Science.gov

Sample records for 2d sds page

  1. Analysis of membrane-protein complexes of the marine sulfate reducer Desulfobacula toluolica Tol2 by 1D blue native-PAGE complexome profiling and 2D blue native-/SDS-PAGE.

    PubMed

    Wöhlbrand, Lars; Ruppersberg, Hanna S; Feenders, Christoph; Blasius, Bernd; Braun, Hans-Peter; Rabus, Ralf

    2016-03-01

    Sulfate-reducing bacteria (SRB) obtain energy from cytoplasmic reduction of sulfate to sulfide involving APS-reductase (AprAB) and dissimilatory sulfite reductase (DsrAB). These enzymes are predicted to obtain electrons from membrane redox complexes, i.e. the quinone-interacting membrane-bound oxidoreductase (QmoABC) and DsrMKJOP complexes. In addition to these conserved complexes, the genomes of SRB encode a large number of other (predicted) membrane redox complexes, the function and actual formation of which is unknown. This study reports the establishment of 1D Blue Native-PAGE complexome profiling and 2D BN-/SDS-PAGE for analysis of the membrane protein complexome of the marine sulfate reducer Desulfobacula toluolica Tol2. Analysis of normalized score profiles of >800 proteins in combination with hierarchical clustering and identification of 2D BN-/SDS-PAGE separated spots demonstrated separation of membrane complexes in their native form, e.g. ATP synthase. In addition to the QmoABC and DsrMKJOP complexes, other complexes were detected that constitute the basic membrane complexome of D. toluolica Tol2, e.g. transport proteins (e.g. sodium/sulfate symporters) or redox complexes involved in Na(+) -based bioenergetics (RnfABCDEG). Notably, size estimation indicates dimer and quadruple formation of the DsrMKJOP complex in vivo. Furthermore, cluster analysis suggests interaction of this complex with a rhodanese-like protein (Tol2_C05230) possibly representing a periplasmic electron transfer partner for DsrMKJOP. PMID:26792001

  2. Proteomic analysis of human bladder epithelial cells by 2D blue native SDS-PAGE reveals TCDD-induced alterations of calcium and iron homeostasis possibly mediated by nitric oxide.

    PubMed

    Verma, Nisha; Pink, Mario; Petrat, Frank; Rettenmeier, Albert W; Schmitz-Spanke, Simone

    2015-01-01

    A proteomic analysis of the interaction among multiprotein complexes involved in 2,3,7,8-dibenzo-p-dioxin (TCDD)-mediated toxicity in urinary bladder epithelial RT4 cells was performed using two-dimensional blue native SDS-PAGE (2D BN/SDS-PAGE). To enrich the protein complexes, unexposed and TCDD-exposed cells were fractionated. BN/SDS-PAGE of the resulting fractions led to an effective separation of proteins and protein complexes of various origins, including cell membrane, mitochondria, and other intracellular compartments. Major differences between the proteome of control and exposed cells involved the alteration of many calcium-regulated proteins (calmodulin, protein S100-A2, annexin A5, annexin A10, gelsolin isoform b) and iron-regulated proteins (ferritin, heme-binding protein 2, transferrin). On the basis of these findings, the intracellular calcium concentration was determined, revealing a significant increase after 24 h of exposure to TCDD. Moreover, the concentration of the labile iron pool (LIP) was also significantly elevated in TCDD-exposed cells. This increase was strongly inhibited by the calmodulin (CaM) antagonist W-7, which pointed toward a possible interaction between iron and calcium signaling. Because nitric oxide (NO) production was significantly enhanced in TCDD-exposed cells and was also inhibited by W-7, we hypothesize that alterations in calcium and iron homeostasis upon exposure to TCDD may be linked through NO generated by CaM-activated nitric oxide synthase. In our model, we propose that NO produced upon TCDD exposure interacts with the iron centers of iron-regulatory proteins (IRPs) that modulate the alteration of ferritin and transferrin, resulting in an augmented cellular LIP and, hence, increased toxicity. PMID:25348606

  3. One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE).

    PubMed

    Brunelle, Julie L; Green, Rachel

    2014-01-01

    This protocol describes a denaturing polyacrylamide gel system utilizing sodium dodecyl sulfate (SDS) to separate protein molecules based on size as first described by Laemmli (1970). SDS-PAGE can be used to monitor protein purifications, check the purity of samples, and to estimate molecular weights for unknown proteins. PMID:24674069

