Science.gov

Sample records for 2d resistivity inversion

  1. ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

    NASA Astrophysics Data System (ADS)

    Akca, Irfan

    2016-04-01

    ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discretized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.

  2. 2D resistivity inversion using conjugate gradients for a finite element discretization

    NASA Astrophysics Data System (ADS)

    Bortolozo, C. A.; Santos, F. M.; Porsani, J. L.

    2014-12-01

    In this work we present a DC 2D inversion algorithm using conjugate gradients relaxation to solve the maximum likelihood inverse equations. We apply, according to Zhang (1995), the maximum likelihood inverse theory developed by Tarantola and Valette (1982) to our 2D resistivity inversion. This algorithm was chosen to this research because it doesn't need to calculate the field's derivatives. Since conjugate gradient techniques only need the results of the sensitivity matrix à or its transpose ÃT multiplying a vector, the actual computation of the sensitivity matrix are not performed, according to the methodology described in Zhang (1995). In Zhang (1995), the terms Ãx and ÃTy, are dependent of the stiffness matrix K and its partial derivative ∂K⁄∂ρ. The inversion methodology described in Zhang (1995) is for the case of 3D electrical resistivity by finite differences discretization. So it was necessary to make a series of adjustments to obtain a satisfactory result for 2D electrical inversion using finite element method. The difference between the modeling of 3D resistivity with finite difference and the 2D finite element method are in the integration variable, used in the 2D case. In the 2D case the electrical potential are initially calculated in the transformed domain, including the stiffness matrix, and only in the end is transformed in Cartesian domain. In the case of 3D, described by Zhang (1995) this is done differently, the calculation is done directly in the Cartesian domain. In the literature was not found any work describing how to deal with this problem. Because the calculations of Ãx and ÃTy must be done without having the real stiffness matrix, the adaptation consist in calculate the stiffness matrix and its partial derivative using a set of integration variables. We transform those matrix in the same form has in the potential case, but with different sets of variables. The results will be presented and are very promising.

  3. Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Tiwari, R. K.; Singh, S. B.

    2010-02-01

    The backpropagation (BP) artificial neural network (ANN) technique of optimization based on steepest descent algorithm is known to be inept for its poor performance and does not ensure global convergence. Nonlinear and complex DC resistivity data require efficient ANN model and more intensive optimization procedures for better results and interpretations. Improvements in the computational ANN modeling process are described with the goals of enhancing the optimization process and reducing ANN model complexity. Well-established optimization methods, such as Radial basis algorithm (RBA) and Levenberg-Marquardt algorithms (LMA) have frequently been used to deal with complexity and nonlinearity in such complex geophysical records. We examined here the efficiency of trained LMA and RB networks by using 2-D synthetic resistivity data and then finally applied to the actual field vertical electrical resistivity sounding (VES) data collected from the Puga Valley, Jammu and Kashmir, India. The resulting ANN reconstruction resistivity results are compared with the result of existing inversion approaches, which are in good agreement. The depths and resistivity structures obtained by the ANN methods also correlate well with the known drilling results and geologic boundaries. The application of the above ANN algorithms proves to be robust and could be used for fast estimation of resistive structures for other complex earth model also.

  4. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  5. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  6. ORMDIN. 2-D Nonlinear Inverse Heat Conduction

    SciTech Connect

    Bass, B.R.

    1990-05-01

    ORMDIN is a finite-element program developed for two-dimensional nonlinear inverse heat conduction analysis as part of the Oak Ridge National Laboratory Pressurized Water Reactor Blowdown Heat Transfer (BDHT) program. One of the primary objectives of the program was to determine the transient surface temperature and surface heat flux of fuel pin simulators from internal thermocouple signals obtained during a loss-of-coolant accident experiment in the Thermal-Hydraulic Test Facility (THTF). ORMDIN was designed primarily to perform a transient two-dimensional nonlinear inverse heat conduction analysis of the THTF bundle 3 heater rod; however, it can be applied to other cylindrical geometries for which the thermophysical properties are prescribed functions of temperature. The program assumes that discretized temperature histories are provided at three thermocouple locations in the interior of the cylinder. Concurrent with the two-dimensional analysis, ORMDIN also generates one-dimensional solutions for each of the three thermocouple radial planes.

  7. Pareto joint inversion of 2D magnetotelluric and gravity data

    NASA Astrophysics Data System (ADS)

    Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek

    2015-04-01

    In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where

  8. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  9. Efficient 2d full waveform inversion using Fortran coarray

    NASA Astrophysics Data System (ADS)

    Ryu, Donghyun; Kim, ahreum; Ha, Wansoo

    2016-04-01

    We developed a time-domain seismic inversion program using the coarray feature of the Fortran 2008 standard to parallelize the algorithm. We converted a 2d acoustic parallel full waveform inversion program with Message Passing Interface (MPI) to a coarray program and examined performance of the two inversion programs. The results show that the speed of the waveform inversion program using the coarray is slightly faster than that of the MPI version. The standard coarray lacks features for collective communication; however, it can be improved in following standards since it is introduced recently. The parallel algorithm can be applied for 3D seismic data processing.

  10. An inverse design method for 2D airfoil

    NASA Astrophysics Data System (ADS)

    Liang, Zhi-Yong; Cui, Peng; Zhang, Gen-Bao

    2010-03-01

    The computational method for aerodynamic design of aircraft is applied more universally than before, in which the design of an airfoil is a hot problem. The forward problem is discussed by most relative papers, but inverse method is more useful in practical designs. In this paper, the inverse design of 2D airfoil was investigated. A finite element method based on the variational principle was used for carrying out. Through the simulation, it was shown that the method was fit for the design.

  11. Almost but not quite 2D, Non-linear Bayesian Inversion of CSEM Data

    NASA Astrophysics Data System (ADS)

    Ray, A.; Key, K.; Bodin, T.

    2013-12-01

    The geophysical inverse problem can be elegantly stated in a Bayesian framework where a probability distribution can be viewed as a statement of information regarding a random variable. After all, the goal of geophysical inversion is to provide information on the random variables of interest - physical properties of the earth's subsurface. However, though it may be simple to postulate, a practical difficulty of fully non-linear Bayesian inversion is the computer time required to adequately sample the model space and extract the information we seek. As a consequence, in geophysical problems where evaluation of a full 2D/3D forward model is computationally expensive, such as marine controlled source electromagnetic (CSEM) mapping of the resistivity of seafloor oil and gas reservoirs, Bayesian studies have largely been conducted with 1D forward models. While the 1D approximation is indeed appropriate for exploration targets with planar geometry and geological stratification, it only provides a limited, site-specific idea of uncertainty in resistivity with depth. In this work, we extend our fully non-linear 1D Bayesian inversion to a 2D model framework, without requiring the usual regularization of model resistivities in the horizontal or vertical directions used to stabilize quasi-2D inversions. In our approach, we use the reversible jump Markov-chain Monte-Carlo (RJ-MCMC) or trans-dimensional method and parameterize the subsurface in a 2D plane with Voronoi cells. The method is trans-dimensional in that the number of cells required to parameterize the subsurface is variable, and the cells dynamically move around and multiply or combine as demanded by the data being inverted. This approach allows us to expand our uncertainty analysis of resistivity at depth to more than a single site location, allowing for interactions between model resistivities at different horizontal locations along a traverse over an exploration target. While the model is parameterized in 2D, we

  12. Full-waveform inversion in 2D VTI media

    NASA Astrophysics Data System (ADS)

    Kamath, Nishant

    Full-waveform inversion (FWI) is a technique designed to produce a high-resolution model of the subsurface by using information contained in entire seismic waveforms. This thesis presents a methodology for FWI in elastic VTI (transversely isotropic with a vertical axis of symmetry) media and discusses synthetic results for heterogeneous VTI models. First, I develop FWI for multicomponent data from a horizontally layered VTI model. The reflectivity method, which permits computation of only PP reflections or a combination of PP and PSV events, is employed to model the data. The Gauss-Newton technique is used to invert for the interval Thomsen parameters, while keeping the densities fixed at the correct values. Eigenvalue/eigenvector decompostion of the Hessian matrix helps analyze the sensitivity of the objective function to the model parameters. Whereas PP data alone are generally sufficient to constrain all four Thomsen parameters even for conventional spreads, including PS reflections provides better constraints, especially for the deeper part of the model. Next, I derive the gradients of the FWI objective function with respect to the stiffness coefficients of arbitrarily anisotropic media by employing the adjoint-state method. From these expressions, it is straightforward to compute the gradients for parameters of 2D heterogeneous VTI media. FWI is implemented in the time domain with the steepest-descent method used to iteratively update the model. The algorithm is tested on transmitted multicomponent data generated for Gaussian anomalies in Thomsen parameters embedded in homogeneous VTI media. To test the sensitivity of the objective function to different model parameters, I derive an an- alytic expression for the Frechet kernel of FWI for arbitrary anisotropic symmetry by using the Born approximation and asymptotic Green's functions. The amplitude of the kernel, which represents the radiation pattern of a secondary source (that source describes a perturbation

  13. Development of a Geocryologic Model of Permafrost From 2D Inversion of IP Profiling

    NASA Astrophysics Data System (ADS)

    Fortier, R.; Leblanc, A.

    2004-05-01

    Non-invasive investigation of permafrost along a planned route of pipeline, road or airstrip in cold regions involves the use of effective methods for detecting, characterizing, mapping and monitoring permafrost conditions on various spatial and temporal scales. Among the available near-surface geophysical methods, the electrical resistivity imaging is probably the most suitable method since the resistivity contrast between unfrozen and frozen ground can be one or two orders of magnitude. Induced polarization (IP) profiling was carried out to study the spatial distribution of ground ice in two permafrost mounds near Umiujaq in Nunavik, Canada. A dipole-dipole array was used to perform the IP profiling. Pseudo-sections of electrical resistivity and chargeability giving a misrepresented cross-section of the sub-surface were first draw. The inversion of IP profiling was also performed using DCIP2D developed by UBC-GIF for estimating the spatial distribution of electrical properties in the ground to create realistic models of sub-surface resistivity and chargeability cross-section. The inverse models show clearly the presence of ice-rich core in the permafrost mounds. The ice-rich cores are underlined by high resistivity values while the unfrozen zones show low resistivity values. The localisation of the permafrost table is highlighted by a strong contrast of resistivity while the permafrost base is marked by a transitional change in resistivity. In the hollow between the permafrost mounds, the models show low resistivity values characteristic of unfrozen zone. A synthetic resistivity sounding built from the most acceptable inverse model correlates well with electrical resistivity logging carried out in the permafrost mound during cone penetration tests. The inversion of IP profiling is fundamental for defining realistic models of sub-surface resistivity and chargeability. Electrical resistivity imaging is a appropriate near-surface geophysical method for permafrost

  14. 1D and 2D Occam's Inversion of Magnetotelluric Data Applied in Volcano-Geothermal Area In Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Ariani, Elsi; Srigutomo, Wahyu

    2016-08-01

    One-dimensional (1D) and two-dimensional (2D) magnetotelluric data inversion were conducted to reveal the subsurface resistivity structure beneath the eastern part of a volcano in Central Java, Indonesia. Fifteen magnetotelluric sounding data spanning two lines of investigation were inverted using Occam's inversion scheme. The result depict that there are extensively conductive layer (2-10 ohm meter) below the volcanic overburden. This conductive layer is interpreted as the clay cap resulted from thermal alteration. A higher resistivity layer (10-80 ohm meter) underlies the clay cap and is interpreted as the reservoir whose top boundaries vary between 1000 m above and 2000 m below sea level.

  15. Direct design of 2D RF pulses using matrix inversion

    NASA Astrophysics Data System (ADS)

    Schulte, Rolf F.; Wiesinger, Florian

    2013-10-01

    Multi-dimensional pulses are frequently used in MRI for applications such as targeted excitation, fat-water separation or metabolic imaging with hyperpolarised 13C compounds. For the design, the problem is typically separated into the different dimensions. In this work, a method to directly design two-dimensional pulses using the small-tip angle approximation is introduced based on a direct matrix representation. The numerical problem is solved in a single step directly in two dimensions by matrix inversion. Exemplary spectral-spatial excitation and spatio-temporal encoding (SPEN) pulses are designed and validated. The main benefits of the direct design approach include a reduction of artefacts in case of spectral-spatial pulses, a simple and straightforward computer implementation and high flexibility in the pulse design.

  16. 2-D acoustic VTI full waveform inversion for CCS monitoring

    NASA Astrophysics Data System (ADS)

    KIM, S.; Kim, W. K.; Min, D. J.; Jeong, W.; OH, J. W.

    2014-12-01

    These days many geophysicists have been working not only for oil and gas exploration but also for CO2 monitoring for CCS (Carbon Capture and storage). When CO2 is injected and stored to the target layer, it changes the physical properties of subsurface media like p-wave velocity, density and so on. Seismic method is one of the most widely used geophysical methods for CO2 monitoring, because it can delineate physical properties of subsurface media. To prevent CO2 from leaking out of reservoirs, most target areas require caprocks, and shale often acts as a caprock. However, shale has a strong anisotropic property. Without considering the anisotropic property of subsurface media, interpretations of seismic monitoring data can distort the CO2distribution or movement in the subsurface media. For computational efficiency, seismic data interpretation based on acoustic VTI (Vertical Transversely Isotropic) wave equations has been commonly done although it does not consider the shear waves. To investigate the importance of considering anisotropic properties in acoustic FWI (full waveform inversion) for CO2 monitoring, we compare results obtained by the acoustic VTI FWI with those of the conventional acoustic FWI for isotropic case in the frequency domain. Both methods are based on the node-based finite-element method. Numerical examples show that neglecting anisotropic properties of subsurface media can distort distribution of CO2 and degrade reliability of subsurface image obtained by FWI. Acknowledgements This work was supported by the Human Resources Development program (No. 20134010200510) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Trade, Industry, and Energy and by the "Development of Technology for CO2 Marine Geological Storage" grant funded by the Ministry of Oceans and Fisheries of Korea.

  17. Bayesian inversion of marine CSEM data from the Scarborough gas field using a transdimensional 2-D parametrization

    NASA Astrophysics Data System (ADS)

    Ray, Anandaroop; Key, Kerry; Bodin, Thomas; Myer, David; Constable, Steven

    2014-12-01

    We apply a reversible-jump Markov chain Monte Carlo method to sample the Bayesian posterior model probability density function of 2-D seafloor resistivity as constrained by marine controlled source electromagnetic data. This density function of earth models conveys information on which parts of the model space are illuminated by the data. Whereas conventional gradient-based inversion approaches require subjective regularization choices to stabilize this highly non-linear and non-unique inverse problem and provide only a single solution with no model uncertainty information, the method we use entirely avoids model regularization. The result of our approach is an ensemble of models that can be visualized and queried to provide meaningful information about the sensitivity of the data to the subsurface, and the level of resolution of model parameters. We represent models in 2-D using a Voronoi cell parametrization. To make the 2-D problem practical, we use a source-receiver common midpoint approximation with 1-D forward modelling. Our algorithm is transdimensional and self-parametrizing where the number of resistivity cells within a 2-D depth section is variable, as are their positions and geometries. Two synthetic studies demonstrate the algorithm's use in the appraisal of a thin, segmented, resistive reservoir which makes for a challenging exploration target. As a demonstration example, we apply our method to survey data collected over the Scarborough gas field on the Northwest Australian shelf.

  18. Hydrates in the California Borderlands: 2D CSEM inversion results from towed and seafloor arrays

    NASA Astrophysics Data System (ADS)

    Kannberg, P. K.; Constable, S.; Key, K.

    2013-12-01

    Methane hydrate, an ice-like solid clathrate of methane and water, forms in shallow continental slope sediments, and is both a potential energy source and geologic hazard. Traditionally, methane hydrate presence is inferred from a seismically detected bathymetry tracking velocity inversion, known as the bottom-simulating reflector (BSR). However the BSR is an indicator of free gas at the base of the hydrate stability zone, and not an indicator of hydrate. As such, seismic methods are limited in their capacity to identify and quantify hydrate presence and concentration. Controlled source electromagnetic (CSEM) methods are sensitive to, and are able to directly detect, the presence of electrically resistive methane hydrate and free gas. Additionally, because shallow resistors can mimic deeper resistors in seafloor instruments, understanding the shallow sediment structure can inform deeper crustal modeling. We conducted two CSEM surveys in the San Nicolas Basin, located 150km west of San Diego where a BSR was identified from legacy seismics. Both surveys were conducted using a deep-towed EM transmitter followed by 4 towed 3-axis electric field receivers spaced every 200 m from 400-1000 m behind the transmitter. Either a half-hertz or quarter-hertz modified square wave was transmitted on a 200 ampere, 100 m dipole that was flown between 50 and 100m above the seafloor. The short transmitter-receiver offset allows resolution of shallow structure (less than 1km below seafloor), while the longer transmitter-seafloor receiver resolves deeper structure. Between the two surveys, 27 seafloor receivers were deployed and ~150km of lines were towed, including 5 transects of the basin coincident with legacy seismic lines, and a short-offset repeatability study. Initial 1D modeling showed the presence of a resistor coincident with the BSR. Further 2D inversions using the MARE2DEM inversion program were run for the towed array. These inversions show a 4 ohm-m resistor in the central

  19. Efficiency of Pareto joint inversion of 2D geophysical data using global optimization methods

    NASA Astrophysics Data System (ADS)

    Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek

    2016-04-01

    Pareto joint inversion of two or more sets of data is a promising new tool of modern geophysical exploration. In the first stage of our investigation we created software enabling execution of forward solvers of two geophysical methods (2D magnetotelluric and gravity) as well as inversion with possibility of constraining solution with seismic data. In the algorithm solving MT forward solver Helmholtz's equations, finite element method and Dirichlet's boundary conditions were applied. Gravity forward solver was based on Talwani's algorithm. To limit dimensionality of solution space we decided to describe model as sets of polygons, using Sharp Boundary Interface (SBI) approach. The main inversion engine was created using Particle Swarm Optimization (PSO) algorithm adapted to handle two or more target functions and to prevent acceptance of solutions which are non - realistic or incompatible with Pareto scheme. Each inversion run generates single Pareto solution, which can be added to Pareto Front. The PSO inversion engine was parallelized using OpenMP standard, what enabled execution code for practically unlimited amount of threads at once. Thereby computing time of inversion process was significantly decreased. Furthermore, computing efficiency increases with number of PSO iterations. In this contribution we analyze the efficiency of created software solution taking under consideration details of chosen global optimization engine used as a main joint minimization engine. Additionally we study the scale of possible decrease of computational time caused by different methods of parallelization applied for both forward solvers and inversion algorithm. All tests were done for 2D magnetotelluric and gravity data based on real geological media. Obtained results show that even for relatively simple mid end computational infrastructure proposed solution of inversion problem can be applied in practice and used for real life problems of geophysical inversion and interpretation.

  20. 2D and 3D separate and joint inversion of airborne ZTEM and ground AMT data: Synthetic model studies

    NASA Astrophysics Data System (ADS)

    Sasaki, Yutaka; Yi, Myeong-Jong; Choi, Jihyang

    2014-05-01

    The ZTEM (Z-axis Tipper Electromagnetic) method measures naturally occurring audio-frequency magnetic fields and obtains the tipper function that defines the relationship among the three components of the magnetic field. Since the anomalous tipper responses are caused by the presence of lateral resistivity variations, the ZTEM survey is most suited for detecting and delineating conductive bodies extending to considerable depths, such as graphitic dykes encountered in the exploration of unconformity type uranium deposit. Our simulations shows that inversion of ZTEM data can detect reasonably well multiple conductive dykes placed 1 km apart. One important issue regarding ZTEM inversion is the effect of the initial model, because homogeneous half-space and (1D) layered structures produce no responses. For the 2D model with multiple conductive dykes, the inversion results were useful for locating the dykes even when the initial model was not close to the true background resistivity. For general 3D structures, however, the resolution of the conductive bodies can be reduced considerably depending on the initial model. This is because the tipper magnitudes from 3D conductors are smaller due to boundary charges than the 2D responses. To alleviate this disadvantage of ZTEM surveys, we combined ZTEM and audio-frequency magnetotelluric (AMT) data. Inversion of sparse AMT data was shown to be effective in providing a good initial model for ZTEM inversion. Moreover, simultaneously inverting both data sets led to better results than the sequential approach by enabling to identify structural features that were difficult to resolve from the individual data sets.

  1. Takes Electric or Magnetic field data through Inversion process a 2D Distributon

    SciTech Connect

    Newman, Gregory

    2008-05-01

    Program images 2D distributions in electrical conductivity for geophysical applications. The program can treat surface based and cross well measurement geometries, including inductive and grounded source antennas in the quasi-static limit. The algorithm using Krylov iterative methods to solve for the predicted data and model sensitivities. The model update is achieved using a Gauss-newton optimization process for stability. A new line search capability is now included in the algorithm to insure global convergence of the inversion iteration.

  2. Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times

    NASA Astrophysics Data System (ADS)

    Bai, Chao-ying; Wang, Tao; Yang, Shang-bei; Li, Xing-wang; Huang, Guo-jiao

    2016-04-01

    Traditional traveltime inversion for anisotropic medium is, in general, based on a "weak" assumption in the anisotropic property, which simplifies both the forward part (ray tracing is performed once only) and the inversion part (a linear inversion solver is possible). But for some real applications, a general (both "weak" and "strong") anisotropic medium should be considered. In such cases, one has to develop a ray tracing algorithm to handle with the general (including "strong") anisotropic medium and also to design a non-linear inversion solver for later tomography. Meanwhile, it is constructive to investigate how much the tomographic resolution can be improved by introducing the later arrivals. For this motivation, we incorporated our newly developed ray tracing algorithm (multistage irregular shortest-path method) for general anisotropic media with a non-linear inversion solver (a damped minimum norm, constrained least squares problem with a conjugate gradient approach) to formulate a non-linear inversion solver for anisotropic medium. This anisotropic traveltime inversion procedure is able to combine the later (reflected) arrival times. Both 2-D/3-D synthetic inversion experiments and comparison tests show that (1) the proposed anisotropic traveltime inversion scheme is able to recover the high contrast anomalies and (2) it is possible to improve the tomographic resolution by introducing the later (reflected) arrivals, but not as expected in the isotropic medium, because the different velocity (qP, qSV and qSH) sensitivities (or derivatives) respective to the different elastic parameters are not the same but are also dependent on the inclination angle.

  3. Skyrmions in quasi-2D chiral magnets with broken bulk and surface inversion symmetry (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Randeria, Mohit; Banerjee, Sumilan; Rowland, James

    2015-09-01

    Most theoretical studies of chiral magnetism, and the resulting spin textures, have focused on 3D systems with broken bulk inversion symmetry, where skyrmions are stabilized by easy-axis anisotropy. In this talk I will describe our results on 2D and quasi-2D systems with broken surface inversion, where we find [1] that skyrmion crystals are much more stable than in 3D, especially for the case of easy-plane anisotropy. These results are of particular interest for thin films, surfaces, and oxide interfaces [2], where broken surface-inversion symmetry and Rashba spin-orbit coupling naturally lead to both the chiral Dzyaloshinskii-Moriya (DM) interaction and to easy-plane compass anisotropy. I will then turn to systems that break both bulk and surface inversion, resulting in two distinct DM terms arising from Dresselhaus and Rashba spin-orbit coupling. I will describe [3] the evolution of the skyrmion structure and of the phase diagram as a function of the ratio of Dresselhaus and Rashba terms, which can be tuned by varying film thickness and strain. [1] S. Banerjee, J. Rowland, O. Erten, and M. Randeria, PRX 4, 031045 (2014). [2] S. Banerjee, O. Erten, and M. Randeria, Nature Phys. 9, 626 (2013). [3] J. Rowland, S. Banerjee and M. Randeria, (unpublished).

  4. Bootstrap resampling as a tool for uncertainty analysis in 2-D magnetotelluric inversion modelling

    NASA Astrophysics Data System (ADS)

    Schnaidt, Sebastian; Heinson, Graham

    2015-10-01

    Uncertainty estimation is a vital part of geophysical numerical modelling. There exist a variety of methods aimed at uncertainty estimation, which are often complicated and difficult to implement. We present an inversion technique that produces multiple solutions, based on bootstrap resampling, to create a qualitative uncertainty measure for 2-D magnetotelluric inversion models. The approach is easy to implement, can be used with almost any inversion code, and does not require access to the inversion software's source code. It is capable of detecting the effect of data uncertainties on the model result rather than just analysing the effect of model variations on the model response. To obtain uncertainty estimates for an inversion model, the original data set is resampled repeatedly and alternate data set realizations are created and inverted. This ensemble of solutions is then statistically analysed to determine the variability between the different solutions. The process yields interpretable uncertainty maps for the inversion model and we demonstrate its effectiveness to qualitatively quantify uncertainty in synthetic model tests and a case study.

  5. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Key, Kerry

    2016-08-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parameterizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data

  6. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Key, Kerry

    2016-10-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data

  7. Estimation of pseudo-2D shear-velocity section by inversion of high frequency surface waves

    USGS Publications Warehouse

    Luo, Y.; Liu, J.; Xia, J.; Xu, Y.; Liu, Q.

    2006-01-01

    A scheme to generate pseudo-2D shear-velocity sections with high horizontal resolution and low field cost by inversion of high frequency surface waves is presented. It contains six steps. The key step is the joint method of crossed correlation and phase shift scanning. This joint method chooses only two traces to generate image of dispersion curve. For Rayleigh-wave dispersion is most important for estimation of near-surface shear-wave velocity, it can effectively obtain reliable images of dispersion curves with a couple of traces. The result of a synthetic example shows the feasibility of this scheme. ?? 2005 Society of Exploration Geophysicists.

  8. Takes Electric or Magnetic field data through Inversion process a 2D Distributon

    2008-05-01

    Program images 2D distributions in electrical conductivity for geophysical applications. The program can treat surface based and cross well measurement geometries, including inductive and grounded source antennas in the quasi-static limit. The algorithm using Krylov iterative methods to solve for the predicted data and model sensitivities. The model update is achieved using a Gauss-newton optimization process for stability. A new line search capability is now included in the algorithm to insure global convergence of themore » inversion iteration.« less

  9. Multiple Frequency Contrast Source Inversion Method for Vertical Electromagnetic Profiling: 2D Simulation Results and Analyses

    NASA Astrophysics Data System (ADS)

    Li, Jinghe; Song, Linping; Liu, Qing Huo

    2016-02-01

    A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.

  10. Constrained resistivity inversion using seismic data

    NASA Astrophysics Data System (ADS)

    Saunders, J. H.; Herwanger, J. V.; Pain, C. C.; Worthington, M. H.; de Oliveira, C. R. E.

    2005-03-01

    In this paper we describe and apply a method for constraining structure in anisotropic electrical resistivity inversion. Structural constraints are routinely used to achieve improved model inversion. Here, a second-order (curvature-based) regularization tensor (model covariance) is used to build structure in the model. This structure could be obtained from other imaging methods such as seismic tomography, core samples or otherwise known structure in the model. Our method allows the incorporation of existing geophysical data into the inversion, in a general form that does not rely on any one-to-one correlation between data sets or material properties. Ambiguities in the resistivity distribution from electrical inversion, and in particular anisotropic inversion, may be reduced with this approach. To demonstrate the approach we invert a synthetic data set, showing the regularization tensor explicitly in different locations. We then apply the method to field data where we have some knowledge of the subsurface from seismic imaging. Our results show that it is possible to achieve a high level of convergence while using spatially varying structural constraints. Common problems associated with resistivity inversion such as source/receiver effects and false imaging of strongly resistive or conductive zones may also be reduced. As part of the inversion method we show how the magnitude of the constraints in the form of penalty parameters appropriate to an inversion may be estimated, reducing the computational expense of resistivity inversion.

  11. Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Chacón, Luis; Pernice, Michael

    2008-10-01

    An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal "physics-based" approach developed in [L. Chacón, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys. 178 (2002) 15-36] (which employed multigrid solver technology in the preconditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989]. A grid convergence study demonstrates that the solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation demonstrates that high-order (cubic) interpolation during regridding, combined with a robustly damping second-order temporal scheme such as BDF2, is required to minimize impact of grid errors at coarse-fine interfaces on the overall error of the computation for this MHD application. We also demonstrate that our implementation features the desired property that the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid resolution or on the number of refinement levels present during the simulation. We demonstrate the effectiveness of the tool on several challenging problems.

  12. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    The study of volcanic domes growth (e.g. St. Helens, Unzen, Montserrat) shows that it is often characterized by a succession of extrusion phases, dome explosions and collapse events. Lava dome eruptive activity may last from days to decades. Therefore, their internal structure, at the end of the eruption, is complex and includes massive extrusions and lava lobes, talus and pyroclastic deposits as well as hydrothermal alteration. The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for volcano structure imaging. Because a large range of resistivity values is often observed in volcanic environments, the method is well suited to study the internal structure of volcanic edifices. We performed an ERT survey on an 11ka years old trachytic lava dome, the Puy de Dôme volcano (French Massif Central). The analysis of a recent high resolution DEM (LiDAR 0.5 m), as well as other geophysical data, strongly suggest that the Puy de Dôme is a composite dome. 11 ERT profiles have been carried out, both at the scale of the entire dome (base diameter of ~2 km and height of 400 m) on the one hand, and at a smaller scale on the summit part on the other hand. Each profile is composed of 64 electrodes. Three different electrode spacing have been used depending on the study area (35 m for the entire dome, 10 m and 5 m for its summit part). Some profiles were performed with half-length roll-along acquisitions, in order to keep a good trade-off between depth of investigation and resolution. Both Wenner-alpha and Wenner-Schlumberger protocols were used. 2-D models of the electrical resistivity distribution were computed using RES2DINV software. In order to constrain inversion models interpretation, the depth of investigation (DOI) method was applied to those results. It aims to compute a sensitivity index on inversion results, illustrating how the data influence the model and constraining models

  13. 1-D and 2-D Probabilistic Inversions of Fault Zone Guided Waves

    NASA Astrophysics Data System (ADS)

    Gulley, A.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.

    2015-12-01

    Fault Zone Guided Waves (FZGWs) are seismic coda that are trapped by the low velocity damage zone of faults. Inversions of these phases can be carried out using their measured dispersion and a Bayesian probability approach. This method utilises a Markov chain Monte Carlo which allows uncertainties and trade-offs to be quantified. Accordingly we have developed a scheme that estimates the dispersion curve and amplitude response variability from a FZGW record. This method allows the computation of both the point estimates and the covariance of the dispersion curve. The subsequent estimation of fault zone parameters is then based on a Gaussian model for the dispersion curve. We then show that inversions using FZGW dispersion data can only resolve fault zone velocity contrast and fault zone width - it leaves densities, absolute country rock velocities and the earthquake location unresolved. We show that they do however significantly affect the estimated fault zone velocities and widths. As these parameters cannot be resolved, we allow for their effects on the estimates of fault zone width and velocity contrast by using the Bayesian approximation error method. We show that using this method reduces computational time from days to minutes and the associated loss of accuracy is insignificant compared to carrying out the inversion on all parameters. We have extended our scheme to 2-D using 1-D slices. The Bayesian approximation error methodology is further employed to provide a 'correction term' with uncertainty for the 1-D slice approximation. We investigate these features with both synthetic data and FZGW data from the Alpine Fault of New Zealand.

  14. A 2D forward and inverse code for streaming potential problems

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.

    2013-12-01

    The self-potential method corresponds to the passive measurement of the electrical field in response to the occurrence of natural sources of current in the ground. One of these sources corresponds to the streaming current associated with the flow of the groundwater. We can therefore apply the self- potential method to recover non-intrusively some information regarding the groundwater flow. We first solve the forward problem starting with the solution of the groundwater flow problem, then computing the source current density, and finally solving a Poisson equation for the electrical potential. We use the finite-element method to solve the relevant partial differential equations. In order to reduce the number of (petrophysical) model parameters required to solve the forward problem, we introduced an effective charge density tensor of the pore water, which can be determined directly from the permeability tensor for neutral pore waters. The second aspect of our work concerns the inversion of the self-potential data using Tikhonov regularization with smoothness and weighting depth constraints. This approach accounts for the distribution of the electrical resistivity, which can be independently and approximately determined from electrical resistivity tomography. A numerical code, SP2DINV, has been implemented in Matlab to perform both the forward and inverse modeling. Three synthetic case studies are discussed.

  15. SP2DINV: A 2D forward and inverse code for streaming potential problems

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2013-09-01

    The self-potential method corresponds to the passive measurement of the electrical field in response to the occurrence of natural sources of current in the ground. One of these sources corresponds to the streaming current associated with the flow of the ground water. We can therefore apply the self-potential method to recover non-intrusively some information regarding the ground water flow. We first solve the forward problem starting with the solution of the ground water flow problem, then computing the source current density, and finally solving a Poisson equation for the electrical potential. We use the finite-element method to solve the relevant partial differential equations. In order to reduce the number of (petrophysical) model parameters required to solve the forward problem, we introduced an effective charge density tensor of the pore water, which can be determined directly from the permeability tensor for neutral pore waters. The second aspect of our work concerns the inversion of the self-potential data using Tikhonov regularization with smoothness and weighting depth constraints. This approach accounts for the distribution of the electrical resistivity, which can be independently and approximately determined from electrical resistivity tomography. A numerical code, SP2DINV, has been implemented in Matlab to perform both the forward and inverse modeling. Three synthetic case studies are discussed.

  16. Cooperative Cross-Hole Ert and 2-D Full-Waveform Gpr Inversion

    NASA Astrophysics Data System (ADS)

    Bouchedda, A.; Chouteau, M.

    2012-12-01

    Recent advances in high-performance computing make full-waveform inversion (FWI) of cross-hole ground penetrating data feasible. FWI, where high-resolution imaging at half the propagated wavelength is expected, allows a better resolution in comparison to ray-based tomography. The inverse problem is generally solved using local optimization algorithms that can converge to local minimum depending on the selection of starting model, nonlinearity of the problem, lack of low frequencies, presence of noise, and approximate modeling of the wave-physics complexity. In this work, multiscale FWI strategy is combined cooperatively with electrical resistivity tomography (ERT) to mitigate the nonlinearity and ill-posedness of FWI and improve the ERT resolution. In the FWI, the gradient of the misft function is generally dominated by the high frequencies. This behaviour can potentially be the cause of convergence into local minima, as the determination of the high frequencies depends in turn on the accuracy of the low frequencies. Different from taking advantage of low frequencies in the data, the proposed multiscale FWI reduces the number of model parameters and yields low frequencies in the model space using a regularization method that consists of imposing an L1-norm penalty in the wavelet domain. The minimization of the L1-norm penalty is carried out using an accelerated iterative soft-thresholding algorithm. As wavelet transforms provide estimates of the local frequency content of the conductivity or permittivity images, the thresholds are used to control the frequency content in the model space. Generally, a high threshold value is chosen for the 20th first iterations in order to enhance the update of the low frequencies. After that the soft thresholding step tries to find the best thresholds to maximize the structural similarities between conductivity and permittivity images. The initial velocity model for FWI is built from first-arrival traveltime tomography, whereas the

  17. A 2D inverse problem of predicting boiling heat transfer in a long fin

    NASA Astrophysics Data System (ADS)

    Orzechowski, Tadeusz

    2016-10-01

    A method for the determination of local values of the heat transfer coefficient on non-isothermal surfaces was analyzed on the example of a long smooth-surfaced fin made of aluminium. On the basis of the experimental data, two cases were taken into consideration: one-dimensional model for Bi < 0.1 and two-dimensional model for thicker elements. In the case when the drop in temperature over the thickness could be omitted, the rejected local values of heat fluxes were calculated from the integral of the equation describing temperature distribution on the fin. The corresponding boiling curve was plotted on the basis of temperature gradient distribution as a function of superheat. For thicker specimens, where Bi > 0.1, the problem was modelled using a 2-D heat conduction equation, for which the boundary conditions were posed on the surface observed with a thermovision camera. The ill-conditioned inverse problem was solved using a method of heat polynomials, which required validation.

  18. Observed and simulated power spectra of kinetic and magnetic energy retrieved with 2D inversions

    NASA Astrophysics Data System (ADS)

    Danilovic, S.; Rempel, M.; van Noort, M.; Cameron, R.

    2016-10-01

    Context. Information on the origin of internetwork magnetic field is hidden at the smallest spatial scales. Aims: We try to retrieve the power spectra with certainty to the highest spatial frequencies allowed by current instrumentation. Methods: To accomplish this, we use a 2D inversion code that is able to recover information up to the instrumental diffraction limit. Results: The retrieved power spectra have shallow slopes that extend further down to much smaller scales than has been found before. They do not seem to show any power law. The observed slopes at subgranular scales agree with those obtained from recent local dynamo simulations. Small differences are found for the vertical component of kinetic energy that suggest that observations suffer from an instrumental effect that is not taken into account. Conclusions: Local dynamo simulations quantitatively reproduce the observed magnetic energy power spectra on the scales of granulation down to the resolution limit of Hinode/SP, within the error bars inflicted by the method used and the instrumental effects replicated.

  19. Efficient 2D and 3D multiparameters frequency-domain full waveform inversion (Invited)

    NASA Astrophysics Data System (ADS)

    Virieux, J.; Operto, S.; Ribodetti, A.; Ben Hadj Ali, H.; Brossier, R.; Etienne, V.; Gholami, Y.; Hu, G.; Jia, Y.; Pageot, D.; Prieux, V.

    2010-12-01

    With the tremendous increase of the computational power provided by large-scale distributed-memory platforms and the development of dense 3D multi-component wide-aperture/wide-azimuth surveys, full waveform inversion (FWI) introduced in geophysics by Albert Tarantola has become a re-emerging technique to build high-resolution velocity models of the subsurface. Because of the cost of the forward modeling and the high dimensionality of the model space, full waveform inversion is actually a local optimization problem, the aim of which is the minimization of the misfit between the recorded and modeled seismic wavefields. Among all possible minimization criteria, the L1 norm provides the most robust and easy-to-tune criterion. With such criterion, white noise in all seismograms with outliers does not prevent the convergence to the nearly same minimum as for noise-free data. The frequency formulation of the FWI allows coarse sampling of the frequencies data over few frequencies for the reconstruction of the medium when wide-aperture geometries are considered. A preconditioned quasi-Newton L-BFGS modified algorithm provides scaled gradients of the misfit function for each class of parameters. The gradient is computed by the adjoint-state method where the forward field is stored in the core memory of the computer while computing the backpropagation of residuals for cross-correlation at each point of the medium, thanks to the frequency-domain approach. We are using a sequential multiscale hierarchical inversion algorithm with two nested levels of data preconditioning with respect to frequency and first-arrival time. We are able to reconstruct both Vp and Vs velocity structures in various offshore and onshore environments various configurations of crustal investigation where both body waves (and surface) waves are progressively included in the inversion scheme. Solving the forward problem for 2D geometry could be efficiently performed in frequency by using a direct solver

  20. Modeling Coastal Salinity in Quasi 2D and 3D Using a DUALEM-421 and Inversion Software.

    PubMed

    Davies, Gareth; Huang, Jingyi; Monteiro Santos, Fernando Acacio; Triantafilis, John

    2015-01-01

    Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium-large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time-consuming. Alternatively, frequency-domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM-421 and EM4Soil inversion software package are used to develop a quasi two- (2D) and quasi three-dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium-large scale drivers including local wave climate and morphology along this wave-dominated beach. Further research is required to elucidate the influence of spring-neap tidal cycles, contrasting beach morphological states and sea level rise.

  1. Modeling Coastal Salinity in Quasi 2D and 3D Using a DUALEM-421 and Inversion Software.

    PubMed

    Davies, Gareth; Huang, Jingyi; Monteiro Santos, Fernando Acacio; Triantafilis, John

    2015-01-01

    Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium-large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time-consuming. Alternatively, frequency-domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM-421 and EM4Soil inversion software package are used to develop a quasi two- (2D) and quasi three-dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium-large scale drivers including local wave climate and morphology along this wave-dominated beach. Further research is required to elucidate the influence of spring-neap tidal cycles, contrasting beach morphological states and sea level rise. PMID:25053423

  2. Magnetotelluric inversion for azimuthally anisotropic resistivities employing artificial neural networks

    NASA Astrophysics Data System (ADS)

    Montahaei, Mansoure; Oskooi, Behrooz

    2014-02-01

    An extension of an artificial neural network (ANN) approach to solve the magnetotelluric (MT) inverse problem for azimuthally anisotropic resistivities is presented and applied for a real dataset. Three different model classes, containing general 1-D and 2-D azimuthally anisotropic features, have been considered. For each model class, characteristics of three-layer feed forward ANNs trained through an error back propagation algorithm have been adjusted to approximate the inverse modeling function. It appears that, at least for synthetic models, reasonable results would be obtained by applying the amplitudes of the complex impedance tensor elements as inputs. Furthermore, the Levenberg-Marquart algorithm possesses optimal performance as a learning paradigm for this problem. The evaluation of applicability of the trained ANNs for unknown data sets excluded from the learning procedure reveals that the trained ANNs possess acceptable interpolation and extrapolation abilities to estimate model parameters accurately. This method was also successfully used for a field dataset wherein anisotropy had been previously recognized.

  3. 2-D acoustic Laplace-domain waveform inversion of marine field data

    NASA Astrophysics Data System (ADS)

    Ha, Wansoo; Chung, Wookeen; Park, Eunjin; Shin, Changsoo

    2012-07-01

    The Laplace-domain full waveform inversion method can build a macroscale subsurface velocity model that can be used as an accurate initial model for a conventional full waveform inversion. The acoustic Laplace-domain inversion produced is promising for marine field data examples. Although applying an acoustic inversion method to the field data generally requires several pre-processing steps, pre-processing for the Laplace-domain inversion has not been explained in detail. We provide a detailed explanation of how to apply the Laplace-domain waveform inversion to field data through numerical tests with Gulf of Mexico data sets. The pre-processing includes bandpass filtering, muting of the noise before the first arrival, and extraction of the water depth. We choose the range and the interval between the Laplace damping constants empirically by applying a threshold value to the damped time traces and the Laplace-domain wavefields. The observed data are transformed to the Laplace domain using the selected damping; this method yielded a long-wavelength inversion result. The damping constant and the maximum offset affect the penetration depth of the inversion result. The maximum recording time is important for a stable Laplace-transformation and affects the inversion result; however, the latter effect is not significant.

  4. Improved 2-D resistivity imaging of features in covered karst terrain with arrays of implanted electrodes

    NASA Astrophysics Data System (ADS)

    Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.

    2013-12-01

    Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with

  5. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals.

    PubMed

    Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko

    2013-12-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices. PMID:24263010

  6. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals.

    PubMed

    Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko

    2013-12-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  7. Contribution of 3D inversion of Electrical Resistivity Tomography data applied to volcanic structures

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2016-04-01

    The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out

  8. Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors.

    PubMed

    Chuang, Hsun-Jen; Chamlagain, Bhim; Koehler, Michael; Perera, Meeghage Madusanka; Yan, Jiaqiang; Mandrus, David; Tománek, David; Zhou, Zhixian

    2016-03-01

    We report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional doping as channel materials. We demonstrate that few-layer WSe2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ∼0.3 kΩ μm, high on/off ratios up to >10(9), and high drive currents exceeding 320 μA μm(-1). These favorable characteristics are combined with a two-terminal field-effect hole mobility μFE ≈ 2 × 10(2) cm(2) V(-1) s(-1) at room temperature, which increases to >2 × 10(3) cm(2) V(-1) s(-1) at cryogenic temperatures. We observe a similar performance also in MoS2 and MoSe2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in postsilicon electronics.

  9. 2D Laplace-Domain Waveform Inversion of Field Data Using a Power Objective Function

    NASA Astrophysics Data System (ADS)

    Park, Eunjin; Ha, Wansoo; Chung, Wookeen; Shin, Changsoo; Min, Dong-Joo

    2013-12-01

    The wavefield in the Laplace domain has a very small amplitude except only near the source point. In order to deal with this characteristic, the logarithmic objective function has been used in many Laplace domain inversion studies. The Laplace-domain waveform inversion using the logarithmic objective function has fewer local minima than the time- or frequency domain inversion. Recently, the power objective function was suggested as an alternative to the logarithmic objective function in the Laplace domain. Since amplitudes of wavefields are very small generally, a power <1 amplifies the wavefields especially at large offset. Therefore, the power objective function can enhance the Laplace-domain inversion results. In previous studies about synthetic datasets, it is confirmed that the inversion using a power objective function shows a similar result when compared with the inversion using a logarithmic objective function. In this paper, we apply an inversion algorithm using a power objective function to field datasets. We perform the waveform inversion using the power objective function and compare the result obtained by the logarithmic objective function. The Gulf of Mexico dataset is used for the comparison. When we use a power objective function in the inversion algorithm, it is important to choose the appropriate exponent. By testing the various exponents, we can select the range of the exponent from 5 × 10-3 to 5 × 10-8 in the Gulf of Mexico dataset. The results obtained from the power objective function with appropriate exponent are very similar to the results of the logarithmic objective function. Even though we do not get better results than the conventional method, we can confirm the possibility of applying the power objective function for field data. In addition, the power objective function shows good results in spite of little difference in the amplitude of the wavefield. Based on these results, we can expect that the power objective function will

  10. Application of 2-D Inversion, to Magnetotelluric data on the Newberry Caldera, Oregon, for Potential Geothermal Power

    NASA Astrophysics Data System (ADS)

    Martin, T. P.; Schultz, A.

    2012-12-01

    understand the existing baseline subsurface resistivity structure at the Newberry site prior to well stimulation, magnetotelluric (MT) data will be collected in late July 2012 using two long period (1 Hz sampling) Narod Geophysics NIMS MT instruments along with EarthScope MT data aligned in a ~210 km long N-S profile centered on the stimulation zone. A 2-D inverse model will be obtained from the MT data set. The goal of this investigation is to determine the variations in the electrical resistivity in the mid-to-lower crust beneath the western flank of the caldera, providing a deeper view of putative heat sources than existing studies in this

  11. Numerical solution of 2D-vector tomography problem using the method of approximate inverse

    NASA Astrophysics Data System (ADS)

    Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna

    2016-08-01

    We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.

  12. A multiple-scale Pascal polynomial for 2D Stokes and inverse Cauchy-Stokes problems

    NASA Astrophysics Data System (ADS)

    Liu, Chein-Shan; Young, D. L.

    2016-05-01

    The polynomial expansion method is a useful tool for solving both the direct and inverse Stokes problems, which together with the pointwise collocation technique is easy to derive the algebraic equations for satisfying the Stokes differential equations and the specified boundary conditions. In this paper we propose two novel numerical algorithms, based on a third-first order system and a third-third order system, to solve the direct and the inverse Cauchy problems in Stokes flows by developing a multiple-scale Pascal polynomial method, of which the scales are determined a priori by the collocation points. To assess the performance through numerical experiments, we find that the multiple-scale Pascal polynomial expansion method (MSPEM) is accurate and stable against large noise.

  13. Inverse algorithms for 2D shallow water equations in presence of wet dry fronts: Application to flood plain dynamics

    NASA Astrophysics Data System (ADS)

    Monnier, J.; Couderc, F.; Dartus, D.; Larnier, K.; Madec, R.; Vila, J.-P.

    2016-11-01

    The 2D shallow water equations adequately model some geophysical flows with wet-dry fronts (e.g. flood plain or tidal flows); nevertheless deriving accurate, robust and conservative numerical schemes for dynamic wet-dry fronts over complex topographies remains a challenge. Furthermore for these flows, data are generally complex, multi-scale and uncertain. Robust variational inverse algorithms, providing sensitivity maps and data assimilation processes may contribute to breakthrough shallow wet-dry front dynamics modelling. The present study aims at deriving an accurate, positive and stable finite volume scheme in presence of dynamic wet-dry fronts, and some corresponding inverse computational algorithms (variational approach). The schemes and algorithms are assessed on classical and original benchmarks plus a real flood plain test case (Lèze river, France). Original sensitivity maps with respect to the (friction, topography) pair are performed and discussed. The identification of inflow discharges (time series) or friction coefficients (spatially distributed parameters) demonstrate the algorithms efficiency.

