Science.gov

Sample records for 2d radiographic images

  1. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  2. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    PubMed

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  3. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  4. Advanced radiographic imaging techniques.

    NASA Technical Reports Server (NTRS)

    Beal, J. B.; Brown, R. L.

    1973-01-01

    Examination of the nature and operational constraints of conventional X-radiographic and neutron imaging methods, providing a foundation for a discussion of advanced radiographic imaging systems. Two types of solid-state image amplifiers designed to image X rays are described. Operational theory, panel construction, and performance characteristics are discussed. A closed-circuit television system for imaging neutrons is then described and the system design, operational theory, and performance characteristics are outlined. Emphasis is placed on a description of the advantages of these imaging systems over conventional methods.

  5. Comparison of 2D Radiographic Images and 3D Cone Beam Computed Tomography for Positioning Head-and-Neck Radiotherapy Patients

    SciTech Connect

    Li Heng; Zhu, X. Ronald Zhang Lifei; Dong Lei; Tung, Sam; Ahamad, Anesa M.D.; Chao, K. S. Clifford; Morrison, William H.; Rosenthal, David I.; Schwartz, David L.; Mohan, Radhe; Garden, Adam S.

    2008-07-01

    Purpose: To assess the positioning accuracy using two-dimensional kilovoltage (2DkV) imaging and three-dimensional cone beam CT (CBCT) in patients with head and neck (H and N) cancer receiving radiation therapy. To assess the benefit of patient-specific headrest. Materials and Methods: All 21 patients studied were immobilized using thermoplastic masks with either a patient-specific vacuum bag (11 of 21, IMA) or standard clear plastic (10 of 21, IMB) headrests. Each patient was imaged with a pair of orthogonal 2DkV images in treatment position using onboard imaging before the CBCT procedure. The 2DkV and CBCT images were acquired weekly during the same session. The 2DkV images were reviewed by oncologists and also analyzed by a software tool based on mutual information (MI). Results: Ninety-eight pairs of assessable 2DkV-CBCT alignment sets were obtained. Systematic and random errors were <1.6 mm for both 2DkV and CBCT alignments. When we compared shifts determined by CBCT and 2DkV for the same patient setup, statistically significant correlations were observed in all three major directions. Among all CBCT couch shifts, 4.1% {>=} 0.5 cm and 18.7% {>=} 0.3 cm, whereas among all 2DkV (MI) shifts, 1.7% {>=} 0.5 cm and 11.2% {>=} 0.3 cm. Statistically significant difference was found on anteroposterior direction between IMA and IMB with the CBCT alignment only. Conclusions: The differences between 2D and 3D alignments were mainly caused by the relative flexibility of certain H and N structures and possibly by rotation. Better immobilization of the flexible neck is required to further reduce the setup errors for H and N patients receiving radiotherapy.

  6. Large Format Radiographic Imaging

    SciTech Connect

    J. S. Rohrer; Lacey Stewart; M. D. Wilke; N. S. King; S. A Baker; Wilfred Lewis

    1999-08-01

    Radiographic imaging continues to be a key diagnostic in many areas at Los Alamos National Laboratory (LANL). Radiographic recording systems have taken on many form, from high repetition-rate, gated systems to film recording and storage phosphors. Some systems are designed for synchronization to an accelerator while others may be single shot or may record a frame sequence in a dynamic radiography experiment. While film recording remains a reliable standby in the radiographic community, there is growing interest in investigating electronic recording for many applications. The advantages of real time access to remote data acquisition are highly attractive. Cooled CCD camera systems are capable of providing greater sensitivity with improved signal-to-noise ratio. This paper begins with a review of performance characteristics of the Bechtel Nevada large format imaging system, a gated system capable of viewing scintillators up to 300 mm in diameter. We then examine configuration alternatives in lens coupled and fiber optically coupled electro-optical recording systems. Areas of investigation include tradeoffs between fiber optic and lens coupling, methods of image magnification, and spectral matching from scintillator to CCD camera. Key performance features discussed include field of view, resolution, sensitivity, dynamic range, and system noise characteristics.

  7. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  8. 3D–2D registration in mobile radiographs: algorithm development and preliminary clinical evaluation

    PubMed Central

    Otake, Yoshito; Wang, Adam S; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Aygun, Nafi; Lo, Sheng-fu L; Wolinsky, Jean-Paul; Gokaslan, Ziya L; Siewerdsen, Jeffrey H

    2015-01-01

    An image-based 3D–2D registration method is presented using radiographs acquired in the uncalibrated, unconstrained geometry of mobile radiography. The approach extends a previous method for six degree-of-freedom (DOF) registration in C-arm fluoroscopy (namely ‘LevelCheck’) to solve the 9-DOF estimate of geometry in which the position of the source and detector are unconstrained. The method was implemented using a gradient correlation similarity metric and stochastic derivative-free optimization on a GPU. Development and evaluation were conducted in three steps. First, simulation studies were performed that involved a CT scan of an anthropomorphic body phantom and 1000 randomly generated digitally reconstructed radiographs in posterior–anterior and lateral views. A median projection distance error (PDE) of 0.007 mm was achieved with 9-DOF registration compared to 0.767 mm for 6-DOF. Second, cadaver studies were conducted using mobile radiographs acquired in three anatomical regions (thorax, abdomen and pelvis) and three levels of source-detector distance (~800, ~1000 and ~1200 mm). The 9-DOF method achieved a median PDE of 0.49 mm (compared to 2.53 mm for the 6-DOF method) and demonstrated robustness in the unconstrained imaging geometry. Finally, a retrospective clinical study was conducted with intraoperative radiographs of the spine exhibiting real anatomical deformation and image content mismatch (e.g. interventional devices in the radiograph that were not in the CT), demonstrating a PDE = 1.1 mm for the 9-DOF approach. Average computation time was 48.5 s, involving 687 701 function evaluations on average, compared to 18.2 s for the 6-DOF method. Despite the greater computational load, the 9-DOF method may offer a valuable tool for target localization (e.g. decision support in level counting) as well as safety and quality assurance checks at the conclusion of a procedure (e.g. overlay of planning data on the radiograph for verification of the surgical

  9. 3D-2D registration in mobile radiographs: algorithm development and preliminary clinical evaluation

    NASA Astrophysics Data System (ADS)

    Otake, Yoshito; Wang, Adam S.; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Aygun, Nafi; Lo, Sheng-fu L.; Wolinsky, Jean-Paul; Gokaslan, Ziya L.; Siewerdsen, Jeffrey H.

    2015-03-01

    An image-based 3D-2D registration method is presented using radiographs acquired in the uncalibrated, unconstrained geometry of mobile radiography. The approach extends a previous method for six degree-of-freedom (DOF) registration in C-arm fluoroscopy (namely ‘LevelCheck’) to solve the 9-DOF estimate of geometry in which the position of the source and detector are unconstrained. The method was implemented using a gradient correlation similarity metric and stochastic derivative-free optimization on a GPU. Development and evaluation were conducted in three steps. First, simulation studies were performed that involved a CT scan of an anthropomorphic body phantom and 1000 randomly generated digitally reconstructed radiographs in posterior-anterior and lateral views. A median projection distance error (PDE) of 0.007 mm was achieved with 9-DOF registration compared to 0.767 mm for 6-DOF. Second, cadaver studies were conducted using mobile radiographs acquired in three anatomical regions (thorax, abdomen and pelvis) and three levels of source-detector distance (~800, ~1000 and ~1200 mm). The 9-DOF method achieved a median PDE of 0.49 mm (compared to 2.53 mm for the 6-DOF method) and demonstrated robustness in the unconstrained imaging geometry. Finally, a retrospective clinical study was conducted with intraoperative radiographs of the spine exhibiting real anatomical deformation and image content mismatch (e.g. interventional devices in the radiograph that were not in the CT), demonstrating a PDE = 1.1 mm for the 9-DOF approach. Average computation time was 48.5 s, involving 687 701 function evaluations on average, compared to 18.2 s for the 6-DOF method. Despite the greater computational load, the 9-DOF method may offer a valuable tool for target localization (e.g. decision support in level counting) as well as safety and quality assurance checks at the conclusion of a procedure (e.g. overlay of planning data on the radiograph for verification of

  10. Analog enhancement of radiographic images

    NASA Technical Reports Server (NTRS)

    Baily, N. A.; Nachazel, R. J.

    1976-01-01

    The paper shows how analog methods for edge sharpening, contrast enhancement, and expansion of the range of gray levels of particular interest are effective for easy on-line application to video viewing of X-ray roentgenograms or to fluoroscopy. The technique for analog enhancement of radiographic images is a modified version of the system designed by Fuchs et al. (1972), whereby an all directional second derivative signal called detail signal is used to produce both vertical and horizontal enhancement of the image. Particular attention is given to noise filtration and contrast enhancement. Numerous radiographs supplement the text.

  11. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  12. Digital processing of radiographic images

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  13. Tomosynthesis imaging with 2D scanning trajectories

    NASA Astrophysics Data System (ADS)

    Khare, Kedar; Claus, Bernhard E. H.; Eberhard, Jeffrey W.

    2011-03-01

    Tomosynthesis imaging in chest radiography provides volumetric information with the potential for improved diagnostic value when compared to the standard AP or LAT projections. In this paper we explore the image quality benefits of 2D scanning trajectories when coupled with advanced image reconstruction approaches. It is intuitively clear that 2D trajectories provide projection data that is more complete in terms of Radon space filling, when compared with conventional tomosynthesis using a linearly scanned source. Incorporating this additional information for obtaining improved image quality is, however, not a straightforward problem. The typical tomosynthesis reconstruction algorithms are based on direct inversion methods e.g. Filtered Backprojection (FBP) or iterative algorithms that are variants of the Algebraic Reconstruction Technique (ART). The FBP approach is fast and provides high frequency details in the image but at the same time introduces streaking artifacts degrading the image quality. The iterative methods can reduce the image artifacts by using image priors but suffer from a slow convergence rate, thereby producing images lacking high frequency details. In this paper we propose using a fast converging optimal gradient iterative scheme that has advantages of both the FBP and iterative methods in that it produces images with high frequency details while reducing the image artifacts. We show that using favorable 2D scanning trajectories along with the proposed reconstruction method has the advantage of providing improved depth information for structures such as the spine and potentially producing images with more isotropic resolution.

  14. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  15. 2D microwave imaging reflectometer electronics

    NASA Astrophysics Data System (ADS)

    Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  16. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

  17. Automated 2D-3D registration of a radiograph and a cone beam CT using line-segment enhancement

    SciTech Connect

    Munbodh, Reshma; Jaffray, David A.; Moseley, Douglas J.; Chen Zhe; Knisely, Jonathan P.S.; Cathier, Pascal; Duncan, James S.

    2006-05-15

    The objective of this study was to develop a fully automated two-dimensional (2D)-three-dimensional (3D) registration framework to quantify setup deviations in prostate radiation therapy from cone beam CT (CBCT) data and a single AP radiograph. A kilovoltage CBCT image and kilovoltage AP radiograph of an anthropomorphic phantom of the pelvis were acquired at 14 accurately known positions. The shifts in the phantom position were subsequently estimated by registering digitally reconstructed radiographs (DRRs) from the 3D CBCT scan to the AP radiographs through the correlation of enhanced linear image features mainly representing bony ridges. Linear features were enhanced by filtering the images with ''sticks,'' short line segments which are varied in orientation to achieve the maximum projection value at every pixel in the image. The mean (and standard deviations) of the absolute errors in estimating translations along the three orthogonal axes in millimeters were 0.134 (0.096) AP(out-of-plane), 0.021 (0.023) ML and 0.020 (0.020) SI. The corresponding errors for rotations in degrees were 0.011 (0.009) AP, 0.029 (0.016) ML (out-of-plane), and 0.030 (0.028) SI (out-of-plane). Preliminary results with megavoltage patient data have also been reported. The results suggest that it may be possible to enhance anatomic features that are common to DRRs from a CBCT image and a single AP radiography of the pelvis for use in a completely automated and accurate 2D-3D registration framework for setup verification in prostate radiotherapy. This technique is theoretically applicable to other rigid bony structures such as the cranial vault or skull base and piecewise rigid structures such as the spine.

  18. Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture

    SciTech Connect

    Apostol, Lian; Boudousq, Vincent; Basset, Oliver; Odet, Christophe; Yot, Sophie; Tabary, Joachim; Dinten, Jean-Marc; Boller, Elodie; Kotzki, Pierre-Olivier; Peyrin, Francoise

    2006-09-15

    Although the diagnosis of osteoporosis is mainly based on dual x-ray absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regard to fracture risk. In vivo, techniques based on high-resolution x-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. Thirty-three calcaneus and femoral neck bone samples including the cortical shells (diameter: 14 mm, height: 30-40 mm) were imaged using 3D-synchrotron x-ray micro-CT at the ESRF. The 3D reconstructed images with a cubic voxel size of 15 {mu}m were further used for two purposes: (1) quantification of three-dimensional trabecular bone micro-architecture (2) simulation of realistic x-ray radiographs under different acquisition conditions. The simulated x-ray radiographs were then analyzed using a large variety of texture analysis methods (co-occurrence, spectral density, fractal, morphology, etc.). The range of micro-architecture parameters was in agreement with previous studies and rather large, suggesting that the population was representative. More than 350 texture parameters were tested. A small number of them were selected based on their correlation to micro-architectural morphometric parameters. Using this subset of texture parameters, multiple regression allowed one to predict up to 93% of the variance of micro-architecture parameters using three texture features. 2D texture features predicting 3D micro-architecture parameters other than BV/TV were identified. The methodology proposed for evaluating the relationships between 3D micro-architecture and 2D texture parameters may also be used for optimizing the conditions for radiographic imaging. Further work will include the application of the method to physical radiographs. In the future, this approach could be used in combination with DXA to refine osteoporosis diagnosis.

  19. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    PubMed

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |< 0.083 mm for translations and |mu| < 0.023 degrees for rotations. The precision sigma in x-, y-, and z-direction was 0.090, 0.077, and 0.220 mm for translations and 0.155 degrees , 0.243 degrees , and 0.074 degrees for rotations. Our results show that the accuracy and precision of in vitro IBRSA, performed under ideal laboratory conditions, are lower than in vitro standard RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications. PMID:17706656

  20. Film adhesive enhances neutron radiographic images

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1978-01-01

    Resolution of neutron radiographic images of thermally conductive film is increased by replacing approximately 5 percent of aluminum powder, which provides thermal conductivity, with gadolinium oxide. Oxide is also chemically stable.

  1. Unusual ghost image in a panoramic radiograph.

    PubMed

    Venkatraman, Sreenivasan; Gowda, J S; Kamarthi, N

    2011-09-01

    A panoramic radiograph was taken for a 9-year-old female patient with her earrings on; thus, artefactual shadows were cast on the radiograph. In addition to the two real images of the earrings, three additional images were seen corresponding to ghost images of the earrings. They were unusual not only in appearance but also because there were three in number. This paper discusses the cause of such images as it revisits the principles of panoramic radiology with respect to ghost images. PMID:21831982

  2. Unusual ghost image in a panoramic radiograph

    PubMed Central

    Venkatraman, S; Gowda, JS; Kamarthi, N

    2011-01-01

    A panoramic radiograph was taken for a 9-year-old female patient with her earrings on; thus, artefactual shadows were cast on the radiograph. In addition to the two real images of the earrings, three additional images were seen corresponding to ghost images of the earrings. They were unusual not only in appearance but also because there were three in number. This paper discusses the cause of such images as it revisits the principles of panoramic radiology with respect to ghost images. PMID:21831982

  3. Installation for producing radiographic layer images

    SciTech Connect

    Kinanen, I.

    1984-11-06

    The purpose of the invention is to create a mechanically uncomplicated installation for producing radiographic layer images, making it possible to use small radiation dosages and, however, to collect sufficiently information on the object by one exposure, whereby separation of the superimposed layers from each other in a desired way for visualization can be accomplished by means of tomosynthesis. The installation includes radiation generating means collimating means for confining the radiation and focusing it on an object to be radiographed, e.g. a patient, means for detecting the radiation passed through the object and means for storing and processing the information contained in said detection. Said collimating means comprise a collimation unit including at least two separate, narrow, contiguous, substantially parallel collimating slots for producing narrow, fan-shaped beams, said slots being arranged preferably in alignment with the longitudinal axis of the object to be radiographed. The installation also includes means for displacing said collimating slots and the object to be radiographed in relation to each other at least substantially in alignment with the normal of said collimating slots, those parts of the object selected to be radiographed being arranged to be exposed to radiation by said narrow fan-shaped beams from a number of different directions. The information obtained from the object to be radiographed is stored preferably in digital form and processed for visualization.

  4. Guide to Digital Radiographic Imaging.

    PubMed

    Mol, André; Yoon, Douglas C

    2015-09-01

    This is a resource for clinicians who are considering purchasing a digital imaging system or those already using one who want to optimize its use. It covers selected topics in digital imaging fundamentals, detector technology, image processing and quality assurance. Through a critical appraisal of the strengths and limitations of digital imaging components, the goal of this guide is to contribute to the appropriate use of these systems to maximize the health benefit for patients. PMID:26820007

  5. Automatic Masking for Robust 3D-2D Image Registration in Image-Guided Spine Surgery

    PubMed Central

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-01-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  6. Performance of image intensifiers in radiographic systems

    SciTech Connect

    Baker, S.A.

    2000-01-01

    Electronic charge-coupled device (CCD) cameras equipped with image intensifiers are increasingly being used for radiographic applications. These systems may be used to replace film recording for static imaging, or at other times CCDs coupled with electro-optical shutters may be used for static or dynamic (explosive) radiography. Image intensifiers provide precise shuttering and signal gain. The authors have developed a set of performance measures to calibrate systems, compare one system to another, and to predict experimental performance. The performance measures discussed in this paper are concerned with image quality parameters that relate to resolution and signal-to-noise ratio.

  7. Reconstruction of 2D x-ray radiographs at the National Ignition Facility using pinhole tomography (invited).

    PubMed

    Field, J E; Rygg, J R; Barrios, M A; Benedetti, L R; Döppner, T; Izumi, N; Jones, O; Khan, S F; Ma, T; Nagel, S R; Pak, A; Tommasini, R; Bradley, D K; Town, R P J

    2014-11-01

    Two-dimensional radiographs of imploding fusion capsules are obtained at the National Ignition Facility by projection through a pinhole array onto a time-gated framing camera. Parallax among images in the image array makes it possible to distinguish contributions from the capsule and from the backlighter, permitting correction of backlighter non-uniformities within the capsule radiograph. Furthermore, precise determination of the imaging system geometry and implosion velocity enables combination of multiple images to reduce signal-to-noise and discover new capsule features. PMID:25430345

  8. Reconstruction of 2D x-ray radiographs at the National Ignition Facility using pinhole tomography (invited)

    SciTech Connect

    Field, J. E. Rygg, J. R.; Barrios, M. A.; Benedetti, L. R.; Döppner, T.; Izumi, N.; Jones, O.; Khan, S. F.; Ma, T.; Nagel, S. R.; Pak, A.; Tommasini, R.; Bradley, D. K.; Town, R. P. J.

    2014-11-15

    Two-dimensional radiographs of imploding fusion capsules are obtained at the National Ignition Facility by projection through a pinhole array onto a time-gated framing camera. Parallax among images in the image array makes it possible to distinguish contributions from the capsule and from the backlighter, permitting correction of backlighter non-uniformities within the capsule radiograph. Furthermore, precise determination of the imaging system geometry and implosion velocity enables combination of multiple images to reduce signal-to-noise and discover new capsule features.

  9. Calcification content quantification by dual-energy x-ray absorptiometry with a 2D digital radiographic detector

    NASA Astrophysics Data System (ADS)

    Dinten, Jean M.; Robert-Coutant, Christine; Darboux, Michel; Gonon, Georges; Bordy, Thomas

    2003-06-01

    In a previous paper (SPIE Medical Imaging 2001), a dual energy method for bone densitometry using a 2D digital radiographic detector has been presented. In this paper, calcium content quantification performance of the approach is precised. The main challenge is to achieve quantification using scatter-corrected dual energy acquisitions. Therefore a scatter estimation approach, based on an expression of scatter as a functional of the primary flux, has been developed. This expression is derived from the Klein and Nishina equation and includes tabulated scatter level values. The calcium quantification performances are validated on two configurations. A first one is issued from criteria developed by the French "Groupe de Recherche et d'Information sur les Osteoporoses." It is based on the use of a phantom made of five 3mm thick PVC sheets in the form of five steps, representing five different bone mineral density values, included in a lucite container filled with water. Additional lucite plates can be put over the phantom. This phantom has been used for evaluation of quantification robustness versus patient thickness and composition variations, and for accuracy evaluation. The second configuration, composed of small calcified objects (representative of lung nodules), is used for evaluating capacities to differentiate calcified from non calcified nodules and to test calcium content quantification performance.

  10. A new gold-standard dataset for 2D/3D image registration evaluation

    NASA Astrophysics Data System (ADS)

    Pawiro, Supriyanto; Markelj, Primoz; Gendrin, Christelle; Figl, Michael; Stock, Markus; Bloch, Christoph; Weber, Christoph; Unger, Ewald; Nöbauer, Iris; Kainberger, Franz; Bergmeister, Helga; Georg, Dietmar; Bergmann, Helmar; Birkfellner, Wolfgang

    2010-02-01

    In this paper, we propose a new gold standard data set for the validation of 2D/3D image registration algorithms for image guided radiotherapy. A gold standard data set was calculated using a pig head with attached fiducial markers. We used several imaging modalities common in diagnostic imaging or radiotherapy which include 64-slice computed tomography (CT), magnetic resonance imaging (MRI) using T1, T2 and proton density (PD) sequences, and cone beam CT (CBCT) imaging data. Radiographic data were acquired using kilovoltage (kV) and megavoltage (MV) imaging techniques. The image information reflects both anatomy and reliable fiducial marker information, and improves over existing data sets by the level of anatomical detail and image data quality. The markers of three dimensional (3D) and two dimensional (2D) images were segmented using Analyze 9.0 (AnalyzeDirect, Inc) and an in-house software. The projection distance errors (PDE) and the expected target registration errors (TRE) over all the image data sets were found to be less than 1.7 mm and 1.3 mm, respectively. The gold standard data set, obtained with state-of-the-art imaging technology, has the potential to improve the validation of 2D/3D registration algorithms for image guided therapy.

  11. Photorealistic image synthesis and camera validation from 2D images

    NASA Astrophysics Data System (ADS)

    Santos Ferrer, Juan C.; González Chévere, David; Manian, Vidya

    2014-06-01

    This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.

  12. Optical imaging systems analyzed with a 2D template.

    PubMed

    Haim, Harel; Konforti, Naim; Marom, Emanuel

    2012-05-10

    Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates. PMID:22614498

  13. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    PubMed Central

    Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes. PMID:27019849

  14. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  15. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  16. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  17. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy. PMID:19884075

  18. A Study of Radiographic Imaging Systems Used for Dental Hygiene.

    ERIC Educational Resources Information Center

    Karst, Nancy S.

    Thirty-three two-year dental hygiene programs throughout the United States were surveyed to identify the radiographic imaging system most often used and the accompanying rationale for that decision. A literature review identified the three radiographic imaging systems most frequently used and indicated that all dental hygiene programs had the…

  19. Topology-Preserving Rigid Transformation of 2D Digital Images.

    PubMed

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping. PMID:26270925

  20. A 2-D ECE Imaging Diagnostic for TEXTOR

    NASA Astrophysics Data System (ADS)

    Wang, J.; Deng, B. H.; Domier, C. W.; Luhmann, H. Lu, Jr.

    2002-11-01

    A true 2-D extension to the UC Davis ECE Imaging (ECEI) concept is under development for installation on the TEXTOR tokamak in 2003. This combines the use of linear arrays with multichannel conventional wideband heterodyne ECE radiometers to provide a true 2-D imaging system. This is in contrast to current 1-D ECEI systems in which 2-D images are obtained through the use of multiple plasma discharges (varying the scanned emission frequency each discharge). Here, each array element of the 20 channel mixer array measures plasma emission at 16 simultaneous frequencies to form a 16x20 image of the plasma electron temperature Te. Correlation techniques can then be applied to any pair of the 320 image elements to study both radial and poloidal characteristics of turbulent Te fluctuations. The system relies strongly on the development of low cost, wideband (2-18 GHz) IF detection electronics for use in both ECE Imaging as well as conventional heterodyne ECE radiometry. System details, with a strong focus on the wideband IF electronics development, will be presented. *Supported by U.S. DoE Contracts DE-FG03-95ER54295 and DE-FG03-99ER54531.

  1. Progressive attenuation fields: Fast 2D-3D image registration without precomputation

    SciTech Connect

    Rohlfing, Torsten; Russakoff, Daniel B.; Denzler, Joachim; Mori, Kensaku; Maurer, Calvin R. Jr.

    2005-09-15

    Computation of digitally reconstructed radiograph (DRR) images is the rate-limiting step in most current intensity-based algorithms for the registration of three-dimensional (3D) images to two-dimensional (2D) projection images. This paper introduces and evaluates the progressive attenuation field (PAF), which is a new method to speed up DRR computation. A PAF is closely related to an attenuation field (AF). A major difference is that a PAF is constructed on the fly as the registration proceeds; it does not require any precomputation time, nor does it make any prior assumptions of the patient pose or limit the permissible range of patient motion. A PAF effectively acts as a cache memory for projection values once they are computed, rather than as a lookup table for precomputed projections like standard AFs. We use a cylindrical attenuation field parametrization, which is better suited for many medical applications of 2D-3D registration than the usual two-plane parametrization. The computed attenuation values are stored in a hash table for time-efficient storage and access. Using clinical gold-standard spine image data sets from five patients, we demonstrate consistent speedups of intensity-based 2D-3D image registration using PAF DRRs by a factor of 10 over conventional ray casting DRRs with no decrease of registration accuracy or robustness.

  2. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648

  3. Semiregular solid texturing from 2D image exemplars.

    PubMed

    Du, Song-Pei; Hu, Shi-Min; Martin, Ralph R

    2013-03-01

    Solid textures, comprising 3D particles embedded in a matrix in a regular or semiregular pattern, are common in natural and man-made materials, such as brickwork, stone walls, plant cells in a leaf, etc. We present a novel technique for synthesizing such textures, starting from 2D image exemplars which provide cross-sections of the desired volume texture. The shapes and colors of typical particles embedded in the structure are estimated from their 2D cross-sections. Particle positions in the texture images are also used to guide spatial placement of the 3D particles during synthesis of the 3D texture. Our experiments demonstrate that our algorithm can produce higher quality structures than previous approaches; they are both compatible with the input images, and have a plausible 3D nature. PMID:22614330

  4. Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.

    2009-01-01

    VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.

  5. Real-time SPECT and 2D ultrasound image registration.

    PubMed

    Bucki, Marek; Chassat, Fabrice; Galdames, Francisco; Asahi, Takeshi; Pizarro, Daniel; Lobo, Gabriel

    2007-01-01

    In this paper we present a technique for fully automatic, real-time 3D SPECT (Single Photon Emitting Computed Tomography) and 2D ultrasound image registration. We use this technique in the context of kidney lesion diagnosis. Our registration algorithm allows a physician to perform an ultrasound exam after a SPECT image has been acquired and see in real time the registration of both modalities. An automatic segmentation algorithm has been implemented in order to display in 3D the positions of the acquired US images with respect to the organs. PMID:18044572

  6. Small animal bone density and morphometry analysis with a dual energy x-ray absorptiometry bone densitometer using a 2D digital radiographic detector

    NASA Astrophysics Data System (ADS)

    Boudousq, V.; Bordy, T.; Gonon, G.; Dinten, J. M.

    2005-04-01

    The LEXXOS (DMS, Montpellier, France) is the first axial and total body cone beam bone densitometer using a 2D digital radiographic detector. Technical principles and performances for BMD measurements have been presented in previous papers. Bone densitometers are also used on small animals for drug development. In this paper, we show how the LEXXOS system can be adapted to small animals examinations, and its performances are evaluated. At first, in order to take advantage of the whole area of the digital flat panel X-ray detector, the geometrical configuration has been adapted. Secondly, as small animals present low BMD, a specific dual energy calibration has been defined. This adapted system has then been evaluated on two sets of mice: six reference mice and six ovariectomized mice. Each month, these two populations have been examined and the total body BMD has been measured. This evaluation has shown that the right order of BMD magnitude has been obtained and, as expected, BMD increases on the two sets until age of puberty and after this period, decreases significantly for the ovariectomized set. Moreover, the bone image obtained by dual energy processing on LEXXOS presents a radiographic image quality providing with useful complementary information on bone morphometry and architecture.

  7. Region-based Statistical Analysis of 2D PAGE Images

    PubMed Central

    Li, Feng; Seillier-Moiseiwitsch, Françoise; Korostyshevskiy, Valeriy R.

    2011-01-01

    A new comprehensive procedure for statistical analysis of two-dimensional polyacrylamide gel electrophoresis (2D PAGE) images is proposed, including protein region quantification, normalization and statistical analysis. Protein regions are defined by the master watershed map that is obtained from the mean gel. By working with these protein regions, the approach bypasses the current bottleneck in the analysis of 2D PAGE images: it does not require spot matching. Background correction is implemented in each protein region by local segmentation. Two-dimensional locally weighted smoothing (LOESS) is proposed to remove any systematic bias after quantification of protein regions. Proteins are separated into mutually independent sets based on detected correlations, and a multivariate analysis is used on each set to detect the group effect. A strategy for multiple hypothesis testing based on this multivariate approach combined with the usual Benjamini-Hochberg FDR procedure is formulated and applied to the differential analysis of 2D PAGE images. Each step in the analytical protocol is shown by using an actual dataset. The effectiveness of the proposed methodology is shown using simulated gels in comparison with the commercial software packages PDQuest and Dymension. We also introduce a new procedure for simulating gel images. PMID:21850152

  8. 2D luminescence imaging of pH in vivo

    PubMed Central

    Schreml, Stephan; Meier, Robert J.; Wolfbeis, Otto S.; Landthaler, Michael; Szeimies, Rolf-Markus; Babilas, Philipp

    2011-01-01

    Luminescence imaging of biological parameters is an emerging field in biomedical sciences. Tools to study 2D pH distribution are needed to gain new insights into complex disease processes, such as wound healing and tumor metabolism. In recent years, luminescence-based methods for pH measurement have been developed. However, for in vivo applications, especially for studies on humans, biocompatibility and reliability under varying conditions have to be ensured. Here, we present a referenced luminescent sensor for 2D high-resolution imaging of pH in vivo. The ratiometric sensing scheme is based on time-domain luminescence imaging of FITC and ruthenium(II)tris-(4,7-diphenyl-1,10-phenanthroline). To create a biocompatible 2D sensor, these dyes were bound to or incorporated into microparticles (aminocellulose and polyacrylonitrile), and particles were immobilized in polyurethane hydrogel on transparent foils. We show sensor precision and validity by conducting in vitro and in vivo experiments, and we show the versatility in imaging pH during physiological and chronic cutaneous wound healing in humans. Implementation of this technique may open vistas in wound healing, tumor biology, and other biomedical fields. PMID:21262842

  9. Thermal neutron image intensifier tube provides brightly visible radiographic pattern

    NASA Technical Reports Server (NTRS)

    Berger, H.; Kraska, I.; Niklas, W.; Schmidt, A.

    1967-01-01

    Vacuum-type neutron image intensifier tube improves image detection in thermal neutron radiographic inspection. This system converts images to an electron image, and with electron acceleration and demagnification between the input target and output screen, produces a bright image viewed through a closed circuit television system.

  10. Image analysis of chest radiographs. Final report

    SciTech Connect

    Hankinson, J.L.

    1982-06-01

    The report demonstrates the feasibility of using a computer for automated interpretation of chest radiographs for pneumoconiosis. The primary goal of this project was to continue testing and evaluating the prototype system with a larger set of films. After review of the final contract report and a review of the current literature, it was clear that several modifications to the prototype system were needed before the project could continue. These modifications can be divided into two general areas. The first area was in improving the stability of the system and compensating for the diversity of film quality which exists in films obtained in a surveillance program. Since the system was to be tested with a large number of films, it was impractical to be extremely selective of film quality. The second area is in terms of processing time. With a large set of films, total processing time becomes much more significant. An image display was added to the system so that the computer determined lung boundaries could be verified for each film. A film handling system was also added, enabling the system to scan films continuously without attendance.

  11. 2D imaging of functional structures in perfused pig heart

    NASA Astrophysics Data System (ADS)

    Kessler, Manfred D.; Cristea, Paul D.; Hiller, Michael; Trinks, Tobias

    2002-06-01

    In 2000 by 2D-imaging we were able for the first time to visualize in subcellular space functional structures of myocardium. For these experiments we used hemoglobin-free perfused pig hearts in our lab. Step by step we learned to understand the meaning of subcellular structures. Principally, the experiment revealed that in subcellular space very fast changes of light scattering can occur. Furthermore, coefficients of different parameters were determined on the basis of multicomponent system theory.

  12. Bayesian 2D Current Reconstruction from Magnetic Images

    NASA Astrophysics Data System (ADS)

    Clement, Colin B.; Bierbaum, Matthew K.; Nowack, Katja; Sethna, James P.

    We employ a Bayesian image reconstruction scheme to recover 2D currents from magnetic flux imaged with scanning SQUIDs (Superconducting Quantum Interferometric Devices). Magnetic flux imaging is a versatile tool to locally probe currents and magnetic moments, however present reconstruction methods sacrifice resolution due to numerical instability. Using state-of-the-art blind deconvolution techniques we recover the currents, point-spread function and height of the SQUID loop by optimizing the probability of measuring an image. We obtain uncertainties on these quantities by sampling reconstructions. This generative modeling technique could be used to develop calibration protocols for scanning SQUIDs, to diagnose systematic noise in the imaging process, and can be applied to many tools beyond scanning SQUIDs.

  13. Solid state radiographic image amplifiers, part C

    NASA Technical Reports Server (NTRS)

    Szepesi, Z.

    1971-01-01

    The contrast sensitivity of the radiographic amplifiers, both the storage type and nonstorage type, their absolute sensitivity, and the reproducibility of fabrication were investigated. The required 2-2T quality level was reached with the radiographic storage screen. The sensitivity threshold was 100 to 200 mR with 45 to 100 kV filtered X-rays. The quality level of the radiographic amplifier screen (without storage) was 4-4T; for a 6 mm (0.25 in.) thick aluminum specimen, a 1 mm (0.040 in.) diameter hole in a 0.25 mm (0.010 in.) thick penetrameter was detected. Its sensitivity threshold was 2 to 6 mR/min. The developed radiographic screens are applicable for uses in nondestructive testing.

  14. Geometrical Correlation and Matching of 2d Image Shapes

    NASA Astrophysics Data System (ADS)

    Vizilter, Y. V.; Zheltov, S. Y.

    2012-07-01

    The problem of image correspondence measure selection for image comparison and matching is addressed. Many practical applications require image matching "just by shape" with no dependence on the concrete intensity or color values. Most popular technique for image shape comparison utilizes the mutual information measure based on probabilistic reasoning and information theory background. Another approach was proposed by Pytiev (so called "Pytiev morphology") based on geometrical and algebraic reasoning. In this framework images are considered as piecewise-constant 2D functions, tessellation of image frame by the set of non-intersected connected regions determines the "shape" of image and the projection of image onto the shape of other image is determined. Morphological image comparison is performed using the normalized morphological correlation coefficients. These coefficients estimate the closeness of one image to the shape of other image. Such image analysis technique can be characterized as an ""ntensity-to-geometry" matching. This paper generalizes the Pytiev morphological approach for obtaining the pure "geometry-to-geometry" matching techniques. The generalized intensity-geometrical correlation coefficient is proposed including the linear correlation coefficient and the square of Pytiev correlation coefficient as its partial cases. The morphological shape correlation coefficient is proposed based on the statistical averaging of images with the same shape. Centered morphological correlation coefficient is obtained under the condition of intensity centering of averaged images. Two types of symmetric geometrical normalized correlation coefficients are proposed for comparison of shape-tessellations. The technique for correlation and matching of shapes with ordered intensities is proposed with correlation measures invariant to monotonous intensity transformations. The quality of proposed geometrical correlation measures is experimentally estimated in the task of

  15. Microwave Imaging with Infrared 2-D Lock-in Amplifier

    NASA Astrophysics Data System (ADS)

    Chiyo, Noritaka; Arai, Mizuki; Tanaka, Yasuhiro; Nishikata, Atsuhiro; Maeno, Takashi

    We have developed a 3-D electromagnetic field measurement system using 2-D lock-in amplifier. This system uses an amplitude modulated electromagnetic wave source to heat a resistive screen. A very small change of temperature on a screen illuminated with the modulated electromagnetic wave is measured using an infrared thermograph camera. In this paper, we attempted to apply our system to microwave imaging. By placing conductor patches in front of the resistive screen and illuminating with microwave, the shape of each conductor was clearly observed as the temperature difference image of the screen. In this way, the conductor pattern inside the non-contact type IC card could be visualized. Moreover, we could observe the temperature difference image reflecting the shape of a Konnyaku (a gelatinous food made from devil's-tonge starch) or a dried fishbone, both as non-conducting material resembling human body. These results proved that our method is applicable to microwave see-through imaging.

  16. Generation and Analysis of Wire Rope Digital Radiographic Images

    NASA Astrophysics Data System (ADS)

    Chakhlov, S.; Anpilogov, P.; Batranin, A.; Osipov, S.; Zhumabekova, Sh; Yadrenkin, I.

    2016-06-01

    The paper is dealt with different structures of the digital radiographic system intended for wire rope radiography. The scanning geometry of the wire rope is presented and the main stages of its digital radiographic image generation are identified herein. Correction algorithms are suggested for X-ray beam hardening. A complex internal structure of the wire rope is illustrated by its 25 mm diameter image obtained from X-ray computed tomography. The paper considers the approach to the analysis of digital radiographic image algorithms based on the closeness of certain parameters (invariants) of all unit cross-sections of the reference wire rope or its sections with the length equaling to the lay. The main invariants of wire rope radiographic images are identified and compared with its typical defects.

  17. Clinical Assessment of 2D/3D Registration Accuracy in 4 Major Anatomic Sites Using On-Board 2D Kilovoltage Images for 6D Patient Setup

    PubMed Central

    Li, Guang; Yang, T. Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Åse; Powell, Simon N.; Mechalakos, James

    2015-01-01

    To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 ± 0.5 mm and 0.1° ± 0.4° in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 ± 1.6 mm and −0.4° ± 1.2° on average for each dimension for the cranial site, 0.7 ± 1.6 mm and 0.3° ± 1.3° for HN, 0.7 ± 2.0 mm and −0.7° ± 1.1° for the thorax, and 1.1 ± 2.6 mm and −0.5° ± 1.9° for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with

  18. Clinical Assessment of 2D/3D Registration Accuracy in 4 Major Anatomic Sites Using On-Board 2D Kilovoltage Images for 6D Patient Setup.

    PubMed

    Li, Guang; Yang, T Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Åse; Powell, Simon N; Mechalakos, James

    2015-06-01

    To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2 DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2 DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6 DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2 DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2 DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2 DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 ± 0.5 mm and 0.1° ± 0.4° in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 ± 1.6 mm and -0.4° ± 1.2° on average for each dimension for the cranial site, 0.7 ± 1.6 mm and 0.3° ± 1.3° for HN, 0.7 ± 2.0 mm and -0.7° ± 1.1° for the thorax, and 1.1 ± 2.6 mm and -0.5° ± 1.9° for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with

  19. Investigation of an electronic image enhancer for radiographs

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1972-01-01

    Radiographs of nuclear and aerospace components were studied with a closed-circuit television system to determine the advantages of electronic enhancement in radiographic nondestructive evaluation. The radiographic images were examined on a television monitor under various degrees of magnification and enhancement. The enhancement was accomplished by generating a video signal whose amplitude is proportional to the rate of change of density. Points, lines, edges, and other density variations that are faintly registered in the original image are rendered in sharp relief. Examples of the applications of this mode of enhancement are discussed together with the system's dynamic response and resolution.

  20. Spot identification on 2D electrophoresis gel images

    NASA Astrophysics Data System (ADS)

    Wang, Weixing

    2006-09-01

    2-D electrophoresis gel images can be used for identifying and characterizing many forms of a particular protein encoded by a single gene. Conventional approaches to gel analysis require the three steps: (1) Spot detection on each gel; (2) Spot matching between gels; and (3) Spot quantification and comparison. Many researchers and developers attempt to automate all steps as much as possible, but errors in the detection and matching stages are common. In order to carry out gel image analysis, one first needs to accurately detect and measure the protein spots in a gel image. This paper presents the algorithms for automatically delineating gel spots. The fusion of two types of segmentation algorithms was implemented. One is edge (discontinuity) based type, and the other is region based type. The primary integration of the two types of image segmentation algorithms have been tested too, the test results clearly show that the integrated algorithm can automatically delineate gel spots not only on a simple image and also on a complex image, and it is much better that either only edge based algorithm or only region based algorithm. Based on the testing and analysis results, the fusion of edge information and region information for gel image segmentation is good for this kind of images.

  1. An algorithm for kilovoltage x-ray dose calculations with applications in kV-CBCT scans and 2D planar projected radiographs

    NASA Astrophysics Data System (ADS)

    Pawlowski, Jason M.; Ding, George X.

    2014-04-01

    A new model-based dose calculation algorithm is presented for kilovoltage x-rays and is tested for the cases of calculating the radiation dose from kilovoltage cone-beam CT (kV-CBCT) and 2D planar projected radiographs. This algorithm calculates the radiation dose to water-like media as the sum of primary and scattered dose components. The scatter dose is calculated by convolution of a newly introduced, empirically parameterized scatter dose kernel with the primary photon fluence. Several approximations are introduced to increase the scatter dose calculation efficiency: (1) the photon energy spectrum is approximated as monoenergetic; (2) density inhomogeneities are accounted for by implementing a global distance scaling factor in the scatter kernel; (3) kernel tilting is ignored. These approximations allow for efficient calculation of the scatter dose convolution with the fast Fourier transform. Monte Carlo simulations were used to obtain the model parameters. The accuracy of using this model-based algorithm was validated by comparing with the Monte Carlo method for calculating dose distributions for real patients resulting from radiotherapy image guidance procedures including volumetric kV-CBCT scans and 2D planar projected radiographs. For all patients studied, mean dose-to-water errors for kV-CBCT are within 0.3% with a maximum standard deviation error of 4.1%. Using a medium-dependent correction method to account for the effects of photoabsorption in bone on the dose distribution, mean dose-to-medium errors for kV-CBCT are within 3.6% for bone and 2.4% for soft tissues. This algorithm offers acceptable accuracy and has the potential to extend the applicability of model-based dose calculation algorithms from megavoltage to kilovoltage photon beams.

  2. Symmetries of the 2D magnetic particle imaging system matrix.

    PubMed

    Weber, A; Knopp, T

    2015-05-21

    In magnetic particle imaging (MPI), the relation between the particle distribution and the measurement signal can be described by a linear system of equations. For 1D imaging, it can be shown that the system matrix can be expressed as a product of a convolution matrix and a Chebyshev transformation matrix. For multidimensional imaging, the structure of the MPI system matrix is not yet fully explored as the sampling trajectory complicates the physical model. It has been experimentally found that the MPI system matrix rows have symmetries and look similar to the tensor products of Chebyshev polynomials. In this work we will mathematically prove that the 2D MPI system matrix has symmetries that can be used for matrix compression. PMID:25919400

  3. Radiographer.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of radiographer, lists technical competencies and competency builders for 18 units pertinent to the health technologies cluster in general as well as those specific to the occupation of radiographer. The following skill areas are covered in the…

  4. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  5. 2-D Drift Velocities from the IMAGE EUV Plasmaspheric Imager

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2006-01-01

    The IMAGE Mission extreme ultraviolet imager (EW) observes He(+) plasmaspheric ions throughout the inner magnetosphere. Limited by ionizing radiation and viewing close to the Sun, images of the He(+) distribution are available every 10 minutes for many hours as the spacecraft passes through apogee in its highly elliptical orbit. As a consistent constituent at about 15%, He(+) is an excellent surrogate for monitoring all of the processes that control the dynamics of plasmaspheric plasma. In particular, the motion of He' transverse to the ambient magnetic field is a direct indication of convective electric fields. The analysis of boundary motions has already achieved new insights into the electrodynamic coupling processes taking place between energetic magnetospheric plasmas and the ionosphere. Yet to be fulfilled, however, is the original promise that global E W images of the plasmasphere might yield two-dimensional pictures of mesoscale to macro-scale electric fields in the inner magnetosphere. This work details the technique and initial application of an IMAGE EUV analysis that appears capable of following thermal plasma motion on a global basis.

  6. 2-D Drift Velocities from the IMAGE EUV Plasmaspheric Imager

    NASA Technical Reports Server (NTRS)

    Gallagher, D.; Adrian, M.

    2007-01-01

    The IMAGE Mission extreme ultraviolet imager (EUY) observes He+ plasmaspheric ions throughout the inner magnetosphere. Limited by ionizing radiation and viewing close to the Sun, images of the He+ distribution are available every 10 minutes for many hours as the spacecraft passes through apogee in its highly elliptical orbit. As a consistent constituent at about 15%, He+ is an excellent surrogate for monitoring all of the processes that control the dynamics of plasmaspheric plasma. In particular, the motion ofHe+ transverse to the ambient magnetic field is a direct indication of convective electric fields. The analysis of boundary motions has already achieved new insights into the electrodynamic coupling processes taking place between energetic magnetospheric plasmas and the ionosphere. Yet to be fulfilled, however, is the original promise that global EUY images of the plasmasphere might yield two-dimensional pictures of meso-scale to macro-scale electric fields in the inner magnetosphere. This work details the technique and initial application of an IMAGE EUY analysis that appears capable of following thermal plasma motion on a global basis.

  7. 3D/2D image registration using weighted histogram of gradient directions

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang

    2015-03-01

    Three dimensional (3D) to two dimensional (2D) image registration is crucial in many medical applications such as image-guided evaluation of musculoskeletal disorders. One of the key problems is to estimate the 3D CT- reconstructed bone model positions (translation and rotation) which maximize the similarity between the digitally reconstructed radiographs (DRRs) and the 2D fluoroscopic images using a registration method. This problem is computational-intensive due to a large search space and the complicated DRR generation process. Also, finding a similarity measure which converges to the global optimum instead of local optima adds to the challenge. To circumvent these issues, most existing registration methods need a manual initialization, which requires user interaction and is prone to human error. In this paper, we introduce a novel feature-based registration method using the weighted histogram of gradient directions of images. This method simplifies the computation by searching the parameter space (rotation and translation) sequentially rather than simultaneously. In our numeric simulation experiments, the proposed registration algorithm was able to achieve sub-millimeter and sub-degree accuracies. Moreover, our method is robust to the initial guess. It can tolerate up to +/-90°rotation offset from the global optimal solution, which minimizes the need for human interaction to initialize the algorithm.

  8. Statistically deformable 2D/3D registration for accurate determination of post-operative cup orientation from single standard X-ray radiograph.

    PubMed

    Zheng, Guoyan

    2009-01-01

    The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior (AP) radiograph is known inaccurate, largely due to the wide variability in individual pelvic orientation relative to X-ray plate. 2D/3D rigid image registration methods have been introduced for an accurate determination of the post-operative cup alignment with respect to an anatomical reference extracted from the CT data. Although encouraging results have been reported, their extensive usage in clinical routine is still limited. This may be explained by their requirement of a CAD model of the prosthesis, which is often difficult to be organized from the manufacturer due to the proprietary issue, and by their requirement of a pre-operative CT scan, which is not available for most retrospective studies. To address these issues, we developed and validated a statistically deformable 2D/3D registration approach for accurate determination of post-operative cup orientation. No CAD model and pre-operative CT data is required any more. Quantitative and qualitative results evaluated on cadaveric and clinical datasets are given, which indicate the validity of the approach. PMID:20426064

  9. 2D magnetic nanoparticle imaging using magnetization response second harmonic

    NASA Astrophysics Data System (ADS)

    Tanaka, Saburo; Murata, Hayaki; Oishi, Tomoya; Suzuki, Toshifumi; Zhang, Yi

    2015-06-01

    A detection method and an imaging technique for magnetic nanoparticles (MNPs) have been investigated. In MNP detection and in magnetic particle imaging (MPI), the most commonly employed method is the detection of the odd harmonics of the magnetization response. We examined the advantage of using the second harmonic response when applying an AC magnetic modulation field and a DC bias field. If the magnetization response is detected by a Cu-wound-coil detection system, the output voltage from the coil is proportional to the change in the flux, dϕ/dt. Thus, the dependence of the derivative of the magnetization, M, on an AC magnetic modulation field and a DC bias field were calculated and investigated. The calculations were in good agreement with the experimental results. We demonstrated that the use of the second harmonic response for the detection of MNPs has an advantage compared with the usage of the third harmonic response, when the Cu-wound-coil detection system is employed and the amplitude of the ratio of the AC modulation field and a knee field Hac/Hk is less than 2. We also constructed a 2D MPI scanner using a pair of permanent ring magnets with a bore of ϕ80 mm separated by 90 mm. The magnets generated a gradient of Gz=3.17 T/m transverse to the imaging bore and Gx=1.33 T/m along the longitudinal axis. An original concentrated 10 μl Resovist solution in a ϕ2×3 mm2 vessel was used as a sample, and it was imaged by the scanner. As a result, a 2D contour map image could be successfully generated using the method with a lock-in amplifier.

  10. Tracking of deformable target in 2D ultrasound images

    NASA Astrophysics Data System (ADS)

    Royer, Lucas; Marchal, Maud; Le Bras, Anthony; Dardenne, Guillaume; Krupa, Alexandre

    2015-03-01

    In this paper, we propose a novel approach for automatically tracking deformable target within 2D ultrasound images. Our approach uses only dense information combined with a physically-based model and has therefore the advantage of not using any fiducial marker nor a priori knowledge on the anatomical environment. The physical model is represented by a mass-spring damper system driven by different types of forces where the external forces are obtained by maximizing image similarity metric between a reference target and a deformed target across the time. This deformation is represented by a parametric warping model where the optimal parameters are estimated from the intensity variation. This warping function is well-suited to represent localized deformations in the ultrasound images because it directly links the forces applied on each mass with the motion of all the pixels in its vicinity. The internal forces constrain the deformation to physically plausible motions, and reduce the sensitivity to the speckle noise. The approach was validated on simulated and real data, both for rigid and free-form motions of soft tissues. The results are very promising since the deformable target could be tracked with a good accuracy for both types of motion. Our approach opens novel possibilities for computer-assisted interventions where deformable organs are involved and could be used as a new tool for interactive tracking of soft tissues in ultrasound images.

  11. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508

  12. Improving the quality of radiographic images acquired with conical radiation beams through divergence correction and filtering

    NASA Astrophysics Data System (ADS)

    Silvani, M. I.; Almeida, G. L.; Latini, R. M.; Bellido, A. V. B.; Souza, E. S.; Lopes, R. T.

    2015-07-01

    Earlier works have shown the feasibility to correct the deformation of the attenuation map in radiographs acquired with conical radiation beams provided that the inspected object could be expressed into analytical geometry terms. This correction reduces the contribution of the main object in the radiograph, allowing thus the visualization of its otherwise concealed heterogeneities. However, the non-punctual character of the source demanded a cumbersome trial-and-error approach in order to determine the proper correction parameters for the algorithm. Within this frame, this work addresses the improvement of radiographs of specially tailored test-objects acquired with a conical beam through correction of its divergence by using the information contained in the image itself. The corrected images have afterwards undergone a filtration in the frequency domain aiming at the reduction of statistical fluctuation and noise by using a 2D Fourier transform. All radiographs have been acquired using 165Dy and 198Au gamma-ray sources produced at the Argonauta research reactor in Institutode Engenharia Nuclear - CNEN, and an X-ray sensitive imaging plate as detector. The processed images exhibit features otherwise invisible in the original ones. Their processing by conventional histogram equalization carried out for comparison purposes did not succeed to detect those features.

  13. High Speed 2D Hadamard Transform Spectral Imager

    SciTech Connect

    WEHLBURG, JOSEPH C.; WEHLBURG, CHRISTINE M.; SMITH, JODY L.; SPAHN, OLGA B.; SMITH, MARK W.; BONEY, CRAIG M.

    2003-02-01

    Hadamard Transform Spectrometer (HTS) approaches share the multiplexing advantages found in Fourier transform spectrometers. Interest in Hadamard systems has been limited due to data storage/computational limitations and the inability to perform accurate high order masking in a reasonable amount of time. Advances in digital micro-mirror array (DMA) technology have opened the door to implementing an HTS for a variety of applications including fluorescent microscope imaging and Raman imaging. A Hadamard transform spectral imager (HTSI) for remote sensing offers a variety of unique capabilities in one package such as variable spectral and temporal resolution, no moving parts (other than the micro-mirrors) and vibration tolerance. Two approaches to for 2D HTS systems have been investigated in this LDRD. The first approach involves dispersing the incident light, encoding the dispersed light then recombining the light. This method is referred to as spectral encoding. The other method encodes the incident light then disperses the encoded light. The second technique is called spatial encoding. After creating optical designs for both methods the spatial encoding method was selected as the method that would be implemented because the optical design was less costly to implement.

  14. Computer Simulation Of Radiographic Screen-Film Images

    NASA Astrophysics Data System (ADS)

    Metter, Richard V.; Dillon, Peter L.; Huff, Kenneth E.; Rabbani, Majid

    1986-06-01

    A method is described for computer simulation of radiographic screen-film images. This method is based on a previously published model of the screen-film imaging process.l The x-ray transmittance of a test object is sampled at a pitch of 50 μm by scanning a high-resolution, low-noise direct-exposure radiograph. This transmittance is then used, along with the x-ray exposure incident upon the object, to determine the expected number of quanta per pixel incident upon the screen. The random nature of x-ray arrival and absorption, x-ray quantum to light photon conversion, and photon absorption by the film is simulated by appropriate random number generation. Standard FFT techniques are used for computing the effects of scattering. Finally, the computed film density for each pixel is produced on a high-resolution, low-noise output film by a scanning printer. The simulation allows independent specification of x-ray exposure, x-ray quantum absorption, light conversion statistics, light scattering, and film characteristics (sensitometry and gran-ularity). Each of these parameters is independently measured for radiographic systems of interest. The simulator is tested by comparing actual radiographic images with simulated images resulting from the independently measured parameters. Images are also shown illustrating the effects of changes in these parameters on image quality. Finally, comparison is made with a "perfect" imaging system where information content is only limited by the finite number of x-rays.

  15. Estimating mass of crushed limestone particles from 2D images

    NASA Astrophysics Data System (ADS)

    Banta, Larry E.; Cheng, Ken; Zaniewski, John P.

    2002-02-01

    In the construction of asphalt pavements, the stability of the asphalt is determined in large part by the gradation, or size distribution of the mineral aggregates that make up the matrix. Gradation is specified on the basis of sieve sizes and percent passing, where the latter is a cumulative measure of the mass of the aggregate passing the sieve as fraction of the total mass in the batch. In this paper, an approach for predicting particle mass based on 2D electronic images is explored. Images of crushed limestone aggregates were acquired using backlighting to create silhouettes. A morphological erosion process was used to separate touching and overlapping particles. Useful features of the particle silhouettes, such as area, centroid and shape descriptors were collected. Several dimensionless parameters were defined and were used as regressor variables in a multiple linear regression model to predict particle mass. Regressor coefficients were found by fitting to a sample of 501 particles ranging in size from 4.75 mm < particle sieve size < 25 mm. When tested against a different aggregate sample, the model predicted the mass of the batch to within +/- 2%.

  16. 2D-3D registration for prostate radiation therapy based on a statistical model of transmission images

    SciTech Connect

    Munbodh, Reshma; Tagare, Hemant D.; Chen Zhe; Jaffray, David A.; Moseley, Douglas J.; Knisely, Jonathan P. S.; Duncan, James S.

    2009-10-15

    Purpose: In external beam radiation therapy of pelvic sites, patient setup errors can be quantified by registering 2D projection radiographs acquired during treatment to a 3D planning computed tomograph (CT). We present a 2D-3D registration framework based on a statistical model of the intensity values in the two imaging modalities. Methods: The model assumes that intensity values in projection radiographs are independently but not identically distributed due to the nonstationary nature of photon counting noise. Two probability distributions are considered for the intensity values: Poisson and Gaussian. Using maximum likelihood estimation, two similarity measures, maximum likelihood with a Poisson (MLP) and maximum likelihood with Gaussian (MLG), distribution are derived. Further, we investigate the merit of the model-based registration approach for data obtained with current imaging equipment and doses by comparing the performance of the similarity measures derived to that of the Pearson correlation coefficient (ICC) on accurately collected data of an anthropomorphic phantom of the pelvis and on patient data. Results: Registration accuracy was similar for all three similarity measures and surpassed current clinical requirements of 3 mm for pelvic sites. For pose determination experiments with a kilovoltage (kV) cone-beam CT (CBCT) and kV projection radiographs of the phantom in the anterior-posterior (AP) view, registration accuracies were 0.42 mm (MLP), 0.29 mm (MLG), and 0.29 mm (ICC). For kV CBCT and megavoltage (MV) AP portal images of the same phantom, registration accuracies were 1.15 mm (MLP), 0.90 mm (MLG), and 0.69 mm (ICC). Registration of a kV CT and MV AP portal images of a patient was successful in all instances. Conclusions: The results indicate that high registration accuracy is achievable with multiple methods including methods that are based on a statistical model of a 3D CT and 2D projection images.

