitrogen/oxygen mixtures at atmospheric pressure. In these mixtures non-local photoionization is important for the discharge growth. The typical length scale for this process depends on the oxygen concentration. With 0.2% oxygen the discharges grow quite irregularly, due to the limited supply of free electrons around them. With 2% or more oxygen the development is much smoother. An almost spherical ionized region can form around the electrode tip, which increases in size with the electrode voltage. Eventually this inception cloud destabilizes into streamer channels. In our simulations, discharge velocities are almost independent of the oxygen concentration. We discuss the physical mechanisms behind these phenomena and compare our simulations with experimental observations.

  4. Robust coding over noisy overcomplete channels.

    PubMed

    Doi, Eizaburo; Balcan, Doru C; Lewicki, Michael S

    2007-02-01

    We address the problem of robust coding in which the signal information should be preserved in spite of intrinsic noise in the representation. We present a theoretical analysis for 1- and 2-D cases and characterize the optimal linear encoder and decoder in the mean-squared error sense. Our analysis allows for an arbitrary number of coding units, thus including both under- and over-complete representations, and provides insights into optimal coding strategies. In particular, we show how the form of the code adapts to the number of coding units and to different data and noise conditions in order to achieve robustness. We also present numerical solutions of robust coding for high-dimensional image data, demonstrating that these codes are substantially more robust than other linear image coding methods such as PCA, ICA, and wavelets.

  5. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-04

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  6. Applications of the ARGUS code in accelerator physics

    NASA Astrophysics Data System (ADS)

    Petillo, J. J.; Mankofsky, A.; Krueger, W. A.; Kostas, C.; Mondelli, A. A.; Drobot, A. T.

    1993-12-01

    ARGUS is a three-dimensional, electromagnetic, particle-in-cell (PIC) simulation code that is being distributed to U.S. accelerator laboratories in collaboration between Science Applications International Corporation (SAICTM) and the Los Alamos Accelerator Code Group (LAACG). It uses a modular architecture that allows multiple physics modules to share common utilities for grid and structure input, memory management, disk I/O, and diagnostics. Physics modules are in place for electrostatic and electromagnetic field solutions, frequency-domain (eigenvalue) solutions, time-dependent PIC, and steady-state PIC simulations. All of the modules are implemented with a domain-decomposition architecture that allows large problems to be broken up into pieces that fit in core and that facilitates the adaptation of ARGUS for parallel processing. ARGUS operates on either Cray or workstation platforms, and a MOTIF-based user interface is available for X-windows terminals. Applications of ARGUS in accelerator physics and design are described in this paper.

  7. A Neural-FEM tool for the 2-D magnetic hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.

    2016-04-01

    The aim of this work is to present a new tool for the analysis of magnetic field problems considering 2-D magnetic hysteresis. In particular, this tool makes use of the Finite Element Method to solve the magnetic field problem in real device, and fruitfully exploits a neural network (NN) for the modeling of 2-D magnetic hysteresis of materials. The NS has as input the magnetic inductions components B at the k-th simulation step and returns as output the corresponding values of the magnetic field H corresponding to the input pattern. It is trained by vector measurements performed on the magnetic material to be modeled. This input/output scheme is directly implemented in a FEM code employing the magnetic potential vector A formulation. Validations through measurements on a real device have been performed.

  8. Spatially Resolved Synthetic Spectra from 2D Simulations of Stainless Steel Wire Array Implosions

    SciTech Connect

    Clark, R. W.; Giuliani, J. L.; Thornhill, J. W.; Chong, Y. K.; Dasgupta, A.; Davis, J.

    2009-01-21

    A 2D radiation MHD model has been developed to investigate stainless steel wire array implosion experiments on the Z and refurbished Z machines. This model incorporates within the Mach2 MHD code a self-consistent calculation of the non-LTE kinetics and ray trace based radiation transport. Such a method is necessary in order to account for opacity effects in conjunction with ionization kinetics of K-shell emitting plasmas. Here the model is used to investigate multi-dimensional effects of stainless steel wire implosions. In particular, we are developing techniques to produce non-LTE, axially and/or radially resolved synthetic spectra based upon snapshots of our 2D simulations. Comparisons between experimental spectra and these synthetic spectra will allow us to better determine the state of the experimental pinches.