  14. Solution of the stationary 2D inverse heat conduction problem by Treffetz method

    NASA Astrophysics Data System (ADS)

    Cialkowski, Michael J.; Frąckowiak, Andrzej

    2002-05-01

    The paper presents analysis of a solution of Laplace equation with the use of FEM harmonic basic functions. The essence of the problem is aimed at presenting an approximate solution based on possibly large finite element. Introduction of harmonic functions allows to reduce the order of numerical integration as compared to a classical Finite Element Method. Numerical calculations conform good efficiency of the use of basic harmonic functions for resolving direct and inverse problems of stationary heat conduction. Further part of the paper shows the use of basic harmonic functions for solving Poisson’s equation and for drawing up a complete system of biharmonic and polyharmonic basic functions

  15. 3D and 2D inversion of MT data from the continental collision zone in the Pamirs and Tien Shan, Central Asia

    NASA Astrophysics Data System (ADS)

    Sass, P.; Ritter, O.; Rybin, A.; Batalev, V.

    2012-12-01

    fitted with 2D inversion. The MT inversions reveal an upper crust of the Pamirs, which is generally resistive. Two distinct zones of high conductivity appear beneath the southern Pamirs and the central/northern Pamir at mid crustal levels, possibly reaching mantle depths. We interpret the southern conductor as hot and partially molten, viscous felsic material. To the north, the conductor is bound by a resistive block which penetrates the entire crust. The resistive structure seems to correlate with the miocene gneiss of the Muskol dome. The second conductive zone north of the Muskol dome could originate from brittle and fractured crustal material. Faults can form pathways for aqueous fluids in the crust. When highly mineralized fluids penetrate fractured brittle deformation zones, the entire region can become conductive. Further north, the seismically active Main Pamir Thrust which separates the Pamir from the Tien Shan corresponds to a sharp, south-dipping conductivity contrast between resistive upper crust in the Pamirs and conductive crust beneath the Alai valley.

  16. Impact of the Born approximation on the estimation error in 2D inverse scattering

    NASA Astrophysics Data System (ADS)

    Diong, M. L.; Roueff, A.; Lasaygues, P.; Litman, A.

    2016-06-01

    The aim is to quantify the impact of the Born approximation on the estimation error for a simple inverse scattering problem, while taking into account the noise measurement features. The proposed method consists of comparing two estimation errors: the error obtained with the Born approximation and the error obtained without it. The first error is characterized by the mean and variance of the maximum likelihood estimator, which are straightforward to compute with the Born approximation because the corresponding estimator is linear. The second error is evaluated with the Cramer–Rao bound (CRB). The CRB is a lower bound on the variance of unbiased estimators and thus does not depend on the choice of the estimation method. Beyond the conclusions that will be established under the Born approximation, this study lays out a general methodology that can be generalized to any other approximation.

  17. Three-dimensional induced polarization data inversion for complex resistivity

    SciTech Connect

    Commer, M.; Newman, G.A.; Williams, K.H.; Hubbard, S.S.

    2011-03-15

    The conductive and capacitive material properties of the subsurface can be quantified through the frequency-dependent complex resistivity. However, the routine three-dimensional (3D) interpretation of voluminous induced polarization (IP) data sets still poses a challenge due to large computational demands and solution nonuniqueness. We have developed a flexible methodology for 3D (spectral) IP data inversion. Our inversion algorithm is adapted from a frequency-domain electromagnetic (EM) inversion method primarily developed for large-scale hydrocarbon and geothermal energy exploration purposes. The method has proven to be efficient by implementing the nonlinear conjugate gradient method with hierarchical parallelism and by using an optimal finite-difference forward modeling mesh design scheme. The method allows for a large range of survey scales, providing a tool for both exploration and environmental applications. We experimented with an image focusing technique to improve the poor depth resolution of surface data sets with small survey spreads. The algorithm's underlying forward modeling operator properly accounts for EM coupling effects; thus, traditionally used EM coupling correction procedures are not needed. The methodology was applied to both synthetic and field data. We tested the benefit of directly inverting EM coupling contaminated data using a synthetic large-scale exploration data set. Afterward, we further tested the monitoring capability of our method by inverting time-lapse data from an environmental remediation experiment near Rifle, Colorado. Similar trends observed in both our solution and another 2D inversion were in accordance with previous findings about the IP effects due to subsurface microbial activity.

  18. 3D and 2D inversion of magnetotelluric data from the continental collision zone in the Pamirs and Tien Shan, Central Asia

    NASA Astrophysics Data System (ADS)

    Sass, Paul; Ritter, Oliver; Rybin, Anatolii; Batalev, Vladislav

    2013-04-01

    fitted with 2D inversion. The MT inversions reveal an upper crust of the Pamirs, which is generally resistive, with embedded conductive parts correlating to suture zones. Several distinct zones of high conductivity appear beneath the southern Pamirs and the central/northern Pamir at mid crustal levels, possibly reaching mantle depths. We interpret the southern mid-crust conductor as hot and partially molten, viscous felsic material. To the north, the conductor is bound by a resistive block which correlates with the miocene gneiss of the Muskol dome. The second conductive zone north of the Muskol dome could originate from brittle and fractured crust. Faults and old deformation zones can form pathways for aqueous fluids in the crust. When highly mineralized fluids penetrate fractured brittle areas, the entire region can become conductive. Further north, the seismically active Main Pamir Thrust which separates the Pamir from the Tien Shan corresponds to a sharp, south-dipping conductivity contrast between resistive upper crust in the Pamirs and conductive crust beneath the Alai valley.

  19. 2-D magnetotelluric inversion of the central part of Paraná Basin

    NASA Astrophysics Data System (ADS)

    Santos, E. B.; Santos, H. B.; Vitorello, I.; Pádua, M. B.

    2013-12-01

    The Paraná Basin is a large sedimentary basin in central-eastern South America that extends through Brazil, Paraguay, Uruguay and Argentina. Evolved completely over the South American continental crust, this Paleozoic basin is filled with sedimentary and volcanic rocks deposited from the Silurian to the Cretaceous, when a significant basaltic effusion covered almost the entire area of the basin. A series of superposed sedimentary and volcanic rock layers were laid down under the influence of different tectonic settings, probably originated from distant collisional dynamics of continental boards that led to the amalgamation of Gondwanaland. The current boundaries of the basin can be the result of issuing erosional or of tectonic origin, such as the building up of large arches and faults. To evaluate the deep structural architecture of the lithosphere under a sedimentary basin is a great challenge, requiring the integration of different geophysical and geological studies. In this paper, we present the resulting Paraná Basin lithospheric model, obtained from processing and inversion of broadband and long-period magnetotelluric soundings along an E-W profile across the central part of the basin, complemented by a qualitative joint interpretation of gravimetric data, in order to obtain a more precise geoelectric model of the deep structure of the region.

  20. HT2DINV: A 2D forward and inverse code for steady-state and transient hydraulic tomography problems

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2015-12-01

    Hydraulic tomography is a technique used to characterize the spatial heterogeneities of storativity and transmissivity fields. The responses of an aquifer to a source of hydraulic stimulations are used to recover the features of the estimated fields using inverse techniques. We developed a 2D free source Matlab package for performing hydraulic tomography analysis in steady state and transient regimes. The package uses the finite elements method to solve the ground water flow equation for simple or complex geometries accounting for the anisotropy of the material properties. The inverse problem is based on implementing the geostatistical quasi-linear approach of Kitanidis combined with the adjoint-state method to compute the required sensitivity matrices. For undetermined inverse problems, the adjoint-state method provides a faster and more accurate approach for the evaluation of sensitivity matrices compared with the finite differences method. Our methodology is organized in a way that permits the end-user to activate parallel computing in order to reduce the computational burden. Three case studies are investigated demonstrating the robustness and efficiency of our approach for inverting hydraulic parameters.

  1. 2D multi-parameter elastic seismic imaging by frequency-domain L1-norm full waveform inversion

    NASA Astrophysics Data System (ADS)

    Brossier, Romain; Operto, Stéphane; Virieux, Jean

    2010-05-01

    Full waveform inversion (FWI) is becoming a powerful and efficient tool to derive high-resolution quantitative models of the subsurface. In the frequency-domain, computationally efficient FWI algorithms can be designed for wide-aperture acquisition geometries by limiting inversion to few discrete frequencies. However, FWI remains an ill-posed and highly non-linear data-fitting procedure that is sensitive to noise, inaccuracies of the starting model and definition of multiparameter classes. The footprint of the noise in seismic imaging is conventionally mitigated by stacking highly redundant multifold data. However, when the data redundancy is decimated in the framework of efficient frequency-domain FWI, it is essential to assess the sensitivity of the inversion to noise. The impact of the noise in FWI, when applied to decimated data sets, has been marginally illustrated in the past and least-squares minimisation has remained the most popular approach. We investigate in this study the sensitivity of frequency-domain elastic FWI to noise for realistic onshore and offshore synthetic data sets contaminated by ambient random white noise. Four minimisation functionals are assessed in the framework of frequency domain FWI of decimated data: the classical least-square norm (L2), the least-absolute-values norm (L1), and some combinations of both (the Huber and the so-called Hybrid criteria). These functionals are implemented in a massively-parallel, 2D elastic frequency-domain FWI algorithm. A two-level hierarchical algorithm is implemented to mitigate the non-linearity of the inversion in complex environments. The first outer level consists of successive inversions of frequency groups of increasing high-frequency content. This level defines a multi-scale approach while preserving some data redundancy by means of simultaneous inversion of multiple frequencies. The second inner level used complex-valued frequencies for data preconditioning. This preconditioning controls the

  2. OpenHVSR: imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion

    NASA Astrophysics Data System (ADS)

    Bignardi, S.; Mantovani, A.; Abu Zeid, N.

    2016-08-01

    OpenHVSR is a computer program developed in the Matlab environment, designed for the simultaneous modeling and inversion of large Horizontal-to-Vertical Spectral Ratio (HVSR or H/V) datasets in order to construct 2D/3D subsurface models (topography included). The program is designed to provide a high level of interactive experience to the user and still to be of intuitive use. It implements several effective and established tools already present in the code ModelHVSR by Herak (2008), and many novel features such as: -confidence evaluation on lateral heterogeneity -evaluation of frequency dependent single parameter impact on the misfit function -relaxation of Vp/Vs bounds to allow for water table inclusion -a new cost function formulation which include a slope dependent term for fast matching of peaks, which greatly enhances convergence in case of low quality HVSR curves inversion -capability for the user of editing the subsurface model at any time during the inversion and capability to test the changes before acceptance. In what follows, we shall present many features of the program and we shall show its capabilities on both simulated and real data. We aim to supply a powerful tool to the scientific and professional community capable of handling large sets of HSVR curves, to retrieve the most from their microtremor data within a reduced amount of time and allowing the experienced scientist the necessary flexibility to integrate into the model their own geological knowledge of the sites under investigation. This is especially desirable now that microtremor testing has become routinely used. After testing the code over different datasets, both simulated and real, we finally decided to make it available in an open source format. The program is available by contacting the authors.

  3. Quantum Hall effect: The resistivity of a 2D electron gas—a thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Cheremisin, M. V.

    2005-09-01

    Based on a thermodynamic approach, we have calculated the resistivity of a 2D electron gas, assumed dissipationless in a strong quantum limit. Standard measurements, with extra current leads, define the resistivity caused by a combination of Peltier and Seebeck effects. The current causes heating (cooling) at the first (second) sample contacts, due to the Peltier effect. The contact temperatures are different. The measured voltage is equal to the Peltier effect-induced thermoemf which is linear in current. As a result, the resistivity is non-zero as I→0. The resistivity is a universal function of magnetic field and temperature, expressed in fundamental units h/e2. The universal features of magnetotransport data observed in the experiment confirm our predictions.

  4. 2D Resistivity and Induced Polarization Measurement for Manganese Ore Exploration

    NASA Astrophysics Data System (ADS)

    Srigutomo, Wahyu; Trimadona; Pratomo, Prihandhanu M.

    2016-08-01

    2D Resistivity and Induced Polarization (IP) survey was conducted to delineate the presence of minerals containing manganese in form of manganese ore. The resistivity method concerns with resistivity (ohm.m) of rocks which indicates the electrical properties in terms of ability to resist the flow of electrical current. The presence of manganese in rocks generally lowers the resistivity. The Induced Polarization (IP) method deals with chargeability (in msec) which indicates the strength of polarization effects experienced by ions in the vicinity of metallic grains in rock. The presence of manganese in rocks increases the chargeability of the rock when measured using IP method. The low resistivity zones (< 5 ohm.m) are situated in the western part, central part, and eastern part of the investigated area. These zones may strongly correlate to the presence of manganese ore. However, these low resistivity zones may have been influenced by the presence of clay or weathered soil. In this case, the high chargeability zones will help in confirming the prospective zones caused by manganese ore. The thicknesses of the manganese ore layer vary from about 5 to 20 m based on the cross-sections. Based on the results, we estimated the geometry of the associated manganese prospective zones for resistivity (< 5 ohm.m) and chargeability (>10 msec).

  5. 2D Elastic Full Waveform Inversion in a space frequency domain formulation: application to near surface areas characterization

    NASA Astrophysics Data System (ADS)

    Gelis, C.; Virieux, J.; Grandjean, G.; Operto, S.

    2005-12-01

    The superficial weathered zone, few hundreds meters thick, presents highly variable and complex near-surface structures. Energetic seismic surface waves, often called ground roll, may hide information coming from deeper areas. Moreover near-surface anomalies (cavities, overthrusts) are quite important and, therefore, detecting heterogeneities in near-surface areas and quantifying their physical properties is still a challenge for seismic imaging. Since heterogeneities are located in near-surface areas, both surface and body waves induce complex footprints in seismic data. The propagation of 2D P-SV is performed in a frequency domain modeling. This frequency formulation takes into account attenuating behavior and efficiently takes benefit of multisource and multireceiver configurations. A new finite-difference stencil of second order using rotated derivatives axes (Saenger et al., 2000) simulates surface waves precisely and remains stable nearby the free surface and/or rapidly-varying zones. It will be the forward problem kernel of our approach. We follow the matrix formalism of Pratt et al. (1998) and perform a linearized inversion in the least-square sense, since heterogeneities of reasonable amplitudes towards the surrounding medium are considered. We use the gradient method to perform the full waveform inversion for elastic waves. In this formulation we take only the Hessian diagonal part and use a parabolic approximation to find the stepping in the gradient direction. To compute Fréchet derivatives, we resort to the Born and the Rytov approximations and evaluate their performances in transmission and reflection acquisitions geometries. We test as well the influence of the inverted parameters choice. Moreover we highlight the influence of data preconditioning that must be particularly efficient to deal with both body and surface waves. We apply this elastic full waveform inversion to near-surface data, containing strong surface waves and acquired just above a

  6. Monitoring of injected CO2 using the seismic full waveform inversion for 2-D elastic VTI media

    NASA Astrophysics Data System (ADS)

    Kim, W. K.; Min, D. J.; KIM, S.; Shin, Y.; Moon, S.

    2014-12-01

    To monitor the injected CO2 in the subsurface, seismic monitoring techniques are extensively applied because of its high resolution. Among the seismic monitoring techniques, seismic full waveform inversion (FWI) has high applicability because it can delineate parameter changes by injected CO2. When seismic FWIs are applied, subsurface media can be generally assumed to be isotropic. However, most subsurface media are not isotropic, and shale is a representative anisotropic medium, particularly vertical transversely isotropic (VTI) medium, which is often encountered as a barrier to injected CO2. Thus, anisotropic properties of subsurface media are important for monitoring of injected CO2. For these issues, we need to consider anisotropy of subsurface media when seismic FWIs are applied as a monitoring tool for CO2 sequestration. In this study, we performed seismic FWI for 2-D elastic VTI media to investigate the effects of anisotropic properties in CO2 monitoring. For this numerical test, we assumed a geological model, which copies after one of CO2 storage prospects in Korea. We also applied seismic FWI algorithm for 2-D elastic isotropic media for comparison. From this comparison, we noticed that we can obtain more reliable results when we apply the anisotropic FWI algorithm. Numerical examples indicate that we should apply the anisotropic FWI algorithm rather than the isotropic FWI algorithm when we interpret seismic monitoring data acquired in anisotropic media to increase the success of monitoring for injected CO2. Our numerical results can also be used as references for real seismic monitoring of the Korea CO2 sequestration projects in the near future. Acknowledgements This work was supported by the Human Resources Development program (No. 20134010200510) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Trade, Industry, and Energy and by the "Development of Technology for CO2 Marine

  7. 2D cross-borehole resistivity tomographies below foundations as a tool to design proper remedial actions in covered karst

    NASA Astrophysics Data System (ADS)

    Deceuster, J.; Delgranche, J.; Kaufmann, O.

    2006-09-01

    To assess the subsurface conditions beneath a 4-floor public building, where sinkhole collapses had already occurred, twenty-three 2D cross-borehole resistivity tomographies were conducted beneath the building foundations in January and February 2004. The aim of these geophysical investigations was to build a model of the complex subsurface geometry in order to estimate and minimize costs of remediation works. In cross-borehole resistivity tomography standard electrode configurations do not exist yet. Thus, preliminary field tests were performed to determine a suitable combination of arrays and to estimate the stability of these measurements on the site. A combination of cross-borehole arrays and single-hole arrays was then selected. The measures were conducted on each panel using this combination of arrays. Over 2500 apparent resistivities were measured on each panel. The inversion problem was solved within the Res2DInv® software. On tomographies weathered zones were clearly identified as low resistivity zones (< 50 Ωm). The strong contrast in resistivities compared to solid limestone ( ρ > 200 Ω m) led to establish a 3D model of the ground conditions. This model showed large variations in buried rockhead depths from 6 to more than 24 m. Four zones of different ranges of depth-to-bedrock were identified inside, which three vertically elongated weathered zones were also delineated. Based on these results, a remediation plan which consisted in underpinning the foundations with about 250 micropiles was designed. The feedback of the remedial works showed that tomographies gave a very accurate overview of the buried rockhead depths (with a precision of about 1 m).

  8. 3D Inversion of complex resistivity data: Case study on Mineral Exploration Site.

    NASA Astrophysics Data System (ADS)

    Son, Jeong-Sul; Kim, Jung-ho; Park, Sam-gyu; Park, My-Kyung

    2016-04-01

    Complex resistivity (CR) method is a frequency domain induced polarization (IP) method. It is also known as Spectral IP (SIP) method, if wider frequencies are used in data acquisition and interpretation. Although it takes more times than conventional time domain IP method, its data quality is more stable because its data acquisition which measures amplitude and phase is done when the source current is being injected. Our research group has been studying the modeling and inversion algorithms of complex resistivity (CR) method since several years ago and recently applied developed algorithms to various real field application. Due to tough terrain in our country, Profile survey and 2D interpretation were generally used. But to get more precise interpretation, three dimensional modeling and inversion algorithm is required. We developed three dimensional inversion algorithm for this purpose. In the inversion, we adopt the method of adaptive lagraingian multiplier which is automatically set based on the size of error misfit and model regularization norm. It was applied on the real data acquired for mineral exploration sites. CR data was acquired with the Zeta system, manufactured by Zonge Co. In the inversion, only the lower frequency data is used considering its quality and developed 3D inversion algorithm was applied to the acquired data set. Its results were compared to those of time domain IP data conducted at the same site. Resistivity image sections of CR and conventional resistivity method were almost identical. Phase anomalies were well matched with chargeability anomalies and the mining history of the test site. Each anomalies were well discriminated in 3D interpretation than those of 2D. From those experiments, we know that CR method was very effective for the mineral exploration.

  9. Quantization of the diagonal resistance : density gradients and the empirical resistance rule in a 2D system.

    SciTech Connect

    Pan, Wei; Stormer, H. L.; Vicente, C. L.; Sullivan, N. S.; Xia, J. S.; Adams, E. D.; West, Ken W.; Tsui, Daniel Chee; Pfeiffer, Loren N.; Baldwin, K. W.

    2005-04-01

    We have observed quantization of the diagonal resistance, R{sub xx}, at the edges of several quantum Hall states. Each quantized R{sub xx} value is close to the difference between the two adjacent Hall plateaus in the off-diagonal resistance, R{sub xy}. Peaks in R{sub xx} occur at different positions in positive and negative magnetic fields. Practically all R{sub xx} features can be explained quantitatively by a 1%/cm electron density gradient. Therefore, R{sub xx} is determined by Rxy and unrelated to the diagonal resistivity {rho}{sub xx}. Our findings throw an unexpected light on the empirical resistivity rule for 2D systems.

  10. Imaging geological contact utilizing 2D resistivity method for light rail transit (LRT) track alignment

    NASA Astrophysics Data System (ADS)

    Ali, Nisa'; Saad, Rosli; Muztaza, Nordiana M.; Ismail, Noer E. H.

    2013-05-01

    The purpose of this study was to locate the geological contact using 2D resistivity method for Light Rail Transit (LRT) track alignment. The resistivity method was conducted on eight survey lines with the length of line 1 was 600m. The length of line 2, 3, 4, 5, 6, and 7 were 200m each while line 8 is 115m. All the survey used minimum electrode spacing of 5m and using Pole-dipole array with minimum current is 2mA and maximum was 20mA. The result obtained from the pseudosection showed that the area generally divided into three main zones, fill materials/residual soil with a resistivity value of <500 Ωm, saturated zone with a resistivity value of 30-100 Ωm and bedrock with a resistivity value of >2000 Ωm. Three fractured zones were detected along line L1 and a lot of boulders were detected at L1, L3, L4, L5 and L6. The geological contact was between the residual soil and granite bedrock.

  11. Adaptive finite element modeling of direct current resistivity in 2-D generally anisotropic structures

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Li, Yuguo; Liu, Ying

    2016-07-01

    In this paper, we present an adaptive finite element (FE) algorithm for direct current (DC) resistivity modeling in 2-D generally anisotropic conductivity structures. Our algorithm is implemented on an unstructured triangular mesh that readily accommodates complex structures such as topography and dipping layers and so on. We implement a self-adaptive, goal-oriented grid refinement algorithm in which the finite element analysis is performed on a sequence of refined grids. The grid refinement process is guided by an a posteriori error estimator. The problem is formulated in terms of total potentials where mixed boundary conditions are incorporated. This type of boundary condition is superior to the Dirichlet type of conditions and improves numerical accuracy considerably according to model calculations. We have verified the adaptive finite element algorithm using a two-layered earth with azimuthal anisotropy. The FE algorithm with incorporation of mixed boundary conditions achieves high accuracy. The relative error between the numerical and analytical solutions is less than 1% except in the vicinity of the current source location, where the relative error is up to 2.4%. A 2-D anisotropic model is used to demonstrate the effects of anisotropy upon the apparent resistivity in DC soundings.

  12. Regularization parameter estimation for underdetermined problems by the χ 2 principle with application to 2D focusing gravity inversion

    NASA Astrophysics Data System (ADS)

    Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.

    2014-08-01

    The {{\\chi }^{2}} principle generalizes the Morozov discrepancy principle to the augmented residual of the Tikhonov regularized least squares problem. For weighting of the data fidelity by a known Gaussian noise distribution on the measured data, when the stabilizing, or regularization, term is considered to be weighted by unknown inverse covariance information on the model parameters, the minimum of the Tikhonov functional becomes a random variable that follows a {{\\chi }^{2}}-distribution with m+p-n degrees of freedom for the model matrix G of size m\\times n, m\\geqslant n, and regularizer L of size p × n. Then, a Newton root-finding algorithm, employing the generalized singular value decomposition, or singular value decomposition when L = I, can be used to find the regularization parameter α. Here the result and algorithm are extended to the underdetermined case, m, with m+p\\geqslant n. Numerical results first contrast and verify the generalized cross validation, unbiased predictive risk estimation and {{\\chi }^{2}} algorithms when m, with regularizers L approximating zeroth to second order derivative approximations. The inversion of underdetermined 2D focusing gravity data produces models with non-smooth properties, for which typical solvers in the field use an iterative minimum support stabilizer, with both regularizer and regularizing parameter updated each iteration. The {{\\chi }^{2}} and unbiased predictive risk estimator of the regularization parameter are used for the first time in this context. For a simulated underdetermined data set with noise, these regularization parameter estimation methods, as well as the generalized cross validation method, are contrasted with the use of the L-curve and the Morozov discrepancy principle. Experiments demonstrate the efficiency and robustness of the {{\\chi }^{2}} principle and unbiased predictive risk estimator, moreover showing that the L-curve and Morozov discrepancy principle are outperformed in general

  13. Source rock potential analysis using rock physics approach and 2D seismic data inversion: case study of Great Australian Bight

    NASA Astrophysics Data System (ADS)

    Shulakova, V.

    2015-12-01

    The quantity of total organic carbon (TOC) and its type determine the ability of source rocks to generate hydrocarbons. Thus, the quantification of TOC content is an essential part of any reservoir characterisation project. Traditionally TOC is estimated from geochemical analysis of core samples. In this case the results are limited spatially by a well location as well as vertically by a number of tested samples. At the same time TOC vertical variability might be very high, changing every 1-3 m. The several methods have been deployed to estimate TOC from well-log data which provides continuous vertical profile estimations. The basin wide information might be provided by the utilization of seismic surveys. The methodology of mapping source rocks based on seismic data has been lately reported to be successful for the thick source rocks (>20 m) with relatively high TOC values up to 3-4% (Løseth et al., 2011). We employ the described approach and demonstrate our findings for a case study from Ceduna Basin (Great Australian Bight, Australia). The reported TOC values estimated from the cores go up to only 1.3%. The organic matter is contained in thin layers of claystones interlayered with sandstones. The workflow included TOC estimation from the well-log data and then seismic data inversion performed in JasonTM software. The inverted acoustic impedance decreases nonlinearly with increasing TOC content. The obtained results comprises 2D section of TOC distribution. The calculated TOC values are in a good agreement with the results of laboratory measurements. The results of this study show that TOC can be successfully estimated from seismic data inversion even in the case of low organic matter values. Further work has to be done to understand whether this approach works for different types of organic matter and stages of its maturation. Løseth H., Wensaas L., Gading M., Duffaut K., Springer M. 2001. Can hydrocarbon source rocks be identified on seismic data? Geology 39/12.

  14. Facile fabrication of crack-free large-area 2D WO3 inverse opal films by a 'dynamic hard-template' strategy on ITO substrates.

    PubMed

    Li, Hua; Thériault, Jolaine; Rousselle, Bruno; Subramanian, Balaji; Robichaud, Jacques; Djaoued, Yahia

    2014-02-28

    A 'dynamic hard-template' infiltration strategy for crack-free large-area synthesis of 2D WO3 inverse opal (IO) films on ITO substrates using a wide range of sizes of sacrificial PS spheres is reported. Thus prepared WO3 IO films were successfully used as an active electrode in the fabrication of an electrochromic device. PMID:24429973

  15. Deep-crustal magma reservoirs beneath the Nicaraguan volcanic arc, revealed by 2-D and semi 3-D inversion of magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Brasse, Heinrich; Schäfer, Anja; Díaz, Daniel; Alvarado, Guillermo E.; Muñoz, Angélica; Mütschard, Lutz

    2015-11-01

    A long-period magnetotelluric (MT) experiment was conducted in early 2009 in western Nicaragua to study the electrical resistivity and thus fluid/melt distribution at the Central American continental margin where the Cocos plate subducts beneath the Caribbean plate. Strike analysis yields a preference direction perpendicular to the profile, with moderate deviation from two-dimensionality, however. Two-dimensional modeling maps the sediments of the Nicaraguan Depression and a high-conductivity zone in the mid-crust, slightly offset from the arc. Further conductors are modeled in the backarc. However, these features are probably artifacts when a 2-D program is applied to data which show moderate 3-D characteristics. 3-D inversion clarifies the situation, and the major remaining conductive structure is now quasi directly beneath the volcanic chain and interpreted as a deep-seated magma deposit. Conductivity in the backarc is also relatively high and may either be caused by still existing partial melts beneath the Paleocene to Miocene volcanic arcs or by related metallic deposits in the aureoles of hydrothermal alteration.

  16. Two-dimensional inversion of resistivity monitoring data from the Cerro Prieto geothermal field

    SciTech Connect

    Goldstein, N.E.; Sasaki, Y.; Wilt, M.J.

    1985-03-01

    Two-dimensional iterative, least-squares inversions were performed on dc resistivity data obtained over the Cerro Prieto geothermal field at five successive times during the 1979-1983 period. The data were taken on a 20-km-long control line centered over the production region. Inversions were performed on the apparent resistivities after they were converted to percent changes in apparent resistivity relative to the base year data of 1979. The resulting solutions gave the percent change in resistivity within each of 47 rectangular blocks representing the reservoir and recharge regions. These changes are compared to and found consistent with hydrogeologic and recharge models proposed by other workers on the basis of geophysical well logs, well cuttings, well production, geochemical and reservoir engineering data. The solutions support the model of a reservoir that is being recharged mainly by cooler, less saline water, causing changes in both pore fluid resistivity and the extent of boiling near the wells. There may be a component of high-temperature recharge from below and to the east, but flow may be impeded by a two-phase zone. Notwithstanding the various sources of error and uncertainty in the data acquisition and 2-D inversions, repetitive, high precision dc resistivity monitoring seems to be a useful method for assessing reservoir conditions when used in conjunction with production and reservoir engineering data and analyses. 17 refs., 6 figs.

  17. Detection of Cracks Using 2d Electrical Resistivity Imaging In A Cultivated Soil

    NASA Astrophysics Data System (ADS)

    Samouëlian, A.; Cousin, I.; Richard, G.; Bruand, A.

    Variations of soil structure is significant for the understanding of water and gas trans- fer in soil profiles. In the context of arable land, soil structure can be compacted due to either agriculture operation (wheel tracks), or hardsetting and crusting processes. As a consequence, soil porosity is reduced which may lead to decrease water infiltra- tion and to anoxic conditions. Porosity can be increased by cracks formation due to swelling and shrinking phenomenon. We present here a laboratory experiment based on soil electrical characteristics. Electrical resistivity allows a non destructive three di- mensional and dynamical analysis of the soil structure. Our main objective is to detect cracks in the soil. Cracks form an electrical resistant object and the contrast of resis- tivity between air and soil is large enough to be detected. Our sample is an undisturbed soil block 240mm*170mm*160mm with an initial structure compacted by wheel traf- fic. Successive artificial cracks are generated. Electrodes built with 2 mm ceramic cups permit a good electrical contact at the soil surface whatever its water content. They are installed 15 mm apart and the electrical resistivity is monitored using a dipole-dipole and wenner multi-electrodes 2D imaging method which gives a picture of the subsur- face resistivity. The interpreted resistivity sections show the major soil structure. The electrical response changes with the cracks formation. The structure information ex- tracted from the electrical map are in good agreement with the artificially man-made cracks. These first results demonstrate the relevance of high resolution electrical imag- ing of the soil profile. Further experiments need to be carried out in order to monitor natural soil structure evolution during wetting-drying cycles.

  18. Resistive MHD and kinetic simulations of 2D magnetotail equilibria leading to reconnection onset

    NASA Astrophysics Data System (ADS)

    Merkin, V. G.; Sitnov, M. I.; Lyon, J.; Cassak, P.

    2013-12-01

    Recent progress in theory and fully kinetic particle-in-cell simulations of 2D magnetotail-like configurations has revealed an important class of equilibria, which can be unstable to ion tearing instability and eventually result in explosive dissipation of energy, fast plasma sheet flows, dipolarizations and changes in initial magnetic topology (reconnection). Such configurations are characterized by an increase of magnetic flux at the tailward end of the equilibrium state. While the instability and subsequent reconfiguration of the initial state exhibit kinetic signatures, the question remains, which parts of the process can be reproduced using reduced plasma models, e.g., resistive and Hall MHD. In this presentation we explore the stability of the new class of magnetotail equilibria to the resistive tearing mode and investigate its properties as a function of equilibrium parameters, e.g., the current sheet thickness and the amount of flux accumulation at the tailward end of the equilibrium, as well as other system parameters, e.g., resistivity and Lundquist number. We discuss comparative aspects of the system behavior in kinetic and resistive MHD simulations, in particular, what, if any, parameters of the MHD system lead to similar growth rates of the instability. Since the theoretical onset condition of the kinetic tearing mode can be expressed fully in MHD terms, we also investigate the effects of including this criterion as an additional constraint on the tearing onset in our resistive MHD simulations. This work is a first step toward inclusion of a kinetically-motivated description of reconnection onset in global MHD simulations of the magnetosphere.

  19. Large resistive 2D Micromegas with genetic multiplexing and some imaging applications

    NASA Astrophysics Data System (ADS)

    Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.

    2016-10-01

    The performance of the first large resistive Micromegas detectors with 2D readout and genetic multiplexing is presented. These detectors have a 50 × 50cm2 active area and are equipped with 1024 strips both in X- and Y-directions. The same genetic multiplexing pattern is applied on both coordinates, resulting in the compression of signals on 2 × 61 readout channels. Four such detectors have been built at CERN, and extensively tested with cosmics. The resistive strip film allows for very high gain operation, compensating for the charge spread on the 2 dimensions as well as the S / N loss due to the huge, 1 nF input capacitance. This film also creates a significantly different signal shape in the X- and Y-coordinates due to the charge evacuation along the resistive strips. All in all a detection efficiency above 95% is achieved with a 1 cm drift gap. Though not yet optimal, the measured 300 μm spatial resolution allows for very precise imaging in the field of muon tomography, and some applications of these detectors are presented.

  20. PDE-based geophysical modelling using finite elements: examples from 3D resistivity and 2D magnetotellurics

    NASA Astrophysics Data System (ADS)

    Schaa, R.; Gross, L.; du Plessis, J.

    2016-04-01

    We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.

  1. Joint 3D seismic travel time and full channel electrical resistivity inversion with cross gradient structure constraint

    NASA Astrophysics Data System (ADS)

    Gao, J.; Zhang, H.

    2015-12-01

    Near surface geophysical exploration for the purpose of engineering design or construction For this reason, geophysical imaging demands a higher resolution and a better quantitative interpretation. Seismic travel time tomography and direct current resistivity tomography are two main methods for the near surface survey. Because of the limited coverage of observation system and the complex physical relationship between physical parameters and observations, individual geophysical method suffers issues of non-uniqueness and resolution limitation to some degree. We have developed a joint inversion method to combine seismic travel time tomography and full channel resistivity tomography. For the full channel resistivity survey, it uses two electrodes for power supply and all the other electrodes for recording. Compared with the traditional resistivity method, it collects more data and has a better model converge. Our joint inversion strategy relies on the structure constraint enforced through minimizing cross gradients between seismic velocity and resistivity models (Gallardo, 2003). For resistivity tomography, sensitivity kernels are obtained through the adjoint method by solving the electrostatic field equation with the finite-difference method. For seismic travel time tomography, ray paths and travel times are calculated using the fast marching method. We have tested our joint inversion method for a 2D cross-hole problem where two small zones with high and low velocity/resistivity anomalies. Seismic/electrical sources/receivers are installed in two boreholes. For separate seismic inversion, the smearing effect is evident and two anomaly zones are distorted and misplaced. For separate electric resistivity inversion, although two anomaly zones are positioned correctly their values are not accurate. By joint inversion, two velocity anomaly zones are clearly imaged and the smearing effect is greatly reduced. In comparison, for the resistivity model, the two anomaly zones

  2. Global approach for transient shear wave inversion based on the adjoint method: a comprehensive 2D simulation study.

    PubMed

    Arnal, B; Pinton, G; Garapon, P; Pernot, M; Fink, M; Tanter, M

    2013-10-01

    Shear wave imaging (SWI) maps soft tissue elasticity by measuring shear wave propagation with ultrafast ultrasound acquisitions (10 000 frames s(-1)). This spatiotemporal data can be used as an input for an inverse problem that determines a shear modulus map. Common inversion methods are local: the shear modulus at each point is calculated based on the values of its neighbour (e.g. time-of-flight, wave equation inversion). However, these approaches are sensitive to the information loss such as noise or the lack of the backscattered signal. In this paper, we evaluate the benefits of a global approach for elasticity inversion using a least-squares formulation, which is derived from full waveform inversion in geophysics known as the adjoint method. We simulate an acoustic waveform in a medium with a soft and a hard lesion. For this initial application, full elastic propagation and viscosity are ignored. We demonstrate that the reconstruction of the shear modulus map is robust with a non-uniform background or in the presence of noise with regularization. Compared to regular local inversions, the global approach leads to an increase of contrast (∼+3 dB) and a decrease of the quantification error (∼+2%). We demonstrate that the inversion is reliable in the case when there is no signal measured within the inclusions like hypoechoic lesions which could have an impact on medical diagnosis.

  3. Modeling and inversion Matlab algorithms for resistivity, induced polarization and seismic data

    NASA Astrophysics Data System (ADS)

    Karaoulis, M.; Revil, A.; Minsley, B. J.; Werkema, D. D.

    2011-12-01

    M. Karaoulis (1), D.D. Werkema (3), A. Revil (1,2), A., B. Minsley (4), (1) Colorado School of Mines, Dept. of Geophysics, Golden, CO, USA. (2) ISTerre, CNRS, UMR 5559, Université de Savoie, Equipe Volcan, Le Bourget du Lac, France. (3) U.S. EPA, ORD, NERL, ESD, CMB, Las Vegas, Nevada, USA . (4) USGS, Federal Center, Lakewood, 10, 80225-0046, CO. Abstract We propose 2D and 3D forward modeling and inversion package for DC resistivity, time domain induced polarization (IP), frequency-domain IP, and seismic refraction data. For the resistivity and IP case, discretization is based on rectangular cells, where each cell has as unknown resistivity in the case of DC modelling, resistivity and chargeability in the time domain IP modelling, and complex resistivity in the spectral IP modelling. The governing partial-differential equations are solved with the finite element method, which can be applied to both real and complex variables that are solved for. For the seismic case, forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wavepaths are materialized by Fresnel volumes rather than by conventional rays. This approach accounts for complicated velocity models and is advantageous because it considers frequency effects on the velocity resolution. The inversion can accommodate data at a single time step, or as a time-lapse dataset if the geophysical data are gathered for monitoring purposes. The aim of time-lapse inversion is to find the change in the velocities or resistivities of each model cell as a function of time. Different time-lapse algorithms can be applied such as independent inversion, difference inversion, 4D inversion, and 4D active time constraint inversion. The forward algorithms are benchmarked against analytical solutions and inversion results are compared with existing ones. The algorithms are packaged as Matlab codes with a simple Graphical User Interface. Although the code is parallelized for multi

  4. Optimized arrays for 2-D resistivity survey lines with a large number of electrodes

    NASA Astrophysics Data System (ADS)

    Loke, M. H.; Wilkinson, P. B.; Chambers, J. E.; Uhlemann, S. S.; Sorensen, J. P. R.

    2015-01-01

    Previous studies show that optimized arrays generated using the 'Compare R' method have significantly better resolution than conventional arrays. This method determines the optimum set of arrays by selecting those that give the maximum model resolution. The number of possible arrays (the comprehensive data set) increases with the fourth power of the number of electrodes. The optimization method faces practical limitations for 2-D survey lines with more than 60 electrodes where the number of possible arrays exceeds a million. Several techniques are proposed to reduce the calculation time for such survey lines. A single-precision version of the 'Compare R' algorithm using a new ranking function reduces the calculation time by two to eight times while providing results similar to the double-precision version. Recent improvements in computer GPU technology can reduce the calculation time by about seven times. The calculation time is reduced by half by using the fact that arrays that are symmetrical about the center of the line produce identical changes in the model resolution values. It is further reduced by more than thirty times by calculating the Sherman-Morrison update for all the possible two-electrode combinations, which are then used to calculate the model resolution values for the four-electrode arrays. The calculation time is reduced by more then ten times by using a subset of the comprehensive data set consisting of only symmetrical arrays. Tests with a synthetic model and field data set show that optimized arrays derived from this subset produce inversion models with differences of less than 10% from those derived using the full comprehensive data set. The optimized data sets produced models that are more accurate than the Wenner-Schlumberger array data sets in all the tests.

  5. Smooth 2-D ocean sound speed from Laplace and Laplace-Fourier domain inversion of seismic oceanography data

    NASA Astrophysics Data System (ADS)

    Blacic, Tanya M.; Jun, Hyunggu; Rosado, Hayley; Shin, Changsoo

    2016-02-01

    In seismic oceanography, processed images highlight small temperature changes, but inversion is needed to obtain absolute temperatures. Local search-based full waveform inversion has a lower computational cost than global search but requires accurate starting models. Unfortunately, most marine seismic data have little associated hydrographic data and the band-limited nature of seismic data makes extracting the long wavelength sound speed trend directly from seismic data inherently challenging. Laplace and Laplace-Fourier domain inversion (LDI) can use rudimentary starting models without prior information about the medium. Data are transformed to the Laplace domain, and a smooth sound speed model is extracted by examining the zero and low frequency components of the damped wavefield. We applied LDI to five synthetic data sets based on oceanographic features and recovered smoothed versions of our synthetic models, showing the viability of LDI for creating starting models suitable for more detailed inversions.

  6. Altered NK Cell Development and Enhanced NK Cell-Mediated Resistance to MCMV in NKG2D-Deficient Mice

    PubMed Central

    Zafirova, Biljana; Mandarić, Sanja; Antulov, Ronald; Krmpotić, Astrid; Jonsson, Helena; Yokoyama, Wayne M.; Jonjić, Stipan; Polić, Bojan

    2009-01-01

    Summary NKG2D is a potent activating receptor on NK cells which acts as a molecular sensor for stressed cells expressing NKG2D ligands such as infected or tumor transformed cells. Although NKG2D is expressed on NK cell precursors, its role in NK cell development is still not known. We have generated NKG2D-deficient mice by targeting the Klrk1 locus. Here we provide evidence for an important regulatory role of NKG2D in the development of NK cells. The absence of NKG2D causes faster division of NK cells, perturbation in size of some NK cell subpopulations and their augmented sensitivity to apoptosis. As expected, NKG2D−/− NK cells are less responsive to tumor targets expressing NKG2D ligands. NKG2D−/− mice, however, show an enhanced NK cell-mediated resistance to MCMV infection as a consequence of NK cell dysregulation. Altogether, these findings provide evidence for yet unknown regulatory function of NKG2D in NK cell physiology. PMID:19631564

  7. Estimation of Random Medium Parameters from 2D Post-Stack Seismic Data and Its Application in Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Yang, X.; Zhu, P.; Gu, Y.; Xu, Z.

    2015-12-01

    Small scale heterogeneities of subsurface medium can be characterized conveniently and effectively using a few simple random medium parameters (RMP), such as autocorrelation length, angle and roughness factor, etc. The estimation of these parameters is significant in both oil reservoir prediction and metallic mine exploration. Poor accuracy and low stability existed in current estimation approaches limit the application of random medium theory in seismic exploration. This study focuses on improving the accuracy and stability of RMP estimation from post-stacked seismic data and its application in the seismic inversion. Experiment and theory analysis indicate that, although the autocorrelation of random medium is related to those of corresponding post-stacked seismic data, the relationship is obviously affected by the seismic dominant frequency, the autocorrelation length, roughness factor and so on. Also the error of calculation of autocorrelation in the case of finite and discrete model decreases the accuracy. In order to improve the precision of estimation of RMP, we design two improved approaches. Firstly, we apply region growing algorithm, which often used in image processing, to reduce the influence of noise in the autocorrelation calculated by the power spectrum method. Secondly, the orientation of autocorrelation is used as a new constraint in the estimation algorithm. The numerical experiments proved that it is feasible. In addition, in post-stack seismic inversion of random medium, the estimated RMP may be used to constrain inverse procedure and to construct the initial model. The experiment results indicate that taking inversed model as random medium and using relatively accurate estimated RMP to construct initial model can get better inversion result, which contained more details conformed to the actual underground medium.

  8. A Fast Parallel Algorithm for Selected Inversion of Structured Sparse Matrices with Application to 2D Electronic Structure Calculations

    SciTech Connect

    Lin, Lin; Yang, Chao; Lu, Jiangfeng; Ying, Lexing; E, Weinan

    2009-09-25

    We present an efficient parallel algorithm and its implementation for computing the diagonal of $H^-1$ where $H$ is a 2D Kohn-Sham Hamiltonian discretized on a rectangular domain using a standard second order finite difference scheme. This type of calculation can be used to obtain an accurate approximation to the diagonal of a Fermi-Dirac function of $H$ through a recently developed pole-expansion technique \\cite{LinLuYingE2009}. The diagonal elements are needed in electronic structure calculations for quantum mechanical systems \\citeHohenbergKohn1964, KohnSham 1965,DreizlerGross1990. We show how elimination tree is used to organize the parallel computation and how synchronization overhead is reduced by passing data level by level along this tree using the technique of local buffers and relative indices. We analyze the performance of our implementation by examining its load balance and communication overhead. We show that our implementation exhibits an excellent weak scaling on a large-scale high performance distributed parallel machine. When compared with standard approach for evaluating the diagonal a Fermi-Dirac function of a Kohn-Sham Hamiltonian associated a 2D electron quantum dot, the new pole-expansion technique that uses our algorithm to compute the diagonal of $(H-z_i I)^-1$ for a small number of poles $z_i$ is much faster, especially when the quantum dot contains many electrons.

  9. The cone penetration test and 2D imaging resistivity as tools to simulate the distribution of hydrocarbons in soil

    NASA Astrophysics Data System (ADS)

    Pérez-Corona, M.; García, J. A.; Taller, G.; Polgár, D.; Bustos, E.; Plank, Z.

    2016-02-01

    The purpose of geophysical electrical surveys is to determine the subsurface resistivity distribution by making measurements on the ground surface. From these measurements, the true resistivity of the subsurface can be estimated. The ground resistivity is related to various geological parameters, such as the mineral and fluid content, porosity and degree of water saturation in the rock. Electrical resistivity surveys have been used for many decades in hydrogeological, mining and geotechnical investigations. More recently, they have been used for environmental surveys. To obtain a more accurate subsurface model than is possible with a simple 1-D model, a more complex model must be used. In a 2-D model, the resistivity values are allowed to vary in one horizontal direction (usually referred to as the x direction) but are assumed to be constant in the other horizontal (the y) direction. A more realistic model would be a fully 3-D model where the resistivity values are allowed to change in all three directions. In this research, a simulation of the cone penetration test and 2D imaging resistivity are used as tools to simulate the distribution of hydrocarbons in soil.

  10. Fine-scale thermohaline ocean structure retrieved with 2-D prestack full-waveform inversion of multichannel seismic data: Application to the Gulf of Cadiz (SW Iberia)

    NASA Astrophysics Data System (ADS)

    Dagnino, D.; Sallarès, V.; Biescas, B.; Ranero, C. R.

    2016-08-01

    This work demonstrates the feasibility of 2-D time-domain, adjoint-state acoustic full-waveform inversion (FWI) to retrieve high-resolution models of ocean physical parameters such as sound speed, temperature and salinity. The proposed method is first described and then applied to prestack multichannel seismic (MCS) data acquired in the Gulf of Cadiz (SW Iberia) in 2007 in the framework of the Geophysical Oceanography project. The inversion strategy flow includes specifically designed data preconditioning for acoustic noise reduction, followed by the inversion of sound speed in the shotgather domain. We show that the final sound speed model has a horizontal resolution of ˜ 70 m, which is two orders of magnitude better than that of the initial model constructed with coincident eXpendable Bathy Thermograph (XBT) data, and close to the theoretical resolution of O(λ). Temperature (T) and salinity (S) are retrieved with the same lateral resolution as sound speed by combining the inverted sound speed model with the thermodynamic equation of seawater and a local, depth-dependent T-S relation derived from regional conductivity-temperature-depth (CTD) measurements of the National Oceanic and Atmospheric Administration (NOAA) database. The comparison of the inverted T and S models with XBT and CTD casts deployed simultaneously to the MCS acquisition shows that the thermohaline contrasts are resolved with an accuracy of 0.18oC for temperature and 0.08 PSU for salinity. The combination of oceanographic and MCS data into a common, pseudo-automatic inversion scheme allows to quantitatively resolve submeso-scale features that ought to be incorporated into larger-scale ocean models of oceans structure and circulation.

  11. Combined analysis of 2-D electrical resistivity, seismic refraction and geotechnical investigations for Bukit Bunuh complex crater

    NASA Astrophysics Data System (ADS)

    Azwin, I. N.; Saad, Rosli; Saidin, Mokhtar; Nordiana, M. M.; Anderson Bery, Andy; Hidayah, I. N. E.

    2015-01-01

    Interest in studying impact crater on earth has increased tremendously due to its importance in geologic events, earth inhabitant history as well as economic value. The existences of few shock metamorphism and crater morphology evidences are discovered in Bukit Bunuh, Malaysia thus detailed studies are performed using geophysical and geotechnical methods to verify the type of the crater and characteristics accordingly. This paper presents the combined analysis of 2-D electrical resistivity, seismic refraction, geotechnical SPT N value, moisture content and RQD within the study area. Three stages of data acquisition are made starting with regional study followed by detailed study on West side and East side. Bulk resistivity and p-wave seismic velocity were digitized from 2-D resistivity and seismic sections at specific distance and depth for corresponding boreholes and samples taken. Generally, Bukit Bunuh shows the complex crater characteristics. Standard table of bulk resistivity and p-wave seismic velocity against SPT N value, moisture content and RQD are produce according to geological classifications of impact crater; inside crater, rim/slumped terrace and outside crater.