  17. Automatic Evaluation of Welded Joints Using Image Processing on Radiographs

    NASA Astrophysics Data System (ADS)

    Schwartz, Ch.

    2003-03-01

    Radiography is frequently used to detect discontinuities in welded joints (porosity, cracks, lack of penetration). Perfect knowledge of the geometry of these defects is an important step which is essential to appreciate the quality of the weld. Because of this, an action improving the interpretation of radiographs by image processing has been undertaken. The principle consists in making a radiograph of the welded joint and of a depth step wedge penetrameter in the material. The radiograph is then finely digitized and an automatic processing of the radiograph of the penetrameter image allows the establishment of a correspondence between grey levels and material thickness. An algorithm based on image processing is used to localize defects in the welded joints and to isolate them from the original image. First, defects detected by this method are characterized in terms of dimension and equivalent thickness. Then, from the image of the healthy welded joint (that is to say without the detected defects), characteristic values of the weld are evaluated (thickness reduction, width).

  18. [Transparency regime: semiotics of radiographical images in urological diagnostics].

    PubMed

    Martin, M; Fangerau, H

    2012-10-01

    Shortly after Röntgen discovered x-rays urology became one of the main test fields for the application of this new technology. Initial scepticism among physicians, who were inclined to cling to traditional manual methods of diagnosing, was replaced by enthusiasm for radiographic technologies and the new method soon became the standard in, for example the diagnosis of concrements. Patients favoring radiographic procedures over the use of probes and a convincing documentation of stones in radiograms were factors that impacted the relatively rapid integration of radiology into urology. The radiographic representation of soft tissues and body cavities was more difficult and the development of contrast agents in particular posed a serious problem. Several patients died during this research. A new diagnostic dimension was revealed when radiography and cystography were combined to form the method of retrograde pyelography. However, the problem of how urologists could learn how to read the new images remained. In order to allow trainee physicians to practice interpreting radiograms atlases were produced which offered explanatory texts and drawings for radiographic images of the kidneys, the bladder etc. Thus, urologists developed a self-contained semiotics which facilitated the appropriation of a unique urological radiographical gaze. PMID:22914883

  19. Fabrication and characteristics of experimental radiographic amplifier screens. [image transducers with improved image contrast and resolution

    NASA Technical Reports Server (NTRS)

    Szepesi, Z.

    1978-01-01

    The fabrication process and transfer characteristics for solid state radiographic image transducers (radiographic amplifier screens) are described. These screens are for use in realtime nondestructive evaluation procedures that require large format radiographic images with contrast and resolution capabilities unavailable with conventional fluoroscopic screens. The screens are suitable for in-motion, on-line radiographic inspection by means of closed circuit television. Experimental effort was made to improve image quality and response to low energy (5 kV and up) X-rays.

  20. Rotational panoramic radiographs-unusual triple images

    PubMed Central

    Krishnaswamy, Nathamuni-Rengarajan; Tom, Biju; Thavarajah, Rooban

    2015-01-01

    Currently clinicians advice rotational panoramic radiography (RPR) for preliminary investigation. Despite few inherent limitations, rotational panoramic radiography still remains the diagnostic tool of choice. Abnormal structures such as a supernumerary tooth or a device falling within the certain central regions in conventional RPR images may mislead the clinicians towards an inaccurate diagnosis by producing multiple ghost images. Such cases must be treated with circumspect, and apart from RPR, additional imaging modalities need be employed to provide a judicious interpretation of the clinical situation. Thus this manuscript, we present a case where a paramedian supernumerary tooth which exhibited double ghost images on a conventional RPR. This prompted us to elicit the use of a CBCT and 3 dimensional images to determine the true nature of the problem. We outline the working of the diamond principle behind a conventional RPR which cause the appearance of multiple ghost images. The discerning clinician must be cognizant of the possible positional and analytical errors which may be prevalent in a conventional RPR when viewing structures lying in the palatal region, specifically in the midline while making diagnosis. Key words:CBCT, double image, midline supernumerary, OPG. PMID:25810836

  1. HipMatch: an object-oriented cross-platform program for accurate determination of cup orientation using 2D-3D registration of single standard X-ray radiograph and a CT volume.

    PubMed

    Zheng, Guoyan; Zhang, Xuan; Steppacher, Simon D; Murphy, Stephen B; Siebenrock, Klaus A; Tannast, Moritz

    2009-09-01

    The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior (AP) radiograph is known inaccurate, largely due to the wide variability in individual pelvic orientation relative to X-ray plate. 2D-3D image registration methods have been introduced for an accurate determination of the post-operative cup alignment with respect to an anatomical reference extracted from the CT data. Although encouraging results have been reported, their extensive usage in clinical routine is still limited. This may be explained by their requirement of a CAD model of the prosthesis, which is often difficult to be organized from the manufacturer due to the proprietary issue, and by their requirement of either multiple radiographs or a radiograph-specific calibration, both of which are not available for most retrospective studies. To address these issues, we developed and validated an object-oriented cross-platform program called "HipMatch" where a hybrid 2D-3D registration scheme combining an iterative landmark-to-ray registration with a 2D-3D intensity-based registration was implemented to estimate a rigid transformation between a pre-operative CT volume and the post-operative X-ray radiograph for a precise estimation of cup alignment. No CAD model of the prosthesis is required. Quantitative and qualitative results evaluated on cadaveric and clinical datasets are given, which indicate the robustness and the accuracy of the program. HipMatch is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway), VTK, and Coin3D and is transportable to any platform. PMID:19328585

  2. Eliminating rib shadows in chest radiographic images providing diagnostic assistance.

    PubMed

    Oğul, Hasan; Oğul, B Buket; Ağıldere, A Muhteşem; Bayrak, Tuncay; Sümer, Emre

    2016-04-01

    A major difficulty with chest radiographic analysis is the invisibility of abnormalities caused by the superimposition of normal anatomical structures, such as ribs, over the main tissue to be examined. Suppressing the ribs with no information loss about the original tissue would therefore be helpful during manual identification or computer-aided detection of nodules on a chest radiographic image. In this study, we introduce a two-step algorithm for eliminating rib shadows in chest radiographic images. The algorithm first delineates the ribs using a novel hybrid self-template approach and then suppresses these delineated ribs using an unsupervised regression model that takes into account the change in proximal thickness (depth) of bone in the vertical axis. The performance of the system is evaluated using a benchmark set of real chest radiographic images. The experimental results determine that proposed method for rib delineation can provide higher accuracy than existing methods. The knowledge of rib delineation can remarkably improve the nodule detection performance of a current computer-aided diagnosis (CAD) system. It is also shown that the rib suppression algorithm can increase the nodule visibility by eliminating rib shadows while mostly preserving the nodule intensity. PMID:26775736

  3. Rigid 2D/3D registration of intraoperative digital x-ray images and preoperative CT and MR images

    NASA Astrophysics Data System (ADS)

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2002-05-01

    This paper describes a novel approach to register 3D computed tomography (CT) or magnetic resonance (MR) images to a set of 2D X-ray images. Such a registration may be a valuable tool for intraoperative determination of the precise position and orientation of some anatomy of interest, defined in preoperative images. The registration is based solely on the information present in 2D and 3D images. It does not require fiducial markers, X-ray image segmentation, or construction of digitally reconstructed radiographs. The originality of the approach is in using normals to bone surfaces, preoperatively defined in 3D MR or CT data, and gradients of intraoperative X-ray images, which are back-projected towards the X-ray source. The registration is then concerned with finding that rigid transformation of a CT or MR volume, which provides the best match between surface normals and back projected gradients, considering their amplitudes and orientations. The method is tested on a lumbar spine phantom. Gold standard registration is obtained by fidicual markers attached to the phantom. Volumes of interest, containing single vertebrae, are registered to different pairs of X-ray images from different starting positions, chosen randomly and uniformly around the gold standard position. Target registration errors and rotation errors are in order of 0.3 mm and 0.35 degrees for the CT to X-ray registration and 1.3 mm and 1.5 degrees for MR to X-ray registration. The registration is shown to be fast and accurate.

  4. Automatic segmentation of lung fields on chest radiographic images.

    PubMed

    Carreira, M J; Cabello, D; Mosquera, A

    1999-06-01

    In this work we have implemented a system for the automatic segmentation of lung fields in chest radiographic images. The image analysis process is carried out in three levels. In the first one we perform operations on the image that are independent from domain knowledge. This knowledge is implicitly and not very elaborately used in the intermediate level and used in an explicit manner in the high level block, globally corresponding to the idea of progressive segmentation. The representation of knowledge in the high level block is in the form of production rules. The control structure is in general bottom-up but there are certain hybrid control stages, in which the control is driven by the region model (main organs) we are seeking. We have applied the global system to a set of 45 posteroanterior (PA) chest radiographs, obtaining a mean degree of overlap with contours drawn by radiologists of 87%. PMID:10356306

  5. Application of Perona Malik anisotropic diffusion on digital radiographic image

    SciTech Connect

    Halim, Suhaila Abd; Razak, Rohayu Abdul; Ibrahim, Arsmah; Manurung, Yupiter HP

    2014-07-10

    Perona Malik Anisotropic Diffusion (PMAD) is a very useful and efficient denoising technique if the parameters are properly selected. Overestimating the parameters may cause oversmoothed and underestimating it may leave unfiltered noise. This makes the selection of parameters a crucial process. In this paper the PMAD model is solved using a finite difference scheme The discretized model is evaluated using different diffusion coefficient of exponential and quadratic on defective radiographic images in terms of quality and efficiency. In the application of the PMAD model on image data, a set of defective radiographic images of welding is used as input data. Peak Signal to Noise Ratio (PSNR), Structural Similarity Measure (SSIM) and temporal time are used to evaluate the performance of the model. The implementation of the experiment has been carried out using MATLAB R2009a. In terms of quality, results show that the Quadratic Diffusion Coefficient Function (QDCF) provides better results compared with the Exponential Diffusion Coefficient Function (EDCF). In conclusion, the denoising effect using PMAD model based on finite difference scheme shows able to improve image quality by removing noise in the defective radiographic image.

  6. Morphometric Comparison of Clavicle Outlines from 3D Bone Scans and 2D Chest Radiographs: A Short-listing Tool to Assist Radiographic Identification of Human Skeletons

    SciTech Connect

    Stephan, Carl N.; Amidan, Brett G.; Trease, Harold E.; Guyomarch, Pierre; Pulsipher, Trenton C.; Byrd, John E.

    2014-03-01

    This paper describes a computerized clavicle identification system, primarily designed to resolve the identities of unaccounted for US soldiers who fought in the Korean War. Elliptical Fourier analysis is used to quantify the clavicle outline shape from skeletons and postero-anterior antemortem chest radiographs to rank individuals in terms of metric distance. Similar to leading fingerprint identification systems, shortlists of the top matching candidates are extracted for subsequent human visual assessment. Two independent tests of the computerized system using 17 field-recovered skeletons and 409 chest radiographs demonstrate that true positive matches are captured within the top 5% of the sample 75% of the time. These results are outstanding given the eroded state of some field-recovered skeletons and the faintness of the 1950’s photoflurographs. These methods enhance the capability to resolve several hundred cold cases for which little circumstantial information exists and current DNA and dental record technologies cannot be applied.

  7. Morphometric comparison of clavicle outlines from 3D bone scans and 2D chest radiographs: a shortlisting tool to assist radiographic identification of human skeletons.

    PubMed

    Stephan, Carl N; Amidan, Brett; Trease, Harold; Guyomarc'h, Pierre; Pulsipher, Trenton; Byrd, John E

    2014-03-01

    This paper describes a computerized clavicle identification system primarily designed to resolve the identities of unaccounted-for U.S. soldiers who fought in the Korean War. Elliptical Fourier analysis is used to quantify the clavicle outline shape from skeletons and postero-anterior antemortem chest radiographs to rank individuals in terms of metric distance. Similar to leading fingerprint identification systems, shortlists of the top matching candidates are extracted for subsequent human visual assessment. Two independent tests of the computerized system using 17 field-recovered skeletons and 409 chest radiographs demonstrate that true-positive matches are captured within the top 5% of the sample 75% of the time. These results are outstanding given the eroded state of some field-recovered skeletons and the faintness of the 1950's photofluorographs. These methods enhance the capability to resolve several hundred cold cases for which little circumstantial information exists and current DNA and dental record technologies cannot be applied. PMID:24313347

  8. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image

    NASA Astrophysics Data System (ADS)

    Wang, Mengjiao; Sharp, Gregory C.; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

    2014-05-01

    Tumor motion caused by respiration is an important issue in image-guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and a streak-free 3DCBCT volume are combined to improve the image quality of the digitally reconstructed radiographs (DRRs). Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and one-minute and two-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. The diaphragm matching accuracy was 1.88 ± 1.35 mm in the isocenter plane and the 2D tumor tracking accuracy was 2.13 ± 1.26 mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purposes.

  9. Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery.

    PubMed

    Chang, Chih-Ju; Lin, Geng-Li; Tse, Alex; Chu, Hong-Yu; Tseng, Ching-Shiow

    2015-01-01

    C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell's method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR) images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds. PMID:27018859

  10. Antenna-coupled microbolometer based uncooled 2D array and camera for 2D real-time terahertz imaging

    NASA Astrophysics Data System (ADS)

    Simoens, F.; Meilhan, J.; Gidon, S.; Lasfargues, G.; Lalanne Dera, J.; Ouvrier-Buffet, J. L.; Pocas, S.; Rabaud, W.; Guellec, F.; Dupont, B.; Martin, S.; Simon, A. C.

    2013-09-01

    CEA-Leti has developed a monolithic large focal plane array bolometric technology optimized for 2D real-time imaging in the terahertz range. Each pixel consists in a silicon microbolometer coupled to specific antennas and a resonant quarter-wavelength cavity. First prototypes of imaging arrays have been designed and manufactured for optimized sensing in the 1-3.5THz range where THz quantum cascade lasers are delivering high optical power. NEP in the order of 1 pW/sqrt(Hz) has been assessed at 2.5 THz. This paper reports the steps of this development, starting from the pixel level, to an array associated monolithically to its CMOS ROIC and finally a stand-alone camera. For each step, modeling, technological prototyping and experimental characterizations are presented.

  11. 3D-2D registration of cerebral angiograms: a method and evaluation on clinical images.

    PubMed

    Mitrovic, Uroš; Špiclin, Žiga; Likar, Boštjan; Pernuš, Franjo

    2013-08-01

    Endovascular image-guided interventions (EIGI) involve navigation of a catheter through the vasculature followed by application of treatment at the site of anomaly using live 2D projection images for guidance. 3D images acquired prior to EIGI are used to quantify the vascular anomaly and plan the intervention. If fused with the information of live 2D images they can also facilitate navigation and treatment. For this purpose 3D-2D image registration is required. Although several 3D-2D registration methods for EIGI achieve registration accuracy below 1 mm, their clinical application is still limited by insufficient robustness or reliability. In this paper, we propose a 3D-2D registration method based on matching a 3D vasculature model to intensity gradients of live 2D images. To objectively validate 3D-2D registration methods, we acquired a clinical image database of 10 patients undergoing cerebral EIGI and established "gold standard" registrations by aligning fiducial markers in 3D and 2D images. The proposed method had mean registration accuracy below 0.65 mm, which was comparable to tested state-of-the-art methods, and execution time below 1 s. With the highest rate of successful registrations and the highest capture range the proposed method was the most robust and thus a good candidate for application in EIGI. PMID:23649179

  12. Application of the EM algorithm to radiographic images.

    PubMed

    Brailean, J C; Little, D; Giger, M L; Chen, C T; Sullivan, B J

    1992-01-01

    The expectation maximization (EM) algorithm has received considerable attention in the area of positron emitted tomography (PET) as a restoration and reconstruction technique. In this paper, the restoration capabilities of the EM algorithm when applied to radiographic images is investigated. This application does not involve reconstruction. The performance of the EM algorithm is quantitatively evaluated using a "perceived" signal-to-noise ratio (SNR) as the image quality metric. This perceived SNR is based on statistical decision theory and includes both the observer's visual response function and a noise component internal to the eye-brain system. For a variety of processing parameters, the relative SNR (ratio of the processed SNR to the original SNR) is calculated and used as a metric to compare quantitatively the effects of the EM algorithm with two other image enhancement techniques: global contrast enhancement (windowing) and unsharp mask filtering. The results suggest that the EM algorithm's performance is superior when compared to unsharp mask filtering and global contrast enhancement for radiographic images which contain objects smaller than 4 mm. PMID:1435595

  13. Auto-masked 2D/3D image registration and its validation with clinical cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Steininger, P.; Neuner, M.; Weichenberger, H.; Sharp, G. C.; Winey, B.; Kametriser, G.; Sedlmayer, F.; Deutschmann, H.

    2012-07-01

    Image-guided alignment procedures in radiotherapy aim at minimizing discrepancies between the planned and the real patient setup. For that purpose, we developed a 2D/3D approach which rigidly registers a computed tomography (CT) with two x-rays by maximizing the agreement in pixel intensity between the x-rays and the corresponding reconstructed radiographs from the CT. Moreover, the algorithm selects regions of interest (masks) in the x-rays based on 3D segmentations from the pre-planning stage. For validation, orthogonal x-ray pairs from different viewing directions of 80 pelvic cone-beam CT (CBCT) raw data sets were used. The 2D/3D results were compared to corresponding standard 3D/3D CBCT-to-CT alignments. Outcome over 8400 2D/3D experiments showed that parametric errors in root mean square were <0.18° (rotations) and <0.73 mm (translations), respectively, using rank correlation as intensity metric. This corresponds to a mean target registration error, related to the voxels of the lesser pelvis, of <2 mm in 94.1% of the cases. From the results we conclude that 2D/3D registration based on sequentially acquired orthogonal x-rays of the pelvis is a viable alternative to CBCT-based approaches if rigid alignment on bony anatomy is sufficient, no volumetric intra-interventional data set is required and the expected error range fits the individual treatment prescription.

  14. Auto-masked 2D/3D image registration and its validation with clinical cone-beam computed tomography.

    PubMed

    Steininger, P; Neuner, M; Weichenberger, H; Sharp, G C; Winey, B; Kametriser, G; Sedlmayer, F; Deutschmann, H

    2012-07-01

    Image-guided alignment procedures in radiotherapy aim at minimizing discrepancies between the planned and the real patient setup. For that purpose, we developed a 2D/3D approach which rigidly registers a computed tomography (CT) with two x-rays by maximizing the agreement in pixel intensity between the x-rays and the corresponding reconstructed radiographs from the CT. Moreover, the algorithm selects regions of interest (masks) in the x-rays based on 3D segmentations from the pre-planning stage. For validation, orthogonal x-ray pairs from different viewing directions of 80 pelvic cone-beam CT (CBCT) raw data sets were used. The 2D/3D results were compared to corresponding standard 3D/3D CBCT-to-CT alignments. Outcome over 8400 2D/3D experiments showed that parametric errors in root mean square were <0.18° (rotations) and <0.73 mm (translations), respectively, using rank correlation as intensity metric. This corresponds to a mean target registration error, related to the voxels of the lesser pelvis, of <2 mm in 94.1% of the cases. From the results we conclude that 2D/3D registration based on sequentially acquired orthogonal x-rays of the pelvis is a viable alternative to CBCT-based approaches if rigid alignment on bony anatomy is sufficient, no volumetric intra-interventional data set is required and the expected error range fits the individual treatment prescription. PMID:22705709

  15. Hip2Norm: an object-oriented cross-platform program for 3D analysis of hip joint morphology using 2D pelvic radiographs.

    PubMed

    Zheng, G; Tannast, M; Anderegg, C; Siebenrock, K A; Langlotz, F

    2007-07-01

    We developed an object-oriented cross-platform program to perform three-dimensional (3D) analysis of hip joint morphology using two-dimensional (2D) anteroposterior (AP) pelvic radiographs. Landmarks extracted from 2D AP pelvic radiographs and optionally an additional lateral pelvic X-ray were combined with a cone beam projection model to reconstruct 3D hip joints. Since individual pelvic orientation can vary considerably, a method for standardizing pelvic orientation was implemented to determine the absolute tilt/rotation. The evaluation of anatomically morphologic differences was achieved by reconstructing the projected acetabular rim and the measured hip parameters as if obtained in a standardized neutral orientation. The program had been successfully used to interactively objectify acetabular version in hips with femoro-acetabular impingement or developmental dysplasia. Hip(2)Norm is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway) for graphical user interface (GUI) and is transportable to any platform. PMID:17499878

  16. DEDICATED FILTER FOR DEFECTS CLUSTERING IN RADIOGRAPHIC IMAGE

    SciTech Connect

    Sikora, R.; Swiadek, K.; Chady, T.

    2009-03-03

    Defect clusters such as linear or clustered porosity are in some cases even more important than single flaws. This paper presents two methods of defect clustering and algorithm for calculation of distances between flaws in digital radiographic image. Dedicated lookup table based filter is used for calculation of distances between objects in the specified range. For defect clustering two functions were developed. First one is based on MMD (Minimum Mean Distance) algorithm. Second one uses hierarchical procedures for clustering defects of various types, shapes and size.

  17. SurveillanceRadiographic imaging with cosmic-ray muons

    NASA Astrophysics Data System (ADS)

    Borozdin, Konstantin N.; Hogan, Gary E.; Morris, Christopher; Priedhorsky, William C.; Saunders, Alexander; Schultz, Larry J.; Teasdale, Margaret E.

    2003-03-01

    Despite its enormous success, X-ray radiography has its limitations: an inability to penetrate dense objects, the need for multiple projections to resolve three-dimensional structure, and health risks from radiation. Here we show that natural background muons, which are generated by cosmic rays and are highly penetrating, can be used for radiographic imaging of medium-to-large, dense objects, without these limitations and with a reasonably short exposure time. This inexpensive and harmless technique may offer a useful alternative for detecting dense materials - for example, a block of uranium concealed inside a truck full of sheep.

  18. Development of a simulator for radiographic image optimization.

    PubMed

    Winslow, Mark; Xu, X George; Yazici, Birsen

    2005-06-01

    A software package, incorporating two computational patient phantoms, has been developed for optimizing X-ray radiographic imaging. A tomographic phantom, visible photographic Man tomographic phantom (VIP-Man), constructed from Visible Human anatomical color images is used to simulate the scattered portion of an X-ray system using the Electron Gamma Shower National Research Council (EGSnrc) Monte Carlo code. The primary portion of an X-ray image is simulated using the projection ray-tracing method through the Visible Human CT data set. To produce a realistic image, the software simulates quantum noise, blurring effects, lesions, detector absorption efficiency, and other imaging artifacts. The primary and scattered portions of an X-ray chest image are combined to form a final image for future observer studies and image quality analysis. Absorbed doses in organs and tissues of the segmented VIP-Man phantom were also obtained from the Monte Carlo simulations. This paper presents methods of the simulator and preliminary results. PMID:15899304

  19. Image appraisal for 2D and 3D electromagnetic inversion

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1998-04-01

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and model covariance matrices can be directly calculated. The columns of the model resolution matrix are shown to yield empirical estimates of the horizontal and vertical resolution throughout the imaging region. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how the estimated data noise maps into parameter error. When the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion), an iterative method can be applied to statistically estimate the model covariance matrix, as well as a regularization covariance matrix. The latter estimates the error in the inverted results caused by small variations in the regularization parameter. A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on a synthetic cross well EM data set.

  20. Multifractal analysis of 2D gray soil images

    NASA Astrophysics Data System (ADS)

    González-Torres, Ivan; Losada, Juan Carlos; Heck, Richard; Tarquis, Ana M.

    2015-04-01

    Soil structure, understood as the spatial arrangement of soil pores, is one of the key factors in soil modelling processes. Geometric properties of individual and interpretation of the morphological parameters of pores can be estimated from thin sections or 3D Computed Tomography images (Tarquis et al., 2003), but there is no satisfactory method to binarized these images and quantify the complexity of their spatial arrangement (Tarquis et al., 2008, Tarquis et al., 2009; Baveye et al., 2010). The objective of this work was to apply a multifractal technique, their singularities (α) and f(α) spectra, to quantify it without applying any threshold (Gónzalez-Torres, 2014). Intact soil samples were collected from four horizons of an Argisol, formed on the Tertiary Barreiras group of formations in Pernambuco state, Brazil (Itapirema Experimental Station). The natural vegetation of the region is tropical, coastal rainforest. From each horizon, showing different porosities and spatial arrangements, three adjacent samples were taken having a set of twelve samples. The intact soil samples were imaged using an EVS (now GE Medical. London, Canada) MS-8 MicroCT scanner with 45 μm pixel-1 resolution (256x256 pixels). Though some samples required paring to fit the 64 mm diameter imaging tubes, field orientation was maintained. References Baveye, P.C., M. Laba, W. Otten, L. Bouckaert, P. Dello, R.R. Goswami, D. Grinev, A. Houston, Yaoping Hu, Jianli Liu, S. Mooney, R. Pajor, S. Sleutel, A. Tarquis, Wei Wang, Qiao Wei, Mehmet Sezgin. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 157, 51-63, 2010. González-Torres, Iván. Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM, 2014. Tarquis, A.M., R.J. Heck, J.B. Grau; J. Fabregat, M.E. Sanchez and J.M. Antón. Influence of Thresholding in Mass and Entropy Dimension of 3-D

  1. Characterisation of the PSI whole body counter by radiographic imaging.

    PubMed

    Mayer, S; Boschung, M; Meier, K; Laedermann, J-P; Bochud, F O

    2011-03-01

    A joint project between the Paul Scherrer Institut (PSI) and the Institute of Radiation Physics was initiated to characterise the PSI whole body counter in detail through measurements and Monte Carlo simulation. Accurate knowledge of the detector geometry is essential for reliable simulations of human body phantoms filled with known activity concentrations. Unfortunately, the technical drawings provided by the manufacturer are often not detailed enough and sometimes the specifications do not agree with the actual set-up. Therefore, the exact detector geometry and the position of the detector crystal inside the housing were determined through radiographic images. X-rays were used to analyse the structure of the detector, and (60)Co radiography was employed to measure the core of the germanium crystal. Moreover, the precise axial alignment of the detector within its housing was determined through a series of radiographic images with different incident angles. The hence obtained information enables us to optimise the Monte Carlo geometry model and to perform much more accurate and reliable simulations. PMID:21044999

  2. A 2-D imaging heat-flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M. ); Beshears, D.L.; Sartory, W.K.; Tobin, K.W.; Williams, R.K. ); Turley, W.D. . Santa Barbara Operations)

    1991-07-01

    This report describes a new leadless two-dimensional imaging optical heat-flux gauge. The gauge is made by depositing arrays of thermorgraphic-phosphor (TP) spots onto the faces of a polymethylpentene is insulator. In the first section of the report, we describe several gauge configurations and their prototype realizations. A satisfactory configuration is an array of right triangles on each face that overlay to form squares when the gauge is viewed normal to the surface. The next section of the report treats the thermal conductivity of TPs. We set up an experiment using a comparative longitudinal heat-flow apparatus to measure the previously unknown thermal conductivity of these materials. The thermal conductivity of one TP, Y{sub 2}O{sub 3}:Eu, is 0.0137 W/cm{center dot}K over the temperature range from about 300 to 360 K. The theories underlying the time response of TP gauges and the imaging characteristics are discussed in the next section. Then we discuss several laboratory experiments to (1) demonstrate that the TP heat-flux gauge can be used in imaging applications; (2) obtain a quantum yield that enumerates what typical optical output signal amplitudes can be obtained from TP heat-flux gauges; and (3) determine whether LANL-designed intensified video cameras have sufficient sensitivity to acquire images from the heat-flux gauges. We obtained positive results from all the measurements. Throughout the text, we note limitations, areas where improvements are needed, and where further research is necessary. 12 refs., 25 figs., 4 tabs.

  3. Detector blur associated with MeV radiographic imaging systems

    NASA Astrophysics Data System (ADS)

    Baker, Stuart A.; Lutz, Stephen S.; Smalley, Duane D.; Brown, Kristina K.; Danielson, Jeremy; Haines, Todd J.; Howe, Russell A.; Mitchell, Stephen E.; Morgan, Dane; Schultz, Larry J.

    2015-08-01

    We are investigating scintillator performance in radiographic imaging systems at x-ray endpoint energies of 0.4 and 2.3 MeV in single-pulse x-ray machines. The effect of scene magnification and geometric setup will be examined along with differences between the detector response of radiation and optical scatter. Previous discussion has reviewed energy absorption and efficiency of various imaging scintillators with a 2.3 MeV x-ray source. The focal point of our study is to characterize scintillator blur to refine system models. Typical detector geometries utilize thin tiled LYSO:Ce (cerium-doped lutetium yttrium orthosilicate) assembled in a composite mosaic. Properties of individual tiles are being studied to understand system resolution effects present in the experimental setup. Comparison of two different experiments with different geometric configurations is examined. Results are then compared to different scene magnifications generated in a Monte-Carlo simulation.

  4. Imaging 2-D Structures With Receiver Functions Using Harmonic Stripping

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.

    2010-12-01

    I present a novel technique to image dipping and anisotropic structures using receiver functions. Receiver functions isolate phase conversions from interfaces close to the seismic station. Standard analysis assumes a quasi-flat layered structure and dampens arrivals from dipping interfaces and anisotropic layers, with attempts to extract information on such structures relying on cumbersome and nonunique forward modeling. I use a simple relationship between the radial and transverse component receiver function to detect dipping and anisotropic layers and map their depth and orientation. For dipping interfaces, layers with horizontal or plunging axis anisotropy, and point scatterers, the following relationships hold: After subtracting the azimuthally invariant portion of the radial receiver functions, the remaining signal is an azimuthally shifted version of the transverse receiver functions. The strike of the dipping interface or anisotropy is given by the azimuth of polarity reversals, and the type of structure can be inferred from the amount of phase shift between the components. For a known structure type, the phase shift between the two components provides pseudoevents from back-azimuths with little seismicity. The technique allows structural mapping at depth akin to geological mapping of rock fabric and dipping layers at the surface. It reduces complex wavefield effects to two simple and geologically meaningful parameters, similar to shear wave splitting. I demonstrate the method on the Wind River Thrust as well as other structures within the Transportable Array footprint.

  5. Imaging Excited State Dynamics with 2d Electronic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Engel, Gregory S.

    2012-06-01

    Excited states in the condensed phase have extremely high chemical potentials making them highly reactive and difficult to control. Yet in biology, excited state dynamics operate with exquisite precision driving solar light harvesting in photosynthetic complexes though excitonic transport and photochemistry through non-radiative relaxation to photochemical products. Optimized by evolution, these biological systems display manifestly quantum mechanical behaviors including coherent energy transfer, steering wavepacket trajectories through conical intersections and protection of long-lived quantum coherence. To image the underlying excited state dynamics, we have developed a new spectroscopic method allowing us to capture excitonic structure in real time. Through this method and other ultrafast multidimensional spectroscopies, we have captured coherent dynamics within photosynthetic antenna complexes. The data not only reveal how biological systems operate, but these same spectral signatures can be exploited to create new spectroscopic tools to elucidate the underlying Hamiltonian. New data on the role of the protein in photosynthetic systems indicates that the chromophores mix strongly with some bath modes within the system. The implications of this mixing for excitonic transport will be discussed along with prospects for transferring underlying design principles to synthetic systems.

  6. Vertical or horizontal orientation of foot radiographs does not affect image interpretation

    PubMed Central

    Ferran, Nicholas Antonio; Ball, Luke; Maffulli, Nicola

    2012-01-01

    Summary This study determined whether the orientation of dorsoplantar and oblique foot radiographs has an effect on radiograph interpretation. A test set of 50 consecutive foot radiographs were selected (25 with fractures, and 25 normal), and duplicated in the horizontal orientation. The images were randomly arranged, numbered 1 through 100, and analysed by six image interpreters. Vertical and horizontal area under the ROC curve, accuracy, sensitivity and specificity were calculated for each image interpreter. There was no significant difference in the area under the ROC curve, accuracy, sensitivity or specificity of image interpretation between images viewed in the vertical or horizontal orientation. While conventions for display of radiographs may help to improve the development of an efficient visual search strategy in trainees, and allow for standardisation of publication of radiographic images, variation from the convention in clinical practice does not appear to affect the sensitivity or specificity of image interpretation. PMID:23738310

  7. Known-component 3D-2D registration for image guidance and quality assurance in spine surgery pedicle screw placement

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Stayman, J. W.; De Silva, T.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Wolinsky, J.-P.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2015-03-01

    Purpose. To extend the functionality of radiographic / fluoroscopic imaging systems already within standard spine surgery workflow to: 1) provide guidance of surgical device analogous to an external tracking system; and 2) provide intraoperative quality assurance (QA) of the surgical product. Methods. Using fast, robust 3D-2D registration in combination with 3D models of known components (surgical devices), the 3D pose determination was solved to relate known components to 2D projection images and 3D preoperative CT in near-real-time. Exact and parametric models of the components were used as input to the algorithm to evaluate the effects of model fidelity. The proposed algorithm employs the covariance matrix adaptation evolution strategy (CMA-ES) to maximize gradient correlation (GC) between measured projections and simulated forward projections of components. Geometric accuracy was evaluated in a spine phantom in terms of target registration error at the tool tip (TREx), and angular deviation (TREΦ) from planned trajectory. Results. Transpedicle surgical devices (probe tool and spine screws) were successfully guided with TREx<2 mm and TREΦ <0.5° given projection views separated by at least >30° (easily accommodated on a mobile C-arm). QA of the surgical product based on 3D-2D registration demonstrated the detection of pedicle screw breach with TREx<1 mm, demonstrating a trend of improved accuracy correlated to the fidelity of the component model employed. Conclusions. 3D-2D registration combined with 3D models of known surgical components provides a novel method for near-real-time guidance and quality assurance using a mobile C-arm without external trackers or fiducial markers. Ongoing work includes determination of optimal views based on component shape and trajectory, improved robustness to anatomical deformation, and expanded preclinical testing in spine and intracranial surgeries.

  8. Recovering 3D tumor locations from 2D bioluminescence images and registration with CT images

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolei; Metaxas, Dimitris N.; Menon, Lata G.; Mayer-Kuckuk, Philipp; Bertino, Joseph R.; Banerjee, Debabrata

    2006-02-01

    In this paper, we introduce a novel and efficient algorithm for reconstructing the 3D locations of tumor sites from a set of 2D bioluminescence images which are taken by a same camera but after continually rotating the object by a small angle. Our approach requires a much simpler set up than those using multiple cameras, and the algorithmic steps in our framework are efficient and robust enough to facilitate its use in analyzing the repeated imaging of a same animal transplanted with gene marked cells. In order to visualize in 3D the structure of the tumor, we also co-register the BLI-reconstructed crude structure with detailed anatomical structure extracted from high-resolution microCT on a single platform. We present our method using both phantom studies and real studies on small animals.

  9. Application of an electronic image analyzer to dimensional measurements from neutron radiographs

    NASA Technical Reports Server (NTRS)

    Vary, A.; Bowles, K. J.

    1973-01-01

    Means of obtaining improved dimensional measurements from neutron radiographs of nuclear fuel elements are discussed. The use of video-electronic image analysis relative to edge definition in radiographic images is described. Based on this study, an edge definition criterion is proposed for overcoming image unsharpness effects in taking accurate diametral measurements from radiographs. An electronic density slicing method for automatic edge definition is described. Results of measurements made with video micrometry are compared with scanning microdensitometer and micrometric physical measurements. An image quality indicator for estimating photographic and geometric unsharpness is described.

  10. 2dx--user-friendly image processing for 2D crystals.

    PubMed

    Gipson, Bryant; Zeng, Xiangyan; Zhang, Zi Yan; Stahlberg, Henning

    2007-01-01

    Electron crystallography determines the structure of two-dimensional (2D) membrane protein crystals and other 2D crystal systems. Cryo-transmission electron microscopy records high-resolution electron micrographs, which require computer processing for three-dimensional structure reconstruction. We present a new software system 2dx, which is designed as a user-friendly, platform-independent software package for electron crystallography. 2dx assists in the management of an image-processing project, guides the user through the processing of 2D crystal images, and provides transparence for processing tasks and results. Algorithms are implemented in the form of script templates reminiscent of c-shell scripts. These templates can be easily modified or replaced by the user and can also execute modular stand-alone programs from the MRC software or from other image processing software packages. 2dx is available under the GNU General Public License at 2dx.org. PMID:17055742

  11. A 2-D orientation-adaptive prediction filter in lifting structures for image coding.

    PubMed

    Gerek, Omer N; Cetin, A Enis

    2006-01-01

    Lifting-style implementations of wavelets are widely used in image coders. A two-dimensional (2-D) edge adaptive lifting structure, which is similar to Daubechies 5/3 wavelet, is presented. The 2-D prediction filter predicts the value of the next polyphase component according to an edge orientation estimator of the image. Consequently, the prediction domain is allowed to rotate +/-45 degrees in regions with diagonal gradient. The gradient estimator is computationally inexpensive with additional costs of only six subtractions per lifting instruction, and no multiplications are required. PMID:16435541

  12. 2-D nonlinear IIR-filters for image processing - An exploratory analysis

    NASA Technical Reports Server (NTRS)

    Bauer, P. H.; Sartori, M.

    1991-01-01

    A new nonlinear IIR filter structure is introduced and its deterministic properties are analyzed. It is shown to be better suited for image processing applications than its linear shift-invariant counterpart. The new structure is obtained from causality inversion of a 2D quarterplane causal linear filter with respect to the two directions of propagation. It is demonstrated, that by using this design, a nonlinear 2D lowpass filter can be constructed, which is capable of effectively suppressing Gaussian or impulse noise without destroying important image information.

  13. Radiographic imaging and possible causes of a carpal varus deformity in an Asian elephant (Elephas maximus).

    PubMed

    Kaulfers, Carola; Geburek, Florian; Feige, Karsten; Knieriem, Andreas

    2010-12-01

    The carpal region of an Asian elephant (Elephas maximus) with a clinically obvious varus deformity of the carpus was examined radiographically with a standard portable x-ray unit. Several dorsopalmar radiographs were taken at a short source-to-image distance, moving the beam center along the carpus. To obtain a single image of the carpal region, radiographs were assembled digitally using a composite technique. Radiographs revealed a deviation of the limb's axis of approximately 25 degrees in the region of distal physis of the radius and ulna and a wedge-shaped epiphysis of the ulna. Healed physitis due to trauma and subluxation of the middle carpal joint are discussed as possible causes of the deformity. The radiographic technique described proved to be helpful to evaluate a relatively large anatomic area in the carpal region of an adult Asian elephant with a varus deformity and may be an alternative tool to previously described single image radiography. PMID:21370652

  14. COMPARISON BETWEEN INVERTED AND UNPROCESSED DIGITIZED RADIOGRAPHIC IMAGING IN PERIODONTAL BONE LOSS MEASUREMENTS

    PubMed Central

    Scaf, Gulnara; Morihisa, Olívia; Loffredo, Leonor de Castro Monteiro

    2007-01-01

    The advances in digital imaging technology in dentistry have provided an alternative to film-based radiography and have given new options to detect periodontal bone loss. The purpose of this study was to compare inverted and unprocessed digitized radiographic imaging in periodontal bone loss measurements. Thirty-five film-based periapical radiographs of patients suffering from moderate to advanced untreated periodontal bone loss associated to lower premolar and molars was selected from the department files, with 40 bone loss areas. The film-based radiographs were digitized with a flatbed scanner with a transparency and radiograph adapter used for transilluminating the radiograph imaging. Digitization was performed at 600 dpi and in gray scale. The images were digitized using Image Tool software by applying image inversion, that is, transformation of radiopaque structures into radiolucent structures and vice-versa. The digital data were saved as JPEG files. The images were displayed on a 15-inch and 24-bit video monitor under reduced room lighting. One calibrated examiner performed all radiographic measurements, three times, from the cementoenamel junction to the most apical extension of the bone loss, in both types of image (inverted and unprocessed). Brightness and contrast were adjusted according to the examiner's individual demand. Intraclass correlation coefficient was used to compare the measurements from both types of images. The means of radiographic measurements, in mm, for inverted and unprocessed digitized imaging were 6.4485 and 6.3790, respectively. The intraclass correlation coefficient was significant (0.99) The inverted and unprocessed digitized radiographic images were reliable and there was no difference in the diagnostic accuracy between these images regarding periodontal bone loss measurements. PMID:19089186

  15. Separation of image parts using 2-D parallel form recursive filters.

    PubMed

    Sivaramakrishna, R

    1996-01-01

    This correspondence deals with a new technique to separate objects or image parts in a composite image. A parallel form extension of a 2-D Steiglitz-McBride method is applied to the discrete cosine transform (DCT) of the image containing the objects that are to be separated. The obtained parallel form is the sum of several filters or systems, where the impulse response of each filter corresponds to the DCT of one object in the original image. Preliminary results on an image with two objects show that the algorithm works well, even in the case where one object occludes another as well as in the case of moderate noise. PMID:18285105

  16. Gated cardiac NMR imaging and 2D echocardiography in the detection of intracardial neoplasm

    SciTech Connect

    Go, R.T.; O'Donnell, J.K.; Salcedo, E.E.; Feiglin, D.H.; Underwood, D.A.; MacIntyre, W.J.; Meaney, T.F.

    1985-05-01

    Noninvasive 2D echocardiography has replaced contrast angiography as the procedure of choice in the diagnosis of intracardiac neoplasm. The purpose of this study was to determine whether intracardiac neoplasm can be detected as well by gated cardiac NMR. Four patients with known intracardiac neoplasm previously diagnosed by 2D echocardiography had gated cardiac NMR imaging using a superconductive 0.6 Tesla magnet. All patients were performed using a Tl weighted spin echo pulse sequence with a TE of 30 msec and TR of one R-R interval. Two-dimensional planar single or multiple slice techniques were used. In one patient, imaging at different times along the R-R interval were performed for cine display. The results of the present study show detection of the intracardiac neoplasm in all four cases by gated cardiac NMR imaging and the results were comparable to 2D echocardiography. The former imaging technique showed superior spatial resolution. Despite its early stage of development, gated cardiac NMR imaging appears at least equal to 2D echocardiography in the detection of intracardiac neoplasm. The availability of multislice coupled with multiframe acquisition techniques now being developed will provide a cinematic display that will be more effective in the display of the tumor in motion within the cardiac chamber involved and facilitate visualization of the relationship of the tumor to adjacent cardiac structures.

  17. 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Jin, Changzhu; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-12-01

    Visualizing and analyzing the morphological structure of carotid bifurcations are important for understanding the etiology of carotid atherosclerosis, which is a major cause of stroke and transient ischemic attack. For delineation of vasculatures in the carotid artery, ultrasound examinations have been widely employed because of a noninvasive procedure without ionizing radiation. However, conventional 2D ultrasound imaging has technical limitations in observing the complicated 3D shapes and asymmetric vasodilation of bifurcations. This study aims to propose image-processing techniques for better 3D reconstruction of a carotid bifurcation in a rat by using 2D cross-sectional ultrasound images. A high-resolution ultrasound imaging system with a probe centered at 40MHz was employed to obtain 2D transversal images. The lumen boundaries in each transverse ultrasound image were detected by using three different techniques; an ellipse-fitting, a correlation mapping to visualize the decorrelation of blood flow, and the ellipse-fitting on the correlation map. When the results are compared, the third technique provides relatively good boundary extraction. The incomplete boundaries of arterial lumen caused by acoustic artifacts are somewhat resolved by adopting the correlation mapping and the distortion in the boundary detection near the bifurcation apex was largely reduced by using the ellipse-fitting technique. The 3D lumen geometry of a carotid artery was obtained by volumetric rendering of several 2D slices. For the 3D vasodilatation of the carotid bifurcation, lumen geometries at the contraction and expansion states were simultaneously depicted at various view angles. The present 3D reconstruction methods would be useful for efficient extraction and construction of the 3D lumen geometries of carotid bifurcations from 2D ultrasound images. PMID:24965564

  18. A patient image-based technique to assess the image quality of clinical chest radiographs

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Samei, Ehsan; Luo, Hui; Dobbins, James T., III; McAdams, H. Page; Wang, Xiaohui; Sehnert, William J.; Barski, Lori; Foos, David H.

    2011-03-01

    Current clinical image quality assessment techniques mainly analyze image quality for the imaging system in terms of factors such as the capture system DQE and MTF, the exposure technique, and the particular image processing method and processing parameters. However, when assessing a clinical image, radiologists seldom refer to these factors, but rather examine several specific regions of the image to see whether the image is suitable for diagnosis. In this work, we developed a new strategy to learn and simulate radiologists' evaluation process on actual clinical chest images. Based on this strategy, a preliminary study was conducted on 254 digital chest radiographs (38 AP without grids, 35 AP with 6:1 ratio grids and 151 PA with 10:1 ratio grids). First, ten regional based perceptual qualities were summarized through an observer study. Each quality was characterized in terms of a physical quantity measured from the image, and as a first step, the three physical quantities in lung region were then implemented algorithmically. A pilot observer study was performed to verify the correlation between image perceptual qualities and physical quantitative qualities. The results demonstrated that our regional based metrics have promising performance for grading perceptual properties of chest radiographs.

  19. Comparative study on 3D-2D convertible integral imaging systems

    NASA Astrophysics Data System (ADS)

    Choi, Heejin; Kim, Joohwan; Kim, Yunhee; Lee, Byoungho

    2006-02-01

    In spite of significant improvements in three-dimensional (3D) display fields, the commercialization of a 3D-only display system is not achieved yet. The mainstream of display market is a high performance two-dimensional (2D) flat panel display (FPD) and the beginning of the high-definition (HD) broadcasting accelerates the opening of the golden age of HD FPDs. Therefore, a 3D display system needs to be able to display a 2D image with high quality. In this paper, two different 3D-2D convertible methods based on integral imaging are compared and categorized for its applications. One method uses a point light source array and a polymer-dispersed liquid crystal and one display panel. The other system adopts two display panels and a lens array. The former system is suitable for mobile applications while the latter is for home applications such as monitors and TVs.

  20. Tensor representation of color images and fast 2D quaternion discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2015-03-01

    In this paper, a general, efficient, split algorithm to compute the two-dimensional quaternion discrete Fourier transform (2-D QDFT), by using the special partitioning in the frequency domain, is introduced. The partition determines an effective transformation, or color image representation in the form of 1-D quaternion signals which allow for splitting the N × M-point 2-D QDFT into a set of 1-D QDFTs. Comparative estimates revealing the efficiency of the proposed algorithms with respect to the known ones are given. In particular, a proposed method of calculating the 2r × 2r -point 2-D QDFT uses 18N2 less multiplications than the well-known column-row method and method of calculation based on the symplectic decomposition. The proposed algorithm is simple to apply and design, which makes it very practical in color image processing in the frequency domain.

  1. Automatic 2D-to-3D image conversion using 3D examples from the internet

    NASA Astrophysics Data System (ADS)

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D

  2. Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE

    PubMed Central

    Wong, Stephanie K; Mobolaji-Iawal, Motunrayo; Arama, Leron; Cambe, Joy; Biso, Sylvia; Alie, Nadia; Fayad, Zahi A; Mani, Venkatesh

    2014-01-01

    AIM: To compare 3D Black Blood turbo spin echo (TSE) sampling perfection with application-optimized contrast using different flip angle evolution (SPACE) vs 2D TSE in evaluating atherosclerotic plaques in multiple vascular territories. METHODS: The carotid, aortic, and femoral arterial walls of 16 patients at risk for cardiovascular or atherosclerotic disease were studied using both 3D black blood magnetic resonance imaging SPACE and conventional 2D multi-contrast TSE sequences using a consolidated imaging approach in the same imaging session. Qualitative and quantitative analyses were performed on the images. Agreement of morphometric measurements between the two imaging sequences was assessed using a two-sample t-test, calculation of the intra-class correlation coefficient and by the method of linear regression and Bland-Altman analyses. RESULTS: No statistically significant qualitative differences were found between the 3D SPACE and 2D TSE techniques for images of the carotids and aorta. For images of the femoral arteries, however, there were statistically significant differences in all four qualitative scores between the two techniques. Using the current approach, 3D SPACE is suboptimal for femoral imaging. However, this may be due to coils not being optimized for femoral imaging. Quantitatively, in our study, higher mean total vessel area measurements for the 3D SPACE technique across all three vascular beds were observed. No significant differences in lumen area for both the right and left carotids were observed between the two techniques. Overall, a significant-correlation existed between measures obtained between the two approaches. CONCLUSION: Qualitative and quantitative measurements between 3D SPACE and 2D TSE techniques are comparable. 3D-SPACE may be a feasible approach in the evaluation of cardiovascular patients. PMID:24876923

  3. Parameterising root system growth models using 2D neutron radiography images

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel

    2013-04-01

    Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary

  4. 2D electron temperature diagnostic using soft x-ray imaging technique

    SciTech Connect

    Nishimura, K. Sanpei, A. Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S.; Ohdachi, S.; Mizuguchi, N.

    2014-03-15

    We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

  5. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2005-01-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  6. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2004-12-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  7. 3D multiple-point statistics simulation using 2D training images

    NASA Astrophysics Data System (ADS)

    Comunian, A.; Renard, P.; Straubhaar, J.

    2012-03-01

    One of the main issues in the application of multiple-point statistics (MPS) to the simulation of three-dimensional (3D) blocks is the lack of a suitable 3D training image. In this work, we compare three methods of overcoming this issue using information coming from bidimensional (2D) training images. One approach is based on the aggregation of probabilities. The other approaches are novel. One relies on merging the lists obtained using the impala algorithm from diverse 2D training images, creating a list of compatible data events that is then used for the MPS simulation. The other (s2Dcd) is based on sequential simulations of 2D slices constrained by the conditioning data computed at the previous simulation steps. These three methods are tested on the reproduction of two 3D images that are used as references, and on a real case study where two training images of sedimentary structures are considered. The tests show that it is possible to obtain 3D MPS simulations with at least two 2D training images. The simulations obtained, in particular those obtained with the s2Dcd method, are close to the references, according to a number of comparison criteria. The CPU time required to simulate with the method s2Dcd is from two to four orders of magnitude smaller than the one required by a MPS simulation performed using a 3D training image, while the results obtained are comparable. This computational efficiency and the possibility of using MPS for 3D simulation without the need for a 3D training image facilitates the inclusion of MPS in Monte Carlo, uncertainty evaluation, and stochastic inverse problems frameworks.

  8. Snapshot 2D tomography via coded aperture x-ray scatter imaging

    PubMed Central

    MacCabe, Kenneth P.; Holmgren, Andrew D.; Tornai, Martin P.; Brady, David J.

    2015-01-01

    This paper describes a fan beam coded aperture x-ray scatter imaging system which acquires a tomographic image from each snapshot. This technique exploits cylindrical symmetry of the scattering cross section to avoid the scanning motion typically required by projection tomography. We use a coded aperture with a harmonic dependence to determine range, and a shift code to determine cross-range. Here we use a forward-scatter configuration to image 2D objects and use serial exposures to acquire tomographic video of motion within a plane. Our reconstruction algorithm also estimates the angular dependence of the scattered radiance, a step toward materials imaging and identification. PMID:23842254

  9. Combining 2D synchrosqueezed wave packet transform with optimization for crystal image analysis

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Wirth, Benedikt; Yang, Haizhao

    2016-04-01

    We develop a variational optimization method for crystal analysis in atomic resolution images, which uses information from a 2D synchrosqueezed transform (SST) as input. The synchrosqueezed transform is applied to extract initial information from atomic crystal images: crystal defects, rotations and the gradient of elastic deformation. The deformation gradient estimate is then improved outside the identified defect region via a variational approach, to obtain more robust results agreeing better with the physical constraints. The variational model is optimized by a nonlinear projected conjugate gradient method. Both examples of images from computer simulations and imaging experiments are analyzed, with results demonstrating the effectiveness of the proposed method.

  10. A comparison of 2D and 3D digital image correlation for a membrane under inflation

    NASA Astrophysics Data System (ADS)

    Murienne, Barbara J.; Nguyen, Thao D.

    2016-02-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions.

  11. Method for producing three-dimensional real image using radiographic perspective views of an object

    DOEpatents

    Ellingson, William A.; Read, Alvin A.

    1976-02-24

    A sequence of separate radiographs are made by indexing a radiation source along a known path relative to the object under study. Thus, each radiograph contains information from a different perspective. A holographically-recorded image is then made from each radiographic perspective by exact re-tracing of the rays through each radiographic perspective such that the re-tracing duplicates the geometry under which it was originally prepared. The holographically-stored images are simultaneously illuminated with the conjugate of the reference beam used in the original recordings. The result is the generation of a three-dimensional real image of the object such that a light-sensitive device can be moved to view the real image along any desired surface with the optical information in all other surfaces greatly suppressed.

  12. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  13. Using Membrane Computing for Obtaining Homology Groups of Binary 2D Digital Images

    NASA Astrophysics Data System (ADS)

    Christinal, Hepzibah A.; Díaz-Pernil, Daniel; Jurado, Pedro Real

    Membrane Computing is a new paradigm inspired from cellular communication. Until now, P systems have been used in research areas like modeling chemical process, several ecosystems, etc. In this paper, we apply P systems to Computational Topology within the context of the Digital Image. We work with a variant of P systems called tissue-like P systems to calculate in a general maximally parallel manner the homology groups of 2D images. In fact, homology computation for binary pixel-based 2D digital images can be reduced to connected component labeling of white and black regions. Finally, we use a software called Tissue Simulator to show with some examples how these systems work.

  14. A faster method for 3D/2D medical image registration--a simulation study.

    PubMed

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels Claudius; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter

    2003-08-21

    3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(degrees) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(degrees) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications. PMID:12974581

  15. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    SciTech Connect

    Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2015-11-15

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3D image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and

  16. Localization and tracking of aortic valve prosthesis in 2D fluoroscopic image sequences

    NASA Astrophysics Data System (ADS)

    Karar, M.; Chalopin, C.; Merk, D. R.; Jacobs, S.; Walther, T.; Burgert, O.; Falk, V.

    2009-02-01

    This paper presents a new method for localization and tracking of the aortic valve prosthesis (AVP) in 2D fluoroscopic image sequences to assist the surgeon to reach the safe zone of implantation during transapical aortic valve implantation. The proposed method includes four main steps: First, the fluoroscopic images are preprocessed using a morphological reconstruction and an adaptive Wiener filter to enhance the AVP edges. Second, a target window, defined by a user on the first image of the sequences which includes the AVP, is tracked in all images using a template matching algorithm. In a third step the corners of the AVP are extracted based on the AVP dimensions and orientation in the target window. Finally, the AVP model is generated in the fluoroscopic image sequences. Although the proposed method is not yet validated intraoperatively, it has been applied to different fluoroscopic image sequences with promising results.

  17. 2D Ultrasound and 3D MR Image Registration of the Prostate for Brachytherapy Surgical Navigation

    PubMed Central

    Zhang, Shihui; Jiang, Shan; Yang, Zhiyong; Liu, Ranlu

    2015-01-01

    Abstract Two-dimensional (2D) ultrasound (US) images are widely used in minimally invasive prostate procedure for its noninvasive nature and convenience. However, the poor quality of US image makes it difficult to be used as guiding utility. To improve the limitation, we propose a multimodality image guided navigation module that registers 2D US images with magnetic resonance imaging (MRI) based on high quality preoperative models. A 2-step spatial registration method is used to complete the procedure which combines manual alignment and rapid mutual information (MI) optimize algorithm. In addition, a 3-dimensional (3D) reconstruction model of prostate with surrounding organs is employed to combine with the registered images to conduct the navigation. Registration accuracy is measured by calculating the target registration error (TRE). The results show that the error between the US and preoperative MR images of a polyvinyl alcohol hydrogel model phantom is 1.37 ± 0.14 mm, with a similar performance being observed in patient experiments. PMID:26448009

  18. Investigation of the effect of subcutaneous fat on image quality performance of 2D conventional imaging and tissue harmonic imaging.