  4. SDS-PAGE and two-dimensional maps in a radial gel format.

    PubMed

    Millioni, Renato; Miuzzo, Manuela; Antonioli, Paolo; Sbrignadello, Stefano; Iori, Elisabetta; Dosselli, Ryan; Puricelli, Lucia; Kolbe, Markus; Tessari, Paolo; Righetti, Pier Giorgio

    2010-01-01

    A novel method for performing 2-D map analysis is here reported, consisting in a modification of the second dimension run, which is performed not in a conventional square- or rectangular-size gel, but in a radial surface. This has the advantage of permitting resolution of closely adjacent bands, representing strings of isoforms of similar or identical mass but of closely spaced isoelectric points. When used in a mono-dimensional, SDS-PAGE format, this system allows the simultaneous running of 62 sample tracks. Examples are given of separation of plasma and urinary proteins. PMID:20119955

  5. Determination of the Subunit Molecular Mass and Composition of Alcohol Dehydrogenase by SDS-PAGE

    ERIC Educational Resources Information Center

    Nash, Barbara T.

    2007-01-01

    SDS-PAGE is a simple, rapid technique that has many uses in biochemistry and is readily adaptable to the undergraduate laboratory. It is, however, a technique prone to several types of procedural pitfalls. This article describes the use of SDS-PAGE to determine the subunit molecular mass and composition of yeast alcohol dehydrogenase employing…

  6. Region-based Statistical Analysis of 2D PAGE Images

    PubMed Central

    Li, Feng; Seillier-Moiseiwitsch, Françoise; Korostyshevskiy, Valeriy R.

    2011-01-01

    A new comprehensive procedure for statistical analysis of two-dimensional polyacrylamide gel electrophoresis (2D PAGE) images is proposed, including protein region quantification, normalization and statistical analysis. Protein regions are defined by the master watershed map that is obtained from the mean gel. By working with these protein regions, the approach bypasses the current bottleneck in the analysis of 2D PAGE images: it does not require spot matching. Background correction is implemented in each protein region by local segmentation. Two-dimensional locally weighted smoothing (LOESS) is proposed to remove any systematic bias after quantification of protein regions. Proteins are separated into mutually independent sets based on detected correlations, and a multivariate analysis is used on each set to detect the group effect. A strategy for multiple hypothesis testing based on this multivariate approach combined with the usual Benjamini-Hochberg FDR procedure is formulated and applied to the differential analysis of 2D PAGE images. Each step in the analytical protocol is shown by using an actual dataset. The effectiveness of the proposed methodology is shown using simulated gels in comparison with the commercial software packages PDQuest and Dymension. We also introduce a new procedure for simulating gel images. PMID:21850152

  7. Quantification of major allergen parvalbumin in 22 species of fish by SDS-PAGE.

    PubMed

    Kobayashi, Yukihiro; Yang, Tao; Yu, Cheng-Tao; Ume, Chiaki; Kubota, Hiroyuki; Shimakura, Kuniyoshi; Shiomi, Kazuo; Hamada-Sato, Naoko

    2016-03-01

    Fish is an important causative material of food allergy. Although the allergenicity of fish is considered to correlate with the content of parvalbumin, the major fish allergen, available information about the parvalbumin content in fish is limited. In this study, a simple and reliable quantification method for fish parvalbumin by SDS-PAGE was first established. Application of the SDS-PAGE method to 22 species of fish revealed a marked variation in parvalbumin content among fish. Furthermore, the parvalbumin content was found to be higher in dorsal white muscle than in ventral white muscle, in rostral part of white muscle than in caudal part of white muscle and in white muscle than in dark muscle. IgE reactivity of fish was roughly proportional to parvalbumin content. Interestingly, large-sized migratory fish, such as salmon, swordfish and tuna, were commonly very low in both parvalbumin content and IgE reactivity. PMID:26471564

  8. Loss of PEG chain in routine SDS-PAGE analysis of PEG-maleimide modified protein.

    PubMed

    Zhang, Chun; Liu, Yongdong; Feng, Cui; Wang, Qi; Shi, Hong; Zhao, Dawei; Yu, Rong; Su, Zhiguo