  9. CYP2D6 poor metabolizer status might be associated with better response to risperidone treatment.

    PubMed

    Almoguera, Berta; Riveiro-Alvarez, Rosa; Lopez-Castroman, Jorge; Dorado, Pedro; Vaquero-Lorenzo, Concepción; Fernandez-Piqueras, José; Llerena, Adrián; Abad-Santos, Francisco; Baca-García, Enrique; Dal-Ré, Rafael; Ayuso, Carmen

    2013-11-01

    The variability in the antipsychotic response is, to some extent, genetically determined. Several studies have attempted to establish a role for genetic variation in genes coding pharmacokinetic and pharmacodynamic targets, but to date, no definite genetic predictive marker has been identified. We aimed to explore the putative role of 19 genetic variants and risperidone clinical improvement in 76 White schizophrenic inpatients, measured as change in Positive and Negative Syndrome Scale (PANSS). CYP2D6 poor metabolism was significantly associated with greater clinical improvement in total PANSS and a trend was also found for MDR1 3435C>T to higher total PANSS scores in 3435T carriers. This study suggests the importance that genetic variability on pharmacokinetic factors may have in risperidone response and gives evidence for the need for further investigation in order to establish the actual predictive value and clinical utility that CYP2D6 genotyping might have in risperidone therapy management.

  10. Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model

    NASA Astrophysics Data System (ADS)

    Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry

    2015-05-01

    Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

  11. 2D/3D Program work summary report, [January 1988--December 1992

    SciTech Connect

    Damerell, P. S.; Simons, J. W.

    1993-06-01

    The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants.

  12. Upgrade of PARC2D to include real gas effects. [computer program for flowfield surrounding aeroassist flight experiment

    NASA Technical Reports Server (NTRS)

    Saladino, Anthony; Praharaj, Sarat C.; Collins, Frank G.; Seaford, C. Mark

    1990-01-01

    This paper presents a description of the changes and additions to the perfect gas PARC2D code to include chemical equilibrium effects, resulting in a code called PARCEQ2D. The work developed out of a need to have the capability of more accurately representing the flowfield surrounding the aeroassist flight experiment (AFE) vehicle. Use is made of the partition function of statistical mechanics in the evaluation of the thermochemical properties. This approach will allow the PARC code to be extended to thermal nonequilibrium when this task is undertaken in the future. The transport properties follow from formulae from the kinetic theory of gases. Results are presented for a two-dimensional AFE that compare perfect gas and real gas solutions at flight conditions, showing vast differences between the two cases.

  13. A simple 2-D inundation model for incorporating flood damage in urban drainage planning

    NASA Astrophysics Data System (ADS)

    Pathirana, A.; Tsegaye, S.; Gersonius, B.; Vairavamoorthy, K.

    2008-11-01

    In this paper a new inundation model code is developed and coupled with Storm Water Management Model, SWMM, to relate spatial information associated with urban drainage systems as criteria for planning of storm water drainage networks. The prime objective is to achive a model code that is simple and fast enough to be consistently be used in planning stages of urban drainage projects. The formulation for the two-dimensional (2-D) surface flow model algorithms is based on the Navier Stokes equation in two dimensions. An Alternating Direction Implicit (ADI) finite difference numerical scheme is applied to solve the governing equations. This numerical scheme is used to express the partial differential equations with time steps split into two halves. The model algorithm is written using C++ computer programming language. This 2-D surface flow model is then coupled with SWMM for simulation of both pipe flow component and surcharge induced inundation in urban areas. In addition, a damage calculation block is integrated within the inundation model code. The coupled model is shown to be capable of dealing with various flow conditions, as well as being able to simulate wetting and drying processes that will occur as the flood flows over an urban area. It has been applied under idealized and semi-hypothetical cases to determine detailed inundation zones, depths and velocities due to surcharged water on overland surface.

  14. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  15. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  16. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    PubMed

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Sharing code

    PubMed Central

    Kubilius, Jonas

    2014-01-01

    Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing. PMID:25165519

  18. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  19. NKG2D Receptor and Its Ligands in Host Defense.

    PubMed

    Lanier, Lewis L

    2015-06-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.

  20. 2-D Versus 3-D Magnetotelluric Data Interpretation

    NASA Astrophysics Data System (ADS)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  1. Peroxydisulfate activation by [RuII(tpy)(pic)(H2O)]+. Kinetic, mechanistic and anti-microbial activity studies.