  12. Flip angle profile correction for T₁ and T₂ quantification with look-locker inversion recovery 2D steady-state free precession imaging.

    PubMed

    Cooper, Mitchell A; Nguyen, Thanh D; Spincemaille, Pascal; Prince, Martin R; Weinsaft, Jonathan W; Wang, Yi

    2012-11-01

    Fast methods using balanced steady-state free precession have been developed to reduce the scan time of T₁ and T₂ mapping. However, flip angle (FA) profiles created by the short radiofrequency pulses used in steady-state free precession deviate substantially from the ideal rectangular profile, causing T₁ and T₂ mapping errors. The purpose of this study was to develop a FA profile correction for T₁ and T₂ mapping with Look-Locker 2D inversion recovery steady-state free precession and to validate this method using 2D spin echo as a reference standard. Phantom studies showed consistent improvement in T₁ and T₂ accuracy using profile correction at multiple FAs. Over six human calves, profile correction provided muscle T₁ estimates with mean error ranging from excellent (-0.6%) at repetition time/FA = 18 ms/60° to acceptable (6.8%) at repetition time/FA = 4.9 ms/30°, while muscle T₂ estimates were less accurate with mean errors of 31.2% and 47.9%, respectively.

  13. Measurement of a 2D fast-ion velocity distribution function by tomographic inversion of fast-ion D-alpha spectra

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Geiger, B.; Jacobsen, A. S.; García-Muñoz, M.; Heidbrink, W. W.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; Tardini, G.; Weiland, M.; the ASDEX Upgrade Team

    2014-02-01

    We present the first measurement of a local fast-ion 2D velocity distribution function f(v‖, v⊥). To this end, we heated a plasma in ASDEX Upgrade by neutral beam injection and measured spectra of fast-ion Dα (FIDA) light from the plasma centre in three views simultaneously. The measured spectra agree very well with synthetic spectra calculated from a TRANSP/NUBEAM simulation. Based on the measured FIDA spectra alone, we infer f(v‖, v⊥) by tomographic inversion. Salient features of our measurement of f(v‖, v⊥) agree reasonably well with the simulation: the measured as well as the simulated f(v‖, v⊥) are lopsided towards negative velocities parallel to the magnetic field, and they have similar shapes. Further, the peaks in the simulation of f(v‖, v⊥) at full and half injection energies of the neutral beam also appear in the measurement at similar velocity-space locations. We expect that we can measure spectra in up to seven views simultaneously in the next ASDEX Upgrade campaign which would further improve measurements of f(v‖, v⊥) by tomographic inversion.

  14. Different scenarios for inverse estimation of soil hydraulic parameters from double-ring infiltrometer data using HYDRUS-2D/3D

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Parisa; Ghorbani-Dashtaki, Shoja; Mosaddeghi, Mohammad Reza; Shirani, Hossein; Nodoushan, Ali Reza Mohammadi

    2016-04-01

    In this study, HYDRUS-2D/3D was used to simulate ponded infiltration through double-ring infiltrometers into a hypothetical loamy soil profile. Twelve scenarios of inverse modelling (divided into three groups) were considered for estimation of Mualem-van Genuchten hydraulic parameters. In the first group, simulation was carried out solely using cumulative infiltration data. In the second group, cumulative infiltration data plus water content at h = -330 cm (field capacity) were used as inputs. In the third group, cumulative infiltration data plus water contents at h = -330 cm (field capacity) and h = -15 000 cm (permanent wilting point) were used simultaneously as predictors. The results showed that numerical inverse modelling of the double-ring infiltrometer data provided a reliable alternative method for determining soil hydraulic parameters. The results also indicated that by reducing the number of hydraulic parameters involved in the optimization process, the simulation error is reduced. The best one in infiltration simulation which parameters α, n, and Ks were optimized using the infiltration data and field capacity as inputs. Including field capacity as additional data was important for better optimization/definition of soil hydraulic functions, but using field capacity and permanent wilting point simultaneously as additional data increased the simulation error.

  15. Acquisition of a single EZH2 D1 domain mutation confers acquired resistance to EZH2-targeted inhibitors

    PubMed Central

    Baker, Theresa; Nerle, Sujata; Pritchard, Justin; Zhao, Boyang; Rivera, Victor M.

    2015-01-01

    Although targeted therapies have revolutionized cancer treatment, overcoming acquired resistance remains a major clinical challenge. EZH2 inhibitors (EZH2i), EPZ-6438 and GSK126, are currently in the early stages of clinical evaluation and the first encouraging signs of efficacy have recently emerged in the clinic. To anticipate mechanisms of resistance to EZH2i, we used a forward genetic platform combining a mutagenesis screen with next generation sequencing technology and identified a hotspot of secondary mutations in the EZH2 D1 domain (Y111 and I109). Y111D mutation within the WT or A677G EZH2 allele conferred robust resistance to both EPZ-6438 and GSK126, but it only drove a partial resistance within the Y641F allele. EZH2 mutants required histone methyltransferase (HMT) catalytic activity and the polycomb repressive complex 2 (PRC2) components, SUZ12 and EED, to drive drug resistance. Furthermore, D1 domain mutations not only blocked the ability of EZH2i to bind to WT and A677G mutant, but also abrogated drug binding to the Y641F mutant. These data provide the first cellular validation of the mechanistic model underpinning the oncogenic function of WT and mutant EZH2. Importantly, our findings suggest that acquired-resistance to EZH2i may arise in WT and mutant EZH2 patients through a single mutation that remains targetable by second generation EZH2i. PMID:26360609

  16. Tuning and simulating a 193-nm resist for 2D applications

    NASA Astrophysics Data System (ADS)

    Howard, William B.; Wiaux, Vincent; Ercken, Monique; Bui, Bang; Byers, Jeff D.; Pochkowski, Mike

    2002-07-01

    For some applications, the usefulness of lithography simulation results depends strongly on the matching between experimental conditions and the simulation input parameters. If this matching is optimized and other sources of error are minimized, then the lithography model can be used to explain printed wafer experimental results. Further, simulation can be useful in predicting the results or in choosing the correct set of experiments. In this paper, PROLITH and ProDATA AutoTune were used to systematically vary simulation input parameters to match measured results on printed wafers used in a 193 nm process. The validity of the simulation parameters was then checked using 3D simulation compared to 2D top-down SEM images. The quality of matching was evaluated using the 1D metrics of average gate CD and Line End Shortening (LES). To ensure the most accurate simulation, a new approach was taken to create a compound mask from GDSII contextual information surrounding an accurate SEM image of the reticle region of interest. Corrections were made to account for all metrology offsets.

  17. Detection of metallic and plastic landmines using the GPR and 2-D resistivity techniques

    NASA Astrophysics Data System (ADS)

    Metwaly, M.

    2007-12-01

    Low and non-metallic landmines are one of the most difficult subsurface targets to be detected using several geophysical techniques. Ground penetrating radar (GPR) performance at different field sites shows great success in detecting metallic landmines. However significant limitations are taking place in the case of low and non-metallic landmines. Electrical resistivity imaging (ERI) technique is tested to be an alternative or confirmation technique for detecting the metallic and non-metallic landmines in suspicious cleared areas. The electrical resistivity responses using forward modeling for metallic and non-metallic landmines buried in dry and wet environments utilizing the common electrode configurations have been achieved. Roughly all the utilized electrode arrays can establish the buried metallic and plastic mines correctly in dry and wet soil. The accuracy differs from one array to the other based on the relative resistivity contrast to the host soil and the subsurface distribution of current and potential lines as well as the amplitude of the noises in the data. The ERI technique proved to be fast and effective tool for detecting the non-metallic mines especially in the conductive environment whereas the performances of the other metal detector (MD) and GPR techniques show great limitation.

  18. Phosphoproteomic analysis of wild-type and antimony-resistant Leishmania braziliensis lines by 2D-DIGE technology.

    PubMed

    Moreira, Douglas de Souza; Pescher, Pascale; Laurent, Christine; Lenormand, Pascal; Späth, Gerald F; Murta, Silvane M F

    2015-09-01

    Protein phosphorylation is one of the most studied post-translational modifications that is involved in different cellular events in Leishmania. In this study, we performed a comparative phosphoproteomics analysis of potassium antimonyl tartrate (SbIII)-resistant and -susceptible lines of Leishmania braziliensis using a 2D-DIGE approach followed by MS. In order to investigate the differential phosphoprotein abundance associated with the drug-induced stress response and SbIII-resistance mechanisms, we compared nontreated and SbIII-treated samples of each line. Pair wise comparisons revealed a total of 116 spots that showed a statistically significant difference in phosphoprotein abundance, including 11 and 34 spots specifically correlated with drug treatment and resistance, respectively. We identified 48 different proteins distributed into seven biological process categories. The category "protein folding/chaperones and stress response" is mainly implicated in response to SbIII treatment, while the categories "antioxidant/detoxification," "metabolic process," "RNA/DNA processing," and "protein biosynthesis" are modulated in the case of antimony resistance. Multiple sequence alignments were performed to validate the conservation of phosphorylated residues in nine proteins identified here. Western blot assays were carried out to validate the quantitative phosphoproteome analysis. The results revealed differential expression level of three phosphoproteins in the lines analyzed. This novel study allowed us to profile the L. braziliensis phosphoproteome, identifying several potential candidates for biochemical or signaling networks associated with antimony resistance phenotype in this parasite.

  19. A 2D vector map watermarking algorithm resistant to simplication attack

    NASA Astrophysics Data System (ADS)

    Wang, Chuanjian; Liang, Bin; Zhao, Qingzhan; Qiu, Zuqi; Peng, Yuwei; Yu, Liang

    2009-12-01

    Vector maps are valuable asset of data producers. How to protect copyright of vector maps effectively using digital watermarking is a hot research issue. In this paper, we propose a new robust and blind watermarking algorithm resilient to simplification attack. We proof that spatial topological relation between map objects bears an important property of approximate simplification invariance. We choose spatial topological relations as watermark feature domain and embed watermarks by slightly modifying spatial topological relation between map objects. Experiment shows that our algorithm has good performance to resist simplification attack and tradeoff of the robustness and data fidelity is acquired.

  20. 2D Resistive Magnetohydrodynamics Calculations with an Arbitrary Lagrange Eulerian Code

    NASA Astrophysics Data System (ADS)

    Rousculp, C. L.; Gianakon, T. A.; Lipnikov, K. N.; Nelson, E. M.

    2015-11-01

    Single fluid resistive MHD is useful for modeling Z-pinch configurations in cylindrical geometry. One such example is thin walled liners for shock physics or HEDP experiments driven by capacitor banks such as the LANL's PHELIX or Sandia-Z. MHD is also useful for modeling high-explosive-driven flux compression generators (FCGs) and their high-current switches. The resistive MHD in our arbitrary Lagrange Eulerian (ALE) code operates in one and two dimensions in both Cartesian and cylindrical geometry. It is implemented as a time-step split operator, which consists of, ideal MHD connected to the explicit hydro momentum and energy equations and a second order mimetic discretization solver for implicit solution of the magnetic diffusion equation. In a staggered grid scheme, a single-component of cell-centered magnetic flux is conserved in the Lagrangian frame exactly, while magnetic forces are accumulated at the nodes. Total energy is conserved to round off. Total flux is conserved under the ALE relaxation and remap. The diffusion solver consistently computes Ohmic heating. Both Neumann and Dirichlet boundary conditions are available with coupling to external circuit models. Example calculations will be shown.

  1. A parallel algorithm for 2D visco-acoustic frequency-domain full-waveform inversion: application to a dense OBS data set

    NASA Astrophysics Data System (ADS)

    Sourbier, F.; Operto, S.; Virieux, J.

    2006-12-01

    We present a distributed-memory parallel algorithm for 2D visco-acoustic full-waveform inversion of wide-angle seismic data. Our code is written in fortran90 and use MPI for parallelism. The algorithm was applied to real wide-angle data set recorded by 100 OBSs with a 1-km spacing in the eastern-Nankai trough (Japan) to image the deep structure of the subduction zone. Full-waveform inversion is applied sequentially to discrete frequencies by proceeding from the low to the high frequencies. The inverse problem is solved with a classic gradient method. Full-waveform modeling is performed with a frequency-domain finite-difference method. In the frequency-domain, solving the wave equation requires resolution of a large unsymmetric system of linear equations. We use the massively parallel direct solver MUMPS (http://www.enseeiht.fr/irit/apo/MUMPS) for distributed-memory computer to solve this system. The MUMPS solver is based on a multifrontal method for the parallel factorization. The MUMPS algorithm is subdivided in 3 main steps: a symbolic analysis step that performs re-ordering of the matrix coefficients to minimize the fill-in of the matrix during the subsequent factorization and an estimation of the assembly tree of the matrix. Second, the factorization is performed with dynamic scheduling to accomodate numerical pivoting and provides the LU factors distributed over all the processors. Third, the resolution is performed for multiple sources. To compute the gradient of the cost function, 2 simulations per shot are required (one to compute the forward wavefield and one to back-propagate residuals). The multi-source resolutions can be performed in parallel with MUMPS. In the end, each processor stores in core a sub-domain of all the solutions. These distributed solutions can be exploited to compute in parallel the gradient of the cost function. Since the gradient of the cost function is a weighted stack of the shot and residual solutions of MUMPS, each processor

  2. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that

  3. 2D Time-lapse Resistivity Monitoring of an Organic Produced Gas Plume in a Landfill using ERT.

    NASA Astrophysics Data System (ADS)

    Amaral, N. D.; Mendonça, C. A.; Doherty, R.

    2014-12-01

    This project has the objective to study a landfill located on the margins of Tietê River, in São Paulo, Brazil, using the electroresistivity tomography method (ERT). Due to huge organic matter concentrations in the São Paulo Basin quaternary sediments, there is subsurface depth related biogas accumulation (CH4 and CO2), induced by anaerobic degradation of the organic matter. 2D resistivity sections were obtained from a test area since March 2012, a total of 7 databases, being the last one dated from October 2013. The studied line has the length of 56m, the electrode interval is of 2m. In addition, there are two boreholes along the line (one with 3 electrodes and the other one with 2) in order to improve data quality and precision. The boreholes also have a multi-level sampling system that indicates the fluid (gas or water) presence in relation to depth. With our results it was possible to map the gas plume position and its area of extension in the sections as it is a positive resistivity anomaly, with the gas level having approximately 5m depth. With the time-lapse analysis (Matlab script) between the obtained 2D resistivity sections from the site, it was possible to map how the biogas volume and position change in the landfill in relation to time. Our preliminary results show a preferential gas pathway through the subsurface studied area. A consistent relation between the gas depth and obtained microbiological data from archea and bacteria population was also observed.

  4. Chronicle of Bukit Bunuh for possible complex impact crater by 2-D resistivity imaging (2-DERI) with geotechnical borehole records

    NASA Astrophysics Data System (ADS)

    Jinmin, M.; Saad, R.; Saidin, M.; Ismail, N. A.

    2015-03-01

    A 2-D resistivity imaging (2-DERI) study was conducted at Bukit Bunuh, Lenggong, Perak. Archaeological Global Research Centre, Universiti Sains Malaysia shows the field evidence of shock metamorphisms (suevite breccia) and crater morphology at Bukit Bunuh. A regional 2-DERI study focusing at Bukit Bunuh to identify the features of subsurface and detail study was then executed to verify boundary of the crater with the rebound effects at Bukit Bunuh which covered approximately 132.25 km2. 2-DERI survey used resistivity equipment by ABEM SAS4000 Terrameter and ES10-64C electrode slector with pole-dipole array. The survey lines were carried out using `roll-along' technique. The data were processed and analysed using RES2DINV, Excel and Surfer software to obtain resistivity results for qualitative interpretations. Bedrock depths were digitized from section by sections obtained. 2-DERI results gives both regional and detail study shows that the study area was divided into two main zones, overburden consists of alluvium mix with boulders embedded with resistivity value of 10-800 Ωm and granitic bedrock with resistivity value of >1500 Ωm and depth 5-50 m. The low level bedrock was circulated by high level bedrock (crater rim) was formed at the same area with few spots of high level bedrock which appeared at the centre of the rim which suspected as rebound zones (R). Assimilations of 2-DERI with boreholes are successful give valid and reliable results. The results of the study indicates geophysical method are capable to retrieve evidence of meteorite impact subsurface of the studied area.

  5. Basement blocks and basin inversion structures mapped using reprocessed Gulfrex 2D seismic data, Caribbean-South American oblique collisional zone

    NASA Astrophysics Data System (ADS)

    Escalona, A.; Sena, A.; Mann, P.

    2003-12-01

    We have reprocessed and reinterpreted more than 10,000 km of "Gulfrex" multi-channel 2D seismic reflection lines collected by Gulf Oil Corporation in 1972 along the northern margin of South America (offshore Venezuela and Trinidad). These digital data were donated to the University of Texas Institute for Geophysics and represent the largest single, digital reflection survey of the region. Reprocessing of these data included: format correction, filtering, post-stack multiple suppression, and fk migration. Reprocessed data were loaded and interpreted on a workstation. The data straddle a 2,000,000 km2 zone of Paleocene-Recent, time-transgressive, oblique collision between the Caribbean arc system and the passive continental margin of northern South America. Free-air, satellite gravity data shows the remarkable 1000-km-scale continuity of four basement ridges between the uncollided part of the Caribbean arc system (NS-trending Lesser Antilles arc) and the EW-trending collisional area north of Venezuela. The basement ridges involved in the Venezuelan collisional zone include: 1) Aruba-Bonaire-Curacao ridge that can be traced as a continuous feature to the Aves ridge remnant arc of the Lesser Antilles; 2) the partially inverted Blanquilla-Bonaire basin that can be traced into the Grenada back-arc basin; 3) Margarita-Los Testigos platform that can be traced to the Lesser Antilles volcanic arc; and 4) foreland basins and fold-thrust belts of eastern Venezuela (Serrania del Interior and Maturin basin) that can be traced to the Tobago forearc basin and Barbados accretionary prism. Gulfrex data document the progressive change of basinal fault systems from NS-striking normal faults formed in extensional, Lesser Antilles intra-arc settings to rotated and inverted, NE and EW-striking normal faults deformed in the collisional area north of Venezuela. Age of initial shortening of basinal areas and inversion of normal faults setting does not follow the simple, expected pattern of

  6. Inversions

    ERIC Educational Resources Information Center

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  7. Time-lapse 2D electrical resistivity tomographies for investigating the Picerno landslide (Basilicata Region, southern Italy)

    NASA Astrophysics Data System (ADS)

    Luongo, Raffaele; de Bari, Claudia; Calamita, Giuseppe; Loperte, Antonio; Perrone, Angela; Satriani, Antonio; Votta, Mario; Lapenna, Vincenzo

    2010-05-01

    The rainwater infiltration into the soil and the increase of pore water pressure in the vadose zone can be considered the main causes of shallow landslides triggering. The standard techniques used to measure the water content of the soil and the piezometric levels in areas of potential instability are the TDR method and the piezometric measurements, respectively. These techniques, while allowing to obtain direct information of the considered parameter, provide a punctual information about the specific hydrological characteristics of the investigated soil. Recently, the literature reports many examples of applications of indirect methods for the study and the estimate of water content in the first layers of the subsoil. In particular, the 2D electrical resistivity tomography has been applied for obtaining information about the temporal and spatial patterns of water infiltration processes. This paper reports the results obtained in the area affected by the Picerno landslide (Basilicata Region, Southern Italy), which represents one of the test sites of Morfeo project (Monitoraggio e Rischio da Frana mediante dati EO) funded by the Italian Space Agency (ASI). The studied slope has been frequently involved in reactivation phenomena the most recent of which occurred on March 2006. In the area, we have installed a prototype system for time-dependent analysis of electrical resistivity images and TDR measurements. The geophysical results are opportunely integrated with the piezometric data. The system is composed of a 48-channel cable connected to the georesistivimeter Syscal Pro Switch 48, the electrodes are placed at a distance of 1 m. Two holes used to measure the piezometric level and another four equipped with TDR probes are located along the acquisition profile. The electrical resistivity tomographies and the water content measurements are performed with time intervals selected by considering the rainfall intensity and frequency. The first preliminary result of this

  8. Obtaining valid geologic models from 3-D resistivity inversion of magnetotelluric data at Pahute Mesa, Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sweetkind, Donald S.

    2015-01-01

    The 3-D inversion was generally able to reproduce the gross resistivity structure of the “known” model, but the simulated conductive volcanic composite unit horizons were often too shallow when compared to the “known” model. Additionally, the chosen computation parameters such as station spacing appear to have resulted in computational artifacts that are difficult to interpret but could potentially be removed with further refinements of the 3-D resistivity inversion modeling technique.

  9. Imaging high stage river-water intrusion into a contaminated aquifer along a major river corridor using 2-D time-lapse surface electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Wallin, E. L.; Johnson, T. C.; Greenwood, W. J.; Zachara, J. M.

    2013-03-01

    The Hanford 300 Area is located adjacent to the Columbia River in south-central Washington State, USA, and was a former site for nuclear fuel processing operations. Waste disposal practices resulted in persistent unsaturated zone and groundwater contamination, the primary contaminant of concern being uranium. Uranium behavior at the site is intimately linked with river stage driven groundwater-river water exchange such that understanding the nature of river water intrusion into the 300 Area is critical for predicting uranium desorption and transport. In this paper, we use 2-D surface-based time-lapse electrical resistivity tomography (ERT) to image the inland intrusion of river water during high stage conditions. We inverted approximately 1200 data sets (400 per line over three lines) using high performance computing resources to produce a time-lapse sequence of changes in bulk conductivity caused by river water intrusion during the 2011 spring runoff cycle over approximately 125 days. To invert the data, we use an image differencing approach that does not require regularization in the time dimension, enabling the inversion to accommodate the sharp, time varying contrasts in conductivity imposed by the moving water table. The resulting time series for each mesh element was then analyzed using common time series analysis to reveal the timing and location of river water intrusion beneath each line. The results reveal nonuniform flows characterized by preferred flow zones where river water enters and exits quickly with stage increase and decrease, and low permeability zones with broader bulk conductivity "break through" curves and longer river water residence times.

  10. The Ritual Dimensions of Resistance: Clowning and Symbolic Inversion.

    ERIC Educational Resources Information Center

    McLaren, Peter L.

    1985-01-01

    Draws upon recent fieldwork in a Catholic junior high school to focus on the ritualized behavior of the "class clown," who resists instruction. Calls upon resistance theorists to strive for more conceptual precision in their articulation of the symbolic dimension of transgressive student behavior by utilizing a more multidisciplinary approach.…

  11. Joint inversion of acoustic and resistivity data for the estimation of gas hydrate concentration

    USGS Publications Warehouse

    Lee, Myung W.

    2002-01-01

    Downhole log measurements, such as acoustic or electrical resistivity logs, are frequently used to estimate in situ gas hydrate concentrations in the pore space of sedimentary rocks. Usually the gas hydrate concentration is estimated separately based on each log measurement. However, measurements are related to each other through the gas hydrate concentration, so the gas hydrate concentrations can be estimated by jointly inverting available logs. Because the magnitude of slowness of acoustic and resistivity values differs by more than an order of magnitude, a least-squares method, weighted by the inverse of the observed values, is attempted. Estimating the resistivity of connate water and gas hydrate concentration simultaneously is problematic, because the resistivity of connate water is independent of acoustics. In order to overcome this problem, a coupling constant is introduced in the Jacobian matrix. In the use of different logs to estimate gas hydrate concentration, a joint inversion of different measurements is preferred to the averaging of each inversion result.

  12. 2.5D complex resistivity modeling and inversion using unstructured grids

    NASA Astrophysics Data System (ADS)

    Xu, Kaijun; Sun, Jie

    2016-04-01

    The characteristic of complex resistivity on rock and ore has been recognized by people for a long time. Generally we have used the Cole-Cole Model(CCM) to describe complex resistivity. It has been proved that the electrical anomaly of geologic body can be quantitative estimated by CCM parameters such as direct resistivity(ρ0), chargeability(m), time constant(τ) and frequency dependence(c). Thus it is very important to obtain the complex parameters of geologic body. It is difficult to approximate complex structures and terrain using traditional rectangular grid. In order to enhance the numerical accuracy and rationality of modeling and inversion, we use an adaptive finite-element algorithm for forward modeling of the frequency-domain 2.5D complex resistivity and implement the conjugate gradient algorithm in the inversion of 2.5D complex resistivity. An adaptive finite element method is applied for solving the 2.5D complex resistivity forward modeling of horizontal electric dipole source. First of all, the CCM is introduced into the Maxwell's equations to calculate the complex resistivity electromagnetic fields. Next, the pseudo delta function is used to distribute electric dipole source. Then the electromagnetic fields can be expressed in terms of the primary fields caused by layered structure and the secondary fields caused by inhomogeneities anomalous conductivity. At last, we calculated the electromagnetic fields response of complex geoelectric structures such as anticline, syncline, fault. The modeling results show that adaptive finite-element methods can automatically improve mesh generation and simulate complex geoelectric models using unstructured grids. The 2.5D complex resistivity invertion is implemented based the conjugate gradient algorithm.The conjugate gradient algorithm doesn't need to compute the sensitivity matrix but directly computes the sensitivity matrix or its transpose multiplying vector. In addition, the inversion target zones are

  13. STAT3 contributes to NK cell recognition by modulating expression of NKG2D ligands in adriamycin-resistant K562/AO2 cells.

    PubMed

    Cai, Xiaohui; Lu, Xuzhang; Jia, Zhuxia; Zhang, Xiuwen; Han, Wenmin; Rong, Xiao; Ma, Lingdi; Zhou, Min; Chen, Baoan

    2015-11-01

    Leukemic cells can survive after chemotherapy by acquisition of multidrug resistance genes, but other phenotypes related to escape from immune recognition remain elusive. Adriamycin-resistant K562/AO2 cells are less susceptible to elimination by NK cells compared with wild type K562 cells due to lower expression of NKG2D ligands. Treatment of K562/AO2 cells with STAT3 inhibitor VII resulted in reduced expression of multidrug resistance gene P-glycoprotein, and up-regulation of NKG2D ligands on K562/AO2 cells. Meanwhile, K562/AO2 cells treated with STAT3 inhibitor proliferated less and were more susceptible to killing by NK cells than untreated K562/AO2 cells. The enhanced cytotoxicity of NK cells against K562/AO2 cells was partly blocked by treatment of NK cells with anti-NKG2D antibodies. These data suggest that STAT3 contributes to NK cell recognition by modulating NKG2D ligands in K562/AO2 cells, which may a mechanism by which cells survive and cause relapse of leukemia.

  14. Application of an extended Kalman filter approach to inversion of time-lapse electrical resistivity imaging data for monitoring recharge

    NASA Astrophysics Data System (ADS)

    Nenna, Vanessa; Pidlisecky, Adam; Knight, Rosemary

    2011-10-01

    We apply an extended Kalman filter (EKF) approach to inversion of time-lapse electrical resistivity imaging (ERI) field data. The EKF is a method of time series signal processing that incorporates both a state evolution model, describing changes in the physical system, and an observation model, incorporating the physics of the electrical resistivity measurement. We test the feasibility of using an EKF approach to inverting ERI data collected with 2-D surface array geometries. As a first test, we invert synthetic data generated using a simulated recharge event and water saturation distributions converted to electrical conductivity values using an Archie's law relationship. In the synthetic example we demonstrate the impact that the noise structure of the state evolution and the regularization weight have on EKF-estimated model parameters and errors. We then apply the method to inversion of field data collected to monitor changes in electrical conductivity beneath a recharge pond that is part of an aquifer storage and recovery project in northern California. Using lines of electrodes buried at a depth of 0.25 m when the base of the pond is dry, we monitor the wetting front associated with the diversion of stormflow runoff to the pond. Using field data, we demonstrate that by oversampling in time, we are able to apply the so-called random walk model for the state evolution and to build the model of observation noise directly from collected data. EKF-estimated values track changes in conductivity associated with both increasing water content in subsurface sediments and changes in the properties of the pore water, showing the method is a feasible approach for inversion of time-lapse ERI field data.

  15. Basketball shoe height and the maximal muscular resistance to applied ankle inversion and eversion moments.

    PubMed

    Ottaviani, R A; Ashton-Miller, J A; Kothari, S U; Wojtys, E M

    1995-01-01

    To determine if the height of a basketball shoe alters the maximal inversion and eversion moment that can be actively resisted by the ankle in the frontal plane, we tested 20 healthy, young adult men with no recent ankle injuries. Subjects underwent unipedal functional ankle strength testing under weightbearing conditions at 0 degrees, 16 degrees, and 32 degrees of ankle plantar flexion using a specially designed testing apparatus. Testing was performed with the subject wearing either a low- or a three quarter-top basketball shoe. Shoe height did not significantly affect an individual's ability to actively resist an eversion moment at any angle of ankle plantar flexion. However, tests at 0 degrees of ankle plantar flexion demonstrated that the three quarter-top basketball shoe we tested significantly increased the maximal resistance to an inversion moment by 29.4%. At 16 degrees of ankle plantar flexion, inversion resistance was also significantly improved by 20.4%. These results show that athletic shoe height can significantly increase the active resistance to an inversion moment in moderate ankle plantar flexion. The findings apply to a neutral foot position in the frontal plane, an orientation equivalent to the early phase of a potential ankle sprain.

  16. A Direct Inversion Scheme For Dc Resistivity Data Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Stephen, Jimmy; Manoj, C.; Singh, S. B.

    Initialization of model parameters is crucial in the conventional 1D inversion of DC electrical data. A poor guess for initial model may result in undesired estimates for final model. This necessitates an inversion technique, capable of generating the model parameters directly from field observations, without the need of apriori information. Artificial Neural Network (ANN) is a powerful tool for pattern recognition that has recently been applied to a variety of geophysical problems, including inversion. The recent attempts on 1D resistivity inversion using ANN found to be very useful in this regard, with certain limitations. This study aims at improving the ANN scheme for inversion of DC resistivity data, making use of both field data and synthetic data for training. In first step, the curve type and the number of possible layers are identified. The second step involves in the estimation of model parameters (resistivity and thick- ness of different layers). This provides with the flexibility to use the technique on field data. A 3 layer Feed Forward ANN was adopted for the problem, with different network configurations for each step. Network was trained using standard error back propa- gation with momentum. A large database was prepared incorporating field as well as synthetic Schlumberger DC resistivity data. An independent model parameter esti- mate for each curve was stored with the corresponding curve. 70 % of the database was used for training the ANN and the rest, for testing. Number of hidden neurons varied from 20 to 70, learning rate and momentum constants were optimized through trial and error. Network was trained for 30,000 - 40,000 epochs, till the sum squared error (SSE) fell below 0.05. Weights of the fully trained ANN were used to simulate ANN on test data. ANN based 1D inversion found to effective in the test database. To test the performance of ANN based inversion scheme, three type of apparent resis- tivity curves from deep resistivity sounding

  17. Global existence and uniqueness theorem to 2-D incompressible non-resistive MHD system with non-equilibrium background magnetic field

    NASA Astrophysics Data System (ADS)

    Zhai, Cuili; Zhang, Ting

    2016-09-01

    In this article, we consider the global existence and uniqueness of the solution to the 2D incompressible non-resistive MHD system with non-equilibrium background magnetic field. Our result implies that a strong enough non-equilibrium background magnetic field will guarantee the stability of the nonlinear MHD system. Beside the classical energy method, the interpolation inequalities and the algebraic structure of the equations coming from the incompressibility of the fluid are crucial in our arguments.

  18. Resistance to Cytarabine Induces the Up-regulation of NKG2D Ligands and Enhances Natural Killer Cell Lysis of Leukemic Cells1

    PubMed Central

    Ogbomo, Henry; Michaelis, Martin; Klassert, Denise; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2008-01-01

    Prolonged treatment of leukemic cells with chemotherapeutic agents frequently results in development of drug resistance. Moreover, selection of drug-resistant cell populations may be associated with changes in malignant properties such as proliferation rate, invasiveness, and immunogenicity. In the present study, the sensitivity of cytarabine (1-β-d-arabinofuranosylcytosine, araC)-resistant and parental human leukemic cell lines (T-lymphoid H9 and acute T-lymphoblastic leukemia Molt-4) to natural killer (NK) cell-mediated killing was investigated. The results obtained demonstrate that araC-resistant H9 and Molt-4 (H9rARAC100 and Molt-4rARAC100) cell lines are more sensitive to NK cell-mediated lysis than their respective parental cell lines. This increased sensitivity was associated with a higher surface expression of ligands for the NK cell-activating receptor NKG2D, notably UL16 binding protein-2 (ULBP-2) and ULBP-3 in H9rARAC100 and Molt-4rARAC100 cell lines. Blocking ULBP-2 and ULBP-3 or NKG2D with monoclonal antibody completely abrogated NK cell lysis. Constitutive phosphorylated extracellular signal-regulated kinase (ERK) but not pAKT was higher in araC-resistant cells than in parental cell lines. Inhibition of ERK using ERK inhibitor PD98059 decreased both ULBP-2/ULBP-3 expression and NK cell cytotoxicity. Furthermore, overexpression of constitutively active ERK in H9 parental cells resulted in increased ULBP-2/ULBP-3 expression and enhanced NK cell lysis. These results demonstrate that increased sensitivity of araC-resistant leukemic cells to NK cell lysis is caused by higher NKG2D ligand expression, resulting from more active ERK signaling pathway. PMID:19048119

  19. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li

    2016-06-01

    Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.

  20. Field Data Sets Made Available for a Community Discussion of the Inversion of Electrical Resistivity Imaging Data

    NASA Astrophysics Data System (ADS)

    Knight, R.; Weiss, C. J.

    2009-05-01

    Electrical resistivity imaging (ERI) can be used to obtain information about subsurface structure, properties, and processes for a wide range of near-surface applications. A critical step in the use of ERI is the inversion of the acquired data to obtain an image that displays the magnitude of the electrical resistivity throughout the subsurface region of interest. In order to obtain this image, a number of critical choices need to be made - a choice is made of an inversion algorithm, and further choices are made in terms of its implementation and the incorporation of prior geologic knowledge and constraints. These choices can significantly affect the obtained resistivity image in ways that are not often documented or well understood. It is important that the near-surface geophysics community, and other users of ERI data, engage in an ongoing discussion of how we develop, use, and share inversion algorithms. Two 2D surface electrical resistivity field data sets have been made available to the community to be used as the starting point for this discussion; they are available through the NS website. One data set was acquired in Mack Creek in the H. J. Andrews Experimental Forest to map out the interface between the alluvial sediments and the underlying bedrock. Information about the thickness of the sediments is needed to constrain hydrogeological models and has been difficult to obtain due to the remote location of the site and the inability to install boreholes. An important issue is the need to quantify the uncertainty in the ERI-derived location of the sediment-bedrock interface; a measure of uncertainty in the location of this interface could be included in the hydrogeologic modeling. The second data set was acquired during the monitoring of an infiltration test in the Mojave Desert. Measurements of the dynamically changing distribution of infiltrated water by standard means, using single-point probes installed in the subsurface, cannot adequately characterize

  1. Cross Gradient Based Joint Inversion of 2D Wide Angle Seismic Reflection/Refraction and Gravity Data Along the Profile Through the 2010 Ms 7.1 Yushu Earthquake, China

    NASA Astrophysics Data System (ADS)

    Xiang, S.; Zhang, H.

    2015-12-01

    2D wide-angle seismic reflection/refraction survey has been widely used to investigate crustal structure and Moho topography. Similarly gravity survey is also very important in the study of local and regional earth features. Seismic survey is sensitive to the seismic velocity parameters and interface variations. For gravity survey, it is sensitive to density parameters of the medium but the resolution along the vertical direction is relatively poor. In this study, we have developed a strategy to jointly invert for seismic velocity model, density model and interface positions using the gravity observations and seismic arrival times from different phases. For the joint inversion of seismic and gravity data, it often relies on the empirical relationship between seismic velocity and density. In comparison, our joint inversion strategy also includes the cross-gradient based structure constraint for seismic velocity and density models in addition to the empirical relationship between them. The objective function for the joint inversion includes data misfit terms for seismic travel times and gravity observations, the cross-gradient constraint, the smoothness terms for two models, and the data misfit term between predicted gravity data based on density model converted from velocity model using the empirical relationship. Each term has its respective weight. We have applied the new joint inversion method to the Riwoqe-Yushu-Maduo profile in northwest China. The profile crosses through the Qiangtang block and Bayan Har block from southwest to northeast, respectively. The 2010 Ms 7.1 Yushu earthquake is located on the profile, around the Ganzi-Yushu fault zone. The joint inversion produces the velocity and density models that are similar in structure and at the same time fit their respective data sets well. Compared to separate seismic inversion using seismic travel times, the joint inversion with gravity data gives a velocity model that better delineates the fault zones. Low

  2. 3D resistivity inversion using an improved Genetic Algorithm based on control method of mutation direction

    NASA Astrophysics Data System (ADS)

    Liu, B.; Li, S. C.; Nie, L. C.; Wang, J.; L, X.; Zhang, Q. S.

    2012-12-01

    Traditional inversion method is the most commonly used procedure for three-dimensional (3D) resistivity inversion, which usually takes the linearization of the problem and accomplish it by iterations. However, its accuracy is often dependent on the initial model, which can make the inversion trapped in local optima, even cause a bad result. Non-linear method is a feasible way to eliminate the dependence on the initial model. However, for large problems such as 3D resistivity inversion with inversion parameters exceeding a thousand, main challenges of non-linear method are premature and quite low search efficiency. To deal with these problems, we present an improved Genetic Algorithm (GA) method. In the improved GA method, smooth constraint and inequality constraint are both applied on the object function, by which the degree of non-uniqueness and ill-conditioning is decreased. Some measures are adopted from others by reference to maintain the diversity and stability of GA, e.g. real-coded method, and the adaptive adjustment of crossover and mutation probabilities. Then a generation method of approximately uniform initial population is proposed in this paper, with which uniformly distributed initial generation can be produced and the dependence on initial model can be eliminated. Further, a mutation direction control method is presented based on the joint algorithm, in which the linearization method is embedded in GA. The update vector produced by linearization method is used as mutation increment to maintain a better search direction compared with the traditional GA with non-controlled mutation operation. By this method, the mutation direction is optimized and the search efficiency is improved greatly. The performance of improved GA is evaluated by comparing with traditional inversion results in synthetic example or with drilling columnar sections in practical example. The synthetic and practical examples illustrate that with the improved GA method we can eliminate

  3. Large chromosomal inversion correlated with spectinomycin resistance in Lactococcus lactis subsp. lactis bv. diacetylactis S50.

    PubMed

    Kojic, Milan; Jovcic, Branko; Begovic, Jelena; Fira, Djordje; Topisirovic, Ljubisa

    2008-02-01

    A large chromosomal inversion that confers resistance to high concentrations of the antibiotic spectinomycin in Lactococcus lactis subsp. lactis bv. diacetylactis S50 was identified by pulsed field gel electrophoresis. The same type of inversion was identified in 4 independent experiments and in 4 different derivatives of strain S50, indicating the same position and the same mechanism of recombination as a response to antibiotic selective pressure in all derivatives. An analysis of ribosomal operons in strain S50 and mutants revealed that ribosomal operons are not endpoints of the recombination. Spectinomycin-resistant mutants appeared in a population of S50 derivatives at a high frequency of 2 x 10(-7). These spectinomycin-resistant mutants were not able to compete successfully with the wild-type strain during 25 generations (48 h) of co-culture in vitro, indicating that inversion had a significant fitness cost. Results demonstrate that as a mechanism of genome plasticity, inversion can be directly involved in one-step development of the adaptation to a high concentration of spectinomycin.

  4. Three dimensional modeling and inversion of Borehole-surface Electrical Resistivity Data

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, D.; Liu, Y.; Qin, M.

    2013-12-01

    After a long time of exploration, many oil fields have stepped into the high water-cut period. It is sorely needed to determining the oil-water distribution and water flooding front. Borehole-surface electrical resistivity tomography (BSERT) system is a low-cost measurement with wide measuring scope and small influence on the reservoir. So it is gaining more and more application in detecting water flooding areas and evaluating residual oil distribution in oil fields. In BSERT system, current is connected with the steel casing of the observation well. The current flows along the long casing and transmits to the surface through inhomogeneous layers. Then received electric potential difference data on the surface can be used to inverse the deep subsurface resistivity distribution. This study presents the 3D modeling and inversion method of electrical resistivity data. In an extensive literature, the steel casing is treated as a transmission line current source with infinite small radius and constant current density. However, in practical multi-layered formations with different resistivity, the current density along the casing is not constant. In this study, the steel casing is modeled by a 2.5e-7 ohm-m physical volume that the casing occupies in the finite element mesh. Radius of the casing can be set to a little bigger than the true radius, and this helps reduce the element number and computation time. The current supply point is set on the center of the top surface of the physical volume. The homogeneous formation modeling result shows the same precision as the transmission line current source model. The multi-layered formation modeling result shows that the current density along the casing is high in the low-resistivity layer, and low in the high-resistivity layer. These results are more reasonable. Moreover, the deviated and horizontal well can be simulated as simple as the vertical well using this modeling method. Based on this forward modeling method, the

  5. Improved resistivity imaging of groundwater solute plumes using POD-based inversion

    NASA Astrophysics Data System (ADS)

    Oware, E. K.; Moysey, S. M.; Khan, T.

    2012-12-01

    We propose a new approach for enforcing physics-based regularization in electrical resistivity imaging (ERI) problems. The approach utilizes a basis-constrained inversion where an optimal set of basis vectors is extracted from training data by Proper Orthogonal Decomposition (POD). The key aspect of the approach is that Monte Carlo simulation of flow and transport is used to generate a training dataset, thereby intrinsically capturing the physics of the underlying flow and transport models in a non-parametric form. POD allows for these training data to be projected onto a subspace of the original domain, resulting in the extraction of a basis for the inversion that captures characteristics of the groundwater flow and transport system, while simultaneously allowing for dimensionality reduction of the original problem in the projected space We use two different synthetic transport scenarios in heterogeneous media to illustrate how the POD-based inversion compares with standard Tikhonov and coupled inversion. The first scenario had a single source zone leading to a unimodal solute plume (synthetic #1), whereas, the second scenario had two source zones that produced a bimodal plume (synthetic #2). For both coupled inversion and the POD approach, the conceptual flow and transport model used considered only a single source zone for both scenarios. Results were compared based on multiple metrics (concentration root-mean square error (RMSE), peak concentration, and total solute mass). In addition, results for POD inversion based on 3 different data densities (120, 300, and 560 data points) and varying number of selected basis images (100, 300, and 500) were compared. For synthetic #1, we found that all three methods provided qualitatively reasonable reproduction of the true plume. Quantitatively, the POD inversion performed best overall for each metric considered. Moreover, since synthetic #1 was consistent with the conceptual transport model, a small number of basis

  6. Investigating Hydrogeologic Controls on Sandhill Wetlands in Covered Karst with 2D Resistivity and Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Downs, C. M.; Nowicki, R. S.; Rains, M. C.; Kruse, S.

    2015-12-01

    In west-central Florida, wetland and lake distribution is strongly controlled by karst landforms. Sandhill wetlands and lakes are sand-filled upland basins whose water levels are groundwater driven. Lake dimensions only reach wetland edges during extreme precipitation events. Current wetland classification schemes are inappropriate for identifying sandhill wetlands due to their unique hydrologic regime and ecologic expression. As a result, it is difficult to determine whether or not a wetland is impacted by groundwater pumping, development, and climate change. A better understanding of subsurface structures and how they control the hydrologic regime is necessary for development of an identification and monitoring protocol. Long-term studies record vegetation diversity and distribution, shallow ground water levels and surface water levels. The overall goals are to determine the hydrologic controls (groundwater, seepage, surface water inputs). Most recently a series of geophysical surveys was conducted at select sites in Hernando and Pasco County, Florida. Electrical resistivity and ground penetrating radar were employed to image sand-filled basins and the top of the limestone bedrock and stratigraphy of wetland slopes, respectively. The deepest extent of these sand-filled basins is generally reflected in topography as shallow depressions. Resistivity along inundated wetlands suggests the pools are surface expressions of the surficial aquifer. However, possible breaches in confining clay layers beneath topographic highs between depressions are seen in resistivity profiles as conductive anomalies and in GPR as interruptions in otherwise continuous horizons. These data occur at sites where unconfined and confined water levels are in agreement, suggesting communication between shallow and deep groundwater. Wetland plants are observed outside the historic wetland boundary at many sites, GPR profiles show near-surface layers dipping towards the wetlands at a shallower

  7. Combined 2-D Electrical Resistivity and Self Potential Survey to Investigate the Pattern of the Watukosek Fault System Around the Lusi Eruption Site, Indonesia.

    NASA Astrophysics Data System (ADS)

    Mazzini, A.; Husein, A.; Mauri, G.; Lupi, M.; Hadi, S.; Kemna, A.

    2015-12-01

    The Lusi mud eruption is located in the Sidoarjo area, Indonesia and is continuously erupting hot mud since its birth in May 2006. A comprehensive combined electrical resistivity and self-potential (SP) survey was performed in the 7 km2 area inside the Lusi embankment that had been built to contain the erupted mud and to prevent flooding of the surrounding roads and settlements. The goal of the geophysical survey is to map the near-surface occurrence of the Watukosek fault system, upon which LUSI resides, delineate its spatial pattern and monitor its development. We completed six lines of measurements combining resistivity measurement using Wenner configuration and SP measurements using roll-along technique. Three subparallel lines were located either to the north and to the south of the main crater. Each line was approximately W-E oriented extending for ~1.26 km. The surveyed regions consist of dried mud breccia (containing clayey-silty-sandy admixture with clast up to ~ 10 cm in size). The thickness of the dry walkable mud is approximately 2-3 m and the deeper layer consist of water saturated mud that could be vulnerable to a liquefaction scenario in case of significant seismic activity in the region. The resistivity data were inverted into 2-D resistivity images with a maximum exploration depth of almost 200 m. The resistivity images consistently reveal a region of about 300 m in width (between 30-90 m depth) characterized by anomalous resistivities, which are lower than the value observed in the surounding area. The position of these anomalies is also supported by the SP data, which suggests that their origin is related to fluid flow path in the subsurface. Thus the combined resistivity and SP results allow inference of an improved model of the Watukosek fault system.

  8. Application of 2-D geoelectrical resistivity tomography for mountain permafrost detection in sporadic permafrost environments: Experiences from Eastern Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas

    2015-04-01

    Mountain permafrost covers some 2000 km² of the Austrian Alps which is less than 2.5% of the national territory. Delineating the altitudinal lower limit of permafrost in the mountains of Austria is difficult due the complex topography, the rather sparseness of field verification data and the lack of long-term permafrost monitoring data. Such monitoring data should cover different slope aspects, different elevations, different substrates and different mountain regions of Austria. In this study it was attempted to delineate the lower limit of permafrost at two study sites in the Tauern Range, Austria, applying two-dimensional geoelectrical resistivity tomography (ERT). In addition, multi-annual ground temperature data collected by miniature temperature datalogger (MDT) were used to validate the results. At the study site Hochreichart (maximum elevation 2416 m asl), located in the Seckauer Tauern Range, 14 ERT profiles (lengths 48-196 m; electrode spacing 2, 2.5 or 4 m) were measured at elevations between 1805 and 2416 m asl. Measurements were carried out at two cirques (Reichart, Schöneben) and at the summit plateau of Hochreichart. Results at this site indicate that permafrost lenses are detectable at elevations down to c.1900 m asl at radiation-sheltered sites. Furthermore, at the summit plateau permafrost only occurs as rather small lenses. The ERT-based permafrost pattern is generally confirmed by the MTD data with negative mean annual ground temperature values at only a few monitoring sites. However, the possibility of air-filled cavities causing higher resistive zones faking permafrost existence cannot be excluded because coarse-grained sediments (i.e. relict rock glaciers and autochthonous block fields) are widespread at this study site. At the second study site Kögele Cirque (maximum elevation 3030 m asl) located in the Schober Mountains 12 ERT profiles (lengths 48 m; electrode spacing 2 m) were measured at elevations between 2631 and 2740 m asl. Spatially

  9. The Feasibility of Using High Resolution 2D Electrical Resistivity Imaging (ERI) for characterize the possible hydraulic boundaries along the western foothill of Bagua-Douliu Hills, Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, S.; Chang, P.; Wu, Y.; Chen, J.; Huang, C.; Wang, Y.; Chen, W.

