Holder for rotating glass body
Kolleck, Floyd W.
1978-04-04
A device is provided for holding and centering a rotating glass body such as a rod or tube. The device includes a tubular tip holder which may be held in a lathe chuck. The device can utilize a variety of centering tips each adapted for a particular configuration, such as a glass O-ring joint or semi-ball joint.
Mass loss in 2D rotating stellar models
Lovekin, Caterine; Deupree, Bob
2010-10-05
Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.
Dynamic sector processing using 2D assignment for rotating radars
NASA Astrophysics Data System (ADS)
Habtemariam, Biruk K.; Tharmarasa, R.; Pelletier, M.; Kirubarajan, T.
2011-09-01
Electronically scanned array radars as well as mechanically steered rotating antennas return measurements with different time stamps during the same scan while sweeping form one region to another. Data association algorithms process the measurements at the end of the scan in order to satisfy the common one measurement per track assumption. Data processing at the end of a full scan resulted in delayed target state update. This issue becomes more apparent while tracking fast moving targets with low scan rate sensors. In this paper, we present new dynamic sector processing algorithm using 2D assignment for continuously scanning radars. A complete scan can be divided into sectors, which could be as small as a single detection, depending on the scanning rate and sparsity of targets. Data association followed by filtering and target state update is done dynamically while sweeping from one end to another. Along with the benefit of immediate track updates, continuous tracking results in challenges such as multiple targets spanning multiple sectors and targets crossing consecutive sectors. Also, associations performed in the current sector may require changes in association done in previous sectors. Such difficulties are resolved by the proposed 2D assignment algorithm that implements an incremental Hungarian assignment technique. The algorithm offers flexibility with respect to assignment variables for fusing of measurements received in consecutive sectors. Furthermore the proposed technique can be extended to multiframe assignment for jointly processing data from multiple scanning radars. Experimental results based on rotating radars are presented.
NASA Astrophysics Data System (ADS)
Aizenberg, Evgeni; Bigio, Irving J.; Rodriguez-Diaz, Eladio
2012-03-01
The Fourier descriptors paradigm is a well-established approach for affine-invariant characterization of shape contours. In the work presented here, we extend this method to images, and obtain a 2D Fourier representation that is invariant to image rotation. The proposed technique retains phase uniqueness, and therefore structural image information is not lost. Rotation-invariant phase coefficients were used to train a single multi-valued neuron (MVN) to recognize satellite and human face images rotated by a wide range of angles. Experiments yielded 100% and 96.43% classification rate for each data set, respectively. Recognition performance was additionally evaluated under effects of lossy JPEG compression and additive Gaussian noise. Preliminary results show that the derived rotation-invariant features combined with the MVN provide a promising scheme for efficient recognition of rotated images.
High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display.
Chang, Yu-Cheng; Jen, Tai-Hsiang; Ting, Chih-Hung; Huang, Yi-Pai
2014-02-10
A 2D/3D switchable and rotatable autostereoscopic display using a high-resistance liquid-crystal (Hi-R LC) lens array is investigated in this paper. Using high-resistance layers in an LC cell, a gradient electric-field distribution can be formed, which can provide a better lens-like shape of the refractive-index distribution. The advantages of the Hi-R LC lens array are its 2D/3D switchability, rotatability (in the horizontal and vertical directions), low driving voltage (~2 volts) and fast response (~0.6 second). In addition, the Hi-R LC lens array requires only a very simple fabrication process. PMID:24663563
Latent heat induced rotation limited aggregation in 2D ice nanocrystals
NASA Astrophysics Data System (ADS)
Bampoulis, Pantelis; Siekman, Martin H.; Kooij, E. Stefan; Lohse, Detlef; Zandvliet, Harold J. W.; Poelsema, Bene
2015-07-01
The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma.
Latent heat induced rotation limited aggregation in 2D ice nanocrystals.
Bampoulis, Pantelis; Siekman, Martin H; Kooij, E Stefan; Lohse, Detlef; Zandvliet, Harold J W; Poelsema, Bene
2015-07-21
The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma. PMID:26203037
Wang, Yuanzheng; Li, Guangsen; Sun, Yanhong; Shan, Guoxin; Xu, Rui; Guo, Lijuan
2016-08-01
This study assessed whether 2-D speckle tracking echocardiography (STE) derived from left ventricular (LV) strain and rotation is capable of detecting LV dysfunction associated with alcoholic cardiomyopathy. Ninety-two male chronic alcoholic patients were grouped by alcohol intake amount and duration: mild (n = 30; >90 mg ethanol daily, 3-5 d per wk for 5-8 y); moderate (n = 30; >90-150 mg ethanol daily, 3-5 d per wk for 9-20 y); and severe (n = 32; >150 mg ethanol daily, 6-7 d per wk for >10 y). Thirty non-drinkers were recruited as healthy controls. Rotation and twist values were lower in the severe group compared with the other groups (p < 0.05). The moderate and severe alcohol groups demonstrated lower longitudinal, circumferential and radial strain values and early to late filling (E/A) ratios compared with the mild group and non-drinkers (all p < 0.05). 2-D STE-derived strain and rotation are reliable echocardiographic markers for detecting left ventricular dysfunction in patients at risk of developing alcoholic cardiomyopathy. PMID:27156014
Pulse shape effect on rotational excitation and 2-D alignment alternation by elliptic laser pulses
NASA Astrophysics Data System (ADS)
Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod
2016-04-01
We examine theoretically the time-evolution of NAREX (non-adiabatic rotational excitation) and molecular 2-D alignment (2DA) interacting with a pair of elliptically polarized laser pulses. The pulse shapes taken are half-cycle pulse (HCP) and square pulse (SQP). By choosing the proper value of elliptically polarized field parameters, we demonstrate that efficient field-free 2DA alignment can be achieved. It is also shown that NAREX can be controlled by various laser parameters, out of which pulse shape plays the most significant role. The effect of pulse width along with elliptic parameter on probabilities of rotational states is also under concern. The delay time between the two pulses decides the maximum in 2DAs.
NASA Astrophysics Data System (ADS)
Eckstein, Johannes; Lei, Wang; Becker, Jonathan; Jun, Gao; Ott, Peter
2006-04-01
In this paper a distance measurement sensor is introduced, equipped with two integrated optical systems, the first one for rotationally symmetric triangulation and the second one for imaging the object while using only one 2D detector for both purposes. Rotationally symmetric triangulation, introduced in [1], eliminates some disadvantages of classical triangulation sensors, especially at steps or strong curvatures of the object, wherefore the measurement result depends not any longer on the angular orientation of the sensor. This is achieved by imaging the scattered light from an illuminated object point to a centered and sharp ring on a low cost area detector. The diameter of the ring is proportional to the distance of the object. The optical system consists of two off axis aspheric reflecting surfaces. This system allows for integrating a second optical system in order to capture images of the object at the same 2D detector. A mock-up was realized for the first time which consists of the reflecting optics for triangulation manufactured by diamond turning. A commercially available appropriate small lens system for imaging was mechanically integrated in the reflecting optics. Alternatively, some designs of retrofocus lens system for larger field of views were investigated. The optical designs allow overlying the image of the object and the ring for distance measurement in the same plane. In this plane a CCD detector is mounted, centered to the optical axis for both channels. A fast algorithm for the evaluation of the ring is implemented. The characteristics, i.e. the ring diameter versus object distance shows very linear behavior. For illumination of the object point for distance measurement, the beam of a red laser diode system is reflected by a wavelength bandpath filter on the axis of the optical system in. Additionally, the surface of the object is illuminated by LED's in the green spectrum. The LED's are located on the outside rim of the reflecting optics. The
An algorithm for computing the 2D structure of fast rotating stars
NASA Astrophysics Data System (ADS)
Rieutord, Michel; Espinosa Lara, Francisco; Putigny, Bertrand
2016-08-01
Stars may be understood as self-gravitating masses of a compressible fluid whose radiative cooling is compensated by nuclear reactions or gravitational contraction. The understanding of their time evolution requires the use of detailed models that account for a complex microphysics including that of opacities, equation of state and nuclear reactions. The present stellar models are essentially one-dimensional, namely spherically symmetric. However, the interpretation of recent data like the surface abundances of elements or the distribution of internal rotation have reached the limits of validity of one-dimensional models because of their very simplified representation of large-scale fluid flows. In this article, we describe the ESTER code, which is the first code able to compute in a consistent way a two-dimensional model of a fast rotating star including its large-scale flows. Compared to classical 1D stellar evolution codes, many numerical innovations have been introduced to deal with this complex problem. First, the spectral discretization based on spherical harmonics and Chebyshev polynomials is used to represent the 2D axisymmetric fields. A nonlinear mapping maps the spheroidal star and allows a smooth spectral representation of the fields. The properties of Picard and Newton iterations for solving the nonlinear partial differential equations of the problem are discussed. It turns out that the Picard scheme is efficient on the computation of the simple polytropic stars, but Newton algorithm is unsurpassed when stellar models include complex microphysics. Finally, we discuss the numerical efficiency of our solver of Newton iterations. This linear solver combines the iterative Conjugate Gradient Squared algorithm together with an LU-factorization serving as a preconditioner of the Jacobian matrix.
Katoh, Marcus Opitz, Armin; Minko, Peter; Massmann, Alexander; Berlich, Joachim; Buecker, Arno
2011-06-15
Purpose: To investigate the value of rotational digital subtraction angiography (rDSA) for evaluation of peripheral and visceral artery stenoses compared to conventional digital subtraction angiography (cDSA). Methods: A phantom study was performed comparing the radiation dose of cDSA with two projections and rDSA by means of the 2D Dynavision technique (Siemens Medical Solutions, Forchheim, Germany). Subsequently, 33 consecutive patients (18 women, 15 men; mean {+-} SD age 67 {+-} 15 years) were examined by both techniques. In total, 63 vessel segments were analyzed by two observers with respect to stenoses, image contrast, and vessel sharpness. Results: Radiation dose was significantly lower with rDSA. cDSA and rDSA revealed 21 and 24 flow-relevant stenotic lesions and vessel occlusions (70-100%), respectively. The same stenosis grade was assessed in 45 segments. By means of rDSA, 10 lesions were judged to have a higher and 8 lesions a lower stenosis grade compared to cDSA. rDSA yielded additive information regarding the vessel anatomy and pathology in 29 segments. However, a tendency toward better image quality and sharper vessel visualization was seen with cDSA. Conclusion: rDSA allows for multiprojection assessment of peripheral and visceral arteries and provides additional clinically relevant information after a single bolus of contrast medium. At the same time, radiation dose can be significantly reduced compared to cDSA.
Characterizing the movement of grains in a 2D rotating drum with imposed vibrations
NASA Astrophysics Data System (ADS)
Swisher, Nora; Utter, Brian
2012-02-01
We study particle trajectories and surface behavior of photoelastic grains in a 2D circular rotating drum subjected to imposed vertical vibrations. Granular materials are ubiquitous, from industrial processing and pharmaceutical powder mixing to avalanches and sinkholes, yet general equations of flow are not known for these materials. For granular materials, flow is characterized by sudden avalanches, large shear gradients, and history dependence and these characteristics make it difficult to form general equations of flow. This jamming transition is general, occurring in foams, emulsions, and traffic, and can vary significantly with vibration (the ``granular temperature'').To quantitatively measure the flow, jamming, and mixing properties of the grains, we analyze images to determine each particle's position and velocity for each frame. External vibration leads to increased compaction of the grains, larger rearrangements, and a narrower shear band. Particle tracking allows us to closely analyze the velocity profiles, trajectories of individual grains, and separation and diffusion of originally neighboring grains. We will present results on the stability of the pile as well as the effects on mixing as external vibration is varied.
Quantum (in)stability of 2D charged dilaton black holes and 3D rotating black holes
NASA Astrophysics Data System (ADS)
Nojiri, Shin'ichi; Odintsov, Sergei D.
1999-02-01
The quantum properties of charged black holes (BHs) in two-dimensional (2D) dilaton-Maxwell gravity (spontaneously compactified from heterotic string) with N dilaton coupled scalars are studied. We first investigate 2D BHs found by McGuigan, Nappi, and Yost. Kaluza-Klein reduction of 3D gravity with minimal scalars leads also to 2D dilaton-Maxwell gravity with dilaton coupled scalars and the rotating BH solution found by Bañados, Teitelboim, and Zanelli, which can be also described by 2D charged dilatonic BHs. Evaluating the one-loop effective action for dilaton coupled scalars in large N (and the s-wave approximation for the Bañados-Teitelboim-Zanelli case), we show that quantum-corrected BHs may evaporate or else antievaporate similarly to 4D Nariai BHs as is observed by Bousso and Hawking. Higher modes may cause the disintegration of BHs in accordance with recent observation by Bousso.
The effect of initial rotation in the N(2D) + H2 → NH(3Σ-) + H reaction
NASA Astrophysics Data System (ADS)
Karabulut, Ezman; Aslan, Emine; Kłos, Jacek; Bulut, Niyazi
2014-09-01
In this work, total reaction probabilities, integral cross sections and rate constants were calculated for selected initial rotational states of the H2 molecule in the N(2D) + H2 reaction. Time dependent wave packet method combined with Centrifugal Sudden approximation was used and followed by a flux analysis on recently developed NH2(12A‧‧) global potential energy surface. We also investigated the effect of the projection quantum number of the initial rotational state on the reactivity. Total reaction probabilities were calculated for all values of the total angular momentum, J, in the range from 0 to 40. The effects of the initial rotational excitation of the H2 reactant and of its projection quantum number on the behavior of rate constants were studied. The reaction rate constants are compared with previously published experimental and theoretical results. It was found that the initial rotation and its projection have a big effect on the integral cross sections.
NASA Astrophysics Data System (ADS)
Kurobori, T.; Maruyama, Y.; Miyamoto, Y.; Sasaki, T.; Nanto, H.
2015-04-01
Novel disk-type X-ray two- and three-dimensional (2D, 3D) dose distributions have been developed using atomic-scale defects as minimum luminescent units, such as radiation- induced silver (Ag)-related species in a Ag-activated phosphate glass. This luminescent detector is based on the radiophotoluminescence(RPL) phenomenon. Accurate accumulated dose distributions with a high spatial resolution on the order of microns over large areas, a wide dynamic range covering three orders of magnitude and a non-destructive readout were successfully demonstrated for the first time by using a disk-type glass plate with a 100-mm diameter and a 1-mm thickness. In addition, the combination of a confocal optical detection system with a transparent glass detector enables 3D reconstruction by piling up each dose image at different depths within the material.
A journey from order to disorder — Atom by atom transformation from graphene to a 2D carbon glass
NASA Astrophysics Data System (ADS)
Eder, Franz R.; Kotakoski, Jani; Kaiser, Ute; Meyer, Jannik C.
2014-02-01
One of the most interesting questions in solid state theory is the structure of glass, which has eluded researchers since the early 1900's. Since then, two competing models, the random network theory and the crystallite theory, have both gathered experimental support. Here, we present a direct, atomic-level structural analysis during a crystal-to-glass transformation, including all intermediate stages. We introduce disorder on a 2D crystal, graphene, gradually, utilizing the electron beam of a transmission electron microscope, which allows us to capture the atomic structure at each step. The change from a crystal to a glass happens suddenly, and at a surprisingly early stage. Right after the transition, the disorder manifests as a vitreous network separating individual crystallites, similar to the modern version of the crystallite theory. However, upon increasing disorder, the vitreous areas grow on the expense of the crystallites and the structure turns into a random network. Thereby, our results show that, at least in the case of a 2D structure, both of the models can be correct, and can even describe the same material at different degrees of disorder.
NASA Astrophysics Data System (ADS)
Muller, David
2014-03-01
Even though glasses are almost ubiquitous--in our windows, on our iPhones, even on our faces--they are also mysterious. Because glasses are notoriously difficult to study, basic questions like: ``How are the atoms arranged? Where and how do glasses break?'' are still under contention. We use aberration corrected transmission electron microscopy (TEM) to image the atoms in a new two-dimensional phase of silica glass - freestanding it becomes the world's thinnest pane of glass at only 3-atoms thick, and take a unique look into these questions. Using atom-by-atom imaging and spectroscopy, we are able to reconstruct the full structure and bonding of this 2D glass and identify it as a bi-tetrahedral layer of SiO2. Our images also strikingly resemble Zachariasen's original cartoon models of glasses, drawn in 1932. As such, our work realizes an 80-year-old vision for easily understandable glassy systems and introduces promising methods to test theoretical predictions against experimental data. We image atoms in the disordered solid and track their motions in response to local strain. We directly obtain ring statistics and pair distribution functions that span short-, medium-, and long-range order, and test these against long-standing theoretical predictions of glass structure and dynamics. We use the electron beam to excite atomic rearrangements, producing surprisingly rich and beautiful videos of how a glass bends and breaks, as well as the exchange of atoms at a solid/liquid interface. Detailed analyses of these videos reveal a complex dance of elastic and plastic deformations, phase transitions, and their interplay. These examples illustrate the wide-ranging and fundamental materials physics that can now be studied at atomic-resolution via transmission electron microscopy of two-dimensional glasses. Work in collaboration with: S. Kurasch, U. Kaiser, R. Hovden, Q. Mao, J. Kotakoski, J. S. Alden, A. Shekhawat, A. A. Alemi, J. P. Sethna, P. L. McEuen, A.V. Krasheninnikov
Intuitive understanding of T → 0 behavior of 2d spin glasses via renormalization group analysis
NASA Astrophysics Data System (ADS)
Hartmann, A. K.
2012-07-01
Commentary on 'The nature of the different zero-temperature phases in discrete two-dimensional spin glasses: entropy, universality, chaos and cascades in the renormalization group flow', by Thomas Jörg and Florent Krzakala, 2012 J. Stat. Mech. L01001.
Analysis of High-Speed Rotating Flow in 2D Polar (r - θ)Coordinate
NASA Astrophysics Data System (ADS)
Pradhan, S.
2016-03-01
The generalized analytical model for the radial boundary layer in a high-speed rotating cylinder is formulated for studying the gas flow field due to insertion of mass, momentum and energy into the rotating cylinder in the polar (r - θ) plane. The analytical solution includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in a polar (r - θ) plane. The linearization approximation (Wood & Morton, J. Fluid Mech-1980; Pradhan & Kumaran, J. Fluid Mech-2011; Kumaran & Pradhan, J. Fluid Mech-2014) is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional assumptions in the analytical model include constant temperature in the base state (isothermal condition), and high Reynolds number, but there is no limitation on the stratification parameter. In this limit, the gas flow is restricted to a boundary layer of thickness (Re (1 / 3) R) at the wall of the cylinder. Here, the stratification parameter A = √ ((mΩ 2R2) / (2kB T)) . This parameter Ais the ratio of the peripheral speed, ΩR , to the most probable molecular speed, √(2 k_B T/m), the Reynolds number Re = (ρ _w ΩR2 / μ) , where m is the molecular mass, Ω and R are the rotational speed and radius of the cylinder, k_B is the Boltzmann constant, T is the gas temperature, ρ_w is the gas density at wall, and μ is the gas viscosity. The analytical solutions are then compared with direct simulation Monte Carlo (DSMC) simulations.
Multilayered Glass Fibre-reinforced Composites In Rotational Moulding
NASA Astrophysics Data System (ADS)
Chang, W. C.; Harkin-Jones, E.; Kearns, M.; McCourt, M.
2011-05-01
The potential of multiple layer fibre-reinforced mouldings is of growing interest to the rotational moulding industry because of their cost/performance ratio. The particular problem that arises when using reinforcements in this process relate to the fact that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this study, short glass fibres were incorporated and distributed into a polymer matrix to produce fibre-reinforced polymer composites using the rotational moulding process and characterised in terms of morphology and mechanical properties.
NASA Astrophysics Data System (ADS)
Karthick Kumar, S. K.; Tamimi, A.; Fayer, M. D.
2012-11-01
Multidimensional visible spectroscopy using pulse shaping to produce pulses with stable controllable phases and delays has emerged as an elegant tool to acquire electronic spectra faster and with greatly reduced instrumental and data processing errors. Recent migration of this approach using acousto-optic modulator (AOM) pulse shaping to the mid-infrared region has proved useful for acquiring two dimensional infrared (2D IR) vibrational echo spectra. The measurement of spectral diffusion in 2D IR experiments hinges on obtaining accurate 2D line shapes. To date, pulse shaping 2D IR has not been used to study the time-dependent spectral diffusion of a vibrational chromophore. Here we compare the spectral diffusion data obtained from a standard non-collinear 2D IR spectrometer using delay lines to the data obtained from an AOM pulse shaper based 2D IR spectrometer. The pulse shaping experiments are performed in stationary, partially rotating, and fully rotating reference frames and are the first in the infrared to produce 2D spectra collected in a fully rotating frame using a phase controlled pulse sequence. Rotating frame experiments provide a dramatic reduction in the number of time points that must be measured to obtain a 2D IR spectrum, with the fully rotating frame giving the greatest reduction. Experiments were conducted on the transition metal carbonyl complex tricarbonylchloro(1,10-phenanthroline)rhenium(I) in chloroform. The time dependent data obtained from the different techniques and with different reference frames are shown to be in agreement.
Gradient ROtating Outer Volume Excitation (GROOVE): A Novel Method for Single-Shot 2-D OVS
Powell, Nathaniel J.; Jang, Albert; Park, Jang-Yeon; Valette, Julien; Garwood, Michael; Marjańska, Małgorzata
2014-01-01
Purpose A new outer volume suppression (OVS) technique is introduced that uses a single pulse and rotating gradients to accomplish frequency-swept excitation. This new technique, which is called Gradient ROtating Outer Volume Excitation (GROOVE), produces a circular or elliptical suppression band rather than suppressing the entire outer volume. Methods Theoretical and k-space descriptions of GROOVE are provided. The properties of GROOVE were investigated with simulations, phantom, and human experiments performed using a 4 T horizontal bore magnet equipped with a TEM coil. Results Similar suppression performance was obtained in phantom and human brain using GROOVE with circular and elliptical shapes. Simulations indicate that GROOVE requires less SAR and time than traditional OVS schemes, but traditional schemes provide a sharper transition zone and less residual signal. Conclusion GROOVE represents a new way of performing OVS in which spins are excited temporally in space on a trajectory which can be tailored to fit the shape of the suppression region. In addition, GROOVE is capable of suppressing tailored regions of space with more flexibility and in a shorter period of time than conventional methods. GROOVE provides a fast, low SAR alternative to conventional OVS methods in some applications (e.g., scalp suppression). PMID:24478130
The vibration-rotation-tunneling levels of N2-H2O and N2-D2O
NASA Astrophysics Data System (ADS)
Wang, Xiao-Gang; Carrington, Tucker
2015-07-01
In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.
The vibration-rotation-tunneling levels of N2-H2O and N2-D2O.
Wang, Xiao-Gang; Carrington, Tucker
2015-07-14
In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments. PMID:26178101
Probing ultrafast valley dynamics in 2D semiconductors via time-resolved Kerr rotation
NASA Astrophysics Data System (ADS)
Huang, Jiani; Hoang, Thang; Ming, Tian; Kong, Jing; Mikkelsen, Maiken
Monolayer transition metal dichalcogenides (TMDCs) offer a tantalizing platform for controlling spin and valley degrees of freedom, enabling future optoelectronic devices with enhanced and novel functionalities. Here, we experimentally probe the valley dynamics in monolayer MoS2 and WSe2 using time-resolved Kerr rotation (TRKR) from T = 10 K to 300 K . This pump-probe technique offers sub-picosecond temporal resolution, providing insight into ultrafast valley dynamics inaccessible by polarized and time-resolved photoluminescence spectroscopy. Bi-exponential decay dynamics were observed for both materials at low temperatures. Strong long-range exchange interactions between the K valleys led to a rapid exciton valley depolarization time (< 10 ps), while the valley polarization of the trion and defect states decays within several tens of ps. Moreover, spatial distributions of the TRKR amplitude across monolayer flakes indicated weaker valley polarizations near the edges of MoS2, which is likely associated with the Mo- or S-zigzag terminations at the boundaries. These temporal and spatial TRKR measurements reveal insight into the complex dynamics of valley excitonic states in monolayer TMDCs.
NASA Astrophysics Data System (ADS)
Ferré, J.; Rajchenbach, J.; Maletta, H.
1981-03-01
We report here on a detailed study of the relaxation of the magnetization in an external field and of the remanent magnetization for the insulating spin glass: Eu0.4Sr0.6S. The Faraday rotation has allowed us to extend previous experiments near and just above the spin glass temperature Tfo = 1.55 K on a large time scale (10-6
Shakeshaft, Nicholas G; Rimfeld, Kaili; Schofield, Kerry L; Selzam, Saskia; Malanchini, Margherita; Rodic, Maja; Kovas, Yulia; Plomin, Robert
2016-01-01
Spatial abilities-defined broadly as the capacity to manipulate mental representations of objects and the relations between them-have been studied widely, but with little agreement reached concerning their nature or structure. Two major putative spatial abilities are "mental rotation" (rotating mental models) and "visualisation" (complex manipulations, such as identifying objects from incomplete information), but inconsistent findings have been presented regarding their relationship to one another. Similarly inconsistent findings have been reported for the relationship between two- and three-dimensional stimuli. Behavioural genetic methods offer a largely untapped means to investigate such relationships. 1,265 twin pairs from the Twins Early Development Study completed the novel "Bricks" test battery, designed to tap these abilities in isolation. The results suggest substantial genetic influence unique to spatial ability as a whole, but indicate that dissociations between the more specific constructs (rotation and visualisation, in 2D and 3D) disappear when tested under identical conditions: they are highly correlated phenotypically, perfectly correlated genetically (indicating that the same genetic influences underpin performance), and are related similarly to other abilities. This has important implications for the structure of spatial ability, suggesting that the proliferation of apparent sub-domains may sometimes reflect idiosyncratic tasks rather than meaningful dissociations. PMID:27476554
NASA Astrophysics Data System (ADS)
Choquard, Ph.; Vuffray, M.
2014-10-01
The coupling between dilatation and vorticity, two coexisting and fundamental processes in fluid dynamics (Wu et al., 2006, pp. 3, 6) is investigated here, in the simplest cases of inviscid 2D isotropic Burgers and pressureless Euler-Coriolis fluids respectively modeled by single vortices confined in compressible, local, inertial and global, rotating, environments. The field equations are established, inductively, starting from the equations of the characteristics solved with an initial Helmholtz decomposition of the velocity fields namely a vorticity free and a divergence free part (Wu et al., 2006, Sects. 2.3.2, 2.3.3) and, deductively, by means of a canonical Hamiltonian Clebsch like formalism (Clebsch, 1857, 1859), implying two pairs of conjugate variables. Two vector valued fields are constants of the motion: the velocity field in the Burgers case and the momentum field per unit mass in the Euler-Coriolis one. Taking advantage of this property, a class of solutions for the mass densities of the fluids is given by the Jacobian of their sum with respect to the actual coordinates. Implementation of the isotropy hypothesis entails a radial dependence of the velocity potentials and of the stream functions associated to the compressible and to the rotational part of the fluids and results in the cancellation of the dilatation-rotational cross terms in the Jacobian. A simple expression is obtained for all the radially symmetric Jacobians occurring in the theory. Representative examples of regular and singular solutions are shown and the competition between dilatation and vorticity is illustrated. Inspired by thermodynamical, mean field theoretical analogies, a genuine variational formula is proposed which yields unique measure solutions for the radially symmetric fluid densities investigated. We stress that this variational formula, unlike the Hopf-Lax formula, enables us to treat systems which are both compressible and rotational. Moreover in the one
Maestro, Armando; Deshmukh, Omkar S; Mugele, Frieder; Langevin, Dominique
2015-06-16
We address the rheology of assemblies of surfactant-decorated silica nanoparticles irreversibly adsorbed at the gas/liquid interface. Positively charged surfactant molecules (such as CTAB) bind to silica nanoparticle surfaces, and the resulting particle-surfactant complexes adsorb at gas/liquid interfaces. The surfactant molecules control the wettability of such decorated nanoparticles and their adsorption. The interparticle forces can be tuned by changing the surfactant concentration Cs. Increasing Cs, in addition to a decrease of the particles wettability, leads to an increase of the area fraction of particles at the interface. Oscillatory shear measurements (strain- and frequency-sweep) have been performed. Here, we explore the effect of the surfactant concentration Cs. At high enough Cs, the interface is highly packed, and an overall solidlike response is observed, with 2D glass properties. PMID:25973738
Nihill, Kevin J; Hund, Zachary M; Muzas, Alberto; Díaz, Cristina; Del Cueto, Marcos; Frankcombe, Terry; Plymale, Noah T; Lewis, Nathan S; Martín, Fernando; Sibener, S J
2016-08-28
Fundamental details concerning the interaction between H2 and CH3-Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H2 and D2 from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H2 compared to the strong RID features observed for D2 over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuation of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH3-Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H2 and D2 have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H2 (D2) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H2(D2)/CH3-Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H2 with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems. PMID:27586939
Shakeshaft, Nicholas G.; Rimfeld, Kaili; Schofield, Kerry L.; Selzam, Saskia; Malanchini, Margherita; Rodic, Maja; Kovas, Yulia; Plomin, Robert
2016-01-01
Spatial abilities–defined broadly as the capacity to manipulate mental representations of objects and the relations between them–have been studied widely, but with little agreement reached concerning their nature or structure. Two major putative spatial abilities are “mental rotation” (rotating mental models) and “visualisation” (complex manipulations, such as identifying objects from incomplete information), but inconsistent findings have been presented regarding their relationship to one another. Similarly inconsistent findings have been reported for the relationship between two- and three-dimensional stimuli. Behavioural genetic methods offer a largely untapped means to investigate such relationships. 1,265 twin pairs from the Twins Early Development Study completed the novel “Bricks” test battery, designed to tap these abilities in isolation. The results suggest substantial genetic influence unique to spatial ability as a whole, but indicate that dissociations between the more specific constructs (rotation and visualisation, in 2D and 3D) disappear when tested under identical conditions: they are highly correlated phenotypically, perfectly correlated genetically (indicating that the same genetic influences underpin performance), and are related similarly to other abilities. This has important implications for the structure of spatial ability, suggesting that the proliferation of apparent sub-domains may sometimes reflect idiosyncratic tasks rather than meaningful dissociations. PMID:27476554
Karthick Kumar, S K; Tamimi, A; Fayer, M D
2012-11-14
Multidimensional visible spectroscopy using pulse shaping to produce pulses with stable controllable phases and delays has emerged as an elegant tool to acquire electronic spectra faster and with greatly reduced instrumental and data processing errors. Recent migration of this approach using acousto-optic modulator (AOM) pulse shaping to the mid-infrared region has proved useful for acquiring two dimensional infrared (2D IR) vibrational echo spectra. The measurement of spectral diffusion in 2D IR experiments hinges on obtaining accurate 2D line shapes. To date, pulse shaping 2D IR has not been used to study the time-dependent spectral diffusion of a vibrational chromophore. Here we compare the spectral diffusion data obtained from a standard non-collinear 2D IR spectrometer using delay lines to the data obtained from an AOM pulse shaper based 2D IR spectrometer. The pulse shaping experiments are performed in stationary, partially rotating, and fully rotating reference frames and are the first in the infrared to produce 2D spectra collected in a fully rotating frame using a phase controlled pulse sequence. Rotating frame experiments provide a dramatic reduction in the number of time points that must be measured to obtain a 2D IR spectrum, with the fully rotating frame giving the greatest reduction. Experiments were conducted on the transition metal carbonyl complex tricarbonylchloro(1,10-phenanthroline)rhenium(I) in chloroform. The time dependent data obtained from the different techniques and with different reference frames are shown to be in agreement. PMID:23163363
A novel approach of computer-aided detection of focal ground-glass opacity in 2D lung CT images
NASA Astrophysics Data System (ADS)
Li, Song; Liu, Xiabi; Yang, Ali; Pang, Kunpeng; Zhou, Chunwu; Zhao, Xinming; Zhao, Yanfeng
2013-02-01
Focal Ground-Glass Opacity (fGGO) plays an important role in diagnose of lung cancers. This paper proposes a novel approach for detecting fGGOs in 2D lung CT images. The approach consists of two stages: extracting regions of interests (ROIs) and labeling each ROI as fGGO or non-fGGO. In the first stage, we use the techniques of Otsu thresholding and mathematical morphology to segment lung parenchyma from lung CT images and extract ROIs in lung parenchyma. In the second stage, a Bayesian classifier is constructed based on the Gaussian mixture Modeling (GMM) of the distribution of visual features of fGGOs to fulfill ROI identification. The parameters in the classifier are estimated from training data by the discriminative learning method of Max-Min posterior Pseudo-probabilities (MMP). A genetic algorithm is further developed to select compact and discriminative features for the classifier. We evaluated the proposed fGGO detection approach through 5-fold cross-validation experiments on a set of 69 lung CT scans that contain 70 fGGOs. The proposed approach achieves the detection sensitivity of 85.7% at the false positive rate of 2.5 per scan, which proves its effectiveness. We also demonstrate the usefulness of our genetic algorithm based feature selection method and MMP discriminative learning method through comparing them with without-selection strategy and Support Vector Machines (SVMs), respectively, in the experiments.
Faraday rotation influence factors in tellurite-based glass and fibers
NASA Astrophysics Data System (ADS)
Chen, Qiuling; Wang, Hui; Wang, Qingwei; Chen, Qiuping
2015-09-01
The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO2-ZnO-Na2O-BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core-cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement.
Pure 2D vortex-glass phase transition with Tg = 0 K in deoxygenated YBa2Cu3O6.4 thin films
NASA Astrophysics Data System (ADS)
Sefrioui, Z.; Arias, D.; Varela, M.; López de la Torre, M. A.; León, C.; Loos, G. D.; Santamaría, J.
1999-12-01
Non-linear I-V characteristics have been measured on high-quality deoxygenated YBa2Cu3O6.4 thin films, in magnetic fields up to 8 T. Critical scaling analysis of the current-voltage data demonstrates the existence of a pure two-dimensional vortex-glass transition with Tg = 0 for high magnetic fields (7, 8 T). The validity of the pure 2D vortex-glass model in our samples is checked with the linear resistivity term and the non-linear current density. The linear resistivity ρlin(T) propto exp [ - (T0/T)p] from resistivity vs. temperature and current-voltage measurements, produces the parameters p (p = 0.78 for H = 7 T, p = 0.73 for H = 8 T) and T0 (230 K) used for the scaling analysis. The non-linear current density jnl exhibits a power law temperature dependence jnl(T) propto T3 suggesting ν2D = 2 as predicted by the 2D vortex-glass theory. The values of the exponent p obtained in this study are in good agreement with the predictions of the quantum theory of vortex tunneling.
NASA Astrophysics Data System (ADS)
Ford, Jason E.; McCoy, Anne B.
2016-02-01
In this work the efficacy of a combined approach for capturing rovibrational coupling is investigated. Specifically, the multi-state rotational DMC method is used in combination with fixed-node DMC in a study of the rotation vibration energy levels of H2D+ and HD2+. Analysis of the results of these calculations shows very good agreement between the calculated energies and previously reported values. Where differences are found, they can be attributed to Coriolis couplings, which are large in these ions and which are not fully accounted for in this approach.
NASA Astrophysics Data System (ADS)
Daly, Adam M.; Drouin, Brian J.; Groner, Peter; Yu, Shanshan; Pearson, John C.