    PubMed

    Chatterjee, Debabrata; Banerjee, Priyabrata; Bose, Jagadeesh C K; Mukhopadhyay, Sudit

    2012-03-07

    The oxidation of [Ru(II)(tpy)(pic)H(2)O](+) (tpy = 2,2',6',2''-terpyridine; pic(-) = picolinate) by peroxidisulfate (S(2)O(8)(2-)) as precursor oxidant has been investigated kinetically by UV-VIS, IR and EPR spectroscopy. The overall oxidation of Ru(II)- to Ru(IV)-species takes place in a consecutive manner involving oxidation of [Ru(II)(tpy)(pic)H(2)O](+) to [Ru(III)(tpy)(pic)(OH)](+), and its further oxidation of to the ultimate product [Ru(IV)(tpy)(pic)(O)](+) complex. The time course of the reaction was followed as a function of [S(2)O(8)(2-)], ionic strength (I) and temperature. Kinetic data and activation parameters are interpreted in terms of an outer-sphere electron transfer mechanism. Anti-microbial activity of Ru(II)(tpy)(pic)H(2)O](+) complex by inhibiting the growth of Escherichia coli DH5α in presence of peroxydisulfate has been explored, and the results of the biological studies have been discussed in terms of the [Ru(IV)(tpy)(pic)(O)](+) mediated cleavage of chromosomal DNA of the bacteria.

  2. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-07

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  3. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  4. DSD - A Particle Simulation Code for Modeling Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Joyce, Glenn; Lampe, Martin; Ganguli, Gurudas

    1999-11-01

    The NRL Dynamically Shielded Dust code (DSD) is a particle simulation code developed to study the behavior of strongly coupled, dusty plasmas. The model includes the electrostatic wake effects of plasma ions flowing through plasma electrons, collisions of dust and plasma particles with each other and with neutrals. The simulation model contains the short-range strong forces of a shielded Coulomb system, and the long-range forces that are caused by the wake. It also includes other effects of a flowing plasma such as drag forces. In order to model strongly coupled dust in plasmas, we make use of the techniques of molecular dynamics simulation, PIC simulation, and the "particle-particle/particle-mesh" (P3M) technique of Hockney and Eastwood. We also make use of the dressed test particle representation of Rostoker and Rosenbluth. Many of the techniques we use in the model are common to all PIC plasma simulation codes. The unique properties of the code follow from the accurate representation of both the short-range aspects of the interaction between dust grains, and long-range forces mediated by the complete plasma dielectric response. If the streaming velocity is zero, the potential used in the model reduces to the Debye-Huckel potential, and the simulation is identical to molecular dynamics models of the Yukawa potential. The plasma appears only implicitly through the plasma dispersion function, so it is not necessary in the code to resolve the fast plasma time scales.

  5. UNIPIC code for simulations of high power microwave devices

    SciTech Connect

    Wang Jianguo; Zhang Dianhui; Wang Yue; Qiao Hailiang; Li Xiaoze; Liu Chunliang; Li Yongdong; Wang Hongguang

    2009-03-15

    In this paper, UNIPIC code, a new member in the family of fully electromagnetic particle-in-cell (PIC) codes for simulations of high power microwave (HPM) generation, is introduced. In the UNIPIC code, the electromagnetic fields are updated using the second-order, finite-difference time-domain (FDTD) method, and the particles are moved using the relativistic Newton-Lorentz force equation. The convolutional perfectly matched layer method is used to truncate the open boundaries of HPM devices. To model curved surfaces and avoid the time step reduction in the conformal-path FDTD method, CP weakly conditional-stable FDTD (WCS FDTD) method which combines the WCS FDTD and CP-FDTD methods, is implemented. UNIPIC is two-and-a-half dimensional, is written in the object-oriented C++ language, and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the geometric structures of the simulated HPM devices, or input the old structures created before. Numerical experiments on some typical HPM devices by using the UNIPIC code are given. The results are compared to those obtained from some well-known PIC codes, which agree well with each other.

  6. One dimensional PIC simulation of relativistic Buneman instability

    NASA Astrophysics Data System (ADS)

    Rajawat, Roopendra Singh; Sengupta, Sudip

    2016-10-01

    Spatio-temporal evolution of the relativistic Buneman instability has been investigated in one dimension using an in-house developed particle-in-cell simulation code. Starting from the excitation of the instability, its evolution has been followed numerically till its quenching and beyond. The simulation results have been quantitatively compared with the fluid theory and are found to be in conformity with the well known fact that the maximum growth rate (γmax) reduces due to relativistic effects and varies with γ e 0 and m/M as γ m a x ˜ /√{ 3 } 2 √{ γ e 0 } ( /m 2 M ) 1 / 3 , where γ e 0 is the Lorentz factor associated with the initial electron drift velocity (v0) and (m/M) is the electron to ion mass ratio. Further it is observed that in contrast to the non-relativistic results [A. Hirose, Plasma Phys. 20, 481 (1978)] at the saturation point, the ratio of electrostatic field energy density ( ∑ k | E k | 2 / 8 π ) to initial drift kinetic energy density (W0) scales with γ e 0 as ˜ 1 / γe 0 2 . This novel result on the scaling of energy densities has been found to be in quantitative agreement with the scalings derived using fluid theory.