    PubMed

    Browne, Jacinta E; Watson, Amanda J; Hoskins, Peter R; Elliott, Alex T

    2005-07-01

    Tissue harmonic imaging (THI) has been reported to improve contrast resolution, tissue differentiation and overall image quality in clinical examinations. However, a study carried out previously by the authors (Brown et al. 2004) found improvements only in spatial resolution and not in contrast resolution or anechoic target detection. This result may have been due to the homogeneity of the phantom. Biologic tissues are generally inhomogeneous and THI has been reported to improve image quality in the presence of large amounts of subcutaneous fat. The aims of the study were to simulate the distortion caused by subcutaneous fat to image quality and thus investigate further the improvements reported in anechoic target detection and contrast resolution performance with THI compared with 2D conventional imaging. In addition, the effect of three different types of fat-mimicking layer on image quality was examined. The abdominal transducer of two ultrasound scanners with 2D conventional imaging and THI were tested, the 4C1 (Aspen-Acuson, Siemens Co., CA, USA) and the C5-2 (ATL HDI 5000, ATL/Philips, Amsterdam, The Netherlands). An ex vivo subcutaneous pig fat layer was used to replicate beam distortion and phase aberration seen clinically in the presence of subcutaneous fat. Three different types of fat-mimicking layers (olive oil, lard and lard with fish oil capsules) were evaluated. The subcutaneous pig fat layer demonstrated an improvement in anechoic target detection with THI compared with 2D conventional imaging, but no improvement was demonstrated in contrast resolution performance; a similar result was found in a previous study conducted by this research group (Brown et al. 2004) while using this tissue-mimicking phantom without a fat layer. Similarly, while using the layers of olive oil, lard and lard with fish oil capsules, improvements due to THI were found in anechoic target detection but, again, no improvements were found for contrast resolution for any of the

  19. Comparison of radiographic image characteristics of Brånemark and IMZ implants.

    PubMed

    Sewerin, I P

    1991-01-01

    A Brånemark standard titanium implant and an IMZ plasma flame spray-coated implant were radiographed experimentally under standardized circumstances. Angulations in relation to film plane and central X-ray as well as rotations around the implant's longitudinal axis were varied. The influence of implant architecture on image density and image pattern was analyzed and images of the two types of implants were compared. The Brånemark implant is asymmetric and exhibits only radiographic burnout in its apical area. The 4 vertical apical cuts cause very distracting images and leave the impression that the implant is conical. It is possible to evaluate angulations with great accuracy from the thread profile, but there are limited possibilities for estimation of rotational stages. The IMZ implant shows symmetric images in any projection. The 4 vertical slits cause a disturbing burnout in the central part of the implant in certain views, and radiographic images are very inconstant. Possibilities of estimating angulation and rotation are varying. Differences in radiographic image characteristics are supposed to influence diagnostic yield as they affect the possibilities of identifying osseointegration radiographically and of controlling image identity in serial radiography. PMID:1843469

  20. Preliminary work of real-time ultrasound imaging system for 2-D array transducer.

    PubMed

    Li, Xu; Yang, Jiali; Ding, Mingyue; Yuchi, Ming

    2015-01-01

    Ultrasound (US) has emerged as a non-invasive imaging modality that can provide anatomical structure information in real time. To enable the experimental analysis of new 2-D array ultrasound beamforming methods, a pre-beamformed parallel raw data acquisition system was developed for 3-D data capture of 2D array transducer. The transducer interconnection adopted the row-column addressing (RCA) scheme, where the columns and rows were active in sequential for transmit and receive events, respectively. The DAQ system captured the raw data in parallel and the digitized data were fed through the field programmable gate array (FPGA) to implement the pre-beamforming. Finally, 3-D images were reconstructed through the devised platform in real-time. PMID:26405923

  1. Interpretation of Line-Integrated Signals from 2-D Phase Contrast Imaging on LHD

    NASA Astrophysics Data System (ADS)

    Michael, Clive; Tanaka, Kenji; Vyacheslavov, Leonid; Sanin, Andrei; Kawahata, Kazuo; Okajima, S.

    Two dimensional (2D) phase contrast imaging (PCI) is an excellent method to measure core and edge turbulence with good spatial resolution (Δρ ˜ 0.1). General analytical consideration is given to the signal interpretation of the line-integrated signals, with specific application to images from 2D PCI. It is shown that the Fourier components of fluctuations having any non-zero component propagating along the line of sight are not detected. The ramifications of this constraint are discussed, including consideration of the angle between the sight line and flux surface normal. In the experimental geometry, at the point where the flux surfaces are tangent to the sight line, it is shown that it may be possible to detect large poloidally extended (though with small radial wavelength) structures, such as GAMS. The spatial localization technique of this diagnostic is illustrated with experimental data.

  2. Radiometer uncertainty equation research of 2D planar scanning PMMW imaging system

    NASA Astrophysics Data System (ADS)

    Hu, Taiyang; Xu, Jianzhong; Xiao, Zelong

    2009-07-01

    With advances in millimeter-wave technology, passive millimeter-wave (PMMW) imaging technology has received considerable concerns, and it has established itself in a wide range of military and civil practical applications, such as in the areas of remote sensing, blind landing, precision guidance and security inspection. Both the high transparency of clothing at millimeter wavelengths and the spatial resolution required to generate adequate images combine to make imaging at millimeter wavelengths a natural approach of screening people for concealed contraband detection. And at the same time, the passive operation mode does not present a safety hazard to the person who is under inspection. Based on the description to the design and engineering implementation of a W-band two-dimensional (2D) planar scanning imaging system, a series of scanning methods utilized in PMMW imaging are generally compared and analyzed, followed by a discussion on the operational principle of the mode of 2D planar scanning particularly. Furthermore, it is found that the traditional radiometer uncertainty equation, which is derived from a moving platform, does not hold under this 2D planar scanning mode due to the fact that there is no absolute connection between the scanning rates in horizontal direction and vertical direction. Consequently, an improved radiometer uncertainty equation is carried out in this paper, by means of taking the total time spent on scanning and imaging into consideration, with the purpose of solving the problem mentioned above. In addition, the related factors which affect the quality of radiometric images are further investigated under the improved radiometer uncertainty equation, and ultimately some original results are presented and analyzed to demonstrate the significance and validity of this new methodology.

  3. Robust initialization of 2D-3D image registration using the projection-slice theorem and phase correlation

    SciTech Connect

    Bom, M. J. van der; Bartels, L. W.; Gounis, M. J.; Homan, R.; Timmer, J.; Viergever, M. A.; Pluim, J. P. W.

    2010-04-15

    Purpose: The image registration literature comprises many methods for 2D-3D registration for which accuracy has been established in a variety of applications. However, clinical application is limited by a small capture range. Initial offsets outside the capture range of a registration method will not converge to a successful registration. Previously reported capture ranges, defined as the 95% success range, are in the order of 4-11 mm mean target registration error. In this article, a relatively computationally inexpensive and robust estimation method is proposed with the objective to enlarge the capture range. Methods: The method uses the projection-slice theorem in combination with phase correlation in order to estimate the transform parameters, which provides an initialization of the subsequent registration procedure. Results: The feasibility of the method was evaluated by experiments using digitally reconstructed radiographs generated from in vivo 3D-RX data. With these experiments it was shown that the projection-slice theorem provides successful estimates of the rotational transform parameters for perspective projections and in case of translational offsets. The method was further tested on ex vivo ovine x-ray data. In 95% of the cases, the method yielded successful estimates for initial mean target registration errors up to 19.5 mm. Finally, the method was evaluated as an initialization method for an intensity-based 2D-3D registration method. The uninitialized and initialized registration experiments had success rates of 28.8% and 68.6%, respectively. Conclusions: The authors have shown that the initialization method based on the projection-slice theorem and phase correlation yields adequate initializations for existing registration methods, thereby substantially enlarging the capture range of these methods.

  4. Imaging collective magnonic modes in 2D arrays of magnetic nanoelements.

    PubMed

    Kruglyak, V V; Keatley, P S; Neudert, A; Hicken, R J; Childress, J R; Katine, J A

    2010-01-15

    We have used time resolved scanning Kerr microscopy to image collective spin wave modes within a 2D array of magnetic nanoelements. Long wavelength spin waves are confined within the array as if it was a continuous element of the same size but with effective material properties determined by the structure of the array and its constituent nanoelements. The array is an example of a magnonic metamaterial, the demonstration of which provides new opportunities within the emerging field of magnonics. PMID:20366622

  5. Imaging Collective Magnonic Modes in 2D Arrays of Magnetic Nanoelements

    NASA Astrophysics Data System (ADS)

    Kruglyak, V. V.; Keatley, P. S.; Neudert, A.; Hicken, R. J.; Childress, J. R.; Katine, J. A.

    2010-01-01

    We have used time resolved scanning Kerr microscopy to image collective spin wave modes within a 2D array of magnetic nanoelements. Long wavelength spin waves are confined within the array as if it was a continuous element of the same size but with effective material properties determined by the structure of the array and its constituent nanoelements. The array is an example of a magnonic metamaterial, the demonstration of which provides new opportunities within the emerging field of magnonics.

  6. Gender and ethnicity specific generic elastic models from a single 2D image for novel 2D pose face synthesis and recognition.

    PubMed

    Heo, Jingu; Savvides, Marios

    2012-12-01

    In this paper, we propose a novel method for generating a realistic 3D human face from a single 2D face image for the purpose of synthesizing new 2D face images at arbitrary poses using gender and ethnicity specific models. We employ the Generic Elastic Model (GEM) approach, which elastically deforms a generic 3D depth-map based on the sparse observations of an input face image in order to estimate the depth of the face image. Particularly, we show that Gender and Ethnicity specific GEMs (GE-GEMs) can approximate the 3D shape of the input face image more accurately, achieving a better generalization of 3D face modeling and reconstruction compared to the original GEM approach. We qualitatively validate our method using publicly available databases by showing each reconstructed 3D shape generated from a single image and new synthesized poses of the same person at arbitrary angles. For quantitative comparisons, we compare our synthesized results against 3D scanned data and also perform face recognition using synthesized images generated from a single enrollment frontal image. We obtain promising results for handling pose and expression changes based on the proposed method. PMID:22201062

  7. Fully automatic detection of the vertebrae in 2D CT images

    NASA Astrophysics Data System (ADS)

    Graf, Franz; Kriegel, Hans-Peter; Schubert, Matthias; Strukelj, Michael; Cavallaro, Alexander

    2011-03-01

    Knowledge about the vertebrae is a valuable source of information for several annotation tasks. In recent years, the research community spent a considerable effort for detecting, segmenting and analyzing the vertebrae and the spine in various image modalities like CT or MR. Most of these methods rely on prior knowledge like the location of the vertebrae or other initial information like the manual detection of the spine. Furthermore, the majority of these methods require a complete volume scan. With the existence of use cases where only a single slice is available, there arises a demand for methods allowing the detection of the vertebrae in 2D images. In this paper, we propose a fully automatic and parameterless algorithm for detecting the vertebrae in 2D CT images. Our algorithm starts with detecting candidate locations by taking the density of bone-like structures into account. Afterwards, the candidate locations are extended into candidate regions for which certain image features are extracted. The resulting feature vectors are compared to a sample set of previously annotated and processed images in order to determine the best candidate region. In a final step, the result region is readjusted until convergence to a locally optimal position. Our new method is validated on a real world data set of more than 9 329 images of 34 patients being annotated by a clinician in order to provide a realistic ground truth.

  8. Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone

    NASA Astrophysics Data System (ADS)

    Amouriq, Yves; Evenou, Pierre; Arlicot, Aurore; Normand, Nicolas; Layrolle, Pierre; Weiss, Pierre; Guédon, Jean-Pierre

    2010-03-01

    For some authors trabecular bone is highly visible in intraoral radiographs. For other authors, the observed intrabony trabecular pattern is a representation of only the endosteal surface of cortical bone, not of intermedullary striae. The purpose of this preliminary study was to investigate the true anatomical structures that are visible in routine dental radiographs and classically denoted trabecular bone. This is a major point for bone texture analysis on radiographs. Computed radiography (CR) images of dog mandible section in molar region were compared with simulations calculated from high-resolution micro-CT volumes. Calculated simulations were obtained using the Mojette Transform. By digitally editing the CT volume, the simulations were separated into trabecular and cortical components into a region of interest. Different images were compared and correlated, some bone micro-architecture parameters calculated. A high correlation was found between computed radiographs and calculated simulations from micro-CT. The Mojette transform was successful to obtain high quality images. Cortical bone did not contribute to change in a major way simulated images. These first results imply that intrabony trabecular pattern observed on radiographs can not only be a representation of the cortical bone endosteal surface and that trabecular bone is highly visible in intraoral radiographs.

  9. Image restoration using 2D autoregressive texture model and structure curve construction

    NASA Astrophysics Data System (ADS)

    Voronin, V. V.; Marchuk, V. I.; Petrosov, S. P.; Svirin, I.; Agaian, S.; Egiazarian, K.

    2015-05-01

    In this paper an image inpainting approach based on the construction of a composite curve for the restoration of the edges of objects in an image using the concepts of parametric and geometric continuity is presented. It is shown that this approach allows to restore the curved edges and provide more flexibility for curve design in damaged image by interpolating the boundaries of objects by cubic splines. After edge restoration stage, a texture restoration using 2D autoregressive texture model is carried out. The image intensity is locally modeled by a first spatial autoregressive model with support in a strongly causal prediction region on the plane. Model parameters are estimated by Yule-Walker method. Several examples considered in this paper show the effectiveness of the proposed approach for large objects removal as well as recovery of small regions on several test images.

  10. Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Li, Haolin; Wang, Di; Pan, Shumin; Zhou, Zhihong

    2015-05-01

    Most of the existing image encryption techniques bear security risks for taking linear transform or suffer encryption data expansion for adopting nonlinear transformation directly. To overcome these difficulties, a novel image compression-encryption scheme is proposed by combining 2D compressive sensing with nonlinear fractional Mellin transform. In this scheme, the original image is measured by measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the nonlinear fractional Mellin transform. The measurement matrices are controlled by chaos map. The Newton Smoothed l0 Norm (NSL0) algorithm is adopted to obtain the decryption image. Simulation results verify the validity and the reliability of this scheme.

  11. Multiple-perturbation two-dimensional (2D) correlation analysis for spectroscopic imaging data

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Hashimoto, Kosuke; Sato, Hidetoshi; Kanematsu, Wataru; Noda, Isao

    2014-07-01

    A series of data analysis techniques, including multiple-perturbation two-dimensional (2D) correlation spectroscopy and kernel analysis, were used to demonstrate how these techniques can sort out convoluted information content underlying spectroscopic imaging data. A set of Raman spectra of polymer blends consisting of poly(methyl methacrylate) (PMMA) and polyethylene glycol (PEG) were collected under varying spatial coordinates and subjected to multiple-perturbation 2D correlation analysis and kernel analysis by using the coordinates as perturbation variables. Cross-peaks appearing in asynchronous correlation spectra indicated that the change in the spectral intensity of the free Cdbnd O band of the PMMA band occurs before that of the Cdbnd O⋯Hsbnd O band arising from the molecular interaction between PMMA and PEG. Kernel matrices, generated by carrying out 2D correlation analysis on principal component analysis (PCA) score images, revealed subtle but important discrepancy between the patterns of the images, providing additional interpretation to the PCA in an intuitively understandable manner. Consequently, the results provided apparent spectroscopic evidence that PMMA and PEG in the blends are partially miscible at the molecular level, allowing the PMMAs to respond to the perturbations in different manner.

  12. Filters in 2D and 3D Cardiac SPECT Image Processing

    PubMed Central

    Ploussi, Agapi; Synefia, Stella

    2014-01-01

    Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP) analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast. PMID:24804144

  13. Foreground marker controlled watershed on digital radiographic image for weld discontinuity detection

    NASA Astrophysics Data System (ADS)

    Abd Halim, Suhaila; Zahid, Akhma; Abdul Razak, Nurul Syafinaz; Ibrahim, Arsmah; Manurung, Yupiter HP; Jayes, Mohd Idris

    2013-04-01

    Radiography is one of the most common and widely used non-destructive testing (NDT) technique in inspecting weld discontinuity in welded joints. Conventionally, radiography inspector is requires to do the inspection analysis manually on weld discontinuity based on visual characteristics such as location, shape, length and density. The results can be very subjective, time consuming and inconsistent. Hence, semi-automated inspection using digital image processing and segmentation technique can be applied for weld discontinuity detection. The goal of this work is to detect the weld discontinuity on digital radiographic image using Foreground Marker Controlled Watershed. It is usually implemented in image processing because it always generates closed contour for each region in the image. In this paper, image enhancement on radiographic image is aim to remove image noise and improve image contrast. Then, marker controlled watershed with foreground markers is applied on the image to detect the discontinuity. The accuracy of the technique is evaluated using Receiver Operating Characteristic (ROC) curve. The accuracy of the technique has been compared with the ground truth and the result shows that the accuracy is 67% and area under the curve is 0.7134. The application of image processing technique in detecting weld discontinuity is able to assist radiographer to improve the inconsistent results in evaluating the radiographic image.

  14. Image denoising with 2D scale-mixing complex wavelet transforms.

    PubMed

    Remenyi, Norbert; Nicolis, Orietta; Nason, Guy; Vidakovic, Brani

    2014-12-01

    This paper introduces an image denoising procedure based on a 2D scale-mixing complex-valued wavelet transform. Both the minimal (unitary) and redundant (maximum overlap) versions of the transform are used. The covariance structure of white noise in wavelet domain is established. Estimation is performed via empirical Bayesian techniques, including versions that preserve the phase of the complex-valued wavelet coefficients and those that do not. The new procedure exhibits excellent quantitative and visual performance, which is demonstrated by simulation on standard test images. PMID:25312931

  15. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  16. High-performance GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in radiation oncology

    PubMed Central

    Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang

    2012-01-01

    A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512 × 512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches – namely so-called wobbled splatting – to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. PMID:21782399

  17. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  18. Non-rigid target tracking in 2D ultrasound images using hierarchical grid interpolation

    NASA Astrophysics Data System (ADS)

    Royer, Lucas; Babel, Marie; Krupa, Alexandre

    2014-03-01

    In this paper, we present a new non-rigid target tracking method within 2D ultrasound (US) image sequence. Due to the poor quality of US images, the motion tracking of a tumor or cyst during needle insertion is considered as an open research issue. Our approach is based on well-known compression algorithm in order to make our method work in real-time which is a necessary condition for many clinical applications. Toward that end, we employed a dedicated hierarchical grid interpolation algorithm (HGI) which can represent a large variety of deformations compared to other motion estimation algorithms such as Overlapped Block Motion Compensation (OBMC), or Block Motion Algorithm (BMA). The sum of squared difference of image intensity is selected as similarity criterion because it provides a good trade-off between computation time and motion estimation quality. Contrary to the others methods proposed in the literature, our approach has the ability to distinguish both rigid and non-rigid motions which are observed in ultrasound image modality. Furthermore, this technique does not take into account any prior knowledge about the target, and limits the user interaction which usually complicates the medical validation process. Finally, a technique aiming at identifying the main phases of a periodic motion (e.g. breathing motion) is introduced. The new approach has been validated from 2D ultrasound images of real human tissues which undergo rigid and non-rigid deformations.

  19. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  20. Deep Tissue Photoacoustic Imaging Using a Miniaturized 2-D Capacitive Micromachined Ultrasonic Transducer Array

    PubMed Central

    Kothapalli, Sri-Rajasekhar; Ma, Te-Jen; Vaithilingam, Srikant; Oralkan, Ömer

    2014-01-01

    In this paper, we demonstrate 3-D photoacoustic imaging (PAI) of light absorbing objects embedded as deep as 5 cm inside strong optically scattering phantoms using a miniaturized (4 mm × 4 mm × 500 µm), 2-D capacitive micromachined ultrasonic transducer (CMUT) array of 16 × 16 elements with a center frequency of 5.5 MHz. Two-dimensional tomographic images and 3-D volumetric images of the objects placed at different depths are presented. In addition, we studied the sensitivity of CMUT-based PAI to the concentration of indocyanine green dye at 5 cm depth inside the phantom. Under optimized experimental conditions, the objects at 5 cm depth can be imaged with SNR of about 35 dB and a spatial resolution of approximately 500 µm. Results demonstrate that CMUTs with integrated front-end amplifier circuits are an attractive choice for achieving relatively high depth sensitivity for PAI. PMID:22249594

  1. A software tool for automatic classification and segmentation of 2D/3D medical images

    NASA Astrophysics Data System (ADS)

    Strzelecki, Michal; Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur

    2013-02-01

    Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.

  2. A two-step Hilbert transform method for 2D image reconstruction.

    PubMed

    Noo, Frédéric; Clackdoyle, Rolf; Pack, Jed D

    2004-09-01

    The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for performing the DBP step in fanbeam geometry are also presented. The advantage of this two-step Hilbert transform approach is that in certain situations, regions of interest (ROIs) can be reconstructed from truncated projection data. Simulation results are presented that illustrate very similar reconstructed image quality using the new method compared to standard filtered backprojection, and that show the capability to correctly handle truncated projections. In particular, a simulation is presented of a wide patient whose projections are truncated laterally yet for which highly accurate ROI reconstruction is obtained. PMID:15470913

  3. 2D dose distribution images of a hybrid low field MRI-γ detector

    NASA Astrophysics Data System (ADS)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  4. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle

    PubMed Central

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  5. Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong

    2016-08-01

    Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.

  6. A 3D Feature Descriptor Recovered from a Single 2D Palmprint Image.

    PubMed

    Zheng, Qian; Kumar, Ajay; Pan, Gang

    2016-06-01

    Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a new feature descriptor, referred to as DoN, for the 2D palmprint matching. The descriptor is extracted for each point on the palmprint. It is based on the ordinal measure which partially describes the difference of the neighboring points' normal vectors. DoN has at least two advantages: 1) it describes the 3D information, which is expected to be highly stable under commonly occurring illumination variations during contactless imaging; 2) the size of DoN for each point is only one bit, which is computationally simple to extract, easy to match, and efficient to storage. We show that such 3D information can be extracted from a single 2D palmprint image. The analysis for the effectiveness of ordinal measure for palmprint matching is also provided. Four publicly available 2D palmprint databases are used to evaluate the effectiveness of DoN, both for identification and the verification. Our method on all these databases achieves the state-of-the-art performance. PMID:27164564

  7. Exploring the feasibility of traditional image querying tasks for industrial radiographs

    NASA Astrophysics Data System (ADS)

    Bray, Iliana E.; Tsai, Stephany J.; Jimenez, Edward S.

    2015-08-01

    Although there have been great strides in object recognition with optical images (photographs), there has been comparatively little research into object recognition for X-ray radiographs. Our exploratory work contributes to this area by creating an object recognition system designed to recognize components from a related database of radiographs. Object recognition for radiographs must be approached differently than for optical images, because radiographs have much less color-based information to distinguish objects, and they exhibit transmission overlap that alters perceived object shapes. The dataset used in this work contained more than 55,000 intermixed radiographs and photographs, all in a compressed JPEG form and with multiple ways of describing pixel information. For this work, a robust and efficient system is needed to combat problems presented by properties of the X-ray imaging modality, the large size of the given database, and the quality of the images contained in said database. We have explored various pre-processing techniques to clean the cluttered and low-quality images in the database, and we have developed our object recognition system by combining multiple object detection and feature extraction methods. We present the preliminary results of the still-evolving hybrid object recognition system.

  8. Registration of 2D to 3D joint images using phase-based mutual information

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Abugharbieh, Rafeef; Pickering, Mark; Scarvell, Jennie; Smith, Paul

    2007-03-01

    Registration of two dimensional to three dimensional orthopaedic medical image data has important applications particularly in the area of image guided surgery and sports medicine. Fluoroscopy to computer tomography (CT) registration is an important case, wherein digitally reconstructed radiographs derived from the CT data are registered to the fluoroscopy data. Traditional registration metrics such as intensity-based mutual information (MI) typically work well but often suffer from gross misregistration errors when the image to be registered contains a partial view of the anatomy visible in the target image. Phase-based MI provides a robust alternative similarity measure which, in addition to possessing the general robustness and noise immunity that MI provides, also employs local phase information in the registration process which makes it less susceptible to the aforementioned errors. In this paper, we propose using the complex wavelet transform for computing image phase information and incorporating that into a phase-based MI measure for image registration. Tests on a CT volume and 6 fluoroscopy images of the knee are presented. The femur and the tibia in the CT volume were individually registered to the fluoroscopy images using intensity-based MI, gradient-based MI and phase-based MI. Errors in the coordinates of fiducials present in the bone structures were used to assess the accuracy of the different registration schemes. Quantitative results demonstrate that the performance of intensity-based MI was the worst. Gradient-based MI performed slightly better, while phase-based MI results were the best consistently producing the lowest errors.

  9. 2D Imaging in a Lightweight Portable MRI Scanner without Gradient Coils

    PubMed Central

    Cooley, Clarissa Zimmerman; Stockmann, Jason P.; Armstrong, Brandon D.; Sarracanie, Mathieu; Lev, Michael H.; Rosen, Matthew S.; Wald, Lawrence L.

    2014-01-01

    Purpose As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as Intensive Care Units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. Methods We construct and validate a truly portable (<100kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating Spatial Encoding Magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed 2D image. Multiple receive channels are used to disambiguate the non-bijective encoding field. Results The system is validated with experimental images of 2D test phantoms. Similar to other non-linear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. Conclusion The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. PMID:24668520

  10. Volumetric synthetic aperture imaging with a piezoelectric 2D row-column probe

    NASA Astrophysics Data System (ADS)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann; Beers, Christopher; Lei, Anders; Stuart, Matthias Bo; Nikolov, Svetoslav Ivanov; Thomsen, Erik Vilain; Jensen, Jørgen Arendt

    2016-04-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addressed transducer array. Utilizing single element transmit events, a volume rate of 90 Hz down to 14 cm deep is achieved. Data are obtained using the experimental ultrasound scanner SARUS with a 70 MHz sampling frequency and beamformed using a delay-and-sum (DAS) approach. A signal-to-noise ratio of up to 32 dB is measured on the beamformed images of a tissue mimicking phantom with attenuation of 0.5 dB cm-1 MHz-1, from the surface of the probe to the penetration depth of 300λ. Measured lateral resolution as Full-Width-at-Half-Maximum (FWHM) is between 4λ and 10λ for 18% to 65% of the penetration depth from the surface of the probe. The averaged contrast is 13 dB for the same range. The imaging performance assessment results may represent a reference guide for possible applications of such an array in different medical fields.

  11. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    NASA Astrophysics Data System (ADS)

    Ambroziński, Łukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2015-03-01

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays' elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  12. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    SciTech Connect

    Ambroziński, Łukasz Stepinski, Tadeusz Uhl, Tadeusz

    2015-03-31

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array’s aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays’ elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  13. Adaptive optofluidic lens(es) for switchable 2D and 3D imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hanyang; Wei, Kang; Zhao, Yi

    2016-03-01

    The stereoscopic image is often captured using dual cameras arranged side-by-side and optical path switching systems such as two separate solid lenses or biprism/mirrors. The miniaturization of the overall size of current stereoscopic devices down to several millimeters is at a sacrifice of further device size shrinkage. The limited light entry worsens the final image resolution and brightness. It is known that optofluidics offer good re-configurability for imaging systems. Leveraging this technique, we report a reconfigurable optofluidic system whose optical layout can be swapped between a singlet lens with 10 mm in diameter and a pair of binocular lenses with each lens of 3 mm in diameter for switchable two-dimensional (2D) and three-dimensional (3D) imaging. The singlet and the binoculars share the same optical path and the same imaging sensor. The singlet acquires a 3D image with better resolution and brightness, while the binoculars capture stereoscopic image pairs for 3D vision and depth perception. The focusing power tuning capability of the singlet and the binoculars enable image acquisition at varied object planes by adjusting the hydrostatic pressure across the lens membrane. The vari-focal singlet and binoculars thus work interchangeably and complementarily. The device is thus expected to have applications in robotic vision, stereoscopy, laparoendoscopy and miniaturized zoom lens system.

  14. Potential usefulness of a video printer for producing secondary images from digitized chest radiographs

    NASA Astrophysics Data System (ADS)

    Nishikawa, Robert M.; MacMahon, Heber; Doi, Kunio; Bosworth, Eric

    1991-05-01

    Communication between radiologists and clinicians could be improved if a secondary image (copy of the original image) accompanied the radiologic report. In addition, the number of lost original radiographs could be decreased, since clinicians would have less need to borrow films. The secondary image should be simple and inexpensive to produce, while providing sufficient image quality for verification of the diagnosis. We are investigating the potential usefulness of a video printer for producing copies of radiographs, i.e. images printed on thermal paper. The video printer we examined (Seikosha model VP-3500) can provide 64 shades of gray. It is capable of recording images up to 1,280 pixels by 1,240 lines and can accept any raster-type video signal. The video printer was characterized in terms of its linearity, contrast, latitude, resolution, and noise properties. The quality of video-printer images was also evaluated in an observer study using portable chest radiographs. We found that observers could confirm up to 90 of the reported findings in the thorax using video- printer images, when the original radiographs were of high quality. The number of verified findings was diminished when high spatial resolution was required (e.g. detection of a subtle pneumothorax) or when a low-contrast finding was located in the mediastinal area or below the diaphragm (e.g. nasogastric tubes).

  15. 2D and 3D visualization methods of endoscopic panoramic bladder images

    NASA Astrophysics Data System (ADS)

    Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til

    2011-03-01

    While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.

  16. Personal Identification in Forensic Science Using Uniqueness of Radiographic Image of Frontal Sinus.

    PubMed

    Nikam, Shital Sudhakar; Gadgil, Rajeev Madhusudan; Bhoosreddy, Ajay Ramesh; Shah, Karan Rajendra; Shirsekar, Vinayak Umesh

    2015-07-01

    Frontal sinus pattern matching is a useful means of forensic identification. By the use of radiographs forensic scientists have recognized that there are diverse anatomical variations in the structure of the frontal sinus. Radiographs are a diagnostic tool, widely used in dental practices, hospitals and other health disciplines. Most health institutions possess the facility to store radiographs over long periods of time. Frontal sinus pattern matching technique can be applied in cases where ante mortem frontal sinus radiographs are available and dental matching cannot be carried out. Frontal sinus pattern matching technique may also be used to corroborate identifications based on other techniques such as fingerprints, teeth, or circumstantial evidence. The present study was carried out to assess the effectiveness of using the radiographic image of the frontal sinus for personal identification in studied population group. The results concluded that the appearance of the radiographic image of the frontal sinus is unique for each individual. On this evidence it is proposed that frontal sinus pattern matching can be used for personal identification when other methods have failed. PMID:26851444

  17. Calibration of an Ultrasound Tomography System for Medical Imaging with 2D Contrast-Source Inversion

    NASA Astrophysics Data System (ADS)

    Faucher, Gabriel Paul

    This dissertation describes two possible methods for the calibration of an ultrasound tomography system developed at University of Manitoba's Electromagnetic Imaging Laboratory for imaging with the contrast-source inversion algorithm. The calibration techniques are adapted from existing procedures employed for microwave tomography. A theoretical model of these calibration principles is developed in order to provide a rationale for the effectiveness of the proposed procedures. The applicability of such an imaging algorithm and calibration methods in the context of ultrasound are discussed. Also presented are 2D and 3D finite-difference time-domain update equations for the simulation of acoustic wave propagation in inhomogeneous media. Details regarding the application of an absorbing boundary-condition, point-source modelling and the treatment of penetrable objects are included in this document.

  18. Evaluation of the channelized Hotelling observer for signal detection in 2D tomographic imaging

    NASA Astrophysics Data System (ADS)

    LaRoque, Samuel J.; Sidky, Emil Y.; Edwards, Darrin C.; Pan, Xiaochuan

    2007-03-01

    Signal detection by the channelized Hotelling (ch-Hotelling) observer is studied for tomographic application by employing a small, tractable 2D model of a computed tomography (CT) system. The primary goal of this manuscript is to develop a practical method for evaluating the ch-Hotelling observer that can generalize to larger 3D cone-beam CT systems. The use of the ch-Hotelling observer for evaluating tomographic image reconstruction algorithms is also demonstrated. For a realistic model for CT, the ch-Hotelling observer can be a good approximation to the ideal observer. The ch-Hotelling observer is applied to both the projection data and the reconstructed images. The difference in signal-to-noise ratio for signal detection in both of these domains provides a metric for evaluating the image reconstruction algorithm.

  19. Prevalence and imaging characteristics of detectable tonsilloliths on 482 pairs of consecutive CT and panoramic radiographs

    PubMed Central

    2013-01-01

    Background Recent studies suggest that tonsilloliths are clinically related to halitosis and tonsillar abscess. Based on our empirical knowledge, tonsilloliths are relatively commonly encountered in daily clinical practice. It has been reported that the detection rate of tonsilloliths was under 24% in previous reports, although experience suggests otherwise. The purpose of the study was to evaluate the prevalence and characteristics of tonsilloliths using computed tomography (CT). In addition, the possible causes of low detection rates on panoramic radiographs were evaluated based on comparisons between CT images and panoramic radiographs in order to elucidate the limitations of visualizing the area around the palatine tonsils on panoramic radiographs. Methods 482 pairs of CT images and panoramic radiographs were retrospectively assessed with respect to the presence and characteristics of tonsilloliths. In addition, the causes in cases of disagreement between the two modalities were analyzed. Results The detection rate of tonsilloliths was 46.1% using CT scans, unlike previous reports. The characteristics of tonsillolith were dot-like figures with about 300-500 Hounsfield units within the palatine tonsil under the soft palate. The most common length of tonsilloliths was about 3 or 4 mm. As the subjects aged, the detection rate increased gradually. A significant difference in the tonsillolith detection rate was found between the over and under 40-year-old groups (p < 0.0001). However, the detection rate of tonsilloliths was only 7.3% on panoramic radiographs. A significant correlation was observed between the detection rate of tonsilloliths on panoramic radiographs and CT number (Spearman r = 0.429), size, (Spearman r = 0.318), and number of tonsilloliths (Spearman r = 0.333). Conclusion The present results suggest that tonsilloliths are relatively more common than previously suggested. However, panoramic radiographs detect only a small percentage

  20. Photoacoustic imaging for deep targets in the breast using a multichannel 2D array transducer

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Wang, Xueding; Morris, Richard F.; Padilla, Frederic R.; Lecarpentier, Gerald L.; Carson, Paul L.

    2011-03-01

    A photoacoustic (PA) imaging system was developed to achieve high sensitivity for the detection and characterization of vascular anomalies in the breast in the mammographic geometry. Signal detection from deep in the breast was achieved by a broadband 2D PVDF planar array that has a round shape with one side trimmed straight to improve fit near the chest wall. This array has 572 active elements and a -6dB bandwidth of 0.6-1.7 MHz. The low frequency enhances imaging depth and increases the size of vascular collections displayed without edge enhancement. The PA signals from all the elements go through low noise preamplifiers in the probe that are very close to the array elements for optimized noise control. Driven by 20 independent on-probe signal processing channels, imaging with both high sensitivity and good speed was achieved. To evaluate the imaging depth and the spatial resolution of this system,2.38mm I.D. artificial vessels embedded deeply in ex vivo breasts harvested from fresh cadavers and a 3mm I.D. tube in breast mimicking phantoms made of pork loin and fat tissues were imaged. Using near-infrared laser light with incident energy density within the ANSI safety limit, imaging depths of up to 49 mm in human breasts and 52 mm in phantoms were achieved. With a high power tunable laser working on multiple wavelengths, this system might contribute to 3D noninvasive imaging of morphological and physiological tissue features throughout the breast.

  1. A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.

  2. Development of ultra-fast 2D ion Doppler tomography using image intensified CMOS fast camera

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Kuwahata, Akihiro; Yamanaka, Haruki; Inomoto, Michiaki; Ono, Yasushi; TS-group Team

    2015-11-01

    The world fastest novel time-resolved 2D ion Doppler tomography diagnostics has been developed using fast camera with high-speed gated image intensifier (frame rate: 200kfps. phosphor decay time: ~ 1 μ s). Time evolution of line-integrated spectra are diffracted from a f=1m, F/8.3 and g=2400L/mm Czerny-Turner polychromator, whose output is intensified and recorded to a high-speed camera with spectral resolution of ~0.005nm/pixel. The system can accommodate up to 36 (9 ×4) spatial points recorded at 5 μs time resolution, tomographic reconstruction is applied for the line-integrated spectra, time-resolved (5 μs/frame) local 2D ion temperature measurement has been achieved without any assumption of shot repeatability. Ion heating during intermittent reconnection event which tends to happen during high guide field merging tokamak was measured around diffusion region in UTST. The measured 2D profile shows ion heating inside the acceleration channel of reconnection outflow jet, stagnation point and downstream region where reconnected field forms thick closed flux surface as in MAST. Achieved maximum ion temperature increases as a function of Brec2 and shows good fit with MAST experiment, demonstrating promising CS-less startup scenario for spherical tokamak. This work is supported by JSPS KAKENHI Grant Number 15H05750 and 15K20921.

  3. 2D aperture synthesis for Lamb wave imaging using co-arrays

    NASA Astrophysics Data System (ADS)

    Ambrozinski, Lukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2014-03-01

    2D ultrasonic arrays in Lamb wave based SHM systems can operate in the phased array (PA) or synthetic focusing (SF) mode. In the real-time PA approach, multiple electronically delayed signals excite transmitting elements to form the desired wave-front, whereas receiving elements are used to sense scattered waves. Due to that, the PA mode requires multi channeled hardware and multiple excitations at numerous azimuths to scan the inspected region of interest. To the contrary, the SF mode, assumes a single element excitation of subsequent transmitters and off-line processing of the acquired data. In the simplest implementation of the SF technique, a single multiplexed input and output channels are required, which results in significant hardware simplification. Performance of a 2D imaging array depends on many parameters, such as, its topology, number of its transducers and their spacing in terms of wavelength as well as the type of weighting function (apodization). Moreover, it is possible to use sparse arrays, which means that not all array elements are used for transmitting and/ or receiving. In this paper the co-array concept is applied to facilitate the synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum co-array is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual elements' locations in the sub-arrays used for imaging. The coarray framework will be presented here using two different array topologies, aID uniform linear array and a cross-shaped array that will result in a square coarray. The approach will be discussed in terms of array patterns and beam patterns of the resulting imaging systems. Both, theoretical and experimental results will be given.

  4. Visualizing 3D Objects from 2D Cross Sectional Images Displayed "In-Situ" versus "Ex-Situ"

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George

    2010-01-01

    The present research investigates how mental visualization of a 3D object from 2D cross sectional images is influenced by displacing the images from the source object, as is customary in medical imaging. Three experiments were conducted to assess people's ability to integrate spatial information over a series of cross sectional images in order to…

  5. Enhanced detection of the vertebrae in 2D CT-images

    NASA Astrophysics Data System (ADS)

    Graf, Franz; Greil, Robert; Kriegel, Hans-Peter; Schubert, Matthias; Cavallaro, Alexander

    2012-02-01

    In recent years, a considerable amount of methods have been proposed for detecting and reconstructing the spine and the vertebrae from CT and MR scans. The results are either used for examining the vertebrae or serve as a preprocessing step for further detection and annotation tasks. In this paper, we propose a method for reliably detecting the position of the vertebrae on a single slice of a transversal body CT scan. Thus, our method is not restricted by the available portion of the 3D scan, but even suffices with a single 2D image. A further advantage of our method is that detection does not require adjusting parameters or direct user interaction. Technically, our method is based on an imaging pipeline comprising five steps: The input image is preprocessed. The relevant region of the image is extracted. Then, a set of candidate locations is selected based on bone density. In the next step, image features are extracted from the surrounding of the candidate locations and an instance-based learning approach is used for selecting the best candidate. Finally, a refinement step optimizes the best candidate region. Our proposed method is validated on a large diverse data set of more than 8 000 images and improves the accuracy in terms of area overlap and distance from the true position significantly compared to the only other method being proposed for this task so far.

  6. Diesel combustion and emissions formation using multiple 2-D imaging diagnostics

    SciTech Connect

    Dec, J.E.

    1997-12-31

    Understanding how emissions are formed during diesel combustion is central to developing new engines that can comply with increasingly stringent emission standards while maintaining or improving performance levels. Laser-based planar imaging diagnostics are uniquely capable of providing the temporally and spatially resolved information required for this understanding. Using an optically accessible research engine, a variety of two-dimensional (2-D) imaging diagnostics have been applied to investigators of direct-injection (DI) diesel combustion and emissions formation. These optical measurements have included the following laser-sheet imaging data: Mie scattering to determine liquid-phase fuel distributions, Rayleigh scattering for quantitative vapor-phase-fuel/air mixture images, laser induced incandescence (LII) for relative soot concentrations, simultaneous LII and Rayleigh scattering for relative soot particle-size distributions, planar laser-induced fluorescence (PLIF) to obtain early PAH (polyaromatic hydrocarbon) distributions, PLIF images of the OH radical that show the diffusion flame structure, and PLIF images of the NO radical showing the onset of NO{sub x} production. In addition, natural-emission chemiluminescence images were obtained to investigate autoignition. The experimental setup is described, and the image data showing the most relevant results are presented. Then the conceptual model of diesel combustion is summarized in a series of idealized schematics depicting the temporal and spatial evolution of a reacting diesel fuel jet during the time period investigated. Finally, recent PLIF images of the NO distribution are presented and shown to support the timing and location of NO formation hypothesized from the conceptual model.

  7. 2-D array for 3-D Ultrasound Imaging Using Synthetic Aperture Techniques

    PubMed Central

    Daher, Nadim M.; Yen, Jesse T.

    2010-01-01

    A 2-D array of 256 × 256 = 65,536 elements, with total area 4 × 4 = 16 cm2, serves as a flexible platform for developing acquisition schemes for 3-D rectilinear ultrasound imaging at 10 MHz using synthetic aperture techniques. This innovative system combines a simplified interconnect scheme and synthetic aperture techniques with a 2-D array for 3-D imaging. A row-column addressing scheme is used to access different elements for different transmit events. This addressing scheme is achieved through a simple interconnect, consisting of one top, one bottom single layer flex circuits, which, compared to multi-layer flex circuits, are simpler to design, cheaper to manufacture and thinner so their effect on the acoustic response is minimized. We present three designs that prioritize different design objectives: volume acquisiton time, resolution, and sensitivity, while maintaining acceptable figures for the other design objectives. For example, one design overlooks time acquisition requirements, assumes good noise conditions, and optimizes for resolution, achieving −6 dB and −20 dB beamwidths of less than 0.2 and 0.5 millimeters, respectively, for an F/2 aperture. Another design can acquire an entire volume in 256 transmit events, with −6dB and −20 dB beamwidths in the order of 0.4 and 0.8 millimeters, respectively. PMID:16764446

  8. SNARK09 - a software package for reconstruction of 2D images from 1D projections.

    PubMed

    Klukowska, Joanna; Davidi, Ran; Herman, Gabor T

    2013-06-01

    The problem of reconstruction of slices and volumes from 1D and 2D projections has arisen in a large number of scientific fields (including computerized tomography, electron microscopy, X-ray microscopy, radiology, radio astronomy and holography). Many different methods (algorithms) have been suggested for its solution. In this paper we present a software package, SNARK09, for reconstruction of 2D images from their 1D projections. In the area of image reconstruction, researchers often desire to compare two or more reconstruction techniques and assess their relative merits. SNARK09 provides a uniform framework to implement algorithms and evaluate their performance. It has been designed to treat both parallel and divergent projection geometries and can either create test data (with or without noise) for use by reconstruction algorithms or use data collected by another software or a physical device. A number of frequently-used classical reconstruction algorithms are incorporated. The package provides a means for easy incorporation of new algorithms for their testing, comparison and evaluation. It comes with tools for statistical analysis of the results and ten worked examples. PMID:23414602

  9. Fast Confocal Raman Imaging Using a 2-D Multifocal Array for Parallel Hyperspectral Detection.

    PubMed

    Kong, Lingbo; Navas-Moreno, Maria; Chan, James W

    2016-01-19

    We present the development of a novel confocal hyperspectral Raman microscope capable of imaging at speeds up to 100 times faster than conventional point-scan Raman microscopy under high noise conditions. The microscope utilizes scanning galvomirrors to generate a two-dimensional (2-D) multifocal array at the sample plane, generating Raman signals simultaneously at each focus of the array pattern. The signals are combined into a single beam and delivered through a confocal pinhole before being focused through the slit of a spectrometer. To separate the signals from each row of the array, a synchronized scan mirror placed in front of the spectrometer slit positions the Raman signals onto different pixel rows of the detector. We devised an approach to deconvolve the superimposed signals and retrieve the individual spectra at each focal position within a given row. The galvomirrors were programmed to scan different focal arrays following Hadamard encoding patterns. A key feature of the Hadamard detection is the reconstruction of individual spectra with improved signal-to-noise ratio. Using polystyrene beads as test samples, we demonstrated not only that our system images faster than a conventional point-scan method but that it is especially advantageous under noisy conditions, such as when the CCD detector operates at fast read-out rates and high temperatures. This is the first demonstration of multifocal confocal Raman imaging in which parallel spectral detection is implemented along both axes of the CCD detector chip. We envision this novel 2-D multifocal spectral detection technique can be used to develop faster imaging spontaneous Raman microscopes with lower cost detectors. PMID:26654100

  10. Constructing a Database from Multiple 2D Images for Camera Pose Estimation and Robot Localization

    NASA Technical Reports Server (NTRS)

    Wolf, Michael; Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.; Padgett, Curtis W.

    2012-01-01

    The LMDB (Landmark Database) Builder software identifies persistent image features (landmarks) in a scene viewed multiple times and precisely estimates the landmarks 3D world positions. The software receives as input multiple 2D images of approximately the same scene, along with an initial guess of the camera poses for each image, and a table of features matched pair-wise in each frame. LMDB Builder aggregates landmarks across an arbitrarily large collection of frames with matched features. Range data from stereo vision processing can also be passed to improve the initial guess of the 3D point estimates. The LMDB Builder aggregates feature lists across all frames, manages the process to promote selected features to landmarks, and iteratively calculates the 3D landmark positions using the current camera pose estimations (via an optimal ray projection method), and then improves the camera pose estimates using the 3D landmark positions. Finally, it extracts image patches for each landmark from auto-selected key frames and constructs the landmark database. The landmark database can then be used to estimate future camera poses (and therefore localize a robotic vehicle that may be carrying the cameras) by matching current imagery to landmark database image patches and using the known 3D landmark positions to estimate the current pose.

  11. 2-D Gaussian beam imaging of multicomponent seismic data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Protasov, M. I.

    2015-12-01

    An approach for true-amplitude seismic beam imaging of multicomponent seismic data in 2-D anisotropic elastic media is presented and discussed. Here, the recovered true-amplitude function is a scattering potential. This approach is a migration procedure based on the weighted summation of pre-stack data. The true-amplitude weights are computed by applying Gaussian beams (GBs). We shoot a pair of properly chosen GBs with a fixed dip and opening angles from the current imaging point towards an acquisition system. This pair of beams is used to compute a true-amplitude selective image of a rapid velocity variation. The total true-amplitude image is constructed by superimposing selective images computed for a range of available dip angles. The global regularity of the GBs allows one to disregard whether a ray field is regular or irregular. P- and S-wave GBs can be used to handle raw multicomponent data without separating the waves. The use of anisotropic GBs allows one to take into account the anisotropy of the background model.

  12. Automatic localization of target vertebrae in spine surgery using fast CT-to-fluoroscopy (3D-2D) image registration

    NASA Astrophysics Data System (ADS)

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-02-01

    Localization of target vertebrae is an essential step in minimally invasive spine surgery, with conventional methods relying on "level counting" - i.e., manual counting of vertebrae under fluoroscopy starting from readily identifiable anatomy (e.g., the sacrum). The approach requires an undesirable level of radiation, time, and is prone to counting errors due to the similar appearance of vertebrae in projection images; wrong-level surgery occurs in 1 of every ~3000 cases. This paper proposes a method to automatically localize target vertebrae in x-ray projections using 3D-2D registration between preoperative CT (in which vertebrae are preoperatively labeled) and intraoperative fluoroscopy. The registration uses an intensity-based approach with a gradient-based similarity metric and the CMA-ES algorithm for optimization. Digitally reconstructed radiographs (DRRs) and a robust similarity metric are computed on GPU to accelerate the process. Evaluation in clinical CT data included 5,000 PA and LAT projections randomly perturbed to simulate human variability in setup of mobile intraoperative C-arm. The method demonstrated 100% success for PA view (projection error: 0.42mm) and 99.8% success for LAT view (projection error: 0.37mm). Initial implementation on GPU provided automatic target localization within about 3 sec, with further improvement underway via multi-GPU. The ability to automatically label vertebrae in fluoroscopy promises to streamline surgical workflow, improve patient safety, and reduce wrong-site surgeries, especially in large patients for whom manual methods are time consuming and error prone.

  13. A survey among Brazilian thoracic surgeons about the use of preoperative 2D and 3D images

    PubMed Central

    Cipriano, Federico Enrique Garcia; Arcêncio, Livia; Dessotte, Lycio Umeda; Rodrigues, Alfredo José; Vicente, Walter Villela de Andrade

    2016-01-01

    Background Describe the characteristics of how the thoracic surgeon uses the 2D/3D medical imaging to perform surgical planning, clinical practice and teaching in thoracic surgery and check the initial choice and the final choice of the Brazilian Thoracic surgeon as the 2D and 3D models pictures before and after acquiring theoretical knowledge on the generation, manipulation and interactive 3D views. Methods A descriptive research type Survey cross to data provided by the Brazilian Thoracic Surgeons (members of the Brazilian Society of Thoracic Surgery) who responded to the online questionnaire via the internet on their computers or personal devices. Results Of the 395 invitations visualized distributed by email, 107 surgeons completed the survey. There was no statically difference when comparing the 2D vs. 3D models pictures for the following purposes: diagnosis, assessment of the extent of disease, preoperative surgical planning, and communication among physicians, resident training, and undergraduate medical education. Regarding the type of tomographic image display routinely used in clinical practice (2D or 3D or 2D–3D model image) and the one preferred by the surgeon at the end of the questionnaire. Answers surgeons for exclusive use of 2D images: initial choice =50.47% and preferably end =14.02%. Responses surgeons to use 3D models in combination with 2D images: initial choice =48.60% and preferably end =85.05%. There was a significant change in the final selection of 3D models used together with the 2D images (P<0.0001). Conclusions There is a lack of knowledge of the 3D imaging, as well as the use and interactive manipulation in dedicated 3D applications, with consequent lack of uniformity in the surgical planning based on CT images. These findings certainly confirm in changing the preference of thoracic surgeons of 2D views of technologies for 3D images. PMID:27621874

  14. Rotationally symmetric triangulation sensor with integrated object imaging using only one 2D detector

    NASA Astrophysics Data System (ADS)

    Eckstein, Johannes; Lei, Wang; Becker, Jonathan; Jun, Gao; Ott, Peter

    2006-04-01

    In this paper a distance measurement sensor is introduced, equipped with two integrated optical systems, the first one for rotationally symmetric triangulation and the second one for imaging the object while using only one 2D detector for both purposes. Rotationally symmetric triangulation, introduced in [1], eliminates some disadvantages of classical triangulation sensors, especially at steps or strong curvatures of the object, wherefore the measurement result depends not any longer on the angular orientation of the sensor. This is achieved by imaging the scattered light from an illuminated object point to a centered and sharp ring on a low cost area detector. The diameter of the ring is proportional to the distance of the object. The optical system consists of two off axis aspheric reflecting surfaces. This system allows for integrating a second optical system in order to capture images of the object at the same 2D detector. A mock-up was realized for the first time which consists of the reflecting optics for triangulation manufactured by diamond turning. A commercially available appropriate small lens system for imaging was mechanically integrated in the reflecting optics. Alternatively, some designs of retrofocus lens system for larger field of views were investigated. The optical designs allow overlying the image of the object and the ring for distance measurement in the same plane. In this plane a CCD detector is mounted, centered to the optical axis for both channels. A fast algorithm for the evaluation of the ring is implemented. The characteristics, i.e. the ring diameter versus object distance shows very linear behavior. For illumination of the object point for distance measurement, the beam of a red laser diode system is reflected by a wavelength bandpath filter on the axis of the optical system in. Additionally, the surface of the object is illuminated by LED's in the green spectrum. The LED's are located on the outside rim of the reflecting optics. The

  15. 2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Brossier, R.; Virieux, J.; Operto, S.

    2008-12-01

    Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.

  16. Weld defect detection on digital radiographic image using level set method

    NASA Astrophysics Data System (ADS)

    Halim, Suhaila Abd; Petrus, Bertha Trissan; Ibrahim, Arsmah; Manurung, Yupiter HP; Jayes, Mohd Idris

    2013-09-01

    Segmentation is the most critical task and widely used to obtain useful information in image processing. In this study, Level set based on Chan Vese method is explored and applied to define weld defect on digital radiographic image and its accuracy is evaluated to measure its performance. A set of images with region of interest (ROI) that contain defect are used as input image. The ROI image is pre-processed to improve their quality for better detection. Then, the image is segmented using level set method that is implemented using MATLAB R2009a. The accuracy of the method is evaluated using Receiver Operating Characteristic (ROC). Experimental results show that the method generated an area underneath the ROC of 0.7 in the set of images and the operational point reached corresponds to 0.6 of sensitivity and 0.8 of specificity. The application of segmentation technique such as Chan-Vese level set able to assist radiographer in detecting the defect on digital radiographic image accurately.

  17. Cotton trash assessment in radiographic x-ray images with scale-space filtering and stereo analysis

    NASA Astrophysics Data System (ADS)

    Dogan, Mehmet S.; Sari-Sarraf, Hamed; Hequet, Eric F.

    2005-02-01

    Trash content of raw cotton is a critical quality attribute. Therefore, accurate trash assessment is crucial for evaluating cotton"s processing and market value. Current technologies, including gravimetric and surface scanning methods, suffer from various limitations. Furthermore, worldwide, the most commonly used method is still human grading. One of the best alternatives to the aforementioned approaches is 2D x-ray imaging since it allows a thorough analysis of contaminants in a very precise and quick manner. The segmentation of trash particles in 2D transmission images is difficult since the background cotton is not uniform. Furthermore, there is considerable overlap between the gray levels of trash and cotton. We dealt with this problem by characterizing and identifying the background cotton via scale-space filtering, followed by a "background normalization" process that removes the background cotton, while leaving the trash particles intact. Furthermore, we have successfully employed stereo x-ray vision for recovering the depth information of the piled trash in controlled samples. Finally, the proposed technique was tested on 280 cotton radiographs-with various trash levels-and the results compared favorably to the existing systems of cotton trash evaluation. Given that the approach described here provides the trash mass in real-time, when realized, it will have a wide-spread impact on the cotton industry.

  18. Embedded morphological dilation coding for 2D and 3D images

    NASA Astrophysics Data System (ADS)

    Lazzaroni, Fabio; Signoroni, Alberto; Leonardi, Riccardo

    2002-01-01

    Current wavelet-based image coders obtain high performance thanks to the identification and the exploitation of the statistical properties of natural images in the transformed domain. Zerotree-based algorithms, as Embedded Zerotree Wavelets (EZW) and Set Partitioning In Hierarchical Trees (SPIHT), offer high Rate-Distortion (RD) coding performance and low computational complexity by exploiting statistical dependencies among insignificant coefficients on hierarchical subband structures. Another possible approach tries to predict the clusters of significant coefficients by means of some form of morphological dilation. An example of a morphology-based coder is the Significance-Linked Connected Component Analysis (SLCCA) that has shown performance which are comparable to the zerotree-based coders but is not embedded. A new embedded bit-plane coder is proposed here based on morphological dilation of significant coefficients and context based arithmetic coding. The algorithm is able to exploit both intra-band and inter-band statistical dependencies among wavelet significant coefficients. Moreover, the same approach is used both for two and three-dimensional wavelet-based image compression. Finally we the algorithms are tested on some 2D images and on a medical volume, by comparing the RD results to those obtained with the state-of-the-art wavelet-based coders.

  19. Ameloblastic fibroma: A rare case appearing as a mixed radiographic image

    PubMed Central

    de Castro, Jurema-Freire-Lisboa; Correia, Andreza-Veruska-Lira; Santos, Lucas-Alexandre-Moraes; Guerra, Luiz-Antônio-Portela; Ramos-Perez, Flávia-Maria-de-Moraes

    2014-01-01

    Ameloblastic fibroma (AF) is a benign tumor of mixed odontogenic origin, which affects predominantly young individuals. AF appearing as a mixed radiographic image is very rare. This report describes a case of AF in a 12-year-old male identified during a routine radiographic exam for orthodontic treatment planning. The panoramic radiography revealed a well-defined multilocular mixed image located in the mandible between the roots of the left mandibular second premolar and first molar. The lesion was excised under local anesthesia. Histopathological analysis revealed islands of epithelial cells and columnar peripheral cells showing a nucleus in inverted polarization, interspersed with spindle-shaped cells and abundant extracellular matrix deposition. No atypia was observed. The diagnosis of AF was established. No tumor recurred up to 30 months after treatment. Although rare, AF should be also considered in the differential diagnosis of mixed radiographic images of the jaws in young patients. Key words:Ameloblastic fibroma, differential diagnosis, incidental finding, mixed image, radiographic features. PMID:25674330

  20. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2011-11-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 μJ within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  1. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2012-03-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 μJ within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  2. List-Mode Likelihood: EM Algorithm and Image Quality Estimation Demonstrated on 2-D PET

    PubMed Central

    Barrett, Harrison H.

    2010-01-01

    Using a theory of list-mode maximum-likelihood (ML) source reconstruction presented recently by Barrett et al. [1], this paper formulates a corresponding expectation-maximization (EM) algorithm, as well as a method for estimating noise properties at the ML estimate. List-mode ML is of interest in cases where the dimensionality of the measurement space impedes a binning of the measurement data. It can be advantageous in cases where a better forward model can be obtained by including more measurement coordinates provided by a given detector. Different figures of merit for the detector performance can be computed from the Fisher information matrix (FIM). This paper uses the observed FIM, which requires a single data set, thus, avoiding costly ensemble statistics. The proposed techniques are demonstrated for an idealized two-dimensional (2-D) positron emission tomography (PET) [2-D PET] detector. We compute from simulation data the improved image quality obtained by including the time of flight of the coincident quanta. PMID:9688154

  3. 2D simultaneous spatial and temporal focusing multiphoton microscopy for fast volume imaging with improved sectioning ability

    NASA Astrophysics Data System (ADS)

    Song, Qiyuan; Isobe, Keisuke; Hirosawa, Kenichi; Midorikawa, Katsumi; Kannari, Fumihiko

    2015-03-01

    Simultaneous spatial and temporal focusing (SSTF) multiphoton microscopy offers us widefield imaging with sectioning ability. As extending the idea to 2D SSTF, people can utilize a 2D spectral disperser. In this study, we use a 2D spectral disperser via a virtually-imaged phased-array (VIPA) and a diffraction grating to fulfill the back aperture of objective lens with a spectrum matrix. This offers us an axial resolution enhanced by a factor of ~1.7 compared with conventional SSTF microscopy. Furthermore, the small free spectral range (FSR) of VIPA will reduce the temporal self-imaging effect around out-of-focus region and thus will reduce the out-of-focus multiphoton excited fluorescence (MPEF) signal of 2D SSTF microscopy. We experimentally show that inside a sample with dense MPEF, the contrast of the sectioning image is increased in our 2D SSTF microscope compared with SSTF microscope. In our microscope, we use a 1 kHz chirped amplification laser, a piezo stage and a sCMOS camera integrated with 2D SSTF to realize high speed volume imaging at a speed of 50 volumes per second as well as improved sectioning ability. Volume imaging of Brownian motions of fluorescent beads as small as 1μm has been demonstrated. Not only the lateral motion but also the axial motion could be traced.