2015-01-01
The pure rotational spectrum of mono-deuterated ethane, CH3CH2D, has been measured up to 1600 GHz and spectroscopic constants have been fit to 984 transitions in the ground state and 422 transitions in the first torsional excited state (ν18). Analyses of the ground state data were performed with the programs SPFIT, ERHAM and XIAM and of the first torsional state with SPFIT and ERHAM to extract molecular and spectroscopic constants. A combined fit of both states using ERHAM was used to determine ρ = 0.4344026(68), which in the symmetric limit is the ratio Iα/Iz and a measure of the periodicity of the internal rotation energy with K and the energy differences between the A and E torsional substates, ΔE(E-A), of 74.167(18) and -3382.23(34) MHz for the ground and excited states, respectively. Using these energy differences and the overtone transitions Δv = 2 from Raman measurements in the literature, the coefficients V3 and V6 of the potential function of the internal rotation in CH3CH2D were determined as V3 = 1004.56(4) cm-1 and V6 = 7.09(12) cm-1. This analysis lays the ground work for the assignment of the IR spectrum of CH3CH2D between (680-880 cm-1) which will help quantify isotopic ratios by remote sensing missions.
Malenovská, Hana
2016-02-01
Only very few comparative studies have been performed that evaluate general trends of virus growth under 3D in comparison with 2D cell culture conditions. The aim of this study was to investigate differences when four animal viruses are cultured in 2D and 3D. Suid herpesvirus 1 (SuHV-1), Vesicular stomatitis virus (VSIV), Bovine adenovirus (BAdV) and Bovine parainfluenza 3 virus (BPIV-3) were cultivated in 3D rotating wall vessels (RWVs) and conventional 2D cultures. The production of virus particles, the portion of infectious particles, and the infectious growth curves were compared. For all viruses, the production of virus particles (related to cell density), including the non-infectious ones, was lower in 3D than in 2D culture. The production of only infectious particles was significantly lower in BAdV and BPIV-3 in 3D cultures in relation to cell density. The two cultivation approaches resulted in significantly different virus particle-to-TCID50 ratios in three of the four viruses: lower in SuHV-1 and BPIV-3 and higher in BAdV in 3D culture. The infectious virus growth rates were not significantly different in all viruses. Although 3D RWV culture resulted in lower production of virus particles compared to 2D systems, the portion of infectious particles was higher for some viruses. PMID:26562056
Rapid determination of Faraday rotation in optical glasses by means of secondary Faraday modulator.
Sofronie, M; Elisa, M; Sava, B A; Boroica, L; Valeanu, M; Kuncser, V
2015-05-01
A rapid high sensitive method for determining the Faraday rotation of optical glasses is proposed. Starting from an experimental setup based on a Faraday rod coupled to a lock-in amplifier in the detection chain, two methodologies were developed for providing reliable results on samples presenting low and large Faraday rotations. The proposed methodologies were critically discussed and compared, via results obtained in transmission geometry, on a new series of aluminophosphate glasses with or without rare-earth doping ions. An example on how the method can be used for a rapid examination of the optical homogeneity of the sample with respect to magneto-optical effects is also provided. PMID:26026534
Li, Anyang; Li, Yongle; Guo, Hua; Lau, Kai-Chung; Xu, Yuntao; Xiong, Bo; Chang, Yih-Chung; Ng, C. Y.
2014-01-07
We have measured the absolute integral cross sections (σ’s) for H{sub 3}O{sup +} formed by the reaction of rovibrationally selected H{sub 2}O{sup +}(X{sup 2}B{sub 1}; v{sub 1}{sup +}v{sub 2}{sup +}v{sub 3}{sup +} = 000; N{sup +}{sub Ka}{sup +}{sub Kc}{sup +} = 0{sub 00}, 1{sub 11}, and 2{sub 11}) ion with H{sub 2} at the center-of-mass collision energy (E{sub cm}) range of 0.03–10.00 eV. The σ(0{sub 00}), σ(1{sub 11}), and σ(2{sub 11}) values thus obtained reveal rotational enhancements at low E{sub cm} < 0.50 eV, in agreement with the observation of the previous study of the H{sub 2}O{sup +}(X{sup 2}B{sub 1}) + D{sub 2} reaction. This Communication presents important progress concerning the high-level ab initio quantum calculation of the potential energy surface for the H{sub 2}O{sup +}(X{sup 2}B{sub 1}) + H{sub 2} (D{sub 2}) reactions, which has provided valuable insight into the origin of the rotational enhancement effect. Governed by the charge and dipole-induced-multipole interactions, the calculation shows that H{sub 2} (D{sub 2}) approaches the H end of H{sub 2}O{sup +}(X{sup 2}B{sub 1}) in the long range, whereas chemical force in the short range favors the orientation of H{sub 2} (D{sub 2}) toward the O side of H{sub 2}O{sup +}. The reorientation of H{sub 2}O{sup +} reactant ion facilitated by rotational excitation thus promotes the H{sub 2}O{sup +} + H{sub 2} (D{sub 2}) reaction along the minimum energy pathway, rendering the observed rotational enhancement effects. The occurrence of this effect at low E{sub cm} indicates that the long range charge and dipole-induced-multipole interactions of the colliding pair play a significant role in the dynamics of the exothermic H{sub 2}O{sup +} + H{sub 2} (D{sub 2}) reactions.
Morales, Jesús; Martínez, Jorge L.; Mandow, Anthony; Reina, Antonio J.; Pequeño-Boter, Alejandro; García-Cerezo, Alfonso
2014-01-01
Many applications, like mobile robotics, can profit from acquiring dense, wide-ranging and accurate 3D laser data. Off-the-shelf 2D scanners are commonly customized with an extra rotation as a low-cost, lightweight and low-power-demanding solution. Moreover, aligning the extra rotation axis with the optical center allows the 3D device to maintain the same minimum range as the 2D scanner and avoids offsets in computing Cartesian coordinates. The paper proposes a practical procedure to estimate construction misalignments based on a single scan taken from an arbitrary position in an unprepared environment that contains planar surfaces of unknown dimensions. Inherited measurement limitations from low-cost 2D devices prevent the estimation of very small translation misalignments, so the calibration problem reduces to obtaining boresight parameters. The distinctive approach with respect to previous plane-based intrinsic calibration techniques is the iterative maximization of both the flatness and the area of visible planes. Calibration results are presented for a case study. The method is currently being applied as the final stage in the production of a commercial 3D rangefinder. PMID:25347585
Morales, Jesús; Martínez, Jorge L; Mandow, Anthony; Reina, Antonio J; Pequeño-Boter, Alejandro; García-Cerezo, Alfonso
2014-01-01
Many applications, like mobile robotics, can profit from acquiring dense, wide-ranging and accurate 3D laser data. Off-the-shelf 2D scanners are commonly customized with an extra rotation as a low-cost, lightweight and low-power-demanding solution. Moreover, aligning the extra rotation axis with the optical center allows the 3D device to maintain the same minimum range as the 2D scanner and avoids offsets in computing Cartesian coordinates. The paper proposes a practical procedure to estimate construction misalignments based on a single scan taken from an arbitrary position in an unprepared environment that contains planar surfaces of unknown dimensions. Inherited measurement limitations from low-cost 2D devices prevent the estimation of very small translation misalignments, so the calibration problem reduces to obtaining boresight parameters. The distinctive approach with respect to previous plane-based intrinsic calibration techniques is the iterative maximization of both the flatness and the area of visible planes. Calibration results are presented for a case study. The method is currently being applied as the final stage in the production of a commercial 3D rangefinder. PMID:25347585
Craig, Norman C.; Easterday, Clay C.; Nemchick, Deacon J.; Williamson, Drew; Sams, Robert L.
2012-02-01
Pure samples of cis,cis- and trans,trans-1,4-difluorobutadiene-2-d1 have been synthesized, and high-resolution (0.0015 cm-1) infrared spectra have been recorded for these nonpolar molecules in the gas phase. For the cis,cis isomer, the rotational structure in two C-type bands at 775 and 666 cm-1 and one A-type band at 866 cm-1 has been analyzed to yield a combined set of 2020 ground state combination differences (GSCDs). Ground state rotational constants fit to these GSCDs are A0 = 0.4195790(4), B0 = 0.0536508(8), and C0 = 0.0475802(9) cm-1. For the trans,trans isomer, three Ctype bands at 856, 839, and 709 cm-1 have been investigated to give a combined set of 1624 GSCDs. Resulting ground state rotational constants for this isomer are A0 = 0.9390117(8), B0 = 0.0389225(4), and C0 = 0.0373778(3) cm-1. Small inertial defects confirm the planarity of both isomers in the ground state. Upper state rotational constants have been determined for most of the transitions. The ground state rotational constants for the two isotopologues will contribute to the data set needed for determining semiexperimental equilibrium structures for the nonpolar isomers of 1,4- difluorobutadiene.
NASA Astrophysics Data System (ADS)
Kh., Lotfy
2012-06-01
In the present paper, we introduce the coupled theory (CD), Lord-Schulman (LS) theory, and Green-Lindsay (GL) theory to study the influences of a magnetic field and rotation on a two-dimensional problem of fibre-reinforced thermoelasticity. The material is a homogeneous isotropic elastic half-space. The method applied here is to use normal mode analysis to solve a thermal shock problem. Some particular cases are also discussed in the context of the problem. Deformation of a body depends on the nature of the force applied as well as the type of boundary conditions. Numerical results for the temperature, displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field and rotation.
Esch, Ann van; Clermont, Christian; Devillers, Magali; Iori, Mauro; Huyskens, Dominique P.
2007-10-15
For routine pretreatment verification of innovative treatment techniques such as (intensity modulated) dynamic arc therapy and helical TomoTherapy, an on-line and reliable method would be highly desirable. The present solution proposed by TomoTherapy, Inc. (Madison, WI) relies on film dosimetry in combination with up to two simultaneous ion chamber point dose measurements. A new method is proposed using a 2D ion chamber array (Seven29, PTW, Freiburg, Germany) inserted in a dedicated octagonal phantom, called Octavius. The octagonal shape allows easy positioning for measurements in multiple planes. The directional dependence of the response of the detector was primarily investigated on a dual energy (6 and 18 MV) Clinac 21EX (Varian Medical Systems, Palo Alto, CA) as no fixed angle incidences can be calculated in the Hi-Art TPS of TomoTherapy. The array was irradiated from different gantry angles and with different arc deliveries, and the dose distributions at the level of the detector were calculated with the AAA (Analytical Anisotropic Algorithm) photon dose calculation algorithm implemented in Eclipse (Varian). For validation on the 6 MV TomoTherapy unit, rotational treatments were generated, and dose distributions were calculated with the Hi-Art TPS. Multiple cylindrical ion chamber measurements were used to cross-check the dose calculation and dose delivery in Octavius in the absence of the 2D array. To compensate for the directional dependence of the 2D array, additional prototypes of Octavius were manufactured with built-in cylindrically symmetric compensation cavities. When using the Octavius phantom with a 2 cm compensation cavity, measurements with an accuracy comparable to that of single ion chambers can be achieved. The complete Octavius solution for quality assurance of rotational treatments consists of: The 2D array, two octagonal phantoms (with and without compensation layer), an insert for nine cylindrical ion chambers, and a set of inserts of
Van Esch, Ann; Clermont, Christian; Devillers, Magali; Iori, Mauro; Huyskens, Dominique P
2007-10-01
For routine pretreatment verification of innovative treatment techniques such as (intensity modulated) dynamic arc therapy and helical TomoTherapy, an on-line and reliable method would be highly desirable. The present solution proposed by TomoTherapy, Inc. (Madison, WI) relies on film dosimetry in combination with up to two simultaneous ion chamber point dose measurements. A new method is proposed using a 2D ion chamber array (Seven29, PTW, Freiburg, Germany) inserted in a dedicated octagonal phantom, called Octavius. The octagonal shape allows easy positioning for measurements in multiple planes. The directional dependence of the response of the detector was primarily investigated on a dual energy (6 and 18 MV) Clinac 21EX (Varian Medical Systems, Palo Alto, CA) as no fixed angle incidences can be calculated in the Hi-Art TPS of TomoTherapy. The array was irradiated from different gantry angles and with different arc deliveries, and the dose distributions at the level of the detector were calculated with the AAA (Analytical Anisotropic Algorithm) photon dose calculation algorithm implemented in Eclipse (Varian). For validation on the 6 MV TomoTherapy unit, rotational treatments were generated, and dose distributions were calculated with the Hi-Art TPS. Multiple cylindrical ion chamber measurements were used to cross-check the dose calculation and dose delivery in Octavius in the absence of the 2D array. To compensate for the directional dependence of the 2D array, additional prototypes of Octavius were manufactured with built-in cylindrically symmetric compensation cavities. When using the Octavius phantom with a 2 cm compensation cavity, measurements with an accuracy comparable to that of single ion chambers can be achieved. The complete Octavius solution for quality assurance of rotational treatments consists of: The 2D array, two octagonal phantoms (with and without compensation layer), an insert for nine cylindrical ion chambers, and a set of inserts of
Craig, Norman C.; Chen, Yihui; van Besien, Herman; Blake, Thomas A.
2014-09-01
The 2-d1 and 3-d1 isotopologues of trans-hexatriene have been synthesized, and their high-resolution (0.0015 cm-1) IR spectra have been recorded. For each of the isotopologues the rotational structure in four C-type bands for out-of-plane vibrational modes has been analyzed, and the ground state combination differences (GSCDs) have been pooled. Ground state rotational constants have been fitted to the GSCDs. For the 2-d species, A0, B0, and C0 values of 0.7837254(5), 0.0442806(3), and 0.0419299(2) cm-1 were fitted to 2450 GSCDs. For the 3-d species, A0, B0, and C0 values of 0.7952226(8), 0.0446149(7), and 0.0422661(4) cm-1 were fitted to 2234 GSCDs. For the eleven out-of-plane modes of the two isotopologues, predictions of anharmonic wavenumbers and harmonic intensities have been computed and compared with experiment where possible.
Spin glass and semiconducting behavior in one-dimensional BaFe2-dSe3 (d~2) crystals
Saparov, Bayrammurad I; Calder, Stuart A; Sipos, Balazs; Cao, Huibo; Chi, Songxue; Singh, David J; Christianson, Andrew D; Lumsden, Mark D; Sefat, A. S.
2011-01-01
We investigate the physical properties and electronic structure of BaFe{sub 1.79(2)}Se{sub 3} crystals, which were grown out of tellurium flux. The crystal structure of the compound, an iron-deficient derivative of the ThCr{sub 2}Si{sub 2}-type, is built upon edge-shared FeSe{sub 4} tetrahedra fused into double chains. The semiconducting BaFe{sub 1.79(2)}Se{sub 3} ({rho}{sub 295K} = 0.18 {Omega} {center_dot} cm and E{sub g} = 0.30 eV) does not order magnetically; however, there is evidence for short-range magnetic correlations of spin glass type (T{sub f} {approx} 50 K) in magnetization, heat capacity, and neutron diffraction results. A one-third substitution of selenium with sulfur leads to a slightly higher electrical conductivity ({rho}{sub 295K } = 0.11 {Omega} {center_dot} cm and E{sub g} = 0.22 eV) and a lower spin glass freezing temperature (T{sub f} {approx} 15 K), corroborating with higher electrical conductivity reported for BaFe{sub 2}S{sub 3}. According to the electronic structure calculations, BaFe{sub 2}Se{sub 3} can be considered as a one-dimensional ladder structure with a weak interchain coupling.
Becker, C; Lockau, D; Sontheimer, T; Schubert-Bischoff, P; Rudigier-Voigt, E; Bockmeyer, M; Schmidt, F; Rech, B
2012-04-01
Two-dimensional silicon nanodome arrays are prepared on large areas up to 50 cm² exhibiting photonic band structure effects in the near-infrared and visible wavelength region by downscaling a recently developed fabrication method based on nanoimprint-patterned glass, high-rate electron-beam evaporation of silicon, self-organized solid phase crystallization and wet-chemical etching. The silicon nanodomes, arranged in square lattice geometry with 300 nm lattice constant, are optically characterized by angular resolved reflection measurements, allowing the partial determination of the photonic band structure. This experimentally determined band structure agrees well with the outcome of three-dimensional optical finite-element simulations. A 16% photonic bandgap is predicted for an optimized geometry of the silicon nanodome arrays. By variation of the duration of the selective etching step, the geometry as well as the optical properties of the periodic silicon nanodome arrays can be controlled systematically. PMID:22422473
The effects of sex, sexual orientation, and digit ratio (2D:4D) on mental rotation performance.
Peters, Michael; Manning, John T; Reimers, Stian
2007-04-01
In spite of the reduced level of experimental control, this large scale study brought some clarity into the relation between mental rotation task (MRT) performance and a number of variables where contradictory associations had previously been reported in the literature. Clear sex differences in MRT were observed for a sample of 134,317 men and 120,783 women, with men outperforming women. There were also MRT differences as a function of sexual orientation: heterosexual men performed better than homosexual men and homosexual women performed better than heterosexual women. Although bisexual men performed better than homosexual men but less well than heterosexual men, no significant differences were observed between bisexual and homosexual women. MRT performance in both men and women peaked in the 20-30 year range, and declined significantly and markedly thereafter. Both men and women showed a significant negative correlation between left and right digit finger ratio and MRT scores, such that individuals with smaller digit ratios (relatively longer ring finger than index finger) performed better than individuals with larger digit ratios. PMID:17394056
Spin Correlations and Excitations in the Quasi-2D Triangular Bilayer Spin Glass LuCoGaO4
NASA Astrophysics Data System (ADS)
Fritsch, K.; Granroth, G. E.; Savici, A. T.; Noad, H. M. L.; Dabkowska, H. A.; Gaulin, B. D.
2012-02-01
LuCoGaO4 is a layered magnetic-bilayer material wherein Co2+ magnetic moments and nonmagnetic Ga3+ ions are randomly distributed on planar triangular bilayers. This makes it an ideal case to study the interplay between geometric frustration, site disorder and low dimensionality and its influence on the magnetic ground of the system. This novel material has been grown for the first time in single crystal form at McMaster University. We have performed magnetization measurements, revealing a previously identified spin glass transition near Tf˜19K, and a Curie Weiss temperature of Tcw˜-96K, consistent with antiferromagnetic interactions[1]. We discuss time-of-flight neutron scattering measurements using SEQUOIA at SNS which elucidate the evolution of the static and dynamic spin correlations in LuCoGaO4 over a range of temperatures from T<< Tf to T>Tcw. We observe quasielastic scattering at (1/3,1/3,L) positions in reciprocal space and rods of scattering along the c*-direction, consistent with short range antiferromagnetic correlations within decoupled bilayers, and which comfirm the 2-dimensional character of this system. Inelastic scattering measurements show a gapped ˜ 12 meV spin excitation which softens and broadens in energy, filling in the gap on a temperature scale of ˜ Tcw/2. [1] Cava et al., J. Solid State Chem. 140, 337 (1998).
Takae, Kyohei; Onuki, Akira
2014-02-01
Using molecular dynamics simulation with an angle-dependent Lennard-Jones potential, we study orientational glass with quadrupolar symmetry in mixtures of elliptic particles and circular impurities in two dimensions. With a mild aspect ratio (= 1.23) and a mild size ratio (= 1.2), we realize a plastic crystal at relatively high temperature T. With further lowering T, we find a structural phase transition for very small impurity concentration c and pinned disordered orientations for not small c. The ellipses are anchored by the impurities in the planar alignment. With increasing c, the orientation domains composed of isosceles triangles gradually become smaller, resulting in orientational glass with crystal order. In our simulation, the impurity distribution becomes heterogeneous during quenching from liquid, which then produces rotational dynamic heterogeneities. We also examine rheology in orientational glass to predict a shape memory effect and a superelasticity effect, where a large fraction of the strain is due to collective orientation changes. PMID:25353473
NASA Astrophysics Data System (ADS)
Kim, Bae-Hyung; Lee, Seunghun; Song, Jongkeun; Kim, Youngil; Jeon, Taeho; Cho, Kyungil
2013-03-01
Up-to-date capacitive micromachined ultrasonic transducer (CMUT) technologies provide us unique opportunities to minimize the size and cost of ultrasound scanners by integrating front-end circuits into CMUT arrays. We describe a design prototype of a portable ultrasound scan-head probe using 2-D phased CMUT-on-ASIC arrays of 3-MHz 250 micrometer-pitch by fabricating and integrating front-end electronics with 2-D CMUT array elements. One of the objectives of our work is to design a receive beamformer architecture for the smart probe with compact size and comparable performance. In this work, a phase-rotation based receive beamformer using the sampling frequency of 4 times the center frequency and a hybrid beamforming to reduce the channel counts of the system-side are introduced. Parallel beamforming is considered for the purpose of saving power consumption of battery (by firing fewer times per image frame). This architecture has the advantage of directly obtaining I and Q components. By using the architecture, the interleaved I/Q data from the storage is acquired and I/Q demodulation for baseband processing is directly achieved without demodulators including sin and cosine lookup tables and mixers. Currently, we are extending the presented architecture to develop a true smart probe by including lower power devices and cooling systems, and bringing wireless data transmission into consideration.
NASA Astrophysics Data System (ADS)
Craig, Norman C.; Nemchick, Deacon J.; Easterday, Clay C.; Glor, Ethan C.; Williamson, Drew F. K.; Blake, Thomas A.; Sams, Robert L.
2010-06-01
Ground state rotational constants for a series of isotopomers are being sought for use in determining the semi-experimental equilibrium structures of the isomers of 1,4-difluorobutadiene. Because fluorine substitution has a large influence on CC bond lengths in C3 and C4 rings, we asked how fluorine substitution affects butadiene. trans,trans- and cis,cis-1,4-Difluorobutadiene-2-d1 have been synthesized, and high-resolution (0.0013 cm-1) infrared spectra have been recorded for these nonpolar species. Analysis of the rotational structure in several bands is reported. For the trans,trans isomer, the C-type band at 709.0 cm-1 for ν 21(a^") has been fully analyzed, and the C-type band at 914.3 cm-1 for ν 18(a^") has been partially analyzed. Interfering with the analysis of the second band is overlap of its R branch with the P branch of the A/B-type band for ν 13(a^') at 933 cm-1. For the cis,cis isomer, as much as possible of the C-type band (K_a^' = 10 to 34) for ν 20(a^") at 775.4 cm-1 has been analyzed. An A-type band for ν 13(a^') at 865.8 cm-1 has also been analyzed into the band center. Small inertial defects confirm that these molecules are planar. Ground state rotational constants are reported for both isomers in comparison with those for the normal species. N. C. Craig, M. C. Moore, C. F. Neese, D. C. Oertel, L. Pedraza, and T. Masiello, J. Mol. Spectrosc. 254, 39-46 (2009).
NASA Astrophysics Data System (ADS)
Hoyo, J.; Berdejo, V.; Toney Fernandez, T.; Ferrer, A.; Ruiz, A.; Valles, J. A.; Rebolledo, M. A.; Ortega-Feliu, I.; Solis, J.
2013-10-01
A 16.5 mm long, heavily doped erbium-ytterbium phosphate glass-waveguide amplifier was fabricated by the femtosecond laser (fs-laser) inscription technique. The femtosecond laser inscription of waveguides was carried out at 500 kHz repetition rate using a 0.68 NA aspheric lens. The energy deposition profile in the dielectric material was initially simulated using a generalized adaptive fast-Fourier evolver (GAFFE) algorithm. The size and shape of the guiding structures were carefully controlled by the slit shaping technique to reduce the coupling losses, with achievable values down to less than 0.1 dB. Rigorous simulations of the response of the active waveguides were carried out to optimize their performance as optical amplifiers. A maximum of 8.6 dB internal gain at 1534 nm was obtained upon bidirectional laser pumping at 976 nm, leading to a gain per unit length of 5.2 dB cm-1. Laser action was also achieved for both ring and linear cavity configurations.
NASA Astrophysics Data System (ADS)
Aleshcheva, Ganna; Hauslage, Jens; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela; Sahana, Jayashree
Chondrocytes are the only cell type found in human cartilage consisting of proteoglycans and type II collagen. Several studies on chondrocytes cultured either in Space or on a ground-based facility for simulation of microgravity revealed that these cells are very resistant to adverse effects and stress induced by altered gravity. Tissue engineering of chondrocytes is a new strategy for cartilage regeneration. Using a three-dimensional Random Positioning Machine and a 2D rotating clinostat, devices designed to simulate microgravity on Earth, we investigated the early effects of microgravity exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis; and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced for 24 h. Based on the results achieved, we suggest that chondrocytes exposed to simulated microgravity seem to change their extracellular matrix production behavior while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.
NASA Astrophysics Data System (ADS)
Takae, Kyohei; Onuki, Akira
2013-10-01
We study glass behavior in a mixture of elliptic and circular particles in two dimensions at low temperatures using an orientation-dependent Lennard-Jones potential. The ellipses have a mild aspect ratio (˜1.2) and tend to align at low temperatures, while the circular particles play the role of impurities disturbing the ellipse orientations at a concentration of 20%. These impurities have a size smaller than that of the ellipses and attract them in the homeotropic alignment. As a result, the coordination number around each impurity is mostly 5 or 4 in glassy states. We realize double glass, where both the orientations and the positions are disordered but still hold mesoscopic order. We find a strong heterogeneity in the flip motions of the ellipses, which sensitively depends on the impurity clustering. In our model, a small fraction of the ellipses still undergo flip motions relatively rapidly even at low temperatures. In contrast, the nonflip rotations (with angle changes not close to ±π) are mainly caused by the cooperative configuration changes involving many particles. Then, there arises a long-time heterogeneity in the nonflip rotations closely correlated with the dynamic heterogeneity in displacements.
Takae, Kyohei; Onuki, Akira
2013-10-01
We study glass behavior in a mixture of elliptic and circular particles in two dimensions at low temperatures using an orientation-dependent Lennard-Jones potential. The ellipses have a mild aspect ratio (∼1.2) and tend to align at low temperatures, while the circular particles play the role of impurities disturbing the ellipse orientations at a concentration of 20%. These impurities have a size smaller than that of the ellipses and attract them in the homeotropic alignment. As a result, the coordination number around each impurity is mostly 5 or 4 in glassy states. We realize double glass, where both the orientations and the positions are disordered but still hold mesoscopic order. We find a strong heterogeneity in the flip motions of the ellipses, which sensitively depends on the impurity clustering. In our model, a small fraction of the ellipses still undergo flip motions relatively rapidly even at low temperatures. In contrast, the nonflip rotations (with angle changes not close to ±π) are mainly caused by the cooperative configuration changes involving many particles. Then, there arises a long-time heterogeneity in the nonflip rotations closely correlated with the dynamic heterogeneity in displacements. PMID:24229182
NASA Astrophysics Data System (ADS)
Ferk, A.; Leonhardt, R.; von Aulock, F. W.; Hess, K.; Dingwell, D. B.; Tuffen, H.
2010-12-01
A paleomagnetic study on natural silicic volcanic glass from three different geological settings is presented. The glass transition temperature and natural cooling rates were determined by relaxation geospeedometry. Paleointensity determinations were performed with a modified Thellier technique using checks for alteration and domain state. Additionally, measurements of the anisotropy of the thermoremanence and the magnetic cooling rate dependency were included into the measurement protocol of each specimen. Rock magnetic investigations show that the main remanence carriers are low-titanium titanomagnetites that are within or close to the single domain range. At two geological settings, a 750 kyr old outcrop on Tenerife, Spain and a lava flow at the probably 95 kyr old Blahnukur in Iceland, different degrees of hydration were present. Obtaining good quality paleointensity data was impossible as thermal alteration was observed in all measurements. Systematic changes of paleomagnetic alteration indices within the profiles suggest the presence of a chemical remanence which was acquired during devitrifiction of parts of the flow. Samples from the third geological setting, 2000 yr old obsidians from Tenerife, unblock at about 400°C and are characterized by extraordinary thermal stability. Paleointensity determinations are of very good quality. The samples are characterized by strong magnetic anisotropy and the anisotropy of thermoremanence requires intensity corrections of up to 30% for individual specimens. Emplacement rotations/movements during TRM acquisition of the glass flow while cooling are present in this site. At a squeezing structure this effect is verified using paleodirections, which move further and further away from average site direction when approaching the side borders and thus the faster cooled parts of the squeezing structure. Thus the anisotropy tensor of the magnetic minerals is rotating while cooling in a (widely) constant magnetic field. This
ERIC Educational Resources Information Center
Rushton, Gregory T.; Burns, William G.; Lavin, Judi M.; Chong, Yong S.; Pellechia, Perry; Shimizu, Ken D.
2007-01-01
An experiment to determine the rotational barrier about a C[subscript aryl]-N[subscript imide] single bond that is suitable for first-semester organic chemistry students is presented. The investigation begins with the one-step synthesis of a N,N'-diaryl naphthalene diimide, which exists as two room temperature-stable atropisomers (syn and anti).…
NASA Astrophysics Data System (ADS)
Cortes C., E.; Becerra L., M. I.; Osornio P., Y. M.; Díaz T., E.; Jankowski, K.
2000-08-01
The complete assignments of twelve 4-ary1-7-thioary1-1,5-benzodiazepines 1H and 13C spectra, performed with the use of high resolution variable solvent and temperature 1D and 2D techniques (e.g. HOMOCOSY, NOESY, HMQC and HMBC), lead to the determination of conformational equilibria between two rotamers having the aromatic ring of the thioaryl oriented in a perpendicular or helical orientation toward the benzodiazepine ring. The restricted rotation was evaluated from the population of these conformers.
Silva, Alessandra S; Lourenço, Sidney A; Dantas, Noelio O
2016-02-17
We studied the effect of Mn concentration on the optical, morphological and magnetic properties of Zn1-xMnxTe NCs grown in a glass matrix produced by the fusion method. The physical properties of these materials were determined by optical absorption (OA), transmission electron microscopy (TEM), atomic/magnetic force microscopy (AFM/MFM) and photoluminescence (PL). An analysis of the OA spectra, based on the crystal field theory (CFT), showed strong evidence that Mn(2+) ions were substitutionally incorporated into the Zn1-xMnxTe NCs until reaching the solubility limit (concentration, x = 0.100). Above this nominal concentration, TEM showed the onset of Mn-related phases, such as MnO and α-MnO2, in the PZABP glass system. AFM images showed that NC density on the surface of the glass matrix decreased as x-content increased. It is probable that MnO and MnO2 NCs would outnumber Zn1-xMnxTe NCs at higher concentrations - a conclusion that was corroborated by the OA spectra and TEM images. MFM images revealed that samples with Mn(2+) ions responded to magnetization from an MFM probe. This implied that Mn(2+) ions were incorporated within the Zn1-xMnxTe NCs and gave rise to the diluted magnetic semiconductor (DMS) structure. The PL spectra not only confirmed the evidence obtained by OA, CFT, TEM and AFM/MFM, but also showed that Mn(2+) concentration could be used to tune (4)T1((4)G) → (6)A1((6)S) emission energy. PMID:26844704
Eloi, J.-C.; Okuda, M.; Jones, S.E. Ward; Schwarzacher, W.
2013-01-01
For applications from food science to the freeze-thawing of proteins it is important to understand the often complex freezing behavior of solutions of biomolecules. Here we use a magnetic method to monitor the Brownian rotation of a quasi-spherical cage-shaped protein, apoferritin, approaching the glass transition Tg in a freeze-concentrated buffer (Tris-HCl). The protein incorporates a synthetic magnetic nanoparticle (Co-doped Fe3O4 (magnetite)). We use the magnetic signal from the nanoparticles to monitor the protein orientation. As T decreases toward Tg of the buffer solution the protein’s rotational relaxation time increases exponentially, taking values in the range from a few seconds up to thousands of seconds, i.e., orders of magnitude greater than usually accessed, e.g., by NMR. The longest relaxation times measured correspond to estimated viscosities >2 MPa s. As well as being a means to study low-temperature, high-viscosity environments, our method provides evidence that, for the cooling protocol used, the following applies: 1), the concentration of the freeze-concentrated buffer at Tg is independent of its initial concentration; 2), little protein adsorption takes place at the interface between ice and buffer; and 3), the protein is free to rotate even at temperatures as low as 207 K. PMID:23790376
NASA Astrophysics Data System (ADS)
Jackel, Steven M.; Moshe, Inon; Kaufman, Alon; Lavi, Raphael; Lallouz, Raphael; Jackel, Z.
1997-09-01
High fluence solid-state lasers were built using Nd:Cr:GSGG or Nd:glass in oscillator/multiple-pass phase and polarization conjugated amplifier configurations. Beam path control, thermal stress induced birefringence correction, and isolation were achieved using Faraday rotators. Damage threshold on material and on pulse duration were investigated. Terbium glass was found to have a damage threshold five times greater than that of TGG. The damage threshold of both Terbium doped materials was virtually independent of pulse duration.
Araoz, Beatriz; Carattino, Aquiles; Täuber, Daniela; von Borczyskowski, Christian; Aramendia, Pedro F
2014-11-13
We performed polarized fluorescence emission studies of Nile Red (NR) in poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA), and poly(butyl methacrylate) (PBMA) at the single molecule (SM) and at the ensemble level to study the in cage movements of the ground-state molecule in polymer films of nanometric thickness at room temperature. Experiments were performed with wide field irradiation. At the ensemble level, the linearly polarized irradiation was used to induce a photoselection by bleaching, which is compensated by rotational diffusion. Both results show an appreciable difference in mobility of NR in the films that is correlated with the different glass-transition temperatures of the films, particularly in PEMA, which displays a clearly distinct behavior between the 200 nm films, representing a rigid environment, and the 25 nm ones, showing much higher mobility. We developed a model of broad application for polarized photobleaching that allows obtaining rotational diffusion coefficients and photobleaching quantum yields in an easy way from ensemble experiments. The parameters obtained from ensemble measurements correlate well with the results from SM experiments. PMID:24870555
Brittle damage models in DYNA2D
Faux, D.R.
1997-09-01
DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.
2005-07-01
Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.
Greg Flach, Frank Smith
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less
NASA Astrophysics Data System (ADS)
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
Inertial solvation in femtosecond 2D spectra
NASA Astrophysics Data System (ADS)
Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David
2001-03-01
We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.
A near-transparent 90∘ polarization rotator with an array of L-shaped holes inside a glass cube
NASA Astrophysics Data System (ADS)
Liao, Yan-Lin; Zhao, Yan; Lu, He-Ping
2016-07-01
We report a near-transparent 90∘ polarization rotator by using a single-layer microstructure. The co-polarization light has been suppressed by using destructive interference. At the same time, the transmission of cross-polarization light has been improved with inference effect between surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs). This efficient polarization rotation mechanism may be very useful in designing polarization rotators.
Measurement of 2D birefringence distribution
NASA Astrophysics Data System (ADS)
Noguchi, Masato; Ishikawa, Tsuyoshi; Ohno, Masahiro; Tachihara, Satoru
1992-10-01
A new measuring method of 2-D birefringence distribution has been developed. It has not been an easy job to get a birefringence distribution in an optical element with conventional ellipsometry because of its lack of scanning means. Finding an analogy between the rotating analyzer method in ellipsometry and the phase-shifting method in recently developed digital interferometry, we have applied the phase-shifting algorithm to ellipsometry, and have developed a new method that makes the measurement of 2-D birefringence distribution easy and possible. The system contains few moving parts, assuring reliability, and measures a large area of a sample at one time, making the measuring time very short.