    2011-12-01

    In the study we try to characteristize the hydraulic boundary that separates the Pleistocene Toukeshan Formation from the Holocene sediments with Electrical Resistivity Imaging (ERI) method near the Bizetou Pass of the Choushui River. Comparing 2D Electrical resistivity imaging (ERI) with water level logs and core data from observation wells, we attempted to map the distribution of the shallow groundwater surfaces and the composition variations of the shallow unconfined aquifer from upper to lower fan across the Bizetou Pass. We found that the shallow groundwater surface drops sudenly from about 110m to 70 m after passing the Bizetou Pass from observation wells at the east and west side of the Pass and with about 3 km apart. The inverted resistivity images also show that the hydraulic gradient estimated from the resistivity images is getting larger to about 7% near the Bizetou Pass and then becoming less than 3% in the west the Pass. In addition, we found a significant change from about 1500 ohm-m to 500 ohm-m in the unconfined aquifer after passing the Bizetou Pass from the upstream side. The high resistivity value (about 1500 ohm-m) in the east of Bizetou Pass may represent the compacted Pleistocene Tokeshan sand and gravel layers, and the relatively low resistivity value (about 500 ohm-m) in the west of Bizetou Pass was the loose Holocene alluvium sediments. Since the previous study shows that the Changhua fault is not outcropped at the ground surface, our findings imply that the hydraulic boundary may be due to the less permeable Toukoshan Formation. To confirm this, the future work will extend the study area in North-South direction between Changhua County and Yunlin County.

  10. An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study.

    PubMed

    Ivorra, C; Pérez-Ortín, J E; del Olmo, M

    1999-09-20

    During alcoholic fermentations yeast cells are subjected to several stress conditions and, therefore, yeasts have developed molecular mechanisms in order to resist this adverse situation. The mechanisms involved in stress response have been studied in Saccharomyces cerevisiae laboratory strains. However a better understanding of these mechanisms in wine yeasts could open the possibility to improve the fermentation process. In this work an analysis of the stress response in three wine yeasts has been carried out by studying the expression of several representative genes under several stress conditions which occur during fermentation. We propose a simplified method to study how these stress conditions affect the viability of yeast cells. Using this approach an inverse correlation between stress-resistance and stuck fermentations has been found. We also have preliminary data about the use of the HSP12 gene as a molecular marker for stress-resistance in wine yeasts.

  11. Control of wire heating with resistively guided fast electrons through an inverse conical taper

    SciTech Connect

    Robinson, A. P. L. Schmitz, H.; Green, J. S.; Booth, N.; Ridgers, C. P.; Pasley, J.

    2015-04-15

    The heating of a solid wire embedded in a solid substrate (of lower Z material) with relativistic electrons generated by ultra-intense laser irradiation is considered. Previously, it has been noted that the initial angular distribution of the fast electrons is a highly important factor in the efficacy of the heating [Robinson et al., Phys. Plasmas 20, 122701 (2013)]. We show that, using 3D numerical simulations, the addition of an inverse conical taper at the front of wire can considerably improve the heating of the wire due to the reduction of angular spread of the fast electrons which is caused by transport through the inverse conical taper [Robinson et al., “Guiding of laser-generated fast electrons by exploiting the resistivity-gradients around a conical guide element,” Plasma Phys. Controlled Fusion (to be published)].

  12. Regular patterns in frictional resistance of ice-stream beds seen by surface data inversion.

    PubMed

    Sergienko, Olga V; Hindmarsh, Richard C A

    2013-11-29

    Fast-flowing glaciers and ice streams are pathways for ice discharge from the interior of the Antarctic Ice Sheet to ice shelves, at rates controlled by conditions at the ice-bed interface. Using recently compiled high-resolution data sets and a standard inverse method, we computed basal shear stress distributions beneath Pine Island and Thwaites Glaciers, which are currently losing mass at an accelerating rate. The inversions reveal the presence of riblike patterns of very high basal shear stress embedded within much larger areas with zero basal shear stress. Their colocation with highs in the gradient of hydraulic potential suggests that subglacial water may control the evolution of these high-shear-stress ribs, potentially causing migration of the grounding line by changes in basal resistance in its vicinity.

  13. Reconstruction of landslide movements by inversion of 4-D electrical resistivity tomography monitoring data

    NASA Astrophysics Data System (ADS)

    Wilkinson, Paul; Chambers, Jonathan; Uhlemann, Sebastian; Meldrum, Philip; Smith, Alister; Dixon, Neil; Loke, Meng Heng

    2016-02-01

    Reliable tomographic inversion of geoelectrical monitoring data from unstable slopes relies critically on knowing the electrode positions, which may move over time. We develop and present an innovative inverse method to recover movements in both surface directions from geoelectrical measurements made on a grid of monitoring electrodes. For the first time, we demonstrate this method using field data from an active landslide to recover sequences of movement over timescales of days to years. Comparison with GPS measurements demonstrated an accuracy of within 10% of the electrode spacing, sufficient to correct the majority of artifacts that would occur in subsequent image reconstructions if incorrect positions are used. Over short timescales where the corresponding subsurface resistivity changes were smaller, the constraints could be relaxed and an order-of-magnitude better accuracy was achievable. This enabled the onset and acceleration of landslide activity to be detected with a temporal resolution of a few days.

  14. A Preliminary Appraisal of the Effect of Pumping on Seawater Intrusion and Upconing in a Small Tropical Island Using 2D Resistivity Technique

    PubMed Central

    Ramli, Mohammad Firuz; Ibrahim, Shaharin; Sulaiman, Wan Nor Azmin; Aris, Ahmad Zaharin

    2014-01-01

    The existing knowledge regarding seawater intrusion and particularly upconing, in which both problems are linked to pumping, entirely relies on theoretical assumptions. Therefore, in this paper, an attempt is made to capture the effects of pumping on seawater intrusion and upconing using 2D resistivity measurement. For this work, two positions, one perpendicular and the other parallel to the sea, were chosen as profile line for resistivity measurement in the coastal area near the pumping wells of Kapas Island, Malaysia. Subsequently, water was pumped out of two pumping wells simultaneously for about five straight hours. Then, immediately after the pumping stopped, resistivity measurements were taken along the two stationed profile lines. This was followed by additional measurements after four and eight hours. The results showed an upconing with low resistivity of about 1–10 Ωm just beneath the pumping well along the first profile line that was taken just after the pumping stopped. The resistivity image also shows an intrusion of saline water (water enriched with diluted salt) from the sea coming towards the pumping well with resistivity values ranging between 10 and 25 Ωm. The subsequent measurements show the recovery of freshwater in the aquifer and how the saline water is gradually diluted or pushed out of the aquifer. Similarly the line parallel to the sea (L2) reveals almost the same result as the first line. However, in the second and third measurements, there were some significant variations which were contrary to the expectation that the freshwater may completely flush out the saline water from the aquifer. These two time series lines show that as the areas with the lowest resistivity (1 Ωm) shrink with time, the low resistivity (10 Ωm) tends to take over almost the entire area implying that the freshwater-saltwater equilibrium zone has already been altered. These results have clearly enhanced our current understanding and add more scientific

  15. Effects of vitamin D supplementation and circuit training on indices of obesity and insulin resistance in T2D and vitamin D deficient elderly women

    PubMed Central

    Kim, Hyoung-Jun; Kang, Chang-Kyun; Park, Hyon; Lee, Man-Gyoon

    2014-01-01

    [Purpose] The purpose of this study was to investigate the effects of vitamin D supplementation and circuit training on body composition, abdominal fat, blood lipids, and insulin resistance in T2D and vitamin D deficient elderly women. [Methods] Fifty-two elderly women were randomly assigned to either the vitamin D supplementation with circuit training group (D+T: n = 15), the circuit training group (T: n = 13), the vitamin D supplementation group (D: n = 11), or the control group (CON: n = 13). The subjects in D took vitamin D supplements at 1,200 IU per day for 12 weeks; the subjects in T exercised 3 to 4 times per week, 25 to 40 minutes per session for 12 weeks; and the subjects in D+T participated in both treatments. Subjects in CON were asked to maintain normal daily life pattern for the duration of the study. Body composition, abdominal fat, blood lipids, and surrogate indices for insulin resistance were measured at pre- and post-test and the data were compared among the four groups and between two tests by utilizing two-way ANOVA with repeated measures. The main results of the present study were as follows: [Results] 1) Body weight, fat mass, percent body fat, and BMI decreased significantly in T, whereas there were no significant changes in the variables in D and CON. Lean body mass showed no significant changes in all groups. 2) TFA and SFA decreased significantly in T, whereas there were no significant changes in the variables in D and CON. The other abdominal fat related variables showed no significant changes in all groups. 3) TC, TG, HDL-C, and LDL-C showed improvements in T, whereas there were no significant changes in the variables in D and CON. 4) Fasting glucose, fasting insulin, and HOMA-IR tended to be lower in D+T. [Conclusion] It was concluded that the 12 weeks of vitamin D supplementation and circuit training would have positive effects on abdominal fat and blood lipid profiles in T2D and vitamin D deficient elderly women. Vitamin D

  16. Imaging high stage river-water intrusion into a contaminated aquifer along a major river corridor using 2D time-lapse surface electrical resistivity tomography

    SciTech Connect

    Wallin, Erin L.; Johnson, Timothy C.; Greenwood, William J.; Zachara, John M.

    2013-03-29

    The Hanford 300 Area is located adjacent to the Columbia River in south-central Washington State, USA, and was a former site for nuclear fuel processing operations. Waste disposal practices resulted in persistent unsaturated zone and groundwater contamination, the primary contaminant of concern being uranium. Uranium behavior at the site is intimately linked with river stage driven groundwater-river water exchange such that understanding the nature of river water intrusion into the 300 Area is critical for predicting uranium desorption and transport. In this paper we use time-lapse electrical resistivity tomography (ERT) to image the inland intrusion of river during high stage conditions. We demonstrate a modified time-lapse inversion approach, whereby the transient water table elevation is explicitly modeled by removing regularization constraints across the water table boundary. This implementation was critical for producing meaningful imaging results. We inverted approximately 1200 data sets (400 per line over 3 lines) using high performance computing resources to produce a time-lapse sequence of changes in bulk conductivity caused by river water intrusion during the 2011 spring runoff cycle over approximately 125 days. The resulting time series for each mesh element was then analyzed using common time series analysis to reveal the timing and location of river water intrusion beneath each line. The results reveal non-uniform flows characterized by preferred flow zones where river water enters and exits quickly with stage increase and decrease, and low permeability zones with broader bulk conductivity ‘break through’ curves and longer river water residence times. The time-lapse ERT inversion approach removes the deleterious effects of changing water table elevation and enables remote and spatial continuous groundwater-river water exchange monitoring using surface based ERT arrays under conditions where groundwater and river water conductivity are in contrast.

  17. Targeted next-generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes

    PubMed Central

    Stefan, Christopher P.; Koehler, Jeffrey W.; Minogue, Timothy D.

    2016-01-01

    Antibiotic resistance (AR) is an epidemic of increasing magnitude requiring rapid identification and profiling for appropriate and timely therapeutic measures and containment strategies. In this context, ciprofloxacin is part of the first-line of countermeasures against numerous high consequence bacteria. Significant resistance can occur via single nucleotide polymorphisms (SNP) and deletions within ciprofloxacin targeted genes. Ideally, use of ciprofloxacin would be prefaced with AR determination to avoid overuse or misuse of the antibiotic. Here, we describe the development and evaluation of a panel of 44 single-stranded molecular inversion probes (MIPs) coupled to next-generation sequencing (NGS) for the detection of genetic variants known to confer ciprofloxacin resistance in Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Sequencing results demonstrate MIPs capture and amplify targeted regions of interest at significant levels of coverage. Depending on the genetic variant, limits of detection (LOD) for high-throughput pooled sequencing ranged from approximately 300–1800 input genome copies. LODs increased 10-fold in the presence of contaminating human genome DNA. In addition, we show that MIPs can be used as an enrichment step with high resolution melt (HRM) real-time PCR which is a sensitive assay with a rapid time-to-answer. Overall, this technology is a multiplexable upfront enrichment applicable with multiple downstream molecular assays for the detection of targeted genetic regions. PMID:27174456

  18. Targeted next-generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes.

    PubMed

    Stefan, Christopher P; Koehler, Jeffrey W; Minogue, Timothy D

    2016-01-01

    Antibiotic resistance (AR) is an epidemic of increasing magnitude requiring rapid identification and profiling for appropriate and timely therapeutic measures and containment strategies. In this context, ciprofloxacin is part of the first-line of countermeasures against numerous high consequence bacteria. Significant resistance can occur via single nucleotide polymorphisms (SNP) and deletions within ciprofloxacin targeted genes. Ideally, use of ciprofloxacin would be prefaced with AR determination to avoid overuse or misuse of the antibiotic. Here, we describe the development and evaluation of a panel of 44 single-stranded molecular inversion probes (MIPs) coupled to next-generation sequencing (NGS) for the detection of genetic variants known to confer ciprofloxacin resistance in Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Sequencing results demonstrate MIPs capture and amplify targeted regions of interest at significant levels of coverage. Depending on the genetic variant, limits of detection (LOD) for high-throughput pooled sequencing ranged from approximately 300-1800 input genome copies. LODs increased 10-fold in the presence of contaminating human genome DNA. In addition, we show that MIPs can be used as an enrichment step with high resolution melt (HRM) real-time PCR which is a sensitive assay with a rapid time-to-answer. Overall, this technology is a multiplexable upfront enrichment applicable with multiple downstream molecular assays for the detection of targeted genetic regions. PMID:27174456

  19. Calibration of seawater intrusion models: Inverse parameter estimation using surface electrical resistivity tomography and borehole data

    NASA Astrophysics Data System (ADS)

    Beaujean, J.; Nguyen, F.; Kemna, A.; Antonsson, A.; Engesgaard, P.

    2014-08-01

    Electrical resistivity tomography (ERT) can be used to constrain seawater intrusion models because of its high sensitivity to total dissolved solid contents (TDS) in groundwater and its relatively high lateral coverage. However, the spatial variability of resolution in electrical imaging may prevent the correct recovery of the desired hydrochemical properties such as salt mass fraction. This paper presents a sequential approach to evaluate the feasibility of identifying hydraulic conductivity and dispersivity in density-dependent flow and transport models from surface ERT-derived mass fraction. In the course of this study, geophysical inversion was performed by using a smoothness constraint Tikhonov approach, whereas the hydrological inversion was performed using a gradient-based Levenberg-Marquardt algorithm. Two synthetic benchmarks were tested. They represent a pumping experiment in a homogeneous and heterogeneous coastal aquifer, respectively. These simulations demonstrated that only the lower salt mass fraction of the seawater-freshwater transition zone can be recovered for different times. This ability has here been quantified in terms of cumulative sensitivity and our study has further demonstrated that the mismatch between the targeted and the recovered salt mass fraction occurs from a certain threshold. We were additionally able to explore the capability of sensitivity-filtered ERT images using ground surface data only to recover (in both synthetic cases) the hydraulic conductivity while the dispersivity is more difficult to estimate. We attribute the latter mainly to the lack of ERT-derived data at depth (where resolution is poorer) as well as to the smoothing effect of the ERT inversion.

  20. Dynamic Inversion for Hydrological Process Monitoring with Electrical Resistance Tomography Under Model Uncertainty

    SciTech Connect

    Lehikoinen, A.; Huttunen, J.M.J.; Finsterle, S.; Kowalsky, M.B.; Kaipio, J.P.

    2009-08-01

    We propose an approach for imaging the dynamics of complex hydrological processes. The evolution of electrically conductive fluids in porous media is imaged using time-lapse electrical resistance tomography. The related dynamic inversion problem is solved using Bayesian filtering techniques, that is, it is formulated as a sequential state estimation problem in which the target is an evolving posterior probability density of the system state. The dynamical inversion framework is based on the state space representation of the system, which involves the construction of a stochastic evolution model and an observation model. The observation model used in this paper consists of the complete electrode model for ERT, with Archie's law relating saturations to electrical conductivity. The evolution model is an approximate model for simulating flow through partially saturated porous media. Unavoidable modeling and approximation errors in both the observation and evolution models are considered by computing approximate statistics for these errors. These models are then included in the construction of the posterior probability density of the estimated system state. This approximation error method allows the use of approximate - and therefore computationally efficient - observation and evolution models in the Bayesian filtering. We consider a synthetic example and show that the incorporation of an explicit model for the model uncertainties in the state space representation can yield better estimates than a frame-by-frame imaging approach.

  1. Pitfalls in Inversion and Interpretation of Continuous Resistivity Profiling Data: Effects of Resolution Limitations and Measurement Error

    NASA Astrophysics Data System (ADS)

    Lane, J. W.; Day-Lewis, F. D.; Loke, M. H.; White, E. A.

    2005-12-01

    Water-borne continuous resistivity profiling (CRP), also called marine or streaming resistivity, increasingly is used to support hydrogeophysical studies in freshwater and saltwater environments. CRP can provide resistivity tomograms for delineation of focused ground-water discharge, identification of sediment types, and mapping the near-shore freshwater/saltwater interface. Data collection, performed with a boat-towed electrode streamer, is commonly fast and relatively straightforward. In contrast, data processing and interpretation are potentially time consuming and subject to pitfalls. Data analysis is difficult due to the underdetermined nature of the tomographic inverse problem and the poorly understood resolution of tomograms, which is a function of the measurement physics, survey geometry, measurement error, and inverse problem parameterization and regularization. CRP data analysis in particular is complicated by noise in the data, sources of which include water leaking into the electrode cable, inefficient data collection geometry, and electrode obstruction by vegetation in the water column. Preliminary modeling has shown that, as in other types of geotomography, inversions of CRP data tend to overpredict the extent of and underpredict the magnitude of resistivity anomalies. Previous work also has shown that the water layer has a strong effect on the measured apparent resistivity values as it commonly has a much lower resistivity than the subsurface. Here we use synthetic examples and inverted field data sets to (1) assess the ability of CRP to resolve hydrogeophysical targets of interest for a range of water depths and salinities; and (2) examine the effects of CRP streamer noise on inverted resistivity sections. Our results show that inversion and interpretation of CRP data should be guided by hydrologic insight, available data for bathymetry and water layer resistivity, and a reliable model of measurement errors.

  2. A Group of Novel Serum Diagnostic Biomarkers for Multidrug-Resistant Tuberculosis by iTRAQ-2D LC-MS/MS and Solexa Sequencing

    PubMed Central

    Wang, Chong; Liu, Chang-Ming; Wei, Li-Liang; Shi, Li-Ying; Pan, Zhi-Fen; Mao, Lian-Gen; Wan, Xiao-Chen; Ping, Ze-Peng; Jiang, Ting-Ting; Chen, Zhong-Liang; Li, Zhong-Jie; Li, Ji-Cheng

    2016-01-01

    The epidemic of pulmonary tuberculosis (TB), especially multidrug-resistance tuberculosis (MDR-TB) presented a major challenge for TB treatment today. We performed iTRAQ labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) and Solexa sequencing among MDR-TB patients, drug-sensitive tuberculosis (DS-TB) patients, and healthy controls. A total of 50 differentially expressed proteins and 43 differentially expressed miRNAs (fold change >1.50 or <0.60, P<0.05) were identified in the MDR-TB patients compared to both DS-TB patients and healthy controls. We found that 22.00% of differentially expressed proteins and 32.56% of differentially expressed miRNAs were related, and could construct a network mainly in complement and coagulation cascades. Significant differences in CD44 antigen (CD44), coagulation factor XI (F11), kininogen-1 (KNG1), miR-4433b-5p, miR-424-5p, and miR-199b-5p were found among MDR-TB patients, DS-TB patients and healthy controls (P<0.05) by enzyme-linked immunosorbent assay (ELISA) and SYBR green qRT-PCR validation. A strong negative correlation, consistent with the target gene prediction, was found between miR-199b-5p and KNG1 (r=-0.232, P=0.017). Moreover, we established the MDR-TB diagnostic model based on five biomarkers (CD44, KNG1, miR-4433b-5p, miR-424-5p, and miR-199b-5p). Our study proposes potential biomarkers for MDR-TB diagnosis, and also provides a new experimental basis to understand the pathogenesis of MDR-TB. PMID:26884721

  3. 3D modeling and inversion of the electrical resistivity tomography using steel cased boreholes as long electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ying; Liu, De-Jun; Ai, Qing-Hui; Qin, Min-Jun

    2014-10-01

    Electrical resistivity tomography using a steel cased borehole as a long electrode is an advanced technique for geoelectrical survey based on the conventional mise-à-la-masse measurement. In most previous works, the steel casing is simplified as a transmission line current source with an infinitely small radius and constant current density. However, in practical stratified formations with different resistivity values, the current density along the casing cannot be constant. In this study, the steel casing is modeled by a conductive physical volume that the casing occupies in the finite element mesh. The current supply point is set on the center of the top surface of the physical volume. Synthetic modeling, using both a homogenous and layered formation, demonstrates reasonability of the forward modeling method proposed herein. Based on this forward modeling method, the inversion procedure can be implemented by using a freeware R3t (Lancaster University, UK). Inversion results of synthetic modeling data match fairly well with the defined target location and validate that the method works on the inversion of the casing-surface electrical resistivity data. Finally, a field example of Changqing oil field in China is carried out using the inversion method to image water flooding results and to discover wells with great potential to enhance residual oil recovery.

  4. Re-Inversion of Surface Electrical Resistivity Tomography Data from the Hanford Site B-Complex

    SciTech Connect

    Johnson, Timothy C.; Wellman, Dawn M.

    2013-05-01

    This report documents the three-dimensional (3D) inversion results of surface electrical resistivity tomography (ERT) data collected over the Hanford Site B-Complex. The data were collected in order to image the subsurface distribution of electrically conductive vadose zone contamination resulting from both planned releases of contamination into subsurface infiltration galleries (cribs, trenches, and tile fields), as well as unplanned releases from the B, BX, and BY tank farms and/or associated facilities. Electrically conductive contaminants are those which increase the ionic strength of pore fluids compared to native conditions, which comprise most types of solutes released into the subsurface B-Complex. The ERT data were collected and originally inverted as described in detail in report RPP-34690 Rev 0., 2007, which readers should refer to for a detailed description of data collection and waste disposal history. Although the ERT imaging results presented in that report successfully delineated the footprint of vadose zone contamination in areas outside of the tank farms, imaging resolution was not optimized due to the inability of available inversion codes to optimally process the massive ERT data set collected at the site. Recognizing these limitations and the potential for enhanced ERT characterization and time-lapse imaging at contaminated sites, a joint effort was initiated in 2007 by the U.S. Department of Energy – Office of Science (DOE-SC), with later support by the Office of Environmental Management (DOE-EM), and the U.S. Department of Defense (DOD), to develop a high-performance distributed memory parallel 3D ERT inversion code capable of optimally processing large ERT data sets. The culmination of this effort was the development of E4D (Johnson et al., 2010,2012) In 2012, under the Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI), the U.S. Department of Energy – Richland Operations Office (DOE-RL) and CH2M Hill Plateau Remediation

  5. Improved hydrogeophysical characterization and monitoring through parallel modeling and inversion of time-domain resistivity and induced-polarization data

    SciTech Connect

    Timothy C. Johnson; Roeof J. Versteeg; Andy Ward; Frederick D. Day-Lewis; Andre Revil

    2010-09-01

    Electrical geophysical methods have found wide use in the growing discipline of hydrogeophysics, both for characterizing the electrical properties of the subsurface, and for monitoring subsurface processes in terms of the spatiotemporal changes in subsurface conductivity, chargeability, and source currents they govern. Current multichannel and multielectrode data collections systems are able to collect large amounts of data in relatively short periods of time. However, practitioners are often unable to fully utilize these large data sets and the information they contain due to the processing limitations of standard desktop computers. This limitation can be addressed by utilizing the storage and processing capabilities of high-performance parallel computing environments. We present a parallel distributed-memory forward and inverse modeling algorithm for analyzing resistivity and time-domain induced polarization data. The primary components of the parallel computations include distributed computation of the pole solutions in forward mode, distributed storage and computation of the Jacobian matrix in inverse mode, and parallel execution of the inverse equation solver. We demonstrate the corresponding parallel code for three efforts: (1) resistivity characterization of the Hanford 300 Area Integrated Field Research Challenge site in Hanford, WA; (2) resistivity characterization of a volcanic island in the southern Tyrrhenian Sea in Italy; and (3) resistivity and IP monitoring of biostimulation at a superfund site in Brandywine, MD. Inverse analysis of each of these data sets would be limited (or impossible) in a standard serial computing environment which underscores the need for high-performance computing to fully utilize the potential of electrical geophysical methods in hydrogeophysical applications.

  6. Adjoint-state inversion of electric resistivity tomography data of seawater intrusion at the Argentona coastal aquifer (Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-López, Sheila; Carrera, Jesús; Ledo, Juanjo; Queralt, Pilar; Luquot, Linda; Martínez, Laura; Bellmunt, Fabián

    2016-04-01

    Seawater intrusion in aquifers is a complex phenomenon that can be characterized with the help of electric resistivity tomography (ERT) because of the low resistivity of seawater, which underlies the freshwater floating on top. The problem is complex because of the need for joint inversion of electrical and hydraulic (density dependent flow) data. Here we present an adjoint-state algorithm to treat electrical data. This method is a common technique to obtain derivatives of an objective function, depending on potentials with respect to model parameters. The main advantages of it are its simplicity in stationary problems and the reduction of computational cost respect others methodologies. The relationship between the concentration of chlorides and the resistivity values of the field is well known. Also, these resistivities are related to the values of potentials measured using ERT. Taking this into account, it will be possible to define the different resistivities zones from the field data of potential distribution using the basis of inverse problem. In this case, the studied zone is situated in Argentona (Baix Maresme, Catalonia), where the values of chlorides obtained in some wells of the zone are too high. The adjoint-state method will be used to invert the measured data using a new finite element code in C ++ language developed in an open-source framework called Kratos. Finally, the information obtained numerically with our code will be checked with the information obtained with other codes.

  7. Three-dimensional forward modelling and inversion of complex resistivity based on the improved quasi-linear approximation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, T.; Zhu, C.; Zhang, R.; Wu, Y.

    2015-12-01

    Three-dimensional (3-D) electromagnetic (EM) forward modelling and inversion continues to be an important issue for the correct interpretation of EM data.To this end,approximate solutions have been developed that allow the construction of relatively fast forward modelling and inversion schemes.We have developed an improved quasi-linear approximation which is more appropriate in solving the linear equation for greatly shortening calculation time.We achieved this by using green's function properties.Then we introduced the improved quasi-linear approximation to spectral induced polarization (SIP) to tackle the problem of the resolution and the efficiency.The localized quasi-linear (LQL) approximation theory is appropriate for multisource array-type surveys assuming that the normal field is slowly varying within the inhomogeneity domain.However,the normal field of attenuates severely which dose not satisfy the assumption of the LQL approximation.As a consenquence,the imaginary part is not accurate when LQL approximation is adopted for the simulation.The improved quasi-linear approximation provide a new approach with the same resolution of QL approximation and much less calculation time.We have also constructed three-dimensional SIP forward modeling based on improved quasi-linear approximation method.It only takes 0.8s for forward modeling when inhomogeneity domain is divided into 2000 blocks.Beyond that, we have introduced the Cole-Cole model to the algorithm and complete the three-dimensional complex resistivity conjugate gradient inversion with parameter restraint.The model trial results show that this method can obtain good inversion results in physical parameters such as zero frequency resistivity, polarization.The results demonstrate the stability and the efficiency of the improved quasi-linear approximation and the method may be a practical solution for3-D EM forward modelling and inversion of SIP.

  8. Evaluation on an original resistivity inversion method of water flooding a conglomerate reservoir based on petrophysical analysis

    NASA Astrophysics Data System (ADS)

    Liu, Renqiang; Duan, Yonggang; Tan, Fengqi; Wang, Guochang; Qin, Jianhua; Neupane, Bhupati

    2015-10-01

    An accurate inversion of original reservoir resistivity is an important problem for waterflood development in oilfields in the middle-late development period. This paper describes the theoretical model of original resistivity recovery for a conglomerate reservoir established by petrophysical models, based on the stratigraphic model of reservoir vertical invasion of the conglomerate reservoir of an oilfield. Likewise two influencing factors of the resistivity change with a water-flooded reservoir were analyzed. The first one is the clay volume decrease due to an injected water wash argillaceous particle and the reservoir resistivity changes are influenced by it, and the other is to inject water to displace crude oil in the pore space leading to the increase of the water-bearing volume. Moreover the conductive ions of the injected water and the original formation water exchange and balance because of their salinity difference, and the reservoir resistivity changes are also influenced by them. Through the analysis of the above influential factors based on the fine identification of conglomerate lithologies the inversion models of three variables, including changes in the amount of clay, the resistivity of the irreducible water and the increase of the water bearing volume, were established by core analysis data, production performance and well logging curves information, and accurately recovered the original reservoir resistivity of the conglomerate. The original oil saturation of the reservoir was calculated according to multiple linear regression models. Finally, the produced index is defined as the difference of the original oil saturation and current oil saturation to the original oil saturation ratio, and it eliminates the effects of conglomerate lithologies and heterogeneity for the quantitative evaluation of flooded layers by the use of the principle of relative value. Compared with traditional flooding sensitive parameters which are oil saturation and water

  9. What you feel is what you see: inverse dynamics estimation underlies the resistive sensation of a delayed cursor.

    PubMed

    Takamuku, Shinya; Gomi, Hiroaki

    2015-07-22

    How our central nervous system (CNS) learns and exploits relationships between force and motion is a fundamental issue in computational neuroscience. While several lines of evidence have suggested that the CNS predicts motion states and signals from motor commands for control and perception (forward dynamics), it remains controversial whether it also performs the 'inverse' computation, i.e. the estimation of force from motion (inverse dynamics). Here, we show that the resistive sensation we experience while moving a delayed cursor, perceived purely from the change in visual motion, provides evidence of the inverse computation. To clearly specify the computational process underlying the sensation, we systematically varied the visual feedback and examined its effect on the strength of the sensation. In contrast to the prevailing theory that sensory prediction errors modulate our perception, the sensation did not correlate with errors in cursor motion due to the delay. Instead, it correlated with the amount of exposure to the forward acceleration of the cursor. This indicates that the delayed cursor is interpreted as a mechanical load, and the sensation represents its visually implied reaction force. Namely, the CNS automatically computes inverse dynamics, using visually detected motions, to monitor the dynamic forces involved in our actions. PMID:26156766

  10. What you feel is what you see: inverse dynamics estimation underlies the resistive sensation of a delayed cursor.

    PubMed

    Takamuku, Shinya; Gomi, Hiroaki

    2015-07-22

    How our central nervous system (CNS) learns and exploits relationships between force and motion is a fundamental issue in computational neuroscience. While several lines of evidence have suggested that the CNS predicts motion states and signals from motor commands for control and perception (forward dynamics), it remains controversial whether it also performs the 'inverse' computation, i.e. the estimation of force from motion (inverse dynamics). Here, we show that the resistive sensation we experience while moving a delayed cursor, perceived purely from the change in visual motion, provides evidence of the inverse computation. To clearly specify the computational process underlying the sensation, we systematically varied the visual feedback and examined its effect on the strength of the sensation. In contrast to the prevailing theory that sensory prediction errors modulate our perception, the sensation did not correlate with errors in cursor motion due to the delay. Instead, it correlated with the amount of exposure to the forward acceleration of the cursor. This indicates that the delayed cursor is interpreted as a mechanical load, and the sensation represents its visually implied reaction force. Namely, the CNS automatically computes inverse dynamics, using visually detected motions, to monitor the dynamic forces involved in our actions.

  11. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.

    PubMed

    Chen, Yingying; Stabryla, Lisa; Wei, Na

    2016-01-29

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production.

  12. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  13. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  14. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  15. What you feel is what you see: inverse dynamics estimation underlies the resistive sensation of a delayed cursor

    PubMed Central

    Takamuku, Shinya; Gomi, Hiroaki

    2015-01-01

    How our central nervous system (CNS) learns and exploits relationships between force and motion is a fundamental issue in computational neuroscience. While several lines of evidence have suggested that the CNS predicts motion states and signals from motor commands for control and perception (forward dynamics), it remains controversial whether it also performs the ‘inverse’ computation, i.e. the estimation of force from motion (inverse dynamics). Here, we show that the resistive sensation we experience while moving a delayed cursor, perceived purely from the change in visual motion, provides evidence of the inverse computation. To clearly specify the computational process underlying the sensation, we systematically varied the visual feedback and examined its effect on the strength of the sensation. In contrast to the prevailing theory that sensory prediction errors modulate our perception, the sensation did not correlate with errors in cursor motion due to the delay. Instead, it correlated with the amount of exposure to the forward acceleration of the cursor. This indicates that the delayed cursor is interpreted as a mechanical load, and the sensation represents its visually implied reaction force. Namely, the CNS automatically computes inverse dynamics, using visually detected motions, to monitor the dynamic forces involved in our actions. PMID:26156766

  16. ANN based inversion of DC resistivity data for groundwater exploration in hard rock terrain of western Maharashtra (India)

    NASA Astrophysics Data System (ADS)

    Maiti, Saumen; Erram, Vinit C.; Gupta, Gautam; Tiwari, Ram Krishna

    2012-09-01

    SummaryInversion of vertical electrical sounding (VES) data, especially from the crystalline hard rock area, assumes a special significance for groundwater exploration. Here we used a newly developed algorithm based on the Bayesian neural network (BNN) theory combined with Hybrid Monte Carlo (HMC)/Markov Chain Monte Carlo (MCMC) simulation scheme to invert the Direct Current (DC) VES measurements obtained from 30-locations around Tenduli-Vengurla, Sindhudurg district, Maharashtra, India. The inversion results suggest that the top layer is mostly comprised of laterites followed by mixture of clay/clayey sand and garnulites/granite as basement rocks. The source of groundwater appears to be accessible in weathered/semi-weathered layer of laterite/clayey sand that exists within the depth of 10-15 m from the surface. The NW-SE trending major lineaments and its criss-crosses are also identified from the apparent and true resistivity surface map. The pseudo-section at different depths in the western part of the area, near Nivti, shows extensive influence of saltwater intrusion and its impact reaching up to the depth of 30 m from the surface along the coastal area. Our results also show that intrusion of saline water decreases from the western part to the eastern part of the region. Two dimensional modeling of four resistivity profiles from the study region identified two potential groundwater reservoirs; one lying between Path-Tenduli and another in between Mat and Zaraph. The deduced true electrical resistivity section against depth correlates well with available borehole lithology in the area. The results presented here would be useful for interpreting the geological signatures like fractures, major joints and lineaments, which in turn will be helpful for identifying groundwater reservoirs and drainage pattern in the crystalline hard rock area. The newly developed HMC-based BNN method is robust and would provide insights for constraining the geophysical models and

  17. Determining the depositional pattern by resistivity-seismic inversion for the aquifer system of Maira area, Pakistan.

    PubMed

    Akhter, Gulraiz; Farid, Asim; Ahmad, Zulfiqar

    2012-01-01

    Velocity and density measured in a well are crucial for synthetic seismic generation which is, in turn, a key to interpreting real seismic amplitude in terms of lithology, porosity and fluid content. Investigations made in the water wells usually consist of spontaneous potential, resistivity long and short normal, point resistivity and gamma ray logs. The sonic logs are not available because these are usually run in the wells drilled for hydrocarbons. To generate the synthetic seismograms, sonic and density logs are required, which are useful to precisely mark the lithology contacts and formation tops. An attempt has been made to interpret the subsurface soil of the aquifer system by means of resistivity to seismic inversion. For this purpose, resistivity logs and surface resistivity sounding were used and the resistivity logs were converted to sonic logs whereas surface resistivity sounding data transformed into seismic curves. The converted sonic logs and the surface seismic curves were then used to generate synthetic seismograms. With the utilization of these synthetic seismograms, pseudo-seismic sections have been developed. Subsurface lithologies encountered in wells exhibit different velocities and densities. The reflection patterns were marked by using amplitude standout, character and coherence. These pseudo-seismic sections were later tied to well synthetics and lithologs. In this way, a lithology section was created for the alluvial fill. The cross-section suggested that the eastern portion of the studied area mainly consisted of sandy fill and the western portion constituted clayey part. This can be attributed to the depositional environment by the Indus and the Kabul Rivers.

  18. Design, Synthesis, and Evaluation of Thiophene[3,2-d]pyrimidine Derivatives as HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Significantly Improved Drug Resistance Profiles.

    PubMed

    Kang, Dongwei; Fang, Zengjun; Li, Zhenyu; Huang, Boshi; Zhang, Heng; Lu, Xueyi; Xu, Haoran; Zhou, Zhongxia; Ding, Xiao; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Zhan, Peng; Liu, Xinyong

    2016-09-01

    We designed and synthesized a series of human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a piperidine-substituted thiophene[3,2-d]pyrimidine scaffold, employing a strategy of structure-based molecular hybridization and substituent decorating. Most of the synthesized compounds exhibited broad-spectrum activity with low (single-digit) nanomolar EC50 values toward a panel of wild-type (WT), single-mutant, and double-mutant HIV-1 strains. Compound 27 was the most potent; compared with ETV, its antiviral efficacy was 3-fold greater against WT, 5-7-fold greater against Y181C, Y188L, E138K, and F227L+V106A, and nearly equipotent against L100I and K103N, though somewhat weaker against K103N+Y181C. Importantly, 27 has lower cytotoxicity (CC50 > 227 μM) and a huge selectivity index (SI) value (ratio of CC50/EC50) of >159101. 27 also showed favorable, drug-like pharmacokinetic and safety properties in rats in vivo. Molecular docking studies and the structure-activity relationships provide important clues for further molecular elaboration. PMID:27541578

  19. Four-dimensional inversion of resistivity monitoring data through Lp norm minimizations

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Ho; Supper, Robert; Tsourlos, Panagiotis; Yi, Myeong-Jong

    2013-12-01

    A new 4-D inversion algorithm is developed so that any data misfits and model roughness in the space and time domains can be selectively minimized, in terms of either the L1 norm or the L2 norm. This study is motivated by the experience that a 4-D inversion adopting full L2 norm minimization may sometimes result in a model that is too smoothly varying with time. It is further encouraged by the realization that a particular criterion of either L1 or L2 norm cannot be universally optimal for accurately reconstructing the subsurface condition. In addition, we try to overcome difficulties of jointly choosing two optimal regularization parameters in space and time domains. To achieve this, we devise automatic determination methods, not only of the Lagrangian multipliers for the space-domain smoothness constraint, but also of the regularization parameter for penalizing the model roughness along the time axis. Both kinds of regularization parameters are actively updated at each iteration, according to variations in data misfit and model roughness. We conducted inversion experiments using synthetic and field monitoring data to test the proposed algorithms, and further to compare the performance of L1 and L2 norm minimizations. Both the synthetic and field data experiments demonstrated that the proposed automatic determination method produced ground changes that were more similar to the true changes than those of approaches using pre-determined parameter values. Inversion experiments showed that L1 norm minimization of the time-domain roughness could reduce the problem of overly smooth model changes when the subsurface changes are locally confined, but that the L2 norm approach would be more reasonable when the changes are expected to be widespread.

  20. Inverse estimation of the unsaturated soil hydraulic properties from tension disc infiltrometer data and electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Schneider, S.; Swinnen, R.; Pessel, M.; Vanderborght, J.; Coquet, Y.; Vachier, P.

    2009-04-01

    An accurate and time-efficient estimation of unsaturated soil hydraulic properties in the field remains a challenge. Tension-infiltrometry is often used to determine unsaturated soil hydraulic conductivity and its spatial variability in the field. Due to capillary flow, a 3-D wetting bulb develops under the tension infiltrometer. The shape of the bulb depends mainly on the unsaturated soil hydraulic properties. In classical tension-infiltrometer experiments only the amount of infiltrated water is measured with time and used to infer soil hydraulic conductivity. Electrical resistivity tomography (ERT) offers the possibility to image the spatial distribution of bulk soil electrical conductivity from a set of apparent electrical resistivity (ER) measurements, which is related through a petrophysical model to the soil water content. Therefore, apparent ER data contain information about the 3-D structure of the wetting bulb, which may be exploited to infer soil hydraulic properties. Whether a combination of tension-infiltrometer and apparent ER data can be used to estimate soil hydraulic parameters was investigated in numerical experiments. Instead of using a tomographic inversion of the apparent ER data, i.e. ERTomography, to derive the spatial distribution of the wetting bulb from which subsequently hydraulic parameters are derived, we explore the potential of a joint inversion approach that derives hydraulic parameters directly from apparent ER data. The combined infiltration and apparent ER datasets showed that the soil hydraulic parameters could be inverted from a single infiltration experiment, which is not possible when only infiltration data are used for inversion. Application of the proposed method was performed on a silt clay loam. Results have shown accurate estimations on the saturated hydraulic conductivity and on the hydraulic parameters of the water retention curve.

  1. On the Applicability of Joint Inversion of Gravity and Resistivity Data to the Study of a Tectonic Sedimentary Basin in Northern Portugal

    NASA Astrophysics Data System (ADS)

    Represas, Patricia; Monteiro Santos, F. A.; Ribeiro, Joana A.; Andrade Afonso, A.; Ribeiro, José; Moreira, Mário; Mendes-Victor, L. A.

    2015-10-01

    The Chaves basin is a pull-apart tectonic depression implanted on granites, schists, and graywackes, and filled with a sedimentary sequence of variable thickness. It is a rather complex structure, as it includes an intricate network of faults and hydrogeological systems. The topography of the basement of the Chaves basin still remains unclear, as no drill hole has ever intersected the bottom of the sediments, and resistivity surveys suffer from severe equivalence issues resulting from the geological setting. In this work, a joint inversion approach of 1D resistivity and gravity data designed for layered environments is used to combine the consistent spatial distribution of the gravity data with the depth sensitivity of the resistivity data. A comparison between the results from the inversion of each data set individually and the results from the joint inversion show that although the joint inversion has more difficulty adjusting to the observed data, it provides more realistic and geologically meaningful models than the ones calculated by the inversion of each data set individually. This work provides a contribution for a better understanding of the Chaves basin, while using the opportunity to study further both the advantages and difficulties comprising the application of the method of joint inversion of gravity and resistivity data.

  2. A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN)

    NASA Astrophysics Data System (ADS)

    Raj, A. Stanley; Srinivas, Y.; Oliver, D. Hudson; Muthuraj, D.

    2014-03-01

    The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer feed-forward neural network with fast back propagation learning algorithm. So on proper training of back propagation networks it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data with reference to the synthetic data trained in the appropriate network. During training, the weights and biases of the network are iteratively adjusted to make network performance function level more efficient. On adequate training, errors are minimized and the best result is obtained using the artificial neural networks. The network is trained with more number of VES data and this trained network is demonstrated by the field data. The accuracy of inversion depends upon the number of data trained. In this novel and specially designed algorithm, the interpretation of the vertical electrical sounding has been done successfully with the more accurate layer model.

  3. Multi-array borehole resistivity and induced polarization method with mathematical inversion of redundant data

    DOEpatents

    Ward, Stanley H.

    1989-01-01

    Multiple arrays of electric or magnetic transmitters and receivers are used in a borehole geophysical procedure to obtain a multiplicity of redundant data suitable for processing into a resistivity or induced polarization model of a subsurface region of the earth.

  4. Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Meqbel, Naser M.; Egbert, Gary D.; Wannamaker, Philip E.; Kelbert, Anna; Schultz, Adam

    2014-09-01

    Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ˜70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Beneath the active extensional subprovinces in the south-central region, on average we see a resistive upper crust, and then extensive areas of low resistivity in the lower crust and uppermost mantle. Further below, much of the upper half of the upper mantle appears moderately resistive, then subsequently the lower upper mantle becomes moderately conductive. This column suggests a dynamic process of moderately hydrated and fertile deeper upper mantle upwelling during extension, intersection of that material with the damp solidus causing dehydration and melting, and upward exodus of generated mafic melts to pond and exsolve saline fluids near Moho levels. Lithosphere here is very thin. To the east and northeast, thick sections of resistive lithosphere are imaged under the Wyoming and Medicine Hat Cratons. These are punctuated with numerous electrically conductive sutures presumably containing graphitic or sulfide-bearing meta-sediments deeply underthrust and emplaced during ancient collisions. Below Cascadia, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Suspected oceanic lithosphere relicts in the central NW part of the model domain also are resistive, including the accreted “Siletzia” terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast “slab curtain” beneath

  5. Serum 25-Hydroxyvitamin D Concentration Is Independently Inversely Associated with Insulin Resistance in the Healthy, Non-Obese Korean Population

    PubMed Central

    Ock, So Young; Ha, Kyoung Hwa; Kim, Bu Kyung; Kim, Hyeon Chang; Shim, Jee-Seon; Lee, Myung Ha; Yoon, Young Me

    2016-01-01

    Background We evaluated the associations between 25-hydroxyvitamin D (25(OH)D) concentrations in serum and insulin resistance in the healthy Korean population. Methods We conducted this cross-sectional analysis in 1,807 healthy Korean people (628 men and 1,179 women) aged 30 to 64 years in the Cardiovascular and Metabolic Disease Etiologic Research Center study. All participants were assessed for 25(OH)D, fasting glucose, and insulin levels, and completed a health examination and lifestyle questionnaire according to standard procedures. Insulin resistance was defined as the homeostasis model assessment insulin resistance higher than the 75 percentile. Results Compared to those in the highest tertile (≥14.3 ng/mL), the odds ratio (OR) for insulin resistance was 1.37 (95% confidence interval [CI], 1.01 to 1.86) for the 1st tertile (<9.7 ng/mL) and 1.19 (95% CI, 0.08 to 1.62) for the 2nd tertile (9.7 to 14.3 ng/mL) after adjusting for age, gender, waist circumference, alcohol consumption, smoking status, physical exercise, season, and cohort. After stratification of the subjects by adiposity, these associations remained only in non-obese subjects (lowest tertile vs. highest tertile, multivariable OR, 1.64; 95% CI, 1.05 to 2.56). Conclusion Serum 25(OH)D has an independent inverse association with insulin resistance in the healthy, non-obese Korean population, even among people with vitamin D insufficiency. PMID:27535642

  6. Rapid approximate inversion of airborne TEM

    NASA Astrophysics Data System (ADS)

    Fullagar, Peter K.; Pears, Glenn A.; Reid, James E.; Schaa, Ralf

    2015-11-01

    Rapid interpretation of large airborne transient electromagnetic (ATEM) datasets is highly desirable for timely decision-making in exploration. Full solution 3D inversion of entire airborne electromagnetic (AEM) surveys is often still not feasible on current day PCs. Therefore, two algorithms to perform rapid approximate 3D interpretation of AEM have been developed. The loss of rigour may be of little consequence if the objective of the AEM survey is regional reconnaissance. Data coverage is often quasi-2D rather than truly 3D in such cases, belying the need for `exact' 3D inversion. Incorporation of geological constraints reduces the non-uniqueness of 3D AEM inversion. Integrated interpretation can be achieved most readily when inversion is applied to a geological model, attributed with lithology as well as conductivity. Geological models also offer several practical advantages over pure property models during inversion. In particular, they permit adjustment of geological boundaries. In addition, optimal conductivities can be determined for homogeneous units. Both algorithms described here can operate on geological models; however, they can also perform `unconstrained' inversion if the geological context is unknown. VPem1D performs 1D inversion at each ATEM data location above a 3D model. Interpretation of cover thickness is a natural application; this is illustrated via application to Spectrem data from central Australia. VPem3D performs 3D inversion on time-integrated (resistive limit) data. Conversion to resistive limits delivers a massive increase in speed since the TEM inverse problem reduces to a quasi-magnetic problem. The time evolution of the decay is lost during the conversion, but the information can be largely recovered by constructing a starting model from conductivity depth images (CDIs) or 1D inversions combined with geological constraints if available. The efficacy of the approach is demonstrated on Spectrem data from Brazil. Both separately and in

  7. Multi-array borehole resistivity and induced polarization method with mathematical inversion of redundant data

    DOEpatents

    Ward, S.H.

    1989-10-17

    Multiple arrays of electric or magnetic transmitters and receivers are used in a borehole geophysical procedure to obtain a multiplicity of redundant data suitable for processing into a resistivity or induced polarization model of a subsurface region of the earth. 30 figs.