  7. Improved intra-species collision models for PIC simulations

    SciTech Connect

    Jones, M.E.; Lemons, D.S.; Winske, D.

    1998-07-01

    In recent years, the authors have investigated methods to improve the effectiveness of modeling collisional processes in particle-in-cell codes. Through the use of generalized collision models, plasma dynamics can be followed both in the regime of nearly collisionless plasmas as well as in the hydrodynamic limit of collisional plasmas. They have developed a collision-field method to treat both the case of collisions between unlike plasma species (inter-species collisions), through the use of a deterministic, grid-based force, and between particles of the same species (intra-species collisions), through the use of a Langevin equation. While the approach used for inter-species collisions is noise-free in that the collision experienced by a particle does not require any random numbers, such random numbers are used for intra-species collisions. This gives rise to a stochastic cooling effect inherent in the Langevin approach. In this paper, the authors concentrate on intra-species collisions and describe how the accuracy of the model can be improved by appropriate corrections to velocity and spatial moments.

  8. Collisional PIC Simulations of Particles in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Peter, William

    2003-10-01

    Because of the long range of Coloumb forces, collisions with distant particles in plasmas are more important than collisions with near neighbors. In addition, many problems in space physics and magnetic confinement include regions of weak magnetic field where the MHD approximation breaks down. A particle-in-cell code based on the quiet direct simulation Monte-Carlo method(B. J. Albright, W. Daughton, D. Lemons, D. Winske, and M. E. Jones, Physics of Plasmas) 9, 1898 (2002). is being developed to study collisional (e.g., ν ˜ Ω) particle motion in magnetic fields. Primary application is to energetic particle loss in the radiation belts(K. Papadopoulos, COSPAR Meeting, Houston, TX, Oct., 2002.) at a given energy and L-shell. Other applications include trapping in rotating field-reversed configurations(N. Rostoker and A. Qerushi, Physics of Plasmas) 9, 3057 (2002)., and electron behavior in magnetic traps(V. Gorgadze, T. Pasquini, J. S. Wurtele, and J. Fajans, Bull. Am. Phys. Soc.) 47, 127 (2002).. The use of the random time-step method(W. Peter, Bull. Am. Phys. Soc.) 47, 52 (2002). to decrease simulation times by 1-2 orders of magnitude is also being studied.

  9. Magnetic Reconnection Dynamics in the Presence of Low-energy Ion Component: PIC Simulations of Hidden Particle Population

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Y. V.; Divin, A. V.; Toledo Redondo, S.; Andre, M.; Vaivads, A.; Markidis, S.; Lapenta, G.

    2015-12-01

    Magnetospheric and astrophysical plasmas are rarely in the state of thermal equilibrium. Plasma distribution functions may contain beams, supra-thermal tails, multiple ion and electron populations which are not thermalized over long time scales due to the lack of collisions between particles. In particular, the equatorial region of the dayside Earth's magnetosphere is often populated by plasma containing hot and cold ion components of comparable densities [Andre and Cully, 2012], and such ion distribution alters properties of the magnetic reconnection regions at the magnetopause [Toledo-Redondo et. al., 2015]. Motivated by these recent findings and also by fact that this region is one of the targets of the recently launched MMS mission, we performed 2D PIC simulations of magnetic reconnection in collisionless plasma with hot and cold ion components. We used a standard Harris current sheet, to which a uniform cold ion background is added. We found that introduction of the cold component modifies the structure of reconnection diffusion region. Diffusion region displays three-scale structure, with the cold Ion Diffusion Region (cIDR) scale appearing in-between the Electron Diffusion Region (EDR) and Ion Diffusion Region (IDR) scales. Structure and strength of the Hall magnetic field depends weakly on cold ion temperature or density, and is rather controlled by the conditions (B, n) upstream the reconnection region. The cold ions are accelerated predominantly transverse to the magnetic field by the Hall electric fields inside the IDR, leading to a large ion pressure anisotropy, which is unstable to ion Weibel-type or mirror-type mode. On the opposite, acceleration of cold ions is mostly field-aligned at the reconnection jet fronts downstream the X-line, producing intense ion phase-space holes there. Despite comparable reconnection rates produced , we find that the overall evolution of reconnection in presence of cold ion population is more dynamic compared to the case

  10. 2D QSAR Study for Gemfibrozil Glucuronide as the Mechanism-based Inhibitor of CYP2C8

    PubMed Central

    Taxak, N.; Bharatam, P. V.