Shape-designed frustration by local polymorphism in a near-equilibrium colloidal glass
Zhao, Kun; Mason, Thomas G.
2015-01-01
We show that hard, convex, lithographic, prismatic kite platelets, each having three 72° vertices and one 144° vertex, preferentially form a disordered and arrested 2D glass when concentrated quasi-statically in a monolayer while experiencing thermal Brownian fluctuations. By contrast with 2D systems of other hard convex shapes, such as squares, rhombs, and pentagons, which readily form crystals at high densities, 72° kites retain a liquid-like disordered structure that becomes frozen-in as their long-time translational and rotational diffusion become highly bounded, yielding a 2D colloidal glass. This robust glass-forming propensity arises from competition between highly diverse few-particle local polymorphic configurations (LPCs) that have incommensurate features and symmetries. Thus, entropy maximization is consistent with the preservation of highly diverse LPCs en route to the arrested glass. PMID:26358651
McClaine, Jennifer W; Ford, Roseanne M
2002-03-01
The attachment rates of wild-type, smooth-swimming, tumbly, and paralyzed Escherichia coli to glass was measured at fluid velocities of 0.0044 and 0.044 cms(-1) (corresponding to shear rates of 0.34 and 3.4 s(-1), respectively), in 0.02 and 0.2 M buffer solutions. At the highest ionic strength, we did not observe a significant difference in the attachment rate of wild-type and paralyzed cells at either fluid velocity. However, when the ionic strength was reduced, paralyzed bacteria attached at rates 4 and 10 times lower than that of the wild type under fluid velocities of 0.0044 and 0.044 cms(-1), respectively. This suggested that the rotation of the flagella assisted in attachment. We then compared the attachment rates of smooth-swimming (counterclockwise rotation only) and tumbly (clockwise rotation only) cells to the wild type to determine whether the direction of rotation was important to cell attachment. At 0.0044 cms(-1), the smooth-swimming cells attached at rates similar to that of the wild type in both buffer solutions but significantly less at the higher fluid velocity. Tumbly cells attached at much lower rates under all conditions. Thus, the combination of clockwise and counterclockwise flagellar rotation and their coupling appeared to be important in cell attachment. We considered a number of hypotheses to interpret these observations, including a residence time analysis and a comparison of traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to soft-particle theory. PMID:11872478
ERIC Educational Resources Information Center
Bruce, Catherine D.; Hawes, Zachary
2015-01-01
The ability to mentally rotate objects in space has been singled out by cognitive scientists as a central metric of spatial reasoning (see Jansen, Schmelter, Quaiser-Pohl, Neuburger, & Heil, 2013; Shepard & Metzler, 1971 for example). However, this is a particularly undeveloped area of current mathematics curricula, especially in North…
Fuezesi, F.; Jornod, A.; Thomann, P.; Plimmer, M. D.; Dudle, G.; Moser, R.; Sache, L.; Bleuler, H.
2007-10-15
This article describes the design, characterization, and performance of an electrostatic glass actuator adapted to an ultrahigh vacuum environment (10{sup -8} mbar). The three-phase rotary motor is used to drive a turbine that acts as a velocity-selective light trap for a slow continuous beam of laser-cooled atoms. This simple, compact, and nonmagnetic device should find applications in the realm of time and frequency metrology, as well as in other areas of atomic, molecular physics and elsewhere.
NASA Astrophysics Data System (ADS)
Wang, Jin; Ma, Jianyong; Zhou, Changhe
2014-11-01
A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.
NASA Astrophysics Data System (ADS)
Smith, Greg; Lankshear, Allan
1998-07-01
2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
Snitzer, E
1966-10-01
After a general discussion of the merits of glass vs. crystals as host materials for laser ions, a summary is given of the various glass lasers. Because of its importance as an efficient, room temperature laser the properties of neodymium are considered in greater detail. This includes the nonlaser properties of Nd(3+) in glass, the spectral and temporal emission characteristics of Nd(3+) lasers, and Nd(3+) laser configurations. Separate sections deal with the other two room temperature lasers which use Yb(3+) or Er(3+). The problem of thermal stability of laser cavities is also discussed. Finally, a survey is given of the glasses that are useful as Faraday rotators. PMID:20057584
NASA Astrophysics Data System (ADS)
Oh, Younghoon; Kim, Jeongmin; Sung, Bong June
While translational diffusion of tracers often violates the Stokes-Einstein relation, the rotational diffusion of tracers follows the Debye-Stokes-Einstein relation faithfully in the glass-forming materials. A previous study revealed that in two-dimensional (2D) monodisperse colloids, as the dynamics of media became heterogeneous in 2D hexatic phase, the tracer shape and the local media structure affected the translation-rotation decoupling trend significantly: the rotation of tracers was enhanced compared to the translation for square tracers but was rather suppressed for diamond tracers. The shape dependency of rotation originated from the similarity in structure between the local hexagonal media structure and the tracer shape. Unlike in 2D monodisperse colloids where the liquid-to-hexatic phase transition takes place, in 2D binary colloids, a phase transition from the liquid to either solid or glass depends on the disorderedness that is controlled by size and number ratios. We present simulation results on the combined effects of the tracer shape and the local media disorderedness on the translation-rotation decoupling, which relates closely to the nature of glass transition.
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
Wang, Hsuan-Wen; Chang, Yen-Hsiang; Lin, Chun-Li
2016-01-01
This study develops a novel anatomical short glass fiber reinforced (anatomical SGFR) post and evaluates the mechanical performance in artificial endodontically treated premolars. An anatomical SGFR fiber post with an oval shape and slot/notch designs was manufactured using an injection-molding machine. The three-point bending test and crown/core restorations using the anatomical SGFR and commercial cylindrical fiber posts under fatigue test were executed to understand the mechanical resistances. The results showed that static and dynamic rotational resistance were found significantly higher in the anatomical SGFR fiber post than in the commercial post. The endurance limitations at 1.2×10(6) cycles were 66.81 and 64.77 N for the anatomical SGFR and commercial fiber posts, respectively. The anatomical SGFR fiber post presented acceptable value of flexural strength and modulus, better fit adaption in the root canal resist torque more efficiency but was not a key issue in the lateral fracture resistance in an endodontically treated premolar. PMID:27041013
Kim, Dong-Joo; Kim, Kyo-Seon
2010-05-01
We calculated the concentration profiles of important chemical species for TiO2 thin film growth on the glass beads in the TTIP + O2 plasmas and compared the predicted growth rates of thin films with the experimental measurements. The film thickness profile depends on the concentration profile of TiO(OC3H7)3 precursors in the gas phase because TiO(OC3H7)3 is the main precursor of the thin film. The TTIP concentration decreases with time, while the TiO(OC3H7)3 concentration increases, and they reach the steady state about 2 approximately 3 sec. The growth rate of TiO2 film predicted in this study was 9.2 nm/min and is in good agreements with the experimental result of 10.5 nm/min under the same process conditions. This study suggests that a uniform TiO2 thin film on particles can be obtained by using a rotating cylindrical PCVD reactor. PMID:20358924
Castro-Chavez, Fernando
2012-01-01
Background Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. Methods Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. Results One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. Conclusions We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as seen
Multienzyme Inkjet Printed 2D Arrays.
Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel
2015-08-19
The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072
NASA Astrophysics Data System (ADS)
Mayor, Louise
2016-05-01
Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.
2001-01-31
This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.
Nanoimprint lithography: 2D or not 2D? A review
NASA Astrophysics Data System (ADS)
Schift, Helmut
2015-11-01
Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.
CH2D+, the Search for the Holy Grail
NASA Astrophysics Data System (ADS)
Roueff, Evelyne; Gerin, Maryvonne; Lis, Dariusz C.; Wootten, Alwyn; Marcelino, Nuria; Cernicharo, Jose; Tercero, Belen
2013-10-01
CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of Kelvin, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+, and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.
NASA Astrophysics Data System (ADS)
Rossing, Thomas D.
2001-05-01
Glass musical instruments are probably as old as glassmaking. At least as early as the 17th century it was discovered that wine glasses, when rubbed with a wet finger, produced a musical tone. A collection of glasses played in this manner is called a glass harp. Another type of glass harmonica, called the armonica by its inventor Benjamin Franklin, employs glass bowls or cups turned by a horizontal axle, so the performer need only touch the rim of the bowls as they rotate to set them into vibration. We discuss the modes of vibration of both types of glass harmonica, and describe the different sounds that are emitted by rubbing, tapping, or bowing them. Rubbing with a wet finger tends to excite only the (2,0) mode and its harmonics through a ``stick-slip'' process, while tapping excites the other modes as well.
Statistical analysis of quiet stance sway in 2-D
DiZio, Paul; Lackner, James R.
2014-01-01
Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909–912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model’s ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior–posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760
Statistical analysis of quiet stance sway in 2-D.
Bakshi, Avijit; DiZio, Paul; Lackner, James R
2014-04-01
Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909-912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model's ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior-posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760
Symmetry detection of auxetic behaviour in 2D frameworks
NASA Astrophysics Data System (ADS)
Mitschke, H.; Schröder-Turk, G. E.; Mecke, K.; Fowler, P. W.; Guest, S. D.
2013-06-01
A symmetry-extended Maxwell treatment of the net mobility of periodic bar-and-joint frameworks is used to derive a sufficient condition for auxetic behaviour of a 2D material. The type of auxetic behaviour that can be detected by symmetry has Poisson's ratio -1, with equal expansion/contraction in all directions, and is here termed equiauxetic. A framework may have a symmetry-detectable equiauxetic mechanism if it belongs to a plane group that includes rotational axes of order n = 6, 4, or 3. If the reducible representation for the net mobility contains mechanisms that preserve full rotational symmetry (A modes), these are equiauxetic. In addition, for n = 6, mechanisms that halve rotational symmetry (B modes) are also equiauxetic.
NASA Astrophysics Data System (ADS)
Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A.; Wondraczek, Lothar
2015-03-01
We report on the magneto-optical (MO) properties of heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb3+ ion concentration of up to 9.7 × 1021 cm-3, the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400-1500 nm is found for a Tb3+ concentration of ~6.5 × 1021 cm-3. For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb3+ photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10-21 cm2 for ~ 5.0 × 1021 cm-3 Tb3+. This results in an optical gain parameter σem*τ of ~2.5 × 10-24 cm2s, what could be of interest for implementation of a Tb3+ fiber laser.
Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A.; Wondraczek, Lothar
2015-01-01
We report on the magneto-optical (MO) properties of heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb3+ ion concentration of up to 9.7 × 1021 cm−3, the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400–1500 nm is found for a Tb3+ concentration of ~6.5 × 1021 cm−3. For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb3+ photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10−21 cm2 for ~ 5.0 × 1021 cm−3 Tb3+. This results in an optical gain parameter σem*τ of ~2.5 × 10−24 cm2s, what could be of interest for implementation of a Tb3+ fiber laser. PMID:25754819
NKG2D ligands as therapeutic targets
Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.
2013-01-01
The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565
Ring Correlations in Two-Dimensional (2D) Random Networks
NASA Astrophysics Data System (ADS)
Sadjadi, Mahdi; Thorpe, M. F.
Amorphous materials can be characterized by their ring structure. Recently, two experimental groups imaged bilayers of vitreous silica at atomic resolution which provides a direct access to the ring structure of a 2D glass. It has been shown that experimental samples have various ring statistics, obey Aboav-Weaire law and have a distinct area law. In this work, we study correlations between rings as a function of their size and topological separation. We show that correlation is medium-range and vanishes when the separation is about three rings apart. We also present a generalization of the Aboav-Weaire law.
Perspectives for spintronics in 2D materials
NASA Astrophysics Data System (ADS)
Han, Wei
2016-03-01
The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Staring 2-D hadamard transform spectral imager
Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.
2006-02-07
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
Light field morphing using 2D features.
Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung
2005-01-01
We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126
2D materials for nanophotonic devices
NASA Astrophysics Data System (ADS)
Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui
2015-12-01
Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.
Internal Photoemission Spectroscopy of 2-D Materials
NASA Astrophysics Data System (ADS)
Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin
Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.
Grinding Glass Disks On A Belt Sander
NASA Technical Reports Server (NTRS)
Lyons, James J., III
1995-01-01
Small machine attached to table-top belt sander makes possible to use belt sander to grind glass disk quickly to specified diameter within tolerance of about plus or minus 0.002 in. Intended to be used in place of production-shop glass grinder. Held on driveshaft by vacuum, glass disk rotated while periphery ground by continuous sanding belt.
Method for milling and drilling glass
NASA Technical Reports Server (NTRS)
Rice, S. H. (Inventor)
1980-01-01
A process for machining glass by placing a rotating carbide working surface under minimum pressure against an area of glass to be worked is described. Concurrently the region between the working surface and the area of glass is wet with a lubricant consisting essentially of a petroleum carrier, a complex mixture of esters and a complex mixture of naturally occurring aromatic oils.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
2D electronic materials for army applications
NASA Astrophysics Data System (ADS)
O'Regan, Terrance; Perconti, Philip
2015-05-01
The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.
2-d Finite Element Code Postprocessor
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less
Chemical Approaches to 2D Materials.
Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang
2016-08-01
Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083
Extended 2D generalized dilaton gravity theories
NASA Astrophysics Data System (ADS)
de Mello, R. O.
2008-09-01
We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.
Dynamics of 2D Dust Clusters with a Perpendicular Magnetic Field
Greiner, Franko; Carstensen, Jan; Hou Lujing; Piel, Alexander
2008-09-07
The physics of two-dimensional (2D) dust clusters in an unmagnetized plasma sheath has been understood in dept. However, introduction of a perpendicular magnetic field into the dusty plasma sheath leads to some new effects, such as rotation and compression of dust clusters, whose mechanism is still unclear. It is found that even for a magnetic field as low as the earth magnetic field ({approx_equal}40 {mu}T), clusters rotate as rigid about their centers. It was proposed [U. Konopka, PRE 61, 1890 (2000)] that the ExB-induced ion flow drives the dust clusters into rotation. Simulations [L.-J. Hou, PoP 12, 042104 (2005)] based on the same hypothesis also reproduced the rotation of 2D clusters in a qualitative manner. However, this model cannot fully explain the experimental observations. We present detailed experimental investigations, which show that the rotation of a dust cluster critically depends on the detailed discharge geometry. In particular, the co-rotation of the background neutral gas and its role in driving dust-cluster rotation is proposed as a mechanism to set the dust cluster in rotation.
2D-patterning of self-assembled silver nanoisland films.
Chervinskii, Semen; Reduto, Igor; Kamenskii, Alexander; Mukhin, Ivan S; Lipovskii, Andrey A
2016-01-01
The paper is dedicated to the recently developed by the authors technique of silver nanoisland growth, allowing self-arrangement of 2D-patterns of nanoislands. The technique employs silver out-diffusion from ion-exchanged glass in the course of annealing in hydrogen. To modify the silver ion distribution in the exchanged soda-lime glass we included the thermal poling of the ion-exchanged glass with a profiled electrode as an intermediate stage of the process. The resulting consequence consists of three steps: (i) during the ion exchange of the glass in the AgxNa1-xNO3 (x = 0.01-0.15) melt we enrich the subsurface layer of the glass with silver ions; (ii) under the thermal poling, the electric field displaces these ions deeper into the glass under the 2D profiled anodic electrode, the displacement is smaller under the hollows in the electrode where the intensity of the field is minimal; (iii) annealing in a reducing atmosphere of hydrogen results in silver out-diffusion only in the regions corresponding to the electrode hollows, as a result silver forms nanoislands following the shape of the electrode. Varying the electrode and mode of processing allows governing the nanoisland size distribution and self-arrangement of the isolated single nanoislands, pairs, triples or groups of several nanoislands-so-called plasmonic molecules. PMID:26765367
Brow, R.K.; Kovacic, L.; Chambers, R.S.
1996-04-01
Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.
Optical modulators with 2D layered materials
NASA Astrophysics Data System (ADS)
Sun, Zhipei; Martinez, Amos; Wang, Feng
2016-04-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.
Large Area Synthesis of 2D Materials
NASA Astrophysics Data System (ADS)
Vogel, Eric
Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
2D microwave imaging reflectometer electronics
NASA Astrophysics Data System (ADS)
Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247
2D-Crystal-Based Functional Inks.
Bonaccorso, Francesco; Bartolotta, Antonino; Coleman, Jonathan N; Backes, Claudia
2016-08-01
The possibility to produce and process graphene, related 2D crystals, and heterostructures in the liquid phase makes them promising materials for an ever-growing class of applications as composite materials, sensors, in flexible optoelectronics, and energy storage and conversion. In particular, the ability to formulate functional inks with on-demand rheological and morphological properties, i.e., lateral size and thickness of the dispersed 2D crystals, is a step forward toward the development of industrial-scale, reliable, inexpensive printing/coating processes, a boost for the full exploitation of such nanomaterials. Here, the exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices. PMID:27273554
The 2D lingual appliance system.
Cacciafesta, Vittorio
2013-09-01
The two-dimensional (2D) lingual bracket system represents a valuable treatment option for adult patients seeking a completely invisible orthodontic appliance. The ease of direct or simplified indirect bonding of 2D lingual brackets in combination with low friction mechanics makes it possible to achieve a good functional and aesthetic occlusion, even in the presence of a severe malocclusion. The use of a self-ligating bracket significantly reduces chair-side time for the orthodontist, and the low-profile bracket design greatly improves patient comfort. PMID:24005953
Inkjet printing of 2D layered materials.
Li, Jiantong; Lemme, Max C; Östling, Mikael
2014-11-10
Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938
The infrared spectrum of the Ne-C2D2 complex.
Moazzen-Ahmadi, N; McKellar, A R W; Fernández, Berta; Farrelly, David
2015-11-28
Infrared spectra of Ne-C2D2 are observed in the region of the ν3 fundamental band (asymmetric C-D stretch, ≈2440 cm(-1)) using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion from a cooled nozzle. Like helium-acetylene, this system lies close to the free rotor limit, making analysis tricky because stronger transitions tend to pile up close to monomer (C2D2) rotation-vibration transitions. Assignments are aided by predicted rotational energies calculated from a published ab initio intermolecular potential energy surface. The analysis extends up to the j = 3←2 band, where j labels C2D2 rotation within the dimer, and is much more complete than the limited infrared assignments previously reported for Ne-C2H2 and Ne-C2HD. Two previous microwave transitions within the j = 1 state of Ne-C2D2 are reassigned. Coriolis model fits to the theoretical levels and to the spectrum are compared. Since the variations observed as a function of C2D2 vibrational excitation are comparable to those noted between theory and experiment, it is evident that more detailed testing of theory will require vibrational averaging over the acetylene intramolecular modes. PMID:26627959
The infrared spectrum of the Ne-C2D2 complex
NASA Astrophysics Data System (ADS)
Moazzen-Ahmadi, N.; McKellar, A. R. W.; Fernández, Berta; Farrelly, David
2015-11-01
Infrared spectra of Ne-C2D2 are observed in the region of the ν3 fundamental band (asymmetric C-D stretch, ≈2440 cm-1) using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion from a cooled nozzle. Like helium-acetylene, this system lies close to the free rotor limit, making analysis tricky because stronger transitions tend to pile up close to monomer (C2D2) rotation-vibration transitions. Assignments are aided by predicted rotational energies calculated from a published ab initio intermolecular potential energy surface. The analysis extends up to the j = 3←2 band, where j labels C2D2 rotation within the dimer, and is much more complete than the limited infrared assignments previously reported for Ne-C2H2 and Ne-C2HD. Two previous microwave transitions within the j = 1 state of Ne-C2D2 are reassigned. Coriolis model fits to the theoretical levels and to the spectrum are compared. Since the variations observed as a function of C2D2 vibrational excitation are comparable to those noted between theory and experiment, it is evident that more detailed testing of theory will require vibrational averaging over the acetylene intramolecular modes.
Toward a 2-D magneto-optical trap for polar molecules
NASA Astrophysics Data System (ADS)
Hummon, Matthew; Stuhl, Benjamin; Yeo, Mark; Collopy, Alejandra; Ye, Jun
2012-06-01
The additional structure that arises from the rotational degree of freedom in diatomic molecules makes difficult the adaptation of a traditional atomic magneto-optical trap (MOT) for use with molecules. We describe progress toward development of a 2-D MOT for laser cooled yttrium monoxide molecules based on a resonant LC baseball coil geometry.
Parallel stitching of 2D materials
Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al
2016-01-27
Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.
Parallel Stitching of 2D Materials.
Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing
2016-03-01
Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits. PMID:26813882
Baby universes in 2d quantum gravity
NASA Astrophysics Data System (ADS)
Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar
1993-06-01
We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.
Progress in Understanding the Infrared Spectra of He- and Ne-C_2D_2
NASA Astrophysics Data System (ADS)
Moazzen-Ahmadi, Nasser; McKellar, Bob
2014-06-01
Infrared spectra of He-C_2H_2 were recorded around 1990 in Roger Miller's lab, but detailed rotational assignment was apparently not possible even with the help of theoretical predictions. So there were no published experimental spectra of helium-acetylene van der Waals complexes until our recent work on He-C_2D_2 in the νb{3} region (˜2440 wn). The problem is that this complex lies close to the free rotor limit, so that most of the intensity in the spectrum piles up in tangles of closely spaced lines located close to the monomer rotational transitions, R(0), P(1), etc. Our previous He-C_2D_2 assignments were limited to the R(0) region, that is, the j = 1 ← 0 subband, where j represents C_2D_2 rotation. Here, we extend the analysis to j = 0 ← 1 and 2 ← 1 transitions with the help of new spectra obtained using a tunable OPO laser probe and a cooled supersonic jet nozzle. These subbands are weaker, not only because of the Boltzmann factor, but also the 2:1 nuclear spin statistics of j" = even:odd C_2D_2 levels. Moreover, the j = 0 ← 1 subband is overlapped by strong (C_2D_2)_2 transitions. We use a term value approach, obtaining a self-consistent set of ``experimental" energy levels which can be directly compared with theory or fitted in terms of a Coriolis model. Challenges also arise with Ne-C_2D_2, which is not quite so close to the free rotor limit, but still has many overlapping lines. Insights gained here help in assigning the tricky R(1) region for Ne-C_2D_2. M. Rezaei, N. Moazzen-Ahmadi, A.R.W. McKellar, B. Fernández, and D. Farrelly, Mol. Phys. 110, 2743 (2012).
Submillimeter laboratory identification of CH{sup +} and CH{sub 2}D{sup +}
Amano, T.
2015-01-22
Laboratory identification of two basic and important interstellar molecular ions is presented. The J = 1 - 0 rotational transition of {sup 12}CH{sup +} together with those of {sup 13}CH{sup +} and {sup 12}CD{sup +} was observed in the laboratory. The newly obtained frequencies were found to be different from those reported previously. Various experimental evidences firmly support the new measurements. In addition, the Zeeman effect and the spin-rotation hyperfine interaction enforce the laboratory identification with no ambiguity. Rotational lines of CH{sub 2}D{sup +} were observed in the submillimeter-wave region. This laboratory observation is consistent with a recent tentative identification of CH{sub 2}D{sup +} toward Ori IRc2.
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
Static & Dynamic Response of 2D Solids
1996-07-15
NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less
Stochastic Inversion of 2D Magnetotelluric Data
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less
Stochastic Inversion of 2D Magnetotelluric Data
Chen, Jinsong
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows
Explicit 2-D Hydrodynamic FEM Program
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less
Schottky diodes from 2D germanane
NASA Astrophysics Data System (ADS)
Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.
2016-07-01
We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.
Taylor, P.C.
1987-08-15
Although there are some significant exceptions, most important glass-forming systems contain elements from the sixth, or chalcogenide, column of the periodic table (oxygen, sulfur, selenium, or tellurium). The glasses that contain oxygen are typically insulators, while those that contain the heavier chalcogen elements are usually semiconductors. Even though oxygen is technically a chalcogen element, the term chalcogenide glass is commonly used to denote those largely covalent, semiconducting glasses contain sulfur, selenium, or tellurium as one of the constituents.
Layer Engineering of 2D Semiconductor Junctions.
He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel
2016-07-01
A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275
Realistic and efficient 2D crack simulation
NASA Astrophysics Data System (ADS)
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
Compact 2-D graphical representation of DNA
NASA Astrophysics Data System (ADS)
Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana
2003-05-01
We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.
2D materials: Graphene and others
NASA Astrophysics Data System (ADS)
Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh
2016-05-01
Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.
Mason, W.E.
1983-03-01
A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.
Crawford, R J; Kearns, M P
2003-10-01
Rotational moulding promises designers attractive economics and a low-pressure process. The benefits of rotational moulding are compared here with other manufacturing methods such as injection and blow moulding. PMID:14603714
Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.âº Asteroid and...
Tomosynthesis imaging with 2D scanning trajectories
NASA Astrophysics Data System (ADS)
Khare, Kedar; Claus, Bernhard E. H.; Eberhard, Jeffrey W.
2011-03-01
Tomosynthesis imaging in chest radiography provides volumetric information with the potential for improved diagnostic value when compared to the standard AP or LAT projections. In this paper we explore the image quality benefits of 2D scanning trajectories when coupled with advanced image reconstruction approaches. It is intuitively clear that 2D trajectories provide projection data that is more complete in terms of Radon space filling, when compared with conventional tomosynthesis using a linearly scanned source. Incorporating this additional information for obtaining improved image quality is, however, not a straightforward problem. The typical tomosynthesis reconstruction algorithms are based on direct inversion methods e.g. Filtered Backprojection (FBP) or iterative algorithms that are variants of the Algebraic Reconstruction Technique (ART). The FBP approach is fast and provides high frequency details in the image but at the same time introduces streaking artifacts degrading the image quality. The iterative methods can reduce the image artifacts by using image priors but suffer from a slow convergence rate, thereby producing images lacking high frequency details. In this paper we propose using a fast converging optimal gradient iterative scheme that has advantages of both the FBP and iterative methods in that it produces images with high frequency details while reducing the image artifacts. We show that using favorable 2D scanning trajectories along with the proposed reconstruction method has the advantage of providing improved depth information for structures such as the spine and potentially producing images with more isotropic resolution.
MAGNUM-2D computer code: user's guide
England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.
1985-01-01
Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.
Engineering light outcoupling in 2D materials.
Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali
2015-02-11
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells. PMID:25602462
A 2D electrohydrodynamic model for electrorotation of fluid drops.
Feng, James Q
2002-02-01
A theoretical analysis of spontaneous electrorotation of deformable fluid drops in a DC electric field is presented with a 2D electrohydrodynamic model. The fluids in the system are assumed to be leaky dielectric and Newtonian. If the rotating flow is dominant over the cellular convection type of electrohydrodynamic flow, closed-form solutions for drops of small deformations can be obtained. Because the governing equations are in general nonlinear even when drop deformations are ignored, the general solution for even undeformed drop takes a form of infinite series and can only be evaluated by numerical means. Both closed-form solutions for special cases and numerical solutions for more general cases are obtained here to describe steady-state field variables and first-order drop deformations. In a DC electric field of strength beyond the threshold value, spontaneous electrorotation of a drop is shown to occur when charge relaxation in the surrounding fluid is faster than the fluid inside the drop. With increasing the strength of the applied electric field from the threshold for onset of electrorotation, the axis of drop contraction deviates from from that of the applied electric field in the direction of the rotating flow with an angle increasing with the field strength. PMID:16290391
2D superconductivity by ionic gating
NASA Astrophysics Data System (ADS)
Iwasa, Yoshi
2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially
Seeded growth of robust SERS-active 2D Au@Ag nanoparticulate films
Baker, Gary A; Dai, Sheng; Hagaman, Edward {Ed} W; Mahurin, Shannon Mark; Zhu, Haoguo; Bao, Lili
2008-01-01
We demonstrate herein a novel and versatile solution-based methodology for fabricating self-organized two-dimensional (2D) Au nanoparticle arrays on glass using in situ nucleation at an aminosilane monolayer followed by seeded, electroless growth; subsequent deposition of Ag produced Au{at}Ag core-shell nanoparticulate films which proved highly promising as surface-enhanced Raman scattering (SERS) platforms.
GBL-2D Version 1.0: a 2D geometry boolean library.
McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.
2006-11-01
This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.
A hierarchically porous anatase TiO2 coated-WO3 2D IO bilayer film and its photochromic properties.
Li, Hua; Wu, Huazhong; Xiao, Jiajia; Su, Yanli; Robichaud, Jacques; Brüning, Ralf; Djaoued, Yahia
2016-01-18
A hierarchically porous anatase TiO2 coated-WO3 2D inverse opal (IO) bilayer film was fabricated on ITO glass using a layer by layer route with a hierarchically porous TiO2 top layer and an ordered super-macroporous WO3 2D IO bottom layer. This novel TiO2 coated-WO3 2D IO bilayer film was evaluated for photochromic applications. PMID:26576930
Interparticle Attraction in 2D Complex Plasmas
NASA Astrophysics Data System (ADS)
Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.
2016-03-01
Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.
Periodically sheared 2D Yukawa systems
Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
ENERGY LANDSCAPE OF 2D FLUID FORMS
Y. JIANG; ET AL
2000-04-01
The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.
A scalable 2-D parallel sparse solver
Kothari, S.C.; Mitra, S.
1995-12-01
Scalability beyond a small number of processors, typically 32 or less, is known to be a problem for existing parallel general sparse (PGS) direct solvers. This paper presents a parallel general sparse PGS direct solver for general sparse linear systems on distributed memory machines. The algorithm is based on the well-known sequential sparse algorithm Y12M. To achieve efficient parallelization, a 2-D scattered decomposition of the sparse matrix is used. The proposed algorithm is more scalable than existing parallel sparse direct solvers. Its scalability is evaluated on a 256 processor nCUBE2s machine using Boeing/Harwell benchmark matrices.
2D stepping drive for hyperspectral systems
NASA Astrophysics Data System (ADS)
Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin
2015-07-01
We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.
Dynamic Analysis of 2D Electromagnetic Resonant Optical Scanner Using 3D Finite Element Method
NASA Astrophysics Data System (ADS)
Hirata, Katsuhiro; Hong, Sara; Maeda, Kengo
The optical scanner is a scanning device in which a laser beam is reflected by a mirror that can be rotated or oscillated. In this paper, we propose a new 2D electromagnetic resonant optical scanner that employs electromagnets and leaf springs. Torque characteristics and resonance characteristics of the scanner are analyzed using the 3D finite element method. The validity of the analysis is shown by comparing the characteristics inferred from the analysis with the characteristics of the prototype. Further, 2D resonance is investigated by introducing a superimposed-frequency current in a single coil.
A 2-D orientation-adaptive prediction filter in lifting structures for image coding.
Gerek, Omer N; Cetin, A Enis
2006-01-01
Lifting-style implementations of wavelets are widely used in image coders. A two-dimensional (2-D) edge adaptive lifting structure, which is similar to Daubechies 5/3 wavelet, is presented. The 2-D prediction filter predicts the value of the next polyphase component according to an edge orientation estimator of the image. Consequently, the prediction domain is allowed to rotate +/-45 degrees in regions with diagonal gradient. The gradient estimator is computationally inexpensive with additional costs of only six subtractions per lifting instruction, and no multiplications are required. PMID:16435541
Determination of the Ground Vibrational State Parameters of the C2D4 Molecule
NASA Astrophysics Data System (ADS)
Fomchenko, A. L.; Zhang, F.; Gromova, O. V.; Buttersack, T.
2016-07-01
The object of the study is the C2D4 molecule, as it is important to know its properties to address numerous problems of molecular physics. The analysis of high-resolution spectra of the deuterated ethylene molecule was made in the range of 600-1200 cm-1, specifically bands ν7 and ν12. The results obtained were used to determine high-accurate values of the vibrational-rotational levels of the ground vibrational state of the C2D4 molecule.
Propagator-resolved 2D exchange in porous media in the inhomogeneous magnetic field.
Burcaw, Lauren M; Hunter, Mark W; Callaghan, Paul T
2010-08-01
We present a propagator-resolved 2D exchange spectroscopy technique for observing fluid motion in a porous medium. The susceptibility difference between the matrix and the fluid is exploited to produce an inhomogeneous internal magnetic field, causing the Larmor frequency to change as molecules migrate. We test our method using a randomly packed monodisperse 100 microm diameter glass bead matrix saturated with distilled water. Building upon previous 2D exchange spectroscopy work we add a displacement dimension which allows us to obtain 2D exchange spectra that are defined by both mixing time and spatial displacement rather than by mixing time alone. We also simulate our system using a Monte Carlo process in a random nonpenetrating monodisperse bead pack, finding good agreement with experiment. A simple analytic model is used to interpret the NMR data in terms of a characteristic length scale over which molecules must diffuse to sample the inhomogeneous field distribution. PMID:20554230
Ultrasonic tissue characterization via 2-D spectrum analysis: theory and in vitro measurements
Liu, Tian; Lizzi, Frederic L.; Ketterling, Jeffrey A.; Silverman, Ronald H.; Kutcher, Gerald J.
2010-01-01
A theoretical model is described for application in ultrasonic tissue characterization using a calibrated 2-D spectrum analysis method. This model relates 2-D spectra computed from ultrasonic backscatter signals to intrinsic physical properties of tissue microstructures, e.g., size, shape, and acoustic impedance. The model is applicable to most clinical diagnostic ultrasound systems. Two experiments employing two types of tissue architectures, spherical and cylindrical scatterers, are conducted using ultrasound with center frequencies of 10 and 40 MHz, respectively. Measurements of a tissue-mimicking phantom with an internal suspension of microscopic glass beads are used to validate the theoretical model. Results from in vitro muscle fibers are presented to further elucidate the utility of 2-D spectrum analysis in ultrasonic tissue characterization. PMID:17441250
Studies on the dynamics of vacuum encapsulated 2D MEMS scanners by laser Doppler vibrometry
NASA Astrophysics Data System (ADS)
Janes, Joachim; Hofmann, Ulrich
2014-03-01
2D MEMS scanners are used for e.g. Laser projection purposes or Lidar applications. Electrostatically driven resonant torsional oscillations of both axes of the scanners lead to Lissajous trajectories for Laser beams reflected from the micro mirror. Wafer level vacuum encapsulation with tilt glass capping ensures high angular amplitudes at low driving voltages additionally preventing environmental impacts. Applying Laser Doppler Vibrometry, the effect of residual gas friction, squeezed film damping and internal friction on 2D MEMS scanners is analyzed by measuring the Q-values associated with the torsional oscillations. Vibrometry is also used to analyze the oscillatory motion of the micro mirror and the gimbal of the scanners. Excited modes of the scanner structures are identified giving rise to coupling effects influencing the scanning performance of the 2D MEMS mirrors.
Gint2D-T2 correlation NMR of porous media
NASA Astrophysics Data System (ADS)
Zhang, Yan; Blümich, Bernhard
2015-03-01
The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient Gint can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T2 in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of Gint2D and T2 by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between Gint and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz 1H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint2D-T2 maps were obtained to study the sample heterogeneity.
Gint2D-T2 correlation NMR of porous media.