  8. Deep electrical resistivity structure of the Northwestern U. S. derived from 3-D inversion of USArray Magnetotelluric data (Invited)

    NASA Astrophysics Data System (ADS)

    Meqbel, N. M.; Egbert, G. D.; Wannamaker, P. E.; Kelbert, A.; Schultz, A.

    2013-12-01

    Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ~70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Extensive areas of low resistivity are imaged in the lower crust and uppermost mantle beneath the extensional provinces, most plausibly explained by underplated, hybridized magmas and associated exsolved highly saline fluids. These pervasive low resistivities show aligned or 'streaky' textures roughly parallel to seismic fast-axes, possibly reflecting widespread flow induced alignment of melt in this area. Thick sections of resistive lithosphere imaged in the eastern and northeastern part of the domain coincide spatially with the Wyoming and Medicine Hat Cratons. Sutures bounding these cratonic blocks are electrically conductive most likely due to meta-sediments emplaced during ancient collisions. Below the Cascadia forearc, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Other resistive zones in the NW part of the domain may denote relict oceanic lithosphere: the accreted 'Siletzia' terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast 'slab curtain' beneath eastern Idaho interpreted by others as stranded Farallon lithosphere. Quasi-horizontal patches of low resistivity in the deep crust beneath the Cascade volcanic arc and fore-arc likely represent fluids evolved from breakdown of hydrous minerals in the down-going slab. In the backarc, low resistivities concentrate in

  9. Regularized focusing inversion of time-lapse electrical resistivity data: an approach to parametrize the minimum gradient support functional

    NASA Astrophysics Data System (ADS)

    Nguyen, Frédéric; Hermans, Thomas

    2015-04-01

    Inversion of time-lapse resistivity data allows obtaining 'snapshots' of changes occurring in monitored systems for applications such as aquifer storage, geothermal heat exchange, site remediation or tracer tests. Based on these snapshots, one can infer qualitative information on the location and morphology of changes occurring in the subsurface but also quantitative estimates on the degree of changes in certain property such as temperature or total dissolved solid content. Analysis of these changes can provide direct insight into flow and transport and associated processes and controlling parameters. However, the reliability of the analysis is dependent on survey geometry, measurement schemes, data error, and regularization. Survey design parameters may be optimized prior to the monitoring survey. Regularization, on the other hand, may be chosen depending on available information collected during the monitoring. Common approaches consider smoothing model changes both in space and time but it is often needed to obtain a sharp temporal anomaly, for example in fractured aquifers. We here propose to use the alternative regularization approach based on minimum gradient support (MGS) (Zhdanov, 2002) for time-lapse surveys which will focus the changes in tomograms snapshots. MGS will limit the occurrences of changes in electrical resistivity but will also restrict the variations of these changes inside the different zones. A commonly encountered difficulty by practitioners in this type of regularization is the choice of an additional parameter, the so-called β, required to define the MGS functional. To the best of our knowledge, there is no commonly accepted or standard methodology to optimize the MGS parameter β. The inversion algorithm used in this study is CRTomo (Kemna 2000). It uses a Gauss-Newton scheme to iteratively minimize an objective function which consists of a data misfit functional and a model constraint functional. A univariate line search is performed

  10. Socioeconomic status is positively associated with measures of adiposity and insulin resistance, but inversely associated with dyslipidaemia in Colombian children

    PubMed Central

    Buitrago-Lopez, Adriana; van den Hooven, Edith H; Rueda-Clausen, Christian F; Serrano, Norma; Ruiz, Alvaro J; Pereira, Mark A; Mueller, Noel T

    2015-01-01

    Background Low socioeconomic status (SES) has been associated with higher risk of cardiometabolic diseases in developed societies, but investigation of SES and cardiometabolic risk in children in less economically developed populations is sparse. We aimed to examine associations among SES and cardiometabolic risk factors in Colombian children. Methods We used data from a population-based study of 1282 children aged 6–10 years from Bucaramanga, Colombia. SES was classified according to household wealth, living conditions and access to public utilities. Anthropometric and biochemical parameters were measured at a clinic visit. Cardiometabolic risk factors were analysed continuously using linear regression and as binary outcomes—according to established paediatric cut points—using logistic regression to calculate OR and 95% CIs. Results Mean age of the children was 8.4 (SD 1.4) and 51.1% of the sample were boys. Odds of overweight/obesity, abdominal obesity and insulin resistance were greater among higher SES. Compared with the lowest SES stratum, children in the highest SES had higher odds of overweight/obesity (OR=3.25, 95% CI 1.89 to 5.57), abdominal obesity (OR=2.74, 95% CI 1.41 to 5.31) and insulin resistance (OR=2.60, 95% CI 1.81 to 3.71). In contrast, children in the highest SES had lower odds of hypertriglyceridaemia (triglycerides ≥90th centile; OR=0.28, 95% CI 0.14 to 0.54) and low (≤10th centile) high-density lipoprotein (HDL) cholesterol (OR=0.35, 95% CI 0.15 to 0.78). Conclusions In Colombian children, SES is directly associated with obesity and insulin resistance, but inversely associated with dyslipidaemia (hypertriglyceridaemia and low HDL cholesterol). Our findings highlight the need to analyse cardiometabolic risk factors separately in children and to carefully consider a population's level of economic development when studying their social determinants of cardiometabolic disease. PMID:25691273

  11. 2D and 3D Electrical Resistivity Tomography imaging of earthquake related ground deformations at the Ancient Roman Forum and Isis Temple of Baelo Claudia (Cádiz, South Spain).

    NASA Astrophysics Data System (ADS)

    Silva, Pablo G.

    2010-05-01

    The ancient roman city of Baelo Claudia has been subject of several papers on earthquake environmental effects (EEE) and well as earthquake archaeological effects (EAE). During the field training course on archaeoseismology and palaeoseismology conducted in September 2009 (INQUA-IGCP567 Workshop) held at Baelo Claudia, four Electric Resistivity Tomography (ERT) profiles were carried out, by the teams of the Salamanca University (Spain), RWTH Aachen University (Germany) and the Geological Survey of Spain (IGME). ERT surveys were developed in the eastern side of the ancient roman Forum across the unexcavated sector of the archaeological site heading on the 1st Century AD Isis Temple. Each ERT profile was constituted by a 48 multielectrode array with spacing of 2 m resulting in a total length of investigation of around 384 m. ERT lines were separated 10 m each other resulting in a total research area of 3840 m2 to a mean investigation depth of 16 m. The selected survey configurations were Pole-Dipole and Wenner in order to get detailed information about lateral resistivity contrasts, but with a reasonable depth of investigation. The resulting 2D resistivity pseudosections clearly display deformations of the buried roman pavements which propagated in depth within the pre-roman clayey substratum of the Bolonia Bay area.. 3D modelling of the 2D pseudosections indicates that the observed deformations are related to near-surface landsliding, being possible to calculate the minimum volume of mobilized material. ERT 3D imaging allow to refine previous GPR surveys conducted at this same area and to get a subsurface picture of ground deformations caused by repeated earthquakes during the 1st and 3rd Centuries AD. Preliminary calculated volume for the mobilized materials affecting the foundations of the Isis Temple and Forum clearly points to a minimum ESI-07 VIII Intensity validating previous research in the zone. This study has been supported by the Spanish Research Projects

  12. Muscle mass gain after resistance training is inversely correlated with trunk adiposity gain in postmenopausal women.

    PubMed

    Orsatti, Fábio L; Nahas, Eliana A P; Orsatti, Cláudio L; de Oliveira, Erick P; Nahas-Neto, Jorge; da Mota, Gustavo R; Burini, Roberto C

    2012-08-01

    The aim of this study was to evaluate alterations in trunk adiposity (TA) over 9 months of resistance training (RT) and associate these changes with the hypertrophy of muscle mass (MM) in postmenopausal women (PW). The investigation used a sample that consisted of 22 PW (44-69 years old). The group was subjected to RT (60-80% of 1 repetition maximum) for the total body 3 d · wk(-1). Body composition (dual-energy x-ray absorptiometry) and plasma levels of insulin-like growth factor-1 (IGF-1), follicle-stimulating hormone, E2 (Immulite system), and interleukin-6 (IL-6; enzyme-linked immunosorbent assay) were assessed at the beginning and end of the experiment. After RT, only women who acquired up to 5% TA gained MM, whereas women who acquired >5% TA exhibited increased IL-6 and no MM gain (p < 0.05). The ΔMM was negatively associated with time of menopause (r = -0.45, p < 0.05) and positively associated with baseline IGF-1 (r = 0.47, p < 0.05). Only ΔLE (leg extension) was negatively associated with baseline IL-6 (p < 0.05). Trunk adiposity growth (ΔTF, kilograms) was positively correlated with changes in IL-6 (r = 0.68, p < 0.05). The MM gain was negatively correlated with ΔTF (r = -0.63, p < 0.05) and changes in IL-6 (r = -0.73, p < 0.05). After adjusting all of the confounding variables, only baseline IGF-1 (positively) and changes in IL-6 (negatively) influenced MM, and only the increase in TA influenced IL-6. Our study suggests that increased levels of TA during RT increase IL-6 concentrations, which is a significant negative predictor of MM gain in PW.

  13. New results on the resistivity structure of Merapi Volcano(Indonesia), derived from 3D restricted inversion of long-offsettransient electromagnetic data

    SciTech Connect

    Commer, Michael; Helwig, Stefan, L.; Hordt, Andreas; Scholl,Carsten; Tezkan, Bulent

    2006-06-14

    Three long-offset transient electromagnetic (LOTEM) surveyswerecarried out at the active volcano Merapi in Central Java (Indonesia)during the years 1998, 2000, and 2001. The measurements focused on thegeneral resistivity structure of the volcanic edifice at depths of 0.5-2km and the further investigation of a southside anomaly. The measurementswere insufficient for a full 3D inversion scheme, which could enable theimaging of finely discretized resistivity distributions. Therefore, astable, damped least-squares joint-inversion approach is used to optimize3D models with a limited number of parameters. The mode ls feature therealistic simulation of topography, a layered background structure, andadditional coarse 3D blocks representing conductivity anomalies.Twenty-eight LOTEM transients, comprising both horizontal and verticalcomponents of the magnetic induction time derivative, were analyzed. Inview of the few unknowns, we were able to achieve reasonable data fits.The inversion results indicate an upwelling conductor below the summit,suggesting hydrothermal activity in the central volcanic complex. Ashallow conductor due to a magma-filled chamber, at depths down to 1 kmbelow the summit, suggested by earlier seismic studies, is not indicatedby the inversion results. In conjunction with an anomalous-density model,derived from arecent gravity study, our inversion results provideinformation about the southern geological structure resulting from amajor sector collapse during the Middle Merapi period. The density modelallows to assess a porosity range andthus an estimated vertical salinityprofile to explain the high conductivities on a larger scale, extendingbeyond the foothills of Merapi.

  14. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  15. Accurate modeling and inversion of electrical resistivity data in the presence of metallic infrastructure with known location and dimension

    SciTech Connect

    Johnson, Timothy C.; Wellman, Dawn M.

    2015-06-26

    Electrical resistivity tomography (ERT) has been widely used in environmental applications to study processes associated with subsurface contaminants and contaminant remediation. Anthropogenic alterations in subsurface electrical conductivity associated with contamination often originate from highly industrialized areas with significant amounts of buried metallic infrastructure. The deleterious influence of such infrastructure on imaging results generally limits the utility of ERT where it might otherwise prove useful for subsurface investigation and monitoring. In this manuscript we present a method of accurately modeling the effects of buried conductive infrastructure within the forward modeling algorithm, thereby removing them from the inversion results. The method is implemented in parallel using immersed interface boundary conditions, whereby the global solution is reconstructed from a series of well-conditioned partial solutions. Forward modeling accuracy is demonstrated by comparison with analytic solutions. Synthetic imaging examples are used to investigate imaging capabilities within a subsurface containing electrically conductive buried tanks, transfer piping, and well casing, using both well casings and vertical electrode arrays as current sources and potential measurement electrodes. Results show that, although accurate infrastructure modeling removes the dominating influence of buried metallic features, the presence of metallic infrastructure degrades imaging resolution compared to standard ERT imaging. However, accurate imaging results may be obtained if electrodes are appropriately located.

  16. QUENCH2D. Two-Dimensional IHCP Code

    SciTech Connect

    Osman, A.; Beck, J.V.

    1995-01-01

    QUENCH2D* is developed for the solution of general, non-linear, two-dimensional inverse heat transfer problems. This program provides estimates for the surface heat flux distribution and/or heat transfer coefficient as a function of time and space by using transient temperature measurements at appropriate interior points inside the quenched body. Two-dimensional planar and axisymmetric geometries such as turnbine disks and blades, clutch packs, and many other problems can be analyzed using QUENCH2D*.

  17. The inability of magnetotelluric off-diagonal impedance tensor elements to sense oblique conductors in three-dimensional inversion

    NASA Astrophysics Data System (ADS)

    Kiyan, Duygu; Jones, Alan G.; Vozar, Jan

    2014-03-01

    In this paper, we use synthetic data sets from a profile to demonstrate the importance of aligning the 3-D mesh and data coordinate system with the dominant geo-electrical strike direction in 3-D inverse modelling. The resistivity model investigated consists of a regional, elongated 2-D conductive structure at 45° to the profile. We compare the results of full impedance tensor inversion with the results from inversion of only off-diagonal components of the magnetotelluric impedance tensor. The 3-D inversion result obtained with the complete tensor elements yields the subsurface model closest to the original model, whereas the result of inverting only off-diagonal components is the poor imaging of the continuity of the conductive 2-D body. However, the conductor can be correctly recovered using only the off-diagonal components if the model mesh and the data are aligned with quasi-2-D geo-electrical strike.

  18. 2D Spinodal Decomposition in Forced Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; Diamond, Patrick; Chacon, Luis; Li, Hui

    2015-11-01

    Spinodal decomposition is a second order phase transition for binary fluid mixture, from one thermodynamic phase to form two coexisting phases. The governing equation for this coarsening process below critical temperature, Cahn-Hilliard Equation, is very similar to 2D MHD Equation, especially the conserved quantities have a close correspondence between each other, so theories for MHD turbulence are used to study spinodal decomposition in forced turbulence. Domain size is increased with time along with the inverse cascade, and the length scale can be arrested by a forced turbulence with direct cascade. The two competing mechanisms lead to a stabilized domain size length scale, which can be characterized by Hinze Scale. The 2D spinodal decomposition in forced turbulence is studied by both theory and simulation with ``pixie2d.'' This work focuses on the relation between Hinze scale and spectra and cascades. Similarities and differences between spinodal decomposition and MHD are investigated. Also some transport properties are studied following MHD theories. This work is supported by the Department of Energy under Award Number DE-FG02-04ER54738.

  19. Time-Lapse Joint Inversion of Cross-Well DC Resistivity and Seismic Data: A Numerical Investigation

    EPA Science Inventory

    Time-lapse joint inversion of geophysical data is required to image the evolution of oil reservoirs during production and enhanced oil recovery, CO2 sequestration, geothermal fields during production, and to monitor the evolution of contaminant plumes. Joint inversion schemes red...

  20. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  1. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  2. Practical Algorithm For Computing The 2-D Arithmetic Fourier Transform

    NASA Astrophysics Data System (ADS)

    Reed, Irving S.; Choi, Y. Y.; Yu, Xiaoli

    1989-05-01

    Recently, Tufts and Sadasiv [10] exposed a method for computing the coefficients of a Fourier series of a periodic function using the Mobius inversion of series. They called this method of analysis the Arithmetic Fourier Transform(AFT). The advantage of the AFT over the FN 1' is that this method of Fourier analysis needs only addition operations except for multiplications by scale factors at one stage of the computation. The disadvantage of the AFT as they expressed it originally is that it could be used effectively only to compute finite Fourier coefficients of a real even function. To remedy this the AFT developed in [10] is extended in [11] to compute the Fourier coefficients of both the even and odd components of a periodic function. In this paper, the improved AFT [11] is extended to a two-dimensional(2-D) Arithmetic Fourier Transform for calculating the Fourier Transform of two-dimensional discrete signals. This new algorithm is based on both the number-theoretic method of Mobius inversion of double series and the complex conjugate property of Fourier coefficients. The advantage of this algorithm over the conventional 2-D FFT is that the corner-turning problem needed in a conventional 2-D Discrete Fourier Transform(DFT) can be avoided. Therefore, this new 2-D algorithm is readily suitable for VLSI implementation as a parallel architecture. Comparing the operations of 2-D AFT of a MxM 2-D data array with the conventional 2-D FFT, the number of multiplications is significantly reduced from (2log2M)M2 to (9/4)M2. Hence, this new algorithm is faster than the FFT algorithm. Finally, two simulation results of this new 2-D AFT algorithm for 2-D artificial and real images are given in this paper.

  3. Temephos-resistant larvae of Simulium sanctipauli associated with a distinctive new chromosome inversion in untreated rivers of south-western Ghana.

    PubMed

    Osei-Atweneboana, M Y; Wilson, M D; Post, R J; Boakye, D A

    2001-03-01

    Larvae of the Simulium damnosum Theobald complex (Diptera: Simuliidae) were sampled in June 1996 from two sites in south-west Ghana where larviciding has not been applied: Sutri Rapids on the Tano river (05 degrees 23 minutes N 02 degrees 38 minures W) and Sekyere-Heman on the Pra river (05 degrees 11 minutes N 01 degrees 35 minutes W). All specimens were identified as Simulium sanctipauli Vajime & Dunbar sensu stricto (Diptera: Simuliidae). Bioassays with temephos (organophosphorus larvicide employed by the Onchocerciasis Programme for systematic treatment of most rivers across West Africa since the 1970s) showed about five-fold resistance in the Tano population (LC95 2.37-3.14 mg/L) and slight tolerance to temephos in the Pra population (LC95 0.67-0.76 mg/L), vs. the diagnostic concentration of 0.625 mg/L. Larval salivary polytene chromosomes of S. sanctipauli showed fixed inversions 1S-24/24, standard IIL-6 and a new inversion IL/36 polymorphism at Sutri on the Tano. These karyotype characteristics differ from those of temephos-resistant S. sanctipauli in rivers of C te d'Ivoire and other sites on the Tano in Ghana. Thus, temephos resistance in S. sanctipauli at Sutri is associated with distinct chromosomal configurations, showing that immigration was unlikely. This resistance could have been locally selected by exposure of S. sanctipauli larval populations to agrochemicals run-off from cocoa, coffee and oil plantations flanking the rivers.

  4. A novel improved method for analysis of 2D diffusion-relaxation data--2D PARAFAC-Laplace decomposition.

    PubMed

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T; Engelsen, Søren B

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T(2)-D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T(2)-D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T(2)-D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D=3 x 10(-12) m(2) s(-1) and T(2)=180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D=10(-9) m(2) s(-1), T(2)=10 ms and D=3 x 10(-13) m(2) s(-1), T(2)=13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  5. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  6. In situ fluid typing and quantification with 1D and 2D NMR logging.

    PubMed

    Sun, Boqin

    2007-05-01

    In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples. PMID:17466778

  7. DYNA2D96. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.

    1992-04-01

    DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  8. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  9. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-01

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. PMID:25965703

  10. Radiative heat transfer in 2D Dirac materials

    DOE PAGES

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  11. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  12. Strain-induced Fermi contour anisotropy of GaAs (311)A 2D holes

    NASA Astrophysics Data System (ADS)

    Shabani, Javad; Shayegan, Mansour; Winkler, Roland

    2008-03-01

    There is considerable current interest in electronic properties of two-dimensional (2D) carriers whose energy bands are spin-split at finite values of in-plane wave vector, thanks to the spin-orbit interaction and the lack of inversion symmetry. We report experimental and theoretical results revealing that the spin-subband Fermi contours of the heavy and light heavy-holes (HHh and HHl) can be tuned in high mobility GaAs (311)A 2D hole systems via the application of symmetry-breaking in-plane strain. Our calculations show that the HHl spin-subband Fermi contour is circular but the HHh spin-subband Fermi contour is distorted. Experimentally, we probe the Fermi contour anisotropy by measuring the magneto-resistance commensurability peaks induced by square arrays of antidots. When the spin splitting is sufficiently large, the magneto-resistance trace exhibits two peaks, providing clear evidence for spin-resolved ballistic transport. The experimental results are in good agreement with the calculations, and confirm that the majority spin-subband (HHh) has a severely distorted Fermi contour whose anisotropy can be tuned with strain while Fermi contour of the minority spin-subband (HHl) remains nearly isotropic.

  13. Two-dimensional inversion of spectral induced polarization data using MPI parallel algorithm in data space

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Yong; Tan, Han-Dong; Wang, Kun-Peng; Lin, Chang-Hong; Zhang, Bin; Xie, Mao-Bi

    2016-03-01

    Traditional two-dimensional (2D) complex resistivity forward modeling is based on Poisson's equation but spectral induced polarization (SIP) data are the coproducts of the induced polarization (IP) and the electromagnetic induction (EMI) effects. This is especially true under high frequencies, where the EMI effect can exceed the IP effect. 2D inversion that only considers the IP effect reduces the reliability of the inversion data. In this paper, we derive differential equations using Maxwell's equations. With the introduction of the Cole-Cole model, we use the finite-element method to conduct 2D SIP forward modeling that considers the EMI and IP effects simultaneously. The data-space Occam method, in which different constraints to the model smoothness and parametric boundaries are introduced, is then used to simultaneously obtain the four parameters of the Cole—Cole model using multi-array electric field data. This approach not only improves the stability of the inversion but also significantly reduces the solution ambiguity. To improve the computational efficiency, message passing interface programming was used to accelerate the 2D SIP forward modeling and inversion. Synthetic datasets were tested using both serial and parallel algorithms, and the tests suggest that the proposed parallel algorithm is robust and efficient.

  14. PSO: A powerful algorithm to solve geophysical inverse problems: Application to a 1D-DC resistivity case

    NASA Astrophysics Data System (ADS)

    Fernández Martínez, Juan L.; García Gonzalo, Esperanza; Fernández Álvarez, José P.; Kuzma, Heidi A.; Menéndez Pérez, César O.

    2010-05-01

    PSO is an optimization technique inspired by the social behavior of individuals in nature (swarms) that has been successfully used in many different engineering fields. In addition, the PSO algorithm can be physically interpreted as a stochastic damped mass-spring system. This analogy has served to introduce the PSO continuous model and to deduce a whole family of PSO algorithms using different finite-differences schemes. These algorithms are characterized in terms of convergence by their respective first and second order stability regions. The performance of these new algorithms is first checked using synthetic functions showing a degree of ill-posedness similar to that found in many geophysical inverse problems having their global minimum located on a very narrow flat valley or surrounded by multiple local minima. Finally we present the application of these PSO algorithms to the analysis and solution of a VES inverse problem associated with a seawater intrusion in a coastal aquifer in southern Spain. PSO family members are successfully compared to other well known global optimization algorithms (binary genetic algorithms and simulated annealing) in terms of their respective convergence curves and the sea water intrusion depth posterior histograms.

  15. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells.

    PubMed

    Sousa, Mirta M L; Zub, Kamila Anna; Aas, Per Arne; Hanssen-Bauer, Audun; Demirovic, Aida; Sarno, Antonio; Tian, Erming; Liabakk, Nina B; Slupphaug, Geir

    2013-01-01

    Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs). Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ) pathway of double-strand break (DSB) repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel candidate biomarkers

  16. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  17. Resistance to pathogens in terpene down-regulated orange fruits inversely correlates with the accumulation of D-limonene in peel oil glands

    PubMed Central

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M; Peña, Leandro

    2015-01-01

    Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores. PMID:26023857

  18. Resistance to pathogens in terpene down-regulated orange fruits inversely correlates with the accumulation of D-limonene in peel oil glands.

    PubMed

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M; Peña, Leandro

    2015-01-01

    Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores.

  19. Resistance to pathogens in terpene down-regulated orange fruits inversely correlates with the accumulation of D-limonene in peel oil glands.

    PubMed

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M; Peña, Leandro

    2015-01-01

    Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores. PMID:26023857

  20. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  1. Daily chocolate consumption is inversely associated with insulin resistance and liver enzymes in the Observation of Cardiovascular Risk Factors in Luxembourg study.

    PubMed

    Alkerwi, Ala'a; Sauvageot, Nicolas; Crichton, Georgina E; Elias, Merrill F; Stranges, Saverio

    2016-05-01

    This study examined the association of chocolate consumption with insulin resistance and serum liver enzymes in a national sample of adults in Luxembourg. A random sample of 1153 individuals, aged 18-69 years, was recruited to participate in the cross-sectional Observation of Cardiovascular Risk Factors in Luxembourg study. Chocolate consumption (g/d) was obtained from a semi-quantitative FFQ. Blood glucose and insulin levels were used for the homoeostasis model assessment of insulin resistance (HOMA-IR). Hepatic biomarkers such as serum γ-glutamyl-transpeptidase (γ-GT), serum aspartate transaminase and serum alanine transaminase (ALT) (mg/l) were assessed using standard laboratory assays. Chocolate consumers (81·8 %) were more likely to be younger, physically active, affluent people with higher education levels and fewer chronic co-morbidities. After excluding subjects taking antidiabetic medications, higher chocolate consumption was associated with lower HOMA-IR (β=-0·16, P=0·004), serum insulin levels (β=-0·16, P=0·003) and γ-GT (β=-0·12, P=0·009) and ALT (β=-0·09, P=0·004), after adjustment for age, sex, education, lifestyle and dietary confounding factors, including intakes of fruits and vegetables, alcohol, polyphenol-rich coffee and tea. This study reports an independent inverse relationship between daily chocolate consumption and levels of insulin, HOMA-IR and liver enzymes in adults, suggesting that chocolate consumption may improve liver enzymes and protect against insulin resistance, a well-established risk factor for cardiometabolic disorders. Further observational prospective research and well-designed randomised-controlled studies are needed to confirm this cross-sectional relationship and to comprehend the role and mechanisms that different types of chocolate may play in insulin resistance and cardiometabolic disorders. PMID:26983749

  2. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  3. Inverse Relationship of the CMKLR1 Relative Expression and Chemerin Serum Levels in Obesity with Dysmetabolic Phenotype and Insulin Resistance

    PubMed Central

    Corona-Meraz, Fernanda-Isadora; Navarro-Hernández, Rosa-Elena; Ruíz-Quezada, Sandra-Luz; Madrigal-Ruíz, Perla-Monserrat; Castro-Albarrán, Jorge; Chavarría-Ávila, Efraín; Guzmán-Ornelas, Milton-Omar; Gómez-Bañuelos, Eduardo; Petri, Marcelo-Herón; Ramírez-Cedano, Joel-Isidro; Aguilar-Aldrete, María-Elena; Ríos-Ibarra, Clara; Vázquez-Del Mercado, Mónica

    2016-01-01

    Background. In obesity there is a subclinical chronic low-grade inflammatory response where insulin resistance (IR) may develop. Chemerin is secreted in white adipose tissue and promotes low-grade inflammatory process, where it expressed CMKLR1 receptor. The role of chemerin and CMKLR1 in inflammatory process secondary to obesity is not defined yet. Methods. Cross-sectional study with 134 individuals classified as with and without obesity by body mass index (BMI) and IR. Body fat storage measurements and metabolic and inflammatory markers were measured by routine methods. Soluble chemerin and basal levels of insulin by ELISA and relative expression of CMKLR1 were evaluated with qPCR and 2−ΔΔCT method. Results. Differences (P < 0.05) were observed between obesity and lean individuals in body fat storage measurements and metabolic-inflammatory markers. Both CMKLR1 expression and chemerin levels were increased in obesity without IR. Soluble chemerin levels correlate with adiposity and metabolic markers (r = 8.8% to 38.5%), P < 0.05. Conclusion. The increment of CMKLR1 expression was associated with insulin production. Increased serum levels of chemerin in obesity were observed, favoring a dysmetabolic response. The results observed in this study suggest that both chemerin and CMKLR1 have opposite expression in the context of low-grade inflammatory response manifested in the development of IR. PMID:27239101

  4. Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, M.

    2016-05-01

    In this study, phase angle (inverse tangent of the ratio of the horizontal to vertical gradients of magnetic anomalies) profile over two-dimensional tabular bodies has been subjected to detailed analysis for determining the source parameters. Distances between certain characteristic positions on this phase curve are related to the parameters of two-dimensional tabular magnetic sources. In this paper, I have derived the mathematical expressions for these relations. It has been demonstrated here that for locating the origin of the 2D tabular source, knowledge on the type of the model (contact, sheet, dyke, and fault) is not necessary. A procedure is evolved to determine the location, depth, width and magnetization angle of the 2D sources from the mathematical expressions. The method is tested on real field data. The effect of the overlapping bodies is also discussed with two synthetic examples. The interpretation technique is developed for contact, sheet, dike and inclined fault bodies.

  5. Development of 2D SIP Data Processing Software for a Metallic Mineral Deposit Exploration

    NASA Astrophysics Data System (ADS)

    PARK, M.; Kim, K. S.; Seo, H. K.; Son, J.; Park, S.; Kim, C.; Kim, J. H.

    2015-12-01

    algorithm, we could get more reliable inversion result for the time-domain IP data. Therefore, it is expected the SIP method should be more popular if the developed 2D SIP processing software is widely used.

  6. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  7. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  8. Crustal metamorphic fluid flux beneath the Dead Sea Basin: Constraints from 2D and 3D magnetotelluric modelling

    NASA Astrophysics Data System (ADS)

    Meqbel, Naser; Weckmann, Ute; Muñoz, Gerard; Ritter, Oliver

    2016-09-01

    We report on a study to explore the deep electrical conductivity structure of the Dead Sea Basin (DSB) using magnetotelluric (MT) data collected along a transect across the DSB where the left lateral strike slip Dead Sea transform fault (DST) splits into two fault strands forming one of the largest pull-apart basins of the world. A very pronounced feature of our 2D inversion model is a deep, sub-vertical conductive zone beneath the DSB. The conductor extends through the entire crust and is sandwiched between highly resistive structures associated with Precambrian rocks of the basin flanks. The high electrical conductivity could be attributed to fluids released by dehydration of the uppermost mantle beneath the DSB, possibly in combination with fluids released by mid to low grade metamorphism in the lower crust and generation of hydrous minerals in the middle crust through retrograde metamorphism. Similar high conductivity zones associated with fluids have been reported from other large fault systems. The presence of fluids and hydrous minerals in the middle and lower crust could explain the required low friction coefficient of the DST along the eastern boundary of the Dead Sea basin and the high subsidence rate of basin sediments. 3D inversion models confirm the existence of a sub-vertical high conductivity structure underneath the DSB but its expression is far less pronounced. Instead, the 3D inversion model suggests a deepening of the conductive DSB sediments off-profile towards the south, reaching a maximum depth of approximately 12 km, which is consistent with other geophysical observations. At shallower levels, the 3D inversion model reveals salt diapirism as an upwelling of highly resistive structures, localized underneath the Al-Lisan Peninsula. The 3D model furthermore contains an E-W elongated conductive structure to the north-east of the Dead Sea basin. More MT data with better spatial coverage are required, however, to fully constrain the robustness of

  9. Mice that are resistant to diet-induced weight loss have greater food anticipatory activity and altered melanocortin-3 receptor (MC3R) and dopamine receptor 2 (D2) gene expression.

    PubMed

    Vaanholt, Lobke M; Mitchell, Sharon E; Sinclair, Rachel E; Speakman, John R

    2015-07-01

    Diet-induced weight loss varies considerably between individuals, but the mechanisms driving these individual differences remain largely unknown. Here we investigated whether key neuropeptides involved in the regulation of energy balance or reward systems were differentially expressed in mice that were prone or resistant to caloric restriction (CR) induced weight loss. Mice (n=30 males and n=34 females) were fed 70% of their own baseline ad libitum intake for 25days, after which their brains were collected and expression of various neuropeptides were investigated and compared between the 10 male and 10 female mice that showed the greatest (high weight loss, HWL) or lowest weight loss (LWL) (n=40 in total). HWL mice showed a differential neuropeptide profile to LWL in both sexes, characterised by increased expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), leptin receptor (ObRb), and melanocortin 3 receptor (MC3R) in the arcuate nucleus. No changes in the expression of fat mass and obesity related gene (FTO) or suppressor of cytokine signalling 3 (Socs3) were observed. Levels of dopamine D2 receptor were decreased in the nucleus accumbens in HWL compared to LWL mice. HWL mice showed a stronger increase in food anticipatory activity (FAA) in response to CR than LWL mice. These results indicate that the mice prone to diet-induced weight loss experienced greater hunger, potentially driving their elevated FAA.

  10. Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses

    NASA Astrophysics Data System (ADS)

    Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin

    2012-12-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.

  11. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  12. 2d PDE Linear Symmetric Matrix Solver

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  13. MT2DInvMatlab—A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Lee, Seong Kon; Kim, Hee Joon; Song, Yoonho; Lee, Choon-Ki

    2009-08-01

    MT2DInvMatlab is an open-source MATLAB® software package for two-dimensional (2D) inversion of magnetotelluric (MT) data; it is written in mixed languages of MATLAB and FORTRAN. MT2DInvMatlab uses the finite element method (FEM) to compute 2D MT model responses, and smoothness-constrained least-squares inversion with a spatially variable regularization parameter algorithm to stabilize the inversion process and provide a high-resolution optimal earth model. It is also able to include terrain effects in inversion by incorporating topography into a forward model. This program runs under the MATLAB environment so that users can utilize the existing general interface of MATLAB, while some specific functions are written in FORTRAN 90 to speed up computation and reuse pre-existing FORTRAN code in the MATLAB environment with minimal modification. This program has been tested using synthetic models, including one with variable topography, and on field data. The results were assessed by comparing inverse models obtained with MT2DInvMatlab and with a non-linear conjugate gradient (NLCG) algorithm. In both tests the new inversion software reconstructs the subsurface resistivity structure very closely and provides an improvement in both resolution and stability.

  14. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  15. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  16. 2D materials: to graphene and beyond.

    PubMed

    Mas-Ballesté, Rubén; Gómez-Navarro, Cristina; Gómez-Herrero, Julio; Zamora, Félix

    2011-01-01

    This review is an attempt to illustrate the different alternatives in the field of 2D materials. Graphene seems to be just the tip of the iceberg and we show how the discovery of alternative 2D materials is starting to show the rest of this iceberg. The review comprises the current state-of-the-art of the vast literature in concepts and methods already known for isolation and characterization of graphene, and rationalizes the quite disperse literature in other 2D materials such as metal oxides, hydroxides and chalcogenides, and metal-organic frameworks.

  17. GRAV2D: an interactive 2-1/2 dimensional gravity modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect

    Nutter, C.

    1980-11-01

    GRAV2D is an interactive computer program used for modeling 2-1/2 dimensional gravity data. A forward algorithm is used to give the theoretical attraction of gravity intensity at a station due to a perturbing body given by the initial model. The resultant model can then be adjusted for a better fit by a combination of manual adjustment, one-dimensional automatic search, and Marquardt inversion. GRAV2D has an interactive data management system for data manipulation and display built around subroutines to do a forward problem, a one-dimensional direct search and an inversion. This is a user's guide and documentation for GRAV2D.

  18. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  19. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  20. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  1. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  2. Anisotropic resistivity tomography: A model study for characterization of fractured rocks

    SciTech Connect

    Sasaki, Yutaka

    1994-12-31

    Since fractured rocks often exhibit anisotropy with respect to hydraulic conductivity, it is expected that anisotropy may play an important factor in describing their electrical properties. Based upon this observation, numerical experiments have been carried out to determine whether anisotropic resistivity tomography can be used for characterization of fractured rocks. In fractured rock masses, the conventional 2-D inversion in which anisotropy is ignored produces peculiar distortions of the resistivity distribution. In contrast, the inversion accounting for anisotropy reconstructs anisotropic background media, as well as conductive anomalies associated with the zones of concentrated fracturing. It is also found that the fracture planes inclined with respect to the strike direction may have no significant effects on 2-D inversion if the angle is within about 20{degree}.

  3. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  4. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  5. Glitter in a 2D monolayer.

    PubMed

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  6. 2d index and surface operators

    NASA Astrophysics Data System (ADS)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  7. 2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach

    EPA Science Inventory

    We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...

  8. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  9. Robust mean traveltime curves: a powerful tool for analysis in 2D transmission tomographic surveys

    NASA Astrophysics Data System (ADS)

    Fernandez Martinez, J.; Pedruelo Gonzalez, L.; Rector, J.

    2008-12-01

    Acoustic tomography methods belong to the class of non destructive inspection techniques and are widely used in engineering applications. One of the main issues for these methods is the direct arrivals, which can be noisy or affected by scattering or other propagation effects. Mean traveltime curves (mean and standard deviation) have been introduced by Fernández Martínez et al (2006), and describe the variation of the main statistical parameters of the traveltime distribution for the different gathering subsets as a function of the gather index. These curves constitute a simple methodology (Fernández Martínez et al., 2008) to analyze before inversion the traveltime quality in 2D acoustic transmission tomography experiments conducted in relatively homogeneous blocks. This analysis can help to discriminate the contribution of picking errors from that of geological heterogeneities. In this contribution we present the so-called robust mean traveltime curves, which refer to the variation of the different p-percentiles and related measures of dispersion (inter-quartile range and minimum absolute deviation) for the above mentioned gathering subsets. Together with the mean curve, the median and upper-quartile traveltime curves are very resistant to the presence of outliers, and thus, are preferred to infer a background velocity model, which is valid at experiment scale and honors the experimental traveltime distribution. This methodology is valid for 2D zonal isotropic or elliptical anisotropic media, explored via any arbitrary acquisition geometry. We show the application to a well-known granitic medium (Febex Project, Nagra, Switzerland). Fernández Martínez et al. 2006. Mathematical Geology:38-3.343-374 Fernández Martínez et al.2008. Computer and Geosciences:34-3,213-225, 2008.

  10. 2D FEM Heat Transfer & E&M Field Code

    SciTech Connect

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  11. 2D FEM Heat Transfer & E&M Field Code

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  12. Indirect inversions

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2013-04-01

    Since Doug MacAyeal's pioneering studies of the ice-stream basal traction optimizations by control methods, inversions for unknown parameters (e.g., basal traction, accumulation patterns, etc) have become a hallmark of the present-day ice-sheet modeling. The common feature of such inversion exercises is a direct relationship between optimized parameters and observations used in the optimization procedure. For instance, in the standard optimization for basal traction by the control method, ice-stream surface velocities constitute the control data. The optimized basal traction parameters explicitly appear in the momentum equations for the ice-stream velocities (compared to the control data). The inversion for basal traction is carried out by minimization of the cost (or objective, misfit) function that includes the momentum equations facilitated by the Lagrange multipliers. Here, we build upon this idea, and demonstrate how to optimize for parameters indirectly related to observed data using a suite of nested constraints (like Russian dolls) with additional sets of Lagrange multipliers in the cost function. This method opens the opportunity to use data from a variety of sources and types (e.g., velocities, radar layers, surface elevation changes, etc.) in the same optimization process.

  13. Calculating tissue shear modulus and pressure by 2D Log-Elastographic methods

    PubMed Central

    McLaughlin, Joyce R; Zhang, Ning; Manduca, Armando

    2010-01-01

    Shear modulus imaging, often called elastography, enables detection and characterization of tissue abnormalities. In this paper the data is two displacement components obtained from successive MR or ultrasound data sets acquired while the tissue is excited mechanically. A 2D plane strain elastic model is assumed to govern the 2D displacement, u. The shear modulus, μ, is unknown and whether or not the first Lamé parameter, λ, is known the pressure p = λ∇ · u which is present in the plane strain model cannot be measured and is unreliably computed from measured data and can be shown to be an order one quantity in the units kPa. So here we present a 2D Log-Elastographic inverse algorithm that: (1) simultaneously reconstructs the shear modulus, μ, and p, which together satisfy a first order partial differential equation system, with the goal of imaging μ; (2) controls potential exponential growth in the numerical error; and (3) reliably reconstructs the quantity p in the inverse algorithm as compared to the same quantity computed with a forward algorithm. This work generalizes the Log-Elastographic algorithm in [20] which uses one displacement component, is derived assuming the component satisfies the wave equation, and is tested on synthetic data computed with the wave equation model. The 2D Log-Elastographic algorithm is tested on 2D synthetic data and 2D in-vivo data from Mayo Clinic. We also exhibit examples to show that the 2D Log-Elastographic algorithm improves the quality of the recovered images as compared to the Log-Elastographic and Direct Inversion algorithms. PMID:21822349

  14. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  15. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  16. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  17. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  18. Experimental identification of diffusive coupling using 2D NMR.

    PubMed

    Song, Y-Q; Carneiro, G; Schwartz, L M; Johnson, D L

    2014-12-01

    Spin relaxation based nuclear magnetic resonance (NMR) methods have been used extensively to determine pore size distributions in a variety of materials. This approach is based on the assumption that each pore is in the fast diffusion limit but that diffusion between pores can be neglected. However, in complex materials these assumptions may be violated and the relaxation time distribution is not easily interpreted. We present a 2D NMR technique and an associated data analysis that allow us to work directly with the time dependent experimental data without Laplace inversion to identify the signature of diffusive coupling between different pores. Measurements on microporous glass beads and numerical simulations are used to illustrate the technique. PMID:25526135

  19. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  20. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  1. Linkage studies for T2D in Chop and C/EBPbeta chromosomal regions in Italians.

    PubMed

    Gragnoli, Claudia; Pierpaoli, Laura; Piumelli, Nunzia; Chiaramonte, Francesco

    2007-11-01

    The genes causing type 2 diabetes (T2D), a complex heterogeneous disorder, differ and/or overlap in various populations. Among others there are two loci in linkage to T2D, the chromosomes 20q12-13.1 and 12q15. These two regions harbor two genes, C/EBPbeta and CHOP, which are excellent candidate genes for T2D. In fact, C/EBPbeta protein cooperates with HNF4alpha (MODY1, monogenic form of diabetes) and 1alpha (MODY3, monogenic form of diabetes). C/EBPbeta mediates suppression of insulin gene transcription in hyperglycemia and may contribute to insulin-resistance. It interacts in a complex pathway with the CHOP protein. CHOP may play a role in altered beta-cell glucose metabolism, in beta-cell apoptosis, and in lack of beta-cell replication. Thus, both C/EBPbeta and CHOP genes may independently and interactively contribute to T2D. The chromosomal regions targeting C/EBPbeta and CHOP genes have never been previously explored in T2D. We planned to identify their potential contribution to T2D in Italians. We have genotyped a group of affected siblings/families with both late- and early-onset T2D around the C/EBPbeta and the CHOP genes. We have performed non-parametric linkage analysis in the total T2D group, in the late-onset and the early-onset group, separately. We have identified a suggestive linkage to T2D in the CHOP gene locus in the early-onset T2D group (P = 0.04). We identified the linkage to T2D in the chromosome 12q15 region in the early-onset T2D families and specifically target the CHOP gene. Our next step will be the identification of CHOP gene variants, which may contribute to the linkage to T2D in Italians. PMID:17620318

  2. Joint inversion of geophysical data using petrophysical clustering and facies deformation wth the level set technique

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2015-12-01

    Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of

  3. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  4. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  5. Imaging 2D structures by the CSAMT method: application to the Pantano di S. Gregorio Magno faulted basin (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Troiano, Antonio; Di Giuseppe, Maria Giulia; Petrillo, Zaccaria; Patella, Domenico

    2009-06-01

    A controlled source audiofrequency magnetotelluric (CSAMT) survey has been undertaken in the Pantano di San Gregorio Magno faulted basin, an earthquake prone area of Southern Apennines in Italy. A dataset from 11 soundings, distributed along a nearly N-S 780 m long profile, was acquired in the basin's easternmost area, where the fewest data are available as to the faulting shallow features. A preliminary skew analysis allowed a prevailing 2D nature of the dataset to be ascertained. Then, using a single-site multi-frequency approach, Dantzig's simplex algorithm was introduced for the first time to estimate the CSAMT decomposition parameters. The simplex algorithm, freely available online, proved to be fast and efficient. By this approach, the TM and TE mode field diagrams were obtained and a N35°W ± 10° 2D strike mean direction was estimated along the profile, in substantial agreement with the fault traces within the basin. A 2D inversion of the apparent resistivity and phase curves at seven almost noise-free sites distributed along the central portion of the profile was finally elaborated, reinforced by a sensitivity analysis, which allowed the best resolved portion of the model to be imaged from the first few meters of depth down to a mean depth of 300 m b.g.l. From the inverted section, the following features have been outlined: (i) a cover layer with resistivity in the range 3-30 Ω m ascribed to the Quaternary lacustrine clayey deposits filling the basin, down to an average depth of about 35 m b.g.l., underlain by a structure with resistivity over 50 Ω m up to about 600 Ω m, ascribed to the Mesozoic carbonate bedrock; (ii) a system of two normal faults within the carbonate basement, extending down to the maximum best resolved depth of the order of 300 m b.g.l.; (iii) two wedge-shaped domains separating the opposite blocks of the faults with resistivity ranging between 30 Ω m and 50 Ω m and horizontal extent of the order of some tens of metres, likely

  6. Inverse heat conduction problems

    NASA Astrophysics Data System (ADS)

    Orlande, Helcio Rangel Barreto

    We present the solution of the following inverse problems: (1) Inverse Problem of Estimating Interface Conductance Between Periodically Contacting Surfaces; (2) Inverse Problem of Estimating Interface Conductance During Solidification via Conjugate Gradient Method; (3) Determination of the Reaction Function in a Reaction-Diffusion Parabolic Problem; and (4) Simultaneous Estimation of Thermal Diffusivity and Relaxation Time with Hyperbolic Heat Conduction Model. Also, we present the solution of a direct problem entitled: Transient Thermal Constriction Resistance in a Finite Heat Flux Tube. The Conjugate Gradient Method with Adjoint Equation was used in chapters 1-3. The more general function estimation approach was treated in these chapters. In chapter 1, we solve the inverse problem of estimating the timewise variation of the interface conductance between periodically contacting solids, under quasi-steady-state conditions. The present method is found to be more accurate than the B-Spline approach for situations involving small periods, which are the most difficult on which to perform the inverse analysis. In chapter 2, we estimate the timewise variation of the interface conductance between casting and mold during the solidification of aluminum. The experimental apparatus used in this study is described. In chapter 3, we present the estimation of the reaction function in a one dimensional parabolic problem. A comparison of the present function estimation approach with the parameter estimation technique, wing B-Splines to approximate the reaction function, revealed that the use of function estimation reduces the computer time requirements. In chapter 4 we present a finite difference solution for the transient constriction resistance in a cylinder of finite length with a circular contact surface. A numerical grid generation scheme was used to concentrate grid points in the regions of high temperature gradients in order to reduce discretization errors. In chapter 6, we

  7. TOPAZ2D heat transfer code users manual and thermal property data base

    NASA Astrophysics Data System (ADS)

    Shapiro, A. B.; Edwards, A. L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available.

  8. Screening and transport in 2D semiconductor systems at low temperatures

    PubMed Central

    Das Sarma, S.; Hwang, E. H.

    2015-01-01

    Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738

  9. 3D inversion of magnetic and electrical resistivity-induced polarization data for an epithermal Au-Ag and underlying porphyry deposit: A case study from British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Abbassi, B.; Huebert, J.; Liu, L.; Lee, B.; Cheng, L.; Richards, J. P.; Unsworth, M. J.; Oldenburg, D.

    2013-12-01

    The Newton property is an epithermal Au-Ag deposit containing precious metals in association with disseminated sulfide minerals such as pyrite. This type of deposit often shows variable geological patterns, so it is important to find fast and cost-efficient methods for their exploration. Aeromagnetic surveys and ground electrical resistivity-induced polarization methods were applied over the Newton property. From preliminary 3D inversion of ZTEM and aeromagnetic data, and joint 3D inversion of electrical resistivity-induced polarization data, we show that low-resistivity and high-chargeability regions are signatures of disseminated sulfide mineralization. Potassic alteration, characterized by hydrothermal biotite (now mostly chloritized) and magnetite is also present locally, and may be related to underlying porphyry-type mineralization. This type of alteration can be identified from its magnetic signature, but the occurrence of other magnetic formations in the deposit area made interpretations of magnetic data difficult. We show that filtering geological noises related to background magnetic anomalies is an essential step in focusing on potassic alteration zones. We used electrical resistivity and induced polarization chargeability models to remove the signals of barren magnetic zones to focus on the susceptibilities pertaining to deep potassic alterations. In order to test the credibility of these interpretations, extensive petrophysical measurements (magnetic susceptibility, electrical resistivity, and gamma ray spectra) were collected on drill-core samples. We show that potassic alteration can also be characterized accurately from high levels of potassium to thorium ratio (K/Th) in gamma ray spectrometric measurements, and that this correlation is stronger than the magnetic signal (likely because hydrothermal magnetite is variable in abundance). Therefore, we focused on magnetic susceptibility values correlated with high K/Th ratios in order to reduce the

  10. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  11. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  12. Explicit 2-D Hydrodynamic FEM Program

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  13. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  14. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  15. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  16. 2D photonic-crystal optomechanical nanoresonator.