    2013-01-01

    Mechanism-based inhibition of cytochrome P450 involves the bioactivation of the drug to a reactive metabolite, which leads to cytochrome inhibition via various mechanisms. This is generally seen in the Phase I of drug metabolism. However, gemfibrozil (hypolipidemic drug) leads to mechanism-based inhibition after generating glucuronide conjugate (gemfibrozil acyl-β-glucuronide) in the Phase II metabolism reaction. The mechanism involves the covalent binding of the benzyl radical (generated from the oxidation of aromatic methyl group in conjugate) to the heme of CYP2C8. This article deals with the development of a 2D QSAR model based on the inhibitory potential of gemfibrozil, its analogues and corresponding glucuronide conjugates in inhibiting the CYP2C8-catalysed amodiaquine N-deethylation. The 2D QSAR model was developed using multiple linear regression analysis in Accelrys Discovery Studio 2.5 and helps in identifying the descriptors, which are actually contributing to the inhibitory potency of the molecules studied. The built model was further validated using leave one out method. The best quantitative structure activity relationship model was selected having a correlation coefficient (r) of 0.814 and cross-validated correlation coefficient (q2) of 0.799. 2D QSAR revealed the importance of volume descriptor (Mor15v), shape descriptor (SP09) and 3D matrix-based descriptor (SpMax_RG) in defining the activity for this series of molecules. It was observed that volume and 3D matrix-based descriptors were crucial in imparting higher potency to gemfibrozil glucuronide conjugate, as compared with other molecules. The results obtained from the present study may be useful in predicting the inhibitory potential (IC50 for CYP2C8 inhibition) of the glucuronide conjugates of new molecules and compare with the standard gemfibrozil acyl-β-glucuronide (in terms of pIC50 values) in early stages of drug discovery and development. PMID:24591743

  11. The Pic protease of enteroaggregative Escherichia coli promotes intestinal colonization and growth in the presence of mucin.

    PubMed

    Harrington, Susan M; Sheikh, Jalaluddin; Henderson, Ian R; Ruiz-Perez, Fernando; Cohen, Paul S; Nataro, James P

    2009-06-01

    Enteroaggregative Escherichia coli (EAEC) is increasingly being recognized as a cause of diarrheal disease in diverse populations. No small animal model is currently available to study this pathogen. We report here that conventional mice orally inoculated with prototype EAEC strain 042 generally became colonized, though the abundance of organisms cultured from their stool varied substantially among individual animals. In contrast, mice whose water contained 5 g/liter streptomycin consistently became colonized at high levels (ca. 10(8) CFU/g of stool). Neither conventional nor streptomycin-treated mice developed clinical signs or histopathologic abnormalities. Using specific mutants in competition with the wild-type strain, we evaluated the contribution of several putative EAEC virulence factors to colonization of streptomycin-treated mice. Our data suggest that the dispersin surface protein and Pic, a serine protease autotransporter secreted by EAEC and Shigella flexneri, promote colonization of the mouse. In contrast, we found no role for the aggregative adherence fimbriae, the transcriptional activator AggR, or the surface factor termed Air (enteroaggregative immunoglobulin repeat protein). To study Pic further, we constructed a single nucleotide mutation in strain 042 which altered only the Pic catalytic serine (strain 042PicS258A). Fractionation of the tissue at 24 h and 3 days demonstrated an approximate 3-log(10) difference between 042 and 042PicS258A in the lumen and mucus layer and adherent to tissue. Strains 042 and 042PicS258A adhered similarly to mouse tissue ex vivo. While no growth differences were observed in a continuous-flow anaerobic intestinal simulator system, the wild-type strain exhibited a growth advantage over 042PicS258A in a culture of cecal mucus and in cecal contents in vitro; this difference was manifest only after 6 h of growth. Moreover, enhanced growth of the wild type was observed in comparison with that of the mutant in minimal

  12. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  13. Phonon thermal conduction in novel 2D materials

    NASA Astrophysics Data System (ADS)

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-01

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  14. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  15. Phonon thermal conduction in novel 2D materials.

    PubMed

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-07

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  16. Exact Solution of Ising Model in 2d Shortcut Network

    NASA Astrophysics Data System (ADS)

    Shanker, O.

    We give the exact solution to the Ising model in the shortcut network in the 2D limit. The solution is found by mapping the model to the square lattice model with Brascamp and Kunz boundary conditions.

  17. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  18. Reconstruction-based 3D/2D image registration.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).