    2015-01-01

    SDS-PAGE represents a quick and simple method for qualitative and quantitative analysis of protein and protein-containing conjugates, mostly pegylated proteins. PEG-maleimide (MAL) is frequently used to site-specifically pegylate therapeutic proteins via free cysteine residue by forming a thiosuccinimide structure for pursuing homogeneous products. The C-S linkage between protein and PEG-MAL is generally thought to be relatively stable. However, loss of intact PEG chain in routine SDS-PAGE analysis of PEG-maleimide modified protein was observed. It is a thiol-independent thioether cleavage and the shedding of PEG chain exclusively happens to PEG-MAL modified conjugates although PEG-vinylsulfone conjugates to thiol-containing proteins also through a C-S linkage. Cleavage kinetics of PEG40k-MAL modified ciliary neurotrophic factor showed this kind of degradation could immediately happen even in 1 min incubation at high temperature and could be detected at physiological temperature and pH, although the rate was relatively slow. This may provide another degradation route for maleimide-thiol conjugate irrespective of reactive thiol, although the specific mechanism is still not very clear for us. It would also offer a basis for accurate characterization of PEG-MAL modified protein/peptide by SDS-PAGE analysis. PMID:25265901

  9. Pre-staining of glycoprotein in SDS-PAGE by the synthesis of a new hydrazide derivative.

    PubMed

    Zhou, Ayi; Zhou, Tieli; Yu, Dongdong; Shen, Yingjie; Shen, Jiayi; Zhu, Zhongxin; Jin, Litai; Zhang, Huajie; Wang, Yang

    2015-11-01

    In this study, a new hydrazide derivative (UGF202) was synthesized and introduced as a highly sensitive and selective fluorescent probe to pre-stain glycoproteins in 1D and 2D SDS-PAGE. As low as 0.5-1 ng glycoproteins (transferrin, α1-acid glycoprotein, avidin) could be selectively detected, which is comparable to that of Pro-Q Emerald 300 stain, one of the most sensitive and commonly used glycoprotein staining kit. In addition, the specificity of the newly developed method was confirmed by the study of de-glycosylation, glycoproteins affinity enrichment and LC-MS/MS, respectively. According to the results, it is concluded that UGF202 pre-stain can provide an alternative for the visualization of gel-separated glycoproteins. PMID:26256282

  10. Improved conditions for periodate/Schiff's base-based fluorescent staining of glycoproteins with dansylhydrazine in SDS-PAGE.

    PubMed

    Zhou, Xuan; Hong, Guo-Ying; Huang, Bin-Bin; Duan, Yuan-Meng; Shen, Jia-Yi; Ni, Mao-Wei; Cong, Wei-Tao; Jin, Li-Tai

    2014-05-01

    An improved periodate/Schiff's base based fluorescent stain with dansylhydrazine (DH) for glycoproteins in 1D and 2D SDS-PAGE was described. Down to 4-8 ng of glycoproteins can be selectively detected within 2 h, which is approximately 16-fold higher than that of original protocol, but similar to that of Pro-Q Emerald 488 stain (Invitrogen, Carlsbad, USA). Furthermore, subsequent study of deglycosylation, glycoprotein affinity isolation, and LC-MS/MS analysis were performed to confirm the specificity of the improved method. As a result, improved DH stain may provide a new choice for selective, economic, MS compatible, and convenient visualization of gel-separated glycoproteins. PMID:24591039

  11. Grain protein variability among species of Triticum and Aegilops: quantitative SDS-PAGE studies.

    PubMed

    Cole, E W; Fullington, J G; Kasarda, D D

    1981-01-01

    Total proteins were extracted from degermed seeds of various species of Triticum and Aegilops with solutions containing sodium dodecyl sulfate (SDS) and mercaptoethanol. The reduced, dissociated proteins were fractionated according to molecular weight (MW) by high-resolution polyacrylamide gel electrophoresis in buffers containing SDS (SDS-PAGE). Stained SDS-PAGE patterns were measured by densitometric scanning over a suitable range of optical density. The data were normalized to equivalent total areas for each of the densitometric scans by means of a computer program that also permitted the construction of patterns of hypothetical amphiploids by averaging patterns of two or three diploid species. The grain proteins of most species examined had distinctive qualitative and quantitative aspects that were characteristic of the species even though nearly every accession or cultivar of a species exhibited at least minor differences in pattern from other accessions or cultivars. The main protein components (probably prolamins) of Triticum monococcum ssp. monococcum, T. monococcum ssp. boeoticum, T. urartu, and Aegilops squarrosa had MW's in the range 29-36 X 10(3) whereas the most important components of Ae. speltoides, Ae. longissima, and Ae. searsii had MW's in the range 37-55 × 10(3). Changes in the quantitative expression of particular genes, especially those coding for storage protein components, may have been associated with speciation. The strong predominance of proteins with MW's in the range 29-36 × 10(3) in some accessions of AB genome tetraploids, such as T. turgidum ssp. dicoccoides, may indicate contributions to the B genome of these tetraploids by T. monococcum ssp. boeoticum, T. urartu, or Ae. squarrosa. PMID:24276584

  12. Genetic Variability among Lucerne Cultivars Based on Biochemical (SDS-PAGE) and Morphological Markers

    NASA Astrophysics Data System (ADS)

    Farshadfar, M.; Farshadfar, E.