  4. A 2D to 3D ultrasound image registration algorithm for robotically assisted laparoscopic radical prostatectomy

    NASA Astrophysics Data System (ADS)

    Esteghamatian, Mehdi; Pautler, Stephen E.; McKenzie, Charles A.; Peters, Terry M.

    2011-03-01

    Robotically assisted laparoscopic radical prostatectomy (RARP) is an effective approach to resect the diseased organ, with stereoscopic views of the targeted tissue improving the dexterity of the surgeons. However, since the laparoscopic view acquires only the surface image of the tissue, the underlying distribution of the cancer within the organ is not observed, making it difficult to make informed decisions on surgical margins and sparing of neurovascular bundles. One option to address this problem is to exploit registration to integrate the laparoscopic view with images of pre-operatively acquired dynamic contrast enhanced (DCE) MRI that can demonstrate the regions of malignant tissue within the prostate. Such a view potentially allows the surgeon to visualize the location of the malignancy with respect to the surrounding neurovascular structures, permitting a tissue-sparing strategy to be formulated directly based on the observed tumour distribution. If the tumour is close to the capsule, it may be determined that the adjacent neurovascular bundle (NVB) needs to be sacrificed within the surgical margin to ensure that any erupted tumour was resected. On the other hand, if the cancer is sufficiently far from the capsule, one or both NVBs may be spared. However, in order to realize such image integration, the pre-operative image needs to be fused with the laparoscopic view of the prostate. During the initial stages of the operation, the prostate must be tracked in real time so that the pre-operative MR image remains aligned with patient coordinate system. In this study, we propose and investigate a novel 2D to 3D ultrasound image registration algorithm to track the prostate motion with an accuracy of 2.68+/-1.31mm.

  5. An image-based technique to assess the perceptual quality of clinical chest radiographs

    SciTech Connect

    Lin Yuan; Luo Hui; Dobbins, James T. III; Page McAdams, H.; Wang, Xiaohui; Sehnert, William J.; Barski, Lori; Foos, David H.; Samei, Ehsan

    2012-11-15

    Purpose: Current clinical image quality assessment techniques mainly analyze image quality for the imaging system in terms of factors such as the capture system modulation transfer function, noise power spectrum, detective quantum efficiency, and the exposure technique. While these elements form the basic underlying components of image quality, when assessing a clinical image, radiologists seldom refer to these factors, but rather examine several specific regions of the displayed patient images, further impacted by a particular image processing method applied, to see whether the image is suitable for diagnosis. In this paper, the authors developed a novel strategy to simulate radiologists' perceptual evaluation process on actual clinical chest images. Methods: Ten regional based perceptual attributes of chest radiographs were determined through an observer study. Those included lung grey level, lung detail, lung noise, rib-lung contrast, rib sharpness, mediastinum detail, mediastinum noise, mediastinum alignment, subdiaphragm-lung contrast, and subdiaphragm area. Each attribute was characterized in terms of a physical quantity measured from the image algorithmically using an automated process. A pilot observer study was performed on 333 digital chest radiographs, which included 179 PA images with 10:1 ratio grids (set 1) and 154 AP images without grids (set 2), to ascertain the correlation between image perceptual attributes and physical quantitative measurements. To determine the acceptable range of each perceptual attribute, a preliminary quality consistency range was defined based on the preferred 80% of images in set 1. Mean value difference ({mu}{sub 1}-{mu}{sub 2}) and variance ratio ({sigma}{sub 1}{sup 2}/{sigma}{sub 2}{sup 2}) were investigated to further quantify the differences between the selected two image sets. Results: The pilot observer study demonstrated that our regional based physical quantity metrics of chest radiographs correlated very well with

  6. Diaphragm breathing movement measurement using ultrasound and radiographic imaging: a concurrent validity.

    PubMed

    Noh, Dong K; Lee, Jae J; You, Joshua H

    2014-01-01

    Recent ultrasound imaging evidence asserts that the diaphragm is an important multifunctional muscle to control breathing as well as stabilize the core and posture in humans. However, the validity and accuracy of ultrasound for the measurement of dynamic diaphragm movements during breathing and functional core activities have not been determined. The specific aim of this study was to validate the accuracy of ultrasound imaging measurements of diaphragm movements by concurrently comparing these measurements to the gold standard of radiographic imaging measurements. A total of 14 asymptomatic adults (9 males, 5 females; mean age =28.4 ± 3.0 years) were recruited to participate in the study. Ultrasound and radiographic images were used concurrently to determine diaphragm movement (inspiration, expiration, and excursion) during tidal breathing. Pearson correlation analysis showed strong correlations, ranging from r=0.78 to r=0.83, between ultrasound and radiographic imaging measurements of the diaphragm during inhalation, exhalation, and excursion. These findings suggest that ultrasound imaging measurement is useful to accurately evaluate diaphragm movements during tidal breathing. Clinically, ultrasound imaging measurements can be used to diagnose and treat diaphragm movement impairments in individuals with neuromuscular disorders including spinal cord injuries, stroke, and multiple sclerosis. PMID:24211983

  7. SU-E-I-94: Automated Image Quality Assessment of Radiographic Systems Using An Anthropomorphic Phantom

    SciTech Connect

    Wells, J; Wilson, J; Zhang, Y; Samei, E; Ravin, Carl E.

    2014-06-01

    Purpose: In a large, academic medical center, consistent radiographic imaging performance is difficult to routinely monitor and maintain, especially for a fleet consisting of multiple vendors, models, software versions, and numerous imaging protocols. Thus, an automated image quality control methodology has been implemented using routine image quality assessment with a physical, stylized anthropomorphic chest phantom. Methods: The “Duke” Phantom (Digital Phantom 07-646, Supertech, Elkhart, IN) was imaged twice on each of 13 radiographic units from a variety of vendors at 13 primary care clinics. The first acquisition used the clinical PA chest protocol to acquire the post-processed “FOR PRESENTATION” image. The second image was acquired without an antiscatter grid followed by collection of the “FOR PROCESSING” image. Manual CNR measurements were made from the largest and thickest contrast-detail inserts in the lung, heart, and abdominal regions of the phantom in each image. An automated image registration algorithm was used to estimate the CNR of the same insert using similar ROIs. Automated measurements were then compared to the manual measurements. Results: Automatic and manual CNR measurements obtained from “FOR PRESENTATION” images had average percent differences of 0.42%±5.18%, −3.44%±4.85%, and 1.04%±3.15% in the lung, heart, and abdominal regions, respectively; measurements obtained from “FOR PROCESSING” images had average percent differences of -0.63%±6.66%, −0.97%±3.92%, and −0.53%±4.18%, respectively. The maximum absolute difference in CNR was 15.78%, 10.89%, and 8.73% in the respective regions. In addition to CNR assessment of the largest and thickest contrast-detail inserts, the automated method also provided CNR estimates for all 75 contrast-detail inserts in each phantom image. Conclusion: Automated analysis of a radiographic phantom has been shown to be a fast, robust, and objective means for assessing radiographic

  8. Baseline sacroiliac joint magnetic resonance imaging abnormalities and male sex predict the development of radiographic sacroiliitis.

    PubMed

    Akar, Servet; Isik, Sibel; Birlik, Bilge; Solmaz, Dilek; Sari, Ismail; Onen, Fatos; Akkoc, Nurullah

    2013-10-01

    We evaluated the relationship between the baseline sacroiliac joint (SIJ) magnetic resonance imaging (MRI) findings and the development of radiographic sacroiliitis and tested their prognostic significance in cases of ankylosing spondylitis. Patients who had undergone an SIJ MRI at the rheumatology department were identified. Individuals for whom pelvic X-rays were available after at least 1 year of MRI were included in the analysis. All radiographs and MRI examinations were scored by two independent readers. Medical records of the patients were reviewed to obtain potentially relevant demographic and clinical data. We identified 1,069 SIJ MRIs, and 328 fulfilled our inclusion criteria. Reliability analysis revealed moderate to good inter- and intra-observer agreement. On presentation data, 14 cases were excluded because they had unequivocal radiographic sacroiliitis at baseline. After a mean of 34.8 months of follow-up, 24 patients developed radiographic sacroiliitis. The presence of active sacroiliitis (odds ratio (OR) 15.1) and structural lesions on MRI (OR 8.3), male sex (OR 4.7), fulfillment of Calin's inflammatory back pain criteria (P = 0.001), and total MRI activity score (P < 0.001) were found to be related to the development of radiographic sacroiliitis. By regression modeling, the presence of both active inflammatory and structural damage lesions on MRI and male sex were found to be predictive factors for the development of radiographic sacroiliitis. Our present results suggest that the occurrence of both active inflammatory and structural lesions in SIJs revealed by MRI is a significant risk factor for radiographic sacroiliitis, especially in male patients with early inflammatory back pain. PMID:23765093

  9. Nonrigid 2D registration of fluoroscopic coronary artery image sequence with layered motion

    NASA Astrophysics Data System (ADS)

    Park, Taewoo; Jung, Hoyup; Yun, Il Dong

    2016-03-01

    We present a new method for nonrigid registration of coronary artery models with layered motion information. 2D nonrigid registration method is proposed that brings layered motion information into correspondence with fluoroscopic angiograms. The registered model is overlaid on top of interventional angiograms to provide surgical assistance during image-guided chronic total occlusion procedures. The proposed methodology is divided into two parts: layered structures alignments and local nonrigid registration. In the first part, inpainting method is used to estimate a layered rigid transformation that aligns layered motion information. In the second part, a nonrigid registration method is implemented and used to compensate for any local shape discrepancy. Experimental evaluation conducted on a set of 7 fluoroscopic angiograms results in a reduced target registration error, which showed the effectiveness of the proposed method over single layered approach.

  10. 3D prostate boundary segmentation from ultrasound images using 2D active shape models.

    PubMed

    Hodge, Adam C; Ladak, Hanif M

    2006-01-01

    Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm for semi-automatic, three-dimensional (3D) segmentation of the prostate boundary from ultrasound images based on two-dimensional (2D) active shape models (ASM) and rotation-based slicing. Evaluation of the algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. The mean absolute distance between the algorithm and gold standard boundaries was 1.09+/-0.49 mm, the average percent absolute volume difference was 3.28+/-3.16%, and a 5x speed increase as compared manual planimetry was achieved. PMID:17946106

  11. Simulating nodules in chest radiographs with real nodules from multi-slice CT images

    NASA Astrophysics Data System (ADS)

    Schilham, Arnold; van Ginneken, Bram

    2006-03-01

    To improve the detection of nodules in chest radiographs, large databases of chest radiographs with annotated, proven nodules are needed for training of both radiologists and computer-aided detection systems. The construction of such databases is a laborious and time-consuming task. This study presents a novel technique to produce large amounts of chest x-rays with annotated, simulated nodules. Realistic nodules in radiographs are generated using real nodules segmented from CT images. Results from an observer study indicate that the simulated nodules can not be distinguished from real nodules. This method has great potential to aid the development of automated detection systems and to generate teaching files for human observers.

  12. Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Hall, Christopher S.

    2014-03-01

    Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.

  13. Extending Ripley’s K-Function to Quantify Aggregation in 2-D Grayscale Images

    PubMed Central

    Amgad, Mohamed; Itoh, Anri; Tsui, Marco Man Kin

    2015-01-01

    In this work, we describe the extension of Ripley’s K-function to allow for overlapping events at very high event densities. We show that problematic edge effects introduce significant bias to the function at very high densities and small radii, and propose a simple correction method that successfully restores the function’s centralization. Using simulations of homogeneous Poisson distributions of events, as well as simulations of event clustering under different conditions, we investigate various aspects of the function, including its shape-dependence and correspondence between true cluster radius and radius at which the K-function is maximized. Furthermore, we validate the utility of the function in quantifying clustering in 2-D grayscale images using three modalities: (i) Simulations of particle clustering; (ii) Experimental co-expression of soluble and diffuse protein at varying ratios; (iii) Quantifying chromatin clustering in the nuclei of wt and crwn1 crwn2 mutant Arabidopsis plant cells, using a previously-published image dataset. Overall, our work shows that Ripley’s K-function is a valid abstract statistical measure whose utility extends beyond the quantification of clustering of non-overlapping events. Potential benefits of this work include the quantification of protein and chromatin aggregation in fluorescent microscopic images. Furthermore, this function has the potential to become one of various abstract texture descriptors that are utilized in computer-assisted diagnostics in anatomic pathology and diagnostic radiology. PMID:26636680

  14. Image inpainting on the basis of spectral structure from 2-D nonharmonic analysis.

    PubMed

    Hasegawa, Masaya; Kako, Takahiro; Hirobayashi, Shigeki; Misawa, Tadanobu; Yoshizawa, Toshio; Inazumi, Yasuhiro

    2013-08-01

    The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontinuous textures and thus unsatisfactory results. Here, we propose a new technique to overcome this limitation by using signal prediction based on the nonharmonic analysis (NHA) technique proposed by the authors. NHA can be used to extract accurate spectra, irrespective of the window function, and its frequency resolution is less than that of the discrete Fourier transform. The proposed method sequentially generates new textures on the basis of the spectrum obtained by NHA. Missing regions from the spectrum are repaired using an improved cost function for 2D NHA. The proposed method is evaluated using the standard images Lena, Barbara, Airplane, Pepper, and Mandrill. The results show an improvement in MSE of about 10-20 compared with the examplar-based method and good subjective quality. PMID:23549889

  15. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  16. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1999-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  17. Single-image hard copy display of musculoskeletal digital radiographs

    NASA Astrophysics Data System (ADS)

    Legendre, Kevin; Steller Artz, Dorothy E.; Freedman, Matthew T.; Mun, Seong K.

    1995-04-01

    Screen film radiography often fails to optimally display all regions of anatomy on muskuloskeletal exams due to the wide latitude of tissue densities present. Various techniques of image enhancement have been applied to such exams using computerized radiography but with limited success in improving visualization of structures whose final optical density lies at the extremes of the interpretable range of the film. An existing algorithm for compressing optical density extremes known as dynamic range compression has been used to increase the radiodensity of the retrocardiac region of the chest or to decrease the radiodensity of the edge of the breast in digital mammography. In the skeletal system, there are regions where a single image may contain both areas of decreased exposure that result in light images and areas of higher exposure that result in dark regions of the image. Faced with this problem, the senior author asked Fuji to formulate a modification of the DRC process that incorporates a combination of the curves used for chest and breast images. The newly designed algorithm can thus simultaneously lower the optical density of dark regions of the image and increase the optical density of the less exposed regions. The results of this modification of the DRC algorithm are presented in this paper.

  18. Web-based interactive 2D/3D medical image processing and visualization software.

    PubMed

    Mahmoudi, Seyyed Ehsan; Akhondi-Asl, Alireza; Rahmani, Roohollah; Faghih-Roohi, Shahrooz; Taimouri, Vahid; Sabouri, Ahmad; Soltanian-Zadeh, Hamid

    2010-05-01

    There are many medical image processing software tools available for research and diagnosis purposes. However, most of these tools are available only as local applications. This limits the accessibility of the software to a specific machine, and thus the data and processing power of that application are not available to other workstations. Further, there are operating system and processing power limitations which prevent such applications from running on every type of workstation. By developing web-based tools, it is possible for users to access the medical image processing functionalities wherever the internet is available. In this paper, we introduce a pure web-based, interactive, extendable, 2D and 3D medical image processing and visualization application that requires no client installation. Our software uses a four-layered design consisting of an algorithm layer, web-user-interface layer, server communication layer, and wrapper layer. To compete with extendibility of the current local medical image processing software, each layer is highly independent of other layers. A wide range of medical image preprocessing, registration, and segmentation methods are implemented using open source libraries. Desktop-like user interaction is provided by using AJAX technology in the web-user-interface. For the visualization functionality of the software, the VRML standard is used to provide 3D features over the web. Integration of these technologies has allowed implementation of our purely web-based software with high functionality without requiring powerful computational resources in the client side. The user-interface is designed such that the users can select appropriate parameters for practical research and clinical studies. PMID:20022133

  19. Absorption and Scattering 2D Volcano Images from Numerically Calculated Space-weighting functions

    NASA Astrophysics Data System (ADS)

    Del Pezzo, Edoardo; Ibañez, Jesus; Prudencio, Janire; Bianco, Francesca; De Siena, Luca

    2016-04-01

    Short period small magnitude seismograms mainly comprise scattered waves in the form of coda waves (the tail part of the seismogram, starting after S-waves and ending when the noise prevails), spanning more than 70% of the whole seismogram duration. Corresponding coda envelopes provide important information about the earth inhomogeneity, which can be stochastically modeled in terms of distribution of scatterers in a random medium. In suitable experimental conditions (i.e. high earth heterogeneity) either the two parameters describing heterogeneity (scattering coefficient), intrinsic energy dissipation (coefficient of intrinsic attenuation) or a combination of them (extinction length and seismic albedo) can be used to image Earth structures. Once a set of such parameter couples has been measured in a given area and for a number of sources and receivers, imaging their space distribution with standard methods is straightforward. However, as for finite-frequency and full-waveform tomography, the essential problem for a correct imaging is the determination of the weighting function describing the spatial sensitivity of observable data to scattering and absorption anomalies. Due to the nature of coda waves, the measured parameter-couple can be seen as a weighted space average of the real parameters characterizing the rock volumes illuminated by the scattered waves. This paper uses the Monte Carlo numerical solution of the Energy Transport Equation to find approximate but realistic 2D space-weighting functions for coda waves. Separate images for scattering and absorption based on these sensitivity functions are then compared with those obtained with commonly-used sensitivity functions in an application to data from an active seismic experiment carried out at Deception Island (Antarctica). Results show the that these novel functions are based on a reliable and physically grounded method to image magnitude and shape of scattering and absorption anomalies. Their extension to

  20. Absorption and scattering 2-D volcano images from numerically calculated space-weighting functions

    NASA Astrophysics Data System (ADS)

    Del Pezzo, Edoardo; Ibañez, Jesus; Prudencio, Janire; Bianco, Francesca; De Siena, Luca

    2016-08-01

    Short-period small magnitude seismograms mainly comprise scattered waves in the form of coda waves (the tail part of the seismogram, starting after S waves and ending when the noise prevails), spanning more than 70 per cent of the whole seismogram duration. Corresponding coda envelopes provide important information about the earth inhomogeneity, which can be stochastically modeled in terms of distribution of scatterers in a random medium. In suitable experimental conditions (i.e. high earth heterogeneity), either the two parameters describing heterogeneity (scattering coefficient), intrinsic energy dissipation (coefficient of intrinsic attenuation) or a combination of them (extinction length and seismic albedo) can be used to image Earth structures. Once a set of such parameter couples has been measured in a given area and for a number of sources and receivers, imaging their space distribution with standard methods is straightforward. However, as for finite-frequency and full-waveform tomography, the essential problem for a correct imaging is the determination of the weighting function describing the spatial sensitivity of observable data to scattering and absorption anomalies. Due to the nature of coda waves, the measured parameter couple can be seen as a weighted space average of the real parameters characterizing the rock volumes illuminated by the scattered waves. This paper uses the Monte Carlo numerical solution of the Energy Transport Equation to find approximate but realistic 2-D space-weighting functions for coda waves. Separate images for scattering and absorption based on these sensitivity functions are then compared with those obtained with commonly used sensitivity functions in an application to data from an active seismic experiment carried out at Deception Island (Antarctica). Results show that these novel functions are based on a reliable and physically grounded method to image magnitude and shape of scattering and absorption anomalies. Their

  1. 2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India

    NASA Astrophysics Data System (ADS)

    Jaiswal, Priyank; Zelt, Colin A.; Bally, Albert W.; Dasgupta, Rahul

    2008-05-01

    Exploration along the Naga Thrust and Fold Belt in the Assam province of Northeast India encounters geological as well as logistic challenges. Drilling for hydrocarbons, traditionally guided by surface manifestations of the Naga thrust fault, faces additional challenges in the northeast where the thrust fault gradually deepens leaving subtle surface expressions. In such an area, multichannel 2-D seismic data were collected along a line perpendicular to the trend of the thrust belt. The data have a moderate signal-to-noise ratio and suffer from ground roll and other acquisition-related noise. In addition to data quality, the complex geology of the thrust belt limits the ability of conventional seismic processing to yield a reliable velocity model which in turn leads to poor subsurface image. In this paper, we demonstrate the application of traveltime and waveform inversion as supplements to conventional seismic imaging and interpretation processes. Both traveltime and waveform inversion utilize the first arrivals that are typically discarded during conventional seismic processing. As a first step, a smooth velocity model with long wavelength characteristics of the subsurface is estimated through inversion of the first-arrival traveltimes. This velocity model is then used to obtain a Kirchhoff pre-stack depth-migrated image which in turn is used for the interpretation of the fault. Waveform inversion is applied to the central part of the seismic line to a depth of ~1 km where the quality of the migrated image is poor. Waveform inversion is performed in the frequency domain over a series of iterations, proceeding from low to high frequency (11-19 Hz) using the velocity model from traveltime inversion as the starting model. In the end, the pre-stack depth-migrated image and the waveform inversion model are jointly interpreted. This study demonstrates that a combination of traveltime and waveform inversion with Kirchhoff pre-stack depth migration is a promising approach

  2. Voxel-based 2-D/3-D registration of fluoroscopy images and CT scans for image-guided surgery.

    PubMed

    Weese, J; Penney, G P; Desmedt, P; Buzug, T M; Hill, D L; Hawkes, D J

    1997-12-01

    Registration of intraoperative fluoroscopy images with preoperative three-dimensional (3-D) CT images can be used for several purposes in image-guided surgery. On the one hand, it can be used to display the position of surgical instruments, which are being tracked by a localizer, in the preoperative CT scan. On the other hand, the registration result can be used to project preoperative planning information or important anatomical structures visible in the CT image onto the fluoroscopy image. For this registration task, a novel voxel-based method in combination with a new similarity measure (pattern intensity) has been developed. The basic concept of the method is explained at the example of two-dimensional (2-D)/3-D registration of a vertebra in an X-ray fluoroscopy image with a 3-D CT image. The registration method is described, and the results for a spine phantom are presented and discussed. Registration has been carried out repeatedly with different starting estimates to study the capture range. Information about registration accuracy has been obtained by comparing the registration results with a highly accurate "ground-truth" registration, which has been derived from fiducial markers attached to the phantom prior to imaging. In addition, registration results for different vertebrae have been compared. The results show that the rotation parameters and the shifts parallel to the projection plane can accurately be determined from a single projection. Because of the projection geometry, the accuracy of the height above the projection plane is significantly lower. PMID:11020832

  3. High-resolution GPR imaging using a nonstandard 2D EEMD technique

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Sung; Jeng*, Yih; Yu, Hung-Ming

    2013-04-01

    Ground Penetrating Radar (GPR) data are affected by a variety of factors. Linear and nonlinear data processing methods each have been widely applied to the GPR use in geophysical and engineering investigations. For complicated data such as the shallow earth image of urban area, a better result can be achieved by integrating both approaches. In this study, we introduce a nonstandard 2D EEMD approach, which integrates the natural logarithm transformed (NLT) ensemble empirical mode decomposition (EEMD) method with the linear filtering technique to process GPR images. The NLT converts the data into logarithmic values; therefore, it permits a wide dynamic range for the recorded GPR data to be presented. The EEMD dyadic filter bank decomposes the data into multiple components ready for image reconstruction. Consequently, the NLT EEMD method provides a new way of nonlinear energy compensating and noise filtering with results having minimal artifacts. However, horizontal noise in the GPR time-distance section may be enhanced after NLT process in some cases. To solve the dilemma, we process the data two dimensionally. At first, the vertical background noise of each GPR trace is removed by using a standard linear method, the background noise removal algorithm, or simply by performing the sliding background removal filter. After that, the NLT is applied to the data for examining the horizontal coherent energy. Next, we employ the EEMD filter bank horizontally at each time step to remove the horizontal coherent energy. After removing the vertical background noise and horizontal coherent energy, a vertical EEMD method is then applied to generate a filter bank of the GPR time-distance section for final image reconstruction. Two buried models imitating common shallow earth targets are used to verify the effectiveness of the proposed scheme. One model is a brick cistern buried in a disturbed site of poor reflection quality. The other model is a buried two-stack metallic target

  4. Feasibility Study of Dual Energy Radiographic Imaging for Target Localization in Radiotherapy for Lung Tumors

    PubMed Central

    Huo, Jie; Zhu, Xianfeng; Dong, Yang; Yuan, Zhiyong; Wang, Ping; Wang, Xuemin; Wang, Gang; Hu, Xin-Hua; Feng, Yuanming

    2014-01-01

    Purpose Dual-energy (DE) radiographic imaging improves tissue discrimination by separating soft from hard tissues in the acquired images. This study was to establish a mathematic model of DE imaging based on intrinsic properties of tissues and quantitatively evaluate the feasibility of applying the DE imaging technique to tumor localization in radiotherapy. Methods We investigated the dependence of DE image quality on the radiological equivalent path length (EPL) of tissues with two phantoms using a stereoscopic x-ray imaging unit. 10 lung cancer patients who underwent radiotherapy each with gold markers implanted in the tumor were enrolled in the study approved by the hospital's Ethics Committee. The displacements of the centroids of the delineated gross tumor volumes (GTVs) in the digitally reconstructed radiograph (DRR) and in the bone-canceled DE image were compared with the averaged displacements of the centroids of gold markers to evaluate the feasibility of using DE imaging for tumor localization. Results The results of the phantom study indicated that the contrast-to-noise ratio (CNR) was linearly dependent on the difference of EPL and a mathematical model was established. The objects and backgrounds corresponding to ΔEPL less than 0.08 are visually indistinguishable in the bone-canceled DE image. The analysis of patient data showed that the tumor contrast in the bone-canceled images was improved significantly as compared with that in the original radiographic images and the accuracy of tumor localization using the DE imaging technique was comparable with that of using fiducial makers. Conclusion It is feasible to apply the technique for tumor localization in radiotherapy. PMID:25268643

  5. A comparison of defect size and film quality obtained from Film digitized image and digital image radiographs

    NASA Astrophysics Data System (ADS)

    Kamlangkeng, Poramate; Asa, Prateepasen; Mai, Noipitak

    2014-06-01

    Digital radiographic testing is an acceptable premature nondestructive examination technique. Its performance and limitation comparing to the old technique are still not widely well known. In this paper conducted the study on the comparison of the accuracy of the defect size measurement and film quality obtained from film and digital radiograph techniques by testing in specimens and known size sample defect. Initially, one specimen was built with three types of internal defect; which are longitudinal cracking, lack of fusion, and porosity. For the known size sample defect, it was machined various geometrical size for comparing the accuracy of the measuring defect size to the real size in both film and digital images. To compare the image quality by considering at smallest detectable wire and the three defect images. In this research used Image Quality Indicator (IQI) of wire type 10/16 FE EN BS EN-462-1-1994. The radiographic films were produced by X-ray and gamma ray using Kodak AA400 size 3.5x8 inches, while the digital images were produced by Fuji image plate type ST-VI with 100 micrometers resolution. During the tests, a radiator GE model MF3 was implemented. The applied energy is varied from 120 to 220 kV and the current from 1.2 to 3.0 mA. The intensity of Iridium 192 gamma ray is in the range of 24-25 Curie. Under the mentioned conditions, the results showed that the deviation of the defect size measurement comparing to the real size obtained from the digital image radiographs is below than that of the film digitized, whereas the quality of film digitizer radiographs is higher in comparison.

  6. Development of 2D imaging of SXR plasma radiation by means of GEM detectors

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Jabłoński, S.; Kowalska-Strzeciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Byszuk, A.; Burza, M.; Juszczyk, B.; Zienkiewicz, P.

    2014-11-01

    Presented 2D gaseous detector system has been developed and designed to provide energy resolved fast dynamic plasma radiation imaging in the soft X-Ray region with 0.1 kHz exposure frequency for online, made in real time, data acquisition (DAQ) mode. The detection structure is based on triple Gas Electron Multiplier (GEM) amplification structure followed by the pixel readout electrode. The efficiency of detecting unit was adjusted for the radiation energy region of tungsten in high-temperature plasma, the main candidate for the plasma facing material for future thermonuclear reactors. Here we present preliminary laboratory results and detector parameters obtained for the developed system. The operational characteristics and conditions of the detector were designed to work in the X-Ray range of 2-17 keV. The detector linearity was checked using the fluorescence lines of different elements and was found to be sufficient for good photon energy reconstruction. Images of two sources through various screens were performed with an X-Ray laboratory source and 55Fe source showing a good imaging capability. Finally offline stream-handling data acquisition mode has been developed for the detecting system with timing down to the ADC sampling frequency rate (~13 ns), up to 2.5 MHz of exposure frequency, which could pave the way to invaluable physics information about plasma dynamics due to very good time resolving ability. Here we present results of studied spatial resolution and imaging properties of the detector for conditions of laboratory moderate counting rates and high gain.

  7. Diagnostic imaging of psoriatic arthritis. Part I: etiopathogenesis, classifications and radiographic features.

    PubMed

    Sudoł-Szopińska, Iwona; Matuszewska, Genowefa; Kwiatkowska, Brygida; Pracoń, Grzegorz

    2016-03-01

    Psoriatic arthritis is one of the spondyloarthritis. It is a disease of clinical heterogenicity, which may affect peripheral joints, as well as axial spine, with presence of inflammatory lesions in soft tissue, in a form of dactylitis and enthesopathy. Plain radiography remains the basic imaging modality for PsA diagnosis, although early inflammatory changes affecting soft tissue and bone marrow cannot be detected with its use, or the image is indistinctive. Typical radiographic features of PsA occur in an advanced disease, mainly within the synovial joints, but also in fibrocartilaginous joints, such as sacroiliac joints, and additionally in entheses of tendons and ligaments. Moll and Wright classified PsA into 5 subtypes: asymmetric oligoarthritis, symmetric polyarthritis, arthritis mutilans, distal interphalangeal arthritis of the hands and feet and spinal column involvement. In this part of the paper we discuss radiographic features of the disease. The next one will address magnetic resonance imaging and ultrasonography. PMID:27104004

  8. Diagnostic imaging of psoriatic arthritis. Part I: etiopathogenesis, classifications and radiographic features

    PubMed Central

    Matuszewska, Genowefa; Kwiatkowska, Brygida; Pracoń, Grzegorz

    2016-01-01

    Psoriatic arthritis is one of the spondyloarthritis. It is a disease of clinical heterogenicity, which may affect peripheral joints, as well as axial spine, with presence of inflammatory lesions in soft tissue, in a form of dactylitis and enthesopathy. Plain radiography remains the basic imaging modality for PsA diagnosis, although early inflammatory changes affecting soft tissue and bone marrow cannot be detected with its use, or the image is indistinctive. Typical radiographic features of PsA occur in an advanced disease, mainly within the synovial joints, but also in fibrocartilaginous joints, such as sacroiliac joints, and additionally in entheses of tendons and ligaments. Moll and Wright classified PsA into 5 subtypes: asymmetric oligoarthritis, symmetric polyarthritis, arthritis mutilans, distal interphalangeal arthritis of the hands and feet and spinal column involvement. In this part of the paper we discuss radiographic features of the disease. The next one will address magnetic resonance imaging and ultrasonography. PMID:27104004

  9. Location constraint based 2D-3D registration of fluoroscopic images and CT volumes for image-guided EP procedures

    NASA Astrophysics Data System (ADS)

    Liao, Rui; Xu, Ning; Sun, Yiyong

    2008-03-01

    Presentation of detailed anatomical structures via 3D Computed Tomographic (CT) volumes helps visualization and navigation in electrophysiology procedures (EP). Registration of the CT volume with the online fluoroscopy however is a challenging task for EP applications due to the lack of discernable features in fluoroscopic images. In this paper, we propose to use the coronary sinus (CS) catheter in bi-plane fluoroscopic images and the coronary sinus in the CT volume as a location constraint to accomplish 2D-3D registration. Two automatic registration algorithms are proposed in this study, and their performances are investigated on both simulated and real data. It is shown that compared to registration using mono-plane fluoroscopy, registration using bi-plane images results in substantially higher accuracy in 3D and enhanced robustness. In addition, compared to registering the projection of CS to the 2D CS catheter, it is more desirable to reconstruct a 3D CS catheter from the bi-plane fluoroscopy and then perform a 3D-3D registration between the CS and the reconstructed CS catheter. Quantitative validation based on simulation and visual inspection on real data demonstrates the feasibility of the proposed workflow in EP procedures.

  10. A new method of diaphragm apex motion detection from 2D projection images of mega-voltage cone beam CT.

    PubMed

    Chen, Mingqing; Bai, Junjie; Siochi, R Alfredo C

    2013-02-01

    To present a new method of estimating 3D positions of the ipsi-lateral hemi-diaphragm apex (IHDA) from 2D projection images of mega-voltage cone beam CT (MVCBCT). The detection framework reconstructs a 3D volume from all the 2D projection images. An initial estimated 3D IHDA position is determined in this volume based on an imaging processing pipeline, including Otsu thresholding, connected component labeling and template matching. This initial position is then projected onto each 2D projection image to create a region of interest (ROI). To accurately detect the IHDA position in 2D projection space, two methods, dynamic Hough transform (DHT) and a tracking approach based on a joint probability density function (PDF) are developed. Both methods utilize a double-parabola model to fit the 2D diaphragm boundary. The 3D IHDA motion in the superior-inferior (SI) direction is estimated from the initial static 3D position and the detected 2D positions in projection space. The two Hough-based detection methods are tested on 35 MVCBCT scans from 15 patients. The detection is compared to manually identified IHDA positions in 2D projection space by three clinicians. An average and standard deviation of 4.252 ± 3.354 and 2.485 ± 1.750 mm was achieved for DHT and tracking-based approaches respectively, compared with the inter-expert variance among three experts of 1.822 ± 1.106 mm. Based on the results of the scans, the PDF tracking-based approach appears more robust than the DHT. The combination of the automatic ROI localization and the tracking-based approach is a quicker and more accurate method of extracting 3D IHDA motion from 2D projection images. PMID:23321998

  11. Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme.

    PubMed

    Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun

    2015-01-01

    Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation. PMID:25709942

  12. Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme

    PubMed Central

    Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun

    2015-01-01

    Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation. PMID:25709942

  13. On the assimilation of flood extension images into 2D shallow-water models

    NASA Astrophysics Data System (ADS)

    Monnier, J.; Couderc, F.; Dartus, D.; Madec, R.; Vila, J.

    2012-12-01

    In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images (e.g. from satellite) is still delicate. In the present talk, we address the richness of satellite information to constraint a 2D shallow-water model, and present also related difficulties. A preliminary study done on Mosel river is presented in [LaMo] [HoLaMoPu]. On selected parts of the image, an 0th order model flow allows to obtain some reliable water levels with quantified uncertainties (C. Puech et al.). Next, variationnal sensitivities (based on a gradient computation and adjoint equations) reveal some difficulties that a model designer have to tackle (e.g. roughness parameters at open boundaries), and allow to better understand both the model and the flow. Next, a variational data assimilation algorithm (4D-var) shows that such data lead to a better calibration of the model (e.g. roughness coefficients) and potentially allows to identify the incoming and/or outgoing flow at open boundaries, [LaMo] [HoLaMoPu]. On the other side, the flood dynamic extension is difficult to represent accurately using a 2D SW model since the wet-dry front dynamics is difficult to compute. We compare some 2nd order finite volume solvers and obtain an accurate and stable scheme at wet-dry front. Then, we present some basic rules of compatibility between data and mesh resolution in order to be reliable enough to constraint the model with flood extension data, [CoMaMoViDa]. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. [CoMaMoViDa] F. Couderc, R. Madec, J. Monnier, J.-P. Vila, D. Dartus. "Sensitivity analysis and variational data assimilation for geophysical shallow water flows". Submitted. [Da] DassFlow - Data Assimilation for Free Surface Flows. Open-source computational software http://www-gmm.insa-toulouse.fr/~monnier/DassFlow/ [HoLaMoPu] R. Hostache, X. Lai, J. Monnier, C. Puech. "Assimilation of spatial

  14. Use of a digitally reconstructed radiograph-based computer simulation for the optimisation of chest radiographic techniques for computed radiography imaging systems

    PubMed Central

    Moore, C S; Avery, G; Balcam, S; Needler, L; Swift, A; Beavis, A W; Saunderson, J R

    2012-01-01

    Objectives The purpose of this study was to derive an optimum radiographic technique for computed radiography (CR) chest imaging using a digitally reconstructed radiograph computer simulator. The simulator is capable of producing CR chest radiographs of adults with various tube potentials, receptor doses and scatter rejection. Methods Four experienced image evaluators graded images of average and obese adult patients at different potentials (average-sized, n=50; obese, n=20), receptor doses (n=10) and scatter rejection techniques (average-sized, n=20; obese, n=20). The quality of the images was evaluated using visually graded analysis. The influence of rib contrast was also assessed. Results For average-sized patients, image quality improved when tube potential was reduced compared with the reference (102 kVp). No scatter rejection was indicated. For obese patients, it has been shown that an antiscatter grid is indicated, and should be used in conjunction with as low a tube potential as possible (while allowing exposure times <20 ms). It is also possible to reduce receptor air kerma by 50% without adversely influencing image quality. Rib contrast did not interfere at any tube potential. Conclusions A virtual clinical trial has been performed with simulated chest CR images. Results indicate that low tube potentials (<102 kVp) are optimal for average and obese adults, the former acquired without scatter rejection, the latter with an anti-scatter grid. Lower receptor (and therefore patient doses) than those used clinically are possible while maintaining adequate image quality. PMID:22253349

  15. Coronary arteries motion modeling on 2D x-ray images

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Sundar, Hari

    2012-02-01

    During interventional procedures, 3D imaging modalities like CT and MRI are not commonly used due to interference with the surgery and radiation exposure concerns. Therefore, real-time information is usually limited and building models of cardiac motion are difficult. In such case, vessel motion modeling based on 2-D angiography images become indispensable. Due to issues with existing vessel segmentation algorithms and the lack of contrast in occluded vessels, manual segmentation of certain branches is usually necessary. In addition, such occluded branches are the most important vessels during coronary interventions and obtaining motion models for these can greatly help in reducing the procedure time and radiation exposure. Segmenting different cardiac phases independently does not guarantee temporal consistency and is not efficient for occluded branches required manual segmentation. In this paper, we propose a coronary motion modeling system which extracts the coronary tree for every cardiac phase, maintaining the segmentation by tracking the coronary tree during the cardiac cycle. It is able to map every frame to the specific cardiac phase, thereby inferring the shape information of the coronary arteries using the model corresponding to its phase. Our experiments show that our motion modeling system can achieve promising results with real-time performance.

  16. 2D metamaterials with hexagonal structure: spatial resonances and near field imaging.

    PubMed

    Zhuromskyy, O; Shamonina, E; Solymar, L

    2005-11-14

    The current and field distribution in a 2D metamaterial consisting of resonant elements in a hexagonal arrangement are found assuming magnetic interaction between the elements. The dispersion equation of magnetoinductive (MI) waves is derived with the aid of the direct and reciprocal lattice familiar from solid state theory. A continuous model for the current variation in the elements is introduced leading to the familiar wave equation in the form of a second order differential equation. The current distributions are shown to exhibit a series of spatial resonances for rectangular, circular and hexagonal boundaries. The axial and radial components of the resulting magnetic field are compared with previously obtained experimental results on a Swiss Roll metamaterial with hexagonal boundaries. Experimental and theoretical results are also compared for the near field image of an object in the shape of the letter M followed by a more general discussion of imaging. It is concluded that a theoretical formulation based on the propagation of MI waves can correctly describe the experimental results. PMID:19503131

  17. Ultrasound 2D Strain Estimator Based on Image Registration for Ultrasound Elastography

    PubMed Central

    Yang, Xiaofeng; Torres, Mylin; Kirkpatrick, Stephanie; Curran, Walter J.; Liu, Tian

    2015-01-01

    In this paper, we present a new approach to calculate 2D strain through the registration of the pre- and post-compression (deformation) B-mode image sequences based on an intensity-based non-rigid registration algorithm (INRA). Compared with the most commonly used cross-correlation (CC) method, our approach is not constrained to any particular set of directions, and can overcome displacement estimation errors introduced by incoherent motion and variations in the signal under high compression. This INRA method was tested using phantom and in vivo data. The robustness of our approach was demonstrated in the axial direction as well as the lateral direction where the standard CC method frequently fails. In addition, our approach copes well under large compression (over 6%). In the phantom study, we computed the strain image under various compressions and calculated the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. The SNR and CNS values of the INRA method were much higher than those calculated from the CC-based method. Furthermore, the clinical feasibility of our approach was demonstrated with the in vivo data from patients with arm lymphedema. PMID:25914492

  18. Ultrasound 2D strain estimator based on image registration for ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Torres, Mylin; Kirkpatrick, Stephanie; Curran, Walter J.; Liu, Tian

    2014-03-01

    In this paper, we present a new approach to calculate 2D strain through the registration of the pre- and post-compression (deformation) B-mode image sequences based on an intensity-based non-rigid registration algorithm (INRA). Compared with the most commonly used cross-correlation (CC) method, our approach is not constrained to any particular set of directions, and can overcome displacement estimation errors introduced by incoherent motion and variations in the signal under high compression. This INRA method was tested using phantom and in vivo data. The robustness of our approach was demonstrated in the axial direction as well as the lateral direction where the standard CC method frequently fails. In addition, our approach copes well under large compression (over 6%). In the phantom study, we computed the strain image under various compressions and calculated the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. The SNR and CNS values of the INRA method were much higher than those calculated from the CC-based method. Furthermore, the clinical feasibility of our approach was demonstrated with the in vivo data from patients with arm lymphedema.

  19. Image Segmentation and Analysis of Flexion-Extension Radiographs of Cervical Spines

    PubMed Central

    Enikov, Eniko T.

    2014-01-01

    We present a new analysis tool for cervical flexion-extension radiographs based on machine vision and computerized image processing. The method is based on semiautomatic image segmentation leading to detection of common landmarks such as the spinolaminar (SL) line or contour lines of the implanted anterior cervical plates. The technique allows for visualization of the local curvature of these landmarks during flexion-extension experiments. In addition to changes in the curvature of the SL line, it has been found that the cervical plates also deform during flexion-extension examination. While extension radiographs reveal larger curvature changes in the SL line, flexion radiographs on the other hand tend to generate larger curvature changes in the implanted cervical plates. Furthermore, while some lordosis is always present in the cervical plates by design, it actually decreases during extension and increases during flexion. Possible causes of this unexpected finding are also discussed. The described analysis may lead to a more precise interpretation of flexion-extension radiographs, allowing diagnosis of spinal instability and/or pseudoarthrosis in already seemingly fused spines. PMID:27006937

  20. Optimization of image quality and patient dose in radiographs of paediatric extremities using direct digital radiography

    PubMed Central

    Ansell, C; Jerrom, C; Honey, I D

    2015-01-01

    Objective: The purpose of this study was to evaluate the effect of beam quality on the image quality (IQ) of ankle radiographs of paediatric patients in the age range of 0–1 year whilst maintaining constant effective dose (ED). Methods: Lateral ankle radiographs of an infant foot phantom were taken at a range of tube potentials (40.0–64.5 kVp) with and without 0.1-mm copper (Cu) filtration using a Trixell Pixium 4600 detector (Trixell, Morains, France). ED to the patient was computed for the default exposure parameters using PCXMC v. 2.0 and was fixed for other beam qualities by modulating the tube current-time product. The contrast-to-noise ratio (CNR) was measured between the tibia and adjacent soft tissue. The IQ of the phantom images was assessed by three radiologists and a reporting radiographer. Four IQ criteria were defined each with a scale of 1–3, giving a maximum score of 12. Finally, a service audit of clinical images at the default and optimum beam qualities was undertaken. Results: The measured CNR for the 40 kVp/no Cu image was 12.0 compared with 7.6 for the default mode (55  0.1 mm Cu). An improvement in the clinical IQ scores was also apparent at this lower beam quality. Conclusion: Lowering tube potential and removing filtration improved the clinical IQ of paediatric ankle radiographs in this age range. Advances in knowledge: There are currently no UK guidelines on exposure protocols for paediatric imaging using direct digital radiography. A lower beam quality will produce better IQ with no additional dose penalty for infant extremity imaging. PMID:25816115

  1. 3D-2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch.

    PubMed

    De Silva, T; Uneri, A; Ketcha, M D; Reaungamornrat, S; Kleinszig, G; Vogt, S; Aygun, N; Lo, S-F; Wolinsky, J-P; Siewerdsen, J H

    2016-04-21

    In image-guided spine surgery, robust three-dimensional to two-dimensional (3D-2D) registration of preoperative computed tomography (CT) and intraoperative radiographs can be challenged by the image content mismatch associated with the presence of surgical instrumentation and implants as well as soft-tissue resection or deformation. This work investigates image similarity metrics in 3D-2D registration offering improved robustness against mismatch, thereby improving performance and reducing or eliminating the need for manual masking. The performance of four gradient-based image similarity metrics (gradient information (GI), gradient correlation (GC), gradient information with linear scaling (GS), and gradient orientation (GO)) with a multi-start optimization strategy was evaluated in an institutional review board-approved retrospective clinical study using 51 preoperative CT images and 115 intraoperative mobile radiographs. Registrations were tested with and without polygonal masks as a function of the number of multistarts employed during optimization. Registration accuracy was evaluated in terms of the projection distance error (PDE) and assessment of failure modes (PDE  >  30 mm) that could impede reliable vertebral level localization. With manual polygonal masking and 200 multistarts, the GC and GO metrics exhibited robust performance with 0% gross failures and median PDE  <  6.4 mm (±4.4 mm interquartile range (IQR)) and a median runtime of 84 s (plus upwards of 1-2 min for manual masking). Excluding manual polygonal masks and decreasing the number of multistarts to 50 caused the GC-based registration to fail at a rate of  >14%; however, GO maintained robustness with a 0% gross failure rate. Overall, the GI, GC, and GS metrics were susceptible to registration errors associated with content mismatch, but GO provided robust registration (median PDE  =  5.5 mm, 2.6 mm IQR) without manual masking and with an improved

  2. 3D-2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch

    NASA Astrophysics Data System (ADS)

    De Silva, T.; Uneri, A.; Ketcha, M. D.; Reaungamornrat, S.; Kleinszig, G.; Vogt, S.; Aygun, N.; Lo, S.-F.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-04-01

    In image-guided spine surgery, robust three-dimensional to two-dimensional (3D-2D) registration of preoperative computed tomography (CT) and intraoperative radiographs can be challenged by the image content mismatch associated with the presence of surgical instrumentation and implants as well as soft-tissue resection or deformation. This work investigates image similarity metrics in 3D-2D registration offering improved robustness against mismatch, thereby improving performance and reducing or eliminating the need for manual masking. The performance of four gradient-based image similarity metrics (gradient information (GI), gradient correlation (GC), gradient information with linear scaling (GS), and gradient orientation (GO)) with a multi-start optimization strategy was evaluated in an institutional review board-approved retrospective clinical study using 51 preoperative CT images and 115 intraoperative mobile radiographs. Registrations were tested with and without polygonal masks as a function of the number of multistarts employed during optimization. Registration accuracy was evaluated in terms of the projection distance error (PDE) and assessment of failure modes (PDE  >  30 mm) that could impede reliable vertebral level localization. With manual polygonal masking and 200 multistarts, the GC and GO metrics exhibited robust performance with 0% gross failures and median PDE  <  6.4 mm (±4.4 mm interquartile range (IQR)) and a median runtime of 84 s (plus upwards of 1-2 min for manual masking). Excluding manual polygonal masks and decreasing the number of multistarts to 50 caused the GC-based registration to fail at a rate of  >14% however, GO maintained robustness with a 0% gross failure rate. Overall, the GI, GC, and GS metrics were susceptible to registration errors associated with content mismatch, but GO provided robust registration (median PDE  =  5.5 mm, 2.6 mm IQR) without manual masking and with an improved

  3. 3D–2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch

    PubMed Central

    De Silva, T; Uneri, A; Ketcha, M D; Reaungamornrat, S; Kleinszig, G; Vogt, S; Aygun, N; Lo, S-F; Wolinsky, J-P; Siewerdsen, J H

    2016-01-01

    In image-guided spine surgery, robust three-dimensional to two-dimensional (3D–2D) registration of preoperative computed tomography (CT) and intraoperative radiographs can be challenged by the image content mismatch associated with the presence of surgical instrumentation and implants as well as soft-tissue resection or deformation. This work investigates image similarity metrics in 3D–2D registration offering improved robustness against mismatch, thereby improving performance and reducing or eliminating the need for manual masking. The performance of four gradient-based image similarity metrics (gradient information (GI), gradient correlation (GC), gradient information with linear scaling (GS), and gradient orientation (GO)) with a multi-start optimization strategy was evaluated in an institutional review board-approved retrospective clinical study using 51 preoperative CT images and 115 intraoperative mobile radiographs. Registrations were tested with and without polygonal masks as a function of the number of multistarts employed during optimization. Registration accuracy was evaluated in terms of the projection distance error (PDE) and assessment of failure modes (PDE > 30 mm) that could impede reliable vertebral level localization. With manual polygonal masking and 200 multistarts, the GC and GO metrics exhibited robust performance with 0% gross failures and median PDE < 6.4 mm (±4.4 mm interquartile range (IQR)) and a median runtime of 84 s (plus upwards of 1–2 min for manual masking). Excluding manual polygonal masks and decreasing the number of multistarts to 50 caused the GC-based registration to fail at a rate of >14%; however, GO maintained robustness with a 0% gross failure rate. Overall, the GI, GC, and GS metrics were susceptible to registration errors associated with content mismatch, but GO provided robust registration (median PDE = 5.5 mm, 2.6 mm IQR) without manual masking and with an improved runtime (29.3 s). The GO metric improved the

  4. Analysis of 2-d ultrasound cardiac strain imaging using joint probability density functions.

    PubMed

    Ma, Chi; Varghese, Tomy

    2014-06-01

    Ultrasound frame rates play a key role for accurate cardiac deformation tracking. Insufficient frame rates lead to an increase in signal de-correlation artifacts resulting in erroneous displacement and strain estimation. Joint probability density distributions generated from estimated axial strain and its associated signal-to-noise ratio provide a useful approach to assess the minimum frame rate requirements. Previous reports have demonstrated that bi-modal distributions in the joint probability density indicate inaccurate strain estimation over a cardiac cycle. In this study, we utilize similar analysis to evaluate a 2-D multi-level displacement tracking and strain estimation algorithm for cardiac strain imaging. The effect of different frame rates, final kernel dimensions and a comparison of radio frequency and envelope based processing are evaluated using echo signals derived from a 3-D finite element cardiac model and five healthy volunteers. Cardiac simulation model analysis demonstrates that the minimum frame rates required to obtain accurate joint probability distributions for the signal-to-noise ratio and strain, for a final kernel dimension of 1 λ by 3 A-lines, was around 42 Hz for radio frequency signals. On the other hand, even a frame rate of 250 Hz with envelope signals did not replicate the ideal joint probability distribution. For the volunteer study, clinical data was acquired only at a 34 Hz frame rate, which appears to be sufficient for radio frequency analysis. We also show that an increase in the final kernel dimensions significantly affect the strain probability distribution and joint probability density function generated, with a smaller effect on the variation in the accumulated mean strain estimated over a cardiac cycle. Our results demonstrate that radio frequency frame rates currently achievable on clinical cardiac ultrasound systems are sufficient for accurate analysis of the strain probability distribution, when a multi-level 2-D

  5. Influence of the intergonial distance on image distortion in panoramic radiographs

    PubMed Central

    Ladeira, DBS; Cruz, AD; Almeida, SM; Bóscolo, FN

    2012-01-01

    Objectives The aim of this study was to evaluate the influence of the intergonial distance during the formation of panoramic radiographic images by means of horizontal and vertical measurements. Methods 30 macerated mandibles were categorized into 3 different groups (n = 10) according to their intergonial distances as follows: G1, mean distance 8.2 cm, G2, mean distance 9.0 cm and G3, mean distance 9.6 cm. Three metal spheres 0.198 cm in diameter and placed at an incline using an isosceles triangle were separately placed over the internal and external surfaces of the mandibles before radiographic exposure for the purpose of taking the horizontal and vertical measurements. The occlusal planes of the mandibles were horizontally placed on the chin rest of the panoramic machine Orthopantomograph® OP 100 (Instrumentarium Imaging, Tuusula, Finland) and were then radiographed. In the panoramic radiographs, an expert radiologist measured the distances between the metal spheres in the horizontal and vertical directions using a digital caliper. The data were tabled and statistically analysed by Student's t-test and analysis of variance with Tukey post-test (α = 0.05). Results In all three groups magnification of the distances between spheres was observed when compared with the real distance in both horizontal and vertical measurements (p < 0.05). Differences in both horizontal and vertical measurements were observed between the different regions (p < 0.05), however there were no differences between groups in the same region (p > 0.05). Differences between horizontal and vertical measurements were observed in different regions in all evaluated groups (p < 0.05). Conclusion The intergonial distance is a factor that had no influence on image formation in the panoramic radiograph. PMID:22282504

  6. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research

    PubMed Central

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2013-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131

  7. Reproducing 2D breast mammography images with 3D printed phantoms

    NASA Astrophysics Data System (ADS)

    Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu

    2016-03-01

    Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.

  8. Development of a medical record and radiographic image transmission system using a high-speed communication network.

    PubMed

    Kim, N H; Yoo, S K; Kim, K M; Kang, Y T; Bae, S H; Kim, S R

    1998-01-01

    A medical record and radiographic image transmission system has been developed using a high-speed communication network. The databases are designed to store and transmit the data acquired from the scanner. To maximally utilize the communication bandwidth, the medical records and radiographic images are compressed using the G3 facsimile and JPEG coding standard method, respectively. TCP/IP, OOP and Windows-based system software enable a modular design, future expandability, open system interconnectivity, and diverse image manipulation functions. PMID:10384462

  9. Self-calibration of cone-beam CT geometry using 3D–2D image registration

    PubMed Central

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-01-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional

  10. Self-calibration of cone-beam CT geometry using 3D-2D image registration.

    PubMed

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a 'self-calibration' of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM-e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE-e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  11. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  12. Where Does It Lead? Imaging Features of Cardiovascular Implantable Electronic Devices on Chest Radiograph and CT

    PubMed Central

    Lanzman, Rotem S.; Winter, Joachim; Blondin, Dirk; Fürst, Günter; Scherer, Axel; Miese, Falk R; Abbara, Suhny

    2011-01-01

    Pacemakers and implantable cardioverter defibrillators (ICDs) are being increasingly employed in patients suffering from cardiac rhythm disturbances. The principal objective of this article is to familiarize radiologists with pacemakers and ICDs on chest radiographs and CT scans. Therefore, the preferred lead positions according to pacemaker types and anatomic variants are introduced in this study. Additionally, the imaging features of incorrect lead positions and defects, as well as complications subsequent to pacemaker implantation are demonstrated herein. PMID:21927563

  13. Imaging Patterns in MRI in Recent Bone Injuries Following Negative or Inconclusive Plain Radiographs

    PubMed Central

    Sadineni, Raghu Teja; Bellapa, Narayan Chander; Velicheti, Sandeep

    2015-01-01

    Background Few bony injuries and most soft tissue injuries cannot be detected on plain radiography. Magnetic resonance imaging (MRI) can detect such occult bony injuries due to signal changes in bone marrow. In addition to excluding serious bony injuries, it can also identify tendon, ligament, cartilage and other soft tissue injuries and thus help in localizing the cause of morbidity. Aims and Objectives To determine the MRI imaging patterns in recent bone injuries (less than 4 weeks) following negative or inconclusive plain radiographs. To determine the role of MRI in recent fractures. Results Out of the 75 individuals with history of recent injury of less than 4 weeks duration, fracture line was demonstrated in 16 patients (21%) who had no obvious evidence of bone injury on plain radiographs. Bone contusion or bruising of the bone was demonstrated in 39 (52%) patients. This was the commonest abnormality detected in MRI. The remaining 20 patients did not show any obvious injury to the bone on MR imaging however, soft tissue injury could be demonstrated in 12 (16%) patients which show that the extent of soft tissue injury was relatively well demonstrated by MR imaging. The present study showed that occult injuries commonly occur at the Knee followed by Ankle, Wrist, Foot, Elbow, Leg, Hands, Hips & Spine. Conclusion The study showed that MR is efficient in the detection of occult bone injuries which are missed on radiography. Compared to radiographs, MRI clearly depicted the extent of injuries and associated soft tissue involvement. MRI demonstrates both acute and chronic injuries and also differentiates both, whereas radiography has poor sensitivity for acute injuries. Also, the soft tissue injuries like tendionous and ligamentous injuries cannot be identified on radiographs. PMID:26557590

  14. Determining ice water content from 2D crystal images in convective cloud systems

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values

  15. A survey of radiographers' confidence and self-perceived accuracy in frontline image interpretation and their continuing educational preferences

    SciTech Connect

    Neep, Michael J; Steffens, Tom; Owen, Rebecca; McPhail, Steven M

    2014-06-15

    The provision of a written comment on traumatic abnormalities of the musculoskeletal system detected by radiographers can assist referrers and may improve patient management, but the practice has not been widely adopted outside the United Kingdom. The purpose of this study was to investigate Australian radiographers' perceptions of their readiness for practice in a radiographer commenting system and their educational preferences in relation to two different delivery formats of image interpretation education, intensive and non-intensive. A cross-sectional web-based questionnaire was implemented between August and September 2012. Participants included radiographers with experience working in emergency settings at four Australian metropolitan hospitals. Conventional descriptive statistics, frequency histograms, and thematic analysis were undertaken. A Wilcoxon signed-rank test examined whether a difference in preference ratings between intensive and non-intensive education delivery was evident. The questionnaire was completed by 73 radiographers (68% response rate). Radiographers reported higher confidence and self-perceived accuracy to detect traumatic abnormalities than to describe traumatic abnormalities of the musculoskeletal system. Radiographers frequently reported high desirability ratings for both the intensive and the non-intensive education delivery, no difference in desirability ratings for these two formats was evident (z = 1.66, P = 0.11). Some Australian radiographers perceive they are not ready to practise in a frontline radiographer commenting system. Overall, radiographers indicated mixed preferences for image interpretation education delivered via intensive and non-intensive formats. Further research, preferably randomised trials, investigating the effectiveness of intensive and non-intensive education formats of image interpretation education for radiographers is warranted.