  19. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-09

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  20. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  1. Studying Zeolite Catalysts with a 2D Model System

    SciTech Connect

    Boscoboinik, Anibal

    2016-12-07

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  2. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  3. Penetration of tungsten-alloy rods into composite ceramic targets: Experiments and 2-D simulations

    NASA Astrophysics Data System (ADS)

    Rosenberg, Z.; Dekel, E.; Hohler, V.; Stilp, A. J.; Weber, K.

    1998-07-01

    A series of terminal ballistics experiments, with scaled tungsten-alloy penetrators, was performed on composite targets consisting of ceramic tiles glued to thick steel backing plates. Tiles of silicon-carbide, aluminum nitride, titanium-dibroide and boron-carbide were 20-80 mm thick, and impact velocity was 1.7 km/s. 2-D numerical simulations, using the PISCES code, were performed in order to simulate these shots. It is shown that a simplified version of the Johnson-Holmquist failure model can account for the penetration depths of the rods but is not enough to capture the effect of lateral release waves on these penetrations.

  4. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  5. Supported and Free-Standing 2D Semimetals

    DTIC Science & Technology

    2015-01-15

    of this effort on focusing on rare- earth arsenides (RE-A), although not a van der Waals 2D solid, nonetheless, exhibits substantial 2D quantum size...this effort on focusing on rare- earth arsenides (RE- A), although not a van der Waals 20 solid, nonetheless, exhibits substantial 20 quantum size...Brongersma and S.R. Bank, "Rare- earth monopnictide alloys for tunable, epitaxial metals" in preparation. iii. S. Rahimi, E. M. Krivoy, J. Lee, M. E

  6. Application of 2-D graphical representation of DNA sequence

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Tan, Mingshu; Ding, Kequan

    2005-10-01

    Recently, we proposed a 2-D graphical representation of DNA sequence [Bo Liao, A 2-D graphical representation of DNA sequence, Chem. Phys. Lett. 401 (2005) 196-199]. Based on this representation, we consider properties of mutations and compute the similarities among 11 mitochondrial sequences belonging to different species. The elements of the similarity matrix are used to construct phylogenic tree. Unlike most existing phylogeny construction methods, the proposed method does not require multiple alignment.

  7. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  8. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  9. Regulation of NKG2D ligand gene expression.

    PubMed

    Eagle, Robert A; Traherne, James A; Ashiru, Omodele; Wills, Mark R; Trowsdale, John

    2006-03-01

    The activating immunoreceptor NKG2D has seven known host ligands encoded by the MHC class I chain-related MIC and ULBP/RAET genes. Why there is such diversity of NKG2D ligands is not known but one hypothesis is that they are differentially expressed in different tissues in response to different stresses. To explore this, we compared expression patterns and promoters of NKG2D ligand genes. ULBP/RAET genes were transcribed independent of each other in a panel of cell lines. ULBP/RAET gene expression was upregulated on infection with human cytomegalovirus; however, a clinical strain, Toledo, induced expression more slowly than did a laboratory strain, AD169. ULBP4/RAET1E was not induced by infection with either strain. To investigate the mechanisms behind the similarities and differences in NKG2D ligand gene expression a comparative sequence analysis of NKG2D ligand gene putative promoter regions was conducted. Sequence alignments demonstrated that there was significant sequence diversity; however, one region of high similarity between most of the genes is evident. This region contains a number of potential transcription factor binding sites, including those involved in shock responses and sites for retinoic acid-induced factors. Promoters of some NKG2D ligand genes are polymorphic and several sequence alterations in these alleles abolished putative transcription factor binding.

  10. CYP2D6 variability in populations from Venezuela.

    PubMed

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  11. 2D microscopic model of graphene fracture properties

    NASA Astrophysics Data System (ADS)

    Hess, Peter

    2015-05-01

    An analytical two-dimensional (2D) microscopic fracture model based on Morse-type interaction is derived containing no adjustable parameter. From the 2D Young’s moduli and 2D intrinsic strengths of graphene measured by nanoindentation based on biaxial tension and calculated by density functional theory for uniaxial tension the widely unknown breaking force, line or edge energy, surface energy, fracture toughness, and strain energy release rate were determined. The simulated line energy agrees well with ab initio calculations and the fracture toughness of perfect graphene sheets is in good agreement with molecular dynamics simulations and the fracture toughness evaluated for defective graphene using the Griffith relation. Similarly, the estimated critical strain energy release rate agrees well with result of various theoretical approaches based on the J-integral and surface energy. The 2D microscopic model, connecting 2D and three-dimensional mechanical properties in a consistent way, provides a versatile relationship to easily access all relevant fracture properties of pristine 2D solids.