Zhang, Yan; Blümich, Bernhard
2015-03-01
The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient G(int) can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T(2) in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of G(int)(2)D and T(2) by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between G(int) and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz (1)H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint(2)D-T(2) maps were obtained to study the sample heterogeneity. PMID:25723135
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
Microwave Assisted 2D Materials Exfoliation
NASA Astrophysics Data System (ADS)
Wang, Yanbin
Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.
Photocurrent spectroscopy of 2D materials
NASA Astrophysics Data System (ADS)
Cobden, David
Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.
2-D or not 2-D, that is the question: A Northern California test
Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D
2005-06-06
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2
Momentum deficit in quantum glasses
Andreev, A. F.
2009-07-15
Using the concept of tunneling two-level systems, we explain the reduction of rotational inertia of disordered solid {sup 4}He observed in the torsional oscillator experiments. The key point is a peculiar quantum phenomenon of momentum deficit for two-level systems in moving solids. We show that an unusual state that is essentially different from both normal and superfluid solid states can be realized in quantum glasses. This state is characterized by reduced rotational inertia in oscillator experiments, by the absence of a superflow, and by the normal behavior in steady rotation.
Numerical Evaluation of 2D Ground States
NASA Astrophysics Data System (ADS)
Kolkovska, Natalia
2016-02-01
A ground state is defined as the positive radial solution of the multidimensional nonlinear problem
Canard configured aircraft with 2-D nozzle
NASA Technical Reports Server (NTRS)
Child, R. D.; Henderson, W. P.
1978-01-01
A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.
Graphene suspensions for 2D printing
NASA Astrophysics Data System (ADS)
Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.
2016-04-01
It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).
Metrology for graphene and 2D materials
NASA Astrophysics Data System (ADS)
Pollard, Andrew J.
2016-09-01
The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the
Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa
2013-09-01
The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. PMID:23672590
PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES
NASA Technical Reports Server (NTRS)
Lawrence, C.
1994-01-01
PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.
ERIC Educational Resources Information Center
Lekner, John
2008-01-01
Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…
Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.
de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R
2008-01-01
Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |< 0.083 mm for translations and |mu| < 0.023 degrees for rotations. The precision sigma in x-, y-, and z-direction was 0.090, 0.077, and 0.220 mm for translations and 0.155 degrees , 0.243 degrees , and 0.074 degrees for rotations. Our results show that the accuracy and precision of in vitro IBRSA, performed under ideal laboratory conditions, are lower than in vitro standard RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications. PMID:17706656
CAS2D- NONROTATING BLADE-TO-BLADE, STEADY, POTENTIAL TRANSONIC CASCADE FLOW ANALYSIS CODE
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1994-01-01
An exact, full-potential-equation model for the steady, irrotational, homoentropic, and homoenergetic flow of a compressible, inviscid fluid through a two-dimensional planar cascade together with its appropriate boundary conditions has been derived. The CAS2D computer program numerically solves an artificially time-dependent form of the actual full-potential-equation, providing a nonrotating blade-to-blade, steady, potential transonic cascade flow analysis code. Comparisons of results with test data and theoretical solutions indicate very good agreement. In CAS2D, the governing equation is discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field is discretized by providing a boundary-fitted, nonuniform computational mesh. This mesh is generated by using a sequence of conformal mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the full-potential equation is solved iteratively by using successive line over relaxation. Possible isentropic shocks are captured by the explicit addition of an artificial viscosity in a conservative form. In addition, a four-level, consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two-dimensional cascade flows. The results from CAS2D are not directly applicable to three-dimensional, potential, rotating flows through a cascade of blades because CAS2D does not consider the effects of the Coriolis force that would be present in the three-dimensional case. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 200K of 8 bit bytes. The CAS2D program was developed in 1980.
A new inversion method for (T2, D) 2D NMR logging and fluid typing
NASA Astrophysics Data System (ADS)
Tan, Maojin; Zou, Youlong; Zhou, Cancan
2013-02-01
One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.
2-D Inhomogeneous Modeling of the Solar CO Bands
NASA Astrophysics Data System (ADS)
Ayres, T. R.
1996-05-01
The recent discovery of off-limb emissions in the mid-IR ( ~ 5 mu m) vibration-rotation bands of solar carbon monoxide (CO) has sparked new interest in the formation of the molecular lines, and their ability to diagnose thermal conditions at high altitudes. The off-limb extensions of the strong CO lines indicate the penetration of cool material (T ~ 3500 K) several hundred kilometers into the otherwise hot (T ~ 6000 K) chromosphere. The origin of the cool gas, and its role in the thermal energy balance, remain controversial. The interpretation of the CO observations must rely heavily upon numerical modeling, in particular highly-inhomogeneous thermal structures arrayed in a 2-D scheme that can properly treat the geometry of the grazing rays at the solar limb. The radiation transport, itself, is especially simple for the CO off-limb emissions, because the fundamental bands form quite close to LTE (high collision rates; low spontaneous decay rates) and the background continuum is purely thermal as well (f--f transitions in H(-) and H). Thus, the geometrical aspects of the problem can be treated in considerably more detail than would be practical for typical NLTE scattering lines. I describe the recent modeling efforts, and the diagnostic potential of the CO bands for future observational studies of inhomogeneous surface structure on the Sun, and on other stars of late spectral type. This work was supported by NSF grant AST-9218063 to the University of Colorado.
2D Colloidal Wigner crystals in confined geometries
NASA Astrophysics Data System (ADS)
Higler, Ruben; Sprakel, Joris
2015-03-01
Crystallization of bulk systems has been widely studied using colloids as a model system. However, study into colloidal crystallization in confined geometries has been sparse and little is known about the effects of strong confinement on the dynamics of colloidal crystal. In our research we prepare 2D crystals from charged colloids in an apolar solvent to study crystal dynamics, formation, and structure in circular confinements. These confining geometries are made using softlithography techniques from SU-8. In order to broaden the parameter space we can reach in experiments we employ brownian dynamics simulations to supplement our experimental results. Using single-particle tracking we have subpixel resolution positional information of every particle in the system. We study the vibrational modes of our confined crystals and find well defined modes unique to confined systems, such as a radially symmetric compression (or breathing) mode, a collective rotation mode, and distinct resonance modes. Furthermore, due to the circular nature of our constrictions, defectless crystals are impossible, we find, for sufficiently high area fractions, that the defects order at well defined points at the edge. The effect of this ``defect-localization'' has a clear influence on the vibrational modes.
2-D stationary gas dynamics in a barred galaxy
NASA Astrophysics Data System (ADS)
Mulder, W. A.
2015-06-01
A code for solving the 2-D isothermal Euler equations of gas dynamics in a rotating disc is presented. The gravitational potential represents a weak bar and controls the flow. A damped Newton method solves the second-order upwind discretisation of the equations for a steady-state solution, using a consistent linearisation and a direct solver. Successive grid refinement, starting from a finite-volume grid with 8 by 8 cells, is applied to find solutions on subsequently finer meshes. On coarser meshes, a first-order spatial discretisation is used. The method obtains quadratic convergence once the solution approaches the steady state. The initial search is quick with the first-order scheme and slower with the second-order discretisation, up to 256 by 256 cells. Beyond, with 512 by 512 cells, the number of iterations becomes too large to be of practical use. Potential causes are discussed. The code can be applied as a tool for generating flow models if used on not too fine meshes.
NASA Astrophysics Data System (ADS)
Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John
2016-05-01
We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.
Competing coexisting phases in 2D water
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-01-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018
2D Radiative Processes Near Cloud Edges
NASA Technical Reports Server (NTRS)
Varnai, T.
2012-01-01
Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.
Simulation of Yeast Cooperation in 2D.
Wang, M; Huang, Y; Wu, Z
2016-03-01
Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse. PMID:26988702
Phase Engineering of 2D Tin Sulfides.
Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S
2016-06-01
Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950
Ion Transport in 2-D Graphene Nanochannels
NASA Astrophysics Data System (ADS)
Xie, Quan; Foo, Elbert; Duan, Chuanhua
2015-11-01
Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).
Parallel map analysis on 2-D grids
Berry, M.; Comiskey, J.; Minser, K.
1993-12-31
In landscape ecology, computer modeling is used to assess habitat fragmentation and its ecological iMPLications. Specifically, maps (2-D grids) of habitat clusters must be analyzed to determine number, sizes and geometry of clusters. Models prior to this study relied upon sequential Fortran-77 programs which limited the sizes of maps and densities of clusters which could be analyzed. In this paper, we present more efficient computer models which can exploit recursion or parallelism. Significant improvements over the original Fortran-77 programs have been achieved using both recursive and nonrecursive C implementations on a variety of workstations such as the Sun Sparc 2, IBM RS/6000-350, and HP 9000-750. Parallel implementations on a 4096-processor MasPar MP-1 and a 32-processor CM-5 are also studied. Preliminary experiments suggest that speed improvements for the parallel model on the MasPar MP-1 (written in MPL) and on the CM-5 (written in C using CMMD) can be as much as 39 and 34 times faster, respectively, than the most efficient sequential C program on a Sun Sparc 2 for a 512 map. An important goal in this research effort is to produce a scalable map analysis algorithm for the identification and characterization of clusters for relatively large maps on massively-parallel computers.
2D Turbulence with Complicated Boundaries
NASA Astrophysics Data System (ADS)
Roullet, G.; McWilliams, J. C.
2014-12-01
We examine the consequences of lateral viscous boundary layers on the 2D turbulence that arises in domains with complicated boundaries (headlands, bays etc). The study is carried out numerically with LES. The numerics are carefully designed to ensure all global conservation laws, proper boundary conditions and a minimal range of dissipation scales. The turbulence dramatically differs from the classical bi-periodic case. Boundary layer separations lead to creation of many small vortices and act as a continuing energy source exciting the inverse cascade of energy throughout the domain. The detachments are very intermittent in time. In free decay, the final state depends on the effective numerical resolution: laminar with a single dominant vortex for low Re and turbulent with many vortices for large enough Re. After very long time, the turbulent end-state exhibits a striking tendency for the emergence of shielded vortices which then interact almost elastically. In the forced case, the boundary layers allow the turbulence to reach a statistical steady state without any artificial hypo-viscosity or other large-scale dissipation. Implications are discussed for the oceanic mesoscale and submesoscale turbulence.
Competing coexisting phases in 2D water
NASA Astrophysics Data System (ADS)
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-05-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.
Competing coexisting phases in 2D water.
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-01-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018
2-D wavelet with position controlled resolution
NASA Astrophysics Data System (ADS)
Walczak, Andrzej; Puzio, Leszek
2005-09-01
Wavelet transformation localizes all irregularities in the scene. It is most effective in the case when intensities in the scene have no sharp details. It is the case often present in a medical imaging. To identify the shape one has to extract it from the scene as typical irregularity. When the scene does not contain sharp changes then common differential filters are not efficient tool for a shape extraction. The new 2-D wavelet for such task has been proposed. Described wavelet transform is axially symmetric and has varied scale in dependence on the distance from the centre of the wavelet symmetry. The analytical form of the wavelet has been presented as well as its application for details extraction in the scene. Most important feature of the wavelet transform is that it gives a multi-scale transformation, and if zoom is on the wavelet selectivity varies proportionally to the zoom step. As a result, the extracted shape does not change during zoom operation. What is more the wavelet selectivity can be fit to the local intensity gradient properly to obtain best extraction of the irregularities.
High-Temperature Viscosity of Commercial Glasses
Hrma, Pavel R.
2006-08-31
Arrhenius models were developed for glass viscosity within the processing temperature of six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Both local models (for each of the six glass types) and a global model (for the composition region of commercial glasses, i.e., the six glass types taken together) are presented. The models are based on viscosity data previously obtained with rotating spindle viscometers within the temperature range between 900 C and 1550 C; the viscosity varied from 1 Pa?s to 750 Pa?s. First-order models were applied to relate Arrhenius coefficients to the mass fractions of 15 components: SiO2, TiO2, ZrO2, Al2O3, Fe2O3, B2O3, MgO, CaO, SrO, BaO, PbO, ZnO, Li2O, Na2O, K2O. The R2 is 0.98 for the global model and ranges from .097 to 0.99 for the six local models. The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100 C to 1550 C and viscosity range from 5 to 400 Pa?s.
Rotating convection in elliptical geometries
NASA Astrophysics Data System (ADS)
Evonuk, M.
2014-12-01
Tidal interactions between hot jupiter planets and their host stars are likely to result in non-spherical geometries. These elliptical instabilities may have interesting effects on interior fluid convective patterns, which in turn influence the nature of the magnetic dynamo within these planets. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine to first order the effect of ellipticity on convection for varying density contrasts with differing convective vigor and rotation rate. This survey is conducted in two dimensions in order to simulate a broad range of ellipticities and to maximize the parameter space explored.
Locomotion gaits of a rotating cylinder pair
NASA Astrophysics Data System (ADS)
van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros; Mahadevan, L.
2015-11-01
Using 2D numerical simulations of the Navier-Stokes equations, we demonstrate that a simple pair of rotating cylinders can display a range of locomotion patterns of biological and engineering interest. Steadily counter-rotating the cylinders causes the pair to move akin to a vortex dipole for low rotation rates, but as the rotational velocity is increased the direction of motion reverses. Unsteady rotations lead to different locomotion gaits that resemble jellyfish (for in-phase rotations) and undulating swimmers (for out-of-phase rotations). The small number of parameters for this simple system allows us to systematically map the phase space of these gaits, and allows us to understand the underlying physical mechanisms using a minimal model with implications for biological locomotion and engineered analogs.
NASA Astrophysics Data System (ADS)
Schou, Jesper; Beck, John G.
2001-01-01
Simple convection models estimate the depth of supergranulation at approximately 15,000 km which suggests that supergranules should rotate at the rate of the plasma in the outer 2% of the Sun by radius. Previous measurements (Snodgrass & Ulrich, 1990; Beck & Schou, 2000) found that supergranules rotate significantly faster than this, with a size-dependent rotation rate. We expand on previous work and show that the torsional oscillation signal seen in the supergranules tracks that obtained for normal modes. We also find that the amplitudes and lifetimes of the supergranulation are size dependent.
2-D Animation's Not Just for Mickey Mouse.
ERIC Educational Resources Information Center
Weinman, Lynda
1995-01-01
Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)
Li, Guang; Yang, T. Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Åse; Powell, Simon N.; Mechalakos, James
2015-01-01
To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 ± 0.5 mm and 0.1° ± 0.4° in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 ± 1.6 mm and −0.4° ± 1.2° on average for each dimension for the cranial site, 0.7 ± 1.6 mm and 0.3° ± 1.3° for HN, 0.7 ± 2.0 mm and −0.7° ± 1.1° for the thorax, and 1.1 ± 2.6 mm and −0.5° ± 1.9° for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with
Li, Guang; Yang, T Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Åse; Powell, Simon N; Mechalakos, James
2015-06-01
To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2 DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2 DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6 DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2 DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2 DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2 DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 ± 0.5 mm and 0.1° ± 0.4° in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 ± 1.6 mm and -0.4° ± 1.2° on average for each dimension for the cranial site, 0.7 ± 1.6 mm and 0.3° ± 1.3° for HN, 0.7 ± 2.0 mm and -0.7° ± 1.1° for the thorax, and 1.1 ± 2.6 mm and -0.5° ± 1.9° for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with
MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ
Sanford, L.; Hallquist, J.O.
1992-02-24
MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
On 2D graphical representation of DNA sequence of nondegeneracy
NASA Astrophysics Data System (ADS)
Zhang, Yusen; Liao, Bo; Ding, Kequan
2005-08-01
Some two-dimensional (2D) graphical representations of DNA sequences have been given by Gates, Nandy, Leong and Mogenthaler, Randić, and Liao et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a nondegeneracy 2D graphical representation of DNA sequence, which is different from Randić's novel 2D representation and Liao's 2D representation. We also present the nondegeneracy forms corresponding to the representations of Gates, Nandy, Leong and Mogenthaler.
Generates 2D Input for DYNA NIKE & TOPAZ
1996-07-15
MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
NASA Astrophysics Data System (ADS)
Dziembowski, W.
Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.
NASA Astrophysics Data System (ADS)
Fletcher, N. H.; Tarnopolsky, A. Z.; Lai, J. C. S.
2002-03-01
Free rotational aerophones such as the bullroarer, which consists of a wooden slat whirled around on the end of a string, and which emits a loud pulsating roar, have been used in many ancient and traditional societies for ceremonial purposes. This article presents an experimental and theoretical investigation of this instrument. The aerodynamics of rotational behavior is elucidated, and relates slat rotation frequency to slat width and velocity through the air. Analysis shows that sound production is due to generation of an oscillating-rotating dipole across the slat, the role of the vortices shed by the slat being relatively minor. Apparent discrepancies between the behavior of a bullroarer slat and a slat mounted on an axle in a wind tunnel are shown to be due to viscous friction in the bearings of the wind-tunnel experiment.
Edge rotational magnons in magnonic crystals
Lisenkov, Ivan Kalyabin, Dmitry; Nikitov, Sergey
2013-11-11
It is predicted that in 2D magnonic crystals the edge rotational magnons of forward volume magnetostatic spin waves can exist. Under certain conditions, locally bounded magnons may appear within the crystal consisting of the ferromagnetic matrix and periodically inserted magnetic/non-magnetic inclusions. It is also shown that interplay of different resonances in 2D magnonic crystal may provide conditions for spin wave modes existence with negative group velocity.
2d PDE Linear Symmetric Matrix Solver
1983-10-01
ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
2d PDE Linear Asymmetric Matrix Solver
1983-10-01
ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
Ultrasonic 2D matrix PVDF transducer
NASA Astrophysics Data System (ADS)
Ptchelintsev, A.; Maev, R. Gr.
2000-05-01
During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.
A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data.
Spiegel, M; Redel, T; Struffert, T; Hornegger, J; Doerfler, A
2011-10-01
Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling. PMID:21908904
A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data
NASA Astrophysics Data System (ADS)
Spiegel, M.; Redel, T.; Struffert, T.; Hornegger, J.; Doerfler, A.
2011-10-01
Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.
A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures
Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.
1998-12-14
We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.
Hoffmann, H.J.
1990-12-31
This article deals with the general properties of photochromic inorganic glasses and the darkening and regeneration dynamics as well as the main photochemical and photophysical reactions occurring in the glasses. It concludes with applications of photochromic systems to self-adjusting window panes. This controlled flow of radiant energy could lead to important energy savings by decreasing the cooling and heating loads in buildings and automobiles.
Correlated Electron Phenomena in 2D Materials
NASA Astrophysics Data System (ADS)
Lambert, Joseph G.
In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in
2D/3D Visual Tracker for Rover Mast
NASA Technical Reports Server (NTRS)
Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria
2006-01-01
A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems
Instability of plasma waves during relaxation of 2D turbulent flows
NASA Astrophysics Data System (ADS)
Kabantsev, A. A.; Drsicoll, C. F.
2015-11-01
We observe strong excitation of novel low-frequency z-dependent plasma waves (mθ = 0 ,kz = 1) , occurring during the nominally 2D relaxation of turbulent initial conditions (10 -100 interacting vortices) in strongly magnetized electron columns. This initial relaxation often results in ``2D vortex crystal'' states. Here we describe experiments showing the concomitant growth of ill-understood low-frequency plasma waves, probably due to ``leakage'' of 2D turbulent potential energy into z-dependent fluctuations. With plasma injection, the lowest regular Trivelpiece- Gould mode (mθ = 0 ,kz = 1) is observed at fTG (t) ~ 2 . 8 MHz and exponential decay time τTG ~ 1 msec. Also, we observe rapid exponential growth of a novel low-frequency mode with fLF (t) ~ 0 . 3 MHz, nominally also with mθ = 0 ,kz = 1 . In a few milliseconds (several tens of rotation times at B = 10kG), the LF-mode becomes highly nonlinear, developing up to a dozen temporal harmonics. When a LF-harmonic resonates with the decaying TG-mode, LF-mode energy is transferred into the TG-mode, and both modes remain at moderate amplitudes until the 2D turbulent relaxation abates (hundreds of rotation times). The ill-understood fLF is independent of B, even though the growth and duration times follow scale as B1 from the 2D flows. Supported by National Science Foundation Grant PHY-1414570, Department of Energy Grants DE-SC0008693.
CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping
Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea
2016-01-01
TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact
CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.
Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea
2015-01-01
TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer
Direct Imaging of a Two-Dimensional Silica Glass on Graphene
NASA Astrophysics Data System (ADS)
Huang, P. Y.; Kurasch, S.; Srivastava, A.; Skakalova, V.; Kotakoski, J.; Krasheninnikov, A. V.; Hovden, R. M.; Mao, Q.; Meyer, J. C.; Smet, J.; Muller, D. A.; Kaiser, U.
2012-02-01
Large-area graphene substrates [1] are a promising lab bench for synthesizing and characterizing novel low-dimensional materials such as two-dimensional (2D) glasses. Unlike 2D crystals such as graphene, 2D glasses are almost entirely unexplored--yet they have enormous applicability for understanding amorphous structures, which are difficult to probe in 3D. We report direct observations of the structure of an amorphous 2D silica supported on graphene. To our knowledge, these results represent the first discovery of an extended 2D glass. The 2D glass enables aberration-corrected scanning transmission electron microscopy and spectroscopy, producing the first atomically-resolved experimental images of a glass. The images strikingly resemble Zachariasen's seminal 1932 cartoons of a 2D continuous random network glass [2] and allow direct structural analyses not possible in 3D glassy materials. DFT calculations indicate that van der Waals interactions with graphene energetically favor the 2D structure over bulk SiO2, suggesting that graphene can be instrumental in stabilizing new 2D materials. [1] J. C. Meyer et al., Nature 454, 319--322 (2008). [2] W. H. Zachariasen, J. Am. Chem. Soc. 54, 3841--3851 (1932).
NASA Technical Reports Server (NTRS)
Dickey, Jean O.
1995-01-01
The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.
NASA Technical Reports Server (NTRS)
1979-01-01
In aircraft turbine engine research, certain investigations require extremely precise measurement of the position of a rotating part, such as the rotor, a disc-like part of the engine's compressor which revolves around a shaft at extremely high speeds. For example, in studies of airflow velocity within a compressor, researchers need to know-for data correlation the instantaneous position of a given spot on the rotor each time a velocity measurement is made. Earlier methods of measuring rotor shaft angle required a physical connection to the shaft, which limited the velocity of the rotating object.
Exploring Rotations Due to Radiation Pressure: 2-D to 3-D Transition Is Interesting!
ERIC Educational Resources Information Center
Waxman, Michael A.
2010-01-01
Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as…
Exploring Rotations Due to Radiation Pressure: 2-D to 3-D Transition Is Interesting!
NASA Astrophysics Data System (ADS)
Waxman, Michael A.
2010-01-01
Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as space sailing1,2 or optical "tweezers."2 There are, however, relatively few problems that are available as end-of-the-chapter exercises. Below I present a problem I composed that I assign to my students in class and that facilitates a lively class discussion. This problem is somewhat reminiscent of the setting used by P. N. Lebedev in his historic experiments on proving the existence of radiation pressure.
2D and 3D potential flows with rotational source terms in turbomachines
NASA Astrophysics Data System (ADS)
Alkalai, K.; Leboeuf, F.
A computational method capable of treating two- and three-dimensional potential flows is developed which includes blade effects and viscosity in source terms determined over the entire flowfield considered. Details of the mathematical and numerical formulations are given, and grid generation and density calculation are discussed. Preliminary results obtained with the codes developed here are then presented, and the possibility of applying the method to more complex flows is examined.
Differential CYP 2D6 Metabolism Alters Primaquine Pharmacokinetics
Potter, Brittney M. J.; Xie, Lisa H.; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T.; Bandara Herath, H. M. T.; Dhammika Nanayakkara, N. P.; Tekwani, Babu L.; Walker, Larry A.; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.
2015-01-01
Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity. PMID:25645856
2D to 3D to 2D Dimensionality Crossovers in Thin BSCCO Films
NASA Astrophysics Data System (ADS)
Williams, Gary A.
2003-03-01
With increasing temperature the superfluid fraction in very thin BSCCO films undergoes a series of dimensionality crossovers. At low temperatures the strong anisotropy causes the thermal excitations to be 2D pancake-antipancake pairs in uncoupled layers. At higher temperatures where the c-axis correlation length becomes larger than a layer there is a crossover to 3D vortex loops. These are initially elliptical, but as the 3D Tc is approached they become more circular as the anisotropy scales away, as modeled by Shenoy and Chattopadhyay [1]. Close to Tc when the correlation length becomes comparable to the film thickness there is a further crossover to a 2D Kosterlitz-Thouless transition, with a drop of the superfluid fraction to zero at T_KT which can be of the order of 1 K below T_c. Good agreement with this model is found for experiments on thin BSCCO 2212 films [2]. 1. S. R. Shenoy and B. Chattopadhyay, Phys. Rev. B 51, 9129 (1995). 2. K. Osborn et al., cond-mat/0204417.
Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials
NASA Technical Reports Server (NTRS)
Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.
1993-01-01
Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.
NASA Astrophysics Data System (ADS)
Geistlinger, Helmut; Ataei-Dadavi, Iman; Mohammadian, Sadjad; Vogel, Hans-Jörg
2015-11-01
We study the impact of pore structure and surface roughness on capillary trapping of nonwetting gas phase during imbibition with water for capillary numbers between 10-7 and 5 × 10-5, within glass beads, natural sands, glass beads monolayers, and 2-D micromodels. The materials exhibit different roughness of the pore-solid interface. We found that glass beads and natural sands, which exhibit nearly the same grain size distribution, pore size distribution, and connectivity, showed a significant difference of the trapped gas phase of about 15%. This difference can be explained by the microstructure of the pore-solid interface. Based on the visualization of the trapping dynamics within glass beads monolayers and 2-D micromodels, we could show that bypass trapping controls the trapping process in glass beads monolayers, while snap-off trapping controls the trapping process in 2-D micromodels. We conclude that these different trapping processes are the reason for the different trapping efficiency, when comparing glass beads packs with natural sand packs. Moreover, for small capillary numbers of 10-6, we found that the cluster size distribution of trapped gas clusters of all 2-D and 3-D porous media can be described by a universal power law behavior predicted from percolation theory. This cannot be expected a priori for 2-D porous media, because bicontinuity of the two bulk phases is violated. Obviously, bicontinuity holds for the thin-film water phase and the bulk gas phase. The snap-off trapping process leads to ordinary bond percolation in front of the advancing bulk water phase and is the reason for the observed universal power law behavior in 2-D micromodels with rough surfaces.
2D Imaging in a Lightweight Portable MRI Scanner without Gradient Coils
Cooley, Clarissa Zimmerman; Stockmann, Jason P.; Armstrong, Brandon D.; Sarracanie, Mathieu; Lev, Michael H.; Rosen, Matthew S.; Wald, Lawrence L.
2014-01-01
Purpose As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as Intensive Care Units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. Methods We construct and validate a truly portable (<100kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating Spatial Encoding Magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed 2D image. Multiple receive channels are used to disambiguate the non-bijective encoding field. Results The system is validated with experimental images of 2D test phantoms. Similar to other non-linear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. Conclusion The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. PMID:24668520
3D/2D image registration using weighted histogram of gradient directions
NASA Astrophysics Data System (ADS)
Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang
2015-03-01
Three dimensional (3D) to two dimensional (2D) image registration is crucial in many medical applications such as image-guided evaluation of musculoskeletal disorders. One of the key problems is to estimate the 3D CT- reconstructed bone model positions (translation and rotation) which maximize the similarity between the digitally reconstructed radiographs (DRRs) and the 2D fluoroscopic images using a registration method. This problem is computational-intensive due to a large search space and the complicated DRR generation process. Also, finding a similarity measure which converges to the global optimum instead of local optima adds to the challenge. To circumvent these issues, most existing registration methods need a manual initialization, which requires user interaction and is prone to human error. In this paper, we introduce a novel feature-based registration method using the weighted histogram of gradient directions of images. This method simplifies the computation by searching the parameter space (rotation and translation) sequentially rather than simultaneously. In our numeric simulation experiments, the proposed registration algorithm was able to achieve sub-millimeter and sub-degree accuracies. Moreover, our method is robust to the initial guess. It can tolerate up to +/-90°rotation offset from the global optimal solution, which minimizes the need for human interaction to initialize the algorithm.
Automatic angle measurement of a 2D object using optical correlator-neural networks hybrid system
NASA Astrophysics Data System (ADS)
Manivannan, N.; Neil, M. A. A.
2011-04-01
In this paper a novel method is proposed and demonstrated for automatic rotation angle measurement of a 2D object using a hybrid architecture, consisting of a 4f optical correlator with a binary phase only multiplexed matched filter and a single layer neural network. The hybrid set-up can be considered as a two-layer perceptron-like neural network; an optical correlator is the first layer and the standard single layer neural network is the second layer. The training scheme used to train the hybrid architecture is a combination of a Direct Binary Search algorithm, to train the optical correlator, and an Error Back Propagation algorithm, to train the neural network. The aim is to perform the major information processing by the optical correlator with a small additional processing by the neural network stage. This allows the system to be used for real-time applications as optics has the inherent ability to process information in a parallel manner at high speed. The neural network stage gives an extra dimension of freedom so that complicated tasks like automatic rotation angle measurement can be achieved. Results of both computer simulation and experimental set-up are presented for rotation angle measurement of an English alphabetic character as a 2D object. The experimental set-up consists of a real optical correlator using two spatial light modulators for both input and frequency plane representations and a PC based model of a single layer network.
NASA Astrophysics Data System (ADS)
Colicchia, Giuseppe; Hopf, Martin; Wiesner, Hartmut; Zollman, Dean
2008-01-01
Eye aberrations are commonly corrected by lenses that restore vision by altering rays before they pass through the cornea. Some modern promoters claim that pinhole glasses are better than conventional lenses in correcting all kinds of refractive defects such as myopia (nearsighted), hyperopia (farsighted), astigmatisms, and presbyopia. Do pinhole glasses really give better vision? Some ways to use this question for motivation in teaching optics have been discussed. For this column we include a series of experiments that students can complete using a model of the eye and demonstrate issues related to pinhole vision correction.
14. Detail view of the old rotating nail case and ...
14. Detail view of the old rotating nail case and glass display cases now located in the second floor meeting room; looking southeast. - Horsepasture Store, U.S. Route 58 & State Route 687, Horse Pasture, Henry County, VA
Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics
Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan
2015-01-01
Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069
Meijer, Marrigje F.; Velleman, Ton; Boerboom, Alexander L.; Bulstra, Sjoerd K.; Otten, Egbert; Stevens, Martin; Reininga, Inge H. F.
2016-01-01
Introduction The EOS stereoradiography system has shown to provide reliable varus/valgus (VV) measurements of the lower limb in 2D (VV2D) and 3D (VV3D) after total knee arthroplasty (TKA). Validity of these measurements has not been investigated yet, therefore the purpose of this study was to determine validity of EOS VV2D and VV3D. Methods EOS images were made of a lower limb phantom containing a knee prosthesis, while varying VV angle from 15° varus to 15° valgus and flexion angle from 0° to 20°, and changing rotation from 20° internal to 20° external rotation. Differences between the actual VV position of the lower limb phantom and its position as measured on EOS 2D and 3D images were investigated. Results Rotation, flexion or VV angle alone had no major impact on VV2D or VV3D. Combination of VV angle and rotation with full extension did not show major differences in VV2D measurements either. Combination of flexion and rotation with a neutral VV angle showed variation of up to 7.4° for VV2D; maximum variation for VV3D was only 1.5°. A combination of the three variables showed an even greater distortion of VV2D, while VV3D stayed relatively constant. Maximum measurement difference between preset VV angle and VV2D was 9.8°, while the difference with VV3D was only 1.9°. The largest differences between the preset VV angle and VV2D were found when installing the leg in extreme angles, for example 15° valgus, 20° flexion and 20° internal rotation. Conclusions After TKA, EOS VV3D were more valid than VV2D, indicating that 3D measurements compensate for malpositioning during acquisition. Caution is warranted when measuring VV angle on a conventional radiograph of a knee with a flexion contracture, varus or valgus angle and/or rotation of the knee joint during acquisition. PMID:26771177
A Geometric Boolean Library for 2D Objects
2006-01-05
The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less
A Geometric Boolean Library for 2D Objects
McBride, Corey L.; Yarberry, Victor; Jorgensen, Craig
2006-01-05
The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various file formats, are also provided in the library.
Nonrigid point registration for 2D curves and 3D surfaces and its various applications
NASA Astrophysics Data System (ADS)
Wang, Hesheng; Fei, Baowei
2013-06-01
A nonrigid B-spline-based point-matching (BPM) method is proposed to match dense surface points. The method solves both the point correspondence and nonrigid transformation without features extraction. The registration method integrates a motion model, which combines a global transformation and a B-spline-based local deformation, into a robust point-matching framework. The point correspondence and deformable transformation are estimated simultaneously by fuzzy correspondence and by a deterministic annealing technique. Prior information about global translation, rotation and scaling is incorporated into the optimization. A local B-spline motion model decreases the degrees of freedom for optimization and thus enables the registration of a larger number of feature points. The performance of the BPM method has been demonstrated and validated using synthesized 2D and 3D data, mouse MRI and micro-CT images. The proposed BPM method can be used to register feature point sets, 2D curves, 3D surfaces and various image data.
Metal-organic extended 2D structures: Fe-PTCDA on Au(111).
Alvarez, Lucía; Peláez, Samuel; Caillard, Renaud; Serena, Pedro A; Martín-Gago, José A; Méndez, Javier
2010-07-30
In this work we combine organic molecules of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) with iron atoms on an Au (111) substrate in ultra-high vacuum conditions at different temperatures. By means of scanning tunnelling microscopy (STM) we study the formation of stable 2D metal-organic structures. We show that at certain growth conditions (temperature, time and coverage) stable 'ladder-like' nanostructures are obtained. These are the result of connecting together two metal-organic chains through PTCDA molecules placed perpendicularly, as rungs of a ladder. These structures, stable up to 450 K, can be extended in a 2D layer covering the entire surface and presenting different rotation domains. STM images at both polarities show a contrast reversal between the two molecules at the unit cell. By means of density functional theory (DFT) calculations, we confirm the stability of these structures and that their molecular orbitals are placed separately at the different molecules. PMID:20603531
AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode
Toomey, Aoife
2005-01-06
This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.
Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung
NASA Astrophysics Data System (ADS)
Bergmeir, Christoph; Subramanian, Navneeth
Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.
ERIC Educational Resources Information Center
Colicchia, Giuseppe; Hopf, Martin; Wiesner, Hartmut; Zollman, Dean
2008-01-01
Eye aberrations are commonly corrected by lenses that restore vision by altering rays before they pass through the cornea. Some modern promoters claim that pinhole glasses are better than conventional lenses in correcting all kinds of refractive defects such as myopia (nearsighted), hyperopia (farsighted), astigmatisms, and presbyopia. Do pinhole…
2-D steering and propelling of acoustic bubble-powered microswimmers.