    PubMed

    Makles, K; Antoni, T; Kuhn, A G; Deléglise, S; Briant, T; Cohadon, P-F; Braive, R; Beaudoin, G; Pinard, L; Michel, C; Dolique, V; Flaminio, R; Cagnoli, G; Robert-Philip, I; Heidmann, A

    2015-01-15

    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8% over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265-nm thick membrane, is used to form a compact microcavity involving the suspended nanomembrane as an end mirror. The resulting cavity has a waist size smaller than 10 μm and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane. PMID:25679837

  17. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  18. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  19. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  20. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  1. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  2. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  3. Interfacing graphene and related 2D materials with the 3D world.

    PubMed

    Tománek, David

    2015-04-10

    An important prerequisite to translating the exceptional intrinsic performance of 2D materials such as graphene and transition metal dichalcogenides into useful devices precludes their successful integration within the current 3D technology. This review provides theoretical insight into nontrivial issues arising from interfacing 2D materials with 3D systems including epitaxy and ways to accommodate lattice mismatch, the key role of contact resistance and the effect of defects in electrical and thermal transport.

  4. Intersections, ideals, and inversion

    SciTech Connect

    Vasco, D.W.

    1998-10-01

    Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly onedimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons.

  5. Single Scan 2D NMR Spectroscopy on a 25 T Bitter Magnet.

    PubMed

    Shapira, Boaz; Shetty, Kiran; Brey, William W; Gan, Zhehong; Frydman, Lucio

    2007-07-16

    2D NMR relies on monitoring systematic changes in the phases incurred by spin coherences as a function of an encoding time t(1), whose value changes over the course of independent experiments. The intrinsic multiscan nature of such protocols implies that resistive and/or hybrid magnets, capable of delivering the highest magnetic field strengths but possessing poor temporal stabilities, become unsuitable for 2D NMR acquisitions. It is here shown with a series of homo- and hetero-nuclear examples that such limitations can be bypassed using recently proposed 2D "ultrafast" acquisition schemes, which correlate interactions along all spectral dimensions within a single scan.

  6. Single Scan 2D NMR Spectroscopy on a 25 T Bitter Magnet

    PubMed Central

    Shapira, Boaz; Shetty, Kiran; Brey, William W.; Gan, Zhehong; Frydman, Lucio

    2007-01-01

    2D NMR relies on monitoring systematic changes in the phases incurred by spin coherences as a function of an encoding time t1, whose value changes over the course of independent experiments. The intrinsic multiscan nature of such protocols implies that resistive and/or hybrid magnets, capable of delivering the highest magnetic field strengths but possessing poor temporal stabilities, become unsuitable for 2D NMR acquisitions. It is here shown with a series of homo- and hetero-nuclear examples that such limitations can be bypassed using recently proposed 2D “ultrafast” acquisition schemes, which correlate interactions along all spectral dimensions within a single scan. PMID:18037970

  7. Inverse Floatation

    NASA Astrophysics Data System (ADS)

    Nath, Saurabh; Mukherjee, Anish; Chatterjee, Souvick; Ganguly, Ranjan; Sen, Swarnendu; Mukhopadhyay, Achintya; Boreyko, Jonathan

    2014-11-01

    We have observed that capillarity forces may cause floatation in a few non-intuitive configurations. These may be divided into 2 categories: i) floatation of heavier liquid droplets on lighter immiscible ones and ii) fully submerged floatation of lighter liquid droplets in a heavier immiscible medium. We call these counter-intuitive because of the inverse floatation configuration. For case (i) we have identified and studied in detail the several factors affecting the shape and maximum volume of the floating drop. We used water and vegetable oil combinations as test fluids and established the relation between Bond Number and maximum volume contained in a floating drop (in the order of μL). For case (ii), we injected vegetable oil drop-wise into a pool of water. The fully submerged configuration of the drop is not stable and a slight perturbation to the system causes the droplet to burst and float in partially submerged condition. Temporal variation of a characteristic length of the droplet is analyzed using MATLAB image processing. The constraint of small Bond Number establishes the assumption of lubrication regime in the thin gap. A brief theoretical formulation also shows the temporal variation of the gap thickness. Jadavpur University, Jagadis Bose Centre of Excellence, Virginia Tech.

  8. Comparison of the effect of an H(3)-inverse agonist on energy intake and hypothalamic histamine release in normal mice and leptin resistant mice with high fat diet-induced obesity.

    PubMed

    Ishizuka, Tomoko; Hatano, Kouta; Murotani, Tomotaka; Yamatodani, Atsushi

    2008-04-01

    Leptin is a key signal linking peripheral adiposity levels to the regulation of energy homeostasis in the brain. The injection of leptin decreases body weight and food intake in lean rodents; however, in a rodent model of high fat diet-induced obesity (DIO), the exogenous leptin cannot improve adiposity. This ineffectiveness is known as leptin resistance, and the factors downstream of leptin signaling have received attention as viable targets in the treatment of obesity. We previously reported that the histaminergic system is one of the targets of leptin. In the present study, the effect of an H(3)-receptor inverse agonist on hypothalamic histamine release and energy intake was investigated in normal and DIO mice. Leptin (1.3 mg/kg, i.p.) significantly increased hypothalamic histamine release and reduced 12 h-energy intake in normal mice, but had no such effects in DIO mice. In contrast, clobenpropit (5 mg/kg, i.p.), an H(3)-inverse agonist, elicited a significant increase in histamine release in both types of mice. Clobenpropit did not reduce 12 h-energy intake; however, it decreased 3 h-energy intake in both types of mice. These results suggest that lack of the activation of the histaminergic system partly contributes to obesity in DIO mice and direct activation of the histaminergic system circumvents leptin resistance.

  9. Protein kinase A represses skeletal myogenesis by targeting myocyte enhancer factor 2D.

    PubMed

    Du, Min; Perry, Robert L S; Nowacki, Nathaniel B; Gordon, Joseph W; Salma, Jahan; Zhao, Jianzhong; Aziz, Arif; Chan, Joseph; Siu, K W Michael; McDermott, John C

    2008-05-01

    Activation of protein kinase A (PKA) by elevation of the intracellular cyclic AMP (cAMP) level inhibits skeletal myogenesis. Previously, an indirect modulation of the myogenic regulatory factors (MRFs) was implicated as the mechanism. Because myocyte enhancer factor 2 (MEF2) proteins are key regulators of myogenesis and obligatory partners for the MRFs, here we assessed whether these proteins could be involved in PKA-mediated myogenic repression. Initially, in silico analysis revealed several consensus PKA phosphoacceptor sites on MEF2, and subsequent analysis by in vitro kinase assays indicated that PKA directly and efficiently phosphorylates MEF2D. Using mass spectrometric determination of phosphorylated residues, we document that MEF2D serine 121 and serine 190 are targeted by PKA. Transcriptional reporter gene assays to assess MEF2D function revealed that PKA potently represses the transactivation properties of MEF2D. Furthermore, engineered mutation of MEF2D PKA phosphoacceptor sites (serines 121 and 190 to alanine) rendered a PKA-resistant MEF2D protein, which efficiently rescues myogenesis from PKA-mediated repression. Concomitantly, increased intracellular cAMP-mediated PKA activation also resulted in an enhanced nuclear accumulation of histone deacetylase 4 (HDAC4) and a subsequent increase in the MEF2D-HDAC4 repressor complex. Collectively, these data identify MEF2D as a primary target of PKA signaling in myoblasts that leads to inhibition of the skeletal muscle differentiation program.

  10. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  11. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  12. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  13. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  14. 2D Quantum Mechanical Study of Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  15. On the edge of an inverse cascade.

    PubMed

    Seshasayanan, Kannabiran; Benavides, Santiago Jose; Alexakis, Alexandros

    2014-11-01

    We demonstrate that systems with a parameter-controlled inverse cascade can exhibit critical behavior for which at the critical value of the control parameter the inverse cascade stops. In the vicinity of such a critical point, standard phenomenological estimates for the energy balance will fail since the energy flux towards large length scales becomes zero. We demonstrate this using the computationally tractable model of two-dimensional (2D) magnetohydrodynamics in a periodic box. In the absence of any external magnetic forcing, the system reduces to hydrodynamic fluid turbulence with an inverse energy cascade. In the presence of strong magnetic forcing, the system behaves as 2D magnetohydrodynamic turbulence with forward energy cascade. As the amplitude of the magnetic forcing is varied, a critical value is met for which the energy flux towards the large scales becomes zero. Close to this point, the energy flux scales as a power law with the departure from the critical point and the normalized amplitude of the fluctuations diverges. Similar behavior is observed for the flux of the square vector potential for which no inverse flux is observed for weak magnetic forcing, while a finite inverse flux is observed for magnetic forcing above the critical point. We conjecture that this behavior is generic for systems of variable inverse cascade. PMID:25493730

  16. A hierarchically porous anatase TiO2 coated-WO3 2D IO bilayer film and its photochromic properties.

    PubMed

    Li, Hua; Wu, Huazhong; Xiao, Jiajia; Su, Yanli; Robichaud, Jacques; Brüning, Ralf; Djaoued, Yahia

    2016-01-18

    A hierarchically porous anatase TiO2 coated-WO3 2D inverse opal (IO) bilayer film was fabricated on ITO glass using a layer by layer route with a hierarchically porous TiO2 top layer and an ordered super-macroporous WO3 2D IO bottom layer. This novel TiO2 coated-WO3 2D IO bilayer film was evaluated for photochromic applications. PMID:26576930

  17. A hierarchically porous anatase TiO2 coated-WO3 2D IO bilayer film and its photochromic properties.

    PubMed

    Li, Hua; Wu, Huazhong; Xiao, Jiajia; Su, Yanli; Robichaud, Jacques; Brüning, Ralf; Djaoued, Yahia

    2016-01-18

    A hierarchically porous anatase TiO2 coated-WO3 2D inverse opal (IO) bilayer film was fabricated on ITO glass using a layer by layer route with a hierarchically porous TiO2 top layer and an ordered super-macroporous WO3 2D IO bottom layer. This novel TiO2 coated-WO3 2D IO bilayer film was evaluated for photochromic applications.

  18. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  19. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  20. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  1. 2D and 3D Numerical Simulations of Flux Cancellation

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.

    2009-01-01

    Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta=1 level (i.e., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a low-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.

  2. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  3. Thermoelectric properties of inverse opals

    NASA Astrophysics Data System (ADS)

    Mahan, G. D.; Poilvert, N.; Crespi, V. H.

    2016-02-01

    Rayleigh's method [Philos. Mag. Ser. 5 34, 481 (1892)] is used to solve for the classical thermoelectric equations in inverse opals. His theory predicts that in an inverse opal, with periodic holes, the Seebeck coefficient and the figure of merit are identical to that of the bulk material. We also provide a major revision to Rayleigh's method, in using the electrochemical potential as an important variable, instead of the electrostatic potential. We also show that in some cases, the thermal boundary resistance is important in the effective thermal conductivity.

  4. Use of marginal distributions constrained optimization (MADCO) for accelerated 2D MRI relaxometry and diffusometry

    NASA Astrophysics Data System (ADS)

    Benjamini, Dan; Basser, Peter J.

    2016-10-01

    Measuring multidimensional (e.g., 2D) relaxation spectra in NMR and MRI clinical applications is a holy grail of the porous media and biomedical MR communities. The main bottleneck is the inversion of Fredholm integrals of the first kind, an ill-conditioned problem requiring large amounts of data to stabilize a solution. We suggest a novel experimental design and processing framework to accelerate and improve the reconstruction of such 2D spectra that uses a priori information from the 1D projections of spectra, or marginal distributions. These 1D marginal distributions provide powerful constraints when 2D spectra are reconstructed, and their estimation requires an order of magnitude less data than a conventional 2D approach. This marginal distributions constrained optimization (MADCO) methodology is demonstrated here with a polyvinylpyrrolidone-water phantom that has 3 distinct peaks in the 2D D-T1 space. The stability, sensitivity to experimental parameters, and accuracy of this new approach are compared with conventional methods by serially subsampling the full data set. While the conventional, unconstrained approach performed poorly, the new method had proven to be highly accurate and robust, only requiring a fraction of the data. Additionally, synthetic T1 -T2 data are presented to explore the effects of noise on the estimations, and the performance of the proposed method with a smooth and realistic 2D spectrum. The proposed framework is quite general and can also be used with a variety of 2D MRI experiments (D-T2,T1 -T2, D -D, etc.), making these potentially feasible for preclinical and even clinical applications for the first time.

  5. Use of marginal distributions constrained optimization (MADCO) for accelerated 2D MRI relaxometry and diffusometry.

    PubMed

    Benjamini, Dan; Basser, Peter J

    2016-10-01

    Measuring multidimensional (e.g., 2D) relaxation spectra in NMR and MRI clinical applications is a holy grail of the porous media and biomedical MR communities. The main bottleneck is the inversion of Fredholm integrals of the first kind, an ill-conditioned problem requiring large amounts of data to stabilize a solution. We suggest a novel experimental design and processing framework to accelerate and improve the reconstruction of such 2D spectra that uses a priori information from the 1D projections of spectra, or marginal distributions. These 1D marginal distributions provide powerful constraints when 2D spectra are reconstructed, and their estimation requires an order of magnitude less data than a conventional 2D approach. This marginal distributions constrained optimization (MADCO) methodology is demonstrated here with a polyvinylpyrrolidone-water phantom that has 3 distinct peaks in the 2D D-T1 space. The stability, sensitivity to experimental parameters, and accuracy of this new approach are compared with conventional methods by serially subsampling the full data set. While the conventional, unconstrained approach performed poorly, the new method had proven to be highly accurate and robust, only requiring a fraction of the data. Additionally, synthetic T1-T2 data are presented to explore the effects of noise on the estimations, and the performance of the proposed method with a smooth and realistic 2D spectrum. The proposed framework is quite general and can also be used with a variety of 2D MRI experiments (D-T2,T1-T2,D-D, etc.), making these potentially feasible for preclinical and even clinical applications for the first time. PMID:27543810

  6. Coordinate transformation method for the solution of inverse problem in 2D and 3D scatterometry

    NASA Astrophysics Data System (ADS)

    Ponnusamy, Sekar

    2005-05-01

    For scatterometry applications, diffraction analysis of gratings is carried out by using Rigorous Coupled Wave Analysis (RCWA). Though RCWA method is originally developed for lamellar gratings, arbitrary profiles can be analyzed using staircase approximation with S-Matrix propagation of field components. For improved accuracy, more number of Fourier waves need to be included in Floquet-Bloch expansion of the field components and also more number of slices are to be made in staircase approximation. These requirements increase the time required for the analysis. A coordinate transformation method (CTM) developed by Chandezon et. al renders the arbitrary grating profile into a plane surface in the new coordinate system and hence it does not require slicing. This method is extended to 3D structures by several authors notably, by Harris et al for non-orthogonal unit cells and by Granet for correct Fourier expansion. Also extended is to handle sharp-edged gratings through adaptive spatial resolution. In this paper, an attempt is made to employ CTM with correct Fourier expansion in conjunction with adaptive spatial resolution, for scatterometry applications. A MATLAB program is developed, and thereby, demonstrated that CTM can be used for diffraction analysis of trapezoidal profiles that are typically encountered in scatterometry applications.

  7. TOPAZ2D heat transfer code users manual and thermal property data base

    SciTech Connect

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

  8. Detection of Leptomeningeal Metastasis by Contrast-Enhanced 3D T1-SPACE: Comparison with 2D FLAIR and Contrast-Enhanced 2D T1-Weighted Images

    PubMed Central

    Gil, Bomi; Hwang, Eo-Jin; Lee, Song; Jang, Jinhee; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo

    2016-01-01

    Introduction To compare the diagnostic accuracy of contrast-enhanced 3D(dimensional) T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions (T1-SPACE), 2D fluid attenuated inversion recovery (FLAIR) images and 2D contrast-enhanced T1-weighted image in detection of leptomeningeal metastasis except for invasive procedures such as a CSF tapping. Materials and Methods Three groups of patients were included retrospectively for 9 months (from 2013-04-01 to 2013-12-31). Group 1 patients with positive malignant cells in CSF cytology (n = 22); group 2, stroke patients with steno-occlusion in ICA or MCA (n = 16); and group 3, patients with negative results on MRI, whose symptom were dizziness or headache (n = 25). A total of 63 sets of MR images are separately collected and randomly arranged: (1) CE 3D T1-SPACE; (2) 2D FLAIR; and (3) CE T1-GRE using a 3-Tesla MR system. A faculty neuroradiologist with 8-year-experience and another 2nd grade trainee in radiology reviewed each MR image- blinded by the results of CSF cytology and coded their observations as positives or negatives of leptomeningeal metastasis. The CSF cytology result was considered as a gold standard. Sensitivity and specificity of each MR images were calculated. Diagnostic accuracy was compared using a McNemar’s test. A Cohen's kappa analysis was performed to assess inter-observer agreements. Results Diagnostic accuracy was not different between 3D T1-SPACE and CSF cytology by both raters. However, the accuracy test of 2D FLAIR and 2D contrast-enhanced T1-weighted GRE was inconsistent by the two raters. The Kappa statistic results were 0.657 (3D T1-SPACE), 0.420 (2D FLAIR), and 0.160 (2D contrast-enhanced T1-weighted GRE). The 3D T1-SPACE images showed the highest inter-observer agreements between the raters. Conclusions Compared to 2D FLAIR and 2D contrast-enhanced T1-weighted GRE, contrast-enhanced 3D T1 SPACE showed a better detection rate of

  9. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  10. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  11. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  12. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  13. CAST2D: A finite element computer code for casting process modeling

    SciTech Connect

    Shapiro, A.B.; Hallquist, J.O.

    1991-10-01

    CAST2D is a coupled thermal-stress finite element computer code for casting process modeling. This code can be used to predict the final shape and stress state of cast parts. CAST2D couples the heat transfer code TOPAZ2D and solid mechanics code NIKE2D. CAST2D has the following features in addition to all the features contained in the TOPAZ2D and NIKE2D codes: (1) a general purpose thermal-mechanical interface algorithm (i.e., slide line) that calculates the thermal contact resistance across the part-mold interface as a function of interface pressure and gap opening; (2) a new phase change algorithm, the delta function method, that is a robust method for materials undergoing isothermal phase change; (3) a constitutive model that transitions between fluid behavior and solid behavior, and accounts for material volume change on phase change; and (4) a modified plot file data base that allows plotting of thermal variables (e.g., temperature, heat flux) on the deformed geometry. Although the code is specialized for casting modeling, it can be used for other thermal stress problems (e.g., metal forming).

  14. First measurements with the Munich 2D-ACAR spectrometer on Cr

    NASA Astrophysics Data System (ADS)

    Ceeh, Hubert; Weber, Josef; Hugenschmidt, Christoph; Leitner, Michael; Böni, Peter

    2013-06-01

    The Munich 2D-ACAR spectrometer at the Maier-Leibnitz accelerator laboratory in Garching has recently become operational. In the present implementation a 2D-ACAR spectrometer is set up, with a baseline of 16.5 m, a conventional 22Na positron source and two Anger-type gamma-cameras. The positrons are guided onto the sample by a magnetic field generated by a normal conducting electromagnet. The sample can be either cooled by a standard closed-cycle-cryostat to low temperatures or heated by a resistive filament to temperatures up to 500 K. We present the key features of this new 2D-ACAR spectrometer and, in addition, discuss first measurements on the pure metal system Cr. The 2D-ACAR measurements have been performed on Cr at different temperatures: at 5 K and at room temperature in the anti-ferromagnetic phase and at 318K slightly above the paramagnetic phase transition.

  15. Duality Between Spin Networks and the 2D Ising Model

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.

    2016-06-01

    The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.

  16. CYP2D6*36 gene arrangements within the cyp2d6 locus: association of CYP2D6*36 with poor metabolizer status.

    PubMed

    Gaedigk, Andrea; Bradford, L Dianne; Alander, Sarah W; Leeder, J Steven

    2006-04-01

    Unexplained cases of CYP2D6 genotype/phenotype discordance continue to be discovered. In previous studies, several African Americans with a poor metabolizer phenotype carried the reduced function CYP2D6*10 allele in combination with a nonfunctional allele. We pursued the possibility that these alleles harbor either a known sequence variation (i.e., CYP2D6*36 carrying a gene conversion in exon 9 along the CYP2D6*10-defining 100C>T single-nucleotide polymorphism) or novel sequences variation(s). Discordant cases were evaluated by long-range polymerase chain reaction (PCR) to test for gene rearrangement events, and a 6.6-kilobase pair PCR product encompassing the CYP2D6 gene was cloned and entirely sequenced. Thereafter, allele frequencies were determined in different study populations comprising whites, African Americans, and Asians. Analyses covering the CYP2D7 to 2D6 gene region established that CYP2D6*36 did not only exist as a gene duplication (CYP2D6*36x2) or in tandem with *10 (CYP2D6*36+*10), as previously reported, but also by itself. This "single" CYP2D6*36 allele was found in nine African Americans and one Asian, but was absent in the whites tested. Ultimately, the presence of CYP2D6*36 resolved genotype/phenotype discordance in three cases. We also discovered an exon 9 conversion-positive CYP2D6*4 gene in a duplication arrangement (CYP2D6*4Nx2) and a CYP2D6*4 allele lacking 100C>T (CYP2D6*4M) in two white subjects. The discovery of an allele that carries only one CYP2D6*36 gene copy provides unequivocal evidence that both CYP2D6*36 and *36x2 are associated with a poor metabolizer phenotype. Given a combined frequency of between 0.5 and 3% in African Americans and Asians, genotyping for CYP2D6*36 should improve the accuracy of genotype-based phenotype prediction in these populations.

  17. Structures and subsurface stratigraphy of the Turkana and Kachoda basins, Northern Kenya, revealed by MT and gravity joint inversion

    NASA Astrophysics Data System (ADS)

    Tiercelin, J.; Abdelfettah, Y.; Tarits, P.; Hautot, S.

    2012-12-01

    Combining data of different geophysical methods is more and more used to propose an accurate geological models. Joint inversion technique is a quantitative approach to inverse more than one parameter in the same inversion run. Many authors noted that the joint inversion reduce the number of acceptable model and offer a better final geological models. This kind of inversion is motivated by the limitations of each geophysical method. In this way, we applied 2-D magnetotelluric (MT) and gravity joint inversion on real MT and gravity data acquired in Turkana area, in order to understand the vertical stratigraphy of the west end of Turkana basin. The geology is comprised of thick basalt layers on top of sandstones and bedrock. Seismic studies suggested the presence of Paleogene sediments underneath the sandstones but this still remains uncertain because of the poor data quality due to the important basaltic cover. The final resistivity and density models obtained by joint inversion approach confirm the previous results obtained mainly by seismic reflection, and reveal new features under the Turkana volcanic formation. The geometry of the basins is well recovered where it is dominated by a half-graben structures. The thickness of the Miocene - Holocene sediments in the top is well identified, and its limits with the Turkana volcanics is also well identified. It is comparable with the limit showed by seismic interpretation presented recently, and which is localized on the same profile. The horizontal and vertical variations of the Turkana volcanics, the Lappur sandstones, and the basement is well revealed. A conceptual geological models are proposed under three profiles. It is build mainly by the combination of the density and the resistivity interpretations, as well as the geological knowledge available, which is derived mainly by the outcrop rocks study in Turkana and Kachoda basins.

  18. Uncertainty and Bayesian Inversion of Marine CSEM data: From Despair to Optimism

    NASA Astrophysics Data System (ADS)

    Ray, A.; Key, K. W.

    2012-12-01

    distributions from all inverted models containing similar layer depths to those observed in a collocated seismic model, or we could incorporate depth and resistivity constraints from a nearby well-log to learn which anomalous features would be required in the rest of the model space. It is even possible to pull out ensembles of models that satisfy a given model norm such as minimizing a measure of roughness. The RJ-MCMC method also presents a tantalizing possibility for extension to 2D and 3D Bayesian inversion of CSEM data in the future, as it tackles the problem of objective model selection, which could ease the computational burden of evaluating forward models with many parameters.

  19. A Single-Material Logical Junction Based on 2D Crystal PdS2.

    PubMed

    Ghorbani-Asl, Mahdi; Kuc, Agnieszka; Miró, Pere; Heine, Thomas

    2016-02-01

    A single-material logical junction with negligible contact resistance is designed by exploiting quantum-confinement effects in 1T PdS2 . The metallic bilayer serves as electrodes for the semiconducting channel monolayer, avoiding contact resistance. Heat dissipation is then governed by tunnel loss, which becomes negligible at channel lengths larger than 2.45 nm. This value marks the integration limit for a conventional 2D transistor.

  20. A Single-Material Logical Junction Based on 2D Crystal PdS2.

    PubMed

    Ghorbani-Asl, Mahdi; Kuc, Agnieszka; Miró, Pere; Heine, Thomas

    2016-02-01

    A single-material logical junction with negligible contact resistance is designed by exploiting quantum-confinement effects in 1T PdS2 . The metallic bilayer serves as electrodes for the semiconducting channel monolayer, avoiding contact resistance. Heat dissipation is then governed by tunnel loss, which becomes negligible at channel lengths larger than 2.45 nm. This value marks the integration limit for a conventional 2D transistor. PMID:26632273

  1. The advantages of logarithmically scaled data for electromagnetic inversion

    NASA Astrophysics Data System (ADS)

    Wheelock, Brent; Constable, Steven; Key, Kerry

    2015-06-01

    Non-linear inversion algorithms traverse a data misfit space over multiple iterations of trial models in search of either a global minimum or some target misfit contour. The success of the algorithm in reaching that objective depends upon the smoothness and predictability of the misfit space. For any given observation, there is no absolute form a datum must take, and therefore no absolute definition for the misfit space; in fact, there are many alternatives. However, not all misfit spaces are equal in terms of promoting the success of inversion. In this work, we appraise three common forms that complex data take in electromagnetic geophysical methods: real and imaginary components, a power of amplitude and phase, and logarithmic amplitude and phase. We find that the optimal form is logarithmic amplitude and phase. Single-parameter misfit curves of log-amplitude and phase data for both magnetotelluric and controlled-source electromagnetic methods are the smoothest of the three data forms and do not exhibit flattening at low model resistivities. Synthetic, multiparameter, 2-D inversions illustrate that log-amplitude and phase is the most robust data form, converging to the target misfit contour in the fewest steps regardless of starting model and the amount of noise added to the data; inversions using the other two data forms run slower or fail under various starting models and proportions of noise. It is observed that inversion with log-amplitude and phase data is nearly two times faster in converging to a solution than with other data types. We also assess the statistical consequences of transforming data in the ways discussed in this paper. With the exception of real and imaginary components, which are assumed to be Gaussian, all other data types do not produce an expected mean-squared misfit value of 1.00 at the true model (a common assumption) as the errors in the complex data become large. We recommend that real and imaginary data with errors larger than 10 per

  2. Assessment of the reliability of reproducing two-dimensional resistivity models using an image processing technique.

    PubMed

    Ishola, Kehinde S; Nawawi, Mohd Nm; Abdullah, Khiruddin; Sabri, Ali Idriss Aboubakar; Adiat, Kola Abdulnafiu

    2014-01-01

    This study attempts to combine the results of geophysical images obtained from three commonly used electrode configurations using an image processing technique in order to assess their capabilities to reproduce two-dimensional (2-D) resistivity models. All the inverse resistivity models were processed using the PCI Geomatica software package commonly used for remote sensing data sets. Preprocessing of the 2-D inverse models was carried out to facilitate further processing and statistical analyses. Four Raster layers were created, three of these layers were used for the input images and the fourth layer was used as the output of the combined images. The data sets were merged using basic statistical approach. Interpreted results show that all images resolved and reconstructed the essential features of the models. An assessment of the accuracy of the images for the four geologic models was performed using four criteria: the mean absolute error and mean percentage absolute error, resistivity values of the reconstructed blocks and their displacements from the true models. Generally, the blocks of the images of maximum approach give the least estimated errors. Also, the displacement of the reconstructed blocks from the true blocks is the least and the reconstructed resistivities of the blocks are closer to the true blocks than any other combined used. Thus, it is corroborated that when inverse resistivity models are combined, most reliable and detailed information about the geologic models is obtained than using individual data sets.

  3. Assessment of the reliability of reproducing two-dimensional resistivity models using an image processing technique.

    PubMed

    Ishola, Kehinde S; Nawawi, Mohd Nm; Abdullah, Khiruddin; Sabri, Ali Idriss Aboubakar; Adiat, Kola Abdulnafiu

    2014-01-01

    This study attempts to combine the results of geophysical images obtained from three commonly used electrode configurations using an image processing technique in order to assess their capabilities to reproduce two-dimensional (2-D) resistivity models. All the inverse resistivity models were processed using the PCI Geomatica software package commonly used for remote sensing data sets. Preprocessing of the 2-D inverse models was carried out to facilitate further processing and statistical analyses. Four Raster layers were created, three of these layers were used for the input images and the fourth layer was used as the output of the combined images. The data sets were merged using basic statistical approach. Interpreted results show that all images resolved and reconstructed the essential features of the models. An assessment of the accuracy of the images for the four geologic models was performed using four criteria: the mean absolute error and mean percentage absolute error, resistivity values of the reconstructed blocks and their displacements from the true models. Generally, the blocks of the images of maximum approach give the least estimated errors. Also, the displacement of the reconstructed blocks from the true blocks is the least and the reconstructed resistivities of the blocks are closer to the true blocks than any other combined used. Thus, it is corroborated that when inverse resistivity models are combined, most reliable and detailed information about the geologic models is obtained than using individual data sets. PMID:24877029

  4. Geophysical Inversion through Hierarchical Genetic Algorithm Scheme

    NASA Astrophysics Data System (ADS)

    Furman, Alex; Huisman, Johan A.

    2010-05-01

    Geophysical investigation is a powerful tool that allows non-invasive and non-destructive mapping of subsurface states and properties. However, non-uniqueness associated with the inversion process halts these methods from becoming of more quantitative use. One major direction researchers are going is constraining the inverse problem by hydrological observations and models. An alternative to the commonly used direct inversion methods are global optimization schemes (such as genetic algorithms and Monte Carlo Markov Chain methods). However, the major limitation here is the desired high resolution of the tomographic image, which leads to a large number of parameters and an unreasonably high computational effort when using global optimization schemes. One way to overcome these problems is to combine the advantages of both direct and global inversion methods through hierarchical inversion. That is, starting the inversion with relatively coarse resolution of parameters, achieving good inversion using one of the two inversion schemes (global or direct), and then refining the resolution and applying a combination of global and direct inversion schemes for the whole domain or locally. In this work we explore through synthetic case studies the option of using a global optimization scheme for inversion of electrical resistivity tomography data through hierarchical refinement of the model resolution.

  5. A 3D resistivity model derived from the transient electromagnetic data observed on the Araba fault, Jordan

    NASA Astrophysics Data System (ADS)

    Rödder, A.; Tezkan, B.

    2013-01-01

    72 inloop transient electromagnetic soundings were carried out on two 2 km long profiles perpendicular and two 1 km and two 500 m long profiles parallel to the strike direction of the Araba fault in Jordan which is the southern part of the Dead Sea transform fault indicating the boundary between the African and Arabian continental plates. The distance between the stations was on average 50 m. The late time apparent resistivities derived from the induced voltages show clear differences between the stations located at the eastern and at the western part of the Araba fault. The fault appears as a boundary between the resistive western (ca. 100 Ωm) and the conductive eastern part (ca. 10 Ωm) of the survey area. On profiles parallel to the strike late time apparent resistivities were almost constant as well in the time dependence as in lateral extension at different stations, indicating a 2D resistivity structure of the investigated area. After having been processed, the data were interpreted by conventional 1D Occam and Marquardt inversion. The study using 2D synthetic model data showed, however, that 1D inversions of stations close to the fault resulted in fictitious layers in the subsurface thus producing large interpretation errors. Therefore, the data were interpreted by a 2D forward resistivity modeling which was then extended to a 3D resistivity model. This 3D model explains satisfactorily the time dependences of the observed transients at nearly all stations.

  6. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  7. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  8. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  9. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations.

  10. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  11. CSAMT Data Processing with Source Effect and Static Corrections, Application of Occam's Inversion, and Its Application in Geothermal System

    NASA Astrophysics Data System (ADS)

    Hamdi, H.; Qausar, A. M.; Srigutomo, W.

    2016-08-01

    Controlled source audio-frequency magnetotellurics (CSAMT) is a frequency-domain electromagnetic sounding technique which uses a fixed grounded dipole as an artificial signal source. Measurement of CSAMT with finite distance between transmitter and receiver caused a complex wave. The shifted of the electric field due to the static effect caused elevated resistivity curve up or down and affects the result of measurement. The objective of this study was to obtain data that have been corrected for source and static effects as to have the same characteristic as MT data which are assumed to exhibit plane wave properties. Corrected CSAMT data were inverted to reveal subsurface resistivity model. Source effect correction method was applied to eliminate the effect of the signal source and static effect was corrected by using spatial filtering technique. Inversion method that used in this study is the Occam's 2D Inversion. The results of inversion produces smooth models with a small misfit value, it means the model can describe subsurface conditions well. Based on the result of inversion was predicted measurement area is rock that has high permeability values with rich hot fluid.

  12. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  13. Fully adiabatic 31P 2D-CSI with reduced chemical shift displacement error at 7 T--GOIA-1D-ISIS/2D-CSI.

    PubMed

    Chmelík, M; Kukurová, I Just; Gruber, S; Krššák, M; Valkovič, L; Trattnig, S; Bogner, W

    2013-05-01

    A fully adiabatic phosphorus (31P) two-dimensional (2D) chemical shift spectroscopic imaging sequence with reduced chemical shift displacement error for 7 T, based on 1D-image-selected in vivo spectroscopy, combined with 2D-chemical shift spectroscopic imaging selection, was developed. Slice-selective excitation was achieved by a spatially selective broadband GOIA-W(16,4) inversion pulse with an interleaved subtraction scheme before nonselective adiabatic excitation, and followed by 2D phase encoding. The use of GOIA-W(16,4) pulses (bandwidth 4.3-21.6 kHz for 10-50 mm slices) reduced the chemical shift displacement error in the slice direction ∼1.5-7.7 fold, compared to conventional 2D-chemical shift spectroscopic imaging with Sinc3 selective pulses (2.8 kHz). This reduction was experimentally demonstrated with measurements of an MR spectroscopy localization phantom and with experimental evaluation of pulse profiles. In vivo experiments in clinically acceptable measurement times were demonstrated in the calf muscle (nominal voxel volume, 5.65 ml in 6 min 53 s), brain (10 ml, 6 min 32 s), and liver (8.33 ml, 8 min 14 s) of healthy volunteers at 7 T. High reproducibility was found in the calf muscle at 7 T. In combination with adiabatic excitation, this sequence is insensitive to the B1 inhomogeneities associated with surface coils. This sequence, which is termed GOIA-1D-ISIS/2D-CSI (goISICS), has the potential to be applied in both clinical research and in the clinical routine.

  14. Spin splitting in 2D monochalcogenide semiconductors

    PubMed Central

    Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei

    2015-01-01

    We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed. PMID:26596907

  15. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  16. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  17. 2d PDE Linear Asymmetric Matrix Solver

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  18. Analysis and 3D inversion of magnetotelluric crooked profile data from central Svalbard for geothermal application

    NASA Astrophysics Data System (ADS)

    Beka, Thomas I.; Smirnov, Maxim; Birkelund, Yngve; Senger, Kim; Bergh, Steffen G.

    2016-08-01

    Broadband (0.001-1000 s) magnetotelluric (MT) data along a crooked profile collected to investigate the geothermal potential on Spitsbergen could not be fully explained by two-dimensional (2D) models; hence we interpret the data with three-dimensional (3D) inversion herein. To better accommodate 3D features and nearby off profile resistivity structures, the full MT impedance tensor data together with the tipper were inverted. As a model control, a detailed bathymetry is systematically incorporated in the inversion. Our results from testing different inversion settings emphasised that appropriately choosing and tuning the starting model, data error floor and the model regularization together are crucial to obtain optimum benefit from MT field data. Through the 3D inversion, we reproduced out of quadrant impedance components and obtained an overall satisfactory data fit (RMS = 1.05). The final 3D resistivity model displays a complex geology of the near surface region (< 1.5 km), which suggests fractures, localized and regional fault systems and igneous intrusions in the Mesozoic platform cover deposits. The Billefjorden fault zone is revealed as a consistent and deep rooted (> 2 km) conductive anomaly, confirming the regional nature of the fault. The fault zone is positioned between two uplifted basement blocks (> 1000 Ωm) of presumably pre-Devonian (Caledonian) metamorphic rocks, and the fault may have been responsible for deformation in the overlying Paleozoic-Mesozoic unit. Upper crustal conductive anomalies (< 10 Ωm) below the Paleozoic-Mesozoic succession in the western part of the 3D model are interpreted as part of a Devonian basin fill. These conductors are laterally and vertically bounded by resistive rocks, suggesting a conducive environment for deep geothermal heat storage. Having this scenario in an area of a known high heat-flow, deep faults and a thinned lithosphere makes the hypothesis on finding a technologically exploitable geothermal resource

  19. Position control using 2D-to-2D feature correspondences in vision guided cell micromanipulation.

    PubMed

    Zhang, Yanliang; Han, Mingli; Shee, Cheng Yap; Ang, Wei Tech

    2007-01-01

    Conventional camera calibration that utilizes the extrinsic and intrinsic parameters of the camera and the objects has certain limitations for micro-level cell operations due to the presence of hardware deviations and external disturbances during the experimental process, thereby invalidating the extrinsic parameters. This invalidation is often neglected in macro-world visual servoing and affects the visual image processing quality, causing deviation from the desired position in micro-level cell operations. To increase the success rate of vision guided biological micromanipulations, a novel algorithm monitoring the changing image pattern of the manipulators including the injection micropipette and cell holder is designed and implemented based on 2 dimensional (2D)-to 2D feature correspondences and can adjust the manipulator and perform position control simultaneously. When any deviation is found, the manipulator is retracted to the initial focusing plane before continuing the operation.

  20. Casting process modeling using CAST2D: The part mold interface

    SciTech Connect

    Shapiro, A.B.

    1991-10-01

    Correctly modeling the physics across the part-mold interface is crucial in predicting the quality of a cast part. Most metals undergo a volume change on solidification (e.g., aluminum -6.6%) and shrinkage on cooling. As the cast metal shrinks, it pulls away from the mol wall creating a gap. This gap effects the thermal contact resistance between the part and mold. The thermal contact resistance increase as the gap widens. This directly effects the cooling rate and ultimately the final cast shape, stress state, and quality of the cast part. CAST2D is a coupled thermal-stress finite element computer code for casting process modeling. This code can be used to predict the final shape and stress state of cast parts. CAST2D couples the heat transfer code TOPAZ2D and solid mechanics code NIKE2D. CAST2D is a code in development. This report presents the status of a general purpose thermal-mechanical interface algorithm. 3 refs., 3 figs.

  1. 2-D Finite Element Heat Conduction

    1989-10-30

    AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less

  2. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  3. 'Brukin2D': a 2D visualization and comparison tool for LC-MS data

    PubMed Central

    Tsagkrasoulis, Dimosthenis; Zerefos, Panagiotis; Loudos, George; Vlahou, Antonia; Baumann, Marc; Kossida, Sophia

    2009-01-01

    Background Liquid Chromatography-Mass Spectrometry (LC-MS) is a commonly used technique to resolve complex protein mixtures. Visualization of large data sets produced from LC-MS, namely the chromatogram and the mass spectra that correspond to its compounds is the focus of this work. Results The in-house developed 'Brukin2D' software, built in Matlab 7.4, which is presented here, uses the compound data that are exported from the Bruker 'DataAnalysis' program, and depicts the mean mass spectra of all the chromatogram compounds from one LC-MS run, in one 2D contour/density plot. Two contour plots from different chromatograph runs can then be viewed in the same window and automatically compared, in order to find their similarities and differences. The results of the comparison can be examined through detailed mass quantification tables, while chromatogram compound statistics are also calculated during the procedure. Conclusion 'Brukin2D' provides a user-friendly platform for quick, easy and integrated view of complex LC-MS data. The software is available at . PMID:19534737

  4. Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone.

    PubMed Central

    Wu, D; Otton, S V; Sproule, B A; Busto, U; Inaba, T; Kalow, W; Sellers, E M

    1993-01-01

    1. In microsomes prepared from three human livers, methadone competitively inhibited the O-demethylation of dextromethorphan, a marker substrate for CYP2D6. The apparent Ki value of methadone ranged from 2.5 to 5 microM. 2. Two hundred and fifty-two (252) white Caucasians, including 210 unrelated healthy volunteers and 42 opiate abusers undergoing treatment with methadone were phenotyped using dextromethorphan as the marker drug. Although the frequency of poor metabolizers was similar in both groups, the extensive metabolizers among the opiate abusers tended to have higher O-demethylation metabolic ratios and to excrete less of the dose as dextromethorphan metabolites than control extensive metabolizer subjects. These data suggest inhibition of CYP2D6 by methadone in vivo as well. 3. Because methadone is widely used in the treatment of opiate abuse, inhibition of CYP2D6 activity in these patients might contribute to exaggerated response or unexpected toxicity from drugs that are substrates of this enzyme. PMID:8448065

  5. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  6. Interplay of Nitrogen-Atom Inversion and Conformational Inversion in Enantiomerization of 1H-1-Benzazepines.

    PubMed

    Ramig, Keith; Subramaniam, Gopal; Karimi, Sasan; Szalda, David J; Ko, Allen; Lam, Aaron; Li, Jeffrey; Coaderaj, Ani; Cavdar, Leyla; Bogdan, Lukasz; Kwon, Kitae; Greer, Edyta M

    2016-04-15

    A series of 2,4-disubstituted 1H-1-benzazepines, 2a-d, 4, and 6, were studied, varying both the substituents at C2 and C4 and at the nitrogen atom. The conformational inversion (ring-flip) and nitrogen-atom inversion (N-inversion) energetics were studied by variable-temperature NMR spectroscopy and computations. The steric bulk of the nitrogen-atom substituent was found to affect both the conformation of the azepine ring and the geometry around the nitrogen atom. Also affected were the Gibbs free energy barriers for the ring-flip and the N-inversion. When the nitrogen-atom substituent was alkyl, as in 2a-c, the geometry of the nitrogen atom was nearly planar and the azepine ring was highly puckered; the result was a relatively high-energy barrier to ring-flip and a low barrier to N-inversion. Conversely, when the nitrogen-atom substituent was a hydrogen atom, as in 2d, 4, and 6, the nitrogen atom was significantly pyramidalized and the azepine ring was less puckered; the result here was a relatively high energy barrier to N-inversion and a low barrier to ring-flip. In these N-unsubstituted compounds, it was found computationally that the lowest-energy stereodynamic process was ring-flip coupled with N-inversion, as N-inversion alone had a much higher energy barrier.

  7. 2D Potential theory using complex functions and conformal mapping

    NASA Astrophysics Data System (ADS)

    Le Maire, Pauline; Munschy, Marc

    2016-04-01

    For infinitely horizontally extended bodies, functions that describe potential and field equations (gravity and magnetics) outside bodies are 2D and harmonic. The consequence of this property is that potential and field equations can be written as complex analytic functions. We define these complex functions whose real part is the commonly used real function and imaginary part is its Hilbert transform. Using data or synthetic cases the transformation is easily performed in the Fourier domain by setting to zero all values for negative frequencies. Written as complex functions of the complex variable, equations of potential and field in gravity and magnetics for different kinds of geometries are simple and correspond to powers of the inverse of the distance. For example, it is easily shown that for a tilted dyke, the dip and the apparent inclination have the same effect on the function and consequently that it is not possible, with data, to compute one of both values without knowing the other. Conformal mapping is an original way to display potential field functions. Considering that the complex variable corresponds to the real axis, complex potential field functions resume to a limaçon, a curve formed by the path of the point fixed to a circle when that circle rolls around the outside of another circle. For example, the point corresponding to the maximum distance to the origin of the complex magnetic field due to a cylinder, corresponds to the maximum of the analytic signal as defined by Nabighan in 1972 and its phase corresponds to the apparent inclination. Several applications are shown in different geological contexts using aeromagnetic data.

  8. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  9. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  10. 2 D patterns of soil gas diffusivity , soil respiration, and methane oxidation in a soil profile

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2015-04-01

    The apparent gas diffusion coefficient in soil (DS) is an important parameter describing soil aeration, which makes it a key parameter for root growth and gas production and consumption. Horizontal homogeneity in soil profiles is assumed in most studies for soil properties - including DS. This assumption, however, is not valid, even in apparently homogeneous soils, as we know from studies using destructive sampling methods. Using destructive methods may allow catching a glimpse, but a large uncertainty remains, since locations between the sampling positions cannot be analyzed, and measurements cannot be repeated. We developed a new method to determine in situ the apparent soil gas diffusion coefficient in order to examine 2 D pattern of DS and methane oxidation in a soil profile. Different tracer gases (SF6, CF4, C2H6) were injected continuously into the subsoil and measured at several locations in the soil profile. These data allow for modelling inversely the 2 D patterns of DS using Finite Element Modeling. The 2D DS patterns were then combined with naturally occurring CH4 and CO2 concentrations sampled at the same locations to derive the 2D pattern of soil respiration and methane oxidation in the soil profile. We show that methane oxidation and soil respiration zones shift within the soil profile while the gas fluxes at the surface remain rather stable during a the 3 week campaign.

  11. The Sobolev Stability Threshold for 2D Shear Flows Near Couette

    NASA Astrophysics Data System (ADS)

    Bedrossian, Jacob; Vicol, Vlad; Wang, Fei

    2016-08-01

    We consider the 2D Navier-Stokes equation on T × R , with initial datum that is ɛ -close in H^N to a shear flow (U(y), 0), where Vert U(y) - yVert _{H^{N+4}} ≪ 1 and N>1 . We prove that if ɛ ≪ ν ^{1/2} , where ν denotes the inverse Reynolds number, then the solution of the Navier-Stokes equation remains ɛ -close in H^1 to (e^{t ν partial _{yy}}U(y),0) for all t>0 . Moreover, the solution converges to a decaying shear flow for times t ≫ ν ^{-1/3} by a mixing-enhanced dissipation effect, and experiences a transient growth of gradients. In particular, this shows that the stability threshold in finite regularity scales no worse than ν ^{1/2} for 2D shear flows close to the Couette flow.

  12. Inverse anticipating chaos synchronization.

    PubMed

    Shahverdiev, E M; Sivaprakasam, S; Shore, K A

    2002-07-01

    We derive conditions for achieving inverse anticipating synchronization where a driven time-delay chaotic system synchronizes to the inverse future state of the driver. The significance of inverse anticipating chaos in delineating synchronization regimes in time-delay systems is elucidated. The concept is extended to cascaded time-delay systems.