  12. The serine protease motif of Pic mediates a dose-dependent mucolytic activity after binding to sugar constituents of the mucin substrate.

    PubMed

    Gutiérrez-Jiménez, Javier; Arciniega, Ivonne; Navarro-García, Fernando

    2008-08-01

    The pic gene is harbored on the chromosomes of three important pathogens: enteroaggregative Escherichia coli (EAEC), uropathogenic E. coli (UPEC), and Shigella flexneri. Since Pic is secreted into the intestinal lumen during EAEC infection, we sought to identify intestinal-mucosal substrates for Pic. Pic did not damage epithelial cells, cleave fodrin, or degrade host defense proteins embedded in the mucus layer (sIgA, lactoferrin and lysozyme). However, by using a solid-phase assay to evaluate the mucinolytic activity of EAEC Pic, we documented a specific, dose-dependent mucinolytic activity. A serine protease inhibitor and an enzymatically inactive variant of Pic were used to show that the Pic serine protease motif is required for mucinolytic activity. Pic binds mucin, and this binding was blocked in competition assays using monosaccharide constituents of the oligosaccharide side chains of mucin. Moreover, Pic mucinolytic activity decreased when sialic acid was removed from mucin. Thus, Pic is a mucinase with lectin-like activity that can be related to its reported hemagglutinin activity. Our results suggest that EAEC may secrete Pic into the intestinal lumen as a strategy for penetrating the gel-like mucus layer during EAEC colonization.

  13. Speech coding

    SciTech Connect

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  14. 2D full wave modeling for a synthetic Doppler backscattering diagnostic

    SciTech Connect

    Hillesheim, J. C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A.; Holland, C.

    2012-10-15

    Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (k{sub {theta}}{rho}{sub s}{approx} 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.

  15. 2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine.

    PubMed

    Khan, Aamar F; Brownson, Dale A C; Randviir, Edward P; Smith, Graham C; Banks, Craig E

    2016-10-04

    Crystalline 2D hexagonal boron nitride (2D-hBN) nanosheets are explored as a potential electrocatalyst toward the electroanalytical sensing of dopamine (DA). The 2D-hBN nanosheets are electrically wired via a drop-casting modification process onto a range of commercially available carbon supporting electrodes, including glassy carbon (GC), boron-doped diamond (BDD), and screen-printed graphitic electrodes (SPEs). 2D-hBN has not previously been explored toward the electrochemical detection/electrochemical sensing of DA. We critically evaluate the potential electrocatalytic performance of 2D-hBN modified electrodes, the effect of supporting carbon electrode platforms, and the effect of "mass coverage" (which is commonly neglected in the 2D material literature) toward the detection of DA. The response of 2D-hBN modified electrodes is found to be largely dependent upon the interaction between 2D-hBN and the underlying supporting electrode material. For example, in the case of SPEs, modification with 2D-hBN (324 ng) improves the electrochemical response, decreasing the electrochemical oxidation potential of DA by ∼90 mV compared to an unmodified SPE. Conversely, modification of a GC electrode with 2D-hBN (324 ng) resulted in an increased oxidation potential of DA by ∼80 mV when compared to the unmodified electrode. We explore the underlying mechanisms of the aforementioned examples and infer that electrode surface interactions and roughness factors are critical considerations. 2D-hBN is utilized toward the sensing of DA in the presence of the common interferents ascorbic acid (AA) and uric acid (UA). 2D-hBN is found to be an effective electrocatalyst in the simultaneous detection of DA and UA at both pH 5.0 and 7.4. The peak separations/resolution between DA and UA increases by ∼70 and 50 mV (at pH 5.0 and 7.4, respectively, when utilizing 108 ng of 2D-hBN) compared to unmodified SPEs, with a particularly favorable response evident in pH 5.0, giving rise to a

  16. A revision of the genus Pseudoechthistatus Pic (Coleoptera, Cerambycidae, Lamiinae, Lamiini)

    PubMed Central

    Bi, Wen-Xuan; Lin, Mei-Ying

    2016-01-01

    Abstract The genus Pseudoechthistatus Pic, 1917 is redefined and revised. Five species of the genus are described as new, Pseudoechthistatus sinicus sp. n. and Pseudoechthistatus chiangshunani sp. n. from central Yunnan, China, Pseudoechthistatus pufujiae sp. n. from western Yunnan, China, and Pseudoechthistatus holzschuhi sp. n. and Pseudoechthistatus glabripennis sp. n. from southern Yunnan and northern Vietnam. Pseudoechthistatus birmanicus Breuning, 1942 is excluded from the fauna of China. Three poorly known species, Pseudoechthistatus obliquefasciatus Pic, 1917, Pseudoechthistatus granulatus Breuning, 1942, and Pseudoechthistatus acutipennis Chiang, 1981 are redescribed, and the type localities of the former two species are discussed. Endophallic structure of seven species in inflated and everted condition are studied and compared with their relatives. Illustrations of habitus and major diagnostic features of all species are provided. Some biological notes are reported. An identification key as well as a distributional map are presented. PMID:27551207