  16. Optimisation of the digital radiographic imaging of suspected non-accidental injury

    NASA Astrophysics Data System (ADS)

    Offiah, Amaka

    Aim: To optimise the digital (radiographic) imaging of children presenting with suspected non-accidental injury (NAI). Objectives: (i) To evaluate existing radiographic quality criteria, and to develop a more suitable system if these are found to be inapplicable to skeletal surveys obtained in suspected NAI. (ii) To document differences in image quality between conventional film-screen and the recently installed Fuji5000R computed radiography (CR) system at Great Ormond Street Hospital for Children, (iii) To document the extent of variability in the standard of skeletal surveys obtained in the UK for suspected NAI. (iv) To determine those radiographic parameters which yield the highest diagnostic accuracy, while still maintaining acceptable radiation dose to the child, (v) To determine how varying degrees of edge-enhancement affect diagnostic accuracy. (vi) To establish the accuracy of soft compared to hard copy interpretation of images in suspected NAI. Materials and Methods: (i) and (ii) Retrospective analysis of 286 paediatric lateral spine radiographs by two observers based on the Commission of European Communities (CEC) quality criteria, (iii) Review of the skeletal surveys of 50 consecutive infants referred from hospitals throughout the United Kingdom (UK) with suspected NAI. (iv) Phantom studies. Leeds TO. 10 and TO. 16 test objects were used to compare the relationship between film density, exposure parameters and visualisation of object details, (iv) Clinical study. Anteroposterior and lateral post mortem skull radiographs of six consecutive infants were obtained at various exposures. Six observers independently scored the images based on visualisation of five criteria, (v) and (vi) A study of diagnostic accuracy in which six observers independently interpreted 50 radiographs from printed copies (with varying degrees of edge-enhancement) and from a monitor. Results: The CEC criteria are useful for optimisation of imaging parameters and allow the detection

  17. Modeling and optimization of a time-resolved proton radiographic imaging system for proton cancer treatment

    NASA Astrophysics Data System (ADS)

    Han, Bin

    This dissertation describes a research project to test the clinical utility of a time-resolved proton radiographic (TRPR) imaging system by performing comprehensive Monte Carlo simulations of a physical device coupled with realistic lung cancer patient anatomy defined by 4DCT for proton therapy. A time-resolved proton radiographic imaging system was modeled through Monte Carlo simulations. A particle-tracking feature was employed to evaluate the performance of the proton imaging system, especially in its ability to visualize and quantify proton range variations during respiration. The Most Likely Path (MLP) algorithm was developed to approximate the multiple Coulomb scattering paths of protons for the purpose of image reconstruction. Spatial resolution of ˜ 1 mm and range resolution of 1.3% of the total range were achieved using the MLP algorithm. Time-resolved proton radiographs of five patient cases were reconstructed to track tumor motion and to calculate water equivalent length variations. By comparing with direct 4DCT measurement, the accuracy of tumor tracking was found to be better than 2 mm in five patient cases. Utilizing tumor tracking information to reduce margins to the planning target volume, a gated treatment plan was compared with un-gated treatment plan. The equivalent uniform dose (EUD) and the normal tissue complication probability (NTCP) were used to quantify the gain in the quality of treatments. The EUD of the OARs was found to be reduced up to 11% and the corresponding NTCP of organs at risk (OARs) was found to be reduced up to 16.5%. These results suggest that, with image guidance by proton radiography, dose to OARs can be reduced and the corresponding NTCPs can be significantly reduced. The study concludes that the proton imaging system can accurately track the motion of the tumor and detect the WEL variations, leading to potential gains in using image-guided proton radiography for lung cancer treatments.

  18. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  19. Application of 2D and 3D Digital Image Correlation on CO2-like altered carbonate

    NASA Astrophysics Data System (ADS)

    zinsmeister, Louis; Dautriat, Jérémie; Dimanov, Alexandre; Raphanel, Jean; Bornert, Michel

    2013-04-01

    In order to provide mechanical constitutive laws for reservoir monitoring during CO2 long term storage, we studied the mechanical properties of Lavoux limestone before and after a homogeneous alteration following the protocol of acid treatments defined by Egermann et al, (2006). The mechanical data have been analysed at the light of systematic microstructural investigations. Firstly, the alteration impact on the evolution of flow properties related to microstructural changes was studied at successive levels of alteration by classical petrophysical measurements of porosity and permeability (including NMR, mercury porosimetry and laser diffraction) and by observations of microstructures on thin sections and by SEM. Secondly, the mechanical properties of the samples were investigated by classical (macroscopic) triaxial and uniaxial tests and are discussed in terms of the structural modifications. The macroscopic tests indicate that the alteration weakens the material, according to the observed decrease of elastic moduli and Uniaxial Compressive Strengths, from 29MPa to 19MPa after 6 cycles of acid treatments. The study is further complemented by 2D full (mechanical) field measurements, thanks to Digital Image Correlation (DIC) performed on images acquired during the uniaxial tests. This technique allows for continuous quantitative micro-mechanical monitoring in terms of deformation history and localisation processes during compression. This technique was applied on both intact and altered materials and at different scales of observation: (i) cm-sized samples were compressed in a classical load frame and optically imaged, (ii) mm-sized samples were loaded with a miniaturized compression rig implemented within a Scanning Electron Microscope. At last, 3D full field measurements were performed by 3D-DIC on mm-sized samples, which were compressed "in-situ" an X-ray microtomograph thanks to a miniaturized triaxial cell allowing for confining pressures of up to 15 MPa. At

  20. Perona Malik anisotropic diffusion model using Peaceman Rachford scheme on digital radiographic image

    SciTech Connect

    Halim, Suhaila Abd; Razak, Rohayu Abd; Ibrahim, Arsmah; Manurung, Yupiter HP

    2014-06-19

    In image processing, it is important to remove noise without affecting the image structure as well as preserving all the edges. Perona Malik Anisotropic Diffusion (PMAD) is a PDE-based model which is suitable for image denoising and edge detection problems. In this paper, the Peaceman Rachford scheme is applied on PMAD to remove unwanted noise as the scheme is efficient and unconditionally stable. The capability of the scheme to remove noise is evaluated on several digital radiography weld defect images computed using MATLAB R2009a. Experimental results obtained show that the Peaceman Rachford scheme improves the image quality substantially well based on the Peak Signal to Noise Ratio (PSNR). The Peaceman Rachford scheme used in solving the PMAD model successfully removes unwanted noise in digital radiographic image.

  1. Diagnostic Characteristics of Standard Radiographs and Magnetic Resonance Imaging of Ruptures of the Tibialis Posterior Tendon.

    PubMed

    Ikoma, Kazuya; Ohashi, Suzuyo; Maki, Masahiro; Kido, Masamitsu; Hara, Yusuke; Kubo, Toshikazu

    2016-01-01

    The present study aimed to diagnose complete rupture (CR) and longitudinal rupture (LR) of the posterior tibial tendon (PTT) from the magnetic resonance imaging findings in patients with PTT dysfunction and to analyze and compare the radiographs from each group to identify radiographic indicators related to the progression of PTT injury that would allow the radiographic diagnosis of CR. We evaluated 32 feet in 27 patients with PTT dysfunction (mean age 66.5, range 49 to 82, years). Radiographs were used to acquire weightbearing anteroposterior images of the foot, which were used to measure the talonavicular coverage angle. Lateral images of the foot were also acquired with the patients in the standing position. These were used to measure the lateral talometatarsal angle, calcaneal pitch angle, and medial cuneiform-fifth metatarsal height. From the axial MRI findings, the patients were divided into a CR group and an LR group, and the radiographic attributes of the CR group were analyzed. Of the 32 feet in 27 patients, 12 feet (37.5%) in 11 patients displayed CR and 20 feet (62.5%) in 18 patients displayed LR. The talonavicular coverage angle was 48.3° ± 17.3° in the CR group and 33.6° ± 13.6° in the LR group (p = .012), and the talometatarsal angle was -28.8° ± 22.5° in the CR group and -25.4° ± 14.4° in the LR group (p = .596). The calcaneal pitch angle was 10.4° ± 6.7° in the CR group and 10.2° ± 8.0° in the LR group (p = .935). Finally, the medial cuneiform-fifth metatarsal height was -4.2 ± 7.1 mm in the CR group and 2.1 ± 4.7 mm in the LR group (p = .005). When a medial cuneiform-fifth metatarsal height of ≤0 mm or talonavicular coverage angle of ≥50° was used as the diagnostic criterion for CR on weightbearing radiographs, the sensitivity was 71.4%, specificity 88.9%, and diagnostic accuracy 81.3%; hence, we believe these to be satisfactory diagnostic criteria for CR. PMID:26872525

  2. An algorithm to unveil the inner structure of objects concealed by beam divergence in radiographic image acquisition systems

    NASA Astrophysics Data System (ADS)

    Almeida, G. L.; Silvani, M. I.; Lopes, R. T.

    2014-11-01

    Two main parameters rule the performance of an Image Acquisition System, namely, spatial resolution and contrast. For radiographic systems using cone beam arrangements, the farther the source, the better the resolution, but the contrast would diminish due to the lower statistics. A closer source would yield a higher contrast but it would no longer reproduce the attenuation map of the object, as the incoming beam flux would be reduced by unequal large divergences and attenuation factors. This work proposes a procedure to correct these effects when the object is comprised of a hull - or encased in it - possessing a shape capable to be described in analytical geometry terms. Such a description allows the construction of a matrix containing the attenuation factors undergone by the beam from the source until its final destination at each coordinate on the 2D detector. Each matrix element incorporates the attenuation suffered by the beam after its travel through the hull wall, as well as its reduction due to the square of distance to the source and the angle it hits the detector surface. When the pixel intensities of the original image are corrected by these factors, the image contrast, reduced by the overall attenuation in the exposure phase, are recovered, allowing one to see details otherwise concealed due to the low contrast. In order to verify the soundness of this approach, synthetic images of objects of different shapes, such as plates and tubes, incorporating defects and statistical fluctuation, have been generated, recorded for further comparison and afterwards processed to improve their contrast. The developed algorithm which, generates processes and plots the images has been written in Fortran 90 language. As the resulting final images exhibit the expected improvements, it therefore seemed worthwhile to carry out further tests with actual experimental radiographies.

  3. An algorithm to unveil the inner structure of objects concealed by beam divergence in radiographic image acquisition systems

    SciTech Connect

    Almeida, G. L.; Silvani, M. I.; Lopes, R. T.

    2014-11-11

    Two main parameters rule the performance of an Image Acquisition System, namely, spatial resolution and contrast. For radiographic systems using cone beam arrangements, the farther the source, the better the resolution, but the contrast would diminish due to the lower statistics. A closer source would yield a higher contrast but it would no longer reproduce the attenuation map of the object, as the incoming beam flux would be reduced by unequal large divergences and attenuation factors. This work proposes a procedure to correct these effects when the object is comprised of a hull - or encased in it - possessing a shape capable to be described in analytical geometry terms. Such a description allows the construction of a matrix containing the attenuation factors undergone by the beam from the source until its final destination at each coordinate on the 2D detector. Each matrix element incorporates the attenuation suffered by the beam after its travel through the hull wall, as well as its reduction due to the square of distance to the source and the angle it hits the detector surface. When the pixel intensities of the original image are corrected by these factors, the image contrast, reduced by the overall attenuation in the exposure phase, are recovered, allowing one to see details otherwise concealed due to the low contrast. In order to verify the soundness of this approach, synthetic images of objects of different shapes, such as plates and tubes, incorporating defects and statistical fluctuation, have been generated, recorded for further comparison and afterwards processed to improve their contrast. The developed algorithm which, generates processes and plots the images has been written in Fortran 90 language. As the resulting final images exhibit the expected improvements, it therefore seemed worthwhile to carry out further tests with actual experimental radiographies.

  4. Kinematic Analysis of Healthy Hips during Weight-Bearing Activities by 3D-to-2D Model-to-Image Registration Technique

    PubMed Central

    Hara, Daisuke; Nakashima, Yasuharu; Hamai, Satoshi; Higaki, Hidehiko; Ikebe, Satoru; Shimoto, Takeshi; Hirata, Masanobu; Kanazawa, Masayuki; Kohno, Yusuke; Iwamoto, Yukihide

    2014-01-01

    Dynamic hip kinematics during weight-bearing activities were analyzed for six healthy subjects. Continuous X-ray images of gait, chair-rising, squatting, and twisting were taken using a flat panel X-ray detector. Digitally reconstructed radiographic images were used for 3D-to-2D model-to-image registration technique. The root-mean-square errors associated with tracking the pelvis and femur were less than 0.3 mm and 0.3° for translations and rotations. For gait, chair-rising, and squatting, the maximum hip flexion angles averaged 29.6°, 81.3°, and 102.4°, respectively. The pelvis was tilted anteriorly around 4.4° on average during full gait cycle. For chair-rising and squatting, the maximum absolute value of anterior/posterior pelvic tilt averaged 12.4°/11.7° and 10.7°/10.8°, respectively. Hip flexion peaked on the way of movement due to further anterior pelvic tilt during both chair-rising and squatting. For twisting, the maximum absolute value of hip internal/external rotation averaged 29.2°/30.7°. This study revealed activity dependent kinematics of healthy hip joints with coordinated pelvic and femoral dynamic movements. Kinematics' data during activities of daily living may provide important insight as to the evaluating kinematics of pathological and reconstructed hips. PMID:25506056

  5. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  6. 2D harmonic filtering of MR phase images in multicenter clinical setting: toward a magnetic signature of cerebral microbleeds.

    PubMed

    Kaaouana, Takoua; de Rochefort, Ludovic; Samaille, Thomas; Thiery, Nathalie; Dufouil, Carole; Delmaire, Christine; Dormont, Didier; Chupin, Marie

    2015-01-01

    Cerebral microbleeds (CMBs) have emerged as a new imaging marker of small vessel disease. Composed of hemosiderin, CMBs are paramagnetic and can be detected with MRI sequences sensitive to magnetic susceptibility (typically, gradient recalled echo T2* weighted images). Nevertheless, their identification remains challenging on T2* magnitude images because of confounding structures and lesions. In this context, T2* phase image may play a key role in better characterizing CMBs because of its direct relationship with local magnetic field variations due to magnetic susceptibility difference. To address this issue, susceptibility-based imaging techniques were proposed, such as Susceptibility Weighted Imaging (SWI) and Quantitative Susceptibility Mapping (QSM). But these techniques have not yet been validated for 2D clinical data in multicenter settings. Here, we introduce 2DHF, a fast 2D phase processing technique embedding both unwrapping and harmonic filtering designed for data acquired in 2D, even with slice-to-slice inconsistencies. This method results in internal field maps which reveal local field details due to magnetic inhomogeneity within the region of interest only. This technique is based on the physical properties of the induced magnetic field and should yield consistent results. A synthetic phantom was created for numerical simulations. It simulates paramagnetic and diamagnetic lesions within a 'brain-like' tissue, within a background. The method was evaluated on both this synthetic phantom and multicenter 2D datasets acquired in standardized clinical setting, and compared with two state-of-the-art methods. It proved to yield consistent results on synthetic images and to be applicable and robust on patient data. As a proof-of-concept, we finally illustrate that it is possible to find a magnetic signature of CMBs and CMCs on internal field maps generated with 2DHF on 2D clinical datasets that give consistent results with CT-scans in a subsample of 10 subjects

  7. Process to generate a synthetic diagnostic for microwave imaging reflectometry with the full-wave code FWR2D.

    PubMed

    Ren, X; Domier, C W; Kramer, G; Luhmann, N C; Muscatello, C M; Shi, L; Tobias, B J; Valeo, E

    2014-11-01

    A synthetic microwave imaging reflectometer (MIR) diagnostic employing the full-wave reflectometer code (FWR2D) has been developed and is currently being used to guide the design of real systems, such as the one recently installed on DIII-D. The FWR2D code utilizes real plasma profiles as input, and it is combined with optical simulation tools for synthetic diagnostic signal generation. A detailed discussion of FWR2D and the process to generate the synthetic signal are presented in this paper. The synthetic signal is also compared to a prescribed density fluctuation spectrum to quantify the imaging quality. An example is presented with H-mode-like plasma profiles derived from a DIII-D discharge, where the MIR focal is located in the pedestal region. It is shown that MIR is suitable for diagnosing fluctuations with poloidal wavenumber up to 2.0 cm(-1) and fluctuation amplitudes less than 5%. PMID:25430276

  8. Reconstruction of 3D lung models from 2D planning data sets for Hodgkin's lymphoma patients using combined deformable image registration and navigator channels

    SciTech Connect

    Ng, Angela; Nguyen, Thao-Nguyen; Moseley, Joanne L.; Hodgson, David C.; Sharpe, Michael B.; Brock, Kristy K.

    2010-03-15

    Purpose: Late complications (cardiac toxicities, secondary lung, and breast cancer) remain a significant concern in the radiation treatment of Hodgkin's lymphoma (HL). To address this issue, predictive dose-risk models could potentially be used to estimate radiotherapy-related late toxicities. This study investigates the use of deformable image registration (DIR) and navigator channels (NCs) to reconstruct 3D lung models from 2D radiographic planning images, in order to retrospectively calculate the treatment dose exposure to HL patients treated with 2D planning, which are now experiencing late effects. Methods: Three-dimensional planning CT images of 52 current HL patients were acquired. 12 image sets were used to construct a male and a female population lung model. 23 ''Reference'' images were used to generate lung deformation adaptation templates, constructed by deforming the population model into each patient-specific lung geometry using a biomechanical-based DIR algorithm, MORFEUS. 17 ''Test'' patients were used to test the accuracy of the reconstruction technique by adapting existing templates using 2D digitally reconstructed radiographs. The adaptation process included three steps. First, a Reference patient was matched to a Test patient by thorax measurements. Second, four NCs (small regions of interest) were placed on the lung boundary to calculate 1D differences in lung edges. Third, the Reference lung model was adapted to the Test patient's lung using the 1D edge differences. The Reference-adapted Test model was then compared to the 3D lung contours of the actual Test patient by computing their percentage volume overlap (POL) and Dice coefficient. Results: The average percentage overlapping volumes and Dice coefficient expressed as a percentage between the adapted and actual Test models were found to be 89.2{+-}3.9% (Right lung=88.8%; Left lung=89.6%) and 89.3{+-}2.7% (Right=88.5%; Left=90.2%), respectively. Paired T-tests demonstrated that the

  9. Registration of 2D x-ray images to 3D MRI by generating pseudo-CT data

    NASA Astrophysics Data System (ADS)

    van der Bom, M. J.; Pluim, J. P. W.; Gounis, M. J.; van de Kraats, E. B.; Sprinkhuizen, S. M.; Timmer, J.; Homan, R.; Bartels, L. W.

    2011-02-01

    Spatial and soft tissue information provided by magnetic resonance imaging can be very valuable during image-guided procedures, where usually only real-time two-dimensional (2D) x-ray images are available. Registration of 2D x-ray images to three-dimensional (3D) magnetic resonance imaging (MRI) data, acquired prior to the procedure, can provide optimal information to guide the procedure. However, registering x-ray images to MRI data is not a trivial task because of their fundamental difference in tissue contrast. This paper presents a technique that generates pseudo-computed tomography (CT) data from multi-spectral MRI acquisitions which is sufficiently similar to real CT data to enable registration of x-ray to MRI with comparable accuracy as registration of x-ray to CT. The method is based on a k-nearest-neighbors (kNN)-regression strategy which labels voxels of MRI data with CT Hounsfield Units. The regression method uses multi-spectral MRI intensities and intensity gradients as features to discriminate between various tissue types. The efficacy of using pseudo-CT data for registration of x-ray to MRI was tested on ex vivo animal data. 2D-3D registration experiments using CT and pseudo-CT data of multiple subjects were performed with a commonly used 2D-3D registration algorithm. On average, the median target registration error for registration of two x-ray images to MRI data was approximately 1 mm larger than for x-ray to CT registration. The authors have shown that pseudo-CT data generated from multi-spectral MRI facilitate registration of MRI to x-ray images. From the experiments it could be concluded that the accuracy achieved was comparable to that of registering x-ray images to CT data.

  10. A Lossless hybrid wavelet-fractal compression for welding radiographic images.

    PubMed

    Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud

    2016-01-01

    In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm. PMID:26890900

  11. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image

    PubMed Central

    Wang, Mengjiao; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

    2014-01-01

    Tumor motion caused by respiration is an important issue in image guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and streak free 3DCBCT volume are combined to improve the image quality of the DRRs. Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and 1-minute and 2-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. Diaphragm matching accuracy was 1.88±1.35mm in the isocenter plane, the 2D tumor tracking accuracy was 2.13±1.26mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purpose. PMID:24710793

  12. Head pose estimation from a 2D face image using 3D face morphing with depth parameters.

    PubMed

    Kong, Seong G; Mbouna, Ralph Oyini

    2015-06-01

    This paper presents estimation of head pose angles from a single 2D face image using a 3D face model morphed from a reference face model. A reference model refers to a 3D face of a person of the same ethnicity and gender as the query subject. The proposed scheme minimizes the disparity between the two sets of prominent facial features on the query face image and the corresponding points on the 3D face model to estimate the head pose angles. The 3D face model used is morphed from a reference model to be more specific to the query face in terms of the depth error at the feature points. The morphing process produces a 3D face model more specific to the query image when multiple 2D face images of the query subject are available for training. The proposed morphing process is computationally efficient since the depth of a 3D face model is adjusted by a scalar depth parameter at feature points. Optimal depth parameters are found by minimizing the disparity between the 2D features of the query face image and the corresponding features on the morphed 3D model projected onto 2D space. The proposed head pose estimation technique was evaluated on two benchmarking databases: 1) the USF Human-ID database for depth estimation and 2) the Pointing'04 database for head pose estimation. Experiment results demonstrate that head pose estimation errors in nodding and shaking angles are as low as 7.93° and 4.65° on average for a single 2D input face image. PMID:25706638

  13. Subjective image quality comparison between two digital dental radiographic systems and conventional dental film

    PubMed Central

    Ajmal, Muhammed; Elshinawy, Mohamed I.

    2014-01-01

    Objectives Digital radiography has become an integral part of dentistry. Digital radiography does not require film or dark rooms, reduces X-ray doses, and instantly generates images. The aim of our study was to compare the subjective image quality of two digital dental radiographic systems with conventional dental film. Materials & methods A direct digital (DD) ‘Digital’ system by Sirona, a semi-direct (SD) digital system by Vista-scan, and Kodak ‘E’ speed dental X-ray films were selected for the study. Endodontically-treated extracted teeth (n = 25) were used in the study. Details of enamel, dentin, dentino-enamel junction, root canal filling (gutta percha), and simulated apical pathology were investigated with the three radiographic systems. The data were subjected to statistical analyzes to reveal differences in subjective image quality. Results Conventional dental X-ray film was superior to the digital systems. For digital systems, DD imaging was superior to SD imaging. Conclusion Conventional film yielded superior image quality that was statistically significant in almost all aspects of comparison. Conventional film was followed in image quality by DD, and SD provided the lowest quality images. Conventional film is still considered the gold standard to diagnose diseases affecting the jawbone. Recommendations Improved software and hardware for digital imaging systems are now available and these improvements may now yield images that are comparable in quality to conventional film. However, we recommend that studies still use more observers and other statistical methods to produce ideal results. PMID:25382946

  14. DIAGNOSTIC AGREEMENT BETWEEN PANORAMIC RADIOGRAPHS AND COLOR DOPPLER IMAGES OF CAROTID ATHEROMA

    PubMed Central

    Romano-Sousa, Claudia Maria; Krejci, Laís; Medeiros, Flavilene Marchioro Martins; Graciosa, Ricardo Gomes; Martins, Maria Fernanda Fonseca; Guedes, Vanessa Novaes; Fenyo-Pereira, Marlene

    2009-01-01

    The aim of this study was to investigate the agreement between diagnoses of calcified atheroma seen on panoramic radiographs and color Doppler images. Our interest stems from the fact that panoramic images can show the presence of atheroma regardless of the level of obstruction detected by color Doppler images. Panoramic and color Doppler images of 16 patients obtained from the archives of the Health Department of the city of Valença, RJ, Brazil, were analyzed in this study. Both sides of each patient were observed on the images, with a total of 32 analyzed cervical regions. The level of agreement between diagnoses was analyzed using the Kappa statistics. There was a high level of agreement, with a Kappa value of 0.78. In conclusion, panoramic radiographs can help detecting calcifications in the cervical region of patients susceptible to vascular diseases predisposing to myocardial infarction and cerebrovascular accidents. If properly trained and informed, dentists can refer their patients to a physician for a cardiovascular evaluation in order to receive proper and timely medical treatment. PMID:19148405

  15. RegStatGel: proteomic software for identifying differentially expressed proteins based on 2D gel images

    PubMed Central

    Li, Feng; Seillier-Moiseiwitsch, Françoise

    2011-01-01

    Image analysis of two-dimensional gel electrophoresis is a key step in proteomic workflow for identifying proteins that change under different experimental conditions. Since there are usually large amount of proteins and variations shown in the gel images, the use of software for analysis of 2D gel images is inevitable. We developed open-source software with graphical user interface for differential analysis of 2D gel images. The user-friendly software, RegStatGel, contains fully automated as well as interactive procedures. It was developed and has been tested under Matlab 7.01. Availability The database is available for free at http://www.mediafire.com/FengLi/2DGelsoftware PMID:21904427

  16. A frequency-based approach to locate common structure for 2D-3D intensity-based registration of setup images in prostate radiotherapy

    SciTech Connect

    Munbodh, Reshma; Chen Zhe; Jaffray, David A.; Moseley, Douglas J.; Knisely, Jonathan P. S.; Duncan, James S.

    2007-07-15

    In many radiotherapy clinics, geometric uncertainties in the delivery of 3D conformal radiation therapy and intensity modulated radiation therapy of the prostate are reduced by aligning the patient's bony anatomy in the planning 3D CT to corresponding bony anatomy in 2D portal images acquired before every treatment fraction. In this paper, we seek to determine if there is a frequency band within the portal images and the digitally reconstructed radiographs (DRRs) of the planning CT in which bony anatomy predominates over non-bony anatomy such that portal images and DRRs can be suitably filtered to achieve high registration accuracy in an automated 2D-3D single portal intensity-based registration framework. Two similarity measures, mutual information and the Pearson correlation coefficient were tested on carefully collected gold-standard data consisting of a kilovoltage cone-beam CT (CBCT) and megavoltage portal images in the anterior-posterior (AP) view of an anthropomorphic phantom acquired under clinical conditions at known poses, and on patient data. It was found that filtering the portal images and DRRs during the registration considerably improved registration performance. Without filtering, the registration did not always converge while with filtering it always converged to an accurate solution. For the pose-determination experiments conducted on the anthropomorphic phantom with the correlation coefficient, the mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters were {theta}{sub x}:0.18(0.19) deg., {theta}{sub y}:0.04(0.04) deg., {theta}{sub z}:0.04(0.02) deg., t{sub x}:0.14(0.15) mm, t{sub y}:0.09(0.05) mm, and t{sub z}:0.49(0.40) mm. The mutual information-based registration with filtered images also resulted in similarly small errors. For the patient data, visual inspection of the superimposed registered images showed that they were correctly aligned in all instances. The results presented in this

  17. Optimal angular dose distribution to acquire 3D and extra 2D images for digital breast tomosynthesis (DBT)

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Ye-Seul; Lee, Haeng-Hwa; Gang, Won-Suk; Kim, Hee-Joung; Choi, Young-Wook; Choi, JaeGu

    2015-08-01

    The purpose of this study is to determine the optimal non-uniform angular dose distribution to improve the quality of the 3D reconstructed images and to acquire extra 2D projection images. In this analysis, 7 acquisition sets were generated by using four different values for the number of projections (11, 15, 21, and 29) and total angular range (±14°, ±17.5°, ±21°, and ±24.5° ). For all acquisition sets, the zero-degree projection was used as the 2D image that was close to that of standard conventional mammography (CM). Exposures used were 50, 100, 150, and 200 mR for the zero-degree projection, and the remaining dose was distributed over the remaining projection angles. To quantitatively evaluate image quality, we computed the CNR (contrast-to-noise ratio) and the ASF (artifact spread function) for the same radiation dose. The results indicate that, for microcalcifications, acquisition sets with approximately 4 times higher exposure on the zero-degree projection than the average exposure for the remaining projection angles yielded higher CNR values and were 3% higher than the uniform distribution. However, very high dose concentrations toward the zero-degree projection may reduce the quality of the reconstructed images due to increasing noise in the peripheral views. The zero-degree projection of the non-uniform dose distribution offers a 2D image similar to that of standard CM, but with a significantly lower radiation dose. Therefore, we need to evaluate the diagnostic potential of extra 2D projection image when diagnose breast cancer by using 3D images with non-uniform angular dose distributions.

  18. Improved texture analysis for automatic detection of tuberculosis (TB) on chest radiographs with bone suppression images

    NASA Astrophysics Data System (ADS)

    Maduskar, Pragnya; Hogeweg, Laurens; Philipsen, Rick; Schalekamp, Steven; van Ginneken, Bram

    2013-03-01

    Computer aided detection (CAD) of tuberculosis (TB) on chest radiographs (CXR) is challenging due to over-lapping structures. Suppression of normal structures can reduce overprojection effects and can enhance the appearance of diffuse parenchymal abnormalities. In this work, we compare two CAD systems to detect textural abnormalities in chest radiographs of TB suspects. One CAD system was trained and tested on the original CXR and the other CAD system was trained and tested on bone suppression images (BSI). BSI were created using a commercially available software (ClearRead 2.4, Riverain Medical). The CAD system is trained with 431 normal and 434 abnormal images with manually outlined abnormal regions. Subtlety rating (1-3) is assigned to each abnormal region, where 3 refers to obvious and 1 refers to subtle abnormalities. Performance is evaluated on normal and abnormal regions from an independent dataset of 900 images. These contain in total 454 normal and 1127 abnormal regions, which are divided into 3 subtlety categories containing 280, 527 and 320 abnormal regions, respectively. For normal regions, original/BSI CAD has an average abnormality score of 0.094+/-0.027/0.085+/-0.032 (p - 5.6×10-19). For abnormal regions, subtlety 1, 2, 3 categories have average abnormality scores for original/BSI of 0.155+/-0.073/0.156+/-0.089 (p = 0.73), 0.194+/-0.086/0.207+/-0.101 (p = 5.7×10-7), 0.225+/-0.119/0.247+/-0.117 (p = 4.4×10-7), respectively. Thus for normal regions, CAD scores slightly decrease when using BSI instead of the original images, and for abnormal regions, the scores increase slightly. We therefore conclude that the use of bone suppression results in slightly but significantly improved automated detection of textural abnormalities in chest radiographs.

  19. A method to produce and validate a digitally reconstructed radiograph-based computer simulation for optimisation of chest radiographs acquired with a computed radiography imaging system

    PubMed Central

    Moore, C S; Liney, G P; Beavis, A W; Saunderson, J R

    2011-01-01

    Objectives The purpose of this study was to develop and validate a computer model to produce realistic simulated computed radiography (CR) chest images using CT data sets of real patients. Methods Anatomical noise, which is the limiting factor in determining pathology in chest radiography, is realistically simulated by the CT data, and frequency-dependent noise has been added post-digitally reconstructed radiograph (DRR) generation to simulate exposure reduction. Realistic scatter and scatter fractions were measured in images of a chest phantom acquired on the CR system simulated by the computer model and added post-DRR calculation. Results The model has been validated with a phantom and patients and shown to provide predictions of signal-to-noise ratios (SNRs), tissue-to-rib ratios (TRRs: a measure of soft tissue pixel value to that of rib) and pixel value histograms that lie within the range of values measured with patients and the phantom. The maximum difference in measured SNR to that calculated was 10%. TRR values differed by a maximum of 1.3%. Conclusion Experienced image evaluators have responded positively to the DRR images, are satisfied they contain adequate anatomical features and have deemed them clinically acceptable. Therefore, the computer model can be used by image evaluators to grade chest images presented at different tube potentials and doses in order to optimise image quality and patient dose for clinical CR chest radiographs without the need for repeat patient exposures. PMID:21933979

  20. Seed viability detection using computerized false-color radiographic image enhancement

    NASA Technical Reports Server (NTRS)

    Vozzo, J. A.; Marko, Michael

    1994-01-01

    Seed radiographs are divided into density zones which are related to seed germination. The seeds which germinate have densities relating to false-color red. In turn, a seed sorter may be designed which rejects those seeds not having sufficient red to activate a gate along a moving belt containing the seed source. This results in separating only seeds with the preselected densities representing biological viability lending to germination. These selected seeds demand a higher market value. Actual false-coloring isn't required for a computer to distinguish the significant gray-zone range. This range can be predetermined and screened without the necessity of red imaging. Applying false-color enhancement is a means of emphasizing differences in densities of gray within any subject from photographic, radiographic, or video imaging. Within the 0-255 range of gray levels, colors can be assigned to any single level or group of gray levels. Densitometric values then become easily recognized colors which relate to the image density. Choosing a color to identify any given density allows separation by morphology or composition (form or function). Additionally, relative areas of each color are readily available for determining distribution of that density by comparison with other densities within the image.

  1. Mid-IR hyperspectral imaging of laminar flames for 2-D scalar values.

    PubMed

    Rhoby, Michael R; Blunck, David L; Gross, Kevin C

    2014-09-01

    This work presents a new emission-based measurement which permits quantification of two-dimensional scalar distributions in laminar flames. A Michelson-based Fourier-transform spectrometer coupled to a mid-infrared camera (1.5 μm to 5.5 μm) obtained 256 × 128pixel hyperspectral flame images at high spectral (δν̃ = 0.75cm(−1)) and spatial (0.52 mm) resolutions. The measurements revealed line and band emission from H2O, CO2, and CO. Measurements were collected from a well-characterized partially-premixed ethylene (C2H4) flame produced on a Hencken burner at equivalence ratios, Φ, of 0.8, 0.9, 1.1, and 1.3. After describing the instrument and novel calibration methodology, analysis of the flames is presented. A single-layer, line-by-line radiative transfer model is used to retrieve path-averaged temperature, H2O, CO2 and CO column densities from emission spectra between 2.3 μm to 5.1 μm. The radiative transfer model uses line intensities from the latest HITEMP and CDSD-4000 spectroscopic databases. For the Φ = 1.1 flame, the spectrally estimated temperature for a single pixel 10 mm above burner center was T = (2318 ± 19)K, and agrees favorably with recently reported laser absorption measurements, T = (2348 ± 115)K, and a NASA CEA equilibrium calculation, T = 2389K. Near the base of the flame, absolute concentrations can be estimated, and H2O, CO2, and CO concentrations of (12.5 ± 1.7) %, (10.1 ± 1.0) %, and (3.8 ± 0.3) %, respectively, compared favorably with the corresponding CEA values of 12.8%, 9.9% and 4.1%. Spectrally-estimated temperatures and concentrations at the other equivalence ratios were in similar agreement with measurements and equilibrium calculations. 2-D temperature and species column density maps underscore the Φ-dependent chemical composition of the flames. The reported uncertainties are 95% confidence intervals and include both statistical fit errors and the propagation of systematic calibration errors using a Monte Carlo

  2. Parallel computation of optimized arrays for 2-D electrical imaging surveys

    NASA Astrophysics Data System (ADS)

    Loke, M. H.; Wilkinson, P. B.; Chambers, J. E.

    2010-12-01

    Modern automatic multi-electrode survey instruments have made it possible to use non-traditional arrays to maximize the subsurface resolution from electrical imaging surveys. Previous studies have shown that one of the best methods for generating optimized arrays is to select the set of array configurations that maximizes the model resolution for a homogeneous earth model. The Sherman-Morrison Rank-1 update is used to calculate the change in the model resolution when a new array is added to a selected set of array configurations. This method had the disadvantage that it required several hours of computer time even for short 2-D survey lines. The algorithm was modified to calculate the change in the model resolution rather than the entire resolution matrix. This reduces the computer time and memory required as well as the computational round-off errors. The matrix-vector multiplications for a single add-on array were replaced with matrix-matrix multiplications for 28 add-on arrays to further reduce the computer time. The temporary variables were stored in the double-precision Single Instruction Multiple Data (SIMD) registers within the CPU to minimize computer memory access. A further reduction in the computer time is achieved by using the computer graphics card Graphics Processor Unit (GPU) as a highly parallel mathematical coprocessor. This makes it possible to carry out the calculations for 512 add-on arrays in parallel using the GPU. The changes reduce the computer time by more than two orders of magnitude. The algorithm used to generate an optimized data set adds a specified number of new array configurations after each iteration to the existing set. The resolution of the optimized data set can be increased by adding a smaller number of new array configurations after each iteration. Although this increases the computer time required to generate an optimized data set with the same number of data points, the new fast numerical routines has made this practical on

  3. Improved 2-D resistivity imaging of features in covered karst terrain with arrays of implanted electrodes

    NASA Astrophysics Data System (ADS)

    Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.

    2013-12-01

    Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with

  4. Self-calibration of cone-beam CT geometry using 3D-2D image registration: development and application to tasked-based imaging with a robotic C-arm

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G.; Uneri, A.; Ehtiati, T.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Robotic C-arm systems are capable of general noncircular orbits whose trajectories can be driven by the particular imaging task. However obtaining accurate calibrations for reconstruction in such geometries can be a challenging problem. This work proposes a method to perform a unique geometric calibration of an arbitrary C-arm orbit by registering 2D projections to a previously acquired 3D image to determine the transformation parameters representing the system geometry. Methods: Experiments involved a cone-beam CT (CBCT) bench system, a robotic C-arm, and three phantoms. A robust 3D-2D registration process was used to compute the 9 degree of freedom (DOF) transformation between each projection and an existing 3D image by maximizing normalized gradient information with a digitally reconstructed radiograph (DRR) of the 3D volume. The quality of the resulting "self-calibration" was evaluated in terms of the agreement with an established calibration method using a BB phantom as well as image quality in the resulting CBCT reconstruction. Results: The self-calibration yielded CBCT images without significant difference in spatial resolution from the standard ("true") calibration methods (p-value >0.05 for all three phantoms), and the differences between CBCT images reconstructed using the "self" and "true" calibration methods were on the order of 10-3 mm-1. Maximum error in magnification was 3.2%, and back-projection ray placement was within 0.5 mm. Conclusion: The proposed geometric "self" calibration provides a means for 3D imaging on general noncircular orbits in CBCT systems for which a geometric calibration is either not available or not reproducible. The method forms the basis of advanced "task-based" 3D imaging methods now in development for robotic C-arms.

  5. Development and validation of a modelling framework for simulating 2D-mammography and breast tomosynthesis images

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Warren, Lucy M.; Mackenzie, Alistair; Rashidnasab, Alaleh; Diaz, Oliver; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde; Strudley, Celia J.; Wells, Kevin

    2014-08-01

    Planar 2D x-ray mammography is generally accepted as the preferred screening technique used for breast cancer detection. Recently, digital breast tomosynthesis (DBT) has been introduced to overcome some of the inherent limitations of conventional planar imaging, and future technological enhancements are expected to result in the introduction of further innovative modalities. However, it is crucial to understand the impact of any new imaging technology or methodology on cancer detection rates and patient recall. Any such assessment conventionally requires large scale clinical trials demanding significant investment in time and resources. The concept of virtual clinical trials and virtual performance assessment may offer a viable alternative to this approach. However, virtual approaches require a collection of specialized modelling tools which can be used to emulate the image acquisition process and simulate images of a quality indistinguishable from their real clinical counterparts. In this paper, we present two image simulation chains constructed using modelling tools that can be used for the evaluation of 2D-mammography and DBT systems. We validate both approaches by comparing simulated images with real images acquired using the system being simulated. A comparison of the contrast-to-noise ratios and image blurring for real and simulated images of test objects shows good agreement ( < 9% error). This suggests that our simulation approach is a promising alternative to conventional physical performance assessment followed by large scale clinical trials.

  6. 3D structural measurements of the proximal femur from 2D DXA images using a statistical atlas

    NASA Astrophysics Data System (ADS)

    Ahmad, Omar M.; Ramamurthi, Krishna; Wilson, Kevin E.; Engelke, Klaus; Bouxsein, Mary; Taylor, Russell H.

    2009-02-01

    A method to obtain 3D structural measurements of the proximal femur from 2D DXA images and a statistical atlas is presented. A statistical atlas of a proximal femur was created consisting of both 3D shape and volumetric density information and then deformably registered to 2D fan-beam DXA images. After the registration process, a series of 3D structural measurements were taken on QCT-estimates generated by transforming the registered statistical atlas into a voxel volume. These measurements were compared to the equivalent measurements taken on the actual QCT (ground truth) associated with the DXA images for each of 20 human cadaveric femora. The methodology and results are presented to address the potential clinical feasibility of obtaining 3D structural measurements from limited angle DXA scans and a statistical atlas of the proximal femur in-vivo.

  7. Digital spall radiograph analysis system: Report on simulated three- dimensional digital spall image reconstruction fidelity

    SciTech Connect

    Harris, C.L.

    1990-01-01

    This report describes progress on work to develop a cost effective, rapid response system for measuring momentum and kinetic energy of spall for the Advanced Technology Assessment Center (ATAC) Armor/Anti-Armor (A{sup 3}) program at Los Alamos National Laboratory. The system will exploit data contained in two sets of simultaneous co-planar flash radiographs taken along the center line of anticipated spall motion. Data contained in each set (which is proportional to the mass and z- number of the spall material intersected by the exposing x-ray at each point) is digitized and used to construct a three dimensional model (called the reconstructed spall image) that approximates the original spall cloud. From the model the mass of spall fragments is computed. The two sets of radiographs, separated in time, represent the spall configuration at two instants of time. Spall fragments from the first instant are matched with those from the second instant to determine velocity. Evaluation of the fidelity of candidate reconstruction algorithms is the highest priority task in this development program for the obvious reason that the efficacy of the projected spall analysis system depends upon the fidelity of the reconstruction techniques. The purpose of this document is to report the results of analysis of the fidelity of best reconstruction procedure (for one radiograph set) investigated to date. The reconstruction procedure uses data from four simultaneous radiographs representing two sides and two diagonals of a cube. The procedure makes use of an available space algorithm, two probabilistic devices (a mass placement probability heuristic, and a mass clumping heuristic), and a stochastic procedure for mass that cannot be placed by the algorithm or either of the heuristics. The procedure is fully described in the body of the report.

  8. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image

    NASA Astrophysics Data System (ADS)

    Rabbani, Arash; Ayatollahi, Shahab; Kharrat, Riyaz; Dashti, Nader

    2016-08-01

    In this study, we have utilized 3-D micro-tomography images of real and synthetic rocks to introduce two mathematical correlations which estimate the distribution parameters of 3-D coordination number using a single 2-D cross-sectional image. By applying a watershed segmentation algorithm, it is found that the distribution of 3-D coordination number is acceptably predictable by statistical analysis of the network extracted from 2-D images. In this study, we have utilized 25 volumetric images of rocks in order to propose two mathematical formulas. These formulas aim to approximate the average and standard deviation of coordination number in 3-D pore networks. Then, the formulas are applied for five independent test samples to evaluate the reliability. Finally, pore network flow modeling is used to find the error of absolute permeability prediction using estimated and measured coordination numbers. Results show that the 2-D images are considerably informative about the 3-D network of the rocks and can be utilized to approximate the 3-D connectivity of the porous spaces with determination coefficient of about 0.85 that seems to be acceptable considering the variety of the studied samples.

  9. An enhanced CCRTM (E-CCRTM) damage imaging technique using a 2D areal scan for composite plates

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-04-01

    A two-dimensional (2-D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric actuator mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region to capture the scattered wavefield in the vicinity of the PZT. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, the reflectivity coefficients of the delamination can be calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2-D areal scans and linear scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2-D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  10. Model-based segmentation of the middle phalanx in digital radiographic images of the hand.

    PubMed

    Dendere, Ronald; Kabelitz, Gordian; Douglas, Tania S

    2013-01-01

    We present techniques for segmenting the middle phalanx of the middle finger in digital radiographic images using deformable models and active shape models (ASMs). The result of segmentation may be used in the estimation of bone mineral density which in turn may be used in the diagnosis of osteoporosis. A technique for minimizing user dependence is described. The segmentation accuracy of the two methods is assessed by comparing contours produced by the algorithms to those produced by manual segmentation, using the Hausdorff distance measure. The ASM technique produces more accurate segmentation. PMID:24110534

  11. Evaluation of proximal caries in images resulting from different modes of radiographic digitalization

    PubMed Central

    Xavier, CRG; Araujo-Pires, AC; Poleti, ML; Rubira-Bullen, IRF; Ferreira, O; Capelozza, ALA

    2011-01-01

    Objective The aim of this study was to evaluate the performances of observers in diagnosing proximal caries in digital images obtained from digital bitewing radiographs using two scanners and four digital cameras in Joint Photographic Experts Group (JPEG) and tagged image file format (TIFF) files, and comparing them with the original conventional radiographs. Method In total, 56 extracted teeth were radiographed with Kodak Insight film (Eastman Kodak, Rochester, NY) in a Kaycor Yoshida X-ray device (Kaycor X-707; Yoshida Dental Manufacturing Co., Tokyo, Japan) operating at 70 kV and 7 mA with an exposure time of 0.40 s. The radiographs were obtained and scanned by CanonScan D646U (Canon USA Inc., Newport News, VA) and Genius ColorPage HR7X (KYE Systems Corp. America, Doral, FL) scanners, and by Canon Powershot G2 (Canon USA Inc.), Canon RebelXT (Canon USA Inc.), Nikon Coolpix 8700 (Nikon Inc., Melville, NY), and Nikon D70s (Nikon Inc.) digital cameras in JPEG and TIFF formats. Three observers evaluated the images. The teeth were then observed under the microscope in polarized light for the verification of the presence and depth of the carious lesions. Results The probability of no diagnosis ranged from 1.34% (Insight film) to 52.83% (CanonScan/JPEG). The sensitivity ranged from 0.24 (Canon RebelXT/JPEG) to 0.53 (Insight film), the specificity ranged from 0.93 (Nikon Coolpix/JPEG, Canon Powershot/TIFF, Canon RebelXT/JPEG and TIFF) to 0.97 (CanonScan/TIFF and JPEG) and the accuracy ranged from 0.82 (Canon RebelXT/JPEG) to 0.91 (CanonScan/JPEG). Conclusion The carious lesion diagnosis did not change in either of the file formats (JPEG and TIFF) in which the images were saved for any of the equipment used. Only the CanonScan scanner did not have adequate performance in radiography digitalization for caries diagnosis and it is not recommended for this purpose. PMID:21831972

  12. Initial Images of the Synthetic Aperture Radiometer 2D-STAR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initial results obtained using a new synthetic aperture radiometer, 2D-STAR, a dual polarized, L-band radiometer that employs aperture synthesis in two dimensions are presented and analyzed. This airborne instrument is the natural evolution of a previous design that employed employs aperture synthes...

  13. Preliminayr Study on Diffraction Enhanced Radiographic Imaging for a Canine Model of Cartilage Damage

    SciTech Connect

    Muehleman,C.; Li, J.; Zhong, Z.

    2006-01-01

    Objective: To demonstrate the ability of a novel radiographic technique, Diffraction Enhanced Radiographic Imaging (DEI), to render high contrast images of canine knee joints for identification of cartilage lesions in situ. Methods: DEI was carried out at the X-15A beamline at Brookhaven National Laboratory on intact canine knee joints with varying levels of cartilage damage. Two independent observers graded the DE images for lesions and these grades were correlated to the gross morphological grade. Results: The correlation of gross visual grades with DEI grades for the 18 canine knee joints as determined by observer 1 (r2=0.8856, P=0.001) and observer 2 (r2=0.8818, P=0.001) was high. The overall weighted ? value for inter-observer agreement was 0.93, thus considered high agreement. Conclusion: The present study is the first study for the efficacy of DEI for cartilage lesions in an animal joint, from very early signs through erosion down to subchondral bone, representing the spectrum of cartilage changes occurring in human osteoarthritis (OA). Here we show that DEI allows the visualization of cartilage lesions in intact canine knee joints with good accuracy. Hence, DEI may be applicable for following joint degeneration in animal models of OA.

  14. A stopping criterion to halt iterations at the Richardson-Lucy deconvolution of radiographic images

    NASA Astrophysics Data System (ADS)

    Almeida, G. L.; Silvani, M. I.; Souza, E. S.; Lopes, R. T.

    2015-07-01

    Radiographic images, as any experimentally acquired ones, are affected by spoiling agents which degrade their final quality. The degradation caused by agents of systematic character, can be reduced by some kind of treatment such as an iterative deconvolution. This approach requires two parameters, namely the system resolution and the best number of iterations in order to achieve the best final image. This work proposes a novel procedure to estimate the best number of iterations, which replaces the cumbersome visual inspection by a comparison of numbers. These numbers are deduced from the image histograms, taking into account the global difference G between them for two subsequent iterations. The developed algorithm, including a Richardson-Lucy deconvolution procedure has been embodied into a Fortran program capable to plot the 1st derivative of G as the processing progresses and to stop it automatically when this derivative - within the data dispersion - reaches zero. The radiograph of a specially chosen object acquired with thermal neutrons from the Argonauta research reactor at Institutode Engenharia Nuclear - CNEN, Rio de Janeiro, Brazil, have undergone this treatment with fair results.

  15. Reliable and reproducible classification system for scoliotic radiograph using image processing techniques.

    PubMed

    Anitha, H; Prabhu, G K; Karunakar, A K

    2014-11-01

    Scoliosis classification is useful for guiding the treatment and testing the clinical outcome. State-of-the-art classification procedures are inherently unreliable and non-reproducible due to technical and human judgmental error. In the current diagnostic system each examiner will have diagrammatic summary of classification procedure, number of scoliosis curves, apex level, etc. It is very difficult to define the required anatomical parameters in the noisy radiographs. The classification system demands automatic image understanding system. The proposed automated classification procedures extracts the anatomical features using image processing and applies classification procedures based on computer assisted algorithms. The reliability and reproducibility of the proposed computerized image understanding system are compared with manual and computer assisted system using Kappa values. PMID:25261171

  16. High-resolution mapping of 1D and 2D dose distributions using X-band electron paramagnetic resonance imaging.

    PubMed

    Kolbun, N; Adolfsson, E; Gustafsson, H; Lund, E

    2014-06-01

    Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogenously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator. PMID:24748487

  17. 2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer

    NASA Astrophysics Data System (ADS)

    Zanette, Irene; David, Christian; Rutishauser, Simon; Weitkamp, Timm

    2010-04-01

    Talbot interferometry is a recently developed and an extremely powerful X-ray phase-contrast imaging technique. Besides giving access to ultra-high sensitivity differential phase contrast images, it also provides the dark field image, which is a map of the scattering power of the sample. In this paper we investigate the potentialities of an improved version of the interferometer, in which two dimensional gratings are used instead of standard line grids. This approach allows to overcome the difficulties that might be encountered in the images produced by a one dimensional interferometer. Among these limitations there are the phase wrapping and quantitative phase retrieval problems and the directionality of the differential phase and dark-field signals. The feasibility of the 2D Talbot interferometer has been studied with a numerical simulation on the performances of its optical components under different circumstances. The gratings can be obtained either by an ad hoc fabrication of the 2D structures or by a superposition of two perpendicular linear grids. Through this simulation it has been possible to find the best parameters for a practical implementation of the 2D Talbot interferometer.

  18. Towards real-time 2D/3D registration for organ motion monitoring in image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Gendrin, C.; Spoerk, J.; Bloch, C.; Pawiro, S. A.; Weber, C.; Figl, M.; Markelj, P.; Pernus, F.; Georg, D.; Bergmann, H.; Birkfellner, W.

    2010-02-01

    Nowadays, radiation therapy systems incorporate kV imaging units which allow for the real-time acquisition of intra-fractional X-ray images of the patient with high details and contrast. An application of this technology is tumor motion monitoring during irradiation. For tumor tracking, implanted markers or position sensors are used which requires an intervention. 2D/3D intensity based registration is an alternative, non-invasive method but the procedure must be accelerate to the update rate of the device, which lies in the range of 5 Hz. In this paper we investigate fast CT to a single kV X-ray 2D/3D image registration using a new porcine reference phantom with seven implanted fiducial markers. Several parameters influencing the speed and accuracy of the registrations are investigated. First, four intensity based merit functions, namely Cross-Correlation, Rank Correlation, Mutual Information and Correlation Ratio, are compared. Secondly, wobbled splatting and ray casting rendering techniques are implemented on the GPU and the influence of each algorithm on the performance of 2D/3D registration is evaluated. Rendering times for a single DRR of 20 ms were achieved. Different thresholds of the CT volume were also examined for rendering to find the setting that achieves the best possible correspondence with the X-ray images. Fast registrations below 4 s became possible with an inplane accuracy down to 0.8 mm.

  19. Radiographic evaluation of the maxillary sinus prior to dental implant therapy: A comparison between two-dimensional and three-dimensional radiographic imaging

    PubMed Central

    Fung, Karen; Thacker, Sejal; Mahdian, Mina; Jadhav, Aniket; Schincaglia, Gian Pietro

    2015-01-01

    Purpose This study was performed to evaluate the diagnostic efficacy of panoramic radiography and cone-beam computed tomography (CBCT) in detecting sinus pathology. Materials and Methods This study was based on a retrospective evaluation of patients who had undergone both a panoramic radiograph and a CBCT exam. A total of 100 maxillary sinuses were evaluated. Four examiners with various levels of expertise evaluated the images using a five-point scoring system. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic efficacy of the two modalities. The image analysis was repeated twice, with at least two weeks between the evaluation sessions. Interobserver reliability was assessed using Cronbach's alpha, and intraobserver reliability was assessed using Cohen's kappa. Results Maxillary sinus pathology was detected in 72% of the patients. High interobserver and intraobserver reliability were observed for both imaging modalities and among the four examiners. Statistical analyses using ROC curves demonstrated that the CBCT images had a larger area under the curve (0.940) than the panoramic radiographs (0.579). Conclusion Three-dimensional evaluation of the sinus with CBCT was significantly more reliable in detecting pathology than panoramic imaging. PMID:26389059

  20. Plain Radiography of the Hip: A Review of Radiographic Techniques and Image Features

    PubMed Central

    Park, Yoon-Soo

    2015-01-01

    Plain radiographic examination is a fundamental approach to the diagnosis and treatment decision-making of the hip. A thorough understanding of standard radiographic techniques, radiographic anatomy, and disease patterns affecting the hip can be helpful in improving diagnostic accuracy. This article reviews the standard protocols used to obtain radiographic projections of the hip and addresses specific signs and various radiographic measurements used to adequately and reliably recognize structural diseases of the hip.

  1. Tracking objects outside the line of sight using 2D intensity images

    PubMed Central

    Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B.

    2016-01-01

    The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time. PMID:27577969

  2. Tracking objects outside the line of sight using 2D intensity images.

    PubMed

    Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B

    2016-01-01

    The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time. PMID:27577969

  3. A hybrid method for reliable registration of digitally reconstructed radiographs and kV x-ray images for image-guided radiation therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Song, Yulin; Mueller, Boris; Chan, Maria F.; Sim, Sang E.; Mychalczak, Borys; Huang, Xiaolei

    2008-03-01

    Prostate cancer is the most common tumor site treated with intensity modulated radiation therapy (IMRT). However, due to patient and organ motions, treatment-induced physiological changes, and different daily filling in the bladder and rectum, the position of the prostate in relation to the fixed pelvic bone can change significantly. Without a reliable guiding technique, this could result in underdosing the target and overdosing the critical organs. Therefore, image-guided localization of the prostate must be performed prior to each treatment, which led to the development of a new radiation treatment modality, the image-guided radiation therapy (IGRT). One form of IGRT is to implant three gold seed markers into the prostate gland to serve as a fixed reference system. Daily patient setup verification is performed by using the gold seed markers-based image registration rather than the commonly used bony landmarks-based approach. In this paper, we present an efficient and automated method for registering digitally reconstructed radiographs (DRR) and kV X-ray images of the prostate with high accuracy using a hybrid method. Our technique relies on both internal fiducial markers (i.e. gold seed markers) implanted into the prostate and a robust, hybrid 2D registration method using a salient-region based image registration technique. The registration procedure consists of several novel steps. Validation experiments were performed to register DRR and kV X-ray images in anterior-posterior (AP) or lateral views and the results were reviewed by experienced radiation oncology physicists.