  13. Synthesis and characterization of 2D molybdenum carbide (MXene)

    DOE PAGES

    Halim, Joseph; Kota, Sankalp; Lukatskaya, Maria R.; Naguib, Michael; Zhao, Meng -Qiang; Moon, Eun Ju; Pitock, Jeremy; Nanda, Jagjit; May, Steven J.; Gogotsi, Yury; et al

    2016-02-17

    Large scale synthesis and delamination of 2D Mo2CT x (where T is a surface termination group) has been achieved by selectively etching gallium from the recently discovered nanolaminated, ternary transition metal carbide Mo2Ga2C. Different synthesis and delamination routes result in different flake morphologies. The resistivity of free-standing Mo2CT x films increases by an order of magnitude as the temperature is reduced from 300 to 10 K, suggesting semiconductor-like behavior of this MXene, in contrast to Ti3C2T x which exhibits metallic behavior. At 10 K, the magnetoresistance is positive. Additionally, changes in electronic transport are observed upon annealing of the films.more » When 2 μm thick films are tested as electrodes in supercapacitors, capacitances as high as 700 F cm–3 in a 1 m sulfuric acid electrolyte and high capacity retention for at least 10,000 cycles at 10 A g–1 are obtained. Free-standing Mo2CT x films, with ≈8 wt% carbon nanotubes, perform well when tested as an electrode material for Li-ions, especially at high rates. In conclusion, at 20 and 131 C cycling rates, stable reversible capacities of 250 and 76 mAh g–1, respectively, are achieved for over 1000 cycles.« less

  14. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  15. Design and implementation of a 2-D endoscopic optical fiber scanner

    NASA Astrophysics Data System (ADS)

    Liu, Zhihai; Fu, Ling; Gao, Fei; Zhang, Xiongbo

    2008-12-01

    We have designed a small type of endoscopic 2D fiber scanner probe to incorporate OCT with endoscopy imaging. The new probe consists with two piezoelectric ceramics plated with electrode, a conductive thin-film with non-inverse piezoelectric effect and a piece of nude fiber with coating layers removed. To accomplish the scanning, the only thing need to be done is to drive the two piezoelectric ceramic sheets which provides simpler structure and at the same time minimizes the probe effectively. Here we have obtained some preliminary results and verified the feasibility of the program.

  16. Canonical vs. micro-canonical sampling methods in a 2D Ising model

    SciTech Connect

    Kepner, J.

    1990-12-01

    Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs.

  17. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  18. Laterally constrained inversion for CSAMT data interpretation

    NASA Astrophysics Data System (ADS)

    Wang, Ruo; Yin, Changchun; Wang, Miaoyue; Di, Qingyun

    2015-10-01

    Laterally constrained inversion (LCI) has been successfully applied to the inversion of dc resistivity, TEM and airborne EM data. However, it hasn't been yet applied to the interpretation of controlled-source audio-frequency magnetotelluric (CSAMT) data. In this paper, we apply the LCI method for CSAMT data inversion by preconditioning the Jacobian matrix. We apply a weighting matrix to Jacobian to balance the sensitivity of model parameters, so that the resolution with respect to different model parameters becomes more uniform. Numerical experiments confirm that this can improve the convergence of the inversion. We first invert a synthetic dataset with and without noise to investigate the effect of LCI applications to CSAMT data, for the noise free data, the results show that the LCI method can recover the true model better compared to the traditional single-station inversion; and for the noisy data, the true model is recovered even with a noise level of 8%, indicating that LCI inversions are to some extent noise insensitive. Then, we re-invert two CSAMT datasets collected respectively in a watershed and a coal mine area in Northern China and compare our results with those from previous inversions. The comparison with the previous inversion in a coal mine shows that LCI method delivers smoother layer interfaces that well correlate to seismic data, while comparison with a global searching algorithm of simulated annealing (SA) in a watershed shows that though both methods deliver very similar good results, however, LCI algorithm presented in this paper runs much faster. The inversion results for the coal mine CSAMT survey show that a conductive water-bearing zone that was not revealed by the previous inversions has been identified by the LCI. This further demonstrates that the method presented in this paper works for CSAMT data inversion.

  19. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  20. CYP2D6 Genotyping and Tamoxifen: An Unfinished Story in the Quest for Personalized Medicine

    PubMed Central

    de Souza, Jonas A.; Olopade, Olufunmilayo I.

    2011-01-01

    The philosophy behind personalized medicine is that each patient has a unique biologic profile that should guide the choice of therapy, resulting in an improved treatment outcome, ideally with reduced toxicity. Thus, there has been increasing interest in identifying genetic variations that are predictive of a drug’s efficacy or toxicity. Although it is one of the most effective drugs for treating breast cancer, tamoxifen is not effective in all estrogen receptor (ER)-positive breast cancer patients, and it is frequently associated with side effects, such as hot flashes. Relative resistance to tamoxifen treatment may be a result, in part, from impaired drug activation by cytochrome P450 2D6 (CYP2D6). Indeed, recent studies have identified allelic variations in CYP2D6 to be an important determinant of tamoxifen’s activity (and toxicity). This article will summarize the current information regarding the influence of the major genotypes and CYP2D6 inhibitors on tamoxifen metabolism, with a focus on its clinical utility and the current level of evidence for CYP2D6 genotyping of patients who are candidates for tamoxifen treatment. PMID:21421116

  1. A Geometric Boolean Library for 2D Objects

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  2. VizieR Online Data Catalog: The 2dF Galaxy Redshift Survey (2dFGRS) (2dFGRS Team, 1998-2003)

    NASA Astrophysics Data System (ADS)

    Colless, M.; Dalton, G.; Maddox, S.; Sutherland, W.; Norberg, P.; Cole, S.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Collins, C.; Couch, W.; Cross, N.; Deeley, K.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Price, I.; Seaborne, M.; Taylor, K.

    2007-11-01

    The 2dF Galaxy Redshift Survey (2dFGRS) is a major spectroscopic survey taking full advantage of the unique capabilities of the 2dF facility built by the Anglo-Australian Observatory. The 2dFGRS is integrated with the 2dF QSO survey (2QZ, Cat. VII/241). The 2dFGRS obtained spectra for 245591 objects, mainly galaxies, brighter than a nominal extinction-corrected magnitude limit of bJ=19.45. Reliable (quality>=3) redshifts were obtained for 221414 galaxies. The galaxies cover an area of approximately 1500 square degrees selected from the extended APM Galaxy Survey in three regions: a North Galactic Pole (NGP) strip, a South Galactic Pole (SGP) strip, and random fields scattered around the SGP strip. Redshifts are measured from spectra covering 3600-8000 Angstroms at a two-pixel resolution of 9.0 Angstrom and a median S/N of 13 per pixel. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5; Q>=3 redshifts are 98.4% reliable and have an rms uncertainty of 85 km/s. The overall redshift completeness for Q>=3 redshifts is 91.8% but this varies with magnitude from 99% for the brightest galaxies to 90% for objects at the survey limit. The 2dFGRS data base is available on the World Wide Web at http://www.mso.anu.edu.au/2dFGRS/. (6 data files).

  3. Magnetotelluric inversion via reverse time migration algorithm of seismic data

    SciTech Connect

    Ha, Taeyoung . E-mail: tyha@math.snu.ac.kr; Shin, Changsoo . E-mail: css@model.snu.ac.kr

    2007-07-01

    We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversion algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.

  4. Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications

    NASA Astrophysics Data System (ADS)

    Shahil, Khan Mohammad Farhan

    Quasi two-dimensional (2D) materials obtained by the "graphene-like" exfoliation attracted tremendous attention. Such materials revealed unique electronic, thermal and optical properties, which can be potentially used in electronics, thermal management and energy conversion. This dissertation research addresses two separate but synergetic problems: (i) preparation and optical characterization of quasi-2D films of the bismuth-telluride (Bi 2Te3) family of materials, which demonstrate both thermoelectric and topological insulator properties; and (ii) investigation of thermal properties of composite materials prepared with graphene and few-layer graphene (FLG). The first part of dissertation reports properties of the exfoliated few-quintuple layers of Bi2Te3, Bi2Se3 and Sb 2Te3. Both non-resonant and resonant Raman scattering spectra have been investigated. It was found that the crystal symmetry breaking in few-quintuple films results in appearance of A1u-symmetry Raman peaks, which are not active in the bulk crystals. The scattering spectra measured under the 633-nm wavelength excitation reveals a number of resonant features, which could be used for analysis of the electronic and phonon processes in these materials. The obtained results help to understand the physical mechanisms of Raman scattering in the few-quintuple-thick films and can be used for nanometrology of topological insulator films on various substrates. The second part of the dissertation is dedicated to investigation of properties of composite materials prepared with graphene and FLG. It was found that the optimized mixture of graphene and multilayer graphene---produced by the high-yield inexpensive liquid-phase-exfoliation technique---can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was

  5. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    NASA Astrophysics Data System (ADS)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  6. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-01

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs. PMID:27537619

  7. CVMAC 2D Program: A method of converting 3D to 2D

    SciTech Connect

    Lown, J.

    1990-06-20

    This paper presents the user with a method of converting a three- dimensional wire frame model into a technical illustration, detail, or assembly drawing. By using the 2D Program, entities can be mapped from three-dimensional model space into two-dimensional model space, as if they are being traced. Selected entities to be mapped can include circles, arcs, lines, and points. This program prompts the user to digitize the view to be mapped, specify the layers in which the new two-dimensional entities will reside, and select the entities, either by digitizing or windowing. The new two-dimensional entities are displayed in a small view which the program creates in the lower left corner of the drawing. 9 figs.

  8. 2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure

    NASA Astrophysics Data System (ADS)

    Sezen, S.; Ertüzün, A.

    2006-12-01

    A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the number of the lattice stages. It is also shown that a separable 2D four-channel perfect reconstruction lattice filter bank can be constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions. The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.

  9. 2D magnetotelluric imaging of the Anqing-Guichi ore district, Yangtze metallogenic belt, eastern China: An insight into the crustal structure and tectonic units

    NASA Astrophysics Data System (ADS)

    Chen, Xiangbin; Yan, Jiayong

    2016-08-01

    Two parallel NW-trending magnetotelluric (MT) profiles were placed perpendicularly to the main structures of the Anqing-Guichi ore district, one of the seven ore districts in the middle-lower Yangtze River metallogenic belt of eastern China. In October-December 2013, the MT data acquisition was carried out at 117 sites with 0.5-1 km site spacing. The MT data has a good quality in the frequency range between 320 and 0.01 Hz. The dimensionality analysis and 2D resistivity inversion results indicate that: (1) the deep of the ore district with three-dimensional structural characteristics, but two-dimensional structural characteristics for shallow; (2) there is a clear correlation between resistivity and the main geological units of the ore district, as well as correlation with mapped surface faults; (3) the Gandan deep fault (GDF) and Jiangnan deep fault (JNF) extend from the surface to 10 km deep, with dip of NW45°, and dip angles larger than 60°. A series of NE-trending acidic intrusive rocks were controlled by the GDF.

  10. Functional characterization of CYP2D6 enhancer polymorphisms

    PubMed Central

    Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun

    2015-01-01

    CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333

  11. DC-Electrical Resistivity Imaging for embankment dike investigation: A 3D extended normalisation approach

    NASA Astrophysics Data System (ADS)

    Fargier, Yannick; Lopes, Sérgio Palma; Fauchard, Cyrille; François, Daniel; Côte, Philippe

    2014-04-01

    Levee, dike and earth embankment dam structures are difficult to assess because of their length and complexity. Managers often include geophysical investigations in the overall dike condition assessment and the DC-Electrical Resistivity Imaging (ERI) method is particularly applicable owing to its cost-effectiveness and its potential sensitivity to internal erosion. However, due to the truly 3D nature of embankment dikes, implementing inline longitudinal tomographies along with conventional 2D inversion is likely to yield image artefacts. 3D effects from external causes (geometry, water reservoir) can be predicted and therefore we present a new approach based on redefining the normalisation principle to derive apparent resistivities from the measured data. The aim is to provide a set of pre-processed apparent resistivities that are not contaminated by external 3D effects and that yield more reliable results when processed within a 2D conventional inversion scheme. The presented approach is successfully applied to synthetic and real data sets, proving superior to the conventional 2D approach, although data acquisition approach is the same thus keeping the same cost-effectiveness.

  12. 2-D MHD numerical simulations of EML plasma armatures with ablation

    NASA Astrophysics Data System (ADS)

    Boynton, G. C.; Huerta, M. A.; Thio, Y. C.

    1993-01-01

    We use a 2-D) resistive MHD code to simulate an EML plasma armature. The energy equation includes Ohmic heating, radiation heat transport and the ideal gas equation of state, allowing for variable ionization using the Saha equations. We calculate rail ablation taking into account the flow of heat into the interior of the rails. Our simulations show the development of internal convective flows and secondary arcs. We use an explicit Flux Corrected Transport algorithm to advance all quantities in time.

  13. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  14. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  15. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  16. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  17. CYP2D6: novel genomic structures and alleles

    PubMed Central

    Kramer, Whitney E.; Walker, Denise L.; O’Kane, Dennis J.; Mrazek, David A.; Fisher, Pamela K.; Dukek, Brian A.; Bruflat, Jamie K.; Black, John L.

    2010-01-01

    Objective CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. Methods Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. Results Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. Conclusion Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis. PMID:19741566

  18. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  19. The use of the multiple-gradient array for geoelectrical resistivity and induced polarization imaging

    NASA Astrophysics Data System (ADS)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.

    2014-12-01

    The use of most conventional electrode configurations in electrical resistivity survey is often time consuming and labour intensive, especially when using manual data acquisition systems. Often, data acquisition teams tend to reduce data density so as to speed up field operation thereby reducing the survey cost; but this could significantly degrade the quality and resolution of the inverse models. In the present work, the potential of using the multiple-gradient array, a non-conventional electrode configuration, for practical cost effective and rapid subsurface resistivity and induced polarization mapping was evaluated. The array was used to conduct 2D resistivity and time-domain induced polarization imaging along two traverses in a study site at Ota, southwestern Nigeria. The subsurface was characterised and the main aquifer delineated using the inverse resistivity and chargeability images obtained. The performance of the multiple-gradient array was evaluated by correlating the 2D resistivity and chargeability images with those of the conventional Wenner array as well as the result of some soundings conducted along the same traverses using Schlumberger array. The multiple-gradient array has been found to have the advantage of measurement logistics and improved image resolution over the Wenner array.

  20. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  1. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  2. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice

    PubMed Central

    Pan, Xian

    2015-01-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter. PMID:25943116

  3. Joint Inversion Modelling of Geophysical Data From Lough Neagh Basin

    NASA Astrophysics Data System (ADS)

    Vozar, J.; Moorkamp, M.; Jones, A. G.; Rath, V.; Muller, M. R.

    2015-12-01

    Multi-dimensional modelling of geophysical data collected in the Lough Neagh Basin is presented in the frame of the IRETHERM project. The Permo-Triassic Lough Neagh Basin, situated in the southeastern part of Northern Ireland, exhibits elevated geothermal gradient (~30 °C/km) in the exploratory drilled boreholes. This is taken to indicate good geothermal exploitation potential in the Sherwood Sandstone aquifer for heating, and possibly even electricity production, purposes. We have used a 3-D joint inversion framework for modelling the magnetotelluric (MT) and gravity data collected to the north of the Lough Neagh to derive robust subsurface geological models. Comprehensive supporting geophysical and geological data (e.g. borehole logs and reflection seismic images) have been used in order to analyze and model the MT and gravity data. The geophysical data sets were provided by the Geological Survey of Northern Ireland (GSNI). Considering correct objective function weighting in favor of noise-free MT response functions is particularly important in joint inversion. There is no simple way how to correct distortion effects the 3-D responses as can be done in 1-D or 2-D case. We have used the Tellus Project airborne EM data to constrain magnetotelluric data and correct them for near surface effects. The shallow models from airborne data are used to constrain the uppermost part of 3-D inversion model. Preliminary 3-D joint inversion modeling reveals that the Sherwood Sandstone Group and the Permian Sandstone Formation are imaged as a conductive zone at the depth range of 500 m to 2000 m with laterally varying thickness, depth, and conductance. The conductive target sediments become shallower and thinner to the north and they are laterally continuous. To obtain better characterization of thermal transport properties of investigated area we used porosity and resistivity data from the Annaghmore and Ballymacilroy boreholes to estimate the relations between porosity

  4. Resistivity Tomographic Imaging of the Qualibu Caldera, Soufriere, St. Lucia

    NASA Astrophysics Data System (ADS)

    Sogade, J.; Morgan, D. F.; Vichabian, Y.

    2003-12-01

    The Qualibu Caldera, Soufriere, St. Lucia is a large topographic depression formed by downfaulting. The Caldera structure has been long investigated for geothermal power generation. It houses the Sulphur springs geothermal system as evidenced by natural manifestations of hot springs and micro-seismic activity. In 1974 several lines of dipole-dipole resistivity data were collected in the area. One of the lines running through sulphur springs was interpreted by using forward models to generate a best-fit model. Using modern 2D resistivity inversion algorithms, the resistivity data collected in 1974 have been re-analyzed and interpolated into a 3D image system. The results have agreed very closely with geologic and borehole data in the area and reveals conductive features reminiscent of a convecting geothermal system.

  5. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  6. Quasi MT Inversion of Short-Offset Transient Electromagnetic Data

    NASA Astrophysics Data System (ADS)

    Chen, Wei-ying; Xue, Guo-qiang; Khan, Muhammad Younis

    2016-07-01

    The short-offset transient electromagnetic method (SOTEM) has been extensively used for mineral and hydrocarbon exploration and hydrogeological investigations due to its ease of use and capability to generate diagnostic subsurface information. At present, the data processing methods of SOTEM are mainly focused on one dimensional inversion. To apply the proven inversion methods of frequency domain electromagnetic methods to SOTEM data, this paper presents a new transformation relation from time to frequency based on the similarity between SOTEM all-time apparent resistivity and magnetotelluric (MT) apparent resistivity. Results show that the transformation coefficients depend on the variation trend of SOTEM all-time apparent resistivity curves. Bostick inversion and conjugate gradient inversion techniques were applied to transformed SOTEM data and the results were validated by some simulated calculations and field measured data. This study provides a novel method to SOTEM data processing and a useful aid to join inversion with MT data.

  7. Prediction of a strain-tunable 2D Topological Dirac semimetal in monolayers of black phosphorus

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuwen; Liu, Qihang; Zunger, Alex; Theory Team

    2015-03-01

    N-dimensional Topological Nonmetals (TNM) such as N = 2D HgTe/CdTe quantum wells or N = 3D Bi2Se3 have a finite (often tiny) band gap between occupied and unoccupied bands, and show conductive Dirac cones in their N-1 dimensional geometric boundaries. On the other hand, examples of topological semimetals (TSM) are known for 3D solids (Cd3As2) where they have Dirac cones in the 3D system itself. Using density functional calculation of bands and the topological invariant Z2 we predict the existence of 2D topological Dirac semimetal in few monolayers of strain tuned black phosphorus (BP), with Dirac cones induced by band inversion. The band structures of few monolayers and bulk crystal of BP under a few percent biaxial and uniaxial strains were calculated using state-of-art electronic structure methods. The critical strain of the transition to TSM was found to decrease as the layer thickness increases. We will discuss the protection of the Dirac cones by the crystalline symmetry in the 2D TSM and the manipulation of crystalline symmetry, which induces further topological phase transitions. Supported by the NSF-DMREF-13-34170.

  8. 2-D Coda and Direct Wave Attenuation Tomography in Northern Italy

    SciTech Connect

    Morasca, P; Mayeda, K; Gok, R; Phillips, W S; Malagnini, L

    2007-10-17

    A 1-D coda method was proposed by Mayeda et al. (2003) in order to obtain stable seismic source moment-rate spectra using narrowband coda envelope measurements. That study took advantage of the averaging nature of coda waves to derive stable amplitude measurements taking into account all propagation, site, and Sto-coda transfer function effects. Recently this methodology was applied to micro earthquake data sets from three sub-regions of northern Italy (i.e., western Alps, northern Apennines and eastern Alps). Since the study regions were small, ranging between local-to-near-regional distances, the simple 1-D path assumptions used in the coda method worked very well. The lateral complexity of this region would suggest, however, that a 2-D path correction might provide even better results if the datasets were combined, especially when paths traverse larger distances and complicated regions. The structural heterogeneity of northern Italy makes the region ideal to test the extent to which coda variance can be reduced further by using a 2-D Q tomography technique. The approach we use has been developed by Phillips et al. (2005) and is an extension of previous amplitude ratio techniques to remove source effects from the inversion. The method requires some assumptions such as isotropic source radiation which is generally true for coda waves. Our results are compared against direct Swave inversions for 1/Q and results from both share very similar attenuation features that coincide with known geologic structures. We compare our results with those derived from direct waves as well as some recent results from northern California obtained by Mayeda et al. (2005) which tested the same tomographic methodology applied in this study to invert for 1/Q. We find that 2-D coda path corrections for this region significantly improve upon the 1-D corrections, in contrast to California where only a marginal improvement was observed. We attribute this difference to stronger lateral

  9. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  10. Prognostic and clinicopathological significance of Cacna2d1 expression in epithelial ovarian cancers: a retrospective study

    PubMed Central

    Yu, Dandan; Holm, Ruth; Goscinski, Mariusz Adam; Trope, Claes G; Nesland, Jahn M; Suo, Zhenhe

    2016-01-01

    Ovarian cancer is the most lethal gynecologic malignancy, in which cancer stem cells (CSC) have been reported to be the driving force of relapse and therapy-resistance. It is therefore important to explore CSC markers in ovarian cancer. This project aimed to explore the correlation between the expression of potential CSC maker Cacna2d1 and clinicopathological parameters in 238 epithelial ovarian cancer (EOC) samples. Immunohistochemically, positive Cacna2d1 expression was observed in 83.6% (199/238) of the EOC tumors, among which 107 tumors (44.9%) were highly positive and 92 (38.7%) tumors were weakly positive for the Cacna2d1 protein expression. Among the 158 serous carcinomas, the Cacna2d1 positivity was 148 (93.7%), in which 88 (55.7%) were highly positive, and 60 (38.0%) were weakly positive for the Cacna2d1 protein expression. Most strikingly, the Cacna2d1 was specifically expressed in the infiltration front areas of the EOC tumors. Statistical analyses showed that positive expression of Cacna2d1 was significantly associated with advanced FIGO stage (P<0.001), histological subtype (P=0.017) and tumor differentiation (P=0.015). Positive Cacna2d1 protein expression was significantly associated with poor overall survival (OS) and shorter progression free survival (PFS) in both total EOCs and serous carcinomas, although multivariate analyses did not reach statistical significance. In summary, our results suggest Cacna2d1 protein may play a crucial role in promoting aggressive EOC behavior and progression, and Cacna2d1 may serve as a novel predictive prognostic marker and a potential target for therapeutic intervention in EOCs. PMID:27725913

  11. Seismic Inversion Methods

    NASA Astrophysics Data System (ADS)

    Jackiewicz, Jason

    2009-09-01

    With the rapid advances in sophisticated solar modeling and the abundance of high-quality solar pulsation data, efficient and robust inversion techniques are crucial for seismic studies. We present some aspects of an efficient Fourier Optimally Localized Averaging (OLA) inversion method with an example applied to time-distance helioseismology.

  12. Seismic Inversion Methods

    SciTech Connect

    Jackiewicz, Jason

    2009-09-16

    With the rapid advances in sophisticated solar modeling and the abundance of high-quality solar pulsation data, efficient and robust inversion techniques are crucial for seismic studies. We present some aspects of an efficient Fourier Optimally Localized Averaging (OLA) inversion method with an example applied to time-distance helioseismology.

  13. A ''Voice Inversion Effect?''

    ERIC Educational Resources Information Center

    Bedard, Catherine; Belin, Pascal

    2004-01-01

    Voice is the carrier of speech but is also an ''auditory face'' rich in information on the speaker's identity and affective state. Three experiments explored the possibility of a ''voice inversion effect,'' by analogy to the classical ''face inversion effect,'' which could support the hypothesis of a voice-specific module. Experiment 1 consisted…

  14. An application of Ray + Born inversion on real data

    SciTech Connect

    Forgues, E.; Beukelaar, P. de; Coppens, F.; Richard, V.; Lambare, G.

    1994-12-31

    The authors present a linearized 2D acoustic and elastic multiparameter inversion of real marine seismic reflection data from the Gulf of Mexico. They solve the forward problem by a combination of Ray Theory and Born approximation. It fully takes advantage of efficiency of ray tracing in terms of computing, cost and physical comprehension. Lateral variations of background velocities can be introduced in the 2D ray tracing algorithm and a 2.5D approximation is done in order to take into account 3D propagation. The multiparameter inversion method is based on minimization of a weighted cost function. This weighted cost function is estimated from parameters associated with Ray and Paraxial Ray Theory and is introduced in order to diagonalize approximately the Hessian. This form of the Hessian allows the study of spatial resolution and conditioning of inversion.

  15. Impact of Interface Roughness on the Metallic Transport of Strongly Correlated 2D Holes in GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Goble, Nicholas; Watson, John; Manfra, Michael; Gao, Xuan

    2014-03-01

    Understanding the non-monotonic behavior in the temperature dependent resistance, R(T) , of strongly correlated two-dimensional (2D) carriers in clean semiconductors has been a central issue in the studies of 2D metallic states and metal-insulator transitions. We have studied the transport of high mobility 2D holes in 20nm wide GaAs quantum wells with varying interface roughness by changing the Al fraction x in the AlxGa1-xAs barrier. Prior to this work, no comprehensive study of the non-monotonic resistance peak against controlled barrier characteristics has been conducted. We show that the shape of the electronic contribution to R(T) is qualitatively unchanged throughout all of our measurements, regardless of the percentage of Al in the barrier. It is observed that increasing x or short range interface roughness suppresses both the strength and characteristic temperature scale of the 2D metallicity, pointing to the distinct role of short range versus long range disorder in the 2D metallic transport in this 2D hole system with interaction parameter rs ~ 20. N.G. acknowledges the US DOE GAANN fellowship (P200A090276 & P200A070434). M.J.M. is supported by the Miller Family Foundation and the US DOE, Office of Basic Energy Sciences, DMS (DE-SC0006671). X.P.A.G thanks the NSF for funding support (DMR-0906415).

  16. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    SciTech Connect

    Classen, I. G. J.; Boom, J. E.; Vries, P. C. de; Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A.; Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr.; Donne, A. J. H.; Jaspers, R. J. E.; Park, H. K.; Munsat, T.

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  17. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  18. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-01

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  19. Identification of weathered structures and aquifers from resistivity observations in the Strengbach catchment (Vosges, France).

    NASA Astrophysics Data System (ADS)

    Gance, Julien; Sailhac, Pascal; Malet, Jean-Philippe; Viville, Daniel; Pierret, Marie-Claire

    2015-04-01

    In low mountain regions, natural water resources used for agriculture or drinking water generally come from natural sources. Management of these water resources is complex for some catchments where most of the water flows is exfiltrating from bedrock aquifers characterized by important spatial heterogeneity and different connectivity levels in space and time. The Strengbach catchment (Vosges, North East France) is a hydro-geochemical observatory monitored for more than 25 years. The numerous geochemical studies have highlighted the existence of different lithological and structural units in the catchment constituted by different weathered granitic aquifers. Their spatial extension has been determined through the measurement of the soil electrical resistivity using 20 Electrical Resistivity Tomography (ERT) profiles. The profiles have been inverted separately with the BERT software in 2D and compared to 2.5 D inversions, where the inversion accounts for the profile crossings. The comparison between 2D and 2.5D inversion results allows validating the 2-D assumption. The 20 profiles are distributed over the complete catchment and cover more densely the water source area of the Strengbach stream. The shallow resistivities (5-10 m) measured highlight several weathered zones possibly characterized by different porosity. A combined analysis with soil water conductivity measurements in boreholes allows proposing a map of the spatial extension of these units. The resistivity data are also used to assess the depth of the main reservoir at the scale of the catchment. The hypothesis of the existence of a deeper reservoir is brought out by Audio-Magneto Telluric (AMT) and Very Low Frequency (VLF) measurements.

  20. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1999-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  1. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  2. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  3. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  4. 2D hexagonal quaternion Fourier transform in color image processing

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2016-05-01

    In this paper, we present a novel concept of the quaternion discrete Fourier transform on the two-dimensional hexagonal lattice, which we call the two-dimensional hexagonal quaternion discrete Fourier transform (2-D HQDFT). The concept of the right-side 2D HQDFT is described and the left-side 2-D HQDFT is similarly considered. To calculate the transform, the image on the hexagonal lattice is described in the tensor representation when the image is presented by a set of 1-D signals, or splitting-signals which can be separately processed in the frequency domain. The 2-D HQDFT can be calculated by a set of 1-D quaternion discrete Fourier transforms (QDFT) of the splitting-signals.

  5. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  6. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  7. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  8. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  9. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  10. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  11. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  12. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  13. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  14. Redirecting T cells to Ewing's sarcoma family of tumors by a chimeric NKG2D receptor expressed by lentiviral transduction or mRNA transfection.

    PubMed

    Lehner, Manfred; Götz, Gabriel; Proff, Julia; Schaft, Niels; Dörrie, Jan; Full, Florian; Ensser, Armin; Muller, Yves A; Cerwenka, Adelheid; Abken, Hinrich; Parolini, Ornella; Ambros, Peter F; Kovar, Heinrich; Holter, Wolfgang

    2012-01-01

    We explored the possibility to target Ewing's sarcoma family of tumors (ESFT) by redirecting T cells. To this aim, we considered NKG2D-ligands (NKG2D-Ls) as possible target antigens. Detailed analysis of the expression of MICA, MICB, ULBP-1, -2, and -3 in fourteen ESFT cell lines revealed consistent expression of at least one NKG2D-L. Thus, for redirecting T cells, we fused a CD3ζ/CD28-derived signaling domain to the ectodomain of NKG2D, however, opposite transmembrane orientation of this signaling domain and NKG2D required inverse orientation fusion of either of them. We hypothesized that the particularly located C-terminus of the NKG2D ectodomain should allow reengineering of the membrane anchoring from a native N-terminal to an artificial C-terminal linkage. Indeed, the resulting chimeric NKG2D receptor (chNKG2D) was functional and efficiently mediated ESFT cell death triggered by activated T cells. Notably, ESFT cells with even low NKG2D-L expression were killed by CD8(pos) and also CD4(pos) cells. Both, mRNA transfection and lentiviral transduction resulted in high level surface expression of chNKG2D. However, upon target-cell recognition receptor surface levels were maintained by tranfected RNA only during the first couple of hours after transfection. Later, target-cell contact resulted in strong and irreversible receptor down-modulation, whereas lentivirally mediated expression of chNKG2D remained constant under these conditions. Together, our study defines NKG2D-Ls as targets for a CAR-mediated T cell based immunotherapy of ESFT. A comparison of two different methods of gene transfer reveals strong differences in the susceptibility to ligand-induced receptor down-modulation with possible implications for the applicability of RNA transfection. PMID:22355347

  15. Second to fourth digit ratio (2D:4D) and concentrations of circulating sex hormones in adulthood

    PubMed Central

    2011-01-01

    Background The second to fourth digit ratio (2D:4D) is used as a marker of prenatal sex hormone exposure. The objective of this study was to examine whether circulating concentrations of sex hormones and SHBG measured in adulthood was associated with 2D:4D. Methods This analysis was based on a random sample from the Melbourne Collaborative Cohort Study. The sample consisted of of 1036 men and 620 post-menopausal women aged between 39 and 70 at the time of blood draw. Concentrations of circulating sex hormones were measured from plasma collected at baseline (1990-1994), while digit length was measured from hand photocopies taken during a recent follow-up (2003-2009). The outcome measures were circulating concentrations of testosterone, oestradiol, dehydroepiandrosterone sulphate, androstenedione, Sex Hormone Binding Globulin, androstenediol glucoronide for men only and oestrone sulphate for women only. Free testosterone and oestradiol were estimated using standard formulae derived empirically. Predicted geometric mean hormone concentrations (for tertiles of 2D:4D) and conditional correlation coefficients (for continuous 2D:4D) were obtained using mixed effects linear regression models. Results No strong associations were observed between 2D:4D measures and circulating concentrations of hormones for men or women. For males, right 2D:4D was weakly inversely associated with circulating testosterone (predicted geometric mean testosterone was 15.9 and 15.0 nmol/L for the lowest and highest tertiles of male right 2D:4D respectively (P-trend = 0.04). There was a similar weak association between male right 2D:4D and the ratio of testosterone to oestradiol. These associations were not evident in analyses of continuous 2D:4D. Conclusions There were no strong associations between any adult circulating concentration of sex hormone or SHGB and 2D:4D. These results contribute to the growing body of evidence indicating that 2D:4D is unrelated to adult sex hormone concentrations

  16. Two-dimensional inverse opal hydrogel for pH sensing.

    PubMed

    Xue, Fei; Meng, Zihui; Qi, Fenglian; Xue, Min; Wang, Fengyan; Chen, Wei; Yan, Zequn

    2014-12-01

    A novel hydrogel film with a highly ordered macropore monolayer on its surface was prepared by templated photo-polymerization of hydrogel monomers on a two-dimensional (2D) polystyrene colloidal array. The 2D inverse opal hydrogel has prominent advantages over traditional three-dimensional (3D) inverse opal hydrogels. First, the formation of the 2D array template through a self-assembly method is considerably faster and simpler. Second, the stable ordering structure of the 2D array template makes it easier to introduce the polymerization solution into the template. Third, a simple measurement, a Debye diffraction ring, is utilized to characterize the neighboring pore spacing of the 2D inverse opal hydrogel. Acrylic acid was copolymerized into the hydrogel; thus, the hydrogel responded to pH through volume change, which resulted from the formation of the Donnan potential. The 2D inverse opal hydrogel showed that the neighboring pore spacing increased by about 150 nm and diffracted color red-shifted from blue to red as the pH increased from pH 2 to 7. In addition, the pH response kinetics and ionic strength effect of this 2D mesoporous polymer film were also investigated. PMID:25292208

  17. Two-dimensional inverse opal hydrogel for pH sensing.

    PubMed

    Xue, Fei; Meng, Zihui; Qi, Fenglian; Xue, Min; Wang, Fengyan; Chen, Wei; Yan, Zequn

    2014-12-01

    A novel hydrogel film with a highly ordered macropore monolayer on its surface was prepared by templated photo-polymerization of hydrogel monomers on a two-dimensional (2D) polystyrene colloidal array. The 2D inverse opal hydrogel has prominent advantages over traditional three-dimensional (3D) inverse opal hydrogels. First, the formation of the 2D array template through a self-assembly method is considerably faster and simpler. Second, the stable ordering structure of the 2D array template makes it easier to introduce the polymerization solution into the template. Third, a simple measurement, a Debye diffraction ring, is utilized to characterize the neighboring pore spacing of the 2D inverse opal hydrogel. Acrylic acid was copolymerized into the hydrogel; thus, the hydrogel responded to pH through volume change, which resulted from the formation of the Donnan potential. The 2D inverse opal hydrogel showed that the neighboring pore spacing increased by about 150 nm and diffracted color red-shifted from blue to red as the pH increased from pH 2 to 7. In addition, the pH response kinetics and ionic strength effect of this 2D mesoporous polymer film were also investigated.

  18. 2D and 3D simulations of damage in 5-grain copper gas gun samples

    SciTech Connect

    Tonks, Davis L; Cerreta, Ellen K; Dennis - Koller, Darcie; Escobedo - Diaz, Juan P; Trujillo, Carl P; Luo, Shengian; Bingert, John F

    2010-12-16

    2D and 3D Hydrocode simulations were done of a gas gun damage experiment involving a 5 grain sample with a polycrystalline flyer with a velocity of about 140 m/s. The simulations were done with the Flag hydrocode and involved explicit meshing of the 5 grains with a single crystal plasticity model and a pressure based damage model. The calculated fields were compared with two cross sections from the recovered sample. The sample exhibited grain boundary cracks at high angle and tilt grain boundaries in the sample but not at a sigma 3 twin boundary. However, the calculation showed large gradients in stress and strain at only the twin boundary, contrary to expectation. This indicates that the twin boundary is quite strong to resist the predicted high gradients and that the calculation needs the addition of a grain boundary fracture mode. The 2D and 3D simulations were compared.

  19. Synthesize function for describing distorted 2-D magnetotelluric responses caused by topography

    NASA Astrophysics Data System (ADS)

    Promdee, Ninrat; Sarakorn, Weerachai

    2016-04-01

    In this research, the distortions of 2-D magnetotelluric responses caused by topographies are described by an appropriated synthesize functions. The damping wave equations and the considered topographic curves are used as the kernel of selected synthesize functions. The parameters of those functions are estimated by using the randomized neighborhood search method. The validity of functions is tested on half-space and COMMEMI2D-1 models with cosinusoidal, Gaussian and logistic topographic curves. The obtained results indicate that distorted apparent resistivity are well described by the selected synthesize functions with an acceptable root mean square errors. The obtained values of parameters are varied on both periods of EM wave and height of topographies.

  20. Research on non-linearity correction of 2D-PSD

    NASA Astrophysics Data System (ADS)

    Zheng, Xiawei; Chen, Sihai; Chen, Wei; Wu, Xin; Xiang, Sihua

    2009-08-01

    PSD(Position Sensitive Detector) is a kind of electrophotonic detector based on lateral photoeffect. PSD is widely used in non-contact measurement as it's highly sensitive to the position of incident light. But, it suffers from non-linearity because of nonuniform surface resistance which reduces the measuring precision and reliability. In this paper, The non-linear error of 2D-PSD(Two-dimensional PSD) is partly corrected using algorithm for duo-linear interpolation based on LabVIEW(Laboratory Virtual Instrument Engineering Workbench). The corrected result shows that the linearity of 2D-PSD is greatly improved without increasing the complexity of hardware. After the non-linearity correction, the usable area of PSD is extended and the precision of the measurement system is improved.

  1. Thermal Conductivity and Thermopower near the 2D Metal-Insulator transition, Final Technical Report

    SciTech Connect

    SARACHIK, MYRIAM P

    2015-02-20

    STUDIES OF STRONGLY-INTERACTING 2D ELECTRON SYSTEMS – There is a great deal of current interest in the properties of systems in which the interaction between electrons (their potential energy) is large compared to their kinetic energy. We have investigated an apparent, unexpected metal-insulator transition inferred from the behavior of the temperature-dependence of the resistivity; moreover, detailed analysis of the behavior of the magnetoresistance suggests that the electrons’ effective mass diverges, supporting this scenario. Whether this is a true phase transition or crossover behavior has been strenuously debated over the past 20 years. Our measurements have now shown that the thermoelectric power of these 2D materials diverges at a finite density, providing clear evidence that this is, in fact, a phase transition to a new low-density phase which may be a precursor or a direct transition to the long sought-after electronic crystal predicted by Eugene Wigner in 1934.

  2. Characteristics of 2D magnetic field sensor based on magnetic sensitivity diodes

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Yang, Xianghong; Yu, Yang; Wu, Tong; Wen, Dianzhong

    2015-04-01

    A two-dimensional (2D) magnetic field sensor is proposed in this paper. It contains two Wheatstone bridges composed of four magnetic sensitivity diodes(MSDs)with similar characteristics and four loading resistances. In order to realize the axial symmetric distribution of four MSDs, two MSDs with opposite magnetic sensitive directions were located along the x and -x axes, and two with opposite magnetic sensitive directions were located along the y and -y axes. The experimental results indicate that when VDD = 5.0 V, the magnetic sensitivities of the 2D magnetic sensor can reach SxB = 544 mV/T and SyB = 498 mV/T in the x and y directions, respectively. Consequently, it is possible to measure the two-dimensional magnetic field.

  3. Use of the 'Precessions' process for prepolishing and correcting 2D & 2(1/2)D form.

    PubMed

    Walker, David D; Freeman, Richard; Morton, Roger; McCavana, Gerry; Beaucamp, Anthony

    2006-11-27

    The Precessions process polishes complex surfaces from the ground state preserving the ground-in form, and subsequently rectifies measured form errors. Our first paper introduced the technology and focused on the novel tooling. In this paper we describe the unique CNC machine tools and how they operate in polishing and correcting form. Experimental results demonstrate both the '2D' and '2(1/2)D' form-correction modes, as applied to aspheres with rotationally-symmetric target-form.

  4. Application of high resolution 2D/3D spectral induced polarization (SIP) in metalliferous ore exploration

    NASA Astrophysics Data System (ADS)

    Chen, R.; Zhao, X.; Yao, H.; He, X.; Zeng, P.; Chang, F.; Yang, Y.; Zhang, X.; Xi, X.; He, L.

    2015-12-01

    Induced polarization (IP) is a powerful tool in metalliferous ore exploration. However, there are many sources, such as clay and graphite, which can generate IP anomaly. Spectral induced polarization (SIP) measures IP response on a wide frequency range. This method provides a way to discriminate IP response generated by metalliferous ore or other objects. The best way to explore metalliferous ore is 3D SIP exploration. However, if we consider the exploration cost and efficiency, we can use SIP profiling to find an anomaly, and then use 2D/3D SIP sounding to characterize the anomaly. Based on above idea, we used a large-scale distributed SIP measurement system which can realize 800 sounding sites in one direction at the same time. This system can be used for SIP profiling, 2D/3D SIP sounding with high efficiency, high resolution, and large depth of investigation (> 1000 m). Qiushuwan copper - molybdenum deposit is located in Nanyang city, Henan province, China. It is only a middle-size deposit although over 100 holes were drilled and over 40 years of exploration were spent because of very complex geological setting. We made SIP measurement over 100 rock and ore samples to discriminate IP responses of ore and rock containing graphite. Then we carried out 7 lines of 2D SIP exploration with the depth of investigation great than 1000 m. The minimum electode spacing for potential difference is only 20 m. And we increase the spacing of current electodes at linear scale. This acquisition setting ensures high density data acquired and high quality data acquisition. Modeling and inversion result proves that we can get underground information with high resolution by our method. Our result shows that there exists a strong SIP response related to ore body in depth > 300 m. Pseudo-3D inversion of five 2D SIP sounding lines shows the location and size of IP anomaly. The new drillings based our result found a big copper-molybdenum ore body in new position with depth > 300 m and

  5. Solar inverse theory

    NASA Astrophysics Data System (ADS)

    Gough, D.

    1984-12-01

    Helioseismological inversion, as with the inversion of any other data, is divided into three phases. The first is the solution of the so-called forward problem: namely, the calculation of the eigenfrequencies of a theoretical equilibrium state. The second is an attempt to understand the results, either empirically by determining how those frequencies vary as chosen parameters defining the equilibrium model are varied, or analytically from asymptotic expansions in limiting cases of high order or degree. The third phase is to pose and solve an inverse problem, which seeks to find a plausible equilibrium model of the Sun whose eigenfrequencies are consistent with observation. The three phases are briefly discussed in this review, and the third, which is not yet widely used in helioseismology, is illustrated with some selected inversions of artificial solar data.

  6. A MATLAB-Based Boundary Data Simulator for Studying the Resistivity Reconstruction Using Neighbouring Current Pattern

    PubMed Central

    Nagaraju, J.

    2013-01-01

    Phantoms are essentially required to generate boundary data for studying the inverse solver performance in electrical impedance tomography (EIT). A MATLAB-based boundary data simulator (BDS) is developed to generate accurate boundary data using neighbouring current pattern for assessing the EIT inverse solvers. Domain diameter, inhomogeneity number, inhomogeneity geometry (shape, size, and position), background conductivity, and inhomogeneity conductivity are all set as BDS input variables. Different sets of boundary data are generated by changing the input variables of the BDS, and resistivity images are reconstructed using electrical impedance tomography and diffuse optical tomography reconstruction software (EIDORS). Results show that the BDS generates accurate boundary data for different types of single or multiple objects which are efficient enough to reconstruct the resistivity images for assessing the inverse solver. It is noticed that for the BDS with 2048 elements, the boundary data for all inhomogeneities with a diameter larger than 13.3% of that of the phantom are accurate enough to reconstruct the resistivity images in EIDORS-2D. By comparing the reconstructed image with an original geometry made in BDS, it would be easier to study the inverse solver performance and the origin of the boundary data error can be identified. PMID:27006909

  7. Generalized emissivity inverse problem.

    PubMed

    Ming, DengMing; Wen, Tao; Dai, XianXi; Dai, JiXin; Evenson, William E

    2002-04-01

    Inverse problems have recently drawn considerable attention from the physics community due to of potential widespread applications [K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed. (Springer Verlag, Berlin, 1989)]. An inverse emissivity problem that determines the emissivity g(nu) from measurements of only the total radiated power J(T) has recently been studied [Tao Wen, DengMing Ming, Xianxi Dai, Jixin Dai, and William E. Evenson, Phys. Rev. E 63, 045601(R) (2001)]. In this paper, a new type of generalized emissivity and transmissivity inverse (GETI) problem is proposed. The present problem differs from our previous work on inverse problems by allowing the unknown (emissivity) function g(nu) to be temperature dependent as well as frequency dependent. Based on published experimental information, we have developed an exact solution formula for this GETI problem. A universal function set suggested for numerical calculation is shown to be robust, making this inversion method practical and convenient for realistic calculations.

  8. The inverse electroencephalography pipeline

    NASA Astrophysics Data System (ADS)

    Weinstein, David Michael

    The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.

  9. Direct and indirect inversions

    NASA Astrophysics Data System (ADS)

    Virieux, Jean; Brossier, Romain; Métivier, Ludovic; Operto, Stéphane; Ribodetti, Alessandra

    2016-06-01

    A bridge is highlighted between the direct inversion and the indirect inversion. They are based on fundamental different approaches: one is looking after a projection from the data space to the model space while the other one is reducing a misfit between observed data and synthetic data obtained from a given model. However, it is possible to obtain similar structures for model perturbation, and we shall focus on P-wave velocity reconstruction. This bridge is built up through the Born approximation linearizing the forward problem with respect to model perturbation and through asymptotic approximations of the Green functions of the wave propagation equation. We first describe the direct inversion and its ingredients and then we focus on a specific misfit function design leading to a indirect inversion. Finally, we shall compare this indirect inversion with more standard least-squares inversion as the FWI, enabling the focus on small weak velocity perturbations on one side and the speed-up of the velocity perturbation reconstruction on the other side. This bridge has been proposed by the group led by Raul Madariaga in the early nineties, emphasizing his leading role in efficient imaging workflows for seismic velocity reconstruction, a drastic requirement at that time.

  10. PPARγ suppresses the proliferation of cardiac myxoma cells through downregulation of MEF2D in a miR-122-dependent manner.

    PubMed

    Qiu, Youzhu; Yang, Jie; Bian, Shizhu; Chen, Guozhu; Yu, Jie

    2016-06-01

    Peroxisome proliferator-activated receptor gamma (PPARγ), a multiple functional transcription factor, has been reported to have anti-tumor effects through inhibition of cells proliferation. However, its effects on cardiac myxoma (CM) cells and the underlying signaling mechanism is unclear. In the present study, we demonstrated that the level of PPARγ is inversely correlated with that of myocyte enhancer factor 2D (MEF2D), a biomarker of CM. We found that activation of PPARγ inhibit MEF2D expression via upregulation of miR-122, which can target the 3'-UTR of MEF2D and inhibit MEF2D expression, by directly binding to the PPRE in the miR-122 promoter region. Functional experiments further showed that miR-122-dependent downregulation of MEF2D by PPARγ suppress the proliferation of CM cells. These results suggest that PPARγ may exert its antiproliferative effects by negatively regulating the MEF2D in CM cells, which through upregulation of miR-122, and PPARγ/miR-122/MEF2D signaling pathway may be a novel target for treatment of CM. PMID:27109478

  11. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  12. Ultrafast 2D-IR spectroelectrochemistry of flavin mononucleotide

    NASA Astrophysics Data System (ADS)

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Bredenbeck, Jens

    2015-06-01

    We demonstrate the coupling of ultrafast two-dimensional infrared (2D-IR) spectroscopy to electrochemistry in solution and apply it to flavin mononucleotide, an important cofactor of redox proteins. For this purpose, we designed a spectroelectrochemical cell optimized for 2D-IR measurements in reflection and measured the time-dependent 2D-IR spectra of the oxidized and reduced forms of flavin mononucleotide. The data show anharmonic coupling and vibrational energy transfer between different vibrational modes in the two redox species. Such information is inaccessible with redox-controlled steady-state FTIR spectroscopy. The wide range of applications offered by 2D-IR spectroscopy, such as sub-picosecond structure determination, IR band assignment via energy transfer, disentangling reaction mixtures through band connectivity in the 2D spectra, and the measurement of solvation dynamics and chemical exchange can now be explored under controlled redox potential. The development of this technique furthermore opens new horizons for studying the dynamics of redox proteins.

  13. Ultrafast 2D-IR spectroelectrochemistry of flavin mononucleotide.

    PubMed

    El Khoury, Youssef; Van Wilderen, Luuk J G W; Bredenbeck, Jens

    2015-06-01

    We demonstrate the coupling of ultrafast two-dimensional infrared (2D-IR) spectroscopy to electrochemistry in solution and apply it to flavin mononucleotide, an important cofactor of redox proteins. For this purpose, we designed a spectroelectrochemical cell optimized for 2D-IR measurements in reflection and measured the time-dependent 2D-IR spectra of the oxidized and reduced forms of flavin mononucleotide. The data show anharmonic coupling and vibrational energy transfer between different vibrational modes in the two redox species. Such information is inaccessible with redox-controlled steady-state FTIR spectroscopy. The wide range of applications offered by 2D-IR spectroscopy, such as sub-picosecond structure determination, IR band assignment via energy transfer, disentangling reaction mixtures through band connectivity in the 2D spectra, and the measurement of solvation dynamics and chemical exchange can now be explored under controlled redox potential. The development of this technique furthermore opens new horizons for studying the dynamics of redox proteins.