    The present research was conducted to determine the genetic variability of 18 Lucerne cultivars, based on morphological and biochemical markers. The traits studied were plant height, tiller number, biomass, dry yield, dry yield/biomass, dry leaf/dry yield, macro and micro elements, crude protein, dry matter, crude fiber and ash percentage and SDS- PAGE in seed and leaf samples. Field experiments included 18 plots of two meter rows. Data based on morphological, chemical and SDS-PAGE markers were analyzed using SPSSWIN soft ware and the multivariate statistical procedures: cluster analysis (UPGMA), principal component. Analysis of analysis of variance and mean comparison for morphological traits reflected significant differences among genotypes. Genotype 13 and 15 had the greatest values for most traits. The Genotypic Coefficient of Variation (GCV), Phenotypic Coefficient of Variation (PCV) and Heritability (Hb) parameters for different characters raged from 12.49 to 26.58% for PCV, hence the GCV ranged from 6.84 to 18.84%. The greatest value of Hb was 0.94 for stem number. Lucerne genotypes could be classified, based on morphological traits, into four clusters and 94% of the variance among the genotypes was explained by two PCAs: Based on chemical traits they were classified into five groups and 73.492% of variance was explained by four principal components: Dry matter, protein, fiber, P, K, Na, Mg and Zn had higher variance. Genotypes based on the SDS-PAGE patterns all genotypes were classified into three clusters. The greatest genetic distance was between cultivar 10 and others, therefore they would be suitable parent in a breeding program.

  13. Detection of an endothelin-1-binding protein complex by low temperature SDS-PAGE

    SciTech Connect

    Takasuka, T.; Horii, I.; Furuichi, Y.; Watanabe, T. )

    1991-04-15

    We found that the complex of ET-1 and its binding protein was stable enough to be separated by SDS-PAGE when electrophoresis was run at a low temperature. Cross-linking was not necessary for the detection of {sup 125}I-ET-1 and its binding protein complex by autoradiography. This simple method could be used in qualitative (estimation of apparent molecular weight of ET-1 binding protein) and quantitative (determination of relative content of ET-binding protein) analysis of the ET-binding protein complex. ET-binding protein complexes of various animal species and organs were investigated by this method.

  14. An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide.

    PubMed

    Guan, Yihong; Zhu, Qinfang; Huang, Delai; Zhao, Shuyi; Jan Lo, Li; Peng, Jinrong

    2015-01-01

    The molecular weight (MW) of a protein can be predicted based on its amino acids (AA) composition. However, in many cases a non-chemically modified protein shows an SDS PAGE-displayed MW larger than its predicted size. Some reports linked this fact to high content of acidic AA in the protein. However, the exact relationship between the acidic AA composition and the SDS PAGE-displayed MW is not established. Zebrafish nucleolar protein Def is composed of 753 AA and shows an SDS PAGE-displayed MW approximately 13 kDa larger than its predicted MW. The first 188 AA in Def is defined by a glutamate-rich region containing ~35.6% of acidic AA. In this report, we analyzed the relationship between the SDS PAGE-displayed MW of thirteen peptides derived from Def and the AA composition in each peptide. We found that the difference between the predicted and SDS PAGE-displayed MW showed a linear correlation with the percentage of acidic AA that fits the equation y = 276.5x - 31.33 (x represents the percentage of acidic AA, 11.4% ≤ x ≤ 51.1%; y represents the average ΔMW per AA). We demonstrated that this equation could be applied to predict the SDS PAGE-displayed MW for thirteen different natural acidic proteins. PMID:26311515

  15. Two-dimensional blue native/SDS-PAGE analysis of whole cell lysate protein complexes of rice in response to salt stress.