  17. Teamwork Exercise of a PIC Micro-Controller with Emphasis on Student’ s Ideas

    NASA Astrophysics Data System (ADS)

    Nagano, Koji; Mitsubayashi, Hikaru

    We have carried out a teamwork exercise in which a PIC micro-controller is used. The exercise is designed on a key concept that we emphasize on teamwork and student’ s ideas that realize a unique performance of the PIC micro-controller. For this concept we devised exercise equipments, a method of presentation of the results, and evaluation procedure of grades. A hand-made circuit and a breadboard are used so that students can start to make circuits by themselves. Students make presentation of their result operating their circuit and program. We evaluate the grades emphasis on the ideas rather than techniques and knowledge. We also examine circuit elements that the students can use in the exercise. Our experience shows that less circuit elements make more various ideas of a circuit and a program.

  18. Thruster-plume-induced contamination measurements from the PIC and SPIFEX flight experiments

    NASA Astrophysics Data System (ADS)

    Soares, Carlos E.; Barsamian, Hagop; Rauer, Scott

    2002-09-01

    This paper documents thruster plume induced contamination measurements from the PIC (Plume Impingement Contamination) and SPIFEX (Shuttle Plume Impingement Flight Experiment) flight experiments. The SPIFEX flight experiment was flown on Space Shuttle mission STS-64 in 1994. Contamination measurements of molecular deposition were made by XPS (X-ray Photo Spectroscopy). Droplet impact features were also recorded with SEM (Scanning Electron Microscope) scans on Kapton and aluminum foil substrates. The PIC flight experiment was conducted during STS-74 in 1996. Quartz Crystal Microbalances (QCMs) measured contaminant deposition from U.S. and Russian thruster firings. Droplet impact observations were made with SEM scans of the Shuttle RMS (Remote Manipulator System) camera lens. These flight experiments were successful in providing measurements of plume induced contamination as well as droplet impact damage. These measurements were the basis of the plume contamination models developed for the International Space Station (ISS).

  19. Thruster plume induced contamination measurements from the PIC and SPIFEX flight experiments

    NASA Astrophysics Data System (ADS)

    Soares, Carlos; Barsamian, Hagop; Rauer, Scott

    2003-09-01

    This paper documents thruster plume induced contamination measurements from the PIC (Plume Impingement Contamination) and SPIFEX (Shuttle Plume Impingement Flight Experiment) flight experiments. The SPIFEX flight experiment was flown on Space Shuttle mission STS-64 in 1994. Contamination measurements of molecular deposition were made by XPS (X-ray Photo Spectroscopy). Droplet impact features were also recorded with SEM (Scanning Electron Microscope) scans on Kapton and aluminum foil substrates. The PIC flight experiment was conducted during STS-74 in 1996. Quartz Crystal Microbalances (QCMs) measured contaminant deposition from U.S. and Russian thruster firings. Droplet impact observations were made with SEM scans of the Shuttle RMS (Remote Manipulator System) camera lens. These flight experiments were successful in providing measurements of plume induced contamination as well as droplet impact damage. These measurements were the basis of the plume contamination models developed for the International Space Station (ISS).

  20. Pseudo-3D PIC modeling of drift-induced spatial inhomogeneities in planar magnetron plasmas

    NASA Astrophysics Data System (ADS)

    Revel, A.; Minea, T.; Tsikata, S.

    2016-10-01

    A pseudo-3D modeling approach, based on a particle-in-cell (PIC)-Monte Carlo collisions algorithm, has been developed for the study of large- and short-scale organization of the plasma in a planar magnetron. This extension of conventional PIC modeling permits the observation of spontaneous organization of the magnetron plasma, under the influence of crossed electric and magnetic fields, into the well-known, large-scale regions of enhanced ionization and density known as spokes. The nature of complex three-dimensional electron trajectories around such structures, and non-uniform ionization within them, is revealed. This modeling provides direct numerical evidence for the existence of high-amplitude internal spoke electric fields, proposed in earlier works. A 3D phenomenological model, consistent with numerical results, is proposed. Electron density fluctuations in the megahertz range, with characteristics similar to the electron cyclotron drift instability experimentally identified in a recent Letter, are also found.