  14. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  15. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  16. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268

  17. Optimization schemes for the inversion of Bouguer gravity anomalies

    NASA Astrophysics Data System (ADS)

    Zamora, Azucena

    Data sets obtained from measurable physical properties of the Earth structure have helped advance the understanding of its tectonic and structural processes and constitute key elements for resource prospecting. 2-Dimensional (2-D) and 3-D models obtained from the inversion of geophysical data sets are widely used to represent the structural composition of the Earth based on physical properties such as density, seismic wave velocities, magnetic susceptibility, conductivity, and resistivity. The inversion of each one of these data sets provides structural models whose consistency depends on the data collection process, methodology, and overall assumptions made in their individual mathematical processes. Although sampling the same medium, seismic and non-seismic methods often provide inconsistent final structural models of the Earth with varying accuracy, sensitivity, and resolution. Taking two or more geophysical data sets with complementary characteristics (e.g. having higher resolution at different depths) and combining their individual strengths to create a new improved structural model can help achieve higher accuracy and resolution power with respect to its original components while reducing their ambiguity and uncertainty effects. Gravity surveying constitutes a cheap, non-invasive, and non-destructive passive remote sensing method that helps to delineate variations in the gravity field. These variations can originate from regional anomalies due to deep density variations or from residual anomalies related to shallow density variations [41]. Since gravity anomaly inversions suffer from significant non-uniqueness (allowing two or more distinct density structures to have the same gravity signature) and small changes in parameters can highly impact the resulting model, the inversion of gravity data represents an ill-posed mathematical problem. However, gravity studies have demonstrated the effectiveness of this method to trace shallow subsurface density variations

  18. Two and three dimensional magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Booker, J. R.

    Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral, and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multidimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multidimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two-dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution, and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.

  19. Two and three dimensional magnetotelluric inversion

    SciTech Connect

    Booker, J.R.

    1994-07-01

    Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multi-dimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two- dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.

  20. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  1. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  2. Secretory pathways generating immunosuppressive NKG2D ligands

    PubMed Central

    Baragaño Raneros, Aroa; Suarez-Álvarez, Beatriz; López-Larrea, Carlos

    2014-01-01

    Natural Killer Group 2 member D (NKG2D) activating receptor, present on the surface of various immune cells, plays an important role in activating the anticancer immune response by their interaction with stress-inducible NKG2D ligands (NKG2DL) on transformed cells. However, cancer cells have developed numerous mechanisms to evade the immune system via the downregulation of NKG2DL from the cell surface, including the release of NKG2DL from the cell surface in a soluble form. Here, we review the mechanisms involved in the production of soluble NKG2DL (sNKG2DL) and the potential therapeutic strategies aiming to block the release of these immunosuppressive ligands. Therapeutically enabling the NKG2D-NKG2DL interaction would promote immunorecognition of malignant cells, thus abrogating disease progression. PMID:25050215

  3. 2D bifurcations and Newtonian properties of memristive Chua's circuits

    NASA Astrophysics Data System (ADS)

    Marszalek, W.; Podhaisky, H.

    2016-01-01

    Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.

  4. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  5. AMTCLAB: A MATLAB ®-based program for traveltime analysis and velocity tuning in 2D elliptical anisotropic media

    NASA Astrophysics Data System (ADS)

    Fernández Martínez, J. L.; Pedruelo González, L. M.; García Gonzalo, E.

    2009-10-01

    In this paper we present the program AMTCLAB, a MATLAB ®-based computer code that analyzes the traveltime distribution and performs quality analysis at the pre-inversion stage for elliptically anisotropic media explored via 2D transmission experiments. This software generalizes the program MTCLAB presented in the past for the case of layered isotropic media, and makes use of traditional and robust traveltime distribution descriptors (mean, standard deviation, median, lower and upper quartiles, inter-quartile range and minimum absolute deviation), which are valid for all kinds of recording geometries. A guided user interface leads the modeller through the algorithm steps using the same data MTCLAB-structures. This methodology offers better understanding of the data variability prior to inversion, and provides the geophysicist with a macroscopic elliptical anisotropic velocity model, which is valid at the experiment scale, and matches the experimental mean traveltime distribution. To solve the inverse problems involved, program AMTCLAB uses the particle swarm optimisation algorithm, which allows the use of different norms and sampling the region of equivalent anisotropic velocity models in order to perform posterior sample statistics in each individual model parameter. The approximated velocity model issued from this analysis can serve in the traveltime inverse problem as an initial guess, or as a reference model in the subsequent inversion.

  6. Hydrologic characterization of desert soils with varying degrees of pedogenesis: 2. Inverse modeling for eff ective properties

    USGS Publications Warehouse

    Mirus, B.B.; Perkins, K.S.; Nimmo, J.R.; Singha, K.

    2009-01-01

    To understand their relation to pedogenic development, soil hydraulic properties in the Mojave Desert were investi- gated for three deposit types: (i) recently deposited sediments in an active wash, (ii) a soil of early Holocene age, and (iii) a highly developed soil of late Pleistocene age. Eff ective parameter values were estimated for a simplifi ed model based on Richards' equation using a fl ow simulator (VS2D), an inverse algorithm (UCODE-2005), and matric pressure and water content data from three ponded infi ltration experiments. The inverse problem framework was designed to account for the eff ects of subsurface lateral spreading of infi ltrated water. Although none of the inverse problems converged on a unique, best-fi t parameter set, a minimum standard error of regression was reached for each deposit type. Parameter sets from the numerous inversions that reached the minimum error were used to develop probability distribu tions for each parameter and deposit type. Electrical resistance imaging obtained for two of the three infi ltration experiments was used to independently test fl ow model performance. Simulations for the active wash and Holocene soil successfully depicted the lateral and vertical fl uxes. Simulations of the more pedogenically developed Pleistocene soil did not adequately replicate the observed fl ow processes, which would require a more complex conceptual model to include smaller scale heterogeneities. The inverse-modeling results, however, indicate that with increasing age, the steep slope of the soil water retention curve shitis toward more negative matric pressures. Assigning eff ective soil hydraulic properties based on soil age provides a promising framework for future development of regional-scale models of soil moisture dynamics in arid environments for land-management applications. ?? Soil Science Society of America.

  7. Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide.

    PubMed

    Patil, Ranjit A; Chang, Cheng-Ping; Devan, Rupesh S; Liou, Yung; Ma, Yuan-Ron

    2016-04-20

    We synthesized unique one-dimensional (1D) nanorods and two-dimensional (2D) thin-films of NiO on indium-tin-oxide thin-films using a hot-filament metal-oxide vapor deposition technique. The 1D nanorods have an average width and length of ∼100 and ∼500 nm, respectively, and the densely packed 2D thin-films have an average thickness of ∼500 nm. The 1D nanorods perform as parallel units for charge storing. However, the 2D thin-films act as one single unit for charge storing. The 2D thin-films possess a high specific capacitance of ∼746 F/g compared to 1D nanorods (∼230 F/g) using galvanostatic charge-discharge measurements at a current density of 3 A/g. Because the 1D NiO nanorods provide more plentiful surface areas than those of the 2D thin-films, they are fully active at the first few cycles. However, the capacitance retention of the 1D nanorods decays faster than that of the 2D thin-films. Also, the 1D NiO nanorods suffer from instability due to the fast electrochemical dissolution and high nanocontact resistance. Electrochemical impedance spectroscopy verifies that the low dimensionality of the 1D NiO nanorods induces the unavoidable effects that lead them to have poor supercapacitive performances. On the other hand, the slow electrochemical dissolution and small contact resistance in the 2D NiO thin-films favor to achieve high specific capacitance and great stability.

  8. Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide.

    PubMed

    Patil, Ranjit A; Chang, Cheng-Ping; Devan, Rupesh S; Liou, Yung; Ma, Yuan-Ron

    2016-04-20

    We synthesized unique one-dimensional (1D) nanorods and two-dimensional (2D) thin-films of NiO on indium-tin-oxide thin-films using a hot-filament metal-oxide vapor deposition technique. The 1D nanorods have an average width and length of ∼100 and ∼500 nm, respectively, and the densely packed 2D thin-films have an average thickness of ∼500 nm. The 1D nanorods perform as parallel units for charge storing. However, the 2D thin-films act as one single unit for charge storing. The 2D thin-films possess a high specific capacitance of ∼746 F/g compared to 1D nanorods (∼230 F/g) using galvanostatic charge-discharge measurements at a current density of 3 A/g. Because the 1D NiO nanorods provide more plentiful surface areas than those of the 2D thin-films, they are fully active at the first few cycles. However, the capacitance retention of the 1D nanorods decays faster than that of the 2D thin-films. Also, the 1D NiO nanorods suffer from instability due to the fast electrochemical dissolution and high nanocontact resistance. Electrochemical impedance spectroscopy verifies that the low dimensionality of the 1D NiO nanorods induces the unavoidable effects that lead them to have poor supercapacitive performances. On the other hand, the slow electrochemical dissolution and small contact resistance in the 2D NiO thin-films favor to achieve high specific capacitance and great stability. PMID:27028491

  9. 3D geophysical inversion for contact surfaces

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Farquharson, Colin

    2014-05-01

    geophysical models can be specified using the same parameterization: they are, in essence, the same Earth model. We solve for the locations of the nodes through a Particle Swarm Optimization strategy and follow this with a more rigorous stochastic sampling to provide likelihood information. Such global optimization methods introduce high computational costs; to provide computationally feasible inversion methods, we reduce the dimensionality of the problem by parameterizing the nodes in a coarse representation of the geological wireframe model and we use splines (2D) or surface subdivision (3D) to refine further. This also provides a simple and effective way to regularize the inverse problem.

  10. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  11. On 2D bisection method for double eigenvalue problems

    SciTech Connect

    Ji, X.

    1996-06-01

    The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.

  12. Design of the LRP airfoil series using 2D CFD

    NASA Astrophysics Data System (ADS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas

    2014-06-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.

  13. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  14. EM 2dV1.0.F

    2012-01-05

    Code is for a layered electric medium with 2d structure. Includes air-earth interface at node z=2.. The electric ex and ez fields are calculated on edges of elemental grid and magnetic field hy is calculated on the face of the elemental grid. The code allows for a layered earth with 2d structures. Solutions of coupled first order Maxwell's equations are solved in the two dimensional environment using a finite- difference scheme on a staggered spationamore » and temporal grid.« less

  15. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  16. Self-dual strings and 2D SYM

    NASA Astrophysics Data System (ADS)

    Hosomichi, Kazuo; Lee, Sungjay

    2015-01-01

    We study the system of M2-branes suspended between parallel M5-branes using ABJM model with a natural half-BPS boundary condition. For small separation between M5-branes, the worldvolume theory is shown to reduce to a 2D super Yang-Mills theory with some similarity to q-deformed Yang-Mills theory. The gauge coupling is related to the position of the branes in an interesting manner. The theory is considerably different from the 2D theory proposed for multiple "M-strings". We make a detailed comparison of elliptic genus of the two descriptions and find only a partial agreement.

  17. Finite temperature corrections in 2d integrable models

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Hasenbusch, M.

    2002-09-01

    We study the finite size corrections for the magnetization and the internal energy of the 2d Ising model in a magnetic field by using transfer matrix techniques. We compare these corrections with the functional form recently proposed by Delfino and LeClair-Mussardo for the finite temperature behaviour of one-point functions in integrable 2d quantum field theories. We find a perfect agreement between theoretical expectations and numerical results. Assuming the proposed functional form as an input in our analysis we obtain a relevant improvement in the precision of the continuum limit estimates of both quantities.

  18. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  19. Nomenclature for human CYP2D6 alleles.

    PubMed

    Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M

    1996-06-01

    To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658

  20. Spreading dynamics of 2D dipolar Langmuir monolayer phases.

    PubMed

    Heinig, P; Wurlitzer, S; Fischer, Th M

    2004-07-01

    We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory. PMID:15278693

  1. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  2. Quantum process tomography by 2D fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-01

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  3. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR. PMID:27448174

  4. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.

  5. A Bayesian approach to modeling 2D gravity data using polygon states

    NASA Astrophysics Data System (ADS)

    Titus, W. J.; Titus, S.; Davis, J. R.

    2015-12-01

    We present a Bayesian Markov chain Monte Carlo (MCMC) method for the 2D gravity inversion of a localized subsurface object with constant density contrast. Our models have four parameters: the density contrast, the number of vertices in a polygonal approximation of the object, an upper bound on the ratio of the perimeter squared to the area, and the vertices of a polygon container that bounds the object. Reasonable parameter values can be estimated prior to inversion using a forward model and geologic information. In addition, we assume that the field data have a common random uncertainty that lies between two bounds but that it has no systematic uncertainty. Finally, we assume that there is no uncertainty in the spatial locations of the measurement stations. For any set of model parameters, we use MCMC methods to generate an approximate probability distribution of polygons for the object. We then compute various probability distributions for the object, including the variance between the observed and predicted fields (an important quantity in the MCMC method), the area, the center of area, and the occupancy probability (the probability that a spatial point lies within the object). In addition, we compare probabilities of different models using parallel tempering, a technique which also mitigates trapping in local optima that can occur in certain model geometries. We apply our method to several synthetic data sets generated from objects of varying shape and location. We also analyze a natural data set collected across the Rio Grande Gorge Bridge in New Mexico, where the object (i.e. the air below the bridge) is known and the canyon is approximately 2D. Although there are many ways to view results, the occupancy probability proves quite powerful. We also find that the choice of the container is important. In particular, large containers should be avoided, because the more closely a container confines the object, the better the predictions match properties of object.

  6. 3D inversion based on multi-grid approach of magnetotelluric data from Northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Smirnov, M.; Korja, T. J.; Egbert, G. D.

    2012-12-01

    solver is implemented within the framework of the modular system for EM inversion (ModEM by G. Egbert, A. Kelbert, N. Meqbel), using the ModEM 3D finite difference staggered grid forward solver (second order PDE in the electric field, with divergence correction) as a starting point for our development. The first 3D inversion model for the crust and upper mantle shows the highly conducting bodies in the crust which can be interpreted as alum shales. The eastern and central parts are presented by resistive Precambrian rocks of the Svecofennian and Archaean domains. The upper mantle is resistive and relates to the Baltica basement. We also compare 3D inversion model with the results of 2D inversion along several profiles. We are able to explain some of the features in the data (out of quadrant phase) with 3D model, thus providing more reliable results compared to routine 2D approach.

  7. Three-dimensional inversion of magnetotelluric data from the Central Andean continental margin

    NASA Astrophysics Data System (ADS)

    Kühn, Christine; Küster, Jonas; Brasse, Heinrich

    2014-12-01

    Magnetotelluric data were collected in the late 1990s in the Central Andes of Chile and Bolivia, with the aim to delineate the electrical conductivity distribution in the subsurface and its relations to subduction processes. In previous studies, these data were interpreted based on 2-D models. The principal result was a vast conductivity zone beneath the Altiplano high plateau at mid and lower crustal depths and a much smaller, though significant conductor associated with the Precordillera Fault System. However, there are some significant 3-D effects in the investigation area, in particular near the coast and on the eastern Altiplano. The aim of this work is to give a reinterpretation based on new 3-D inversion of these data. The 3-D inversion not only provides a better fit to the data compared to 2-D results but furthermore allows to include sites with strong telluric distortion which were ignored in previous studies. We are now able to explain anomalous phases above 90° and induction arrows pointing subparallel to the coast as observed at several sites in the Coastal Cordillera. These strongly distorted data are caused by highly conductive near-surface structures that are partly connected to the Pacific Ocean, forcing currents to flow around the sites. The lower crust beneath the Coastal Cordillera resembles a poorly conductive, nearly homogeneous half-space and is electrically unremarkable. Besides, we can now image the Precordillera conductor as a continuous, elongated feature. The volcanic arc of the Western Cordillera is highly resistive with the exception of a few conductive spots which may be associated with certain individual volcanoes or geothermal resources, respectively. The Altiplano conductor is again the dominant electrical feature in the Central Andes, indicating widespread melting of the middle and lower back-arc crust.

  8. Combined DC Resistivity Survey and Electric Conductivity- Dielectric Permittivity Measurement at Sag Pond near Lembang Fault, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Iryanti, Mimin; Srigutomo, Wahyu; Bijaksana, Satria; Setiawan, Tedy

    2016-08-01

    Lembang Fault is a normal fault situated at the southern flank of Tangkuban Parahu Volcano in West Java Indonesia. The fault's movement may have caused the formation of sag pond in the vicinity of its which is characterized by the soil layers of the sag pond. The characteristics of the soil can be examined based on its electrical properties such as conductivity (the inverse of resistivity) and dielectric permittivity. Direct field measurement was conducted using DC-resistivity Wenner-Schlumberger method on the sag pond as well as laboratory resistivity measurement of cores taken from the sag pond. Two resistivity crosssections were obtained after performing 2D inversion of the data which reveal that the resistivity distribution consist of a resistive layer (40-60 ohm.m) overlying a medium resistive layer (30-35 ohm.m). The third layer has relatively low resistivity of 16-25 ohm.m. At the intersection of these two lines we took coring samples down to depth of 5 m below surface and measured the electrical conductivity and dielectric permittivity for each 1 cm of sample using EM-50 data logger. Results from both field and laboratory measurement were analysed to get a better understanding of the sag pond.

  9. 2D:4D asymmetry and gender differences in academic performance.

    PubMed

    Nye, John V C; Androuschak, Gregory; Desierto, Desirée; Jones, Garett; Yudkevich, Maria

    2012-01-01

    Exposure to prenatal androgens affects both future behavior and life choices. However, there is still relatively limited evidence on its effects on academic performance. Moreover, the predicted effect of exposure to prenatal testosterone (T)-which is inversely correlated with the relative length of the second to fourth finger lengths (2D:4D)-would seem to have ambiguous effects on academic achievement since traits like aggressiveness or risk-taking are not uniformly positive for success in school. We provide the first evidence of a non-linear, quadratic, relationship between 2D:4D and academic achievement using samples from Moscow and Manila. We also find that there is a gender differentiated link between various measures of academic achievement and measured digit ratios. These effects are different depending on the field of study, choice of achievement measure, and use of the right hand or left digit ratios. The results seem to be asymmetric between Moscow and Manila where the right (left) hand generates inverted-U (U-shaped) curves in Moscow while the pattern for hands reverses in Manila. Drawing from unusually large and detailed samples of university students in two countries not studied in the digit literature, our work is the first to have a large cross country comparison that includes two groups with very different ethnic compositions.

  10. Activating Receptor NKG2D Targets RAE-1-Expressing Allogeneic Neural Precursor Cells in a Viral Model of Multiple Sclerosis

    PubMed Central

    Weinger, Jason G.; Plaisted, Warren C.; Maciejewski, Sonia M.; Lanier, Lewis L.; Walsh, Craig M.; Lane, Thomas E.

    2014-01-01

    Transplantation of major histocompatibility complex (MHC)-mismatched mouse neural precursor cells (NPCs) into mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in rapid rejection that is mediated, in part, by T cells. However, the contribution of the innate immune response to allograft rejection in a model of viral-induced neurological disease has not been well defined. Herein, we demonstrate that the natural killer (NK) cell-expressing activating receptor NKG2D participates in transplanted allogeneic NPC rejection in mice persistently infected with JHMV. Cultured NPCs derived from C57BL/6 (H-2b) mice express the NKG2D ligand retinoic acid early precursor transcript (RAE)-1 but expression was dramatically reduced upon differentiation into either glia or neurons. RAE-1+ NPCs were susceptible to NK cell-mediated killing whereas RAE-1- cells were resistant to lysis. Transplantation of C57BL/6-derived NPCs into JHMV-infected BALB/c (H-2d) mice resulted in infiltration of NKG2D+CD49b+ NK cells and treatment with blocking antibody specific for NKG2D increased survival of allogeneic NPCs. Further, transplantation of differentiated RAE-1- allogeneic NPCs into JHMV-infected BALB/c mice resulted in enhanced survival, highlighting a role for the NKG2D:RAE-1 signaling axis in allograft rejection. We also demonstrate that transplantation of allogeneic NPCs into JHMV-infected mice resulted in infection of the transplanted cells suggesting that these cells may be targets for infection. Viral infection of cultured cells increased RAE-1 expression, resulting in enhanced NK cell-mediated killing through NKG2D recognition. Collectively, these results show that in a viral-induced demyelination model, NK cells contribute to rejection of allogeneic NPCs through an NKG2D signaling pathway. PMID:24898518

  11. Discrepant Results in a 2-D Marble Collision

    ERIC Educational Resources Information Center

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  12. THz devices based on 2D electron systems

    NASA Astrophysics Data System (ADS)

    Xing, Huili Grace; Yan, Rusen; Song, Bo; Encomendero, Jimy; Jena, Debdeep

    2015-05-01

    In two-dimensional electron systems with mobility on the order of 1,000 - 10,000 cm2/Vs, the electron scattering time is about 1 ps. For the THz window of 0.3 - 3 THz, the THz photon energy is in the neighborhood of 1 meV, substantially smaller than the optical phonon energy of solids where these 2D electron systems resides. These properties make the 2D electron systems interesting as a platform to realize THz devices. In this paper, I will review 3 approaches investigated in the past few years in my group toward THz devices. The first approach is the conventional high electron mobility transistor based on GaN toward THz amplifiers. The second approach is to employ the tunable intraband absorption in 2D electron systems to realize THz modulators, where I will use graphene as a model material system. The third approach is to exploit plasma wave in these 2D electron systems that can be coupled with a negative differential conductance element for THz amplifiers/sources/detectors.

  13. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  14. NKG2D ligands mediate immunosurveillance of senescent cells.

    PubMed

    Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-02-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  15. Proteomic Profiling of Macrophages by 2D Electrophoresis

    PubMed Central

    Bouvet, Marion; Turkieh, Annie; Acosta-Martin, Adelina E.; Chwastyniak, Maggy; Beseme, Olivia; Amouyel, Philippe; Pinet, Florence

    2014-01-01

    The goal of the two-dimensional (2D) electrophoresis protocol described here is to show how to analyse the phenotype of human cultured macrophages. The key role of macrophages has been shown in various pathological disorders such as inflammatory, immunological, and infectious diseases. In this protocol, we use primary cultures of human monocyte-derived macrophages that can be differentiated into the M1 (pro-inflammatory) or the M2 (anti-inflammatory) phenotype. This in vitro model is reliable for studying the biological activities of M1 and M2 macrophages and also for a proteomic approach. Proteomic techniques are useful for comparing the phenotype and behaviour of M1 and M2 macrophages during host pathogenicity. 2D gel electrophoresis is a powerful proteomic technique for mapping large numbers of proteins or polypeptides simultaneously. We describe the protocol of 2D electrophoresis using fluorescent dyes, named 2D Differential Gel Electrophoresis (DIGE). The M1 and M2 macrophages proteins are labelled with cyanine dyes before separation by isoelectric focusing, according to their isoelectric point in the first dimension, and their molecular mass, in the second dimension. Separated protein or polypeptidic spots are then used to detect differences in protein or polypeptide expression levels. The proteomic approaches described here allows the investigation of the macrophage protein changes associated with various disorders like host pathogenicity or microbial toxins. PMID:25408153

  16. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  17. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  18. On the sensitivity of the 2D electromagnetic invisibility cloak

    NASA Astrophysics Data System (ADS)

    Kaproulias, S.; Sigalas, M. M.

    2012-10-01

    A computational study of the sensitivity of the two dimensional (2D) electromagnetic invisibility cloaks is performed with the finite element method. A circular metallic object is covered with the cloak and the effects of absorption, gain and disorder are examined. Also the effect of covering the cloak with a thin dielectric layer is studied.

  19. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  20. Trench doping process for 3D transistors - 2D cross-sectional doping profiling study

    NASA Astrophysics Data System (ADS)

    Qin, Shu; Wang, Zhouguang; Hu, Y. Jeff; McTeer, Allen

    2012-11-01

    Comparison study of doping a 3D trench transistor structure was carried out by beam-line (BL) implant and plasma doping (PLAD) methods. Electron holography (EH) was used as a powerful characterization method to study 2D cross-sectional doping profiles of boron-based doping processes. Quantitative definitions of junction depths xj in both vertical and lateral directions can be obtained. Good correlations of 2D electron holography dopant profiles, 2D dopant profile simulations, and 1D SIMS/ARXPS impurity profiles are demonstrated. The results reveal an advantage of PLAD over BL implant: a much larger effective implant area for 3D trench bottom. It leads to a larger lateral junction depth xj(L) with a comparable vertical junction depth xj(V). It is attributed to the PLAD technology with no line of sight shadowing effect and less angle variation issues. Enhancing the dopant lateral straggle by PLAD at the trench bottom is particularly useful for non-planar device structures with low resistance buried dopant layers.

  1. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).

    PubMed

    Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar

    2016-01-01

    Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes.

  2. Evidence for a New Intermediate Phase in a Strongly Correlated 2D System near Wigner Crystallization

    NASA Astrophysics Data System (ADS)

    Gao, Xuan; Qiu, Richard; Goble, Nicholas; Serafin, Alex; Yin, Liang; Xia, Jian-Sheng; Sullivan, Neil; Pfeiffer, Loren; West, Ken

    How the two dimensional (2D) quantum Wigner crystal (WC) transforms into the metallic liquid phase remains an outstanding problem in physics. In theories considering the 2D WC to liquid transition in the clean limit, it was suggested that a number of intermediate phases might exist. We have studied the transformation between the metallic fluid phase and the low magnetic field reentrant insulating phase (RIP) which was interpreted as due to the WC [Qiu et al., PRL 108, 106404 (2012)], in a strongly correlated 2D hole system in GaAs quantum well with large interaction parameter rs (~20-30) and high mobility. Instead of a sharp transition, we found that increasing density (or lowering rs) drives the RIP into a state where the incipient RIP coexists with Fermi liquid. This apparent mixture phase intermediate between Fermi liquid and WC also exhibits a non-trivial temperature dependent resistivity behavior which can be qualitatively understood by the reversed melting of WC in the mixture, in analogy to the Pomeranchuk effect in the solid-liquid mixture of Helium-3. X.G. thanks NSF (DMR-0906415) for supporting work at CWRU. Experiments at the NHMFL High B/T Facility were supported by NSF Grant 0654118 and the State of Florida. L.P. thanks the Gordon and Betty Moore Foundation and NSF MRSEC (DMR-0819860) for support.

  3. Epitaxial 2D MoSe2 (HfSe2) Semiconductor/2D TaSe2 Metal van der Waals Heterostructures.

    PubMed

    Tsoutsou, Dimitra; Aretouli, Kleopatra E; Tsipas, Polychronis; Marquez-Velasco, Jose; Xenogiannopoulou, Evangelia; Kelaidis, Nikolaos; Aminalragia Giamini, Sigiava; Dimoulas, Athanasios

    2016-01-27

    Molecular beam epitaxy of 2D metal TaSe2/2D MoSe2 (HfSe2) semiconductor heterostructures on epi-AlN(0001)/Si(111) substrates is reported. Electron diffraction reveals an in-plane orientation indicative of van der Waals epitaxy, whereas electronic band imaging supported by first-principles calculations and X-ray photoelectron spectroscopy indicate the presence of a dominant trigonal prismatic 2H-TaSe2 phase and a minor contribution from octahedrally coordinated TaSe2, which is present in TaSe2/AlN and TaSe2/HfSe2/AlN but notably absent in the TaSe2/MoSe2/AlN, indicating superior structural quality of TaSe2 grown on MoSe2. Apart from its structural and chemical compatibility with the selenide semiconductors, TaSe2 has a workfunction of 5.5 eV as measured by ultraviolet photoelectron spectroscopy, which matches very well with the semiconductor workfunctions, implying that epi-TaSe2 can be used for low-resistivity contacts to MoSe2 and HfSe2. PMID:26727305

  4. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  5. The NH2D hyperfine structure revealed by astrophysical observations

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Coudert, L. H.; Punanova, A.; Harju, J.; Faure, A.; Roueff, E.; Sipilä, O.; Caselli, P.; Güsten, R.; Pon, A.; Pineda, J. E.

    2016-02-01

    Context. The 111-101 lines of ortho- and para-NH2D (o/p-NH2D) at 86 and 110 GHz, respectively, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure that is due to the nitrogen (14N) nucleus is resolved. To date, this splitting is the only one that is taken into account in the NH2D column density estimates. Aims: We investigate how including the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH2D. Methods: We present 30 m IRAM observations of the above mentioned lines and APEX o/p-NH2D observations of the 101-000 lines at 333 GHz. The hyperfine patterns of the observed lines were calculated taking into account the splitting induced by the D nucleus. The analysis then relies on line lists that either neglect or include the splitting induced by the D nucleus. Results: The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting that is due to the 14N nucleus. We find inconsistencies between the line widths of the 101-000 and 111-101 lines, the latter being larger by a factor of ~1.6 ± 0.3. Such a large difference is unexpected because the two sets of lines probably originate from the same region. We next employed a newly computed line list for the o/p-NH2D transitions where the hyperfine structure induced by both nitrogen and deuterium nuclei was included. With this new line list, the analysis of the previous spectra leads to compatible line widths. Conclusions: Neglecting the hyperfine structure caused by D leads to overestimating the line widths of the o/p-NH2D lines at 3 mm. The error for a cold molecular core is about 50%. This error propagates directly to the column density estimate. We therefore recommend to take the hyperfine splittings caused by both the 14N and D nuclei into account in any analysis that relies on these lines. Based on observations carried out with the IRAM

  6. Deep resistivity cross section of the intraplate Atlas Mountains (NW Africa): New evidence of anomalous mantle and related Quaternary volcanism

    NASA Astrophysics Data System (ADS)

    Anahnah, Farida; Galindo-ZaldíVar, Jesus; Chalouan, Ahmed; Pedrera, Antonio; Ruano, Patricia; Pous, Jaume; Heise, Wiebke; Ruiz-Constan, Ana; Benmakhlouf, Mohamed; López-Garrido, Angel Carlos; Ahmamou, M'fedal; Sanz de Galdeano, Carlos; Arzate, Jorge; Ibarra, Pedro; GonzáLez-Castillo, Lourdes; Bouregba, Naoual; Corbo, Fernando; Asensio, Eva

    2011-10-01

    The Atlas Mountains are characterized by high elevations and Quaternary volcanism. Long period magnetotelluric data acquired along a NNW-SSE transect reveal the presence of a conductive anomalous mantle below the High Atlas. Data dimensionality analyses show a preferent N80°E strike of the deep resistivity structure in agreement with the induction vector alignment at long periods. Accordingly, a 2D inversion of the data set was carried out. Large resistive bodies at the crustal basement most likely correspond to batholiths emplaced in more conductive metapelites. They are covered by outcropping conductive sedimentary detritic and carbonate rocks. Lithospheric thinning producing anomalous mantle and basin development in the Atlas probably started during Triassic-Jurassic rifting. Inversion tectonics since the Oligocene produced low shortening on previous lithospheric weak zones, with thrusting of the Atlas above the stable African plate. Melting at the top of the anomalous mantle is connected with Quaternary basaltic volcanism in the Middle Atlas.

  7. A Hybrid Hydrologic-Geophysical Inverse Technique for the Assessment and Monitoring of Leachates in the Vadose Zone

    SciTech Connect

    ALUMBAUGH,DAVID L.; YEH,JIM; LABRECQUE,DOUG; GLASS,ROBERT J.; BRAINARD,JAMES; RAUTMAN,CHRIS

    1999-06-15

    The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from 3D electric resistivity tomography (ERT) and/or 2D cross borehole ground penetrating radar (XBGPR) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity and dielectric constant of the vadose zone (from the ERT and XBGPR measurements, respectively) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related.

  8. Gap opening in graphene by 1D and 2D periodic corrugations

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan; Bratkovsky, Alexander

    2012-02-01

    Using first-principles methods and symmetry arguments, we show that a graphene monolayer, which is periodically corrugated in one or two direction(s), can be either semimetal or semiconductor, depending on how strong corrugation is or how the initial symmetry is broken. In the case of 1D periodic ripples, a gap at the Dirac points opens up only due to (i) breaking of the inversion symmetry or equivalence between A and B sublattices and/or (ii) merging of two inequivalent Dirac points, D and -D. Since breaking the inversion symmetry has only relatively modest effect, a tangible gap can be mainly induced by mutual annihilation of the Dirac points, which requires large corrugations, close to mechanical breaking point. In contrast to 1D, the 2D ripples can additionally induce a semiconducting gap via mixing of electronic states belonging to two different K, K' valleys. In this case, a gap on the order of 0.5 eV can be opened up at strains safely lower than the graphene failure strain [1]. [4pt] [1] I.I. Naumov, A.M. Bratkovsky, arXiv:1104.0314v1.

  9. Half-metallicity in 2D organometallic honeycomb frameworks

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  10. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  11. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575

  12. Uncertainty quantification of CO₂ saturation estimated from electrical resistance tomography data at the Cranfield site

    DOE PAGES

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore » information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed

  13. Uncertainty quantification of CO₂ saturation estimated from electrical resistance tomography data at the Cranfield site

    SciTech Connect

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the prior information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a

  14. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging.

    PubMed

    Amato, Mariana; Basso, Bruno; Celano, Giuseppe; Bitella, Giovanni; Morelli, Gianfranco; Rossi, Roberta

    2008-10-01

    Traditional methods for studying tree roots are destructive and labor intensive, but available nondestructive techniques are applicable only to small scale studies or are strongly limited by soil conditions and root size. Soil electrical resistivity measured by geoelectrical methods has the potential to detect belowground plant structures, but quantitative relationships of these measurements with root traits have not been assessed. We tested the ability of two-dimensional (2-D) DC resistivity tomography to detect the spatial variability of roots and to quantify their biomass in a tree stand. A high-resolution resistivity tomogram was generated along a 11.75 m transect under an Alnus glutinosa (L.) Gaertn. stand based on an alpha-Wenner configuration with 48 electrodes spaced 0.25 m apart. Data were processed by a 2-D finite-element inversion algorithm, and corrected for soil temperature. Data acquisition, inversion and imaging were completed in the field within 60 min. Root dry mass per unit soil volume (root mass density, RMD) was measured destructively on soil samples collected to a depth of 1.05 m. Soil sand, silt, clay and organic matter contents, electrical conductivity, water content and pH were measured on a subset of samples. The spatial pattern of soil resistivity closely matched the spatial distribution of RMD. Multiple linear regression showed that only RMD and soil water content were related to soil resistivity along the transect. Regression analysis of RMD against soil resistivity revealed a highly significant logistic relationship (n = 97), which was confirmed on a separate dataset (n = 67), showing that soil resistivity was quantitatively related to belowground tree root biomass. This relationship provides a basis for developing quick nondestructive methods for detecting root distribution and quantifying root biomass, as well as for optimizing sampling strategies for studying root-driven phenomena.

  15. Towards a Full Waveform Ambient Noise Inversion

    NASA Astrophysics Data System (ADS)

    Sager, K.; Ermert, L. A.; Boehm, C.; Fichtner, A.

    2015-12-01

    Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green's function between the two receivers. This assumption, however, is only met under specific conditions, for instance, wavefield diffusivity and equipartitioning, zero attenuation, etc., that are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations regarding Earth structure and noise generation. To overcome this limitation we attempt to develop a method that consistently accounts for noise distribution, 3D heterogeneous Earth structure and the full seismic wave propagation physics in order to improve the current resolution of tomographic images of the Earth. As an initial step towards a full waveform ambient noise inversion we develop a preliminary inversion scheme based on a 2D finite-difference code simulating correlation functions and on adjoint techniques. With respect to our final goal, a simultaneous inversion for noise distribution and Earth structure, we address the following two aspects: (1) the capabilities of different misfit functionals to image wave speed anomalies and source distribution and (2) possible source-structure trade-offs, especially to what extent unresolvable structure could be mapped into the inverted noise source distribution and vice versa.

  16. Inverse hydrochemical models of aqueous extracts tests

    SciTech Connect

    Zheng, L.; Samper, J.; Montenegro, L.

    2008-10-10

    Aqueous extract test is a laboratory technique commonly used to measure the amount of soluble salts of a soil sample after adding a known mass of distilled water. Measured aqueous extract data have to be re-interpreted in order to infer porewater chemical composition of the sample because porewater chemistry changes significantly due to dilution and chemical reactions which take place during extraction. Here we present an inverse hydrochemical model to estimate porewater chemical composition from measured water content, aqueous extract, and mineralogical data. The model accounts for acid-base, redox, aqueous complexation, mineral dissolution/precipitation, gas dissolution/ex-solution, cation exchange and surface complexation reactions, of which are assumed to take place at local equilibrium. It has been solved with INVERSE-CORE{sup 2D} and been tested with bentonite samples taken from FEBEX (Full-scale Engineered Barrier EXperiment) in situ test. The inverse model reproduces most of the measured aqueous data except bicarbonate and provides an effective, flexible and comprehensive method to estimate porewater chemical composition of clays. Main uncertainties are related to kinetic calcite dissolution and variations in CO2(g) pressure.

  17. Analysis of noise properties of a class of exact methods of inverting the 2-D exponential radon transform

    SciTech Connect

    Pan, X.; Metz, C.E.

    1995-12-01

    A general approach that the authors proposed elsewhere reveals the intrinsic relationship among methods for inversion of the 2-D exponential Radon transform described by Bellini et al., by Tretiak and Metz, by Hawkins et al., and by Inouye et al. Moreover, the approach provides an infinite class of linear methods for inverting the 2-D exponential Radon transform. In the work reported here, they systematically investigated the noise characteristics of the methods in this class, obtaining analytical forms for the autocovariance and the variance of the images reconstructed by use of various methods. The noise properties of a new quasi-optimal method were then compared theoretically to those of other methods of the class. The analysis demonstrates that the quasi-optimal method achieves smaller global variance in the reconstructed images than do the other methods of the class. Extensive numerical simulation studies confirm this prediction.

  18. Accurate coronary modeling procedure using 2D calibrated projections based on 2D centerline points on a single projection

    NASA Astrophysics Data System (ADS)

    Movassaghi, Babak; Rasche, Volker; Viergever, Max A.; Niessen, Wiro J.

    2004-05-01

    For the diagnosis of ischemic heart disease, accurate quantitative analysis of the coronary arteries is important. In coronary angiography, a number of projections is acquired from which 3D models of the coronaries can be reconstructed. A signifcant limitation of the current 3D modeling procedures is the required user interaction for defining the centerlines of the vessel structures in the 2D projections. Currently, the 3D centerlines of the coronary tree structure are calculated based on the interactively determined centerlines in two projections. For every interactively selected centerline point in a first projection the corresponding point in a second projection has to be determined interactively by the user. The correspondence is obtained based on the epipolar-geometry. In this paper a method is proposed to retrieve all the information required for the modeling procedure, by the interactive determination of the 2D centerline-points in only one projection. For every determined 2D centerline-point the corresponding 3D centerline-point is calculated by the analysis of the 1D gray value functions of the corresponding epipolarlines in space for all available 2D projections. This information is then used to build a 3D representation of the coronary arteries using coronary modeling techniques. The approach is illustrated on the analysis of calibrated phantom and calibrated coronary projection data.

  19. Critical Behavior of a Strongly-Interacting 2D Electron System

    NASA Astrophysics Data System (ADS)

    Sarachik, Myriam P.

    2013-03-01

    Two-dimensional (2D) electron systems that obey Fermi liquid theory at high electron densities are expected to undergo one or more transitions to spatially and/or spin-ordered phases as the density is decreased, ultimately forming a Wigner crystal in the dilute, strongly-interacting limit. Interesting, unexpected behavior is observed with decreasing electron density as the electrons' interactions become increasingly important relative to their kinetic energy: the resistivity undergoes a transition from metallic to insulating temperature dependence; the resistance increases sharply and then saturates abruptly with increasing in-plane magnetic field; a number of experiments indicate that the electrons' effective mass exhibits a substantial increase approaching a finite ``critical'' density. There has been a great deal of debate concerning the underlying physics in these systems, and many have questioned whether the change of the resistivity from metallic to insulating signals a phase transition or a crossover. In this talk, I will report measurements that show that with decreasing density ns, the thermopower S of a low-disorder 2D electron system in silicon exhibits a sharp increase by more than an order of magnitude, tending to a divergence at a finite, disorder-independent density nt, consistent with the critical form (- T / S) ~(ns -nt) x with x = 1 . 0 +/- 0 . 1 (T is the temperature). Unlike the resistivity which may not clearly distinguish between a transition and crossover behavior, the thermopower provides clear evidence that a true phase transition occurs with decreasing density to a new low-density phase. Work supported by DOE Grant DE-FG02-84ER45153, BSF grant 2006375, RFBR, RAS, and the Russian Ministry of Science.

  20. Inversion of triton moments

    NASA Astrophysics Data System (ADS)

    Clare, R. B.; Levinger, J. S.

    1981-02-01

    We use the formalism of hyperspherical harmonics to calculate several moments for the triton photoeffect, for a Volkov spin-independent potential. First, we improve the accuracy of Maleki's calculations of the moments σ2 and σ3 by including more terms in the hyperspherical expansion. We also calculate moments σ0 and σ1 for a Serber mixture. We find reasonable agreement between our moments found by sum rules and those found from the cross sections calculated by Fang et al. and Levinger-Fitzgibbon. We then develop a technique of inversion of a finite number of moments by making the assumption that the cross section can be written as a sum of several Laguerre polynomials multiplied by a decreasing exponential. We test our inversion technique successfully on several model potentials. We then modify it and apply it to the five moments (σ-1 to σ3) for a force without exchange, and find fair agreement with Fang's values of the cross section. Finally, we apply the inversion technique to our three moments (σ-1,σ0,and σ1) for a Serber mixture, and find reasonable agreement with Gorbunov's measurements of the 3He photoeffect. NUCLEAR REACTIONS Triton photoeffects, hyperspherical harmonics, moments of photoeffect, inversion of moments.

  1. Chloride molecular doping technique on 2D materials: WS2 and MoS2.

    PubMed

    Yang, Lingming; Majumdar, Kausik; Liu, Han; Du, Yuchen; Wu, Heng; Hatzistergos, Michael; Hung, P Y; Tieckelmann, Robert; Tsai, Wilman; Hobbs, Chris; Ye, Peide D

    2014-11-12

    Low-resistivity metal-semiconductor (M-S) contact is one of the urgent challenges in the research of 2D transition metal dichalcogenides (TMDs). Here, we report a chloride molecular doping technique which greatly reduces the contact resistance (Rc) in the few-layer WS2 and MoS2. After doping, the Rc of WS2 and MoS2 have been decreased to 0.7 kΩ·μm and 0.5 kΩ·μm, respectively. The significant reduction of the Rc is attributed to the achieved high electron-doping density, thus a significant reduction of Schottky barrier width. As a proof-of-concept, high-performance few-layer WS2 field-effect transistors (FETs) are demonstrated, exhibiting a high drain current of 380 μA/μm, an on/off ratio of 4 × 10(6), and a peak field-effect mobility of 60 cm(2)/(V·s). This doping technique provides a highly viable route to diminish the Rc in TMDs, paving the way for high-performance 2D nanoelectronic devices.

  2. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data

    NASA Astrophysics Data System (ADS)

    Auken, Esben; Christiansen, Anders Vest; Kirkegaard, Casper; Fiandaca, Gianluca; Schamper, Cyril; Behroozmand, Ahmad Ali; Binley, Andrew; Nielsen, Emil; Effersø, Flemming; Christensen, Niels Bøie; Sørensen, Kurt; Foged, Nikolaj; Vignoli, Giulio

    2015-07-01

    We present an overview of a mature, robust and general algorithm providing a single framework for the inversion of most electromagnetic and electrical data types and instrument geometries. The implementation mainly uses a 1D earth formulation for electromagnetics and magnetic resonance sounding (MRS) responses, while the geoelectric responses are both 1D and 2D and the sheet's response models a 3D conductive sheet in a conductive host with an overburden of varying thickness and resistivity. In all cases, the focus is placed on delivering full system forward modelling across all supported types of data. Our implementation is modular, meaning that the bulk of the algorithm is independent of data type, making it easy to add support for new types. Having implemented forward response routines and file I/O for a given data type provides access to a robust and general inversion engine. This engine includes support for mixed data types, arbitrary model parameter constraints, integration of prior information and calculation of both model parameter sensitivity analysis and depth of investigation. We present a review of our implementation and methodology and show four different examples illustrating the versatility of the algorithm. The first example is a laterally constrained joint inversion (LCI) of surface time domain induced polarisation (TDIP) data and borehole TDIP data. The second example shows a spatially constrained inversion (SCI) of airborne transient electromagnetic (AEM) data. The third example is an inversion and sensitivity analysis of MRS data, where the electrical structure is constrained with AEM data. The fourth example is an inversion of AEM data, where the model is described by a 3D sheet in a layered conductive host.

  3. Performance of Replica-Exchange Wang-Landau Sampling for the 2D Ising Model: A Brief Survey

    SciTech Connect

    Zhao, Yiwei; Cheung, Siu Wun; Li, Ying Wai; Eisenbach, Markus

    2014-01-01

    We report a brief performance study of the replica-exchange Wang-Landau algorithm, a recently proposed parallel realization of Wang-Landau sampling, using the 2D Ising model as a test case. The simulation time is found to scale inversely with the square root of the number of subwindows (and thus number of processors) used to span the global parameter space. We also investigate the time profiles for random walkers in dierent subwindows to complete iterations, which will aid the development of and adaptive load-balancing scheme.

  4. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  5. Continuum Nonsimple Loops and 2D Critical Percolation

    NASA Astrophysics Data System (ADS)

    Camia, Federico; Newman, Charles M.

    2004-08-01

    Substantial progress has been made in recent years on the 2D critical percolation scaling limit and its conformal invariance properties. In particular, chordal SLE 6(the Stochastic Loewner Evolution with parameter κ=6) was, in the work of Schramm and of Smirnov, identified as the scaling limit of the critical percolation "exploration process." In this paper we use that and other results to construct what we argue is the fullscaling limit of the collection of allclosed contours surrounding the critical percolation clusters on the 2D triangular lattice. This random process or gas of continuum nonsimple loops in Bbb R2is constructed inductively by repeated use of chordal SLE 6. These loops do not cross but do touch each other—indeed, any two loops are connected by a finite "path" of touching loops.

  6. Functionalized 2D atomic sheets with new properties

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Zhou, Jian; Wang, Qian; Jena, Puru

    2011-03-01

    Due to the unique atomic structure and novel physical and chemical properties, graphene has sparked tremendous theoretical and experimental efforts to explore other 2D atomic sheets like B-N, Al-N, and Zn-O, where the two components offer much more complexities and flexibilities in surface modifications. Using First principles calculations based on density functional theory, we have systematically studied the semi- and fully-decorated 2D sheets with H and F and Cl. We have found that the electronic structures and magnetic properties can be effectively tuned, and the system can be a direct or an indirect semiconductor or even a half-metal, and the system can be made ferromagnetic, antiferromagnetic, or magnetically degenerate depending upon how the surface is functionalized. Discussions are made for the possible device applications.

  7. A Better 2-D Mechanical Energy Conservation Experiment

    NASA Astrophysics Data System (ADS)

    Paesler, Michael

    2012-02-01

    A variety of simple classical mechanics energy conservation experiments are used in teaching laboratories. Typical one-dimensional (1-D) setups may involve falling balls or oscillating springs. Many of these can be quite satisfying in that students can confirm—within a few percent—that mechanical energy is conserved. Students generally have little trouble identifying discrepancies such as the loss of a few percent of the gravitational potential energy due to air friction encountered by a falling ball. Two-dimensional (2-D) systems can require more sophisticated analysis for higher level laboratories, but such systems often incorporate complicating components that can make the exercise academically incomplete and experimentally less accurate. The following describes a simple 2-D energy conservation experiment based on the popular "Newton's Cradle" toy that allows students to account for nearly all of the mechanical energy in the system in an academically complete analysis.

  8. Critical Dynamics in Quenched 2D Atomic Gases

    NASA Astrophysics Data System (ADS)

    Larcher, F.; Dalfovo, F.; Proukakis, N. P.

    2016-05-01

    Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.

  9. Defect Dynamics in Active 2D Nematic Liquid Crystals

    NASA Astrophysics Data System (