Feng, Jian; Yuan, Junqi; Cho, Sung Kwon
2016-06-21
This paper describes bi-directional (linear and rotational) propelling and 2-D steering of acoustic bubble-powered microswimmers that are achieved in a centimeter-scale pool (beyond chip level scale). The core structure of a microswimmer is a microtube with one end open in which a gaseous bubble is trapped. The swimmer is propelled by microstreaming flows that are generated when the trapped bubble is oscillated by an external acoustic wave. The bubble oscillation and thus propelling force are highly dependent on the frequency of the acoustic wave and the bubble length. This dependence is experimentally studied by measuring the resonance behaviors of the testing pool and bubble using a laser Doppler vibrometer (LDV) and by evaluating the generated streaming flows. The key idea in the present 2-D steering is to utilize this dependence. Multiple bubbles with different lengths are mounted on a single microswimmer with a variety of arrangements. By controlling the frequency of the acoustic wave, only frequency-matched bubbles can strongly oscillate and generate strong propulsion. By arranging multiple bubbles of different lengths in parallel but with their openings opposite and switching the frequency of the acoustic wave, bi-directionally linear propelling motions are successfully achieved. The propelling forces are calculated by a CFD analysis using the Ansys Fluent® package. For bi-directional rotations, a similar method but with diagonal arrangement of bubbles on a rectangular swimmer is also applied. The rotation can be easily reversed when the frequency of the acoustic wave is switched. For 2-D steering, short bubbles are aligned perpendicular to long bubbles. It is successfully demonstrated that the microswimmer navigates through a T-junction channel under full control with and without carrying a payload. During the navigation, the frequency is the main control input to select and resonate targeted bubbles. All of these operations are achieved by a single
Functional characterization of CYP2D6 enhancer polymorphisms
Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun
2015-01-01
CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333
NASA Astrophysics Data System (ADS)
Chae, Dongho; Constantin, Peter; Wu, Jiahong
2014-09-01
We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.
Combining 2D synchrosqueezed wave packet transform with optimization for crystal image analysis
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Wirth, Benedikt; Yang, Haizhao
2016-04-01
We develop a variational optimization method for crystal analysis in atomic resolution images, which uses information from a 2D synchrosqueezed transform (SST) as input. The synchrosqueezed transform is applied to extract initial information from atomic crystal images: crystal defects, rotations and the gradient of elastic deformation. The deformation gradient estimate is then improved outside the identified defect region via a variational approach, to obtain more robust results agreeing better with the physical constraints. The variational model is optimized by a nonlinear projected conjugate gradient method. Both examples of images from computer simulations and imaging experiments are analyzed, with results demonstrating the effectiveness of the proposed method.
Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.
Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo
2016-09-01
Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788
Integrating Mobile Multimedia into Textbooks: 2D Barcodes
ERIC Educational Resources Information Center
Uluyol, Celebi; Agca, R. Kagan
2012-01-01
The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…
A simple configuration for fabrication of 2D and 3D photonic quasicrystals with complex structures
NASA Astrophysics Data System (ADS)
Sun, XiaoHong; Wang, Shuai; Liu, Wei; Jiang, LiuDi
2016-06-01
A simple method using a single-prism common-path interferometer is presented for the fabrication of complex quasicrystals in sub-micrometer scales. Multiple types of two-dimensional (2D) and three-dimensional (3D) quasicrystalline structures are designed and their diffraction patterns are obtained by using Fourier Transform method. Multi-fold rotational symmetries are demonstrated and compared. By using this method, a wide range of quasicrystals types can be produced with arbitrary complexities and rotational symmetries. The transmittance studies of 12-fold and 18-fold structures also reveal the existence of complete photonic bandgaps, which also demonstrates increased symmetry and significantly improved characteristics of photonic band-gaps.
A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows
NASA Astrophysics Data System (ADS)
Bijleveld, H. A.; Veldman, A. E. P.
2014-12-01
A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.
2D spectroscopy of galaxies with star formation regions. Study of SBS 1533+574
NASA Astrophysics Data System (ADS)
Hakopian, S. A.; Balayan, S. K.; Dodonov, S. N.; Movsessian, T. A.
2006-10-01
A preliminary analysis is given of 2D spectroscopic data on the galaxy SBS 1533+574(AB) obtained using the multipupil spectrographs on the 2.6-m telescope at the BAO (VAGR) and the 6-m telescope at the SAO (MPFS). The two components of the galaxy are star formation regions in different stages. The component SBS 1533+574B is known to be a BCDG. The plots of the intensity distribution of the radiation in the recombination lines of hydrogen and the forbidden lines of gases with a low degree of ionization obtained here make it possible to compare the basic characteristics of the HII-zones and the surrounding shell. The velocity distribution over the field of the galaxy is indicative of a common rotation of the system and of an intrinsic rotation of the components which is more distinct for component B.
Van der Waals stacked 2D layered materials for optoelectronics
NASA Astrophysics Data System (ADS)
Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.
2016-06-01
The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.
Unitary quantum lattice gas representation of 2D quantum turbulence
NASA Astrophysics Data System (ADS)
Zhang, Bo; Vahala, George; Vahala, Linda; Soe, Min
2011-05-01
Quantum vortex structures and energy cascades are examined for two dimensional quantum turbulence (2D QT) using a special unitary evolution algorithm. The qubit lattice gas (QLG) algorithm, is employed to simulate the weakly-coupled Bose-Einstein condensate (BEC) governed by the Gross-Pitaevskii (GP) equation. A parameter regime is uncovered in which, as in 3D QT, there is a very short Poincare recurrence time. This short recurrence time is destroyed as the nonlinear interaction energy is increased. Energy cascades for 2D QT are considered to examine whether 2D QT exhibits the inverse cascades of 2D classical turbulence. In the parameter regime considered, the spectra analysis reveals no such dual cascades---dual cascades being a hallmark of 2D classical turbulence.
CYP2D6 polymorphism in patients with eating disorders.
Peñas-Lledó, E M; Dorado, P; Agüera, Z; Gratacós, M; Estivill, X; Fernández-Aranda, F; Llerena, A
2012-04-01
CYP2D6 polymorphism is associated with variability in drug response, endogenous metabolism (that is, serotonin), personality, neurocognition and psychopathology. The relationship between CYP2D6 genetic polymorphism and the risk of eating disorders (ED) was analyzed in 267 patients with ED and in 285 controls. A difference in the CYP2D6 active allele distribution was found between these groups. Women carrying more than two active genes (ultrarapid metabolizers) (7.5 vs 4.6%) or two (67 vs 58.9%) active genes were more frequent among patients with ED, whereas those with one (20.6 vs 30.2%) or zero active genes (4.9 vs 6.3%) were more frequent among controls (P<0.05). Although further research is needed, present findings suggest an association between CYP2D6 and ED. CYP2D6 allele distribution in patients with ED seems related to increased enzyme activity. PMID:20877302
2D materials and van der Waals heterostructures.
Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H
2016-07-29
The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices. PMID:27471306
NASA Astrophysics Data System (ADS)
Owocki, S.
2008-06-01
Stellar rotation can play an important role in structuring and enhancing the mass loss from massive stars. Initial 1D models focussed on the expected centrifugal enhancement of the line-driven mass flux from the equator of a rotating star, but the review here emphasizes that the loss of centrifugal support away from the stellar surface actually limits the steady mass flux to just the point-star CAK value, with models near critical rotation characterized by a slow, subcritical acceleration. Recent suggestions that such slow outflows might have high enough density to explain disks in Be or B[e] stars are examined in the context of 2D simulations of the ``Wind Compressed Disk'' (WCD) paradigm, together with a review of the tendency for poleward components of the line-driving force to inhibit WCD formation. When one accounts for equatorial gravity darkening, the net tendency is in fact for the relatively bright regions at higher latitude to drive a faster, denser ``bipolar'' outflow. I discuss the potential relevance for the bipolar form of nebulae from LBV stars like η Carinae, but emphasize that, since the large mass loss associated with the eruption of eta Carinae's Homunculus would heavily saturate line-driving, explaining its bipolar form requires development of analogous models for continuum-driven mass loss. I conclude with a discussion of how radiation seems inherently ill-suited to supporting or driving a geometrically thin, but optically thick disk or disk outflow. The disks inferred in Be and B[e] stars may instead be centrifugally ejected, with radiation inducing an ablation flow from the disk surface, and thus perhaps playing a greater role in destroying (rather than creating) an orbiting, circumstellar disk.
NASA Technical Reports Server (NTRS)
Jerebets, Sergei
2004-01-01
We report our recent experiments on thermal conductivity measurements of superfluid He-4 near its phase transition in a two-dimensional (2D) confinement under saturated vapor pressure. A 2D confinement is created by 2-mm- and 1-mm-thick glass capillary plates, consisting of densely populated parallel microchannels with cross-sections of 5 x 50 and 1 x 10 microns, correspondingly. A heat current (2 < Q < 400 nW/sq cm) was applied along the channels long direction. High-resolution measurements were provided by DC SQUID-based high-resolution paramagnetic salt thermometers (HRTs) with a nanokelvin resolution. We might find that thermal conductivity of confined helium is finite at the bulk superfluid transition temperature. Our 2D results will be compared with those in a bulk and 1D confinement.
Comparison of unstable water infiltration in porous media in 2D and 3D experiments
NASA Astrophysics Data System (ADS)
Schütz, C.; Neuweiler, I.; Lehmann, P.; Papafotiou, A.; Vontobel, P.; Hartmann, S.
2010-05-01
Water infiltration into unsaturated soil is an important process for groundwater recharge and thus for water balance of natural hydrosystems. The characteristics of infiltration patterns depend on porous media properties and initial moisture content. Infiltration fronts into soil can be unstable in layered media with fine over dry coarse material. To predict arrival times of infiltration fronts and average water content in upscaled models, it is necessary to understand occurrence of instabilities. The unstable flow behavior is not captured by standard models and finger characteristics have mostly been investigated experimentally. Most experiments in the past were carried out in 2D setups and it is not clear how the results of such studies relate to real 3D systems. The aim of this study is to compare development and finger characteristics of unstable infiltration in 2D and 3D setups. We carried out laboratory experiments on fast infiltration in 2D and 3D setups and measured water content in porous media with neutron transmission technology at the NEUTRA beam line at the Paul Scherrer Institute, Switzerland. The 2D experiments were carried out in a glass sandbox (260 mm high, 75 mm wide and 11 mm deep). For the 3D experiments aluminum cylindrical column (150 mm in height and 100 mm in diameter) were used. Both columns were filled homogeneously with coarse quartz sand (grain size 0.7 - 1.2 mm) below fine sand layer (0.1 - 0.3 mm) of 20 - 30 mm thickness. Two dimensional projection images of water content with spatial resolution of 125 microns were deduced from neutron images every 2 second. For the 3D setup water content distribution was reconstructed in 3D to monitor water content inside the fingers over time. Water content and finger-width (15 - 23 mm) were similar for 2D and 3D setups. In both cases water content was maximum when the front passes and was decreasing afterwards (indicating "overshoot" behavior). Also the water content difference between values after
Controlled rotation of optically trapped microscopic particles.
Paterson, L; MacDonald, M P; Arlt, J; Sibbett, W; Bryant, P E; Dholakia, K
2001-05-01
We demonstrate controlled rotation of optically trapped objects in a spiral interference pattern. This pattern is generated by interfering an annular shaped laser beam with a reference beam. Objects are trapped in the spiral arms of the pattern. Changing the optical path length causes this pattern, and thus the trapped objects, to rotate. Structures of silica microspheres, microscopic glass rods, and chromosomes are set into rotation at rates in excess of 5 hertz. This technique does not depend on intrinsic properties of the trapped particle and thus offers important applications in optical and biological micromachines. PMID:11340200
High-Temperature Viscosity Of Commercial Glasses
Hrma, Pavel R; See, Clem A; Lam, Oanh P; Minister, Kevin B
2005-01-01
Viscosity was measured for six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Viscosity data were obtained with rotating spindle viscometers within the temperature range between 900°C and 1550°C; the viscosity varied from 1 Pa∙s to 750 Pa∙s. Arrhenius coefficients were calculated for individual glasses and linear models were applied to relate them to the mass fractions of 11 major components (SiO2, CaO, Na2O, Al2O3, B2O3, BaO, SrO, K2O, MgO, PbO, and ZrO2) and 12 minor components (Fe2O3, ZnO, Li2O, TiO2, CeO2, F, Sb2O3, Cr2O3, As2O3, MnO2, SO3, and Co3O4). The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100°C to 1550°C and viscosity range from 10 to 400 Pas.
Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng
2016-08-01
Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648
Triboluminescence of glasses and quartz
NASA Astrophysics Data System (ADS)
Chapman, G. N.; Walton, Alan J.
1983-10-01
The triboluminescent spectra of a variety of glasses and of crystalline quartz were measured while specimens were cut with a rotating diamond-impregnated saw blade. The spectra, which resemble the emission of a blackbody radiator, were recorded using an image-intensifier spectrograph. The data were intensity-corrected before being fitted to blackbody emission curves. Emission temperatures of around 1850 K for armor plate glass, 2100 K for Pyrex glass, 2400 K for soda lime glass, 2300 K for high-density lead glass, and 2800 K for cut quartz were obtained. It was found that the blackbody temperatures could be accounted for by a model in which a rectangular-shaped high-temperature zone, uniformly heated by energy released by plastic deformation near the crack tip, is supposed to propagate with the crack velocity [R. Weichert and K. Schonert, Q. J. Mech. Appl. Math. 31, 363-379 (1978)]. The measured blackbody temperatures imply zone widths of around 1×10-9 m. The spectrum from impact-fractured quartz was also measured; it was found to have a photoluminescent origin.
Hydrodynamics of embedded planets' first atmospheres - I. A centrifugal growth barrier for 2D flows
NASA Astrophysics Data System (ADS)
Ormel, Chris W.; Kuiper, Rolf; Shi, Ji-Ming
2015-01-01
In the core accretion paradigm of planet formation, gas giants only form a massive atmosphere after their progenitors exceeded a threshold mass: the critical core mass. Most (exo)planets, being smaller and rock/ice-dominated, never crossed this line. Nevertheless, they were massive enough to attract substantial amounts of gas from the disc, while their atmospheres remained in pressure-equilibrium with the disc. Our goal is to characterize the hydrodynamical properties of the atmospheres of such embedded planets and the implications for their (long-term) evolution. In this paper - the first in series - we start to investigate the properties of an isothermal and inviscid flow past a small, embedded planet by conducting local, 2D hydrodynamical simulations. Using the PLUTO code, we confirm that the flow is steady and bound. This steady outcome is most apparent for the log-polar grid (with the grid spacing proportional to the distance from the planet). For low-mass planets, Cartesian grids are somewhat less efficient as they have difficulty to follow the circular, large speeds in the deep atmosphere. Relating the amount of rotation to the gas fraction of the atmosphere, we find that more massive atmospheres rotate faster - a finding consistent with Kelvin's circulation theorem. Rotation therefore limits the amount of gas that planets can acquire from the nebula. Dependent on the Toomre-Q parameter of the circumstellar disc, the planet's atmosphere will reach Keplerian rotation before self-gravity starts to become important.
Development of a self-packaged 2D MEMS thermal wind sensor for low power applications
NASA Astrophysics Data System (ADS)
Zhu, Yan-qing; Chen, Bei; Qin, Ming; Huang, Jian-qiu; Huang, Qing-an
2015-08-01
This article describes the design, fabrication, and testing of a self-packaged 2D thermal wind sensor. The sensor consists of four heaters and nine thermistors. A central thermistor senses the average heater temperature, whereas the other eight, which are distributed symmetrically around the heaters, measure the temperature differences between the upstream and downstream surface of the sensor. The sensor was realized on one side of a silicon-in-glass (SIG) substrate. Vertical silicon vias in the substrate ensure good thermal contact between the sensor and the airflow and the glass effectively isolates the heaters from the thermistors. The substrate was fabricated by using a glass reflow process, after which the sensor was realized by a lift-off process. The sensor’s geometry was investigated with the help of simulations. These show that narrow heaters, moderate heater spacing, and thin substrates all improve the sensor’s sensitivity. Finally, the sensor was tested and calibrated in a wind tunnel by using a linear interpolation algorithm. At a constant heating power of 24.5 mW, measurement results show that the sensor can detect airflow speeds of up to 25 m s-1, with an accuracy of 0.1 m s-1 at low speeds and 0.5 m s-1 at high speeds. Airflow direction can be determined in a range of 360° with an accuracy of ±6°.
2D vs. 3D mammography observer study
NASA Astrophysics Data System (ADS)
Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent
2011-03-01
Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.
Efficient 2D MRI relaxometry using compressed sensing
NASA Astrophysics Data System (ADS)
Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.
2015-06-01
Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.
NKG2D receptor and its ligands in host defense
Lanier, Lewis L.
2015-01-01
NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808
2D constant-loss taper for mode conversion
NASA Astrophysics Data System (ADS)
Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.
2015-03-01
Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.
Recent advances in 2D materials for photocatalysis
NASA Astrophysics Data System (ADS)
Luo, Bin; Liu, Gang; Wang, Lianzhou
2016-03-01
Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.
Comparison of 2D and 3D gamma analyses
Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer
2014-02-15
Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must
Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials
NASA Astrophysics Data System (ADS)
Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee
2015-07-01
Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.
Rotator Cuff Tear Shape Characterization
Goodwin, David Steven; Kaplan, Daniel James; Fralinger, David; Gyftopoulos, Soterios; Meislin, Robert J.; Jazrawi, Laith M.
2016-01-01
Objectives: Proper surgical planning requires accurate and reliable pre-operative patient information. The more comprehensive the data, the more the surgeon can tailor a general surgical technique to an individual patient’s unique anatomy. A previous retrospective study demonstrated that three-dimensional magnetic resonance imaging more accurately characterized rotator cuff tears compared to two-dimensional images when checked against intra-operative pictures. The purpose of this study was to determine if three-dimensional MRI imaging would continue to be more accurate than two-dimensional imaging in a prospective study. Methods: Patients were prospectively included if they had a full-thickness primary rotator cuff tear on pre-operative MRI. Intra-op videos were taken from the posterior and lateral portals, with a grasper fully mobilizing the torn tendon in each view. 7 surgeons then reviewed the videos and independently characterized the shape of the tears into crescent, U-shaped tears, L-shaped tears, or massive tears. This was considered the gold-standard. Two musculoskeletal radiologists reviewed the corresponding MRI studies independently and blind to the arthroscopic findings and characterized the shape on the basis of the tear’s retraction and size 2D MRI. The 3D reconstructions of each cuff tear were reviewed by each radiologist to characterize the shape. Statistical analysis included 95% confidence intervals and fleiss’s kappa. Results: 37 patients were enrolled in the study. Among the 7 surgeons, agreement on cuff tear was 93% ( =.87). The accuracy for differentiating between crescent-shaped, longitudinal, and massive tears using measurements on 2D MRI was 73.4% for reader 1 and 71.2% for reader 2. The accuracy for tear shape characterization into crescent and longitudinal U- or L-shaped using 3D MRI was 92% for reader 1 and 94% for reader 2. When further characterizing the longitudinal tears as massive or not using 3D MRI, both readers had an
Accelerating numerical modeling of wave propagation through 2-D anisotropic materials using OpenCL.
Molero, Miguel; Iturrarán-Viveros, Ursula
2013-03-01
We present an implementation of the numerical modeling of elastic waves propagation, in 2D anisotropic materials, using the new parallel computing devices (PCDs). Our study is aimed both to model laboratory experiments and explore the capabilities of the emerging PCDs by discussing performance issues. In the experiments a sample plate of an anisotropic material placed inside a water tank is rotated and, for every angle of rotation it is subjected to an ultrasonic wave (produced by a large source transducer) that propagates in the water and through the material producing some reflection and transmission signals that are recording by a "point-like" receiver. This experiment is numerically modeled by running a finite difference code covering a set of angles θ∈[-50°, 50°], and recorded the signals for the transmission and reflection results. Transversely anisotropic and weakly orthorhombic materials are considered. We accelerated the computation using an open-source toolkit called PyOpenCL, which lets one to easily access the OpenCL parallel computation API's from the high-level programming environment of Python. A speedup factor over 19 using the GPU is obtained when compared with the execution of the same program in parallel using a CPU multi-core (in this case we use the 4-cores that has the CPU). The performance for different graphic cards and operating systems is included together with the full 2-D finite difference code with PyOpenCL. PMID:23290584
Moment Invariants for 2D Flow Fields via Normalization in Detail.
Bujack, Roxana; Hotz, Ingrid; Scheuermann, Gerik; Hitzer, Eckhard
2015-08-01
The analysis of 2D flow data is often guided by the search for characteristic structures with semantic meaning. One way to approach this question is to identify structures of interest by a human observer, with the goal of finding similar structures in the same or other datasets. The major challenges related to this task are to specify the notion of similarity and define respective pattern descriptors. While the descriptors should be invariant to certain transformations, such as rotation and scaling, they should provide a similarity measure with respect to other transformations, such as deformations. In this paper, we propose to use moment invariants as pattern descriptors for flow fields. Moment invariants are one of the most popular techniques for the description of objects in the field of image recognition. They have recently also been applied to identify 2D vector patterns limited to the directional properties of flow fields. Moreover, we discuss which transformations should be considered for the application to flow analysis. In contrast to previous work, we follow the intuitive approach of moment normalization, which results in a complete and independent set of translation, rotation, and scaling invariant flow field descriptors. They also allow to distinguish flow features with different velocity profiles. We apply the moment invariants in a pattern recognition algorithm to a real world dataset and show that the theoretical results can be extended to discrete functions in a robust way. PMID:26357255
D-brane Falling into 2d Black-hole and Closed String Radiation
NASA Astrophysics Data System (ADS)
Sugawara, Yuji
2005-12-01
We study the dynamics of D0-brane falling into the Lorentzian 2-dimensional black hole (2D BH), typically arising in the near-horizon limit of non-extremal NS5-brane background, by the methods of boundary state. The `falling D0-brane' is expected to be obtained by the Wick rotation from the known D1-brane solution on the Euclidean 2D BH. Despite its easiness in the classical solution, the Wick rotation in the boundary conformal theory is rather non-trivial due to ambiguities of boundary conditions. We propose the exact boundary state describing it, clarifying the role of boundary condition. We also evaluate the closed string radiation from the infalling brane. An expected thermal-like behavior at the Hawking temperature is observed in the outgoing radiation. On the other hand, it is remarkably found that the incoming radiation absorbed by the black hole effectively shows the Hagedorn-like behavior with precise α'-correction. This fact implies that the radiation products are dominated by very massive, highly non-relativistic closed string states like the tachyon matter. The radiation rate curiously depends on the level k of SL(2)/U(1) supercoset, suggesting the `black hole/string phase transition' at k = 1 (k = 3 for the bosonic coset) discussed recently.
The relationship between 2D static features and 2D dynamic features used in gait recognition
NASA Astrophysics Data System (ADS)
Alawar, Hamad M.; Ugail, Hassan; Kamala, Mumtaz; Connah, David
2013-05-01
In most gait recognition techniques, both static and dynamic features are used to define a subject's gait signature. In this study, the existence of a relationship between static and dynamic features was investigated. The correlation coefficient was used to analyse the relationship between the features extracted from the "University of Bradford Multi-Modal Gait Database". This study includes two dimensional dynamic and static features from 19 subjects. The dynamic features were compromised of Phase-Weighted Magnitudes driven by a Fourier Transform of the temporal rotational data of a subject's joints (knee, thigh, shoulder, and elbow). The results concluded that there are eleven pairs of features that are considered significantly correlated with (p<0.05). This result indicates the existence of a statistical relationship between static and dynamics features, which challenges the results of several similar studies. These results bare great potential for further research into the area, and would potentially contribute to the creation of a gait signature using latent data.
2D exchange 31P NMR spectroscopy of bacteriophage M13 and tobacco mosaic virus.
Magusin, P C; Hemminga, M A
1995-01-01
Two-dimensional (2D) exchange 31P nuclear magnetic resonance spectroscopy is used to study the slow overall motion of the rod-shaped viruses M13 and tobacco mosaic virus in concentrated gels. Even for short mixing times, observed diagonal spectra differ remarkably from projection spectra and one-dimensional spectra. Our model readily explains this to be a consequence of the T2e anisotropy caused by slow overall rotation of the viruses about their length axis. 2D exchange spectra recorded for 30% (w/w) tobacco mosaic virus with mixing times < 1 s do not show any off-diagonal broadening, indicating that its overall motion occurs in the sub-Hz frequency range. In contrast, the exchange spectra obtained for 30% M13 show significant off-diagonal intensity for mixing times of 0.01 s and higher. A log-gaussian distribution around 25 Hz of overall diffusion coefficients mainly spread between 1 and 10(3) Hz faithfully reproduces the 2D exchange spectra of 30% M13 recorded at various mixing times in a consistent way. A small but notable change in diagonal spectra at increasing mixing time is not well accounted for by our model and is probably caused by 31P spin diffusion. PMID:7756532
2D-3D Registration of CT Vertebra Volume to Fluoroscopy Projection: A Calibration Model Assessment
NASA Astrophysics Data System (ADS)
Bifulco, P.; Cesarelli, M.; Allen, R.; Romano, M.; Fratini, A.; Pasquariello, G.
2009-12-01
This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1 mm for displacements parallel to the fluoroscopic plane, and of order of 10 mm for the orthogonal displacement.
Recent developments in 2D layered inorganic nanomaterials for sensing
NASA Astrophysics Data System (ADS)
Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar
2015-08-01
Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.
2. D Street facade and rear (east) blank wall of ...
2. D Street facade and rear (east) blank wall of parking garage. Farther east is 408 8th Street (National Art And Frame Company). - PMI Parking Garage, 403-407 Ninth Street, Northwest, Washington, District of Columbia, DC
Collective excitations in 2D hard-disc fluid.
Huerta, Adrian; Bryk, Taras; Trokhymchuk, Andrij
2015-07-01
Collective dynamics of a two-dimensional (2D) hard-disc fluid was studied by molecular dynamics simulations in the range of packing fractions that covers states up to the freezing. Some striking features concerning collective excitations in this system were observed. In particular, the short-wavelength shear waves while being absent at low packing fractions were observed in the range of high packing fractions, just before the freezing transition in a 2D hard-disc fluid. In contrast, the so-called "positive sound dispersion" typically observed in dense Lennard-Jones-like fluids, was not detected for the 2D hard-disc fluid. The ratio of specific heats in the 2D hard-disc fluid shows a monotonic increase with density approaching the freezing, resembling in this way the similar behavior in the vicinity of the Widom line in the case of supercritical fluids. PMID:25595625
Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.
Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin
2016-03-01
Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956
Technical Review of the UNET2D Hydraulic Model
Perkins, William A.; Richmond, Marshall C.
2009-05-18
The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.
From weakly to strongly interacting 2D Fermi gases
NASA Astrophysics Data System (ADS)
Dyke, Paul; Fenech, Kristian; Lingham, Marcus; Peppler, Tyson; Hoinka, Sascha; Vale, Chris
2014-05-01
We study ultracold 2D Fermi gases of 6Li formed in a highly oblate trapping potential. The potential is generated by a cylindrically focused, blue detuned TEM01 mode laser beam. Weak magnetic field curvature provides highly harmonic confinement in the radial direction and we can readily produce single clouds with an aspect ratio of 230. Our experiments investigate the dimensional crossover from 3D to 2D for a two component Fermi gas in the Bose-Einstein Condensate to Bardeen Cooper Schrieffer crossover. Observation of an elbow in measurements of the cloud width vs. atom number is consistent with populating only the lowest transverse harmonic oscillator state for weak attractive interactions. This measurement is extended to the strongly interacting region using the broad Feshbach resonance at 832 G. We also report our progress towards measurement of the 2D equation of state for an interacting 2D Fermi gas via in-situ absorption imaging.
Chemical vapour deposition: Transition metal carbides go 2D
NASA Astrophysics Data System (ADS)
Gogotsi, Yury
2015-11-01
The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.
Dominant 2D magnetic turbulence in the solar wind
NASA Technical Reports Server (NTRS)
Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.
1995-01-01
There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.
Dominant 2D magnetic turbulence in the solar wind
Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.
1996-07-20
There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevectors aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of mid-inertial range magnetic spectra in the solar wind. The first test is based upon a characteristic difference between reduced magnetic power spectra in the two different directions perpendicular to the mean field. Such a difference is expected for 2D geometry but not for slab geometry. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant ({approx}85% by energy) 2D component in solar wind magnetic turbulence.
Efficient framework for deformable 2D-3D registration
NASA Astrophysics Data System (ADS)
Fluck, Oliver; Aharon, Shmuel; Khamene, Ali
2008-03-01
Using 2D-3D registration it is possible to extract the body transformation between the coordinate systems of X-ray and volumetric CT images. Our initial motivation is the improvement of accuracy of external beam radiation therapy, an effective method for treating cancer, where CT data play a central role in radiation treatment planning. Rigid body transformation is used to compute the correct patient setup. The drawback of such approaches is that the rigidity assumption on the imaged object is not valid for most of the patient cases, mainly due to respiratory motion. In the present work, we address this limitation by proposing a flexible framework for deformable 2D-3D registration consisting of a learning phase incorporating 4D CT data sets and hardware accelerated free form DRR generation, 2D motion computation, and 2D-3D back projection.
Lapchuk, A; Pashkevich, G A; Prygun, O V; Yurlov, V; Borodin, Y; Kryuchyn, A; Korchovyi, A A; Shylo, S
2015-10-01
The quasi-spiral 2D diffractive optical element (DOE) based on M-sequence of length N=15 is designed and manufactured. The speckle suppression efficiency by the DOE rotation is measured. The speckle suppression coefficients of 10.5, 6, and 4 are obtained for green, violet, and red laser beams, respectively. The results of numerical simulation and experimental data show that the quasi-spiral binary DOE structure can be as effective in speckle reduction as a periodic 2D DOE structure. The numerical simulation and experimental results show that the speckle suppression efficiency of the 2D DOE structure decreases approximately twice at the boundaries of the visible range. It is shown that a replacement of this structure with the bilateral 1D DOE allows obtaining the maximum speckle suppression efficiency in the entire visible range of light. PMID:26479664
Computational Design of 2D materials for Energy Applications
NASA Astrophysics Data System (ADS)
Sun, Qiang
2015-03-01
Since the successful synthesis of graphene, tremendous efforts have been devoted to two-dimensional monolayers such as boron nitride (BN), silicene and MoS2. These 2D materials exhibit a large variety of physical and chemical properties with unprecedented applications. Here we report our recent studies of computational design of 2D materials for fuel cell applications which include hydrogen storage, CO2 capture, CO conversion and O2 reduction.
Generating a 2D Representation of a Complex Data Structure
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.
Phylogenetic tree construction based on 2D graphical representation
NASA Astrophysics Data System (ADS)
Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa
2006-04-01
A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.
NASA Technical Reports Server (NTRS)
1988-01-01
The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.
Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials
NASA Astrophysics Data System (ADS)
Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna
2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.
A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions
Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.
2005-01-01
Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.
Frustration by Shape-Designed Local Polymorphism: A Near-Equilibrium Colloidal Glass of Hard Kites
NASA Astrophysics Data System (ADS)
Mason, Thomas
We study glass formation in uniform Brownian dispersions of hard colloidal polygonal platelets having the shape of 72-degree achiral kites, fabricated using optical stepper lithography. These kites are confined to a plane through roughness-controlled depletion attractions, and they diffuse in two-dimensions as we very slowly raise the particle density in the system. Although the densest packing of these kites is a crystalline lattice that fully tiles the plane, remarkably, we observe that the kites do not crystallize even for such quasi-static osmotic compression. By contrast, we have previously shown that such slow compression does cause crystallization of Brownian systems of other convex 2D lithographic shapes, such as squares and rhombs. Instead, the system of kites forms a disordered glass that undergoes an ergodic to non-ergodic transition, both in a rotational and a translational sense, while remaining near-equilibrium, as we measure by video particle tracking. We show that the high diversity of few-particle local polymorphic configurations (LPCs) of kites, related to our choice of angles and lengths in the designed shape, is responsible for suppressing long range spatial order and consequently favors glass formation instead. The prevalence and diversity of 5-particle LPCs, such as the pentagonal star, frustrate crystallization because these pentagonal LPCs are topologically different than the one 4-particle LPC that corresponds to the space-filling crystal. We anticipate that this mechanism of glass formation through shape-dependent frustration by diverse and incommensurate LPCs will also be relevant for molecular systems in three dimensions.
2D Fourier series representation of gravitational functionals in spherical coordinates
NASA Astrophysics Data System (ADS)
Ghobadi-Far, Khosro; Sharifi, Mohammad Ali; Sneeuw, Nico
2016-05-01
2D Fourier series representation of a scalar field like gravitational potential is conventionally derived by making use of the Fourier series of the Legendre functions in the spherical harmonic representation. This representation has been employed so far only in the case of a scalar field or the functionals that are related to it through a radial derivative. This paper provides a unified scheme to represent any gravitational functional in terms of spherical coordinates using a 2D Fourier series representation. The 2D Fourier series representation for each individual point is derived by transforming the spherical harmonics from the geocentric Earth-fixed frame to a rotated frame so that its equator coincides with the local meridian plane of that point. In the obtained formulation, each functional is linked to the potential in the spectral domain using a spectral transfer. We provide the spectral transfers of the first-, second- and third-order gradients of the gravitational potential in the local north-oriented reference frame and also those of some functionals of frequent use in the physical geodesy. The obtained representation is verified numerically. Moreover, spherical harmonic analysis of anisotropic functionals and contribution analysis of the third-order gradient tensor are provided as two numerical examples to show the power of the formulation. In conclusion, the 2D Fourier series representation on the sphere is generalized to functionals of the potential. In addition, the set of the spectral transfers can be considered as a pocket guide that provides the spectral characteristics of the functionals. Therefore, it extends the so-called Meissl scheme.
Total Protein Extraction and 2-D Gel Electrophoresis Methods for Burkholderia Species
Velapatiño, Billie; Zlosnik, James E. A.; Hird, Trevor J.; Speert, David P.
2013-01-01
The investigation of the intracellular protein levels of bacterial species is of importance to understanding the pathogenic mechanisms of diseases caused by these organisms. Here we describe a procedure for protein extraction from Burkholderia species based on mechanical lysis using glass beads in the presence of ethylenediamine tetraacetic acid and phenylmethylsulfonyl fluoride in phosphate buffered saline. This method can be used for different Burkholderia species, for different growth conditions, and it is likely suitable for the use in proteomic studies of other bacteria. Following protein extraction, a two-dimensional (2-D) gel electrophoresis proteomic technique is described to study global changes in the proteomes of these organisms. This method consists of the separation of proteins according to their isoelectric point by isoelectric focusing in the first dimension, followed by separation on the basis of molecular weight by acrylamide gel electrophoresis in the second dimension. Visualization of separated proteins is carried out by silver staining. PMID:24192802
CRYSTALLIZATION IN MULTICOMPONENT GLASSES
KRUGER AA; HRMA PR
2009-10-08
In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.
Kurkjian, C.R.
1985-01-01
This book presents information on the following topics: a look at the history of glass strength; atomistic theory of fracture; surface chemistry in relation to the strength and fracture of silicate glasses; high-speed photographic investigations of the dynamic localized loading of some oxide glasses; a correction for measurements of contact area using Newton's rings; envionmentally enhanced crack growth; fatigue in glass; behavior of flaws in fused silica fibers; fracture toughness of chalcogenide glasses and glass-ceramics; fracture analysis of glass surfaces; and fracture mechanics parameters for glasses - a compilation and correlation.
Behaviour of a rimmed elliptical inclusion in 2D slow incompressible viscous flow
NASA Astrophysics Data System (ADS)
Mancktelow, N. S.