  4. 2-D/3-D ECE imaging data for validation of turbulence simulations

    NASA Astrophysics Data System (ADS)

    Choi, Minjun; Lee, Jaehyun; Yun, Gunsu; Lee, Woochang; Park, Hyeon K.; Park, Young-Seok; Sabbagh, Steve A.; Wang, Weixing; Luhmann, Neville C., Jr.

    2015-11-01

    The 2-D/3-D KSTAR ECEI diagnostic can provide a local 2-D/3-D measurement of ECE intensity. Application of spectral analysis techniques to the ECEI data allows local estimation of frequency spectra S (f) , wavenumber spectra S (k) , wavernumber and frequency spectra S (k , f) , and bispectra b (f1 ,f2) of ECE intensity over the 2-D/3-D space, which can be used to validate turbulence simulations. However, the minimum detectable fluctuation amplitude and the maximum detectable wavenumber are limited by the temporal and spatial resolutions of the diagnostic system, respectively. Also, the finite measurement area of the diagnostic channel could introduce uncertainty in the spectra estimation. The limitations and accuracy of the ECEI estimated spectra have been tested by a synthetic ECEI diagnostic with the model and/or fluctuations calculated by GTS. Supported by the NRF of Korea under Contract No. NRF-2014M1A7A1A03029881 and NRF-2014M1A7A1A03029865 and by U.S. DOE grant DE-FG02-99ER54524.

  5. Comparison between methods of assessing lumbosacral curve obtained by radiographic image

    PubMed Central

    Vacari, Daiane Aparecida; Neves, Eduardo Borba; Ulbricht, Leandra

    2015-01-01

    OBJECTIVE: To investigate the correlation between different radiographic methods in the evaluation of the lumbosacral concavity. METHODS: The sample consisted of 52 individuals with ages ranging from 18 to 28 years old. The procedures related to radiographic image collection were carried out in collaboration with a diagnostic imaging center of a hospital in Curitiba, PR, Brazil. The angles of the lumbosacral concavity were evaluated by the following methods: Centroid, Cobb1L1-S1, Cobb2L1-L5, Cobb3L2-S1 Cobb4T12-S1, Posterior Tangent and Trall. RESULTS: High correlation coefficients (r ranging from 0.77 to 0.89) were found among variations of the Cobb method. Additionally, we propose a categorical classification of angle values obtained by each method. We also analyzed the influence of the level of the inflection point between the lumbar lordosis and thoracic kyphosis in determining the evaluation method to be used. The inflection point had a higher incidence in the region between the twelfth thoracic vertebra and the first lumbar vertebra (63.5%). CONCLUSION: The correlation and agreement between methods vary considerably. Moreover, the thoracolumbar inflection point should be considered when choosing the method of assessing patients. Level of Evidence I, Diagnostic Study. PMID:27069403

  6. Adaptive clutter filter in 2-D color flow imaging based on in vivo I/Q signal.

    PubMed

    Zhou, Xiaoming; Zhang, Congyao; Liu, Dong C

    2014-01-01

    Color flow imaging has been well applied in clinical diagnosis. For the high quality color flow images, clutter filter is important to separate the Doppler signals from blood and tissue. Traditional clutter filters, such as finite impulse response, infinite impulse response and regression filters, were applied, which are based on the hypothesis that the clutter signal is stationary or tissue moves slowly. However, in realistic clinic color flow imaging, the signals are non-stationary signals because of accelerated moving tissue. For most related papers, simulated RF signals are widely used without in vivo I/Q signal. Hence, in this paper, adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, was proposed based on in vivo carotid I/Q signal in realistic color flow imaging. To get the best performance, the optimal polynomial order of polynomial regression filter and the optimal polynomial order for estimation of instantaneous clutter frequency respectively were confirmed. Finally, compared with the mean blood velocity and quality of 2-D color flow image, the experiment results show that adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, can significantly enhance the mean blood velocity and get high quality 2-D color flow image. PMID:24211911

  7. Recognition of rotated images using the multi-valued neuron and rotation-invariant 2D Fourier descriptors

    NASA Astrophysics Data System (ADS)

    Aizenberg, Evgeni; Bigio, Irving J.; Rodriguez-Diaz, Eladio

    2012-03-01

    The Fourier descriptors paradigm is a well-established approach for affine-invariant characterization of shape contours. In the work presented here, we extend this method to images, and obtain a 2D Fourier representation that is invariant to image rotation. The proposed technique retains phase uniqueness, and therefore structural image information is not lost. Rotation-invariant phase coefficients were used to train a single multi-valued neuron (MVN) to recognize satellite and human face images rotated by a wide range of angles. Experiments yielded 100% and 96.43% classification rate for each data set, respectively. Recognition performance was additionally evaluated under effects of lossy JPEG compression and additive Gaussian noise. Preliminary results show that the derived rotation-invariant features combined with the MVN provide a promising scheme for efficient recognition of rotated images.

  8. 2D wavelet-analysis-based calibration technique for flat-panel imaging detectors: application in cone beam volume CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    1999-05-01

    The application of the newly developed flat panel x-ray imaging detector in cone beam volume CT has attracted increasing interest recently. Due to an imperfect solid state array manufacturing process, however, defective elements, gain non-uniformity and offset image unavoidably exist in all kinds of flat panel x-ray imaging detectors, which will cause severe streak and ring artifacts in a cone beam reconstruction image and severely degrade image quality. A calibration technique, in which the artifacts resulting from the defective elements, gain non-uniformity and offset image can be reduced significantly, is presented in this paper. The detection of defective elements is distinctively based upon two-dimensional (2D) wavelet analysis. Because of its inherent localizability in recognizing singularities or discontinuities, wavelet analysis possesses the capability of detecting defective elements over a rather large x-ray exposure range, e.g., 20% to approximately 60% of the dynamic range of the detector used. Three-dimensional (3D) images of a low-contrast CT phantom have been reconstructed from projection images acquired by a flat panel x-ray imaging detector with and without calibration process applied. The artifacts caused individually by defective elements, gain non-uniformity and offset image have been separated and investigated in detail, and the correlation with each other have also been exposed explicitly. The investigation is enforced by quantitative analysis of the signal to noise ratio (SNR) and the image uniformity of the cone beam reconstruction image. It has been demonstrated that the ring and streak artifacts resulting from the imperfect performance of a flat panel x-ray imaging detector can be reduced dramatically, and then the image qualities of a cone beam reconstruction image, such as contrast resolution and image uniformity are improved significantly. Furthermore, with little modification, the calibration technique presented here is also applicable

  9. Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

    SciTech Connect

    Crist, C.E.; Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D.; Krogh, M.

    1998-11-01

    Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse.

  10. Explaining the Effect of a Grid by Using an Optical Analog to an X-ray Radiographic Imaging System

    ERIC Educational Resources Information Center

    Honnicke, M. G.; Gavinho, L.; Cusatis, C.

    2008-01-01

    Compton scattering and diffuse scattering degenerate the contrast in radiographic images. To avoid such scattering effects, a grid, between the patient and the film is currently used to improve the image quality. Teaching this topic to medical physics students requires demonstration experiments. In this paper, an optical analog to an x-ray…

  11. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    SciTech Connect

    Schmidgunst, C.; Ritter, D.; Lang, E.

    2007-09-15

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  12. The effects of image compression on quantitative measurements of digital panoramic radiographs

    PubMed Central

    Apaydın, Burcu; Yılmaz, Hasan-Hüseyin

    2012-01-01

    Objectives: The aims of this study were to explore how image compression affects density, fractal dimension, linear and angular measurements on digital panoramic images and assess inter and intra-observer repeatability of these measurements. Study Design: Sixty-one digital panoramic images in TIFF format (Tagged Image File Format) were compressed to JPEG (Joint Photographic Experts Group) images. Two observers measured gonial angle, antegonial angle, mandibular cortical width, coronal pulp width of maxillary and mandibular first molar, tooth length of maxillary and mandibular first molar on the left side of these images twice. Fractal dimension of the selected regions of interests were calculated and the density of each panoramic radiograph as a whole were also measured on TIFF and JPEG compressed images. Intra-observer and inter-observer consistency was evaluated with Cronbach’s alpha. Paired samples t-test and Kolmogorov-Smirnov test was used to evaluate the difference between the measurements of TIFF and JPEG compressed images. Results: The repeatability of angular measurements had the highest Cronbach’s alpha value (0.997). There was statistically significant difference for both of the observers in mandibular cortical width (MCW) measurements (1st ob. p: 0.002; 2nd ob. p: 0.003), density (p<0.001) and fractal dimension (p<0.001) between TIFF and JPEG images. There was statistically significant difference for the first observer in antegonial angle (1st ob p< 0.001) and maxillary molar coronal pulp width (1st ob. p<0.001) between JPEG and TIFF files. Conclusions: The repeatability of angular measurements is better than linear measurements. Mandibular cortical width, fractal dimension and density are affected from compression. Observer dependent factors might also cause statistically significant differences between the measurements in TIFF and JPEG images. Key words:Digital panoramic radiography, image compression, linear measurements, angular measurements

  13. Enhanced radiographic imaging of defects in aircraft structure materials with the dehazing method

    NASA Astrophysics Data System (ADS)

    Yahaghi, Effat; Movafeghi, Amir; Mohmmadzadeh, Nooreddin

    2015-04-01

    The aircraft structures are made of aluminium alloys because of its various advantages, including ease of manufacture, high tolerance and ease of maintenance. Corrosions and cracks are often found in high-strength aluminium alloys. The industrial radiographic testing method and digital radiography are two most important tools for detecting different kinds of defects in aluminium structures. However, because of greater sensitivity and dynamic range of phosphor plates in computed radiography than in film, digital radiography can produce clear and high-contrast images, but digital radiography images appear foggy. In this study, a dehazing algorithm is implemented for the digital radiography images of airplane parts to remove fog. The used dehazing algorithm is based on the dark channel prior and it is based on the statistics of outdoor haze-free images. In most of the local regions of the radiography images, some pixels very often have very low intensity in at least one colour (RGB: red, green, blue) channel which are called dark pixels. In hazy radiography images, the intensity of these dark pixels in that channel is mainly contributed by scattering. Therefore, these dark pixels can directly provide an accurate estimation of the haze transmission and combining a haze imaging model and a soft matting interpolation method can be recovered a high-quality haze free in the radiography image and produce a good depth map and the defects. The results show that the fog-removed images have better contrast and the shapes of defects are very clear. In addition, some invisible cracks in the digital images can be seen in the defogged image.

  14. Analysis of physiological impact while reading stereoscopic radiographs

    NASA Astrophysics Data System (ADS)

    Unno, Yasuko Y.; Tajima, Takashi; Kuwabara, Takao; Hasegawa, Akira; Natsui, Nobutaka; Ishikawa, Kazuo; Hatada, Toyohiko

    2011-03-01

    A stereoscopic viewing technology is expected to improve diagnostic performance in terms of reading efficiency by adding one more dimension to the conventional 2D images. Although a stereoscopic technology has been applied to many different field including TV, movies and medical applications, physiological fatigue through reading stereoscopic radiographs has been concerned although no established physiological fatigue data have been provided. In this study, we measured the α-amylase concentration in saliva, heart rates and normalized tissue hemoglobin index (nTHI) in blood of frontal area to estimate physiological fatigue through reading both stereoscopic radiographs and the conventional 2D radiographs. In addition, subjective assessments were also performed. As a result, the pupil contraction occurred just after the reading of the stereoscopic images, but the subjective assessments regarding visual fatigue were nearly identical for the reading the conventional 2D and stereoscopic radiographs. The α-amylase concentration and the nTHI continued to decline while examinees read both 2D and stereoscopic images, which reflected the result of subjective assessment that almost half of the examinees reported to feel sleepy after reading. The subjective assessments regarding brain fatigue showed that there were little differences between 2D and stereoscopic reading. In summary, this study shows that the physiological fatigue caused by stereoscopic reading is equivalent to the conventional 2D reading including ocular fatigue and burden imposed on brain.

  15. Microphysical Analysis using Airborne 2-D Cloud and Precipitation Imaging Probe Data

    NASA Astrophysics Data System (ADS)

    Guy, N.; Jorgensen, D.; Witte, M.; Chuang, P. Y.; Black, R. A.

    2013-12-01

    The NOAA P-3 instrumented aircraft provided in-situ cloud and precipitation microphysical observations during the DYNAMO (Dynamics of the Madden-Julian Oscillation) field experiment. The Particle Measuring System 2D cloud (2D-C) and precipitation (2D-P) probes collected data for particles between 12.5 μm - 1.55 mm (25 μm resolution) and 100 μm - 6.2 mm (100 μm resolution), respectively. Spectra from each instrument were combined to provide a broad distribution of precipitation particle sizes. The 'method of moments' technique was used to analyze drop size distribution (DSD) spectra, which were modeled by fitting a three-parameter (slope, shape, and intercept) gamma distribution to the spectra. The characteristic shape of the mean spectrum compares to previous maritime measurements. DSD variability will be presented with respect to the temporal evolution of cloud populations during a Madden-Julian Oscillation (MJO) event, as well as in-situ aircraft vertical wind velocity measurements. Using the third and sixth moments, rainfall rate (R) and equivalent radar reflectivity factor (Z), respectively, were computed for each DSD. Linear regression was applied to establish a Z-R relationship for the data for the estimation of precipitation. The study indicated unique characteristics of microphysical processes for this region. These results are important to continue to define the cloud population characteristics in the climatological MJO region. Improved representation of the cloud characteristics on the microphysical scale will serve as a check to model parameterizations, helping to improve numerical simulations.

  16. Curve-based 2D-3D registration of coronary vessels for image guided procedure

    NASA Astrophysics Data System (ADS)

    Duong, Luc; Liao, Rui; Sundar, Hari; Tailhades, Benoit; Meyer, Andreas; Xu, Chenyang

    2009-02-01

    3D roadmap provided by pre-operative volumetric data that is aligned with fluoroscopy helps visualization and navigation in Interventional Cardiology (IC), especially when contrast agent-injection used to highlight coronary vessels cannot be systematically used during the whole procedure, or when there is low visibility in fluoroscopy for partially or totally occluded vessels. The main contribution of this work is to register pre-operative volumetric data with intraoperative fluoroscopy for specific vessel(s) occurring during the procedure, even without contrast agent injection, to provide a useful 3D roadmap. In addition, this study incorporates automatic ECG gating for cardiac motion. Respiratory motion is identified by rigid body registration of the vessels. The coronary vessels are first segmented from a multislice computed tomography (MSCT) volume and correspondent vessel segments are identified on a single gated 2D fluoroscopic frame. Registration can be explicitly constrained using one or multiple branches of a contrast-enhanced vessel tree or the outline of guide wire used to navigate during the procedure. Finally, the alignment problem is solved by Iterative Closest Point (ICP) algorithm. To be computationally efficient, a distance transform is computed from the 2D identification of each vessel such that distance is zero on the centerline of the vessel and increases away from the centerline. Quantitative results were obtained by comparing the registration of random poses and a ground truth alignment for 5 datasets. We conclude that the proposed method is promising for accurate 2D-3D registration, even for difficult cases of occluded vessel without injection of contrast agent.

  17. Estimating elastic moduli of rocks from thin sections: Digital rock study of 3D properties from 2D images

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Mavko, Gary

    2016-03-01

    Estimation of elastic rock moduli using 2D plane strain computations from thin sections has several numerical and analytical advantages over using 3D rock images, including faster computation, smaller memory requirements, and the availability of cheap thin sections. These advantages, however, must be weighed against the estimation accuracy of 3D rock properties from thin sections. We present a new method for predicting elastic properties of natural rocks using thin sections. Our method is based on a simple power-law transform that correlates computed 2D thin section moduli and the corresponding 3D rock moduli. The validity of this transform is established using a dataset comprised of FEM-computed elastic moduli of rock samples from various geologic formations, including Fontainebleau sandstone, Berea sandstone, Bituminous sand, and Grossmont carbonate. We note that using the power-law transform with a power-law coefficient between 0.4-0.6 contains 2D moduli to 3D moduli transformations for all rocks that are considered in this study. We also find that reliable estimates of P-wave (Vp) and S-wave velocity (Vs) trends can be obtained using 2D thin sections.

  18. Infrared imaging of 2-D temperature distribution during cryogen spray cooling.

    PubMed

    Choi, Bernard; Welch, Ashley J

    2002-12-01

    Cryogen spray cooling (CSC) is used in conjunction with pulsed laser irradiation for treatment of dermatologic indications. The main goal of this study was to determine the radial temperature distribution created by CSC and evaluate the importance of radial temperature gradients upon the subsequent analysis of tissue cooling throughout the skin. Since direct measurement of surface temperatures during CSC are hindered by the formation of a liquid cryogen layer, temperature distributions were estimated using a thin, black aluminum sheet. An infrared focal plane array camera was used to determine the 2-D backside temperature distribution during a cryogen spurt, which preliminary measurements have shown is a good indicator of the front-side temperature distribution. The measured temperature distribution was approximately gaussian in shape. Next, the transient temperature distributions in skin were calculated for two cases: 1) the standard 1-D solution which assumes a uniform cooling temperature distribution, and 2) a 2-D solution using a nonuniform surface cooling temperature distribution based upon the back-side infrared temperature measurements. At the end of a 100-ms cryogen spurt, calculations showed that, for the two cases, large discrepancies in temperatures at the surface and at a 60-micron depth were found at radii greater than 2.5 mm. These results suggest that it is necessary to consider radial temperature gradients during cryogen spray cooling of tissue. PMID:12596634

  19. Iterative Stable Alignment and Clustering of 2D Transmission Electron Microscope Images

    PubMed Central

    Yang, Zhengfan; Fang, Jia; Chittuluru, Johnathan; Asturias, Francisco J.; Penczek, Pawel A.

    2012-01-01

    SUMMARY Identification of homogeneous subsets of images in a macromolecular electron microscopy (EM) image data set is a critical step in single-particle analysis. The task is handled by iterative algorithms, whose performance is compromised by the compounded limitations of image alignment and K-means clustering. Here we describe an approach, iterative stable alignment and clustering (ISAC) that, relying on a new clustering method and on the concepts of stability and reproducibility, can extract validated, homogeneous subsets of images. ISAC requires only a small number of simple parameters and, with minimal human intervention, can eliminate bias from two-dimensional image clustering and maximize the quality of group averages that can be used for ab initio three-dimensional structural determination and analysis of macromolecular conformational variability. Repeated testing of the stability and reproducibility of a solution within ISAC eliminates heterogeneous or incorrect classes and introduces critical validation to the process of EM image clustering. PMID:22325773

  20. ISAKOS classification of meniscal tears-illustration on 2D and 3D isotropic spin echo MR imaging.

    PubMed

    Wadhwa, Vibhor; Omar, Hythem; Coyner, Katherine; Khazzam, Michael; Robertson, William; Chhabra, Avneesh

    2016-01-01

    Magnetic Resonance Imaging is modality of choice for the non-invasive evaluation of meniscal tears. Accurate and uniform documentation of meniscal pathology is necessary for optimal multi-disciplinary communication, to guide treatment options and for validation of patient outcomes studies. The increasingly used ISAKOS arthroscopic meniscus tear classification system has been shown to provide sufficient interobserver reliability among the surgeons. However, the terminology is not in common use in the radiology world. In this article, the authors discuss the MR imaging appearances of meniscal tears based on ISAKOS classification on 2D and multiplanar 3D isotropic spin echo imaging techniques and illustrate the correlations of various meniscal pathologies with relevant arthroscopic images. PMID:26724644

  1. Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods

    NASA Astrophysics Data System (ADS)

    Mikulka, J.; Gescheidtova, E.; Bartusek, K.

    2012-01-01

    The paper deals with modern methods of image processing, especially image segmentation, classification and evaluation of parameters. It focuses primarily on processing medical images of soft tissues obtained by magnetic resonance tomography (MR). It is easy to describe edges of the sought objects using segmented images. The edges found can be useful for further processing of monitored object such as calculating the perimeter, surface and volume evaluation or even three-dimensional shape reconstruction. The proposed solutions can be used for the classification of healthy/unhealthy tissues in MR or other imaging. Application examples of the proposed segmentation methods are shown. Research in the area of image segmentation focuses on methods based on solving partial differential equations. This is a modern method for image processing, often called the active contour method. It is of great advantage in the segmentation of real images degraded by noise with fuzzy edges and transitions between objects. In the paper, results of the segmentation of medical images by the active contour method are compared with results of the segmentation by other existing methods. Experimental applications which demonstrate the very good properties of the active contour method are given.

  2. 2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.

    PubMed

    Thiele, Herbert; Heldmann, Stefan; Trede, Dennis; Strehlow, Jan; Wirtz, Stefan; Dreher, Wolfgang; Berger, Judith; Oetjen, Janina; Kobarg, Jan Hendrik; Fischer, Bernd; Maass, Peter

    2014-01-01

    3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image

  3. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    SciTech Connect

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of

  4. Multilevel image thresholding based on 2D histogram and maximum Tsallis entropy--a differential evolution approach.

    PubMed

    Sarkar, Soham; Das, Swagatam

    2013-12-01

    Multilevel thresholding amounts to segmenting a gray-level image into several distinct regions. This paper presents a 2D histogram based multilevel thresholding approach to improve the separation between objects. Recent studies indicate that the results obtained with 2D histogram oriented approaches are superior to those obtained with 1D histogram based techniques in the context of bi-level thresholding. Here, a method to incorporate 2D histogram related information for generalized multilevel thresholding is proposed using the maximum Tsallis entropy. Differential evolution (DE), a simple yet efficient evolutionary algorithm of current interest, is employed to improve the computational efficiency of the proposed method. The performance of DE is investigated extensively through comparison with other well-known nature inspired global optimization techniques such as genetic algorithm, particle swarm optimization, artificial bee colony, and simulated annealing. In addition, the outcome of the proposed method is evaluated using a well known benchmark--the Berkley segmentation data set (BSDS300) with 300 distinct images. PMID:23955760

  5. Radiographic imaging of the distal dural ring for determining the intradural or extradural location of aneurysms.

    PubMed

    Beretta, Federica; Sepahi, Ali Nader; Zuccarello, Mario; Tomsick, Thomas A; Keller, Jeffrey T

    2005-11-01

    The effectiveness of several anatomical and radiological landmarks proposed to determine whether an aneurysm is located intradurally or extradurally is still debated. In anatomical and radiological studies, we examined the relationships of the distal dural ring (DDR) to the internal carotid artery (ICA) and surrounding bony structures to aid in the localization of aneurysms near the DDR. Anatomical relationships were examined by performing dissections on 10 specimens (5 formalin-fixed cadaveric heads). After the position of the DDR, optic nerve, and tuberculum sellae were marked with surgical steel wire, radiographs were taken in multiple projections. The only bony landmark consistently visible on radiographs was the planum sphenoidale. The superior border of the DDR is located at or below the level of the tuberculum sellae, which laterally becomes the superomedial aspect of the optic strut; thus, the optic strut marks the dorsal limit of the DDR. On 50 dry skulls, we measured the vertical distance between the planum sphenoidale and medial aspect of the optic strut (5.0 +/- 0.4 mm), the interoptic strut distance (14.4 +/- 1.4 mm), and the linear distance between the most posterior aspect of the planum sphenoidale (limbus sphenoidale) and the tuberculum sellae (6.0 +/- 0.5 mm). Using these measurements and the planum sphenoidale, tuberculum sellae, and optic strut as reference landmarks, we determined the location of the aneurysm relative to the DDR on angiographic images. In this way, we were able to identify whether lesions were intra- or extradural. PMID:16648887

  6. Implementation of a new multiple monochromatic x-ray 2D imager at NIF

    NASA Astrophysics Data System (ADS)

    Kyrala, G. A.; Martinson, D.; Polk, P. J.; Gravlin, T.; Schmitt, M. J.; Johnson, R.; Murphy, T. J.; Lopez, F. E.; Oertel, J. A.; House, A.; Wood, R.; Lee, J.; Haugh, M.

    2013-09-01

    We will describe the installation and wavelength calibration of a multiple monochromatic imager [MMI]1 to be used on mix experiments at National Ignition Facility [NIF]2. The imager works between 8 and 13 keV, has a spatial resolution of 16 micrometers and generates many images each with an energy bandwidth of ~80 eV. The images are recorded either on image plates or on gated x-ray detectors. We will describe: how we aligned the instrument on the bench using visible light, how we checked the alignment and determined the energy range using a k-alpha x-ray source, and how we installed and aligned the instrument to the NIF target chamber.

  7. Enhanced 2D-image upconversion using solid-state lasers.

    PubMed

    Pedersen, Christian; Karamehmedović, Emir; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2009-11-01

    Based on enhanced upconversion, we demonstrate a highly efficient method for converting a full image from one part of the electromagnetic spectrum into a new desired wavelength region. By illuminating a metal transmission mask with a 765 nm Gaussian beam to create an image and subsequently focusing the image inside a nonlinear PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state Nd:YVO(4) laser, an upconverted image at 488 nm is generated. We have experimentally achieved an upconversion efficiency of 40% under CW conditions. The proposed technique can be further adapted for high efficiency mid-infrared image upconversion where direct and fast detection is difficult or impossible to perform with existing detector technologies. PMID:19997325

  8. Experimental validation of 2D uncertainty quantification for digital image correlation.

    SciTech Connect

    Reu, Phillip L.

    2010-03-01

    Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual test images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.

  9. Terahertz wavefront assessment based on 2D electro-optic imaging

    NASA Astrophysics Data System (ADS)

    Cahyadi, Harsono; Ichikawa, Ryuji; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi; Abraham, Emmanuel

    2015-03-01

    Complete characterization of terahertz (THz) radiation becomes an interesting yet challenging study for many years. In visible optical region, the wavefront assessment has been proved as a powerful tool for the beam profiling and characterization, which consequently requires 2-dimension (2D) single-shot acquisition of the beam cross-section to provide the spatial profile in time- and frequency-domain. In THz region, the main problem is the lack of effective THz cameras to satisfy this need. In this communication, we propose a simple setup based on free-space collinear 2D electrooptic sampling in a ZnTe crystal for the characterization of THz wavefronts. In principle, we map the optically converted, time-resolved data of the THz pulse by changing the time delay between the probe pulse and the generated THz pulse. The temporal waveforms from different lens-ZnTe distances can clearly indicate the evolution of THz beam as it is converged, focused, or diverged. From the Fourier transform of the temporal waveforms, we can obtain the spectral profile of a broadband THz wave, which in this case within the 0.1-2 THz range. The spectral profile also provides the frequency dependency of the THz pulse amplitude. The comparison between experimental and theoretical results at certain frequencies (here we choose 0.285 and 1.035 THz) is in a good agreement suggesting that our system is capable of THz wavefront characterization. Furthermore, the implementation of Hartmann/Shack-Hartmann sensor principle enables the reconstruction of THz wavefront. We demonstrate the reconstruction of THz wavefronts which are changed from planar wave to spherical one due to the insertion of convex THz lens in the THz beam path. We apply and compare two different reconstruction methods: linear integration and Zernike polynomial. Roughly we conclude that the Zernike method provide smoother wavefront shape that can be elaborated later into quantitative-qualitative analysis about the wavefront

  10. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  11. Fuzzy watershed segmentation algorithm: an enhanced algorithm for 2D gel electrophoresis image segmentation.

    PubMed

    Rashwan, Shaheera; Sarhan, Amany; Faheem, Muhamed Talaat; Youssef, Bayumy A

    2015-01-01

    Detection and quantification of protein spots is an important issue in the analysis of two-dimensional electrophoresis images. However, there is a main challenge in the segmentation of 2DGE images which is to separate overlapping protein spots correctly and to find the weak protein spots. In this paper, we describe a new robust technique to segment and model the different spots present in the gels. The watershed segmentation algorithm is modified to handle the problem of over-segmentation by initially partitioning the image to mosaic regions using the composition of fuzzy relations. The experimental results showed the effectiveness of the proposed algorithm to overcome the over segmentation problem associated with the available algorithm. We also use a wavelet denoising function to enhance the quality of the segmented image. The results of using a denoising function before the proposed fuzzy watershed segmentation algorithm is promising as they are better than those without denoising. PMID:26510287

  12. An active microwave imaging system for reconstruction of 2-D electrical property distributions.

    PubMed

    Meaney, P M; Paulsen, K D; Hartov, A; Crane, R K

    1995-10-01

    The goal of this work is to develop a microwave-based imaging system for hyperthermia treatment monitoring and assessment. Toward this end, a four transmit channel and four receive channel hardware device and concomitant image reconstruction algorithm have been realized. The hardware is designed to measure electric fields (i.e., amplitude and phase) at various locations in a phantom tank with and without the presence of various heterogeneities using standard heterodyning principles. Particular attention has been paid to designing a receiver with better than 115 dB of linear dynamic range which is necessary for imaging biological tissue which often has very high conductivity, especially for tissues with high water content. A calibration procedure has been developed to compensate for signal loss due to three-dimensional radiation in the measured data, since the reconstruction process is only two-dimensional at the present time. Results are shown which demonstrate the stability and accuracy of the measurement system, the extent to which the forward computational model agrees with the measured field distribution when the electrical properties are known, and image reconstructions of electrically unknown targets of varying diameter. In the latter case, images of both the reactive and resistive component of the electrical property distribution have been recoverable. Quantitative information on object location, size, and electrical properties results when the target is approximately one-half wavelength in size. Images of smaller objects lack the same level of quantitative information, but remain qualitatively correct. PMID:8582719

  13. Applying a 2D based CAD scheme for detecting micro-calcification clusters using digital breast tomosynthesis images: an assessment

    NASA Astrophysics Data System (ADS)

    Park, Sang Cheol; Zheng, Bin; Wang, Xiao-Hui; Gur, David

    2008-03-01

    Digital breast tomosynthesis (DBT) has emerged as a promising imaging modality for screening mammography. However, visually detecting micro-calcification clusters depicted on DBT images is a difficult task. Computer-aided detection (CAD) schemes for detecting micro-calcification clusters depicted on mammograms can achieve high performance and the use of CAD results can assist radiologists in detecting subtle micro-calcification clusters. In this study, we compared the performance of an available 2D based CAD scheme with one that includes a new grouping and scoring method when applied to both projection and reconstructed DBT images. We selected a dataset involving 96 DBT examinations acquired on 45 women. Each DBT image set included 11 low dose projection images and a varying number of reconstructed image slices ranging from 18 to 87. In this dataset 20 true-positive micro-calcification clusters were visually detected on the projection images and 40 were visually detected on the reconstructed images, respectively. We first applied the CAD scheme that was previously developed in our laboratory to the DBT dataset. We then tested a new grouping method that defines an independent cluster by grouping the same cluster detected on different projection or reconstructed images. We then compared four scoring methods to assess the CAD performance. The maximum sensitivity level observed for the different grouping and scoring methods were 70% and 88% for the projection and reconstructed images with a maximum false-positive rate of 4.0 and 15.9 per examination, respectively. This preliminary study demonstrates that (1) among the maximum, the minimum or the average CAD generated scores, using the maximum score of the grouped cluster regions achieved the highest performance level, (2) the histogram based scoring method is reasonably effective in reducing false-positive detections on the projection images but the overall CAD sensitivity is lower due to lower signal-to-noise ratio

  14. Image processing of radiographs in 3D Rayleigh-Taylor decelerating interface experiments

    NASA Astrophysics Data System (ADS)

    Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Robey, H. F.; Remington, B. A.; Hansen, J. F.; Blue, B. E.; Knauer, J.

    2009-08-01

    This paper discusses high-energy-density laboratory astrophysics experiments exploring the Rayleigh-Taylor instability under conditions similar to the blast wave driven, outermost layer in a core-collapse supernova. The planar blast wave is created in an experimental target using the Omega laser. The blast wave crosses an unstable interface with a seed perturbation machined onto it. The perturbation consists of a 3D “egg crate” pattern and, in some cases, an additional longer wavelength mode is added to this 3D, single-mode pattern. The main diagnostic of this experiment is x-ray radiography. This paper explores an image processing technique to improve the identification and characterization of structure in the radiographic data.

  15. Development and Assessment of an E-Learning Course on Breast Imaging for Radiographers: A Stratified Randomized Controlled Trial

    PubMed Central

    Ventura, Sandra Rua; Ramos, Isabel; Rodrigues, Pedro Pereira

    2015-01-01

    Background Mammography is considered the best imaging technique for breast cancer screening, and the radiographer plays an important role in its performance. Therefore, continuing education is critical to improving the performance of these professionals and thus providing better health care services. Objective Our goal was to develop an e-learning course on breast imaging for radiographers, assessing its efficacy, effectiveness, and user satisfaction. Methods A stratified randomized controlled trial was performed with radiographers and radiology students who already had mammography training, using pre- and post-knowledge tests, and satisfaction questionnaires. The primary outcome was the improvement in test results (percentage of correct answers), using intention-to-treat and per-protocol analysis. Results A total of 54 participants were assigned to the intervention (20 students plus 34 radiographers) with 53 controls (19+34). The intervention was completed by 40 participants (11+29), with 4 (2+2) discontinued interventions, and 10 (7+3) lost to follow-up. Differences in the primary outcome were found between intervention and control: 21 versus 4 percentage points (pp), P<.001. Stratified analysis showed effect in radiographers (23 pp vs 4 pp; P=.004) but was unclear in students (18 pp vs 5 pp; P=.098). Nonetheless, differences in students’ posttest results were found (88% vs 63%; P=.003), which were absent in pretest (63% vs 63%; P=.106). The per-protocol analysis showed a higher effect (26 pp vs 2 pp; P<.001), both in students (25 pp vs 3 pp; P=.004) and radiographers (27 pp vs 2 pp; P<.001). Overall, 85% were satisfied with the course, and 88% considered it successful. Conclusions This e-learning course is effective, especially for radiographers, which highlights the need for continuing education. PMID:25560547

  16. Tracking contrast agents using real-time 2D photoacoustic imaging system for cardiac applications

    NASA Astrophysics Data System (ADS)

    Olafsson, Ragnar; Montilla, Leonardo; Ingram, Pier; Witte, Russell S.

    2009-02-01

    Photoacoustic (PA) imaging is a rapidly developing imaging modality that can detect optical contrast agents with high sensitivity. While detectors in PA imaging have traditionally been single element ultrasound transducers, use of array systems is desirable because they potentially provide high frame rates to capture dynamic events, such as injection and distribution of contrast in clinical applications. We present preliminary data consisting of 40 second sequences of coregistered pulse-echo (PE) and PA images acquired simultaneously in real time using a clinical ultrasonic machine. Using a 7 MHz linear array, the scanner allowed simultaneous acquisition of inphase-quadrature (IQ) data on 64 elements at a rate limited by the illumination source (Q-switched laser at 20 Hz) with spatial resolution determined to be 0.6 mm (axial) and 0.4 mm (lateral). PA images had a signal-to-noise ratio of approximately 35 dB without averaging. The sequences captured the injection and distribution of an infrared-absorbing contrast agent into a cadaver rat heart. From these data, a perfusion time constant of 0.23 s-1 was estimated. After further refinement, the system will be tested in live animals. Ultimately, an integrated system in the clinic could facilitate inexpensive molecular screening for coronary artery disease.

  17. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    SciTech Connect

    Ando, Masami; Bando, Hiroko; Ueno, Ei

    2007-01-19

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm x 22 mm x 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer.

  18. High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla

    PubMed Central

    Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.

    2012-01-01

    The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941

  19. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    NASA Astrophysics Data System (ADS)

    Ando, Masami; Bando, Hiroko; Chen, Zhihua; Chikaura, Yoshinori; Choi, Chang-Hyuk; Endo, Tokiko; Esumi, Hiroyasu; Gang, Li; Hashimoto, Eiko; Hirano, Keiichi; Hyodo, Kazuyuki; Ichihara, Shu; Jheon, SangHoon; Kim, HongTae; Kim, JongKi; Kimura, Tatsuro; Lee, ChangHyun; Maksimenko, Anton; Ohbayashi, Chiho; Park, SungHwan; Shimao, Daisuke; Sugiyama, Hiroshi; Tang, Jintian; Ueno, Ei; Yamasaki, Katsuhito; Yuasa, Tetsuya

    2007-01-01

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm × 22 mm × 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer.

  20. Prostate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3D.

    PubMed

    Hodge, Adam C; Fenster, Aaron; Downey, Dónal B; Ladak, Hanif M

    2006-12-01

    Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm based on two-dimensional (2D) active shape models (ASM) for semi-automatic segmentation of the prostate boundary from ultrasound images. Optimisation of the 2D ASM for prostatic ultrasound was done first by examining ASM construction and image search parameters. Extension of the algorithm to three-dimensional (3D) segmentation was then done using rotational-based slicing. Evaluation of the 3D segmentation algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. Minimum description length landmark placement for ASM construction, and specific values for constraints and image search were found to be optimal. Evaluation of the algorithm versus gold standard boundaries found an average mean absolute distance of 1.09+/-0.49 mm, an average percent absolute volume difference of 3.28+/-3.16%, and a 5x speed increase versus manual segmentation. PMID:16930764

  1. Uncertainty in 2D hydrodynamic models from errors in roughness parameterization based on aerial images

    NASA Astrophysics Data System (ADS)

    Straatsma, Menno; Huthoff, Fredrik

    2011-01-01

    In The Netherlands, 2D-hydrodynamic simulations are used to evaluate the effect of potential safety measures against river floods. In the investigated scenarios, the floodplains are completely inundated, thus requiring realistic representations of hydraulic roughness of floodplain vegetation. The current study aims at providing better insight into the uncertainty of flood water levels due to uncertain floodplain roughness parameterization. The study focuses on three key elements in the uncertainty of floodplain roughness: (1) classification error of the landcover map, (2), within class variation of vegetation structural characteristics, and (3) mapping scale. To assess the effect of the first error source, new realizations of ecotope maps were made based on the current floodplain ecotope map and an error matrix of the classification. For the second error source, field measurements of vegetation structure were used to obtain uncertainty ranges for each vegetation structural type. The scale error was investigated by reassigning roughness codes on a smaller spatial scale. It is shown that classification accuracy of 69% leads to an uncertainty range of predicted water levels in the order of decimeters. The other error sources are less relevant. The quantification of the uncertainty in water levels can help to make better decisions on suitable flood protection measures. Moreover, the relation between uncertain floodplain roughness and the error bands in water levels may serve as a guideline for the desired accuracy of floodplain characteristics in hydrodynamic models.

  2. Imaging geological contact utilizing 2D resistivity method for light rail transit (LRT) track alignment

    NASA Astrophysics Data System (ADS)

    Ali, Nisa'; Saad, Rosli; Muztaza, Nordiana M.; Ismail, Noer E. H.

    2013-05-01

    The purpose of this study was to locate the geological contact using 2D resistivity method for Light Rail Transit (LRT) track alignment. The resistivity method was conducted on eight survey lines with the length of line 1 was 600m. The length of line 2, 3, 4, 5, 6, and 7 were 200m each while line 8 is 115m. All the survey used minimum electrode spacing of 5m and using Pole-dipole array with minimum current is 2mA and maximum was 20mA. The result obtained from the pseudosection showed that the area generally divided into three main zones, fill materials/residual soil with a resistivity value of <500 Ωm, saturated zone with a resistivity value of 30-100 Ωm and bedrock with a resistivity value of >2000 Ωm. Three fractured zones were detected along line L1 and a lot of boulders were detected at L1, L3, L4, L5 and L6. The geological contact was between the residual soil and granite bedrock.

  3. Accurate Angle Estimator for High-Frame-Rate 2-D Vector Flow Imaging.

    PubMed

    Villagomez Hoyos, Carlos Armando; Stuart, Matthias Bo; Hansen, Kristoffer Lindskov; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt

    2016-06-01

    This paper presents a novel approach for estimating 2-D flow angles using a high-frame-rate ultrasound method. The angle estimator features high accuracy and low standard deviation (SD) over the full 360° range. The method is validated on Field II simulations and phantom measurements using the experimental ultrasound scanner SARUS and a flow rig before being tested in vivo. An 8-MHz linear array transducer is used with defocused beam emissions. In the simulations of a spinning disk phantom, a 360° uniform behavior on the angle estimation is observed with a median angle bias of 1.01° and a median angle SD of 1.8°. Similar results are obtained on a straight vessel for both simulations and measurements, where the obtained angle biases are below 1.5° with SDs around 1°. Estimated velocity magnitudes are also kept under 10% bias and 5% relative SD in both simulations and measurements. An in vivo measurement is performed on a carotid bifurcation of a healthy individual. A 3-s acquisition during three heart cycles is captured. A consistent and repetitive vortex is observed in the carotid bulb during systoles. PMID:27093598

  4. Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images

    PubMed Central

    Nunez-Iglesias, Juan; Kennedy, Ryan; Parag, Toufiq; Shi, Jianbo; Chklovskii, Dmitri B.

    2013-01-01

    We aim to improve segmentation through the use of machine learning tools during region agglomeration. We propose an active learning approach for performing hierarchical agglomerative segmentation from superpixels. Our method combines multiple features at all scales of the agglomerative process, works for data with an arbitrary number of dimensions, and scales to very large datasets. We advocate the use of variation of information to measure segmentation accuracy, particularly in 3D electron microscopy (EM) images of neural tissue, and using this metric demonstrate an improvement over competing algorithms in EM and natural images. PMID:23977123

  5. Learning-based roof style classification in 2D satellite images

    NASA Astrophysics Data System (ADS)

    Zang, Andi; Zhang, Xi; Chen, Xin; Agam, Gady

    2015-05-01

    Accurately recognizing building roof style leads to a much more realistic 3D building modeling and rendering. In this paper, we propose a novel system for image based roof style classification using machine learning technique. Our system is capable of accurately recognizing four individual roof styles and a complex roof which is composed of multiple parts. We make several novel contributions in this paper. First, we propose an algorithm that segments a complex roof to parts which enable our system to recognize the entire roof based on recognition of each part. Second, to better characterize a roof image, we design a new feature extracted from a roof edge image. We demonstrate that this feature has much better performance compared to recognition results generated by Histogram of Oriented Gradient (HOG), Scale-invariant Feature Transform (SIFT) and Local Binary Patterns (LBP). Finally, to generate a classifier, we propose a learning scheme that trains the classifier using both synthetic and real roof images. Experiment results show that our classifier performs well on several test collections.

  6. Single-snapshot 2D color measurement by plenoptic imaging system

    NASA Astrophysics Data System (ADS)

    Masuda, Kensuke; Yamanaka, Yuji; Maruyama, Go; Nagai, Sho; Hirai, Hideaki; Meng, Lingfei; Tosic, Ivana

    2014-03-01

    Plenoptic cameras enable capture of directional light ray information, thus allowing applications such as digital refocusing, depth estimation, or multiband imaging. One of the most common plenoptic camera architectures contains a microlens array at the conventional image plane and a sensor at the back focal plane of the microlens array. We leverage the multiband imaging (MBI) function of this camera and develop a single-snapshot, single-sensor high color fidelity camera. Our camera is based on a plenoptic system with XYZ filters inserted in the pupil plane of the main lens. To achieve high color measurement precision of this system, we perform an end-to-end optimization of the system model that includes light source information, object information, optical system information, plenoptic image processing and color estimation processing. Optimized system characteristics are exploited to build an XYZ plenoptic colorimetric camera prototype that achieves high color measurement precision. We describe an application of our colorimetric camera to color shading evaluation of display and show that it achieves color accuracy of ΔE<0.01.

  7. Application and further development of diffusion based 2D chemical imaging techniques in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Hoefer, Christoph; Santner, Jakob; Borisov, Sergey; Kreuzeder, Andreas; Wenzel, Walter; Puschenreiter, Markus

    2015-04-01

    Two dimensional chemical imaging of root processes refers to novel in situ methods to investigate and map solutes at a high spatial resolution (sub-mm). The visualization of these solutes reveals new insights in soil biogeochemistry and root processes. We derive chemical images by using data from DGT-LA-ICP-MS (Diffusive Gradients in Thin Films and Laser Ablation Inductively Coupled Plasma Mass Spectrometry) and POS (Planar Optode Sensors). Both technologies have shown promising results when applied in aqueous environment but need to be refined and improved for imaging at the soil-plant interface. Co-localized mapping using combined DGT and POS technologies and the development of new gel combinations are in our focus. DGTs are smart and thin (<0.4 mm) hydrogels; containing a binding resin for the targeted analytes (e.g. trace metals, phosphate, sulphide or radionuclides). The measurement principle is passive and diffusion based. The present analytes are diffusing into the gel and are bound by the resin. Thereby, the resin acts as zero sink. After application, DGTs are retrieved, dried, and analysed using LA-ICP-MS. The data is then normalized by an internal standard (e.g. 13C), calibrated using in-house standards and chemical images of the target area are plotted using imaging software. POS are, similar to DGT, thin sensor foils containing a fluorophore coating depending on the target analyte. The measurement principle is based on excitation of the flourophore by a specific wavelength and emission of the fluorophore depending on the presence of the analyte. The emitted signal is captured using optical filters and a DSLR camera. While DGT analysis is destructive, POS measurements can be performed continuously during the application. Both semi-quantitative techniques allow an in situ application to visualize chemical processes directly at the soil-plant interface. Here, we present a summary of results from rhizotron experiments with different plants in metal

  8. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging

    PubMed Central

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097

  9. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.

    PubMed

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097

  10. Security of Color Image Data Designed by Public-Key Cryptosystem Associated with 2D-DWT

    NASA Astrophysics Data System (ADS)

    Mishra, D. C.; Sharma, R. K.; Kumar, Manish; Kumar, Kuldeep

    2014-08-01

    In present times the security of image data is a major issue. So, we have proposed a novel technique for security of color image data by public-key cryptosystem or asymmetric cryptosystem. In this technique, we have developed security of color image data using RSA (Rivest-Shamir-Adleman) cryptosystem with two-dimensional discrete wavelet transform (2D-DWT). Earlier proposed schemes for security of color images designed on the basis of keys, but this approach provides security of color images with the help of keys and correct arrangement of RSA parameters. If the attacker knows about exact keys, but has no information of exact arrangement of RSA parameters, then the original information cannot be recovered from the encrypted data. Computer simulation based on standard example is critically examining the behavior of the proposed technique. Security analysis and a detailed comparison between earlier developed schemes for security of color images and proposed technique are also mentioned for the robustness of the cryptosystem.

  11. Pre-stack depth migration for improved imaging under seafloor canyons: 2D case study of Browse Basin, Australia*

    NASA Astrophysics Data System (ADS)

    Debenham, Helen 124Westlake, Shane

    2014-06-01

    In the Browse Basin, as in many areas of the world, complex seafloor topography can cause problems with seismic imaging. This is related to complex ray paths, and sharp lateral changes in velocity. This paper compares ways in which 2D Kirchhoff imaging can be improved below seafloor canyons, using both time and depth domain processing. In the time domain, to improve on standard pre-stack time migration (PSTM) we apply removable seafloor static time shifts in order to reduce the push down effect under seafloor canyons before migration. This allows for better event continuity in the seismic imaging. However this approach does not fully solve the problem, still giving sub-optimal imaging, leaving amplitude shadows and structural distortion. Only depth domain processing with a migration algorithm that honours the paths of the seismic energy as well as a detailed velocity model can provide improved imaging under these seafloor canyons, and give confidence in the structural components of the exploration targets in this area. We therefore performed depth velocity model building followed by pre-stack depth migration (PSDM), the result of which provided a step change improvement in the imaging, and provided new insights into the area.

  12. A general framework for face reconstruction using single still image based on 2D-to-3D transformation kernel.

    PubMed

    Fooprateepsiri, Rerkchai; Kurutach, Werasak

    2014-03-01

    Face authentication is a biometric classification method that verifies the identity of a user based on image of their face. Accuracy of the authentication is reduced when the pose, illumination and expression of the training face images are different than the testing image. The methods in this paper are designed to improve the accuracy of a features-based face recognition system when the pose between the input images and training images are different. First, an efficient 2D-to-3D integrated face reconstruction approach is introduced to reconstruct a personalized 3D face model from a single frontal face image with neutral expression and normal illumination. Second, realistic virtual faces with different poses are synthesized based on the personalized 3D face to characterize the face subspace. Finally, face recognition is conducted based on these representative virtual faces. Compared with other related works, this framework has the following advantages: (1) only one single frontal face is required for face recognition, which avoids the burdensome enrollment work; and (2) the synthesized face samples provide the capability to conduct recognition under difficult conditions like complex pose, illumination and expression. From the experimental results, we conclude that the proposed method improves the accuracy of face recognition by varying the pose, illumination and expression. PMID:24529782

  13. Heterogeneity of Particle Deposition by Pixel Analysis of 2D Gamma Scintigraphy Images

    PubMed Central

    Xie, Miao; Zeman, Kirby; Hurd, Harry; Donaldson, Scott

    2015-01-01

    Abstract Background: Heterogeneity of inhaled particle deposition in airways disease may be a sensitive indicator of physiologic changes in the lungs. Using planar gamma scintigraphy, we developed new methods to locate and quantify regions of high (hot) and low (cold) particle deposition in the lungs. Methods: Initial deposition and 24 hour retention images were obtained from healthy (n=31) adult subjects and patients with mild cystic fibrosis lung disease (CF) (n=14) following inhalation of radiolabeled particles (Tc99m-sulfur colloid, 5.4 μm MMAD) under controlled breathing conditions. The initial deposition image of the right lung was normalized to (i.e., same median pixel value), and then divided by, a transmission (Tc99m) image in the same individual to obtain a pixel-by-pixel ratio image. Hot spots were defined where pixel values in the deposition image were greater than 2X those of the transmission, and cold spots as pixels where the deposition image was less than 0.5X of the transmission. The number ratio (NR) of the hot and cold pixels to total lung pixels, and the sum ratio (SR) of total counts in hot pixels to total lung counts were compared between healthy and CF subjects. Other traditional measures of regional particle deposition, nC/P and skew of the pixel count histogram distribution, were also compared. Results: The NR of cold spots was greater in mild CF, 0.221±0.047(CF) vs. 0.186±0.038 (healthy) (p<0.005) and was significantly correlated with FEV1 %pred in the patients (R=−0.70). nC/P (central to peripheral count ratio), skew of the count histogram, and hot NR or SR were not different between the healthy and mild CF patients. Conclusions: These methods may provide more sensitive measures of airway function and localization of deposition that might be useful for assessing treatment efficacy in these patients. PMID:25393109

  14. Development of a muon radiographic imaging electronic board system for a stable solar power operation

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Tanaka, H. K. M.; Tanaka, M.

    2010-02-01

    Cosmic-ray muon radiography is a method that is used to study the internal structure of volcanoes. We have developed a muon radiographic imaging board with a power consumption low enough to be powered by a small solar power system. The imaging board generates an angular distribution of the muons. Used for real-time reading, the method may facilitate the prediction of eruptions. For real-time observations, the Ethernet is employed, and the board works as a web server for a remote operation. The angular distribution can be obtained from a remote PC via a network using a standard web browser. We have collected and analyzed data obtained from a 3-day field study of cosmic-ray muons at a Satsuma-Iwojima volcano. The data provided a clear image of the mountain ridge as a cosmic-ray muon shadow. The measured performance of the system is sufficient for a stand-alone cosmic-ray muon radiography experiment.

  15. Characterization of Heterotopic Ossification Using Radiographic Imaging: Evidence for a Paradigm Shift

    PubMed Central

    Brownley, R. Cameron; Agarwal, Shailesh; Loder, Shawn; Eboda, Oluwatobi; Li, John; Peterson, Joshua; Hwang, Charles; Breuler, Christopher; Kaartinen, Vesa; Zhou, Bin; Mishina, Yuji; Levi, Benjamin

    2015-01-01

    Heterotopic ossification (HO) is the growth of extra-skeletal bone which occurs following trauma, burns, and in patients with genetic bone morphogenetic protein (BMP) receptor mutations. The clinical and laboratory evaluation of HO is dependent on radiographic imaging to identify and characterize these lesions. Here we show that despite its inadequacies, plain film radiography and single modality microCT continue to serve as a primary method of HO imaging in nearly 30% of published in vivo literature. Furthermore, we demonstrate that detailed microCT analysis is superior to plain film and single modality microCT radiography specifically in the evaluation of HO formed through three representative models due to its ability to 1) define structural relationships between growing extra-skeletal bone and normal, anatomic bone, 2) provide accurate quantification and growth rate based on volume of the space-occupying lesion, thereby facilitating assessments of therapeutic intervention, 3) identify HO at earlier times allowing for evaluation of early intervention, and 4) characterization of metrics of bone physiology including porosity, tissue mineral density, and cortical and trabecular volume. Examination of our trauma model using microCT demonstrated two separate areas of HO based on anatomic location and relationship with surrounding, normal bone structures. Additionally, microCT allows HO growth rate to be evaluated to characterize HO progression. Taken together, these data demonstrate the need for a paradigm shift in the evaluation of HO towards microCT as a standard tool for imaging. PMID:26544555

  16. Label free biochemical 2D and 3D imaging using secondary ion mass spectrometry

    PubMed Central

    Fletcher, John S.; Vickerman, John C.; Winograd, Nicholas

    2011-01-01

    Time-of-flight Secondary ion mass spectrometry (ToF-SIMS) provides a method for the detection of native and exogenous compounds in biological samples on a cellular scale. Through the development of novel ion beams the amount of molecular signal available from the sample surface has been increased. Through the introduction of polyatomic ion beams, particularly C60, ToF-SIMS can now be used to monitor molecular signals as a function of depth as the sample is eroded thus proving the ability to generate 3D molecular images. Here we describe how this new capability has led to the development of novel instrumentation for 3D molecular imaging while also highlighting the importance of sample preparation and discuss the challenges that still need to be overcome to maximise the impact of the technique. PMID:21664172

  17. Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-01-01

    Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems.

  18. 2D and 3D GPR imaging of structural ceilings in historic and existing constructions

    NASA Astrophysics Data System (ADS)

    Colla, Camilla

    2014-05-01

    GPR applications in civil engineering are to date quite diversified. With respect to civil constructions and monumental buildings, detection of voids, cavities, layering in structural elements, variation of geometry, of moisture content, of materials, areas of decay, defects, cracks have been reported in timber, concrete and masonry elements. Nonetheless, many more fields of investigation remain unexplored. This contribution gives an account of a variety of examples of structural ceilings investigation by GPR radar in reflection mode, either as 2D or 3D data acquisition and visualisation. Ceilings have a pre-eminent role in buildings as they contribute to a good structural behaviour of the construction. Primarily, the following functions can be listed for ceilings: a) they carry vertical dead and live loads on floors and distribute such loads to the vertical walls; b) they oppose to external horizontal forces such as wind loads and earthquakes helping to transfer such forces from the loaded element to the other walls; c) they contribute to create the box skeleton and behaviour of a building, connecting the different load bearing walls and reducing the slenderness and flexural instability of such walls. Therefore, knowing how ceilings are made in specific buildings is of paramount importance for architects and structural engineers. According to the type of building and age of construction, ceilings may present very different solutions and materials. Moreover, in existing constructions, ceilings may have been substituted, modified or strengthened due to material decay or to change of use of the building. These alterations may often go unrecorded in technical documentation or technical drawings may be unavailable. In many cases, the position, orientation and number of the load carrying elements in ceilings may be hidden or not be in sight, due for example to the presence of false ceilings or to technical plants. GPR radar can constitute a very useful tool for

  19. The x-ray light valve: A potentially low-cost, digital radiographic imaging system-concept and implementation considerations

    SciTech Connect

    Webster, Christie Ann; Koprinarov, Ivaylo; Germann, Stephen; Rowlands, J. A.

    2008-03-15

    New x-ray radiographic systems based on large-area flat-panel technology have revolutionized our capability to produce digital x-ray images. However, these imagers are extraordinarily expensive compared to the systems they are replacing. Hence, there is a need for a low-cost digital imaging system for general applications in radiology. A novel potentially low-cost radiographic imaging system based on established technologies is proposed--the X-Ray Light Valve (XLV). This is a potentially high-quality digital x-ray detector made of a photoconducting layer and a liquid-crystal cell, physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected on the surface of the photoconductor. This causes a change in the optical properties of the liquid-crystal cell and a visible image is generated. Subsequently, it is digitized by a scanned optical imager. The image formation is based on controlled modulation of light from an external source. The operation and practical implementation of the XLV system are described. The potential performance of the complete system and issues related to sensitivity, spatial resolution, noise, and speed are discussed. The feasibility of clinical use of an XLV device based on amorphous selenium (a-Se) as the photoconductor and a reflective electrically controlled birefringence cell is analyzed. The results of our analysis indicate that the XLV can potentially be adapted to a wide variety of radiographic tasks.

  20. EFM data mapped into 2D images of tip-sample contact potential difference and capacitance second derivative

    PubMed Central

    Lilliu, S.; Maragliano, C.; Hampton, M.; Elliott, M.; Stefancich, M.; Chiesa, M.; Dahlem, M. S.; Macdonald, J. E.