    PubMed

    Hashemi, Amenehsadat; Gharechahi, Javad; Nematzadeh, Ghorbanali; Shekari, Faezeh; Hosseini, Seyed Abdollah; Salekdeh, Ghasem Hosseini

    2016-08-01

    To understand the biology of a plant in response to stress, insight into protein-protein interactions, which almost define cell behavior, is thought to be crucial. Here, we provide a comparative complexomics analysis of leaf whole cell lysate of two rice genotypes with contrasting responses to salt using two-dimensional blue native/SDS-PAGE (2D-BN/SDS-PAGE). We aimed to identify changes in subunit composition and stoichiometry of protein complexes elicited by salt. Using mild detergent for protein complex solubilization, we were able to identify 9 protein assemblies as hetero-oligomeric and 30 as homo-oligomeric complexes. A total of 20 proteins were identified as monomers in the 2D-BN/SDS-PAGE gels. In addition to identifying known protein complexes that confirm the technical validity of our analysis, we were also able to discover novel protein-protein interactions. Interestingly, an interaction was detected for glycolytic enzymes enolase (ENO1) and triosephosphate isomerase (TPI) and also for a chlorophyll a-b binding protein and RuBisCo small subunit. To show changes in subunit composition and stoichiometry of protein assemblies during salt stress, the differential abundance of interacting proteins was compared between salt-treated and control plants. A detailed exploration of some of the protein complexes provided novel insight into the function, composition, stoichiometry and dynamics of known and previously uncharacterized protein complexes in response to salt stress. PMID:27362847

  16. Detecting the mu opioid receptor in brain following SDS-PAGE with multiple approaches

    PubMed Central

    Huang, Peng; Liu-Chen, Lee-Yuan

    2013-01-01

    In general, it has been difficult to obtain antibodies which are useful for immunoblotting of endogenous seven-transmembrane receptors (7TMRs) despite the claims made by many companies on commercially available antibodies. In this review, we will use the mu opioid receptor (MOPR) in brain as an example to underscore the importance of using knock-out (K/O) mice and multiple independent approaches (ligand affinity-labeling, receptor phosphorylation and immunoblotting) in identifying 7TMRs following sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE). The rigor and convergence of pharmacological and biochemical data provide confidence on the unequivocal identification of MOPR. The distinct relative molecular masses (Mr’s) and band patterns are largely due to variations in the extent of N-glycosylation in different cell lines, brain regions and species. PMID:19482639

  17. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of urinary protein in acute kidney injury.

    PubMed

    Suhail, Sufi M; Woo, K T; Tan, H K; Wong, K S

    2011-07-01

    Recent experimental and clinical studies have shown the importance of urinary proteomics in acute kidney injury (AKI). We analyzed the protein in urine of patients with clinical AKI using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for its diagnostic value, and followed them up for 40 months to evaluate prognosis. Urine from 31 consecutive cases of AKI was analyzed with SDS-PAGE to determine the low, middle and high molecular weight proteins. Fractional excretion of sodium (FENa) was estimated from serum and urine creatinine and sodium (Na). The cases were followed-up for 40 months from the end of the recruitment of study cases. Glomerular protein was higher in the hematuria group when compared with the non-hematuria group (P <0.04) and in the AKI group than in the acute on chronic renal failure (AKI-on-CRF) group (P <0.002). Tubular protein was higher in the AKI-on-CRF group (P <0.003) than in the AKI group. Tubular protein correlated with FENa in groups with diabetes mellitus (DM), AKI-on-CRF, and without hematuria (P <0.03, P <0.02 and P <0.004, respectively). Pattern of protein did not differ between groups with and without DM and clinical acute tubular necrosis (ATN). At the end of 40 months follow-up, category with predominantly glomerular protein progressed to chronic renal failure (CRF) or end-stage renal failure in higher proportion (P <0.05). In clinical AKI, we observed that glomerular protein dominated in cases with glomerular insult, as indicated by hematuria. Tubular protein was common in the study cases with CRF, DM and cases without hematuria. This indicates tubulo-interstitial injury for AKI in these cases. Patients with predominantly glomerular protein had an adverse outcome. PMID:21743220

  18. Detection of the end point temperature of thermal denatured protein in fish and chicken meat through SDS-PAGE electrophoresis

    NASA Astrophysics Data System (ADS)

    Gao, Hongwei; Mao, Mao; Liang, Chengzhu; Lin, Chao; Xiang, Jianhai

    2009-03-01

    Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied in the detection of the end point temperature (EPT) of thermal denatured protein in fish and meat in this study. It was also used in studying the thermal denatured temperature range of proteins in salmon and chicken meat. The results show that the temperature ranges of denatured proteins were from 65°C to 75°C, and these temperature ranges were influenced by the processing methods. Through SDS-PAGE, the features of repeated heating thermal denatured proteins under the same temperature and processing time were studied. The electrophoresis patterns of thermal denatured proteins determined through repeated heating at the same temperature did not exhibit any change. For the detection of cooked fish and meat samples, they were subjected to applying the SDS-PAGE method, which revealed an EPT ranging from 60°C to 80°C.