2012-04-01
The shape preferred orientation of natural populations of inclusions (or "porphyroclasts") is often inconsistent with predictions from established analytical theory for inclusions with coherent boundaries (e.g., Pennacchioni et al. 2001). A totally incoherent or slipping interface can explain observed stable back-rotated (or antithetic) orientations but not the observed cut-off axial ratio, below which inclusions still rotate. However, this behaviour is reproduced by a rimmed inclusion with a rim viscosity that is not infinitely weak but still weaker than the matrix (e.g., Schmid and Podladchikov 2005; Johnson et al. 2009). In this study, finite-element numerical modelling (FEM) is employed to investigate this system in 2D over a very wide parameter space, from a viscosity ratio (relative to the matrix) of the inclusion from 106 to 1, the rim from 10-6 to 1, the axial ratio from 1.00025 to 20, and the rim thickness from 5% to 20%. Theoretical consideration of a concentric elliptical inclusion and ellipse reduces the number of scalar values to be determined to fully characterize the system to two: one for the rate of stretch of the inclusion and one for the rate of rotation. From these two values, the rotation and stretching rate can be calculated for any orientation and 2D background flow field. For effectively rigid particles, the cut-off axial ratio between rotation and stabilization is determined by the remaining two parameters, namely the rim viscosity and the thickness, with low rim viscosity or thick rims promoting stabilization. The shape fabric of a population of particles in a high strain shear zone, presented as a typical Rf/φ plot, can be forward modelled using an initial value Ordinary Differential Equation (ODE) approach. Because the rim does not remain elliptical to high strain, this method cannot accurately model the behaviour of individual inclusions. However, a statistical approach, allowing variation in rim viscosity, which is also a proxy for
Growth and Characterization of Silicon at the 2D Limit
NASA Astrophysics Data System (ADS)
Mannix, Andrew; Kiraly, Brian; Hersam, Mark; Guisinger, Nathan
2015-03-01
Because bulk silicon has dominated the development of microelectronics over the past 50 years, the recent interest in two-dimensional (2D) materials (e.g., graphene, MoS2, phosphorene, etc.) naturally raises questions regarding the growth and properties of silicon at the 2D limit. Utilizing atomic-scale, ultra-high vacuum (UHV) scanning tunneling microscopy (STM), we have investigated the 2D limits of silicon growth on Ag(111). In agreement with previous reports of sp2-bonded silicene phases, we observe the temperature-dependent evolution of ordered 2D phases. However, we attribute these to apparent Ag-Si surface alloys. At sufficiently high silicon coverage, we observe the precipitation of crystalline, sp3-bonded Si(111) domains. These domains are capped with a √3 honeycomb phase that is indistinguishable from the silver-induced √3 honeycomb-chained-trimer reconstruction on bulk Si(111). Further ex-situcharacterization with Raman spectroscopy, atomic force microscopy, cross-sectional transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy reveals that these sheets are ultrathin sheets of bulk-like, (111) oriented, sp3 silicon. Even at the 2D limit, scanning tunneling spectroscopy shows that these silicon nanosheets exhibit semiconducting electronic characteristics.
2D nanostructures for water purification: graphene and beyond.
Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C
2016-08-18
Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268
Sparse radar imaging using 2D compressed sensing
NASA Astrophysics Data System (ADS)
Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying
2014-10-01
Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.
Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.
Giraudeau, Patrick; Frydman, Lucio
2014-01-01
Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342
Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy
NASA Astrophysics Data System (ADS)
Giraudeau, Patrick; Frydman, Lucio
2014-06-01
Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.
Phosphorene: A New High-Mobility 2D Semiconductor
NASA Astrophysics Data System (ADS)
Liu, Han; Neal, Adam; Zhu, Zhen; Tomanek, David; Ye, Peide
2014-03-01
The rise of 2D crystals has opened various possibilities for future electrical and optical applications. MoS2 n-type transistors are showing great potential in ultra-scaled and low-power electronics. Here, we introduce phosphorene, a name we coined for 2D few-layer black phosphorus, a new 2D material with layered structure. We perform ab initio band structure calculations and show that the fundamental band gap depends sensitively on the number of layers. We observe transport behavior, which shows a mobility variation in the 2D plane. High on-current of 194 mA/mm, high hole mobility up to 286 cm2/V .s and on/off ratio up to 104 was achieved with phosphorene transistors at room temperature. Schottky barrier height at the metal/phosphorene interface was also measured as a function of temperature. We demonstrate a CMOS inverter with combination to MoS2 NMOS transistors, which shows great potential for semiconducting 2D crystals in future electronic, optoelectronic and flexible electronic devices.
Mean flow and anisotropic cascades in decaying 2D turbulence
NASA Astrophysics Data System (ADS)
Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki
2015-11-01
Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.
Analysis of EEG signals regularity in adults during video game play in 2D and 3D.
Khairuddin, Hamizah R; Malik, Aamir S; Mumtaz, Wajid; Kamel, Nidal; Xia, Likun
2013-01-01
Video games have long been part of the entertainment industry. Nonetheless, it is not well known how video games can affect us with the advancement of 3D technology. The purpose of this study is to investigate the EEG signals regularity when playing video games in 2D and 3D modes. A total of 29 healthy subjects (24 male, 5 female) with mean age of 21.79 (1.63) years participated. Subjects were asked to play a car racing video game in three different modes (2D, 3D passive and 3D active). In 3D passive mode, subjects needed to wear a passive polarized glasses (cinema type) while for 3D active, an active shutter glasses was used. Scalp EEG data was recorded during game play using 19-channel EEG machine and linked ear was used as reference. After data were pre-processed, the signal irregularity for all conditions was computed. Two parameters were used to measure signal complexity for time series data: i) Hjorth-Complexity and ii) Composite Permutation Entropy Index (CPEI). Based on these two parameters, our results showed that the complexity level increased from eyes closed to eyes open condition; and further increased in the case of 3D as compared to 2D game play. PMID:24110125
IMPACT STRENGTH OF GLASS AND GLASS CERAMIC
Bless, S.; Tolman, J.
2009-12-28
Strength of glass and glass ceramic was measured with a bar impact technique. High-speed movies show regions of tensile and compressive failure. The borosilicate glass had a compressive strength of at least 2.2 GPa, and the glass ceramic at least 4 GPa. However, the BSG was much stronger in tension than GC. In ballistic tests, the BSG was the superior armor.
2D materials for photon conversion and nanophotonics
NASA Astrophysics Data System (ADS)
Tahersima, Mohammad H.; Sorger, Volker J.
2015-09-01
The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.
Perception-based reversible watermarking for 2D vector maps
NASA Astrophysics Data System (ADS)
Men, Chaoguang; Cao, Liujuan; Li, Xiang
2010-07-01
This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.
Graphene based 2D-materials for supercapacitors
NASA Astrophysics Data System (ADS)
Palaniselvam, Thangavelu; Baek, Jong-Beom
2015-09-01
Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.
Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings
Rosenberger, Manuel; Eisenbeil, Waltraud; Schmauss, Bernhard; Hellmann, Ralf
2015-01-01
We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG) fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain. PMID:25686313
Simultaneous 2D strain sensing using polymer planar Bragg gratings.
Rosenberger, Manuel; Eisenbeil, Waltraud; Schmauss, Bernhard; Hellmann, Ralf
2015-01-01
We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG) fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain. PMID:25686313
Focusing surface wave imaging with flexible 2D array
NASA Astrophysics Data System (ADS)
Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan
2016-04-01
Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.
2D bifurcations and Newtonian properties of memristive Chua's circuits
NASA Astrophysics Data System (ADS)
Marszalek, W.; Podhaisky, H.
2016-01-01
Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.
Microscale 2D separation systems for proteomic analysis
Xu, Xin; Liu, Ke; Fan, Z. Hugh
2012-01-01
Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786
Real-time 2-D temperature imaging using ultrasound.
Liu, Dalong; Ebbini, Emad S
2010-01-01
We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy. PMID:19884075
Direct imaging of a two-dimensional silica glass on graphene.
Huang, Pinshane Y; Kurasch, Simon; Srivastava, Anchal; Skakalova, Viera; Kotakoski, Jani; Krasheninnikov, Arkady V; Hovden, Robert; Mao, Qingyun; Meyer, Jannik C; Smet, Jurgen; Muller, David A; Kaiser, Ute
2012-02-01
Large-area graphene substrates provide a promising lab bench for synthesizing, manipulating, and characterizing low-dimensional materials, opening the door to high-resolution analyses of novel structures, such as two-dimensional (2D) glasses, that cannot be exfoliated and may not occur naturally. Here, we report the accidental discovery of a 2D silica glass supported on graphene. The 2D nature of this material enables the first atomic resolution transmission electron microscopy of a glass, producing images that strikingly resemble Zachariasen's original 1932 cartoon models of 2D continuous random network glasses. Atomic-resolution electron spectroscopy identifies the glass as SiO(2) formed from a bilayer of (SiO(4))(2-) tetrahedra and without detectable covalent bonding to the graphene. From these images, we directly obtain ring statistics and pair distribution functions that span short-, medium-, and long-range order. Ab initio calculations indicate that van der Waals interactions with graphene energetically stabilizes the 2D structure with respect to bulk SiO(2). These results demonstrate a new class of 2D glasses that can be applied in layered graphene devices and studied at the atomic scale. PMID:22268818
Design of the LRP airfoil series using 2D CFD
NASA Astrophysics Data System (ADS)
Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas
2014-06-01
This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.
Quantum process tomography by 2D fluorescence spectroscopy
Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán
2015-06-07
Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.
Evaluation of 2D ceramic matrix composites in aeroconvective environments
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza
1992-01-01
An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.
Radiative heat transfer in 2D Dirac materials
Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.
2015-05-12
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.
Nomenclature for human CYP2D6 alleles.
Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M
1996-06-01
To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658
The 2D large deformation analysis using Daubechies wavelet
NASA Astrophysics Data System (ADS)
Liu, Yanan; Qin, Fei; Liu, Yinghua; Cen, Zhangzhi
2010-01-01
In this paper, Daubechies (DB) wavelet is used for solution of 2D large deformation problems. Because the DB wavelet scaling functions are directly used as basis function, no meshes are needed in function approximation. Using the DB wavelet, the solution formulations based on total Lagrangian approach for two-dimensional large deformation problems are established. Due to the lack of Kroneker delta properties in wavelet scaling functions, Lagrange multipliers are used for imposition of boundary condition. Numerical examples of 2D large deformation problems illustrate that this method is effective and stable.
Optical imaging systems analyzed with a 2D template.
Haim, Harel; Konforti, Naim; Marom, Emanuel
2012-05-10
Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates. PMID:22614498
2dF grows up: Echidna for the AAT
NASA Astrophysics Data System (ADS)
McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg
2008-07-01
We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.
2012-01-05
Code is for a layered electric medium with 2d structure. Includes air-earth interface at node z=2.. The electric ex and ez fields are calculated on edges of elemental grid and magnetic field hy is calculated on the face of the elemental grid. The code allows for a layered earth with 2d structures. Solutions of coupled first order Maxwell's equations are solved in the two dimensional environment using a finite- difference scheme on a staggered spationamore » and temporal grid.« less
Noninvasive deep Raman detection with 2D correlation analysis
NASA Astrophysics Data System (ADS)
Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug
2014-07-01
The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.
On 2D bisection method for double eigenvalue problems
Ji, X.
1996-06-01
The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.
Experimental validation of equations for 2D DIC uncertainty quantification.
Reu, Phillip L.; Miller, Timothy J.
2010-03-01
Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.
NASA Astrophysics Data System (ADS)
Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.
2007-09-01
This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it
Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E
2016-08-21
Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR. PMID:27448174
Implications of lack-of-ergodicity in 2D Potts model
NASA Astrophysics Data System (ADS)
Ota, Smita
2015-03-01
Microcanonical Monte Carlo simulation is used to study two dimensional (2D) q state Potts model. We consider a 2D square lattice having NxN spins with periodic boundary condition and simulated the system with N =15 and q =10. The demon energy distribution is found to be exponential for high system energy and large system size. For smaller system size and above the first order transition the demon energy distribution is found to deviate from exp(- βED) and has the form exp(- βED + γ ED2). Here β = 1/kBT and kB is the Boltzmann constant. It is found that γ is finite at higher temperatures. As the system energy is reduced γ becomes zero near the first order transition. It is found that during cooling γ changes sign from negative to positive and then to negative again near the 1st order transition. Therefore the demon energy distribution becomes exp(- βED) (or ergodic) at two values of system energy near the 1st order transition. Further cooling or at still lower temperatures the system shows lack of ergodicity. However, difference in heating cooling curves are apparent in E vs γ. The system energies for which γ is zero during cooling can represent the 'ergodic' states. This can be related to the two-level systems observed in glasses at low temperatures.
2D light scattering static cytometry for label-free single cell analysis with submicron resolution.
Xie, Linyan; Yang, Yan; Sun, Xuming; Qiao, Xu; Liu, Qiao; Song, Kun; Kong, Beihua; Su, Xuantao
2015-11-01
Conventional optical cytometric techniques usually measure fluorescence or scattering signals at fixed angles from flowing cells in a liquid stream. Here we develop a novel cytometer that employs a scanning optical fiber to illuminate single static cells on a glass slide, which requires neither microfluidic fabrication nor flow control. This static cytometric technique measures two dimensional (2D) light scattering patterns via a small numerical aperture (0.25) microscope objective for label-free single cell analysis. Good agreement is obtained between the yeast cell experimental and Mie theory simulated patterns. It is demonstrated that the static cytometer with a microscope objective of a low resolution around 1.30 μm has the potential to perform high resolution analysis on yeast cells with distributed sizes. The capability of the static cytometer for size determination with submicron resolution is validated via measurements on standard microspheres with mean diameters of 3.87 and 4.19 μm. Our 2D light scattering static cytometric technique may provide an easy-to-use, label-free, and flow-free method for single cell diagnostics. PMID:26115102
... doctors because of a rotator cuﬀ problem. A torn rotator cuﬀ will weaken your shoulder. This means ... or more of the rotator cuﬀ tendons is torn, the tendon no longer fully attaches to the ...
... others can be very painful. Treatment for a torn rotator cuff depends on age, health, how severe ... is, and how long you've had the torn rotator cuff. Treatment for torn rotator cuff includes: ...
... days, such as in painting and carpentry Poor posture over many years Aging Rotator cuff tears TEARS ... also help prevent rotator cuff problems. Practice good posture to keep your rotator cuff tendons and muscles ...
Chemical Principles Revisited: The Chemistry of Glass.
ERIC Educational Resources Information Center
Kolb, Doris; Kolb, Kenneth E.
1979-01-01
Presents a detailed discussion on the chemistry of glass. Topics discussed include: natural glass, early history, modern glass composition, raw materials for glass melting, chemically modified glasses, modern glass forming, glass ceramics, and new developments in glass research. (BT)
Energy Transfer in Rotating Turbulence
NASA Technical Reports Server (NTRS)
Cambon, Claude; Mansour, Nagi N.; Godeferd, Fabien S.; Rai, Man Mohan (Technical Monitor)
1995-01-01
The influence or rotation on the spectral energy transfer of homogeneous turbulence is investigated in this paper. Given the fact that linear dynamics, e.g. the inertial waves regime tackled in an RDT (Rapid Distortion Theory) fashion, cannot Affect st homogeneous isotropic turbulent flow, the study of nonlinear dynamics is of prime importance in the case of rotating flows. Previous theoretical (including both weakly nonlinear and EDQNM theories), experimental and DNS (Direct Numerical Simulation) results are gathered here and compared in order to give a self-consistent picture of the nonlinear effects of rotation on tile turbulence. The inhibition of the energy cascade, which is linked to a reduction of the dissipation rate, is shown to be related to a damping due to rotation of the energy transfer. A model for this effect is quantified by a model equation for the derivative-skewness factor, which only involves a micro-Rossby number Ro(sup omega) = omega'/(2(OMEGA))-ratio of rms vorticity and background vorticity as the relevant rotation parameter, in accordance with DNS and EDQNM results fit addition, anisotropy is shown also to develop through nonlinear interactions modified by rotation, in an intermediate range of Rossby numbers (Ro(omega) = (omega)' and Ro(omega)w greater than 1), which is characterized by a marco-Rossby number Ro(sup L) less than 1 and Ro(omega) greater than 1 which is characterized by a macro-Rossby number based on an integral lengthscale L and the micro-Rossby number previously defined. This anisotropy is mainly an angular drain of spectral energy which tends to concentrate energy in tile wave-plane normal to the rotation axis, which is exactly both the slow and the two-dimensional manifold. In Addition, a polarization of the energy distribution in this slow 2D manifold enhances horizontal (normal to the rotation axis) velocity components, and underlies the anisotropic structure of the integral lengthscales. Finally is demonstrated the
Neurite outgrowth at the interface of 2D and 3D growth environments
NASA Astrophysics Data System (ADS)
Kofron, Celinda M.; Fong, Vivian J.; Hoffman-Kim, Diane
2009-02-01
Growing neurons navigate complex environments, but in vitro systems for studying neuronal growth typically limit the cues to flat surfaces or a single type of cue, thereby limiting the resulting growth. Here we examined the growth of neurons presented with two-dimensional (2D) substrate-bound cues when these cues were presented in conjunction with a more complex three-dimensional (3D) architecture. Dorsal root ganglia (DRG) explants were cultured at the interface between a collagen I matrix and a glass coverslip. Laminin (LN) or chondroitin sulfate proteoglycans (CSPG) were uniformly coated on the surface of the glass coverslip or patterned in 50 µm tracks by microcontact printing. Quantitative analysis of neurite outgrowth with a novel grid system at multiple depths in the gel revealed several interesting trends. Most of the neurites extended at the surface of the gel when LN was presented whereas more neurites extended into the gel when CSPG was presented. Patterning of cues did not affect neurite density or depth of growth. However, neurite outgrowth near the surface of the gel aligned with LN patterns, and these extensions were significantly longer than neurites extended in other cultures. In interface cultures, DRG growth patterns varied with the type of cue where neurite density was higher in cultures presenting LN than in cultures presenting CSPG. These results represent an important step toward understanding how neurons integrate local structural and chemical cues to make net growth decisions.
Sehgal, Akansha Ashvani; Pelupessy, Philippe; Rolando, Christian; Bodenhausen, Geoffrey
2016-04-01
Two-dimensional (2D) Fourier transform ion cyclotron resonance (FT-ICR) offers an approach to mass spectrometry (MS) that pursuits similar objectives as MS/MS experiments. While the latter must focus on one ion species at a time, 2D FT ICR can examine all possible correlations due to ion fragmentation in a single experiment: correlations between precursors, charged and neutral fragments. We revisited the original 2D FT-ICR experiment that has hitherto fallen short of stimulating significant analytical applications, probably because it is technically demanding. These shortcomings can now be overcome by improved FT-ICR instrumentation and computer hard- and software. We seek to achieve a better understanding of the intricacies of the behavior of ions during a basic two-dimensional ICR sequence comprising three simple monochromatic pulses. Through simulations based on Lorentzian equations, we have mapped the ion trajectories for different pulse durations and phases. PMID:26974979
NASA Technical Reports Server (NTRS)
Helman, D. D.; Holt, J. W.; Smiser, L. V.
1979-01-01
Filing procedure consisting of machined lightweight fused-silica tiles coated with thin-layer of borosilicate glass produces homogeneous seal in thin glass. Procedure is useful in repairing glass envelopes, X-ray tub windows, Dewar flasks, and similar thin glass objects.
ELLIPT2D: A Flexible Finite Element Code Written Python
Pletzer, A.; Mollis, J.C.
2001-03-22
The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.
Rheological Properties of Quasi-2D Fluids in Microgravity
NASA Technical Reports Server (NTRS)
Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha
2015-01-01
In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.
Creation of a scalar potential in 2D dilaton gravity
Behrndt, K.
1994-09-01
The authors investigate quantum corrections of the 2-d dilaton gravity near the singularity. Their motivation comes from a s-wave reduced cosmological solution which is classically singular in the scalar fields (dilaton and moduli). As a result they find, that the singularity disappears and a dilaton/moduli potential is created.
NKG2D ligands mediate immunosurveillance of senescent cells
Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery
2016-01-01
Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797
Discrepant Results in a 2-D Marble Collision
ERIC Educational Resources Information Center
Kalajian, Peter
2013-01-01
Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…
Validation and testing of the VAM2D computer code
Kool, J.B.; Wu, Y.S. )
1991-10-01
This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.
On Regularity Criteria for the 2D Generalized MHD System
NASA Astrophysics Data System (ADS)
Jiang, Zaihong; Wang, Yanan; Zhou, Yong
2016-06-01
This paper deals with the problem of regularity criteria for the 2D generalized MHD system with fractional dissipative terms {-Λ^{2α}u} for the velocity field and {-Λ^{2β}b} for the magnetic field respectively. Various regularity criteria are established to guarantee smoothness of solutions. It turns out that our regularity criteria imply previous global existence results naturally.
Dispersionless 2D Toda hierarchy, Hurwitz numbers and Riemann theorem
NASA Astrophysics Data System (ADS)
Natanzon, Sergey M.
2016-01-01
We describe all formal symmetric solutions of dispersionless 2D Toda hierarchy. This classification we use for solving of two classical problems: 1) The calculation of conformal mapping of an arbitrary simply connected domain to the standard disk; 2) Calculation of 2- Hurwitz numbers of genus 0.
2D signature for detection and identification of drugs
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei
2011-06-01
The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.
RADMC: A 2-D Continuum Radiative Transfer Tool
NASA Astrophysics Data System (ADS)
Dullemond, C. P.
2011-08-01
RADMC is a 2-D Monte-Carlo code for dust continuum radiative transfer circumstellar disks and envelopes. It is based on the method of Bjorkman & Wood (ApJ 2001, 554, 615), but with several modifications to produce smoother results with fewer photon packages.
Kinematics of segregating granular mixtures in quasi-2D heaps
NASA Astrophysics Data System (ADS)
Fan, Yi; Umbanhowar, Paul; Ottino, Julio; Lueptow, Richard
2012-11-01
Segregation of granular mixtures of different sized particles in heap flow appears in a variety of contexts. Our recent experiments showed that when bi-disperse mixtures of different sized spherical particles fill a quasi-two dimensional (2D) silo, three different final heap configurations - stratified, segregated, and mixed - occur, depending on either 2D flow rate or heap rise velocity. However, since it is difficult to measure the kinematic details of the segregating granular mixtures in heap flow experimentally, the underlying mechanisms for how 2D flow rate or heap rise velocity influences final particle configurations have not been well understood. In this work, we use the discrete element method (DEM) to simulate heap flow of bi-disperse mixtures in experimental scale quasi-2D heaps. The final particle distributions in the simulations agree quantitatively with experiments. We measure several key kinematic properties of the segregating granular mixtures including the local flow rate, velocity, and flowing layer thickness. We correlate the characteristics of these kinematic properties with the local particle distributions of the mixtures. This provides new insights for understanding the mechanisms of segregation and stratification in heap flow including the linear decrease in flow rate and maximum velocity down the heap as well as the relatively constant flowing layer thickness along the length of the heap. Funded by Dow Chemical Co.
On the phase diagram of 2d Lorentzian Quantum Gravity
NASA Astrophysics Data System (ADS)
Ambjørn, Jan; Anagnostopoulos, K. N.; Loll, R.
The phase diagram of 2d Lorentzian quantum gravity (LQG) coupled to conformal matter is studied. A phase transition is observed at c = c crit ( {1}/{2} < c crit < 4) which can be thought of as the analogue of the c = 1 barrier of Euclidean quantum gravity (EQG). The non-trivial properties of the quantum geometry are discussed.
Optoelectronics of supported and suspended 2D semiconductors
NASA Astrophysics Data System (ADS)
Bolotin, Kirill
2014-03-01
Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.
2-D Imaging of Electron Temperature in Tokamak Plasmas
T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol
2004-07-08
By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.
NKG2D ligands mediate immunosurveillance of senescent cells.
Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery
2016-02-01
Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797
NASA Astrophysics Data System (ADS)
Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.
2016-08-01
Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets
Quinn, Daniel B; Rosenberg, Brian J
2015-08-01
We present an analytical treatment of the acoustics of liquid-filled wine glasses, or "glass harps." The solution is generalized such that under certain assumptions it reduces to previous glass harp models, but also leads to a proposed musical instrument, the "inverted glass harp," in which an empty glass is submerged in a liquid-filled basin. The versatility of the solution demonstrates that all glass harps are governed by a family of solutions to Laplace's equation around a vibrating disk. Tonal analyses of recordings for a sample glass are offered as confirmation of the scaling predictions. PMID:26382336
NASA Astrophysics Data System (ADS)
Quinn, Daniel B.; Rosenberg, Brian J.
2015-08-01
We present an analytical treatment of the acoustics of liquid-filled wine glasses, or "glass harps." The solution is generalized such that under certain assumptions it reduces to previous glass harp models, but also leads to a proposed musical instrument, the "inverted glass harp," in which an empty glass is submerged in a liquid-filled basin. The versatility of the solution demonstrates that all glass harps are governed by a family of solutions to Laplace's equation around a vibrating disk. Tonal analyses of recordings for a sample glass are offered as confirmation of the scaling predictions.
Yu, Conrad M.
2003-12-30
A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.
2D/3D Image Registration using Regression Learning
Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen
2013-01-01
In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278
Resonances of piezoelectric plate with embedded 2D electron system
NASA Astrophysics Data System (ADS)
Suslov, A. V.
2009-02-01
A thin GaAs/AlGaAs plate was studied by the resonant ultrasound spectroscopy (RUS) in the temperature range 0.3-10 K and in magnetic fields of up to 18 T. The resonance frequencies and linewidths were measured. Quantum oscillations of both these values were observed and were associated with the quantum Hall effect occurred in the 2D electron system. For an analysis the sample was treated as a dielectric piezoelectric plate covered on one side by a film with a field dependent conductivity. Screening of the strain-driven electric field was changed due to the variation of the electron relaxation time in the vicinity of the metal-dielectric transitions caused by the magnetic field in the 2D system. The dielectric film does not affect properties of GaAs and thus the resonance frequencies are defined only by the elastic, piezoelectric and dielectric constants of GaAs. A metallic 2D sheet effectively screens the parallel electric field, so the ultrasound wave velocities and resonance frequencies decrease when the sheet conductivity increases. Oscillations of the resonance linewidth reflect the influence of the 2D system on the ultrasound attenuation, which is proportional to the linewidth. A metallic film as well as a dielectric one does not affect this attenuation but at some finite nonzero value of the conductivity the linewidth approaches a maximum. In high magnetic field each oscillation of the conductivity produces one oscillation of a resonance frequency and two linewidth peaks. The observed phenomena can be described by the relaxation type equations and the resonant ultrasound spectroscopy opens another opportunity for contactless studies on 2D electron systems.
The physics of 2D microfluidic droplet ensembles
NASA Astrophysics Data System (ADS)
Beatus, Tsevi; Bar-Ziv, Roy H.; Tlusty, Tsvi
2012-07-01
We review non-equilibrium many-body phenomena in ensembles of 2D microfluidic droplets. The system comprises of continuous two-phase flow with disc-shaped droplets driven in a channel, at low Reynolds number of 10-4-10-3. The basic physics is that of an effective potential flow, governed by the 2D Laplace equation, with multiple, static and dynamic, boundaries of the droplets and the walls. The motion of the droplets induces dipolar flow fields, which mediate 1/r2 hydrodynamic interaction between the droplets. Summation of these long-range 2D forces over droplet ensembles converges, in contrast to the divergence of the hydrodynamic forces in 3D. In analogy to electrostatics, the strong effect of boundaries on the equations of motion is calculated by means of image dipoles. We first consider the dynamics of droplets flowing in a 1D crystal, which exhibits unique phonon-like excitations, and a variety of nonlinear instabilities-all stemming from the hydrodynamic interactions. Narrowing the channel results in hydrodynamic screening of the dipolar interactions, which changes salient features of the phonon spectra. Shifting from a 1D ordered crystal to 2D disordered ensemble, the hydrodynamic interactions induce collective density waves and shocks, which are superposed on single-droplet randomized motion and dynamic clustering. These collective modes originate from density-velocity coupling, whose outcome is a 1D Burgers equation. The rich observational phenomenology and the tractable theory render 2D droplet ensembles a suitable table-top system for studying non-equilibrium many-body physics with long-range interactions.
2d-LCA - an alternative to x-wires
NASA Astrophysics Data System (ADS)
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2014-11-01
The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.
Half-metallicity in 2D organometallic honeycomb frameworks.
Sun, Hao; Li, Bin; Zhao, Jin
2016-10-26
Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575
A new micromechanical approach of micropolar continuum modeling for 2-D periodic cellular material
NASA Astrophysics Data System (ADS)
Niu, Bin; Yan, Jun
2016-06-01
In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional (2-D) periodic cellular material to capture its non-local properties and to explain the size effects in its structural analysis. The new united approach takes both the displacement compatibility and the equilibrium of forces and moments into consideration, where Taylor series expansion of the displacement and rotation fields and the extended averaging procedure with an explicit enforcement of equilibrium are adopted in the micromechanical analysis of a unit cell. In numerical examples, the effective micropolar constants obtained in this paper and others derived in the literature are used for the equivalent micropolar continuum simulation of cellular solids. The solutions from the equivalent analysis are compared with the discrete simulation solutions of the cellular solids. It is found that the micropolar constants developed in this paper give satisfying results of equivalent analysis for the periodic cellular material.
3D prostate boundary segmentation from ultrasound images using 2D active shape models.
Hodge, Adam C; Ladak, Hanif M
2006-01-01
Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm for semi-automatic, three-dimensional (3D) segmentation of the prostate boundary from ultrasound images based on two-dimensional (2D) active shape models (ASM) and rotation-based slicing. Evaluation of the algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. The mean absolute distance between the algorithm and gold standard boundaries was 1.09+/-0.49 mm, the average percent absolute volume difference was 3.28+/-3.16%, and a 5x speed increase as compared manual planimetry was achieved. PMID:17946106
2-D Modeling of the Variability of the Solar Interior for Climate Studies
NASA Astrophysics Data System (ADS)
Sofia, S.; Li, L. H.; Spada, F.; Ventura, P.
2012-07-01
To establish the possible influence of solar variability on climate, it is necessary to understand the luminosity changes induced by a variable dynamo magnetic field. To accomplish this, we have developed a 2D code of the structure and evolution of the solar interior (based on the 1D YREC code), that includes rotation, magnetic fields of arbitrary configuration, and turbulence, that can be run on very short time scales (down to 1 year), and that represents all global parameters (R, L, Teff) with a relative accuracy of 1 part per million, or better. This paper discusses the motivation for this work, the structure and the physical components of the code, and its application to interpret the results of the SODISM experiment on the PICARD satellite, and of the balloon-borne Solar Disk Sextant (SDS) experiment.
Recovering 3D tumor locations from 2D bioluminescence images and registration with CT images
NASA Astrophysics Data System (ADS)
Huang, Xiaolei; Metaxas, Dimitris N.; Menon, Lata G.; Mayer-Kuckuk, Philipp; Bertino, Joseph R.; Banerjee, Debabrata
2006-02-01
In this paper, we introduce a novel and efficient algorithm for reconstructing the 3D locations of tumor sites from a set of 2D bioluminescence images which are taken by a same camera but after continually rotating the object by a small angle. Our approach requires a much simpler set up than those using multiple cameras, and the algorithmic steps in our framework are efficient and robust enough to facilitate its use in analyzing the repeated imaging of a same animal transplanted with gene marked cells. In order to visualize in 3D the structure of the tumor, we also co-register the BLI-reconstructed crude structure with detailed anatomical structure extracted from high-resolution microCT on a single platform. We present our method using both phantom studies and real studies on small animals.
The spine in 3D. Computed tomographic reformation from 2D axial sections.
Virapongse, C; Gmitro, A; Sarwar, M
1986-01-01
A new program (3D83, General Electric) was used to reformat three-dimensional (3D) images from two-dimensional (2D) computed tomographic axial scans in 18 patients who had routine scans of the spine. The 3D spine images were extremely true to life and could be rotated around all three principle axes (constituting a movie), so that an illusion of head-motion parallax was created. The benefit of 3D reformation with this program is primarily for preoperative planning. It appears that 3D can also effectively determine the patency of foraminal stenosis by reformatting in hemisections. Currently this program is subject to several drawbacks that require user interaction and long reconstruction time. With further improvement, 3D reformation will find increasing clinical applicability. PMID:3787319
Palm vein for efficient person recognition based on 2D Gabor filter
NASA Astrophysics Data System (ADS)
Wang, Jixing; He, Yuqing; Zhu, Jiadan; Gao, Xinru; Cui, Yongsheng
2013-05-01
Palm vein recognition is a relatively new method in biometrics. This paper presents an effective palm vein feature extraction approach for improving the efficiency of palm vein identification. In this paper, relevant preprocessing steps as rotation and extraction of the Region of Interest are presented. In feature extraction, multiple 2D Gabor filters with 4 orientations are employed to extract the phase information on a palm vein image, which is then merged into unique feature according to an encoding rule. Hamming distance is used for vein recognition. Experiments are carried on a selfmade palm vein database. Experimental results show that the method in this paper achieved a higher correct recognition rate and a faster speed.
2D IR spectra of cyanide in water investigated by molecular dynamics simulations
Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus
2013-01-01
Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN− solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN− molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN− and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T 1 times are sensitive to the van der Waals ranges on the CN− is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm−1 vs. 14.9 cm−1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.
2D IR spectra of cyanide in water investigated by molecular dynamics simulations.
Lee, Myung Won; Carr, Joshua K; Göllner, Michael; Hamm, Peter; Meuwly, Markus
2013-08-01
Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN(-) solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN(-) molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN(-) and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T1 times are sensitive to the van der Waals ranges on the CN(-) is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm(-1) vs. 14.9 cm(-1)) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements. PMID:23927269
2D IR spectra of cyanide in water investigated by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus
2013-08-01
Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN- solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN- molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN- and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T1 times are sensitive to the van der Waals ranges on the CN- is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm-1 vs. 14.9 cm-1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.
A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.
Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong
2015-09-01
Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508
2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures
NASA Astrophysics Data System (ADS)
Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali
2016-02-01
Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.
Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system
Aronov, Dmitriy; Tank, David W.
2015-01-01
SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363
Anxiety, sex-linked behaviors, and digit ratios (2D:4D).