    2013-01-01

    We report a simple technique for mapping Electrostatic Force Microscopy (EFM) bias sweep data into 2D images. The method allows simultaneous probing, in the same scanning area, of the contact potential difference and the second derivative of the capacitance between tip and sample, along with the height information. The only required equipment consists of a microscope with lift-mode EFM capable of phase shift detection. We designate this approach as Scanning Probe Potential Electrostatic Force Microscopy (SPP-EFM). An open-source MATLAB Graphical User Interface (GUI) for images acquisition, processing and analysis has been developed. The technique is tested with Indium Tin Oxide (ITO) and with poly(3-hexylthiophene) (P3HT) nanowires for organic transistor applications. PMID:24284731

  1. Understanding 2D atomic resolution imaging of the calcite surface in water by frequency modulation atomic force microscopy.

    PubMed

    Tracey, John; Miyazawa, Keisuke; Spijker, Peter; Miyata, Kazuki; Reischl, Bernhard; Canova, Filippo Federici; Rohl, Andrew L; Fukuma, Takeshi; Foster, Adam S

    2016-10-14

    Frequency modulation atomic force microscopy (FM-AFM) experiments were performed on the calcite (10[Formula: see text]4) surface in pure water, and a detailed analysis was made of the 2D images at a variety of frequency setpoints. We observed eight different contrast patterns that reproducibly appeared in different experiments and with different measurement parameters. We then performed systematic free energy calculations of the same system using atomistic molecular dynamics to obtain an effective force field for the tip-surface interaction. By using this force field in a virtual AFM simulation we found that each experimental contrast could be reproduced in our simulations by changing the setpoint, regardless of the experimental parameters. This approach offers a generic method for understanding the wide variety of contrast patterns seen on the calcite surface in water, and is generally applicable to AFM imaging in liquids. PMID:27609045

  2. A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images.

    PubMed

    Reboul, Cyril F; Bonnet, Frederic; Elmlund, Dominika; Elmlund, Hans

    2016-06-01

    A critical step in the analysis of novel cryogenic electron microscopy (cryo-EM) single-particle datasets is the identification of homogeneous subsets of images. Methods for solving this problem are important for data quality assessment, ab initio 3D reconstruction, and analysis of population diversity due to the heterogeneous nature of macromolecules. Here we formulate a stochastic algorithm for identification of homogeneous subsets of images. The purpose of the method is to generate improved 2D class averages that can be used to produce a reliable 3D starting model in a rapid and unbiased fashion. We show that our method overcomes inherent limitations of widely used clustering approaches and proceed to test the approach on six publicly available experimental cryo-EM datasets. We conclude that, in each instance, ab initio 3D reconstructions of quality suitable for initialization of high-resolution refinement are produced from the cluster centers. PMID:27184214

  3. High-accuracy 2D digital image correlation measurements using low-cost imaging lenses: implementation of a generalized compensation method

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Yu, Liping; Wu, Dafang

    2014-02-01

    The ideal pinhole imaging model commonly assumed for an ordinary two-dimensional digital image correlation (2D-DIC) system is neither perfect nor stable because of the existence of small out-of-plane motion of the test sample surface that occurred after loading, small out-of-plane motion of the sensor target due to temperature variation of a camera and unavoidable geometric distortion of an imaging lens. In certain cases, these disadvantages can lead to significant errors in the measured displacements and strains. Although a high-quality bilateral telecentric lens has been strongly recommended to be used in the 2D-DIC system as an essential optical component to achieve high-accuracy measurement, it is not generally applicable due to its fixed field of view, limited depth of focus and high cost. To minimize the errors associated with the imperfectness and instability of a common 2D-DIC system using a low-cost imaging lens, a generalized compensation method using a non-deformable reference sample is proposed in this work. With the proposed method, the displacement of the reference sample rigidly attached behind the test sample is first measured using 2D-DIC, and then it is fitted using a parametric model. The fitted parametric model is then used to correct the displacements of the deformed sample to remove the influences of these unfavorable factors. The validity of the proposed compensation method is first verified using out-of-plane translation, out-of-plane rotation, in-plane translation tests and their combinations. Uniaxial tensile tests of an aluminum specimen were also performed to quantitatively examine the strain accuracy of the proposed compensation method. Experiments show that the proposed compensation method is an easy-to-implement yet effective technique for achieving high-accuracy deformation measurement using an ordinary 2D-DIC system.

  4. Age estimation using lower permanent first molars on a panoramic radiograph: A digital image analysis

    PubMed Central

    Talabani, Ranjdar M.; Baban, Mohammed T.; Mahmood, Mohammed A.

    2015-01-01

    Objective: A study was carried out to analyze the efficacy and practical application for age estimation using digital panoramic radiograph to exploit image analysis to obtain metric measurement of morphological parameters of permanent mandibular first molar on Sulaimani population. Materials and Methods: In the present study a population of known age and sex was studied and subjected to digital panoramic radiographic examination. The correlation between the reduction of coronal pulp cavity and chronological age was examined in a sample of 96 individuals distributed into four age groups: 20-29 years (29 cases), 30-39 years (29 cases), 40-49 years (26 cases) and 50-59 years (12 cases). The height (mm) of the crown (CH = coronal height) and the height (mm) of coronal pulp cavity (CPCH = coronal pulp cavity height) of 96 of first molars from all subjects was measured. The tooth–coronal index (TCI) after Ikeda et al. was computed for each tooth and regressed on real age. Results: ANOVA was used to show the strength of relation between the age and TCI (P = 0.0000). The correlation coefficient (r2) was 0.49, which mean there is strong negative linear regression between age and TCI with the r2, regarding predicting age using TCI value, after the following equation calculated, Predicted age = 3.78 – (0.064 TCI) showed that there is no significant difference between real age and estimated age. Conclusion: There is a strong negative liner relationship between TCIs of mandibular first molars with chronological age of Sulaimani population, and age of individuals can therefore be estimated with a good degree of accuracy using regression equations. PMID:26005307

  5. Image quality in two phosphor-based flat panel digital radiographic detectors.

    PubMed

    Samei, Ehsan

    2003-07-01

    Two general types of phosphor screens are currently used in indirect digital radiographic systems: structured phosphor screens and turbid phosphor screens. The purpose of the study was to experimentally compare the image quality characteristics of two flat-panel digital radiography detectors with similar electronics and pixel sizes (0.127 mm), but otherwise equipped with the two types of screens (0.6-mm-thick structured CsI and Lanex Regular). The presampled modulation transfer functions (MTFs) of the detectors were assessed using an edge method. The noise power spectra (NPS) were measured by two-dimensional Fourier analysis of uniformly-exposed radiographs at 50-100 kVp with 19 mm added Al filtration. The detective quantum efficiencies (DQEs) were assessed from the MTF, the NPS, and estimates of the ideal signal-to-noise ratio. The MTF measures of the two detectors were generally similar above a spatial frequency of 2 mm(-1), with approximately 2.5 and approximately 3.8 mm(-1) spatial frequencies corresponding to 0.2 MTF and 0.1 MTF, respectively. Below 2 mm(-1), the MTF for the CsI-based detector was slightly higher by an average of 0.07. At 70 kVp, the measured DQE values in the diagonal (and axial) direction(s) at spatial frequencies of 0.15 mm(-1) and 2.5 mm(-1) were 78% (78%) and 26% (20%) for the CsI-based detector, and 20% (20%) and 7% (6%) for the Lanex-based detector, respectively. The comparative findings experimentally confirm that in indirect flat-panel detectors, structured phosphor screens provide a more favorable tradeoff between resolution and noise compared to turbid-phosphor screens, effectively increasing the detection efficiency of the detector without a negative impact on the detector's spatial resolution response. PMID:12906192

  6. Visualization of aerocolloidal biological particles using 2D particle image velocimetry (PIV)

    NASA Astrophysics Data System (ADS)

    Hall, Carsie A., III; Masabattula, Sree; Akyuzlu, Kazim M.; Russo, Edwin P.; Klich, Maren A.

    2003-11-01

    Recent concerns over the possible use of airborne biological particles as weapons of mass destruction have significantly increased the attention that researchers are giving to this threat. The size of these particles, ranging from a fraction of a micrometer to several tens of micrometers, allows them to travel over long distances before settling out of the airstreams carrying these particles. Furthermore, the odd shapes of many of these particles along with uncertainties about their light scattering characteristics make detection and tracking quite a challenge. In the present paper, results are reported on the visualization of airborne biological particles using two-dimensional particle image velocimetry (PIV). These initial results show the utility of PIV in illuminating and tracking airborne biological particles. A compressed air nebulizer is used to aerosolize the biological particles inside a Plexiglas test section. The biological particles prepared for the nebulizer are first inoculated and cultured onto agar media, gypsum board, and acoustic ceiling tile to achieve an abundant growth of spores. A colloidal suspension of biological particles is then made using sterilized, de-ionized water and a mild surfactant to de-agglomerate the biological particles in the suspension. The concentration of biological particles in the colloidal suspension is determined using a hemacytometer. In the visualization experiments, images are captured for polystyrene latex (PSL) test particles, liquid water droplets, and spores of the fungal species Aspergillus versicolor. During the PIV system operation, two successive images are captured with a time delay of 50 μm to develop flow field velocities of the PSL test particles, liquid water droplets, and the A. versicolor spores.

  7. Image quality improvement for a 3D structure exhibiting multiple 2D patterns and its implementation.

    PubMed

    Hirayama, Ryuji; Nakayama, Hirotaka; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-04-01

    A three-dimensional (3D) structure designed by our proposed algorithm can simultaneously exhibit multiple two-dimensional patterns. The 3D structure provides multiple patterns having directional characteristics by distributing the effects of the artefacts. In this study, we proposed an iterative algorithm to improve the image quality of the exhibited patterns and have verified the effectiveness of the proposed algorithm using numerical simulations. Moreover, we fabricated different 3D glass structures (an octagonal prism, a cube and a sphere) using the proposed algorithm. All 3D structures exhibit four patterns, and different patterns can be observed depending on the viewing direction. PMID:27137021

  8. Application of Compressed Sensing to 2-D Ultrasonic Propagation Imaging System data

    SciTech Connect

    Mascarenas, David D.; Farrar, Charles R.; Chong, See Yenn; Lee, J.R.; Park, Gyu Hae; Flynn, Eric B.

    2012-06-29

    The Ultrasonic Propagation Imaging (UPI) System is a unique, non-contact, laser-based ultrasonic excitation and measurement system developed for structural health monitoring applications. The UPI system imparts laser-induced ultrasonic excitations at user-defined locations on a structure of interest. The response of these excitations is then measured by piezoelectric transducers. By using appropriate data reconstruction techniques, a time-evolving image of the response can be generated. A representative measurement of a plate might contain 800x800 spatial data measurement locations and each measurement location might be sampled at 500 instances in time. The result is a total of 640,000 measurement locations and 320,000,000 unique measurements. This is clearly a very large set of data to collect, store in memory and process. The value of these ultrasonic response images for structural health monitoring applications makes tackling these challenges worthwhile. Recently compressed sensing has presented itself as a candidate solution for directly collecting relevant information from sparse, high-dimensional measurements. The main idea behind compressed sensing is that by directly collecting a relatively small number of coefficients it is possible to reconstruct the original measurement. The coefficients are obtained from linear combinations of (what would have been the original direct) measurements. Often compressed sensing research is simulated by generating compressed coefficients from conventionally collected measurements. The simulation approach is necessary because the direct collection of compressed coefficients often requires compressed sensing analog front-ends that are currently not commercially available. The ability of the UPI system to make measurements at user-defined locations presents a unique capability on which compressed measurement techniques may be directly applied. The application of compressed sensing techniques on this data holds the potential to

  9. CT cardiac imaging: evolution from 2D to 3D backprojection

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Pan, Tinsu; Sasaki, Kosuke

    2004-04-01

    The state-of-the-art multiple detector-row CT, which usually employs fan beam reconstruction algorithms by approximating a cone beam geometry into a fan beam geometry, has been well recognized as an important modality for cardiac imaging. At present, the multiple detector-row CT is evolving into volumetric CT, in which cone beam reconstruction algorithms are needed to combat cone beam artifacts caused by large cone angle. An ECG-gated cardiac cone beam reconstruction algorithm based upon the so-called semi-CB geometry is implemented in this study. To get the highest temporal resolution, only the projection data corresponding to 180° plus the cone angle are row-wise rebinned into the semi-CB geometry for three-dimensional reconstruction. Data extrapolation is utilized to extend the z-coverage of the ECG-gated cardiac cone beam reconstruction algorithm approaching the edge of a CT detector. A helical body phantom is used to evaluate the ECG-gated cone beam reconstruction algorithm"s z-coverage and capability of suppressing cone beam artifacts. Furthermore, two sets of cardiac data scanned by a multiple detector-row CT scanner at 16 x 1.25 (mm) and normalized pitch 0.275 and 0.3 respectively are used to evaluate the ECG-gated CB reconstruction algorithm"s imaging performance. As a reference, the images reconstructed by a fan beam reconstruction algorithm for multiple detector-row CT are also presented. The qualitative evaluation shows that, the ECG-gated cone beam reconstruction algorithm outperforms its fan beam counterpart from the perspective of cone beam artifact suppression and z-coverage while the temporal resolution is well maintained. Consequently, the scan speed can be increased to reduce the contrast agent amount and injection time, improve the patient comfort and x-ray dose efficiency. Based up on the comparison, it is believed that, with the transition of multiple detector-row CT into volumetric CT, ECG-gated cone beam reconstruction algorithms will

  10. Serial grouping of 2D-image regions with object-based attention in humans.

    PubMed

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2016-01-01

    After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas. PMID:27291188

  11. Body edge delineation in 2D DC resistivity imaging using differential method

    NASA Astrophysics Data System (ADS)

    Susanto, Kusnahadi; Fitrah Bahari, Mohammad

    2016-01-01

    DC resistivity is widely used to identify the kind of rock and the lithology contact. However, the image resulting from resistivity processing is shown in a contour image. There is be a problem to interpret where the edge of body location is. This study uses differential method to delineate the edge of body in DC resistivity contour. This method was applied to the boundary between gravel and underlying clay layer. The first and the second order differential method is applied to the delineation of lithology contact. The profiling curve has to be sliced and extracted from the resistivity contour before the differential method can be used. The spectral analysis shows the frequency and wavenumber of the profiling curve used to make gridding. The slicing process was conducted horizontally and vertically in order to get the mesh size which will be used in the differential method. The second order differential, the Laplace operator, is able to show the edge of body more clearly than the first order differential and shows the contact between gravel and clay.

  12. Serial grouping of 2D-image regions with object-based attention in humans

    PubMed Central

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2016-01-01

    After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas. DOI: http://dx.doi.org/10.7554/eLife.14320.001 PMID:27291188

  13. Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling

    SciTech Connect

    Dr. Ricardo Maqueda; Dr. Fred M. Levinton

    2011-12-23

    Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.

  14. 2D x-ray imaging spectroscopic diagnostics using convex bent crystal

    NASA Astrophysics Data System (ADS)

    Papp, Daniel; Presura, Radu; Wallace, Matt; Largent, Billy; Haque, Showera; Arias, Angel; Khanal, Vijay; Ivanov, Vladimir

    2013-10-01

    A new 2-dimensional time-integrated x-ray spectroscopic diagnostics technique was developed to create multi-monochromatic images of high-energy density Al plasmas. 2-dimensional is an advanced spectroscopic tool, providing a way to determine the spatial dependence of plasma temperature and density (Te and ne) in hot plasmas. The new technique uses the strong source broadening of convex cylindrically bent KAP crystal spectrometers, which contains spatial information along the dispersive direction. The perpendicular direction is imaged using a slit. The spatial resolution of the method is improved by the deconvolution of the source broadened line profiles from the lineshapes (recorded by the convex crystal spectrometer) with lineshapes of minimum instrumental broadening. The latter spectra were recorded with a concave cylindrically bent KAP crystal spectrometer, based on the Johann geometry. Spectroscopic model of the plasma x-ray emission was developed using the PrismSPECT code. The identification of suitable spectral features allows deriving Te and ne from line intensities. We applied this model to get temperature and density distribution maps for wire array z-pinch plasmas. Work supported by the DOE/NNSA under grant DE-NA0001834 and Cooperative Agreement DE-FC52-06NA27616.

  15. SIMS of organics—Advances in 2D and 3D imaging and future outlook

    SciTech Connect

    Gilmore, Ian S.

    2013-09-15

    Secondary ion mass spectrometry (SIMS) has become a powerful technique for the label-free analysis of organics from cells to electronic devices. The development of cluster ion sources has revolutionized the field, increasing the sensitivity for organics by two or three orders of magnitude and for large clusters, such as C{sub 60} and argon clusters, allowing depth profiling of organics. The latter has provided the capability to generate stunning three dimensional images with depth resolutions of around 5 nm, simply unavailable by other techniques. Current state-of-the-art allows molecular images with a spatial resolution of around 500 nm to be achieved and future developments are likely to progress into the sub-100 nm regime. This review is intended to bring those with some familiarity with SIMS up-to-date with the latest developments for organics, the fundamental principles that underpin this and define the future progress. State-of-the-art examples are showcased and signposts to more in-depth reviews about specific topics given for the specialist.

  16. A Gaseous Compton Camera using a 2D-sensitive gaseous photomultiplier for Nuclear Medical Imaging

    NASA Astrophysics Data System (ADS)

    Azevedo, C. D. R.; Pereira, F. A.; Lopes, T.; Correia, P. M. M.; Silva, A. L. M.; Carramate, L. F. N. D.; Covita, D. S.; Veloso, J. F. C. A.

    2013-12-01

    A new Compton Camera (CC) concept based on a High Pressure Scintillation Chamber coupled to a position-sensitive Gaseous PhotoMultiplier for Nuclear Medical Imaging applications is proposed. The main goal of this work is to describe the development of a ϕ25×12 cm3 cylindrical prototype, which will be suitable for scintimammography and for small-animal imaging applications. The possibility to scale it to an useful human size device is also in study. The idea is to develop a device capable to compete with the standard Anger Camera. Despite the large success of the Anger Camera, it still presents some limitations, such as: low position resolution and fair energy resolutions for 140 keV. The CC arises a different solution as it provides information about the incoming photon direction, avoiding the use of a collimator, which is responsible for a huge reduction (10-4) of the sensitivity. The main problem of the CC's is related with the Doppler Broadening which is responsible for the loss of angular resolution. In this work, calculations for the Doppler Broadening in Xe, Ar, Ne and their mixtures are presented. Simulations of the detector performance together with discussion about the gas choice are also included .

  17. An automated calibration system that combines fringe projection and 2D digital image correlation

    NASA Astrophysics Data System (ADS)

    Siegmann, Philip; Felipe-Sesé, Luis A.; Díaz Garrido, Francisco; Piñeiro-Ave, José

    2015-09-01

    An optical non-contact and full-field system that allows large displacement measurements in x-, y- and z-direction is presented. The system combines 2-dimentional digital image correlation (for in-plane measurements) and fringe projection (for out-of-plane displacements) and uses only one camera. The in- and out-of-plane displacements are obtained at the same instant allowing real-time measurements thanks to a color encoding filtering procedure. The out-of-plane measurement allows the correction of the in-plane measurements and the system has to be precisely aligned by following an established alignment procedure. Furthermore, a calibration has to be done to obtain a fringe parameter k for each pixel of the specimen surface image necessary to relate the shifted phase with the out-of-plane displacements. The presented system obtains different values of k for each pixel because of the divergent and non-normal incidence of the fringe beam onto the sample surface (non zero incidence angle). The calibration is performed automatically and only has to be done once for each configuration of the system. The system is portable and can be easily adapted to measure large displacements and wide areas (using small incidence angle) or smaller distances but with higher resolutions (when increasing the incidence angle).

  18. Evaluation of two imaging techniques: near-infrared transillumination and dental radiographs for the detection of early approximal enamel caries

    PubMed Central

    Maia, A M A; Karlsson, L; Margulis, W; Gomes, A S L

    2011-01-01

    Objectives The aim of this paper was to evaluate a transillumination (TI) system using near-infrared (NIR) light and bitewing radiographs for the detection of early approximal enamel caries lesions. Methods Mesiodistal sections of teeth (n = 14) were cut with various thicknesses from 1.5 mm to 4.75 mm. Both sides of each section were included, 17 approximal surfaces with natural enamel caries and 11 surfaces considered intact. The approximal surfaces were illuminated by NIR light and X-ray. Captured images were analysed by two calibrated specialists in radiology, and re-analysed after 6 months using stereomicroscope images as a gold standard. Results The interexaminer reliability (Kappa test statistic) for the NIR TI technique showed moderate agreement on first (0.55) and second (0.48) evaluation, and low agreement for bitewing radiographs on first (0.26) and second (0.32) evaluation. In terms of accuracy, the sensitivity for the NIR TI system was 0.88 and the specificity was 0.72. For the bitewing radiographs the sensitivity ranged from 0.35 to 0.53 and the specificity ranged from 0.50 to 0.72. Conclusion In the same samples and conditions tested, NIR TI images showed reliability and the enamel caries surfaces were better identified than on dental radiographs. PMID:21960400

  19. Validation of the International Labour Office Digitized Standard Images for Recognition and Classification of Radiographs of Pneumoconiosis

    PubMed Central

    Halldin, Cara N.; Petsonk, Edward L.; Laney, A. Scott

    2015-01-01

    Rationale and Objectives Chest radiographs are recommended for prevention and detection of pneumoconiosis. In 2011, the International Labour Office (ILO) released a revision of the International Classification of Radiographs of Pneumoconioses that included a digitized standard images set. The present study compared results of classifications of digital chest images performed using the new ILO 2011 digitized standard images to classification approaches used in the past. Materials and Methods Underground coal miners (N = 172) were examined using both digital and film-screen radiography (FSR) on the same day. Seven National Institute for Occupational Safety and Health-certified B Readers independently classified all 172 digital radiographs, once using the ILO 2011 digitized standard images (DRILO2011-D) and once using digitized standard images used in the previous research (DRRES). The same seven B Readers classified all the miners’ chest films using the ILO film-based standards. Results Agreement between classifications of FSR and digital radiography was identical, using a standard image set (either DRILO2011-D or DRRES). The overall weighted κ value was 0.58.Somespecific differences in the results were seen and noted. However, intrareader variability in this study was similar to the published values and did not appear to be affected by the use of the new ILO 2011 digitized standard images. Conclusions These findings validate the use of the ILO digitized standard images for classification of small pneumoconiotic opacities. When digital chest radiographs are obtained and displayed appropriately, results of pneumoconiosis classifications using the 2011 ILO digitized standards are comparable to film-based ILO classifications and to classifications using earlier research standards. PMID:24507420

  20. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration

    NASA Astrophysics Data System (ADS)

    Soto, Marcelo A.; Ramírez, Jaime A.; Thévenaz, Luc

    2016-03-01

    Distributed optical fibre sensors possess the unique capability of measuring the spatial and temporal map of environmental quantities that can be of great interest for several field applications. Although existing methods for performance enhancement have enabled important progresses in the field, they do not take full advantage of all information present in the measured data, still giving room for substantial improvement over the state-of-the-art. Here we propose and experimentally demonstrate an approach for performance enhancement that exploits the high level of similitude and redundancy contained on the multidimensional information measured by distributed fibre sensors. Exploiting conventional image and video processing, an unprecedented boost in signal-to-noise ratio and measurement contrast is experimentally demonstrated. The method can be applied to any white-noise-limited distributed fibre sensor and can remarkably provide a 100-fold improvement in the sensor performance with no hardware modification.

  1. Impact of lens distortions on strain measurements obtained with 2D digital image correlation

    NASA Astrophysics Data System (ADS)

    Lava, P.; Van Paepegem, W.; Coppieters, S.; De Baere, I.; Wang, Y.; Debruyne, D.

    2013-05-01

    The determination of strain fields based on displacements obtained via digital image correlation (DIC) at the micro-strain level (≤1000 μm/m) is still a cumbersome task. In particular when high-strain gradients are involved, e.g. in composite materials with multidirectional fibre reinforcement, uncertainties in the experimental setup and errors in the derivation of the displacement fields can substantially hamper the strain identification process. In this contribution, the aim is to investigate the impact of lens distortions on strain measurements. To this purpose, we first perform pure rigid body motion experiments, revealing the importance of precise correction of lens distortions. Next, a uni-axial tensile test on a textile composite with spatially varying high strain gradients is performed, resulting in very accurately determined strains along the fibers of the material.

  2. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration

    PubMed Central

    Soto, Marcelo A.; Ramírez, Jaime A.; Thévenaz, Luc

    2016-01-01

    Distributed optical fibre sensors possess the unique capability of measuring the spatial and temporal map of environmental quantities that can be of great interest for several field applications. Although existing methods for performance enhancement have enabled important progresses in the field, they do not take full advantage of all information present in the measured data, still giving room for substantial improvement over the state-of-the-art. Here we propose and experimentally demonstrate an approach for performance enhancement that exploits the high level of similitude and redundancy contained on the multidimensional information measured by distributed fibre sensors. Exploiting conventional image and video processing, an unprecedented boost in signal-to-noise ratio and measurement contrast is experimentally demonstrated. The method can be applied to any white-noise-limited distributed fibre sensor and can remarkably provide a 100-fold improvement in the sensor performance with no hardware modification. PMID:26927698

  3. 2D turbulence imaging in DIII-D via beam emission spectroscopy

    SciTech Connect

    Fenzi, C.; Fonck, R. J.; Jakubowski, M.; Mc Kee, G. R.

    2001-01-01

    Two-dimensional measurements of density fluctuations have been performed in DIII-D using the beam emission spectroscopy diagnostic. The 32 spatial channels are arranged to image a 5x6cm{sup 2} (radialxpoloidal) region in the plasma cross section, at a nominal 1 cm spatial resolution and separation. The typical decorrelation time, poloidal and radial correlation lengths, as well as a time-averaged flow field plot are obtained from spatial and temporal correlation analyses. A biorthogonal decomposition algorithm is applied to expand the data set into a set of modes that are orthogonal in time and in space, thus providing a simultaneous analysis of the space and time dependencies of fluctuation data.

  4. Basic imaging properties of a computed radiographic system with photostimulable phosphors.

    PubMed

    Fujita, H; Ueda, K; Morishita, J; Fujikawa, T; Ohtsuka, A; Sai, T

    1989-01-01

    We measured the characteristic curve, modulation transfer function (MTF), and the Wiener spectrum of a commercially available computed radiographic (CR) system with photostimulable phosphor plate (imaging plate, IP). The characteristic curve (system response) obtained by an inverse-square x-ray sensitometry showed a wide dynamic range (order of 10(3) in maximum). The slit technique was employed to determine the MTF's, such as IP MTF, presampling MTF including the unsharpness of the detector (IP) and the blurring effect of the sampling aperture, and laser-printer MTF. It was found that the MTF of the standard type of IP was comparable to that of medium-speed screen/film systems. The noticeable degradation of resolution in our CR system, however, occurred at the stage of image data sampling: the presampling MTF was inferior to the IP MTF due to the effect of the scattering and resultant spreading of the incidence laser beam and the emitted luminescence. The noise was characterized by means of digital Wiener spectrum using uniformly exposed noise data. Exposure ranges could be separated into different sections depending upon the noise sources, such as quantum mottle at low exposure and system structure noise at high exposure. PMID:2921980

  5. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF.

    PubMed

    Hall, G N; Izumi, N; Tommasini, R; Carpenter, A C; Palmer, N E; Zacharias, R; Felker, B; Holder, J P; Allen, F V; Bell, P M; Bradley, D; Montesanti, R; Landen, O L

    2014-11-01

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV-200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition. PMID:25430200

  6. Use of effective detective quantum efficiency to optimise radiographic exposures for chest imaging with computed radiography

    NASA Astrophysics Data System (ADS)

    Ertan, Ferihan; Mackenzie, Alistair; Urbanczyk, Hannah J.; Ranger, Nicole T.; Samei, Ehsan

    2009-02-01

    The purpose of the work was to test if effective detective quantum efficiency (eDQE) could be useful for optimisation of radiographic factors for computed radiography (CR) for adult chest examinations. The eDQE was therefore measured across a range of kilovoltage, with and without an anti-scatter grid. The modulation transfer function, noise power spectra, transmission factor and scatter fraction were measured with a phantom made of sheets of Aluminum and Acrylic. The entrance air kerma was selected to give an effective dose of 4.9 μSv. The effective noise equivalent quanta (eNEQ) is introduced in this work. eNEQ can be considered equal to the number of X-ray quanta equivalent in the image corrected for the amount of scatter and the blurring processes. The eNEQ was then normalised to account for slight differences in the effective dose (eNEQED). The peak eNEQED was largest at 80 kV and 100 kV with no grid and with grid respectively. At each kilovoltage, the eNEQED and eDQE were between 10% and 70% larger when the grid was not used. The results show that 80 kV without grid is the most suitable exposure conditions for CR in chest. This is consistent with clinical practice in the UK and previous publications recommending a low kV technique for CR for average sized adult chest imaging.

  7. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    SciTech Connect

    Hall, G. N. Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L.

    2014-11-15

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  8. Push-broom hyperspectral image calibration and enhancement by 2D deconvolution with a variant response function estimate.

    PubMed

    Jemec, Jurij; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2014-11-01

    In this paper, we propose a novel method for spectral and spatial calibration and resolution enhancement of hyperspectral images by a two-step procedure. The spectral and spatial variability of the hyperspectral imaging system response function is characterized by a global parametric model, which is derived from a pair of calibration images corresponding to an exactly defined calibration target and a set of gas-discharge lamps. A 2D Richardson-Lucy deconvolution-based algorithm is used to remove the distortions and enhance the resolution of subsequently acquired hyperspectral images. The results of the characterization and deconvolution process obtained by the proposed method are thoroughly evaluated by an independent set of exactly defined calibration and spectral targets, and compared to the existing state-of-the-art characterization method. The proposed method significantly improves the spectral and spatial coregistration and provides more than five-fold resolution enhancement in the spatial and two-fold resolution enhancement in the spectral domain. PMID:25401909

  9. CMOS Geiger photodiode array with integrated signal processing for imaging of 2D objects using quantum dots

    NASA Astrophysics Data System (ADS)

    Stapels, Christopher J.; Lawrence, William G.; Gurjar, Rajan S.; Johnson, Erik B.; Christian, James F.

    2008-08-01

    Geiger-mode photodiodes (GPD) act as binary photon detectors that convert analog light intensity into digital pulses. Fabrication of arrays of GPD in a CMOS environment simplifies the integration of signal-processing electronics to enhance the performance and provide a low-cost detector-on-a-chip platform. Such an instrument facilitates imaging applications with extremely low light and confined volumes. High sensitivity reading of small samples enables twodimensional imaging of DNA arrays and for tracking single molecules, and observing their dynamic behavior. In this work, we describe the performance of a prototype imaging detector of GPD pixels, with integrated active quenching for use in imaging of 2D objects using fluorescent labels. We demonstrate the integration of on-chip memory and a parallel readout interface for an array of CMOS GPD pixels as progress toward an all-digital detector on a chip. We also describe advances in pixel-level signal processing and solid-state photomultiplier developments.

  10. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography

    PubMed Central

    Gabbour, Maya; Schnell, Susanne; Jarvis, Kelly; Robinson, Joshua D.; Markl, Michael

    2015-01-01

    Background Doppler echocardiography (echo) is the reference standard for blood flow velocity analysis, and two-dimensional (2-D) phase-contrast magnetic resonance imaging (MRI) is considered the reference standard for quantitative blood flow assessment. However, both clinical standard-of-care techniques are limited by 2-D acquisitions and single-direction velocity encoding and may make them inadequate to assess the complex three-dimensional hemodynamics seen in congenital heart disease. Four-dimensional flow MRI (4-D flow) enables qualitative and quantitative analysis of complex blood flow in the heart and great arteries. Objectives The objectives of this study are to compare 4-D flow with 2-D phase-contrast MRI for quantification of aortic and pulmonary flow and to evaluate the advantage of 4-D flow-based volumetric flow analysis compared to 2-D phase-contrast MRI and echo for peak velocity assessment in children and young adults. Materials and methods Two-dimensional phase-contrast MRI of the aortic root, main pulmonary artery (MPA), and right and left pulmonary arteries (RPA, LPA) and 4-D flow with volumetric coverage of the aorta and pulmonary arteries were performed in 50 patients (mean age: 13.1±6.4 years). Four-dimensional flow analyses included calculation of net flow and regurgitant fraction with 4-D flow analysis planes similarly positioned to 2-D planes. In addition, 4-D flow volumetric assessment of aortic root/ascending aorta and MPA peak velocities was performed and compared to 2-D phase-contrast MRI and echo. Results Excellent correlation and agreement were found between 2-D phase-contrast MRI and 4-D flow for net flow (r=0.97, P<0.001) and excellent correlation with good agreement was found for regurgitant fraction (r= 0.88, P<0.001) in all vessels. Two-dimensional phase-contrast MRI significantly underestimated aortic (P= 0.032) and MPA (P<0.001) peak velocities compared to echo, while volumetric 4-D flow analysis resulted in higher (aortic: P=0

  11. The cone penetration test and 2D imaging resistivity as tools to simulate the distribution of hydrocarbons in soil

    NASA Astrophysics Data System (ADS)

    Pérez-Corona, M.; García, J. A.; Taller, G.; Polgár, D.; Bustos, E.; Plank, Z.

    2016-02-01

    The purpose of geophysical electrical surveys is to determine the subsurface resistivity distribution by making measurements on the ground surface. From these measurements, the true resistivity of the subsurface can be estimated. The ground resistivity is related to various geological parameters, such as the mineral and fluid content, porosity and degree of water saturation in the rock. Electrical resistivity surveys have been used for many decades in hydrogeological, mining and geotechnical investigations. More recently, they have been used for environmental surveys. To obtain a more accurate subsurface model than is possible with a simple 1-D model, a more complex model must be used. In a 2-D model, the resistivity values are allowed to vary in one horizontal direction (usually referred to as the x direction) but are assumed to be constant in the other horizontal (the y) direction. A more realistic model would be a fully 3-D model where the resistivity values are allowed to change in all three directions. In this research, a simulation of the cone penetration test and 2D imaging resistivity are used as tools to simulate the distribution of hydrocarbons in soil.

  12. Leaf Area Index Estimation in Vineyards from Uav Hyperspectral Data, 2d Image Mosaics and 3d Canopy Surface Models

    NASA Astrophysics Data System (ADS)

    Kalisperakis, I.; Stentoumis, Ch.; Grammatikopoulos, L.; Karantzalos, K.

    2015-08-01

    The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured LAI (ground truth) from several vines in Nemea, Greece. The overall evaluation indicated that the estimated canopy levels were correlated (r2 > 73%) with the in-situ, ground truth LAI measurements. As expected the lowest correlations were derived from the calculated greenness levels from the 2D RGB orthomosaics. The highest correlation rates were established with the hyperspectral canopy greenness and the 3D canopy surface models. For the later the accurate detection of canopy, soil and other materials in between the vine rows is required. All approaches tend to overestimate LAI in cases with sparse, weak, unhealthy plants and canopy.

  13. MIA-QSAR: a simple 2D image-based approach for quantitative structure activity relationship analysis

    NASA Astrophysics Data System (ADS)

    Freitas, Matheus P.; Brown, Steven D.; Martins, José A.

    2005-03-01

    An accessible and quite simple QSAR method, based on 2D image analysis, is reported. A case study is carried out in order to compare this model with a previously reported sophisticated methodology. A well known set of ( S)- N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxybenzamides, compounds with affinity to the dopamine D 2 receptor subtype, was divided in 40 calibration compounds and 18 test compounds and the descriptors were generated from pixels of 2D structures of each compound, which can be drawn with aid of any appropriate program. Bilinear (conventional) PLS was utilized as the regression method and leave-one-out cross-validation was performed using the NIPALS algorithm. The good predicted Q2 value obtained for the series of test compounds (0.58), together with the similar prediction quality obtained to other data sets (nAChR ligands, HIV protease inhibitors, COX-2 inhibitors and anxiolytic agents), suggests that the model is robust and seems to be as applicable as more complex methods.

  14. Constraining Polarized Foregrounds for EoR Experiments I: 2D Power Spectra from the PAPER-32 Imaging Array

    NASA Astrophysics Data System (ADS)

    Kohn, S. A.; Aguirre, J. E.; Nunhokee, C. D.; Bernardi, G.; Pober, J. C.; Ali, Z. S.; Bradley, R. F.; Carilli, C. L.; DeBoer, D. R.; Gugliucci, N. E.; Jacobs, D. C.; Klima, P.; MacMahon, D. H. E.; Manley, J. R.; Moore, D. F.; Parsons, A. R.; Stefan, I. I.; Walbrugh, W. P.

    2016-06-01

    Current generation low-frequency interferometers constructed with the objective of detecting the high-redshift 21 cm background aim to generate power spectra of the brightness temperature contrast of neutral hydrogen in primordial intergalactic medium. Two-dimensional (2D) power spectra (power in Fourier modes parallel and perpendicular to the line of sight) that formed from interferometric visibilities have been shown to delineate a boundary between spectrally smooth foregrounds (known as the wedge) and spectrally structured 21 cm background emission (the EoR window). However, polarized foregrounds are known to possess spectral structure due to Faraday rotation, which can leak into the EoR window. In this work we create and analyze 2D power spectra from the PAPER-32 imaging array in Stokes I, Q, U, and V. These allow us to observe and diagnose systematic effects in our calibration at high signal-to-noise within the Fourier space most relevant to EoR experiments. We observe well-defined windows in the Stokes visibilities, with Stokes Q, U, and V power spectra sharing a similar wedge shape to that seen in Stokes I. With modest polarization calibration, we see no evidence that polarization calibration errors move power outside the wedge in any Stokes visibility to the noise levels attained. Deeper integrations will be required to confirm that this behavior persists to the depth required for EoR detection.

  15. Spectrum of Inflammatory Changes in the SIJs on Radiographs and MR Images in Patients with Suspected Axial Spondyloarthritis

    PubMed Central

    Sudoł-Szopińska, Iwona; Włodkowska-Korytkowska, Monika; Kwiatkowska, Brygida

    2016-01-01

    Summary Background The aim of the paper was to compare radiographs and MRI in assessment of active and chronic inflammatory changes in the sacroiliac joints in patients with chronic back pain and suspected axial spondyloarthritis. Moreover, the aim was to determine which of the two methods is more accurate in diagnosing individual inflammatory changes in the sacroiliac joints and whether there is a correlation between radiographs and MRI in their identification. Material/Methods The analysis was conducted in a group of 101 patients, including 61 women and 40 men, referred to radiographs and MR examinations by rheumatologists due to chronic back pain. AP images of the lumbar region of the spine were performed in each patient in the supine position. The images included the sacroiliac joints. Changes in the SIJs were assessed based on the New York criteria of 1966. In MR examination, the SIJs were assessed in terms of the presence of active and chronic inflammatory changes described by the ASAS. The statistical analysis of the variables tested was conducted in the Excel and Statistica systems. Results In relation to the final clinical diagnosis of axSpA, MRI had higher sensitivity and specificity than radiography in diagnosing sacroiliitis (sensitivity: 71% vs. 22%, specificity: 90% vs. 94% on radiographs according to New York criteria. In relation to MRI, radiographs resulted in 40% of incorrect sacroiliitis diagnoses (both false positive and false negative results). In as many as 50% of cases (7/14), MRI failed to confirm the presence of inflammatory changes in the sacroiliac joints observed in radiography according to the modNY criteria (false positive results on radiographs). Both examinations are characterised by very low agreement, which is near to random, in assessing individual features of sacroiliitis, such as sclerosis, change in the joint space width, erosions and ankylosis. Conclusions 1. Radiographs do not allow early inflammatory lesions indicating

  16. Age estimation from pulp/tooth area ratio in maxillary incisors among Egyptians using dental radiographic images.

    PubMed

    Zaher, Jaklin Fekri; Fawzy, Irene Atef; Habib, Sahar Refaat; Ali, Magdy Mohamed

    2011-02-01

    Age estimation from dental radiographs is a non-destructive, simple method to obtain information. The aim of this study was to determine the reliability of age estimation from Egyptians' incisors radiographs. 144 periapical radiographs of maxillary (central & lateral) incisors (both sexes) aged 12-60 were used. Digital camera was used to image the radiographs. Images were computed and pulp/tooth area ratios were determined by AutoCAD Program. Data were subjected to correlation and regression analysis which showed statistically significant correlation (r = 0.23 &P = 0.006 for maxillary central incisors and r = -0.2 &P = 0.05 for maxillary lateral incisors) between age and pulp tooth area ratio. Linear regression equations were determined separately for both central and lateral incisors along with the corresponding Standard Error of Estimate, which ranged from 1.2 to 5.08 years. Consequently, it was concluded that pulp/tooth area ratios of incisors are reliable for estimation of age among Egyptians in forensic work. PMID:21315299

  17. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements

    SciTech Connect

    Lin, L. Ding, W. X.; Brower, D. L.

    2014-11-15

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.

  18. Interferometry based multispectral photon-limited 2D and 3D integral image encryption employing the Hartley transform.

    PubMed

    Muniraj, Inbarasan; Guo, Changliang; Lee, Byung-Geun; Sheridan, John T

    2015-06-15

    We present a method of securing multispectral 3D photon-counted integral imaging (PCII) using classical Hartley Transform (HT) based encryption by employing optical interferometry. This method has the simultaneous advantages of minimizing complexity by eliminating the need for holography recording and addresses the phase sensitivity problem encountered when using digital cameras. These together with single-channel multispectral 3D data compactness, the inherent properties of the classical photon counting detection model, i.e. sparse sensing and the capability for nonlinear transformation, permits better authentication of the retrieved 3D scene at various depth cues. Furthermore, the proposed technique works for both spatially and temporally incoherent illumination. To validate the proposed technique simulations were carried out for both the 2D and 3D cases. Experimental data is processed and the results support the feasibility of the encryption method. PMID:26193568

  19. Non-equilibrium partitioning tracer transport in porous media: 2-D physical modelling and imaging using a partitioning fluorescent dye.

    PubMed

    Jones, Edward H; Smith, Colin C

    2005-12-01

    This paper describes an investigation into non-equilibrium partitioning tracer transport and interaction with non-aqueous-phase liquid (NAPL) contaminated water-saturated porous media using a two-dimensional (2-D) physical modelling methodology. A fluorescent partitioning tracer is employed within a transparent porous model which when imaged by a CCD digital camera can provide full spatial tracer concentrations and tracer breakthrough curves. Quasi one-dimensional (1-D) benchmarking tests in models packed with various combinations of clean quartz sand and NAPL are described. These modelled residual NAPL saturations, S(n), of 0-15%. Results demonstrated that the fluorescent partitioning tracer was able to detect and quantify the presence of NAPL at low flow rates. At larger flow rates and/or higher NAPL saturations, the tracer increasingly underpredicted the NAPL volume as expected and this is attributed primarily to non-equilibrium partitioning. Despite little change in permeability, change in NAPL saturations from 4% to 8% resulted in significant NAPL saturation underestimates at the same flow rates implying coalescence of NAPL into wider separated but larger ganglia. A 2-D investigation of an idealised heterogeneous residual NAPL contaminated flow field indicated little permeability change in the NAPL contaminated zone and thus little flow bypassing, leading to reduced underpredictions of NAPL saturations than for equivalent quasi 1-D cases. This was attributed to increased 'sampling' of the NAPL by the tracer. The process is clearly visually identifiable from the experimental images. This rapid and relatively inexpensive experimental method is of value in laboratory studies of partitioning tracer behaviour in porous media; in particular, the ability to observe full field concentrations makes it valuable for the study of complex heterogeneous systems. PMID:16298415

  20. Transverse Strains in Muscle Fascicles during Voluntary Contraction: A 2D Frequency Decomposition of B-Mode Ultrasound Images

    PubMed Central

    Wakeling, James M.

    2014-01-01

    When skeletal muscle fibres shorten, they must increase in their transverse dimensions in order to maintain a constant volume. In pennate muscle, this transverse expansion results in the fibres rotating to greater pennation angle, with a consequent reduction in their contractile velocity in a process known as gearing. Understanding the nature and extent of this transverse expansion is necessary to understand the mechanisms driving the changes in internal geometry of whole muscles during contraction. Current methodologies allow the fascicle lengths, orientations, and curvatures to be quantified, but not the transverse expansion. The purpose of this study was to develop and validate techniques for quantifying transverse strain in skeletal muscle fascicles during contraction from B-mode ultrasound images. Images were acquired from the medial and lateral gastrocnemii during cyclic contractions, enhanced using multiscale vessel enhancement filtering and the spatial frequencies resolved using 2D discrete Fourier transforms. The frequency information was resolved into the fascicle orientations that were validated against manually digitized values. The transverse fascicle strains were calculated from their wavelengths within the images. These methods showed that the transverse strain increases while the longitudinal fascicle length decreases; however, the extent of these strains was smaller than expected. PMID:25328509

  1. Prevalence of suggestive images of carotid artery calcifications on panoramic radiographs and its relationship with predisposing factors.

    PubMed

    Brito, Ana Caroline Ramos de; Nascimento, Helena Aguiar Ribeiro; Argento, Rafaela; Beline, Thamara; Ambrosano, Glaucia Maria Bovi; Freitas, Deborah Queiroz

    2016-06-01

    Panoramic radiographs (PR) can display radiopaque images suggestive of calcified atheroma in the carotid artery in asymptomatic patients. The aim of this study was to evaluate the prevalence of these images on PR and their linkage with hypertension, obesity, age, gender and smoking habits. PR of 505 patients were evaluated. They were older than 30 years old and their PR had been taken for different clinical reasons. Their body mass index was calculated; their waist circumference was also taken into consideration. Information about smoking habits and hypertension was obtained. The observers analyzed the presence of radiopaque mass in the region of the cervical vertebrae C3-C4 through the PR, confirmed by an antero-posterior (AP) radiograph. The results showed a 7.92% prevalence of suggestive images of calcifications on PR and on AP radiograph. The adjusted Odds Ratio showed association with age and smoking habits. The calcification process is almost nine times higher for the elderly when compared to the young. As far as smokers are concerned, this process is twice worse when compared to no smokers. In conclusion, 7.92% of the group studied presented suggestive images of carotid atherosclerosis on PR, which is directly associated with the age and smoking habits. PMID:27383353

  2. A Practical Deconvolution Computation Algorithm to Extract 1D Spectra from 2D Images of Optical Fiber Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guangwei, Li; Haotong, Zhang; Zhongrui, Bai

    2015-06-01

    Bolton & Schlegel presented a promising deconvolution method to extract one-dimensional (1D) spectra from a two-dimensional (2D) optical fiber spectral CCD (charge-coupled device) image. The method could eliminate the PSF (point-spread function) difference between fibers, extract spectra to the photo noise level, as well as improve the resolution. But the method is limited by its huge computation requirement and thus can not be implemented in actual data reduction. In this article, we develop a practical computation method to solve the computation problem. The new computation method can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. Our method does not require large amounts of memory and can extract a 4 k × 4 k noise-free CCD image with 250 fibers in 2 hr. To make our method more practical, we further consider the influence of noise, which is thought to be an intrinsic ill-posed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. We do a series of simulations to test how our method performs under more real situations with Poisson noise and extreme cross talk. Compared with the results of traditional extraction methods, i.e., the Aperture Extraction Method and the Profile Fitting Method, our method has the least residual and influence by cross talk. For the noise-added image, the computation speed does not depend very much on fiber distance, the signal-to-noise ratio converges in 2-4 iterations, and the computation times are about 3.5 hr for the extreme fiber distance and about 2 hr for nonextreme cases. A better balance between the computation time and result precision could be achieved by setting the precision threshold similar to the noise level. Finally, we apply our method to real LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope; a.k.a. Guo Shou Jing Telescope) data. We find that the 1D spectrum extracted by our

  3. Effect of image processing version on detection of non-calcification cancers in 2D digital mammography imaging

    NASA Astrophysics Data System (ADS)

    Warren, L. M.; Cooke, J.; Given-Wilson, R. M.; Wallis, M. G.; Halling-Brown, M.; Mackenzie, A.; Chakraborty, D. P.; Bosmans, H.; Dance, D. R.; Young, K. C.

    2013-03-01

    Image processing (IP) is the last step in the digital mammography imaging chain before interpretation by a radiologist. Each manufacturer has their own IP algorithm(s) and the appearance of an image after IP can vary greatly depending upon the algorithm and version used. It is unclear whether these differences can affect cancer detection. This work investigates the effect of IP on the detection of non-calcification cancers by expert observers. Digital mammography images for 190 patients were collected from two screening sites using Hologic amorphous selenium detectors. Eighty of these cases contained non-calcification cancers. The images were processed using three versions of IP from Hologic - default (full enhancement), low contrast (intermediate enhancement) and pseudo screen-film (no enhancement). Seven experienced observers inspected the images and marked the location of regions suspected to be non-calcification cancers assigning a score for likelihood of malignancy. This data was analysed using JAFROC analysis. The observers also scored the clinical interpretation of the entire case using the BSBR classification scale. This was analysed using ROC analysis. The breast density in the region surrounding each cancer and the number of times each cancer was detected were calculated. IP did not have a significant effect on the radiologists' judgment of the likelihood of malignancy of individual lesions or their clinical interpretation of the entire case. No correlation was found between number of times each cancer was detected and the density of breast tissue surrounding that cancer.

  4. Robust and highly performant ring detection algorithm for 3d particle tracking using 2d microscope imaging.

    PubMed

    Afik, Eldad

    2015-01-01

    Three-dimensional particle tracking is an essential tool in studying dynamics under the microscope, namely, fluid dynamics in microfluidic devices, bacteria taxis, cellular trafficking. The 3d position can be determined using 2d imaging alone by measuring the diffraction rings generated by an out-of-focus fluorescent particle, imaged on a single camera. Here I present a ring detection algorithm exhibiting a high detection rate, which is robust to the challenges arising from ring occlusion, inclusions and overlaps, and allows resolving particles even when near to each other. It is capable of real time analysis thanks to its high performance and low memory footprint. The proposed algorithm, an offspring of the circle Hough transform, addresses the need to efficiently trace the trajectories of many particles concurrently, when their number in not necessarily fixed, by solving a classification problem, and overcomes the challenges of finding local maxima in the complex parameter space which results from ring clusters and noise. Several algorithmic concepts introduced here can be advantageous in other cases, particularly when dealing with noisy and sparse data. The implementation is based on open-source and cross-platform software packages only, making it easy to distribute and modify. It is implemented in a microfluidic experiment allowing real-time multi-particle tracking at 70 Hz, achieving a detection rate which exceeds 94% and only 1% false-detection. PMID:26329642

  5. Robust and highly performant ring detection algorithm for 3d particle tracking using 2d microscope imaging

    PubMed Central

    Afik, Eldad

    2015-01-01

    Three-dimensional particle tracking is an essential tool in studying dynamics under the microscope, namely, fluid dynamics in microfluidic devices, bacteria taxis, cellular trafficking. The 3d position can be determined using 2d imaging alone by measuring the diffraction rings generated by an out-of-focus fluorescent particle, imaged on a single camera. Here I present a ring detection algorithm exhibiting a high detection rate, which is robust to the challenges arising from ring occlusion, inclusions and overlaps, and allows resolving particles even when near to each other. It is capable of real time analysis thanks to its high performance and low memory footprint. The proposed algorithm, an offspring of the circle Hough transform, addresses the need to efficiently trace the trajectories of many particles concurrently, when their number in not necessarily fixed, by solving a classification problem, and overcomes the challenges of finding local maxima in the complex parameter space which results from ring clusters and noise. Several algorithmic concepts introduced here can be advantageous in other cases, particularly when dealing with noisy and sparse data. The implementation is based on open-source and cross-platform software packages only, making it easy to distribute and modify. It is implemented in a microfluidic experiment allowing real-time multi-particle tracking at 70 Hz, achieving a detection rate which exceeds 94% and only 1% false-detection. PMID:26329642

  6. A novel approach of computer-aided detection of focal ground-glass opacity in 2D lung CT images

    NASA Astrophysics Data System (ADS)

    Li, Song; Liu, Xiabi; Yang, Ali; Pang, Kunpeng; Zhou, Chunwu; Zhao, Xinming; Zhao, Yanfeng

    2013-02-01

    Focal Ground-Glass Opacity (fGGO) plays an important role in diagnose of lung cancers. This paper proposes a novel approach for detecting fGGOs in 2D lung CT images. The approach consists of two stages: extracting regions of interests (ROIs) and labeling each ROI as fGGO or non-fGGO. In the first stage, we use the techniques of Otsu thresholding and mathematical morphology to segment lung parenchyma from lung CT images and extract ROIs in lung parenchyma. In the second stage, a Bayesian classifier is constructed based on the Gaussian mixture Modeling (GMM) of the distribution of visual features of fGGOs to fulfill ROI identification. The parameters in the classifier are estimated from training data by the discriminative learning method of Max-Min posterior Pseudo-probabilities (MMP). A genetic algorithm is further developed to select compact and discriminative features for the classifier. We evaluated the proposed fGGO detection approach through 5-fold cross-validation experiments on a set of 69 lung CT scans that contain 70 fGGOs. The proposed approach achieves the detection sensitivity of 85.7% at the false positive rate of 2.5 per scan, which proves its effectiveness. We also demonstrate the usefulness of our genetic algorithm based feature selection method and MMP discriminative learning method through comparing them with without-selection strategy and Support Vector Machines (SVMs), respectively, in the experiments.

  7. Robust and highly performant ring detection algorithm for 3d particle tracking using 2d microscope imaging

    NASA Astrophysics Data System (ADS)

    Afik, Eldad

    2015-09-01

    Three-dimensional particle tracking is an essential tool in studying dynamics under the microscope, namely, fluid dynamics in microfluidic devices, bacteria taxis, cellular trafficking. The 3d position can be determined using 2d imaging alone by measuring the diffraction rings generated by an out-of-focus fluorescent particle, imaged on a single camera. Here I present a ring detection algorithm exhibiting a high detection rate, which is robust to the challenges arising from ring occlusion, inclusions and overlaps, and allows resolving particles even when near to each other. It is capable of real time analysis thanks to its high performance and low memory footprint. The proposed algorithm, an offspring of the circle Hough transform, addresses the need to efficiently trace the trajectories of many particles concurrently, when their number in not necessarily fixed, by solving a classification problem, and overcomes the challenges of finding local maxima in the complex parameter space which results from ring clusters and noise. Several algorithmic concepts introduced here can be advantageous in other cases, particularly when dealing with noisy and sparse data. The implementation is based on open-source and cross-platform software packages only, making it easy to distribute and modify. It is implemented in a microfluidic experiment allowing real-time multi-particle tracking at 70 Hz, achieving a detection rate which exceeds 94% and only 1% false-detection.

  8. Integral equation analysis and optimization of 2D layered nanolithography masks by complex images Green's function technique in TM polarization.

    PubMed

    Haghtalab, Mohammad; Faraji-Dana, Reza

    2012-05-01

    Analysis and optimization of diffraction effects in nanolithography through multilayered media with a fast and accurate field-theoretical approach is presented. The scattered field through an arbitrary two-dimensional (2D) mask pattern in multilayered media illuminated by a TM-polarized incident wave is determined by using an electric field integral equation formulation. In this formulation the electric field is represented in terms of complex images Green's functions. The method of moments is then employed to solve the resulting integral equation. In this way an accurate and computationally efficient approximate method is achieved. The accuracy of the proposed method is vindicated through comparison with direct numerical integration results. Moreover, the comparison is made between the results obtained by the proposed method and those obtained by the full-wave finite-element method. The ray tracing method is combined with the proposed method to describe the imaging process in the lithography. The simulated annealing algorithm is then employed to solve the inverse problem, i.e., to design an optimized mask pattern to improve the resolution. Two binary mask patterns under normal incident coherent illumination are designed by this method, where it is shown that the subresolution features improve the critical dimension significantly. PMID:22561933

  9. Development of fast patient position verification software using 2D-3D image registration and its clinical experience.

    PubMed

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro; Fukuhara, Riki; Haneishi, Hideaki

    2015-09-01

    To improve treatment workflow, we developed a graphic processing unit (GPU)-based patient positional verification software application and integrated it into carbon-ion scanning beam treatment. Here, we evaluated the basic performance of the software. The algorithm provides 2D/3D registration matching using CT and orthogonal X-ray flat panel detector (FPD) images. The participants were 53 patients with tumors of the head and neck, prostate or lung receiving carbon-ion beam treatment. 2D/3D-ITchi-Gime (ITG) calculation accuracy was evaluated in terms of computation time and registration accuracy. Registration calculation was determined using the similarity measurement metrics gradient difference (GD), normalized mutual information (NMI), zero-mean normalized cross-correlation (ZNCC), and their combination. Registration accuracy was dependent on the particular metric used. Representative examples were determined to have target registration error (TRE) = 0.45 ± 0.23 mm and angular error (AE) = 0.35 ± 0.18° with ZNCC + GD for a head and neck tumor; TRE = 0.12 ± 0.07 mm and AE = 0.16 ± 0.07° with ZNCC for a pelvic tumor; and TRE = 1.19 ± 0.78 mm and AE = 0.83 ± 0.61° with ZNCC for lung tumor. Calculation time was less than 7.26 s.The new registration software has been successfully installed and implemented in our treatment process. We expect that it will improve both treatment workflow and treatment accuracy. PMID:26081313

  10. Development of fast patient position verification software using 2D-3D image registration and its clinical experience

    PubMed Central

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro; Fukuhara, Riki; Haneishi, Hideaki

    2015-01-01

    To improve treatment workflow, we developed a graphic processing unit (GPU)-based patient positional verification software application and integrated it into carbon-ion scanning beam treatment. Here, we evaluated the basic performance of the software. The algorithm provides 2D/3D registration matching using CT and orthogonal X-ray flat panel detector (FPD) images. The participants were 53 patients with tumors of the head and neck, prostate or lung receiving carbon-ion beam treatment. 2D/3D-ITchi-Gime (ITG) calculation accuracy was evaluated in terms of computation time and registration accuracy. Registration calculation was determined using the similarity measurement metrics gradient difference (GD), normalized mutual information (NMI), zero-mean normalized cross-correlation (ZNCC), and their combination. Registration accuracy was dependent on the particular metric used. Representative examples were determined to have target registration error (TRE) = 0.45 ± 0.23 mm and angular error (AE) = 0.35 ± 0.18° with ZNCC + GD for a head and neck tumor; TRE = 0.12 ± 0.07 mm and AE = 0.16 ± 0.07° with ZNCC for a pelvic tumor; and TRE = 1.19 ± 0.78 mm and AE = 0.83 ± 0.61° with ZNCC for lung tumor. Calculation time was less than 7.26 s.The new registration software has been successfully installed and implemented in our treatment process. We expect that it will improve both treatment workflow and treatment accuracy. PMID:26081313

  11. Infrared imaging of MDA-MB-231 breast cancer cell line phenotypes in 2D and 3D cultures.

    PubMed

    Smolina, Margarita; Goormaghtigh, Erik

    2015-04-01

    One current challenge in the field of breast cancer infrared imaging is the identification of carcinoma cell subtypes in the tissue. Neither sequencing nor immunochemistry is currently able to provide a cell by cell thorough classification. The latter is needed to build accurate statistical models capable of recognizing the diversity of breast cancer cell lines that may be present in a tissue section. One possible approach for overcoming this problem is to obtain the IR spectral signature of well-characterized tumor cell lines in culture. Cultures in three-dimensional matrices appear to generate an environment that mimics better the in vivo environment. There are, at present, series of breast cancer cell lines that have been thoroughly characterized in two- and three-dimensional (2D and 3D) cultures by full transcriptomics analyses. In this work, we describe the methods used to grow, to process, and to characterize a triple-negative breast cancer cell line, MDA-MB-231, in 3D laminin-rich extracellular matrix (lrECM) culture and compare it with traditional monolayer cultures and tissue sections. While unsupervised analyses did not completely separate spectra of cells grown in 2D from 3D lrECM cultures, a supervised statistical analysis resulted in an almost perfect separation. When IR spectral responses of epithelial tumor cells from clinical triple-negative breast carcinoma samples were added to these data, a principal component analysis indicated that they cluster closer to the spectra of 3D culture cells than to the spectra of cells grown on a flat plastic substrata. This result is encouraging because of correlating well-characterized cell line features with clinical biopsies. PMID:25568895

  12. Usefulness of CT imaging for segmental lung lobe torsion without typical radiographic imaging in a Pomeranian.

    PubMed

    Choi, Mihyun; Lee, Namsoon; Keh, Seoyeon; Choi, Heeyeon; Yim, Yoonji; Kim, Hyunwook; Jung, Joohyun; Choi, Mincheol

    2015-02-01

    A 3-year-old, intact female Pomeranian presented with a 1-month history of coughing. Thoracic radiography showed focal infiltration of the left cranial lung lobe and widening of the cranial mediastinum. Subsequent computed tomography revealed torsion of the caudal segment of the left cranial lung lobe, which was confirmed by exploratory thoracotomy. There was no apparent underlying etiology for the condition. To the authors' knowledge, this is the first report of lung lobe torsion in this breed and the first detailed CT imaging report for segmental lung lobe torsion. PMID:25728251

  13. Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography.

    PubMed

    Chan, Kenneth H; Chan, Andrew C; Fried, William A; Simon, Jacob C; Darling, Cynthia L; Fried, Daniel

    2015-01-01

    Several studies have demonstrated the potential of cross-polarization optical coherence tomography (CP-OCT) to quantify the severity of early caries lesions (tooth decay) on tooth surfaces. The purpose of this study is to show that 2D images of the lesion depth and the integrated reflectivity can be used to accurately represent the severity of early lesions. Simulated early lesions of varying severity were produced on tooth samples using simulated lesion models. Methods were developed to convert the 3D CP-OCT images of the samples to 2D images of the lesion depth and lesion integrated reflectivity. Calculated lesion depths from OCT were compared with lesion depths measured from histological sections examined using polarized light microscopy. The 2D images of the lesion depth and integrated reflectivity are well suited for visualization of early demineralization. PMID:24307350

  14. Robust 3D-2D image registration: application to spine interventions and vertebral labeling in the presence of anatomical deformation

    NASA Astrophysics Data System (ADS)

    Otake, Yoshito; Wang, Adam S.; Webster Stayman, J.; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Khanna, A. Jay; Gokaslan, Ziya L.; Siewerdsen, Jeffrey H.

    2013-12-01

    We present a framework for robustly estimating registration between a 3D volume image and a 2D projection image and evaluate its precision and robustness in spine interventions for vertebral localization in the presence of anatomical deformation. The framework employs a normalized gradient information similarity metric and multi-start covariance matrix adaptation evolution strategy optimization with local-restarts, which provided improved robustness against deformation and content mismatch. The parallelized implementation allowed orders-of-magnitude acceleration in computation time and improved the robustness of registration via multi-start global optimization. Experiments involved a cadaver specimen and two CT datasets (supine and prone) and 36 C-arm fluoroscopy images acquired with the specimen in four positions (supine, prone, supine with lordosis, prone with kyphosis), three regions (thoracic, abdominal, and lumbar), and three levels of geometric magnification (1.7, 2.0, 2.4). Registration accuracy was evaluated in terms of projection distance error (PDE) between the estimated and true target points in the projection image, including 14 400 random trials (200 trials on the 72 registration scenarios) with initialization error up to ±200 mm and ±10°. The resulting median PDE was better than 0.1 mm in all cases, depending somewhat on the resolution of input CT and fluoroscopy images. The cadaver experiments illustrated the tradeoff between robustness and computation time, yielding a success rate of 99.993% in vertebral labeling (with ‘success’ defined as PDE <5 mm) using 1,718 664 ± 96 582 function evaluations computed in 54.0 ± 3.5 s on a mid-range GPU (nVidia, GeForce GTX690). Parameters yielding a faster search (e.g., fewer multi-starts) reduced robustness under conditions of large deformation and poor initialization (99.535% success for the same data registered in 13.1 s), but given good initialization (e.g., ±5 mm, assuming a robust initial

  15. Robust 3D–2D image registration: application to spine interventions and vertebral labeling in the presence of anatomical deformation

    PubMed Central

    Otake, Yoshito; Wang, Adam S; Stayman, J Webster; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Khanna, A Jay; Gokaslan, Ziya L; Siewerdsen, Jeffrey H

    2016-01-01

    We present a framework for robustly estimating registration between a 3D volume image and a 2D projection image and evaluate its precision and robustness in spine interventions for vertebral localization in the presence of anatomical deformation. The framework employs a normalized gradient information similarity metric and multi-start covariance matrix adaptation evolution strategy optimization with local-restarts, which provided improved robustness against deformation and content mismatch. The parallelized implementation allowed orders-of-magnitude acceleration in computation time and improved the robustness of registration via multi-start global optimization. Experiments involved a cadaver specimen and two CT datasets (supine and prone) and 36 C-arm fluoroscopy images acquired with the specimen in four positions (supine, prone, supine with lordosis, prone with kyphosis), three regions (thoracic, abdominal, and lumbar), and three levels of geometric magnification (1.7, 2.0, 2.4). Registration accuracy was evaluated in terms of projection distance error (PDE) between the estimated and true target points in the projection image, including 14 400 random trials (200 trials on the 72 registration scenarios) with initialization error up to ±200 mm and ±10°. The resulting median PDE was better than 0.1 mm in all cases, depending somewhat on the resolution of input CT and fluoroscopy images. The cadaver experiments illustrated the tradeoff between robustness and computation time, yielding a success rate of 99.993% in vertebral labeling (with `success' defined as PDE <5 mm) using 1,718 664 ± 96 582 function evaluations computed in 54.0 ± 3.5 s on a mid-range GPU (nVidia, GeForce GTX690). Parameters yielding a faster search (e.g., fewer multi-starts) reduced robustness under conditions of large deformation and poor initialization (99.535% success for the same data registered in 13.1 s), but given good initialization (e.g., ±5 mm, assuming a robust initial run) the

  16. Spectrum simulation of rough and nanostructured targets from their 2D and 3D image by Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Schiettekatte, François; Chicoine, Martin

    2016-03-01

    Corteo is a program that implements Monte Carlo (MC) method to simulate ion beam analysis (IBA) spectra of several techniques by following the ions trajectory until a sufficiently large fraction of them reach the detector to generate a spectrum. Hence, it fully accounts for effects such as multiple scattering (MS). Here, a version of Corteo is presented where the target can be a 2D or 3D image. This image can be derived from micrographs where the different compounds are identified, therefore bringing extra information into the solution of an IBA spectrum, and potentially significantly constraining the solution. The image intrinsically includes many details such as the actual surface or interfacial roughness, or actual nanostructures shape and distribution. This can for example lead to the unambiguous identification of structures stoichiometry in a layer, or at least to better constraints on their composition. Because MC computes in details the trajectory of the ions, it simulates accurately many of its aspects such as ions coming back into the target after leaving it (re-entry), as well as going through a variety of nanostructures shapes and orientations. We show how, for example, as the ions angle of incidence becomes shallower than the inclination distribution of a rough surface, this process tends to make the effective roughness smaller in a comparable 1D simulation (i.e. narrower thickness distribution in a comparable slab simulation). Also, in ordered nanostructures, target re-entry can lead to replications of a peak in a spectrum. In addition, bitmap description of the target can be used to simulate depth profiles such as those resulting from ion implantation, diffusion, and intermixing. Other improvements to Corteo include the possibility to interpolate the cross-section in angle-energy tables, and the generation of energy-depth maps.

  17. Validation of an image-based technique to assess the perceptual quality of clinical chest radiographs with an observer study

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Choudhury, Kingshuk R.; McAdams, H. Page; Foos, David H.; Samei, Ehsan

    2014-03-01

    We previously proposed a novel image-based quality assessment technique1 to assess the perceptual quality of clinical chest radiographs. In this paper, an observer study was designed and conducted to systematically validate this technique. Ten metrics were involved in the observer study, i.e., lung grey level, lung detail, lung noise, riblung contrast, rib sharpness, mediastinum detail, mediastinum noise, mediastinum alignment, subdiaphragm-lung contrast, and subdiaphragm area. For each metric, three tasks were successively presented to the observers. In each task, six ROI images were randomly presented in a row and observers were asked to rank the images only based on a designated quality and disregard the other qualities. A range slider on the top of the images was used for observers to indicate the acceptable range based on the corresponding perceptual attribute. Five boardcertificated radiologists from Duke participated in this observer study on a DICOM calibrated diagnostic display workstation and under low ambient lighting conditions. The observer data were analyzed in terms of the correlations between the observer ranking orders and the algorithmic ranking orders. Based on the collected acceptable ranges, quality consistency ranges were statistically derived. The observer study showed that, for each metric, the averaged ranking orders of the participated observers were strongly correlated with the algorithmic orders. For the lung grey level, the observer ranking orders completely accorded with the algorithmic ranking orders. The quality consistency ranges derived from this observer study were close to these derived from our previous study. The observer study indicates that the proposed image-based quality assessment technique provides a robust reflection of the perceptual image quality of the clinical chest radiographs. The derived quality consistency ranges can be used to automatically predict the acceptability of a clinical chest radiograph.

  18. A Comparative Study on Diagnostic Accuracy of Colour Coded Digital Images, Direct Digital Images and Conventional Radiographs for Periapical Lesions – An In Vitro Study

    PubMed Central

    Mubeen; K.R., Vijayalakshmi; Bhuyan, Sanat Kumar; Panigrahi, Rajat G; Priyadarshini, Smita R; Misra, Satyaranjan; Singh, Chandravir

    2014-01-01

    Objectives: The identification and radiographic interpretation of periapical bone lesions is important for accurate diagnosis and treatment. The present study was undertaken to study the feasibility and diagnostic accuracy of colour coded digital radiographs in terms of presence and size of lesion and to compare the diagnostic accuracy of colour coded digital images with direct digital images and conventional radiographs for assessing periapical lesions. Materials and Methods: Sixty human dry cadaver hemimandibles were obtained and periapical lesions were created in first and second premolar teeth at the junction of cancellous and cortical bone using a micromotor handpiece and carbide burs of sizes 2, 4 and 6. After each successive use of round burs, a conventional, RVG and colour coded image was taken for each specimen. All the images were evaluated by three observers. The diagnostic accuracy for each bur and image mode was calculated statistically. Results: Our results showed good interobserver (kappa > 0.61) agreement for the different radiographic techniques and for the different bur sizes. Conventional Radiography outperformed Digital Radiography in diagnosing periapical lesions made with Size two bur. Both were equally diagnostic for lesions made with larger bur sizes. Colour coding method was least accurate among all the techniques. Conclusion: Conventional radiography traditionally forms the backbone in the diagnosis, treatment planning and follow-up of periapical lesions. Direct digital imaging is an efficient technique, in diagnostic sense. Colour coding of digital radiography was feasible but less accurate however, this imaging technique, like any other, needs to be studied continuously with the emphasis on safety of patients and diagnostic quality of images. PMID:25584318

  19. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    NASA Astrophysics Data System (ADS)

    Wirtz, T.; Philipp, P.; Audinot, J.-N.; Dowsett, D.; Eswara, S.

    2015-10-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM).

  20. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy.

    PubMed

    Wirtz, T; Philipp, P; Audinot, J-N; Dowsett, D; Eswara, S

    2015-10-30

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM). PMID:26436905

  1. Assessing angulation on digital images of radiographs of fractures of the distal radius: visual estimation versus computer software measurement.

    PubMed

    Robertson, G A J; Robertson, B F M; Thomas, B; McEachan, J; Davidson, D M

    2011-03-01

    We assessed the reliability of visual estimation of angles on computer images of radiographs, and compared their accuracy with the measurement of angles using computer software for ten distal radius fractures. We asked 73 clinicians to visually estimate the dorsal angulation on ten computerized radiographs of fractures of the distal radius. The reliability of these estimations was calculated. Their accuracy was compared to a 'gold standard' obtained by consensus agreement between three consultants measuring these angles using the software. Inter-observer reliability was calculated as ICC = 0.51 and intra-observer reliability as r = 0.76. The visual estimations were less accurate with a mean percentage error of 31% (range, 7-83%). As angulation increased the estimation accuracy improved. Although reliability and accuracy of such estimation was better for clinicians with greater experience, actual measurement was more reliable and accurate. PMID:21169298

  2. Simultaneous 2D imaging of dissolved iron and reactive phosphorus in sediment porewaters by thin-film and hyperspectral methods.

    PubMed

    Cesbron, Florian; Metzger, Edouard; Launeau, Patrick; Deflandre, Bruno; Delgard, Marie-Lise; Thibault de Chanvalon, Aubin; Geslin, Emmanuelle; Anschutz, Pierre; Jézéquel, Didier

    2014-01-01

    This study presents a new approach combining diffusive equilibrium in thin-film (DET) and spectrophotometric methods to determine the spatial variability of dissolved iron and dissolved reactive phosphorus (DRP) with a single gel probe. Its originality is (1) to postpone up to three months the colorimetric reaction of DET by freezing and (2) to measure simultaneously dissolved iron and DRP by hyperspectral imaging at a submillimeter resolution. After a few minutes at room temperature, the thawed gel is sandwiched between two monospecific reagent DET gels, leading to magenta and blue coloration for iron and phosphate, respectively. Spatial distribution of the resulting colors is obtained using a hyperspectral camera. Reflectance spectra analysis enables deconvolution of specific colorations by the unmixing method applied to the logarithmic reflectance, leading to an accurate quantification of iron and DRP. This method was applied in the Arcachon lagoon (France) on muddy sediments colonized by eelgrass (Zostera noltei) meadows. The 2D gel probes highlighted microstructures in the spatial distribution of dissolved iron and phosphorus, which are most likely associated with the occurrence of benthic fauna burrows and seagrass roots. PMID:24502458

  3. High Resolution 2-D Fluoresd3nce Imaging of the Mass Boundary Layer Thickness at Free Water Surfaces

    NASA Astrophysics Data System (ADS)

    Kräuter, C.; Trofimova, D.; Kiefhaber, D.; Krah, N.; Jähne, B.

    2014-03-01

    A novel 2-D fluorescence imaging technique has been developed to visualize the thickness of the aqueous mass boundary layer at a free water surface. Fluorescence is stimulated by high-power LEDs and is observed from above with a low noise, high resolution and high-speed camera. The invasion of ammonia into water leads to an increase in pH (from a starting value of 4), which is visualized with the fluorescent dye pyranine. The flux of ammonia can be controlled by controlling its air side concentration. A higher flux leads to basic pH values (pH > 7) in a thicker layer at the water surface from which fluorescent light is emitted. This allows the investigation of processes affecting the transport of gases in different depths in the aqueous mass boundary layer. In this paper, the chemical system and optical components of the measurement method are presented and its applicability to a wind-wave tank experiment is demonstrated.

  4. Where is uphill? Exploring sex differences when reorienting on a sloped environment presented through 2-D images.

    PubMed

    Nardi, Daniele; Meloni, Roberta; Orlandi, Marco; Olivetti-Belardinelli, Marta

    2014-01-01

    One of the spatial abilities that has recently revealed a remarkable variability in performance is that of using terrain slope to reorient. Previous studies have shown a very large disadvantage for females when the slope of the floor is the only information useful for encoding a goal location. However, the source of this sex difference is still unclear. The slope of the environment provides a directional source of information that is perceived through dissociable visual and kinesthetic sensory modalities. Here we focused on the visual information, and examined whether there are sex differences in the perception of a slope presented through 2-D images with a desktop computer connected to an eye-tracking device. Participants had to identify and point to the uphill direction by looking at different orientations of two virtual, slanted environments (one indoor and one outdoor). Men were quicker and more accurate than women, indicating that the female difficulty with slope emerges at an early, unisensory, perceptual level. However, the eye-tracking data revealed no sex differences in the slope cues used, providing no support to the hypothesis of sex-specific, visual-processing strategies. Interestingly, performance correlated with a test of mental rotation, and we speculate that the disadvantage in mental rotation ability might be an important factor responsible for females' difficulty using slope. PMID:25109016

  5. Simulating Dynamic Stall in a 2D VAWT: Modeling strategy, verification and validation with Particle Image Velocimetry data

    NASA Astrophysics Data System (ADS)

    Simão Ferreira, C. J.; Bijl, H.; van Bussel, G.; van Kuik, G.

    2007-07-01

    The implementation of wind energy conversion systems in the built environment renewed the interest and the research on Vertical Axis Wind Turbines (VAWT), which in this application present several advantages over Horizontal Axis Wind Turbines (HAWT). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack with the angle of rotation, perceived velocity and consequentially Reynolds number. The phenomenon of dynamic stall is then an intrinsic effect of the operation of a Vertical Axis Wind Turbine at low tip speed ratios, having a significant impact in both loads and power. The complexity of the unsteady aerodynamics of the VAWT makes it extremely attractive to be analyzed using Computational Fluid Dynamics (CFD) models, where an approximation of the continuity and momentum equations of the Navier-Stokes equations set is solved. The complexity of the problem and the need for new design approaches for VAWT for the built environment has driven the authors of this work to focus the research of CFD modeling of VAWT on: •comparing the results between commonly used turbulence models: URANS (Spalart-Allmaras and k-epsilon) and large eddy models (Large Eddy Simulation and Detached Eddy Simulation) •verifying the sensitivity of the model to its grid refinement (space and time), •evaluating the suitability of using Particle Image Velocimetry (PIV) experimental data for model validation. The 2D model created represents the middle section of a single bladed VAWT with infinite aspect ratio. The model simulates the experimental work of flow field measurement using Particle Image Velocimetry by Simão Ferreira et al for a single bladed VAWT. The results show the suitability of the PIV data for the validation of the model, the need for accurate simulation of the large eddies and the sensitivity of the model to grid refinement.

  6. Watching Silica's Dance: Imaging the Structure and Dynamics of the Atomic (Re-) Arrangements in 2D Glass

    NASA Astrophysics Data System (ADS)

    Muller, David

    2014-03-01

    Even though glasses are almost ubiquitous--in our windows, on our iPhones, even on our faces--they are also mysterious. Because glasses are notoriously difficult to study, basic questions like: ``How are the atoms arranged? Where and how do glasses break?'' are still under contention. We use aberration corrected transmission electron microscopy (TEM) to image the atoms in a new two-dimensional phase of silica glass - freestanding it becomes the world's thinnest pane of glass at only 3-atoms thick, and take a unique look into these questions. Using atom-by-atom imaging and spectroscopy, we are able to reconstruct the full structure and bonding of this 2D glass and identify it as a bi-tetrahedral layer of SiO2. Our images also strikingly resemble Zachariasen's original cartoon models of glasses, drawn in 1932. As such, our work realizes an 80-year-old vision for easily understandable glassy systems and introduces promising methods to test theoretical predictions against experimental data. We image atoms in the disordered solid and track their motions in response to local strain. We directly obtain ring statistics and pair distribution functions that span short-, medium-, and long-range order, and test these against long-standing theoretical predictions of glass structure and dynamics. We use the electron beam to excite atomic rearrangements, producing surprisingly rich and beautiful videos of how a glass bends and breaks, as well as the exchange of atoms at a solid/liquid interface. Detailed analyses of these videos reveal a complex dance of elastic and plastic deformations, phase transitions, and their interplay. These examples illustrate the wide-ranging and fundamental materials physics that can now be studied at atomic-resolution via transmission electron microscopy of two-dimensional glasses. Work in collaboration with: S. Kurasch, U. Kaiser, R. Hovden, Q. Mao, J. Kotakoski, J. S. Alden, A. Shekhawat, A. A. Alemi, J. P. Sethna, P. L. McEuen, A.V. Krasheninnikov

  7. Ground penetrating radar: 2-D and 3-D subsurface imaging of a coastal barrier spit, Long Beach, WA, USA

    NASA Astrophysics Data System (ADS)

    Jol, Harry M.; Lawton, Don C.; Smith, Derald G.

    2003-07-01

    The ability to effectively interpret and reconstruct geomorphic environments has been significantly aided by the subsurface imaging capabilities of ground penetrating radar (GPR). The GPR method, which is based on the propagation and reflection of pulsed high frequency electromagnetic energy, provides high resolution (cm to m scale) and shallow subsurface (0-60 m), near continuous profiles of many coarser-grained deposits (sediments of low electrical conductivity). This paper presents 2-D and 3-D GPR results from an experiment on a regressive modern barrier spit at Willapa Bay, WA, USA. The medium-grained sand spit is 38 km long, up to 2-3.5 km wide, and is influenced by a 3.7-m tidal range (spring) as well as high energy longshore transport and high wave energy depositional processes. The spit has a freshwater aquifer recharged by rainfall. The GPR acquisition system used for the test was a portable, digital pulseEKKO™ system with antennae frequency ranging from 25 to 200 MHz and transmitter voltages ranging from 400 to 1000 V. Step sizes and antennae separation varied depending on the test requirements. In addition, 100-MHz antennae were used for conducting antennae orientation tests and collecting a detailed grid of data (50×50 m sampled every meter). The 2-D digital profiles were processed and plotted using pulseEKKO™ software. The 3-D datasets, after initial processing, were entered into a LANDMARK™ workstation that allowed for unique 3-D perspectives of the subsurface. To provide depth, near-surface velocity measurements were calculated from common midpoint (CMP) surveys. Results from the present study demonstrate higher resolution from the 200-MHz antennae for the top 5-6 m, whereas the 25- and 50-MHz antennae show deeper penetration to >10 m. For the study site, 100-MHz antennae provided acceptable resolution, continuity of reflections, and penetration. The dip profiles show a shingle-like accretionary depositional pattern, whereas strike profiles

  8. A Rapid and Efficient 2D/3D Nuclear Segmentation Method for Analysis of Early Mouse Embryo and Stem Cell Image Data

    PubMed Central

    Lou, Xinghua; Kang, Minjung; Xenopoulos, Panagiotis; Muñoz-Descalzo, Silvia; Hadjantonakis, Anna-Katerina

    2014-01-01

    Summary Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses. PMID:24672759

  9. Noninvasive real-time 2D imaging of temperature distribution during the plastic pellet cooling process by using electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Hirose, Yusuke; Sapkota, Achyut; Sugawara, Michiko; Takei, Masahiro

    2016-01-01

    This study has launched a concept to image a real-time 2D temperature distribution noninvasively by a combination of the electrical capacitance tomography (ECT) technique and a permittivity-temperature calibration equation for the plastic pellet cooling process. The concept has two steps, which are the relative permittivity calculation from the measured capacitance among the many electrodes by the ECT technique, and the temperature distribution imaging from the relative permittivity by the permittivity-temperature calibration equation. An ECT sensor with 12 electrodes was designed to image the cross-sectional temperature distribution during the polymethyl methacrylate pellets cooling process. The images of temperature distribution were successfully reconstructed from the relative permittivity distribution at every time step during the process. The images reasonably indicate the temperature diffusion in a 2D space and time within a 0.0065 and 0.0175 time-dependent temperature deviation, as compared to an analytical thermal conductance simulation and thermocouple measurement.

  10. Individual Recognition in Domestic Cattle (Bos taurus): Evidence from 2D-Images of Heads from Different Breeds

    PubMed Central

    Coulon, Marjorie; Deputte, Bertrand L.; Heyman, Yvan; Baudoin, Claude

    2009-01-01

    Background In order to maintain cohesion of groups, social animals need to process social information efficiently. Visual individual recognition, which is distinguished from mere visual discrimination, has been studied in only few mammalian species. In addition, most previous studies used either a small number of subjects or a few various views as test stimuli. Dairy cattle, as a domestic species allow the testing of a good sample size and provide a large variety of test stimuli due to the morphological diversity of breeds. Hence cattle are a suitable model for studying individual visual recognition. This study demonstrates that cattle display visual individual recognition and shows the effect of both familiarity and coat diversity in discrimination. Methodology/Principal Findings We tested whether 8 Prim'Holstein heifers could recognize 2D-images of heads of one cow (face, profiles, ¾ views) from those of other cows. Experiments were based on a simultaneous discrimination paradigm through instrumental conditioning using food rewards. In Experiment 1, all images represented familiar cows (belonging to the same social group) from the Prim'Holstein breed. In Experiments 2, 3 and 4, images were from unfamiliar (unknown) individuals either from the same breed or other breeds. All heifers displayed individual recognition of familiar and unfamiliar individuals from their own breed. Subjects reached criterion sooner when recognizing a familiar individual than when recognizing an unfamiliar one (Exp 1: 3.1±0.7 vs. Exp 2: 5.2±1.2 sessions; Z = 1.99, N = 8, P = 0.046). In addition almost all subjects recognized unknown individuals from different breeds, however with greater difficulty. Conclusions/Significance Our results demonstrated that cattle have efficient individual recognition based on categorization capacities. Social familiarity improved their performance. The recognition of individuals with very different coat characteristics from the subjects was

  11. Approach to Pediatric Chest Radiograph.

    PubMed

    Jana, Manisha; Bhalla, Ashu Seith; Gupta, Arun Kumar

    2016-06-01

    Chest radiograph remains the first line imaging modality even today, especially in ICU settings. Hence proper interpretation of chest radiographs is crucial, which can be achieved by adopting a systematic approach and proper description and identification of abnormalities. In this review, the authors describe a short and comprehensive way of interpreting the pediatric chest radiograph. PMID:26983619

  12. Prediction of radiographic progression in synovitis-positive joints on maximum intensity projection of magnetic resonance imaging in rheumatoid arthritis.

    PubMed

    Akai, Takanori; Taniguchi, Daigo; Oda, Ryo; Asada, Maki; Toyama, Shogo; Tokunaga, Daisaku; Seno, Takahiro; Kawahito, Yutaka; Fujii, Yosuke; Ito, Hirotoshi; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2016-04-01

    Contrast-enhanced magnetic resonance imaging with maximum intensity projection (MRI-MIP) is an easy, useful imaging method to evaluate synovitis in rheumatoid hands. However, the prognosis of synovitis-positive joints on MRI-MIP has not been clarified. The aim of this study was to evaluate the relationship between synovitis visualized by MRI-MIP and joint destruction on X-rays in rheumatoid hands. The wrists, metacarpophalangeal (MP) joints, and proximal interphalangeal (PIP) joints of both hands (500 joints in total) were evaluated in 25 rheumatoid arthritis (RA) patients. Synovitis was scored from grade 0 to 2 on the MRI-MIP images. The Sharp/van der Heijde score and Larsen grade were used for radiographic evaluation. The relationships between the MIP score and the progression of radiographic scores and between the MIP score and bone marrow edema on MRI were analyzed using the trend test. As the MIP score increased, the Sharp/van der Heijde score and Larsen grade progressed severely. The rate of bone marrow edema-positive joints also increased with higher MIP scores. MRI-MIP imaging of RA hands is a clinically useful method that allows semi-quantitative evaluation of synovitis with ease and can be used to predict joint destruction. PMID:26861034

  13. Sparse matrix beamforming and image reconstruction for real-time 2D HIFU monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) with in vitro validation

    PubMed Central

    Hou, Gary Y.; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method. HMIFU utilizes an Amplitude-Modulated (fAM = 25 Hz) HIFU beam to induce a localized focal oscillatory motion, which is simultaneously estimated and imaged by confocally-aligned imaging transducer. HMIFU feasibilities have been previously shown in silico, in vitro, and in vivo in 1-D or 2-D monitoring of HIFU treatment. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system composed of a 93-element HIFU transducer (fcenter = 4.5MHz) and coaxially-aligned 64-element phased array (fcenter = 2.5MHz) for displacement excitation and motion estimation, respectively. A single transmit beam with divergent beam transmit was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface. The present work developed and implemented a sparse matrix beamforming onto a fully-integrated, clinically relevant system, which can stream displacement images up to 15 Hz using a GPU-based processing, an increase of 100 fold in rate of streaming displacement images compared to conventional CPU-based conventional beamforming and reconstruction processing. The achieved feedback rate is also currently the fastest and only approach that does not require interrupting the HIFU treatment amongst the acoustic radiation force based HIFU imaging techniques. Results in phantom experiments showed reproducible displacement imaging, and monitoring of twenty two in vitro HIFU treatments using the new 2D system showed a

  14. 3D reconstruction of 2D fluorescence histology images and registration with in vivo MR images: application in a rodent stroke model.

    PubMed

    Stille, Maik; Smith, Edward J; Crum, William R; Modo, Michel

    2013-09-30

    To validate and add value to non-invasive imaging techniques, the corresponding histology is required to establish biological correlates. We present an efficient, semi-automated image-processing pipeline that uses immunohistochemically stained sections to reconstruct a 3D brain volume from 2D histological images before registering these with the corresponding 3D in vivo magnetic resonance images (MRI). A multistep registration procedure that first aligns the "global" volume by using the centre of mass and then applies a rigid and affine alignment based on signal intensities is described. This technique was applied to a training set of three rat brain volumes before being validated on three normal brains. Application of the approach to register "abnormal" images from a rat model of stroke allowed the neurobiological correlates of the variations in the hyper-intense MRI signal intensity caused by infarction to be investigated. For evaluation, the corresponding anatomical landmarks in MR and histology were defined to measure the registration accuracy. A registration error of 0.249 mm (approximately one in-plane voxel dimension) was evident in healthy rat brains and of 0.323 mm in a rodent model of stroke. The proposed reconstruction and registration pipeline allowed for the precise analysis of non-invasive MRI and corresponding microstructural histological features in 3D. We were thus able to interrogate histology to deduce the cause of MRI signal variations in the lesion cavity and the peri-infarct area. PMID:23816399

  15. Chronicle of Bukit Bunuh for possible complex impact crater by 2-D resistivity imaging (2-DERI) with geotechnical borehole records

    NASA Astrophysics Data System (ADS)

    Jinmin, M.; Saad, R.; Saidin, M.; Ismail, N. A.

    2015-03-01

    A 2-D resistivity imaging (2-DERI) study was conducted at Bukit Bunuh, Lenggong, Perak. Archaeological Global Research Centre, Universiti Sains Malaysia shows the field evidence of shock metamorphisms (suevite breccia) and crater morphology at Bukit Bunuh. A regional 2-DERI study focusing at Bukit Bunuh to identify the features of subsurface and detail study was then executed to verify boundary of the crater with the rebound effects at Bukit Bunuh which covered approximately 132.25 km2. 2-DERI survey used resistivity equipment by ABEM SAS4000 Terrameter and ES10-64C electrode slector with pole-dipole array. The survey lines were carried out using `roll-along' technique. The data were processed and analysed using RES2DINV, Excel and Surfer software to obtain resistivity results for qualitative interpretations. Bedrock depths were digitized from section by sections obtained. 2-DERI results gives both regional and detail study shows that the study area was divided into two main zones, overburden consists of alluvium mix with boulders embedded with resistivity value of 10-800 Ωm and granitic bedrock with resistivity value of >1500 Ωm and depth 5-50 m. The low level bedrock was circulated by high level bedrock (crater rim) was formed at the same area with few spots of high level bedrock which appeared at the centre of the rim which suspected as rebound zones (R). Assimilations of 2-DERI with boreholes are successful give valid and reliable results. The results of the study indicates geophysical method are capable to retrieve evidence of meteorite impact subsurface of the studied area.

  16. 2D segmentation of intervertebral discs and its degree of degeneration from T2-weighted magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, José Maria; Lazary, Aron; Frangi, Alejandro F.

    2014-03-01

    Low back pain (LBP) is a disorder suffered by a large population around the world. A key factor causing this illness is Intervertebral Disc (IVD) degeneration, whose early diagnosis could help in preventing this widespread condition. Clinicians base their diagnosis on visual inspection of 2D slices of Magnetic Resonance (MR) images, which is subject to large interobserver variability. In this work, an automatic classification method is presented, which provides the Pfirrmann degree of degeneration from a mid-sagittal MR slice. The proposed method utilizes Active Contour Models, with a new geometrical energy, to achieve an initial segmentation, which is further improved using fuzzy C-means. Then, IVDs are classified according to their degree of degeneration. This classification is attained by employing Adaboost on five specific features: the mean and the variance of the probability map of the nucleus using two different approaches and the eccentricity of the fitting ellipse to the contour of the IVD. The classification method was evaluated using a cohort of 150 intervertebral discs assessed by three experts, resulting in a mean specificity (93%) and sensitivity (83%) similar to the one provided by every expert with respect to the most voted value. The segmentation accuracy was evaluated using the Dice Similarity Index (DSI) and Root Mean Square Error (RMSE) of the point-to-contour distance. The mean DSI ± 2 standard deviation was 91:7% ±5:6%, the mean RMSE was 0:82mm and the 95 percentile was 1:36mm. These results were found accurate when compared to the state-of-the-art.

  17. Real-time intensity based 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Furtado, H.; Steiner, E.; Stock, M.; Georg, D.; Birkfellner, W.

    2014-03-01

    Intra-fractional respiratorymotion during radiotherapy is one of themain sources of uncertainty in dose application creating the need to extend themargins of the planning target volume (PTV). Real-time tumormotion tracking by 2D/3D registration using on-board kilo-voltage (kV) imaging can lead to a reduction of the PTV. One limitation of this technique when using one projection image, is the inability to resolve motion along the imaging beam axis. We present a retrospective patient study to investigate the impact of paired portal mega-voltage (MV) and kV images, on registration accuracy. We used data from eighteen patients suffering from non small cell lung cancer undergoing regular treatment at our center. For each patient we acquired a planning CT and sequences of kV and MV images during treatment. Our evaluation consisted of comparing the accuracy of motion tracking in 6 degrees-of-freedom(DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. We use graphics processing unit rendering for real-time performance. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 3.3 mm to 1.8 mm and the motion along AP was successfully extracted. The mean registration time was of 190+/-35ms. Our evaluation shows that using kVMV image pairs leads to improved motion extraction in 6 DOF. Therefore, this approach is suitable for accurate, real-time tumor motion tracking with a conventional LINAC.

  18. Efficient Decoding of 2D Structured Illumination with Linear Phase Stepping in X-Ray Phase Contrast and Dark-Field Imaging

    PubMed Central

    Harmon, Katherine J.; Bennett, Eric E.; Gomella, Andrew A.; Wen, Han

    2014-01-01

    The ability to map the phase distribution and lateral coherence of an x-ray wavefront offers the potential for imaging the human body through phase contrast, without the need to deposit significant radiation energy. The classic means to achieve this goal is structured illumination, in which a periodic intensity modulation is introduced into the image, and changes in the phase distribution of the wavefront are detected as distortions of the modulation pattern. Two-dimensional periodic patterns are needed to fully characterize a transverse wavefront. Traditionally, the information in a 2D pattern is retrieved at high resolution by acquiring multiple images while shifting the pattern over a 2D matrix of positions. Here we describe a method to decode 2D periodic patterns with single-axis phase stepping, without either a loss of information or increasing the number of sampling steps. The method is created to reduce the instrumentation complexity of high-resolution 2D wavefront sensing in general. It is demonstrated with motionless electromagnetic phase stepping and a flexible processing algorithm in x-ray dark-field and phase contrast imaging. PMID:24489853

  19. Efficient decoding of 2D structured illumination with linear phase stepping in X-ray phase contrast and dark-field imaging.

    PubMed

    Harmon, Katherine J; Bennett, Eric E; Gomella, Andrew A; Wen, Han

    2014-01-01

    The ability to map the phase distribution and lateral coherence of an x-ray wavefront offers the potential for imaging the human body through phase contrast, without the need to deposit significant radiation energy. The classic means to achieve this goal is structured illumination, in which a periodic intensity modulation is introduced into the image, and changes in the phase distribution of the wavefront are detected as distortions of the modulation pattern. Two-dimensional periodic patterns are needed to fully characterize a transverse wavefront. Traditionally, the information in a 2D pattern is retrieved at high resolution by acquiring multiple images while shifting the pattern over a 2D matrix of positions. Here we describe a method to decode 2D periodic patterns with single-axis phase stepping, without either a loss of information or increasing the number of sampling steps. The method is created to reduce the instrumentation complexity of high-resolution 2D wavefront sensing in general. It is demonstrated with motionless electromagnetic phase stepping and a flexible processing algorithm in x-ray dark-field and phase contrast imaging. PMID:24489853

  20. Validity of computational hemodynamics in human arteries based on 3D time-of-flight MR angiography and 2D electrocardiogram gated phase contrast images

    NASA Astrophysics Data System (ADS)

    Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye

    2015-11-01

    In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.

  1. Assessment of liver fibrosis with 2-D shear wave elastography in comparison to transient elastography and acoustic radiation force impulse imaging in patients with chronic liver disease.

    PubMed

    Gerber, Ludmila; Kasper, Daniela; Fitting, Daniel; Knop, Viola; Vermehren, Annika; Sprinzl, Kathrin; Hansmann, Martin L; Herrmann, Eva; Bojunga, Joerg; Albert, Joerg; Sarrazin, Christoph; Zeuzem, Stefan; Friedrich-Rust, Mireen

    2015-09-01

    Two-dimensional shear wave elastography (2-D SWE) is an ultrasound-based elastography method integrated into a conventional ultrasound machine. It can evaluate larger regions of interest and, therefore, might be better at determining the overall fibrosis distribution. The aim of this prospective study was to compare 2-D SWE with the two best evaluated liver elastography methods, transient elastography and acoustic radiation force impulse (point SWE using acoustic radiation force impulse) imaging, in the same population group. The study included 132 patients with chronic hepatopathies, in which liver stiffness was evaluated using transient elastography, acoustic radiation force impulse imaging and 2-D SWE. The reference methods were liver biopsy for the assessment of liver fibrosis (n = 101) and magnetic resonance imaging/computed tomography for the diagnosis of liver cirrhosis (n = 31). No significant difference in diagnostic accuracy, assessed as the area under the receiver operating characteristic curve (AUROC), was found between the three elastography methods (2-D SWE, transient elastography, acoustic radiation force impulse imaging) for the diagnosis of significant and advanced fibrosis and liver cirrhosis in the "per protocol" (AUROCs for fibrosis stages ≥2: 0.90, 0.95 and 0.91; for fibrosis stage [F] ≥3: 0.93, 0.95 and 0.94; for F = 4: 0.92, 0.96 and 0.92) and "intention to diagnose" cohort (AUROCs for F ≥2: 0.87, 0.92 and 0.91; for F ≥3: 0.91, 0.93 and 0.94; for F = 4: 0.88, 0.90 and 0.89). Therefore, 2-D SWE, ARFI imaging and transient elastography seem to be comparably good methods for non-invasive assessment of liver fibrosis. PMID:26116161

  2. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images

    SciTech Connect

    Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon; Ra, Jong Beom; Lee, Jae Young

    2015-01-15

    Purpose: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. Methods: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) images at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient’s body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a

  3. Comparison of clinical, radiographic, computed tomographic, and magnetic resonance imaging methods for early prediction of canine hip laxity and dysplasia.

    PubMed

    Ginja, Mário M D; Ferreira, António J; Jesus, Sandra S; Melo-Pinto, Pedro; Bulas-Cruz, José; Orden, Maria A; San-Roman, Fidel; Llorens-Pena, Maria P; Gonzalo-Orden, José M

    2009-01-01

    The purpose of the study was to use two palpation methods (Bardens and Ortolani), a radiographic distraction view, three computed tomography (CT) measurements (dorsolateral subluxation score, the lateral center-edge angle, and acetabular ventroversion angle) and two magnetic resonance (MR) imaging hip studies (synovial fluid and acetabular depth indices) in the early monitoring of hip morphology and laxity in 7-9 week old puppies; and in a follow-up study to compare their accuracy in predicting later hip laxity and dysplasia. The MR imaging study was performed with the dog in dorsal recumbency and the CT study with the animal in a weight-bearing position. There was no association between clinical laxity with later hip laxity or dysplasia. The dorsolateral subluxation score and the lateral center-edge angle were characterized by a weak negative correlation with later radiographic passive hip laxity (-0.26 < r < -0.38, P < 0.05) but its association with hip dysplasia was not significant. There was an association between early radiographic passive hip laxity and synovial fluid index with later passive hip laxity (0.41 < r < 0.55, P < 0.05) and this was significantly different in dysplastic vs. nondysplastic hips (P < 0.05). There was no association between the remaining variables and later hip laxity or dysplasia. The overlapping ranges of early passive hip laxity and synovial fluid index for hip dysplasia grades and the moderate correlations with the later passive hip laxity make the results of these variables unreliable for use in predicting hip laxity and dysplasia susceptibility. PMID:19400458

  4. Automatic Vertebral Fracture Assessment System (AVFAS) for Spinal Pathologies Diagnosis Based on Radiograph X-Ray Images

    NASA Astrophysics Data System (ADS)

    Mustapha, Aouache; Hussain, Aini; Samad, Salina Abd; Bin Abdul Hamid, Hamzaini; Ariffin, Ahmad Kamal

    Nowadays, medical imaging has become a major tool in many clinical trials. This is because the technology enables rapid diagnosis with visualization and quantitative assessment that facilitate health practitioners or professionals. Since the medical and healthcare sector is a vast industry that is very much related to every citizen's quality of life, the image based medical diagnosis has become one of the important service areas in this sector. As such, a medical diagnostic imaging (MDI) software tool for assessing vertebral fracture is being developed which we have named as AVFAS short for Automatic Vertebral Fracture Assessment System. The developed software system is capable of indexing, detecting and classifying vertebral fractures by measuring the shape and appearance of vertebrae of radiograph x-ray images of the spine. This paper describes the MDI software tool which consists of three main sub-systems known as Medical Image Training & Verification System (MITVS), Medical Image and Measurement & Decision System (MIMDS) and Medical Image Registration System (MIRS) in term of its functionality, performance, ongoing research and outstanding technical issues.

  5. MTF characterization in 2D and 3D for a high resolution, large field of view flat panel imager for cone beam CT

    NASA Astrophysics Data System (ADS)

    Shah, Jainil; Mann, Steve D.; Tornai, Martin P.; Richmond, Michelle; Zentai, George

    2014-03-01

    The 2D and 3D modulation transfer functions (MTFs) of a custom made, large 40x30cm2 area, 600- micron CsI-TFT based flat panel imager having 127-micron pixellation, along with the micro-fiber scintillator structure, were characterized in detail using various techniques. The larger area detector yields a reconstructed FOV of 25cm diameter with an 80cm SID in CT mode. The MTFs were determined with 1x1 (intrinsic) binning. The 2D MTFs were determined using a 50.8 micron tungsten wire and a solid lead edge, and the 3D MTF was measured using a custom made phantom consisting of three nearly orthogonal 50.8 micron tungsten wires suspended in an acrylic cubic frame. The 2D projection data was reconstructed using an iterative OSC algorithm using 16 subsets and 5 iterations. As additional verification of the resolution, along with scatter, the Catphan® phantom was also imaged and reconstructed with identical parameters. The measured 2D MTF was ~4% using the wire technique and ~1% using the edge technique at the 3.94 lp/mm Nyquist cut-off frequency. The average 3D MTF measured along the wires was ~8% at the Nyquist. At 50% MTF, the resolutions were 1.2 and 2.1 lp/mm in 2D and 3D, respectively. In the Catphan® phantom, the 1.7 lp/mm bars were easily observed. Lastly, the 3D MTF measured on the three wires has an observed 5.9% RMSD, indicating that the resolution of the imaging system is uniform and spatially independent. This high performance detector is integrated into a dedicated breast SPECT-CT imaging system.

  6. Incisal Apical Root Resorption Evaluation after Low-Friction Orthodontic Treatment Using Two-Dimensional Radiographic Imaging and Trigonometric Correction

    PubMed Central

    Bonetti, Stefano; Dalessandri, Domenico; Mandelli, Gualtiero; Paganelli, Corrado

    2015-01-01

    to slight apical root resorption, mainly involving lower incisors. The use of a trigonometric correction in the panoramic radiograph analysis may reduce the limitations of this 2D evaluation. PMID:26676099

  7. Radiographic and scintigraphic skeletal imaging in patients with neuroblastoma: concise communication

    SciTech Connect

    Baker, M.; Siddiqui, A.R.; Provisor, A.; Cohen, M.D.

    1983-06-01

    Bone scans, bone-marrow scans, and radiographic skeletal surveys have been reviewed in 40 children with neuroblastoma. Bone scans are the most sensitive method for detecting metastases and should be used first. The additional yield from a skeletal survey is very small, so it should be done only if the bone scan is negative and major therapeutic decisions are to be made. Bone-marrow scans provide a sensitive method of identifying metastases, and may help in staging a patient as stage IV when the bone scan is negative.

  8. A computerized framework for monitoring four-dimensional dose distributions during stereotactic body radiation therapy using a portal dose image-based 2D/3D registration approach.

    PubMed

    Nakamoto, Takahiro; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Mizoguchi, Asumi; Hirose, Taka-Aki; Honda, Hiroshi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Hirata, Hideki

    2015-03-01

    A computerized framework for monitoring four-dimensional (4D) dose distributions during stereotactic body radiation therapy based on a portal dose image (PDI)-based 2D/3D registration approach has been proposed in this study. Using the PDI-based registration approach, simulated 4D "treatment" CT images were derived from the deformation of 3D planning CT images so that a 2D planning PDI could be similar to a 2D dynamic clinical PDI at a breathing phase. The planning PDI was calculated by applying a dose calculation algorithm (a pencil beam convolution algorithm) to the geometry of the planning CT image and a virtual water equivalent phantom. The dynamic clinical PDIs were estimated from electronic portal imaging device (EPID) dynamic images including breathing phase data obtained during a treatment. The parameters of the affine transformation matrix were optimized based on an objective function and a gamma pass rate using a Levenberg-Marquardt (LM) algorithm. The proposed framework was applied to the EPID dynamic images of ten lung cancer patients, which included 183 frames (mean: 18.3 per patient). The 4D dose distributions during the treatment time were successfully obtained by applying the dose calculation algorithm to the simulated 4D "treatment" CT images. The mean±standard deviation (SD) of the percentage errors between the prescribed dose and the estimated dose at an isocenter for all cases was 3.25±4.43%. The maximum error for the ten cases was 14.67% (prescribed dose: 1.50Gy, estimated dose: 1.72Gy), and the minimum error was 0.00%. The proposed framework could be feasible for monitoring the 4D dose distribution and dose errors within a patient's body during treatment. PMID:25592290

  9. Significant acceleration of 2D-3D registration-based fusion of ultrasound and x-ray images by mesh-based DRR rendering

    NASA Astrophysics Data System (ADS)

    Kaiser, Markus; John, Matthias; Borsdorf, Anja; Mountney, Peter; Ionasec, Razvan; Nöttling, Alois; Kiefer, Philipp; Seeburger, Jörg; Neumuth, Thomas

    2013-03-01

    For transcatheter-based minimally invasive procedures in structural heart disease ultrasound and X-ray are the two enabling imaging modalities. A live fusion of both real-time modalities can potentially improve the workflow and the catheter navigation by combining the excellent instrument imaging of X-ray with the high-quality soft tissue imaging of ultrasound. A recently published approach to fuse X-ray fluoroscopy with trans-esophageal echo (TEE) registers the ultrasound probe to X-ray images by a 2D-3D registration method which inherently provides a registration of ultrasound images to X-ray images. In this paper, we significantly accelerate the 2D-3D registration method in this context. The main novelty is to generate the projection images (DRR) of the 3D object not via volume ray-casting but instead via a fast rendering of triangular meshes. This is possible, because in the setting for TEE/X-ray fusion the 3D geometry of the ultrasound probe is known in advance and their main components can be described by triangular meshes. We show that the new approach can achieve a speedup factor up to 65 and does not affect the registration accuracy when used in conjunction with the gradient correlation similarity measure. The improvement is independent of the underlying registration optimizer. Based on the results, a TEE/X-ray fusion could be performed with a higher frame rate and a shorter time lag towards real-time registration performance. The approach could potentially accelerate other applications of 2D-3D registrations, e.g. the registration of implant models with X-ray images.

  10. Textural analyses of carbon fiber materials by 2D-FFT of complex images obtained by high frequency eddy current imaging (HF-ECI)

    NASA Astrophysics Data System (ADS)

    Schulze, Martin H.; Heuer, Henning

    2012-04-01

    Carbon fiber based materials are used in many lightweight applications in aeronautical, automotive, machine and civil engineering application. By the increasing automation in the production process of CFRP laminates a manual optical inspection of each resin transfer molding (RTM) layer is not practicable. Due to the limitation to surface inspection, the quality parameters of multilayer 3 dimensional materials cannot be observed by optical systems. The Imaging Eddy- Current (EC) NDT is the only suitable inspection method for non-resin materials in the textile state that allows an inspection of surface and hidden layers in parallel. The HF-ECI method has the capability to measure layer displacements (misaligned angle orientations) and gap sizes in a multilayer carbon fiber structure. EC technique uses the variation of the electrical conductivity of carbon based materials to obtain material properties. Beside the determination of textural parameters like layer orientation and gap sizes between rovings, the detection of foreign polymer particles, fuzzy balls or visualization of undulations can be done by the method. For all of these typical parameters an imaging classification process chain based on a high resolving directional ECimaging device named EddyCus® MPECS and a 2D-FFT with adapted preprocessing algorithms are developed.

  11. Radiographic and radionuclide imaging in multiple myeloma: the role of gallium scintigraphy: concise communication

    SciTech Connect

    Waxman, A.D.; Siemsen, J.K.; Levine, A.M.; Holdorf, D.; Suzuki, R.; Singer, F.R.; Bateman, J.

    1981-03-01

    Eighteen patients with multiple myeloma were studied using radiographs of the skeletal system, technetium phosphate bone scans, and gallium-67 scintigraphy. A total of 94 sites were used as the basis for comparison in these 18 patients. Radiographic sensitivity on a patient basis was 94%, and was 82% on a site basis. Bone scans were positive in 78% of patients and in 46% of sites. Gallium scans were positive in 56% of patients and in 40% of sites. In five of the 18 patients, gallium scans showed activity in abnormal sites wth a greater lesion-to-nonlesion ratio than did the bone scan. In this subgroup of patients, the disease was fulminant, and all died within 3 mo of their study. The finding of high gallium uptake in osseous sites that are normal or only slightly abnormal on bone scan has served to identify a subgroup of patients with rapidly progressive disease who may benefit from alternative treatment modalities such as radiation therapy.

  12. 2D multi-parameter elastic seismic imaging by frequency-domain L1-norm full waveform inversion

    NASA Astrophysics Data System (ADS)

    Brossier, Romain; Operto, Stéphane; Virieux, Jean

    2010-05-01

    Full waveform inversion (FWI) is becoming a powerful and efficient tool to derive high-resolution quantitative models of the subsurface. In the frequency-domain, computationally efficient FWI algorithms can be designed for wide-aperture acquisition geometries by limiting inversion to few discrete frequencies. However, FWI remains an ill-posed and highly non-linear data-fitting procedure that is sensitive to noise, inaccuracies of the starting model and definition of multiparameter classes. The footprint of the noise in seismic imaging is conventionally mitigated by stacking highly redundant multifold data. However, when the data redundancy is decimated in the framework of efficient frequency-domain FWI, it is essential to assess the sensitivity of the inversion to noise. The impact of the noise in FWI, when applied to decimated data sets, has been marginally illustrated in the past and least-squares minimisation has remained the most popular approach. We investigate in this study the sensitivity of frequency-domain elastic FWI to noise for realistic onshore and offshore synthetic data sets contaminated by ambient random white noise. Four minimisation functionals are assessed in the framework of frequency domain FWI of decimated data: the classical least-square norm (L2), the least-absolute-values norm (L1), and some combinations of both (the Huber and the so-called Hybrid criteria). These functionals are implemented in a massively-parallel, 2D elastic frequency-domain FWI algorithm. A two-level hierarchical algorithm is implemented to mitigate the non-linearity of the inversion in complex environments. The first outer level consists of successive inversions of frequency groups of increasing high-frequency content. This level defines a multi-scale approach while preserving some data redundancy by means of simultaneous inversion of multiple frequencies. The second inner level used complex-valued frequencies for data preconditioning. This preconditioning controls the

  13. The 2D versus 3D imaging trade-off: The impact of over- or under-estimating small throats for simulating permeability in porous media

    NASA Astrophysics Data System (ADS)

    Peters, C. A.; Crandell, L. E.; Um, W.; Jones, K. W.; Lindquist, W. B.

    2011-12-01

    Geochemical reactions in the subsurface can alter the porosity and permeability of a porous medium through mineral precipitation and dissolution. While effects on porosity are relatively well understood, changes in permeability are more difficult to estimate. In this work, pore-network modeling is used to estimate the permeability of a porous medium using pore and throat size distributions. These distributions can be determined from 2D Scanning Electron Microscopy (SEM) images of thin sections or from 3D X-ray Computed Tomography (CT) images of small cores. Each method has unique advantages as well as unique sources of error. 3D CT imaging has the advantage of reconstructing a 3D pore network without the inherent geometry-based biases of 2D images but is limited by resolutions around 1 μm. 2D SEM imaging has the advantage of higher resolution, and the ability to examine sub-grain scale variations in porosity and mineralogy, but is limited by the small size of the sample of pores that are quantified. A pore network model was created to estimate flow permeability in a sand-packed experimental column investigating reaction of sediments with caustic radioactive tank wastes in the context of the Hanford, WA site. Before, periodically during, and after reaction, 3D images of the porous medium in the column were produced using the X2B beam line facility at the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. These images were interpreted using 3DMA-Rock to characterize the pore and throat size distributions. After completion of the experiment, the column was sectioned and imaged using 2D SEM in backscattered electron mode. The 2D images were interpreted using erosion-dilation to estimate the pore and throat size distributions. A bias correction was determined by comparison with the 3D image data. A special image processing method was developed to infer the pore space before reaction by digitally removing the precipitate. The different sets of pore

  14. NOTE: Physical evaluation of prototype high-performance anti-scatter grids: potential for improved digital radiographic image quality

    NASA Astrophysics Data System (ADS)

    Fetterly, Kenneth A.; Schueler, Beth A.

    2009-01-01

    Grid evaluation for a screen-film x-ray system has typically included independent measurement of the opposing contrast improvement factor and Bucky factor. Neither of these metrics, however, is appropriate when assessing grid performance in a digital imaging environment. For digital radiographic systems, the benefit of an anti-scatter grid is well characterized by the quantum signal-to-noise ratio improvement factor (KSNR) provided by the grid. The purpose of this work was to measure KSNR of prototype grids designed for use with digital radiographic systems. The prototype grids had 5 mm tall lead septa, fiber interspace material, line rate N = 25 and 36 cm-1 and ratio r = 15 and 21, respectively. The primary and scatter transmission properties of the grids were measured, and KSNR was evaluated over a phantom thickness range of 10-50 cm. To provide a comparison, the KSNR of similarly constructed N44r15 and N80r15 grids is also reported. KSNR of the prototype grids ranged from 1.4 for the 10 cm phantom to 2.4 for the 50 cm phantom. For the thickest phantom, the SNR improvement factor of the prototype grids was 18-83% higher than that of the N44r15 and N80r15 grids, respectively.

  15. Evaluation of image features and search strategies for segmentation of bone structures in radiographs using Active Sha