Evardone, Milagros; Alexander, Gerianne M
2009-06-01
The second to fourth (2D:4D) digit ratio, a sexually dimorphic, phenotypic characteristic putatively associated with perinatal androgen action, has been used to evaluate the hypothesized relation between prenatal hormonal factors and a variety of sexually dimorphic behaviors, including sex-linked psychopathology. Smaller digit ratios, suggestive of stronger perinatal androgen action, have been associated with male-linked disorders (e.g., autism), and larger digit ratios, suggestive of weaker perinatal androgen action, have been associated with female-linked disorders (e.g., depression and eating disorders). To evaluate the possible relation between digit ratio and another traditionally female-linked disorder, anxiety, 2D:4D ratios were measured in a non-clinical sample (58 men, 52 women). Participants also completed a battery of anxiety and gender role measures and performed two spatial/cognitive tasks typically showing a male advantage (mental rotation and targeting) and two tasks typically showing a female advantage (location memory and spatial working memory). Men with a more feminine pattern of sex-linked traits and behaviors (including digit ratios) reported greater anxiety. In contrast, greater anxiety in women was associated with both female-typical and male-typical traits and behaviors, but and no significant association between digit ratio and anxiety was found. This pattern of results suggests that the development of anxiety is multiply determined, with contributing factors varying by sex. PMID:17943431
CAS2D: FORTRAN program for nonrotating blade-to-blade, steady, potential transonic cascade flows
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1980-01-01
An exact, full-potential-equation (FPE) model for the steady, irrotational, homentropic and homoenergetic flow of a compressible, homocompositional, inviscid fluid through two dimensional planar cascades of airfoils was derived, together with its appropriate boundary conditions. A computer program, CAS2D, was developed that numerically solves an artificially time-dependent form of the actual FPE. The governing equation was discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field was discretized by providing a boundary-fitted, nonuniform computational mesh. The mesh was generated by using a sequence of conforming mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the FPE was solved iteratively by using successive line overrelaxation. The possible isentropic shocks were correctly captured by adding explicitly an artificial viscosity in a conservative form. In addition, a three-level consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two dimensional cascade flows.
2-D linear motion system. Innovative technology summary report
1998-11-01
The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology
NASA Technical Reports Server (NTRS)
2000-01-01
Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Even in normal gravity, bioactive glass particles enhance bone growth in laboratory tests with flat tissue cultures. Ducheyne and his team believe that using the bioactive microcarriers in a rotating bioreactor in microgravity will produce improved, three-dimensional tissue cultures. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and University of Pennsylvania Center for Bioactive Materials and Tissue Engineering.
Picture Wall (Glass Structures)
NASA Technical Reports Server (NTRS)
1978-01-01
Photo shows a subway station in Toronto, Ontario, which is entirely glass-enclosed. The all-glass structure was made possible by a unique glazing concept developed by PPG Industries, Pittsburgh, Pennsylvania, one of the largest U.S. manufacturers of flat glass. In the TVS glazing system, transparent glass "fins" replace conventional vertical support members used to provide support for wind load resistance. For stiffening, silicone sealant bonds the fins to adjacent glass panels. At its glass research center near Pittsburgh, PPG Industries uses the NASTRAN computer program to analyze the stability of enclosures made entirely of glass. The company also uses NASTRAN to simulate stresses on large containers of molten glass and to analyze stress effects of solar heating on flat glass.
MPEG-4-based 2D facial animation for mobile devices
NASA Astrophysics Data System (ADS)
Riegel, Thomas B.
2005-03-01
The enormous spread of mobile computing devices (e.g. PDA, cellular phone, palmtop, etc.) emphasizes scalable applications, since users like to run their favorite programs on the terminal they operate at that moment. Therefore appliances are of interest, which can be adapted to the hardware realities without loosing a lot of their functionalities. A good example for this is "Facial Animation," which offers an interesting way to achieve such "scalability." By employing MPEG-4, which provides an own profile for facial animation, a solution for low power terminals including mobile phones is demonstrated. From the generic 3D MPEG-4 face a specific 2D head model is derived, which consists primarily of a portrait image superposed by a suited warping mesh and adapted 2D animation rules. Thus the animation process of MPEG-4 need not be changed and standard compliant facial animation parameters can be used to displace the vertices of the mesh and warp the underlying image accordingly.
In search of a 2-dB coding gain
NASA Technical Reports Server (NTRS)
Yuen, J. H.; Vo, Q. D.
1985-01-01
A recent code search found a (15,1/5), a (14,1/6), and a (15,1/6) convolutional code which, when concatenated with a 10-bit (1023,959) Reed-Solomon (RS) code, achieves a bit-error rate (BER) of 0.000001 at a bit signal-to-noise ratio (SNR) of 0.50 dB, 0.47 dB and 0.42 B, respectively. All of these three codes outperform the Voyager communication system, our baseline, which achieves a BER of 10.000001 at bit SNR of 2.53 db, by more than 2 dB. The 2 dB coding improvement goal was exceeded.
Critical Dynamics in Quenched 2D Atomic Gases
NASA Astrophysics Data System (ADS)
Larcher, F.; Dalfovo, F.; Proukakis, N. P.
2016-05-01
Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.
Graphical representations of DNA as 2-D map
NASA Astrophysics Data System (ADS)
Randić, Milan
2004-03-01
We describe a modification of the compact representation of DNA sequences which transforms the sequence into a 2-D diagram in which the 'spots' have integer coordinates. As a result the accompanying numerical characterization of DNA is quite simple and straightforward. This is an important advantage, particularly when considering DNA sequences having thousands of nucleic bases. The approach starts with the compact representation of DNA based on zigzag spiral template used for placing 'spots' associated with binary codes of the nucleic acids and subsequent suppression of the underlying zigzag curve. As a result, a 2-D map is formed in which all 'spots' have integer coordinates. By using only distances between spots having the same x or the same y coordinate one can construct a 'map profile' using integer arithmetic. The approach is illustrated on DNA sequences of the first exon of human β-globin.
Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies
NASA Astrophysics Data System (ADS)
Subrahmanyam, M.
2016-05-01
In this study, phase angle (inverse tangent of the ratio of the horizontal to vertical gradients of magnetic anomalies) profile over two-dimensional tabular bodies has been subjected to detailed analysis for determining the source parameters. Distances between certain characteristic positions on this phase curve are related to the parameters of two-dimensional tabular magnetic sources. In this paper, I have derived the mathematical expressions for these relations. It has been demonstrated here that for locating the origin of the 2D tabular source, knowledge on the type of the model (contact, sheet, dyke, and fault) is not necessary. A procedure is evolved to determine the location, depth, width and magnetization angle of the 2D sources from the mathematical expressions. The method is tested on real field data. The effect of the overlapping bodies is also discussed with two synthetic examples. The interpretation technique is developed for contact, sheet, dike and inclined fault bodies.
Semiregular solid texturing from 2D image exemplars.
Du, Song-Pei; Hu, Shi-Min; Martin, Ralph R
2013-03-01
Solid textures, comprising 3D particles embedded in a matrix in a regular or semiregular pattern, are common in natural and man-made materials, such as brickwork, stone walls, plant cells in a leaf, etc. We present a novel technique for synthesizing such textures, starting from 2D image exemplars which provide cross-sections of the desired volume texture. The shapes and colors of typical particles embedded in the structure are estimated from their 2D cross-sections. Particle positions in the texture images are also used to guide spatial placement of the 3D particles during synthesis of the 3D texture. Our experiments demonstrate that our algorithm can produce higher quality structures than previous approaches; they are both compatible with the input images, and have a plausible 3D nature. PMID:22614330
FPCAS2D user's guide, version 1.0
NASA Astrophysics Data System (ADS)
Bakhle, Milind A.
1994-12-01
The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
2D FEM Heat Transfer & E&M Field Code
1992-04-02
TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less
2D ice from first principles: structures and phase transitions
NASA Astrophysics Data System (ADS)
Chen, Ji; Schusteritsch, Georg; Pickard, Chris J.; Salzmann, Christoph G.; Michaelides, Angelos
Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression the pentagonal structure becomes the most stable and persists up to ca. 2 GPa at which point square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. We also find a double layer AA stacked square ice phase, which clarifies the difference between experimental observations and earlier force field simulations. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and width.
2-D and 3-D computations of curved accelerator magnets
Turner, L.R.
1991-01-01
In order to save computer memory, a long accelerator magnet may be computed by treating the long central region and the end regions separately. The dipole magnets for the injector synchrotron of the Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), employ magnet iron consisting of parallel laminations, stacked with a uniform radius of curvature of 33.379 m. Laplace's equation for the magnetic scalar potential has a different form for a straight magnet (x-y coordinates), a magnet with surfaces curved about a common center (r-{theta} coordinates), and a magnet with parallel laminations like the APS injector dipole. Yet pseudo 2-D computations for the three geometries give basically identical results, even for a much more strongly curved magnet. Hence 2-D (x-y) computations of the central region and 3-D computations of the end regions can be combined to determine the overall magnetic behavior of the magnets. 1 ref., 6 figs.
2D FEM Heat Transfer & E&M Field Code
1992-04-02
TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.
MasterChem: cooking 2D-polymers.
Rodríguez-San-Miguel, D; Amo-Ochoa, P; Zamora, F
2016-03-18
2D-polymers are still dominated by graphene and closely related materials such as boron nitride, transition metal sulphides and oxides. However, the rational combination of molecules with suitable design is already showing the high potential of chemistry in this new research field. The aim of this feature article is to illustrate, and provide some perspectives, the current state-of-the-art in the field of synthetic 2D-polymers showing different alternatives to prepare this novel type of polymers based on the rational use of chemistry. This review comprises a brief revision of the essential concepts, the strategies of preparation following the two general approaches, bottom-up and top-down, and a revision of the promising seminal properties showed by some of these nanomaterials. PMID:26790817
Controlling avalanche criticality in 2D nano arrays
NASA Astrophysics Data System (ADS)
Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.
2013-05-01
Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.
A 2D MEMS stage for optical applications
NASA Astrophysics Data System (ADS)
Ataman, Caglar; Petremand, Yves; Noell, Wilfried; Ürey, Hakan; Epitaux, Marc; de Rooij, Nico F.
2006-04-01
A 2D MEMS platform for a microlens scanner application is reported. The platform is fabricated on an SOI wafer with 50 μm thick device layer. Entire device is defined with a single etching step on the same layer. Through four S-shaped beams, the device is capable of producing nonlinear 2D motion from linear 1D translation of two pairs of comb actuator sets. The device has a clear aperture of 2mm by 2mm, which is hallowed from the backside for micro-optics assembly. In this paper, a numerical device model and its validation via experimental characterization results are presented. Integration of the micro-optical components with the stage is also discussed. Additionally, a new driving scheme to minimize the settling time of the device in DC operation is explored.
A Better 2-D Mechanical Energy Conservation Experiment
NASA Astrophysics Data System (ADS)
Paesler, Michael
2012-02-01
A variety of simple classical mechanics energy conservation experiments are used in teaching laboratories. Typical one-dimensional (1-D) setups may involve falling balls or oscillating springs. Many of these can be quite satisfying in that students can confirm—within a few percent—that mechanical energy is conserved. Students generally have little trouble identifying discrepancies such as the loss of a few percent of the gravitational potential energy due to air friction encountered by a falling ball. Two-dimensional (2-D) systems can require more sophisticated analysis for higher level laboratories, but such systems often incorporate complicating components that can make the exercise academically incomplete and experimentally less accurate. The following describes a simple 2-D energy conservation experiment based on the popular "Newton's Cradle" toy that allows students to account for nearly all of the mechanical energy in the system in an academically complete analysis.
Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Mak, Kin Fai; Shan, Jie
2016-04-01
Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.
Thermal conductivity measurements in a 2D Yukawa system
NASA Astrophysics Data System (ADS)
Nosenko, V.; Ivlev, A.; Zhdanov, S.; Morfill, G.; Goree, J.; Piel, A.
2007-03-01
Thermal conductivity was measured for a 2D Yukawa system. First, we formed a monolayer suspension of microspheres in a plasma, i.e., a dusty plasma, which is like a colloidal suspension, but with an extremely low volume fraction and a partially-ionized rarefied gas instead of solvent. In the absence of manipulation, the suspension forms a 2D triangular lattice. To melt this lattice and form a liquid, we used a laser-heating method. Two focused laser beams were moved rapidly around in the monolayer. The kinetic temperature of the particles increased with the laser power applied, and above a threshold a melting transition occurred. We used digital video microscopy for direct imaging and particle tracking. The spatial profiles of the particle kinetic temperature were calculated. Using the heat transport equation with an additional term to account for the energy dissipation due to the gas drag, we analyzed the temperature distribution to derive the thermal conductivity.
Reaction cured glass and glass coatings
NASA Technical Reports Server (NTRS)
Goldstein, H. E.; Leiser, D. B.; Katvala, V. W. (Inventor)
1978-01-01
The invention relates to reaction cured glass and glass coatings prepared by reacting a compound selected from the group consisting of silicon tetraboride, silicon hexaboride, other boron silicides, boron and mixtures with a reactive glass frit composed of a porous high silica borosilicate glass and boron oxide. The glassy composites of the present invention are useful as coatings on low density fibrous porous silica insulations used as heat shields and for articles such as reaction vessels that are subjected to high temperatures with rapid heating and cooling and that require resistance to temperature and repeated thermal shock at temperatures up to about 1482C (2700PF).
Fully automated 2D-3D registration and verification.
Varnavas, Andreas; Carrell, Tom; Penney, Graeme
2015-12-01
Clinical application of 2D-3D registration technology often requires a significant amount of human interaction during initialisation and result verification. This is one of the main barriers to more widespread clinical use of this technology. We propose novel techniques for automated initial pose estimation of the 3D data and verification of the registration result, and show how these techniques can be combined to enable fully automated 2D-3D registration, particularly in the case of a vertebra based system. The initialisation method is based on preoperative computation of 2D templates over a wide range of 3D poses. These templates are used to apply the Generalised Hough Transform to the intraoperative 2D image and the sought 3D pose is selected with the combined use of the generated accumulator arrays and a Gradient Difference Similarity Measure. On the verification side, two algorithms are proposed: one using normalised features based on the similarity value and the other based on the pose agreement between multiple vertebra based registrations. The proposed methods are employed here for CT to fluoroscopy registration and are trained and tested with data from 31 clinical procedures with 417 low dose, i.e. low quality, high noise interventional fluoroscopy images. When similarity value based verification is used, the fully automated system achieves a 95.73% correct registration rate, whereas a no registration result is produced for the remaining 4.27% of cases (i.e. incorrect registration rate is 0%). The system also automatically detects input images outside its operating range. PMID:26387052
A discrete simulation of 2-D fluid flow on TERASYS
Mullins, P.G.; Krolak, P.D.
1995-12-01
A discrete simulation of two-dimensional (2-D) fluid flow, on a recently designed novel architecture called TERASYS is presented. The simulation uses a cellular automaton approach, implemented in a new language called data-parallel bit C (dbC). A performance comparison between our implementation on TERASYS and an implementation on the Connection Machine is discussed. We comment briefly on the suitability of the TERASYS system for modeling fluid flow using cellular automata.
An inverse design method for 2D airfoil
NASA Astrophysics Data System (ADS)
Liang, Zhi-Yong; Cui, Peng; Zhang, Gen-Bao
2010-03-01
The computational method for aerodynamic design of aircraft is applied more universally than before, in which the design of an airfoil is a hot problem. The forward problem is discussed by most relative papers, but inverse method is more useful in practical designs. In this paper, the inverse design of 2D airfoil was investigated. A finite element method based on the variational principle was used for carrying out. Through the simulation, it was shown that the method was fit for the design.
NASA High-Speed 2D Photogrammetric Measurement System
NASA Technical Reports Server (NTRS)
Dismond, Harriett R.
2012-01-01
The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.
Report of the 1988 2-D Intercomparison Workshop, chapter 3
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar
1989-01-01
Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.
Energy level transitions of gas in a 2D nanopore
Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.
2015-10-27
An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.
2D imaging of functional structures in perfused pig heart
NASA Astrophysics Data System (ADS)
Kessler, Manfred D.; Cristea, Paul D.; Hiller, Michael; Trinks, Tobias
2002-06-01
In 2000 by 2D-imaging we were able for the first time to visualize in subcellular space functional structures of myocardium. For these experiments we used hemoglobin-free perfused pig hearts in our lab. Step by step we learned to understand the meaning of subcellular structures. Principally, the experiment revealed that in subcellular space very fast changes of light scattering can occur. Furthermore, coefficients of different parameters were determined on the basis of multicomponent system theory.
Multicolor symbology for remotely scannable 2D barcodes
NASA Astrophysics Data System (ADS)
Wissner-Gross, Alexander D.; Sullivan, Timothy M.
2008-03-01
There has been much recent interest in mobile systems for augmented reality. However, existing visual tagging solutions are not robust at the low resolutions typical of current camera phones or at the low solid angles needed for "across-the-room" reality augmentation. In this paper, we propose a new 2D barcode symbology that uses multiple colors in order to address these challenges. We present preliminary results, showing the detection of example barcodes in this scheme over a range of angles.
2 1/2 -D compressible reconnection model
NASA Astrophysics Data System (ADS)
Skender, M.; Vršnak, B.
The exact solution of the jump conditions on the RD/SMS discontinuity system in a two-and-half-dimensional (2 1/2 -D) symmetrical reconnection model enables one to analyse the outflowing jet characteristics in dependence on the inflow velocity, and to follow changes in transition to the two-dimensional model. Implications arising from the exact solution and its relevance for solar flares are discussed.
CBEAM. 2-D: a two-dimensional beam field code
Dreyer, K.A.
1985-05-01
CBEAM.2-D is a two-dimensional solution of Maxwell's equations for the case of an electron beam propagating through an air medium. Solutions are performed in the beam-retarded time frame. Conductivity is calculated self-consistently with field equations, allowing sophisticated dependence of plasma parameters to be handled. A unique feature of the code is that it is implemented on an IBM PC microcomputer in the BASIC language. Consequently, it should be available to a wide audience.
Universal Fabrication of 2D Electron Systems in Functional Oxides.
Rödel, Tobias Chris; Fortuna, Franck; Sengupta, Shamashis; Frantzeskakis, Emmanouil; Fèvre, Patrick Le; Bertran, François; Mercey, Bernard; Matzen, Sylvia; Agnus, Guillaume; Maroutian, Thomas; Lecoeur, Philippe; Santander-Syro, Andrés Felipe
2016-03-01
2D electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO3 -based heterostructures, are hampered by the need for growing complex oxide overlayers thicker than 2 nm using evolved techniques. It is demonstrated that thermal deposition of a monolayer of an elementary reducing agent suffices to create 2DESs in numerous oxides. PMID:26753522
Valley and electric photocurrents in 2D silicon and graphene
Tarasenko, S. A.; Ivchenko, E. L.; Olbrich, P.; Ganichev, S. D.
2013-12-04
We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.
Baby universes and fractal structure of 2d gravity
NASA Astrophysics Data System (ADS)
Thorleifsson, Gudmar
1994-04-01
We extract the string susceptibility exponent γstr by measuring the distribution of baby universes on surfaces in the case of various matter fields coupled to discrete 2d quantum gravity. For c <= 1 the results are in good agreement with the KPZ-formula, if logarithmic corrections are taken into account for c = 1. For c > 1 it is not as clear how to extract γstr but universality with respect to c is observed in the fractal structure.
Auto-masked 2D/3D image registration and its validation with clinical cone-beam computed tomography
NASA Astrophysics Data System (ADS)
Steininger, P.; Neuner, M.; Weichenberger, H.; Sharp, G. C.; Winey, B.; Kametriser, G.; Sedlmayer, F.; Deutschmann, H.
2012-07-01
Image-guided alignment procedures in radiotherapy aim at minimizing discrepancies between the planned and the real patient setup. For that purpose, we developed a 2D/3D approach which rigidly registers a computed tomography (CT) with two x-rays by maximizing the agreement in pixel intensity between the x-rays and the corresponding reconstructed radiographs from the CT. Moreover, the algorithm selects regions of interest (masks) in the x-rays based on 3D segmentations from the pre-planning stage. For validation, orthogonal x-ray pairs from different viewing directions of 80 pelvic cone-beam CT (CBCT) raw data sets were used. The 2D/3D results were compared to corresponding standard 3D/3D CBCT-to-CT alignments. Outcome over 8400 2D/3D experiments showed that parametric errors in root mean square were <0.18° (rotations) and <0.73 mm (translations), respectively, using rank correlation as intensity metric. This corresponds to a mean target registration error, related to the voxels of the lesser pelvis, of <2 mm in 94.1% of the cases. From the results we conclude that 2D/3D registration based on sequentially acquired orthogonal x-rays of the pelvis is a viable alternative to CBCT-based approaches if rigid alignment on bony anatomy is sufficient, no volumetric intra-interventional data set is required and the expected error range fits the individual treatment prescription.
Auto-masked 2D/3D image registration and its validation with clinical cone-beam computed tomography.
Steininger, P; Neuner, M; Weichenberger, H; Sharp, G C; Winey, B; Kametriser, G; Sedlmayer, F; Deutschmann, H
2012-07-01
Image-guided alignment procedures in radiotherapy aim at minimizing discrepancies between the planned and the real patient setup. For that purpose, we developed a 2D/3D approach which rigidly registers a computed tomography (CT) with two x-rays by maximizing the agreement in pixel intensity between the x-rays and the corresponding reconstructed radiographs from the CT. Moreover, the algorithm selects regions of interest (masks) in the x-rays based on 3D segmentations from the pre-planning stage. For validation, orthogonal x-ray pairs from different viewing directions of 80 pelvic cone-beam CT (CBCT) raw data sets were used. The 2D/3D results were compared to corresponding standard 3D/3D CBCT-to-CT alignments. Outcome over 8400 2D/3D experiments showed that parametric errors in root mean square were <0.18° (rotations) and <0.73 mm (translations), respectively, using rank correlation as intensity metric. This corresponds to a mean target registration error, related to the voxels of the lesser pelvis, of <2 mm in 94.1% of the cases. From the results we conclude that 2D/3D registration based on sequentially acquired orthogonal x-rays of the pelvis is a viable alternative to CBCT-based approaches if rigid alignment on bony anatomy is sufficient, no volumetric intra-interventional data set is required and the expected error range fits the individual treatment prescription. PMID:22705709
An Intercomparison of 2-D Models Within a Common Framework
NASA Technical Reports Server (NTRS)
Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)
2002-01-01
A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations
Resolving 2D Amorphous Materials with Scanning Probe Microscopy
NASA Astrophysics Data System (ADS)
Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim
Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.
Hunting down magnetic monopoles in 2D topological insulators?
NASA Astrophysics Data System (ADS)
He, Xugang; Cmpmsd At Bnl Team
Contrary to the existence of electric charge, magnetic monopole does not exist in nature. It is thus extraordinary to find that magnetic monopoles can be pictured conceptually in topological insulators. For 2D topological insulators, the topological invariant corresponds to the total flux of an effective magnetic field (the Berry curvature) over the reciprocal space. Upon wrapping the 2D reciprocal space into a compact manifold as a torus, the non-zero total flux can be considered to originate from magnetic monopoles with quantized charge. We will first illustrate the intrinsic difficulty via extending a 2D problem to a 3D reciprocal space, and then demonstrate that analytical continuation to the complex momentum space offers a natural solution in which 1) the magnetic monopoles emerge naturally in pairs each forming a string above and below the real axis possessing opposite charge, and 2) the total charge below the real axis gives exactly the topological invariant. In essence, the robustness of the topology is mapped to the robustness of the total charge in the lower complex plan, a mapping intriguing even mathematically. Finally, we will illustrate the evolution across the topological phase transition, providing a natural description of the metallic nature in the phase boundary, and offering a clear explanation why a change of global topology can be induced via a local change in reciprocal space. Work supported by US DOE BES DE-AC02-98CH10886.
F-theory and 2d (0, 2) theories
NASA Astrophysics Data System (ADS)
Schäfer-Nameki, Sakura; Weigand, Timo
2016-05-01
F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.
Design Application Translates 2-D Graphics to 3-D Surfaces
NASA Technical Reports Server (NTRS)
2007-01-01
Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.
Role of defects in frictional properties of 2-D materials
NASA Astrophysics Data System (ADS)
Kavalur, Aditya; Kim, Woo Kyun
Graphene and other 2-D materials have provided a promising prospect to improve the tribological properties of small length scale devices such as MEMS/NEMS due to their low friction coefficient and excellent wear resistance. Several recent research efforts have been devoted to unveiling the physical origin of the superior tribological properties of these 2-D materials from both experimental and theoretical standpoints, however, many of them still remain far from clearly understood. Recently, it was shown that lamellar materials do not conform to the predictions of the Prandtl-Tomlinson model due to additional friction mechanisms of delamination and visco-elastic ploughing. These mechanisms are critical as they explain the low and negative coefficients of friction observed in recent AFM experiments. However, thus far, most simulation and theoretical studies about these novel friction mechanisms have focused on only pristine graphene whereas real graphene sheets prepared by CVD and other conventional techniques possess various forms of defects such as vacancies and non-hexagonal rings. In this study we examine the role of these defects in frictional properties of 2-D materials in relation to delamination and visco-elastic ploughing.
Region-based Statistical Analysis of 2D PAGE Images
Li, Feng; Seillier-Moiseiwitsch, Françoise; Korostyshevskiy, Valeriy R.
2011-01-01
A new comprehensive procedure for statistical analysis of two-dimensional polyacrylamide gel electrophoresis (2D PAGE) images is proposed, including protein region quantification, normalization and statistical analysis. Protein regions are defined by the master watershed map that is obtained from the mean gel. By working with these protein regions, the approach bypasses the current bottleneck in the analysis of 2D PAGE images: it does not require spot matching. Background correction is implemented in each protein region by local segmentation. Two-dimensional locally weighted smoothing (LOESS) is proposed to remove any systematic bias after quantification of protein regions. Proteins are separated into mutually independent sets based on detected correlations, and a multivariate analysis is used on each set to detect the group effect. A strategy for multiple hypothesis testing based on this multivariate approach combined with the usual Benjamini-Hochberg FDR procedure is formulated and applied to the differential analysis of 2D PAGE images. Each step in the analytical protocol is shown by using an actual dataset. The effectiveness of the proposed methodology is shown using simulated gels in comparison with the commercial software packages PDQuest and Dymension. We also introduce a new procedure for simulating gel images. PMID:21850152
2D luminescence imaging of pH in vivo
Schreml, Stephan; Meier, Robert J.; Wolfbeis, Otto S.; Landthaler, Michael; Szeimies, Rolf-Markus; Babilas, Philipp
2011-01-01
Luminescence imaging of biological parameters is an emerging field in biomedical sciences. Tools to study 2D pH distribution are needed to gain new insights into complex disease processes, such as wound healing and tumor metabolism. In recent years, luminescence-based methods for pH measurement have been developed. However, for in vivo applications, especially for studies on humans, biocompatibility and reliability under varying conditions have to be ensured. Here, we present a referenced luminescent sensor for 2D high-resolution imaging of pH in vivo. The ratiometric sensing scheme is based on time-domain luminescence imaging of FITC and ruthenium(II)tris-(4,7-diphenyl-1,10-phenanthroline). To create a biocompatible 2D sensor, these dyes were bound to or incorporated into microparticles (aminocellulose and polyacrylonitrile), and particles were immobilized in polyurethane hydrogel on transparent foils. We show sensor precision and validity by conducting in vitro and in vivo experiments, and we show the versatility in imaging pH during physiological and chronic cutaneous wound healing in humans. Implementation of this technique may open vistas in wound healing, tumor biology, and other biomedical fields. PMID:21262842
A 2-D ECE Imaging Diagnostic for TEXTOR
NASA Astrophysics Data System (ADS)
Wang, J.; Deng, B. H.; Domier, C. W.; Luhmann, H. Lu, Jr.
2002-11-01
A true 2-D extension to the UC Davis ECE Imaging (ECEI) concept is under development for installation on the TEXTOR tokamak in 2003. This combines the use of linear arrays with multichannel conventional wideband heterodyne ECE radiometers to provide a true 2-D imaging system. This is in contrast to current 1-D ECEI systems in which 2-D images are obtained through the use of multiple plasma discharges (varying the scanned emission frequency each discharge). Here, each array element of the 20 channel mixer array measures plasma emission at 16 simultaneous frequencies to form a 16x20 image of the plasma electron temperature Te. Correlation techniques can then be applied to any pair of the 320 image elements to study both radial and poloidal characteristics of turbulent Te fluctuations. The system relies strongly on the development of low cost, wideband (2-18 GHz) IF detection electronics for use in both ECE Imaging as well as conventional heterodyne ECE radiometry. System details, with a strong focus on the wideband IF electronics development, will be presented. *Supported by U.S. DoE Contracts DE-FG03-95ER54295 and DE-FG03-99ER54531.
Dopamine D2/D3 receptor availability and venturesomeness.
Bernow, Nina; Yakushev, Igor; Landvogt, Christian; Buchholz, Hans-Georg; Smolka, Michael N; Bartenstein, Peter; Lieb, Klaus; Gründer, Gerhard; Vernaleken, Ingo; Schreckenberger, Mathias; Fehr, Christoph
2011-08-30
The construct of impulsivity is considered as a major trait of personality. There is growing evidence that the mesolimbic dopamine system plays an important role in the modulation of impulsivity and venturesomeness, the two key components within the impulsivity-construct. The aim of the present study was to explore an association between trait impulsivity measured with self-assessment and the dopaminergic neurotransmission as measured by positron emission tomography (PET) in a cohort of healthy male subjects. In vivo D2/D3 receptor availability was determined with [(18)F]fallypride PET in 18 non-smoking healthy subjects. The character trait impulsivity was measured using the Impulsiveness-Venturesomeness-Empathy questionnaire (I7). Image processing and statistical analysis was performed on a voxel-by-voxel basis using statistical parametric mapping (SPM) software. The I7 subscale venturesomeness correlated positively with the D2/D3 receptor availability within the left temporal cortex and the thalamus. Measures on the I7 subscale impulsiveness and empathy did not correlate with the D2/D3 receptor availability in any brain region investigated. Our results suggest the involvement of extrastriatal dopaminergic neurotransmission in venturesomeness, a component of impulsivity. PMID:21689908
Characterization of Porous Medium Properties Using 2D NMR
NASA Astrophysics Data System (ADS)
Sun, Boqin; Dunn, Keh-Jim
2003-03-01
We have successfully applied the concept of 2D NMR to the characterization of properties of fluid-saturated porous medium. Using a two-windowed modified CPMG pulse sequence, we were able to explore the magnetic internal filed gradient distribution within the pore space of a fluid-saturated porous medium due to magnetic susceptibility contrast between the solid matrix and pore fluid. Similar scheme is used to identify and quantify different types of pore fluids, such as oil, water, and gas, based on the contrast in their diffusion coefficients. The magic angle spinning technique (MAS) can also be applied in the 2D NMR framework for delineating the chemical shift spectra of the pore fluids in a porous medium at different T1 or T2 relaxation times. The results can be displayed in a two-dimensional plot, with one axis being the T1 or T2 relaxation times, the other axis being the internal field gradient, diffusion coefficient, or chemical shift, and the third axis being the proton population. Our preliminary laboratory work indicates that the 2D NMR approach can be a powerful tool for the characterization of properties of fluid-saturated porous medium, such as fluid typing, oil viscosity determination, surface wettability, etc.
Broadband THz Spectroscopy of 2D Nanoscale Materials
NASA Astrophysics Data System (ADS)
Chen, Lu; Tripathi, Shivendra; Huang, Mengchen; Hsu, Jen-Feng; D'Urso, Brian; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy
Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides (TMDC) have attracted intense research interest in the past decade. Their unique electronic and optical properties offer the promise of novel optoelectronic applications in the terahertz regime. Recently, generation and detection of broadband terahertz (10 THz bandwidth) emission from 10-nm-scale LaAlO3/SrTiO3 nanostructures created by conductive atomic force microscope (c-AFM) lithography has been demonstrated . This unprecedented control of THz emission at 10 nm length scales creates a pathway toward hybrid THz functionality in 2D-material/LaAlO3/SrTiO3 heterostructures. Here we report initial efforts in THz spectroscopy of 2D nanoscale materials with resolution comparable to the dimensions of the nanowire (10 nm). Systems under investigation include graphene, single-layer molybdenum disulfide (MoS2), and tungsten diselenide (WSe2) nanoflakes. 1. Y. Ma, et al., Nano Lett. 13, 2884 (2013). We gratefully acknowledge financial support from the following agencies and grants: AFOSR (FA9550-12-1-0268 (JL, PRI), FA9550-12-1-0342 (CBE)), ONR (N00014-13-1-0806 (JL, CBE), N00014-15-1-2847 (JL)), NSF DMR-1124131 (JL, CBE) and DMR-1234096 (CBE).
Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)
2015-12-09
Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant
Quantum information experiments with 2D arrays of hundreds of trapped ions
NASA Astrophysics Data System (ADS)
Gilmore, Kevin; Bohnet, Justin; Sawyer, Brian; Britton, Joseph; Wall, Michael; Foss-Feig, Michael; Rey, Ana Maria; Bollinger, John
2016-05-01
We summarize recent experimental work with 2D arrays of hundreds of trapped 9 Be+ ions stored in a Penning trap. Penning traps utilize static magnetic and electric fields to confine ions, and enable the trapping and laser cooling of ion crystals larger than typically possible in RF ion traps. We work with single-plane ion crystals where the ions form a triangular lattice through minimization of their Coulomb potential energy. The crystals rotate, and we present numerical studies that determine optimal operating parameters for producing low temperature, stable 2-dimensional crystals with Doppler laser cooling and a rotating wall potential. Our qubit is the electron spin-flip transition in the ground state of 9 Be+ and is sensitive to magnetic field fluctuations. Through mitigation of part-per-billion, vibration-induced magnetic field fluctuations we demonstrate T2 coherence times longer than 50 ms. We engineer long-range Ising interactions with spin-dependent optical dipole forces, and summarize recent measurements that characterize the entanglement generated through single-axis twisting. Supported by: JILA-NSF-PFC-1125844, NSF-PHY-1521080, ARO, AFOSR, AFOSR-MURI.
2011-09-16
GlassForm is a software tool for generating preliminary waste glass formulas for a given waste stream. The software is useful because it reduces the number of verification melts required to develop a suitable additive composition. The software includes property models that calculate glass properties of interest from the chemical composition of the waste glass. The software includes property models for glass viscosity, electrical conductivity, glass transition temperature, and leach resistance as measured by the 7-daymore » product consistency test (PCT).« less
VizieR Online Data Catalog: HCO+ and N2D+ dense cores in Perseus (Campbell+, 2016)
NASA Astrophysics Data System (ADS)
Campbell, J. L.; Friesen, R. K.; Martin, P. G.; Caselli, P.; Kauffmann, J.; Pineda, J. E.
2016-05-01
Table 1 summarizes the 91 dense cores observed, with their Right Ascension and Declination pointing positions. Pointed observations of the Perseus cores were performed using the James Clerk Maxwell Telescope (JCMT). Targets were observed in the HCO+ (3-2) and N2D+ (3-2) rotational transitions in position-switching mode, with assumed rest frequencies of 267.557619GHz and 231.321665GHz, respectively. The spectral resolution was 30.5kHz, corresponding to a velocity resolution of 0.03km/s for HCO+ (3-2) and 0.04km/s for N2D+ (3-2). Observations were conducted between 2007 September and 2009 September. (3 data files).
Resonant States of the H3- Molecule and Its Isotopologues D2H- and H2D-
NASA Astrophysics Data System (ADS)
Ayouz, M.; Dulieu, O.; Robert, J.
2013-10-01
Using the ground potential energy surface [ Ayouz, M.; etal. J. Chem. Phys. 2010, 132, 194309 ] of the H3- molecule, we have determined the energies and widths of the complex resonant levels of H3- located up to 4000 cm-1 above the dissociation limit H- + H2(-d = 0,jd = 0). Bound and resonant levels of the H2D- and D2H- isotopologues have been also characterized within the same energy range. The method combines the hyperspherical adiabatic approach, slow variable discretization method, and complex absorbing potential. These results represent the first step for modeling the dynamics of the associated diatom-negative ion collision at low energy involving rotational quenching of the diatom and reactive nucleus exchange via the weak tunneling effect through the potential barrier of the potential energy surface.
Simulation of 2D Fields of Raindrop Size Distributions
NASA Astrophysics Data System (ADS)
Berne, A.; Schleiss, M.; Uijlenhoet, R.
2008-12-01
The raindrop size distribution (DSD hereafter) is of primary importance for quantitative applications of weather radar measurements. The radar reflectivity~Z (directly measured by radar) is related to the power backscattered by the ensemble of hydrometeors within the radar sampling volume. However, the rain rate~R (the flux of water to the surface) is the variable of interest for many applications (hydrology, weather forecasting, air traffic for example). Usually, radar reflectivity is converted into rain rate using a power law such as Z=aRb. The coefficients a and b of the Z-R relationship depend on the DSD. The variability of the DSD in space and time has to be taken into account to improve radar rain rate estimates. Therefore, the ability to generate a large number of 2D fields of DSD which are statistically homogeneous provides a very useful simulation framework that nicely complements experimental approaches based on DSD data, in order to investigate radar beam propagation through rain as well as radar retrieval techniques. The proposed approach is based on geostatistics for structural analysis and stochastic simulation. First, the DSD is assumed to follow a gamma distribution. Hence a 2D field of DSDs can be adequately described as a 2D field of a multivariate random function consisting of the three DSD parameters. Such fields are simulated by combining a Gaussian anamorphosis and a multivariate Gaussian random field simulation algorithm. Using the (cross-)variogram models fitted on data guaranties that the spatial structure of the simulated fields is consistent with the observed one. To assess its validity, the proposed method is applied to data collected during intense Mediterranean rainfall. As only time series are available, Taylor's hypothesis is assumed to convert time series in 1D range profile. Moreover, DSD fields are assumed to be isotropic so that the 1D structure can be used to simulate 2D fields. A large number of 2D fields of DSD parameters are
NASA Astrophysics Data System (ADS)
Taylor, Keith; Gray, Peter M.
1994-06-01
The Anglo-Australian Telescope has just received a new prime- focus corrector, designed by Damien Jones (Prime Optics, Qld., Australia) and manufactured by Contraves, USA. The corrector is capable of producing aberration-corrected images over a full 2 degree diameter field of view. It is a 4-element design, the first two elements being rotatable cemented prismatic doublets approaching 1.0 m in diameter, which permit full atmospheric dispersion compensation to high zenith distances. The corrector is at the heart of a new powerful 400-fiber spectroscopic survey facility known as the 2dF. This A$2.3M project represents the largest investment in new technology and instrumentation the AAT has seen in its 20 year lifetime and will provide the telescope with a new and important role for large-scale statistical studies in the latter half of the decade and beyond. This paper will present the performance specifications for the corrector comparing them to the results of the recently complete telescope commissioning test.
Physical phenomena in containerless glass processing
NASA Technical Reports Server (NTRS)
Subramanian, R. S.; Cole, R.; Annamalai, P.; Jayaraj, K.; Kondos, P.; Mcneil, T. J.; Shankar, N.
1982-01-01
Experiments were conducted on bubble migration in rotating liquid bodies contained in a sphere. Experiments were initiated on the migration of a drop in a slightly less dense continuous phase contained in a rotating sphere. A refined apparatus for the study of thermocapillar flow in a glass melt was built, and data were acquired on surface velocities in the melt. Similar data also were obtained from an ambient temperature fluid model. The data were analyzed and correlated with the aid of theory. Data were obtained on flow velocities in a pendant drop heated from above. The motion in this system was driven principally by thermocapillarity. An apparatus was designed for the study of volatilization from a glass melt.
6. Looking glass aircraft in the project looking glass historic ...
6. Looking glass aircraft in the project looking glass historic district. View to north. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Avenue between Comstat Drive & Nightwatch Avenue, Offutt Air Force Base, Bellevue, Sarpy County, NE
Gradient-Driven Vortex Motion in Nonneutral Plasmas and Ideal 2D Fluids
NASA Astrophysics Data System (ADS)
Schecter, David A.
2000-10-01
Two-dimensional (2D) turbulent flows can relax to metastable patterns without dissipation of kinetic energy. This ``rapid'' relaxation has been observed in computer simulations of ideal 2D fluids, and more recently in experiments with pure electron plasmas, which can obey similar dynamics. The late stage of relaxation often involves small vortices moving in a larger ``background'' shear-flow.(X.P. Huang et al., Phys. Rev. Lett. 74), 4424 (1995). In time, positive vortices (rotating counter-clockwise) move to peaks in background vorticity, whereas negative vortices (rotating clockwise) move to minima.(C.G. Rossby, J. Mar. Res. 7), 175 (1948); C.H. Liu and L. Ting, Comp. & Fluids 15, 77 (1987). In general, the rate of this migration increases with the magnitude of the background vorticity gradient, whereas it decreases as the background shear intensifies.\\vspace12pt Positive and negative vortices can also be classified as either prograde or retrograde, depending on whether they rotate with or against the local background shear. Surprisingly, a retrograde vortex moves up or down a background vorticity gradient orders of magnitude faster than a prograde vortex of equal strength.(D.A. Schecter and D.H.E. Dubin, Phys. Rev. Lett. 83), 2191 (1999). An accurate expression for the velocity of a weak retrograde vortex is obtained from an analytic calculation, in which the response of the background flow to the vortex is linearized. However, this linear theory fails for prograde vortices of any strength. Interestingly, the velocity of a prograde vortex can be obtained from a simple estimate, which accounts for the nonlinear ``trapping'' of background fluid around the vortex. The analytic expressions for the velocities of both prograde and retrograde vortices are in good quantitative agreement with vortex-in-cell simulations, and with electron plasma experiments, when the background shear is below a critical level. When the ratio of background shear to background vorticity
NASA Technical Reports Server (NTRS)
Patel, Parimal J.; Messier, Donald R.; Rich, R. E.
1991-01-01
Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.
NASA Astrophysics Data System (ADS)
Kramer, Patrick L.; Nishida, Jun; Giammanco, Chiara H.; Tamimi, Amr; Fayer, Michael D.
2015-05-01
In nearly all applications of ultrafast multidimensional infrared spectroscopy, the spectral degrees of freedom (e.g., transition frequency) and the orientation of the transition dipole are assumed to be decoupled. We present experimental results which confirm that frequency fluctuations can be caused by rotational motion and observed under appropriate conditions. A theory of the frequency-frequency correlation function (FFCF) observable under various polarization conditions is introduced, and model calculations are found to reproduce the qualitative trends in FFCF rates. The FFCF determined with polarization-selective two-dimensional infrared (2D IR) spectroscopy is a direct reporter of the frequency-rotational coupling. For the solute methanol in a room temperature ionic liquid, the FFCF of the hydroxyl (O-D) stretch decays due to spectral diffusion with different rates depending on the polarization of the excitation pulses. The 2D IR vibrational echo pulse sequence consists of three excitation pulses that generate the vibrational echo, a fourth pulse. A faster FFCF decay is observed when the first two excitation pulses are polarized perpendicular to the third pulse and the echo,
Kramer, Patrick L; Nishida, Jun; Giammanco, Chiara H; Tamimi, Amr; Fayer, Michael D
2015-05-14
In nearly all applications of ultrafast multidimensional infrared spectroscopy, the spectral degrees of freedom (e.g., transition frequency) and the orientation of the transition dipole are assumed to be decoupled. We present experimental results which confirm that frequency fluctuations can be caused by rotational motion and observed under appropriate conditions. A theory of the frequency-frequency correlation function (FFCF) observable under various polarization conditions is introduced, and model calculations are found to reproduce the qualitative trends in FFCF rates. The FFCF determined with polarization-selective two-dimensional infrared (2D IR) spectroscopy is a direct reporter of the frequency-rotational coupling. For the solute methanol in a room temperature ionic liquid, the FFCF of the hydroxyl (O-D) stretch decays due to spectral diffusion with different rates depending on the polarization of the excitation pulses. The 2D IR vibrational echo pulse sequence consists of three excitation pulses that generate the vibrational echo, a fourth pulse. A faster FFCF decay is observed when the first two excitation pulses are polarized perpendicular to the third pulse and the echo, 〈XXY Y〉, than in the standard all parallel configuration, 〈XXXX〉, in which all four pulses have the same polarization. The 2D IR experiment with polarizations 〈XY XY〉 ("polarization grating" configuration) gives a FFCF that decays even more slowly than in the 〈XXXX〉 configuration. Polarization-selective 2D IR spectra of bulk water do not exhibit polarization-dependent FFCF decays; spectral diffusion is effectively decoupled from reorientation in the water system. PMID:25978898
Rotational preference in gymnastics.
Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos
2012-06-01
In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference. Therefore, we sought to explore relationships in gymnast's rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362
Rotational Preference in Gymnastics
Heinen, Thomas; Jeraj, Damian; Vinken, Pia M.; Velentzas, Konstantinos
2012-01-01
In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast’s rotational preference. Therefore, we sought to explore relationships in gymnast’s rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362
Widom, Julia R.; Johnson, Neil P.; von Hippel, Peter H.; Marcus, Andrew H.
2013-01-01
We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) – a fluorescence-detected variation of 2D electronic spectroscopy – to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes. PMID:24223491
Loose abrasive slurries for optical glass lapping
Neauport, Jerome; Destribats, Julie; Maunier, Cedric; Ambard, Chrystel; Cormont, Philippe; Pintault, B.; Rondeau, Olivier
2010-10-20
Loose abrasive lapping is widely used to prepare optical glass before its final polishing. We carried out a comparison of 20 different slurries from four different vendors. Slurry particle sizes and morphologies were measured. Fused silica samples were lapped with these different slurries on a single side polishing machine and characterized in terms of surface roughness and depth of subsurface damage (SSD). Effects of load, rotation speed, and slurry concentration during lapping on roughness, material removal rate, and SSD were investigated.
FOAM GLASS INSULATION FROM WASTE GLASS
Waste glass has proven to be effective for the production of foam glass insulation both in the bulk or rigid board form and pellet form. Problems inherent with the use of water, carbon black and calcium carbonate as the foaming agents, have been identified and many have been solv...
Isotropic rotation vs. shear relaxation in supercooled liquids with globular cage molecules.
Kaseman, Derrick C; Gulbiten, Ozgur; Aitken, Bruce G; Sen, Sabyasachi
2016-05-01
The temperature dependence of the rotational dynamics of P4Se3 molecules in the glass-forming molecular liquid P5Se3 is studied using two-dimensional (31)P nuclear magnetic resonance spectroscopy. Unlike typical molecular glass-forming liquids, the constituent molecules in the P5Se3 liquid perform rapid isotropic rotation without significant translational diffusion in the supercooled regime and this rotational process shows a decoupling in time scale from shear relaxation by nearly six orders of magnitude at the glass transition. This dynamical behavior of liquid-like rotation and localized translation appears to be universal to glass-forming liquids with high-symmetry globular molecules that are characterized by an underlying thermodynamically stable plastic crystal phase. PMID:27155639
Isotropic rotation vs. shear relaxation in supercooled liquids with globular cage molecules
NASA Astrophysics Data System (ADS)
Kaseman, Derrick C.; Gulbiten, Ozgur; Aitken, Bruce G.; Sen, Sabyasachi
2016-05-01
The temperature dependence of the rotational dynamics of P4Se3 molecules in the glass-forming molecular liquid P5Se3 is studied using two-dimensional 31P nuclear magnetic resonance spectroscopy. Unlike typical molecular glass-forming liquids, the constituent molecules in the P5Se3 liquid perform rapid isotropic rotation without significant translational diffusion in the supercooled regime and this rotational process shows a decoupling in time scale from shear relaxation by nearly six orders of magnitude at the glass transition. This dynamical behavior of liquid-like rotation and localized translation appears to be universal to glass-forming liquids with high-symmetry globular molecules that are characterized by an underlying thermodynamically stable plastic crystal phase.
Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin
2005-04-01
This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney. PMID:16010976
Weakly supervised glasses removal
NASA Astrophysics Data System (ADS)
Wang, Zhicheng; Zhou, Yisu; Wen, Lijie
2015-03-01
Glasses removal is an important task on face recognition, in this paper, we provide a weakly supervised method to remove eyeglasses from an input face image automatically. We choose sparse coding as face reconstruction method, and optical flow to find exact shape of glasses. We combine the two processes iteratively to remove glasses more accurately. The experimental results reveal that our method works much better than these algorithms alone, and it can remove various glasses to obtain natural looking glassless facial images.
2D Seismic Reflection Data across Central Illinois
Smith, Valerie; Leetaru, Hannes
2014-09-30
In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made
Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy
NASA Astrophysics Data System (ADS)
Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander
2014-07-01
The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin “wrapping”, i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.
2D to 3D conversion implemented in different hardware
NASA Astrophysics Data System (ADS)
Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli
2015-02-01
Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.
Progress in 2D photonic crystal Fano resonance photonics
NASA Astrophysics Data System (ADS)
Zhou, Weidong; Zhao, Deyin; Shuai, Yi-Chen; Yang, Hongjun; Chuwongin, Santhad; Chadha, Arvinder; Seo, Jung-Hun; Wang, Ken X.; Liu, Victor; Ma, Zhenqiang; Fan, Shanhui
2014-01-01
In contrast to a conventional symmetric Lorentzian resonance, Fano resonance is predominantly used to describe asymmetric-shaped resonances, which arise from the constructive and destructive interference of discrete resonance states with broadband continuum states. This phenomenon and the underlying mechanisms, being common and ubiquitous in many realms of physical sciences, can be found in a wide variety of nanophotonic structures and quantum systems, such as quantum dots, photonic crystals, plasmonics, and metamaterials. The asymmetric and steep dispersion of the Fano resonance profile promises applications for a wide range of photonic devices, such as optical filters, switches, sensors, broadband reflectors, lasers, detectors, slow-light and non-linear devices, etc. With advances in nanotechnology, impressive progress has been made in the emerging field of nanophotonic structures. One of the most attractive nanophotonic structures for integrated photonics is the two-dimensional photonic crystal slab (2D PCS), which can be integrated into a wide range of photonic devices. The objective of this manuscript is to provide an in depth review of the progress made in the general area of Fano resonance photonics, focusing on the photonic devices based on 2D PCS structures. General discussions are provided on the origins and characteristics of Fano resonances in 2D PCSs. A nanomembrane transfer printing fabrication technique is also reviewed, which is critical for the heterogeneous integrated Fano resonance photonics. The majority of the remaining sections review progress made on various photonic devices and structures, such as high quality factor filters, membrane reflectors, membrane lasers, detectors and sensors, as well as structures and phenomena related to Fano resonance slow light effect, nonlinearity, and optical forces in coupled PCSs. It is expected that further advances in the field will lead to more significant advances towards 3D integrated photonics, flat
3D track initiation in clutter using 2D measurements
NASA Astrophysics Data System (ADS)
Lin, Lin; Kirubarajan, Thiagalingam; Bar-Shalom, Yaakov
2001-11-01
In this paper we present an algorithm for initiating 3-D tracks using range and azimuth (bearing) measurements from a 2-D radar on a moving platform. The work is motivated by the need to track possibly low-flying targets, e.g., cruise missiles, using reports from an aircraft-based surveillance radar. Previous work on this problem considered simple linear motion in a flat earth coordinate frame. Our research extends this to a more realistic scenario where the earth"s curvature is also considered. The target is assumed to be moving along a great circle at a constant altitude. After the necessary coordinate transformations, the measurements are nonlinear functions of the target state and the observability of target altitude is severely limited. The observability, quantified by the Cramer-Rao Lower Bound (CRLB), is very sensitive to the sensor-to-target geometry. The paper presents a Maximum Likelihood (ML) estimator for estimating the target motion parameters in the Earth Centered Earth Fixed coordinate frame from 2-D range and angle measurements. In order to handle the possibility of false measurements and missed detections, which was not considered in, we use the Probabilistic Data Association (PDA) algorithm to weight the detections in a frame. The PDA-based modified global likelihood is optimized using a numerical search. The accuracies obtained by the resulting ML-PDA estimator are quantified using the CRLB for different sensor-target configurations. It is shown that the proposed estimator is efficient, that is, it meets the CRLB. Of particular interest is the achievable accuracy for estimating the target altitude, which is not observed directly by the 2-D radar, but can be only inferred from the range and bearing observations.
ERIC Educational Resources Information Center
Greaves, Neville
2005-01-01
Glass is reviewed from fabrication to application, laying emphasis on the wide-ranging physics involved. This begins with liquids and solids and the way in which glasses are defined and can be demonstrated in the classroom. At the atomic level the regular structure of crystals and their irregular counterparts in glasses are explained through…
NASA Technical Reports Server (NTRS)
Rice, S. H.
1982-01-01
Process for machining glass with conventional carbide tools requires a small quantity of a lubricant for aluminum applied to area of glass to be machined. A carbide tool is then placed against workpiece with light pressure. Tool is raised periodically to clear work of glass dust and particles. Additional lubricant is applied as it is displaced.
2D induced gravity from the canonically gauged WZNW system
NASA Astrophysics Data System (ADS)
Blagojević, M.; Popović, D. S.; Sazdović, B.
1999-02-01
Starting from the Kac-Moody structure of the WZNW model for SL(2,R) and using the general canonical formalism, we formulate a gauge theory invariant under local SL(2,R)×SL(2,R) and diffeomorphisms. This theory represents a gauge extension of the WZNW system, defined by a difference of two simple WZNW actions. By performing a partial gauge fixing and integrating out some dynamical variables, we prove that the resulting effective theory coincides with the induced gravity in 2D. The geometric properties of the induced gravity are obtained out of the gauge properties of the WZNW system with the help of the Dirac brackets formalism.
Recent update of the RPLUS2D/3D codes
NASA Technical Reports Server (NTRS)
Tsai, Y.-L. Peter
1991-01-01
The development of the RPLUS2D/3D codes is summarized. These codes utilize LU algorithms to solve chemical non-equilibrium flows in a body-fitted coordinate system. The motivation behind the development of these codes is the need to numerically predict chemical non-equilibrium flows for the National AeroSpace Plane Program. Recent improvements include vectorization method, blocking algorithms for geometric flexibility, out-of-core storage for large-size problems, and an LU-SW/UP combination for CPU-time efficiency and solution quality.
Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.
2009-01-01
VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.
Transport Experiments on 2D Correlated Electron Physics in Semiconductors
Tsui, Daniel
2014-03-24
This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.
2D/3D Synthetic Vision Navigation Display
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.
2008-01-01
Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.
Efficient 2d full waveform inversion using Fortran coarray
NASA Astrophysics Data System (ADS)
Ryu, Donghyun; Kim, ahreum; Ha, Wansoo
2016-04-01
We developed a time-domain seismic inversion program using the coarray feature of the Fortran 2008 standard to parallelize the algorithm. We converted a 2d acoustic parallel full waveform inversion program with Message Passing Interface (MPI) to a coarray program and examined performance of the two inversion programs. The results show that the speed of the waveform inversion program using the coarray is slightly faster than that of the MPI version. The standard coarray lacks features for collective communication; however, it can be improved in following standards since it is introduced recently. The parallel algorithm can be applied for 3D seismic data processing.
Unitary matrix models and 2D quantum gravity
Dalley, S. . Joseph Henry Labs.); Johnson, C.V.; Morris, T.R. . Dept. of Physics); Watterstam, A. )
1992-09-21
In this paper the KdV and modified KdV integrable hierarchies are shown to be different descriptions of the same 2D gravitational system - open-closed string theory. Non-perturbative solutions of the multicritical unitary matrix models map to non-singular solutions of the renormalization group equation for the string susceptibility, [P, Q] = Q. The authors also demonstrate that the large-N solutions of unitary matrix integrals in external fields, studied by Gross and Newman, equal the non-singular pure closed-string solutions of [[bar P], Q] = Q.
2-D scalable optical controlled phased-array antenna system
NASA Astrophysics Data System (ADS)
Chen, Maggie Yihong; Howley, Brie; Wang, Xiaolong; Basile, Panoutsopoulos; Chen, Ray T.
2006-02-01
A novel optoelectronically-controlled wideband 2-D phased-array antenna system is demonstrated. The inclusion of WDM devices makes a highly scalable system structure. Only (M+N) delay lines are required to control a M×N array. The optical true-time delay lines are combination of polymer waveguides and optical switches, using a single polymeric platform and are monolithically integrated on a single substrate. The 16 time delays generated by the device are measured to range from 0 to 175 ps in 11.6 ps. Far-field patterns at different steering angles in X-band are measured.
Breakdown of wave diffusion in 2D due to loops.
Haney, Matthew; Snieder, Roel
2003-08-29
The validity of the diffusion approximation for the intensity of multiply scattered waves is tested with numerical simulations in a strongly scattering 2D medium of finite extent. We show that the diffusion equation underestimates the intensity and attribute this to both the neglect of recurrent scattering paths and interference within diffusion theory. We present a theory to quantify this discrepancy based on counting all possible scattering paths between point scatterers. Interference phenomena, due to loop paths, are incorporated in a way similar to coherent backscattering. PMID:14525183
Anomalous Hall Effect in a 2D Rashba Ferromagnet.
Ado, I A; Dmitriev, I A; Ostrovsky, P M; Titov, M
2016-07-22
Skew scattering on rare impurity configurations is shown to dominate the anomalous Hall effect in a 2D Rashba ferromagnet. The mechanism originates in scattering on rare impurity pairs separated by distances of the order of the Fermi wavelength. The corresponding theoretical description goes beyond the conventional noncrossing approximation. The mechanism provides the only contribution to the anomalous Hall conductivity in the most relevant metallic regime and strongly modifies previously obtained results for lower energies in the leading order with respect to impurity strength. PMID:27494487
Ultrathin 2D Metal-Organic Framework Nanosheets.
Zhao, Meiting; Wang, Yixian; Ma, Qinglang; Huang, Ying; Zhang, Xiao; Ping, Jianfeng; Zhang, Zhicheng; Lu, Qipeng; Yu, Yifu; Xu, Huan; Zhao, Yanli; Zhang, Hua
2015-12-01
A facile surfactant-assisted bottom-up synthetic method to prepare a series of freestanding ultrathin 2D M-TCPP (M = Zn, Cu, Cd or Co, TCPP = tetrakis(4-carboxyphenyl)porphyrin) nanosheets with a thickness of sub-10 nm is developed. As a proof-of-concept application, some of them are successfully used as new platforms for DNA detection. The Cu-TCPP nanosheet-based sensor shows excellent fluorescent sensing performance and is used for the simultaneous detection of multiple DNA targets. PMID:26468970
Finite Element Analysis of 2-D Elastic Contacts Involving FGMs
NASA Astrophysics Data System (ADS)
Abhilash, M. N.; Murthy, H.
2014-05-01
The response of elastic indenters in contact with Functionally Graded Material (FGM) coated homogeneous elastic half space has been presented in the current paper. Finite element analysis has been used due to its ability to handle complex geometry, material, and boundary conditions. Indenters of different typical surface profiles have been considered and the problem has been idealized as a two-dimensional (2D) plane strain problem considering only normal loads. Initially, indenters were considered to be rigid and the results were validated with the solutions presented in the literature. The analysis has then been extended to the case of elastic indenters on FGM-coated half spaces and the results are discussed.
Topology-Preserving Rigid Transformation of 2D Digital Images.
Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues
2014-02-01
We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping. PMID:26270925
VECTUM. Irregular 2D Velocity Vector Field Plotting Package
McClurg, F.R.; Mousseau, V.A.
1992-05-04
VECTUM is a NCAR Graphics based package, for generating a plot of an irregular 2D velocity vector field. The program reads an ASCII database of x, y, u, v, data pairs and produces a plot in Computer Graphics Metafile (CGM) format. The program also uses an ASCII parameter file for controlling annotation details such as the plot title, arrowhead style, scale of vectors, windowing, etc. Simple geometry (i.e. lines, arcs, splines) can be defined to be included with the velocity vectors. NCAR Graphics drivers can be used to display the CGM file into PostScript, HPGL, HDF, etc, output.
A parallel splitting wavelet method for 2D conservation laws
NASA Astrophysics Data System (ADS)
Schmidt, Alex A.; Kozakevicius, Alice J.; Jakobsson, Stefan
2016-06-01
The current work presents a parallel formulation using the MPI protocol for an adaptive high order finite difference scheme to solve 2D conservation laws. Adaptivity is achieved at each time iteration by the application of an interpolating wavelet transform in each space dimension. High order approximations for the numerical fluxes are computed by ENO and WENO schemes. Since time evolution is made by a TVD Runge-Kutta space splitting scheme, the problem is naturally suitable for parallelization. Numerical simulations and speedup results are presented for Euler equations in gas dynamics problems.
Quantum Oscillations in an Interfacial 2D Electron Gas.
Zhang, Bingop; Lu, Ping; Liu, Henan; Lin, Jiao; Ye, Zhenyu; Jaime, Marcelo; Balakirev, Fedor F.; Yuan, Huiqiu; Wu, Huizhen; Pan, Wei; Zhang, Yong
2016-01-01
Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb_{1-x}Sn_{x}Te thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.
The 2d MIT: The Pseudogap and Fermi Liquid Theory
NASA Astrophysics Data System (ADS)
Castner, T. G.
2005-06-01
Fermi liquid theory for the 2d metal-insulator transition is extended to include the correlation gap in the density-of-states. The results are consistent with the scaling form g=gce[on(To/T)] at T larger than a characteristic T* ∝ xTc (Tc=Ec= mobility edge). The two-component model n1+nloc=n=nc(1+x) for n>nc is required and the theory explains the T-dependence of the data of Hanein et al. for p-type GaAs.
New perspective on matter coupling in 2D quantum gravity
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Loll, R.
1999-11-01
We provide compelling evidence that a previously introduced model of nonperturbative 2D Lorentzian quantum gravity exhibits (two-dimensional) flat-space behavior when coupled to Ising spins. The evidence comes from both a high-temperature expansion and from Monte Carlo simulations of the combined gravity-matter system. This weak-coupling behavior lends further support to the conclusion that the Lorentzian model is a genuine alternative to Liouville quantum gravity in two dimensions, with a different and much ``smoother'' critical behavior.
The quantum spacetime of c > 0 2 d gravity
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Thorleifsson, G.
1998-04-01
We review recent developments in the understanding of the fractal properties of quantum spacetime of 2d gravity coupled to c > 0 conformal matter. In particular we discuss bounds put by numerical simulations using dynamical triangulations on the value of the Hausdorff dimension dH obtained from scaling properties of two point functions defined in terms of geodesic distance. Further insight to the fractal structure of spacetime is obtained from the study of the loop length distribution function which reveals that the 0 < c ≤ 1 system has similar geometric properties with pure gravity, whereas the branched polymer structure becomes clear for c ≥ 5.
Black liquor gasification phase 2D final report
Kohl, A.L.; Stewart, A.E.
1988-06-01
This report covers work conducted by Rockwell International under Amendment 5 to Subcontract STR/DOE-12 of Cooperative Agreement DE-AC-05-80CS40341 between St. Regis Corporation (now Champion International) and the Department of Energy (DOE). The work has been designated Phase 2D of the overall program to differentiate it from prior work under the same subcontract. The overall program is aimed at demonstrating the feasibility of and providing design data for the Rockwell process for gasifying Kraft black liquor. In this process, concentrated black liquor is converted into low-Btu fuel gas and reduced melt by reaction with air in a specially designed gasification reactor.
Real-time SPECT and 2D ultrasound image registration.
Bucki, Marek; Chassat, Fabrice; Galdames, Francisco; Asahi, Takeshi; Pizarro, Daniel; Lobo, Gabriel
2007-01-01
In this paper we present a technique for fully automatic, real-time 3D SPECT (Single Photon Emitting Computed Tomography) and 2D ultrasound image registration. We use this technique in the context of kidney lesion diagnosis. Our registration algorithm allows a physician to perform an ultrasound exam after a SPECT image has been acquired and see in real time the registration of both modalities. An automatic segmentation algorithm has been implemented in order to display in 3D the positions of the acquired US images with respect to the organs. PMID:18044572
Beam-Plasma Instabilities in a 2D Yukawa Lattice
Kyrkos, S.; Kalman, G. J.; Rosenberg, M.
2009-06-05
We consider a 2D Yukawa lattice of grains, with a beam of other charged grains moving in the lattice plane. In contrast to Vlasov plasmas, where the electrostatic instability excited by the beam is only longitudinal, here both longitudinal and transverse instabilities of the lattice phonons can develop. We determine and compare the transverse and longitudinal growth rates. The growth rate spectrum in wave number space exhibits remarkable gaps where no instability can develop. Depending on the system parameters, the transverse instability can be selectively excited.
Syamkumar, S.A.; Padmanabhan, Sriram; Sukumar, Prabakar; Nagarajan, Vivekanandan
2012-04-01
A commercial 2D array seven29 detector has been characterized and its performance has been evaluated. 2D array ionization chamber equipped with 729 ionization chambers uniformly arranged in a 27 Multiplication-Sign 27 matrix with an active area of 27 Multiplication-Sign 27 cm{sup 2} was used for the study. An octagon-shaped phantom (Octavius Phantom) with a central cavity is used to insert the 2D ion chamber array. All measurements were done with a linear accelerator. The detector dose linearity, reproducibility, output factors, dose rate, source to surface distance (SSD), and directional dependency has been studied. The performance of the 2D array, when measuring clinical dose maps, was also investigated. For pretreatment quality assurance, 10 different RapidArc plans conforming to the clinical standards were selected. The 2D array demonstrates an excellent short-term output reproducibility. The long-term reproducibility was found to be within {+-}1% over a period of 5 months. Output factor measurements for the central chamber of the array showed no considerable deviation from ion chamber measurements. We found that the 2D array exhibits directional dependency for static fields. Measurement of beam profiles and wedge-modulated fields with the 2D array matched very well with the ion chamber measurements in the water phantom. The study shows that 2D array seven29 is a reliable and accurate dosimeter and a useful tool for quality assurance. The combination of the 2D array with the Octavius phantom proved to be a fast and reliable method for pretreatment verification of rotational treatments.
Power Harvesting from Rotation?
ERIC Educational Resources Information Center
Chicone, Carmen; Feng, Z. C.
2008-01-01
We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)
Park, Chang-Young; Fygenson, Deborah K; Saleh, Omar A
2016-06-21
Rod-like particles form solutions of technological and biological importance. In particular, biofilaments such as actin and microtubules are known to form a variety of phases, both in vivo and in vitro, whose appearance can be controlled by depletion, confinement, and electrostatic interactions. Here, we utilize DNA nanotubes to undertake a comprehensive study of the effects of those interactions on two particular rod-like phases: a 2D nematic phase consisting of aligned rods pressed against a glass surface, and a 3D bundled network phase. We experimentally measure the stability of these two phases over a range of depletant concentrations and ionic strengths, finding that the 2D phase is slightly more stable than the 3D phase. We formulate a quantitative model of phase stability based on consideration of pairwise rod-rod and rod-surface interactions; notably, we include a careful accounting of solution electrostatics interactions using an effective-charge strategy. The model is relatively simple and contains no free parameters, yet predicts phase boundaries in good agreement with the experiment. Our results indicate that electrostatic interactions, rather than depletion, are largely responsible for the enhanced stability of the 2D phase. This work provides insight into the polymorphism of rod-like solutions, indicating why certain phases appear, and providing a means (and a predictive model) for controlling those phases. PMID:27126684
NASA Astrophysics Data System (ADS)
Stahr, Donald W.; Law, Richard D.
2014-11-01
We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique 'mean' kinematic vorticity experienced by a deformed rock volume.
Qu, Qiang; Qu, Jian; Han, Lu; Zhan, Min; Wu, Lan-xiang; Zhang, Yi-wen; Zhang, Wei; Zhou, Hong-hao
2014-01-01
Aim: Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6*1 and CYP2D6*10 in vitro. Methods: HepG2 cells were stably transfected with CYP2D6*1 and CYP2D6*10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. Results: HepG2-CYP2D6*1 and HepG2-CYP2D6*10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6*1- and CYP2D6*10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6*1 and CYP2D6*10. However, their Ki values for CYP2D6*1 and CYP2D6*10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants. Conclusion: Six phytochemicals inhibit CYP2D6*1 and CYP2D6*10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6. PMID:24786236
Preconditioning 2D Integer Data for Fast Convex Hull Computations.
Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L
2016-01-01
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved. PMID:26938221
Magnetic gating of a 2D topological insulator.
Dang, Xiaoqian; Burton, J D; Tsymbal, Evgeny Y
2016-09-28
Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic 'gate' representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate. PMID:27437829
MESH2D GRID GENERATOR DESIGN AND USE
Flach, G.; Smith, F.
2012-01-20
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.
3D surface configuration modulates 2D symmetry detection.
Chen, Chien-Chung; Sio, Lok-Teng
2015-02-01
We investigated whether three-dimensional (3D) information in a scene can affect symmetry detection. The stimuli were random dot patterns with 15% dot density. We measured the coherence threshold, or the proportion of dots that were the mirror reflection of the other dots in the other half of the image about a central vertical axis, at 75% accuracy with a 2AFC paradigm under various 3D configurations produced by the disparity between the left and right eye images. The results showed that symmetry detection was difficult when the corresponding dots across the symmetry axis were on different frontoparallel or inclined planes. However, this effect was not due to a difference in distance, as the observers could detect symmetry on a slanted surface, where the depth of the two sides of the symmetric axis was different. The threshold was reduced for a hinge configuration where the join of two slanted surfaces coincided with the axis of symmetry. Our result suggests that the detection of two-dimensional (2D) symmetry patterns is subject to the 3D configuration of the scene; and that coplanarity across the symmetry axis and consistency between the 2D pattern and 3D structure are important factors for symmetry detection. PMID:25536469
Modelling RF sources using 2-D PIC codes
Eppley, K.R.
1993-03-01
In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.
Flatbands in 2D boroxine-linked covalent organic frameworks.
Wang, Rui-Ning; Zhang, Xin-Ran; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long
2016-01-14
Density functional calculations have been performed to analyze the electronic and mechanical properties of a number of 2D boroxine-linked covalent organic frameworks (COFs), which are experimentally fabricated from di-borate aromatic molecules. Furthermore, the band structures are surprising and show flat-band characteristics which are mainly attributed to the delocalized π-conjugated electrons around the phenyl rings and can be better understood within aromaticity theories. Next, the effects of branch sizes and hydrostatic strains on their band structures are systematically considered within generalized gradient approximations. It is found that their band gaps will start to saturate when the branch size reaches 9. For boroxine-linked COFs with only one benzene ring in the branch, the band gap is robust under compressive strain while it decreases with the tensile strain increasing. When the branch size is equal or greater than 2, their band gaps will monotonously increase with the strain increasing in the range of [-1.0, 2.0] Å. All boroxine-linked COFs are semiconductors with controllable band gaps, depending on the branch length and the applied strain. In comparison with other 2D materials, such as graphene, hexagonal boron nitride, and even γ-graphyne, all boroxine-linked COFs are much softer and even more stable. That is, they can maintain the planar features under a larger compressive strain, which means that they are good candidates in flexible electronics. PMID:26662215
Magnetic gating of a 2D topological insulator
NASA Astrophysics Data System (ADS)
Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.
2016-09-01
Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.