  19. 2DBase: 2D-PAGE database of Escherichia coli.

    PubMed

    Vijayendran, Chandran; Burgemeister, Sebastian; Friehs, Karl; Niehaus, Karsten; Flaschel, Erwin

    2007-11-23

    We present a web-based integrated proteome database, termed 2DBase of Escherichia coli which was designed to store, compare, analyse, and retrieve various information obtained by 2D polyacrylamide gel electrophoresis and mass spectrometry. The main objectives of this database are (1) to provide the features for query and data-mining applications to access the stored proteomics data (2) to efficiently compare the specific protein spots present in the comparable proteome maps and (3) to analyse the data with the integrated classification for cellular functions of gene products of E. coli. This database currently contains 12 gels consisting of 1185 protein spots information in which 723 proteins were identified and annotated. Individual protein spots in the existing gels can be displayed, queried, analyzed, and compared in a tabular format based on various functional categories enabling quick and subsequent analyses. Our database satisfies the requirement to be a federated 2-DE database by accomplishing various tasks through a web interface providing access to a relational database system. The 2DBase of E. coli database can be accessed at http://2dbase.techfak.uni-bielefeld.de/. PMID:17904107

  20. SDS-PAGE Analysis of Soluble Proteins in Reconstituted Milk Exposed to Different Heat Treatments

    PubMed Central

    Jovanovic, Snezana; Barac, Miroljub; Macej, Ognjen; Vucic, Tanja; Lacnjevac, Caslav

    2007-01-01

    This paper deals with the investigation of the impact of the heat treatment of reconstituted skim milk conducted at different temperatures, and the adding of demineralized whey on the protein solubility, soluble protein composition and interactions involved between proteins in a chemical complex. Commercial skim milk has been reconstituted and heat treated at 75°C, 85°C and 90°C for 20 minutes. Demineralized whey has been added in concentrations of 0.5%, 1.0 and 2.0%. The soluble protein composition has been determined by the polyacrilamide gel electrophoresis (SDS-PAGE) and by the densitometric analysis. Due to the different changes occurred during treatments at different temperatures, proteins of heat-treated samples containing added demineralized whey have had significantly different solubility. At lower temperatures (75°C and 85°C) the adding of demineralized whey decreased the protein solubility by 5.28%-26.41%, while the addition of demineralized whey performed at 90°C increased the soluble protein content by 5.61%-28.89%. Heat treatments, as well as the addition of demineralized whey, have induced high molecular weight complex formation. β-Lg, α-La and κ-casein are involved in high molecular weight complexes. The disulfide interactions between denatured molecules of these proteins are mostly responsible for the formation of coaggregates. The level of their interactions and the soluble protein composition are determined by the degree of temperature.

  1. Isolation and identification of Enterococcus faecalis membrane proteins using membrane shaving, 1D SDS/PAGE, and mass spectrometry.

    PubMed

    Cathro, Peter; McCarthy, Peter; Hoffmann, Peter; Zilm, Peter

    2016-06-01

    Enterococcus faecalis is a significant nosocomial pathogen, which is able to survive in diverse environments and resist killing with antimicrobial therapies. The expression of cell membrane proteins play an important role in how bacteria respond to environmental stress. As such, the capacity to identify and study membrane protein expression is critical to our understanding of how specific proteins influence bacterial survival. Here, we describe a combined approach to identify membrane proteins of E. faecalis ATCC V583 using membranes fractionated by either 1D SDS/PAGE or membrane shaving, coupled with LC-ESI mass spectrometry. We identified 222 membrane-associated proteins, which represent approximately 24% of the predicted membrane-associated proteome: 170 were isolated using 1D SDS/PAGE and 68 with membrane shaving, with 36 proteins being common to both the techniques. Of the proteins identified by membrane shaving, 97% were membrane-associated with the majority being integral membrane proteins (89%). Most of the proteins identified with known physiology are involved with transportation across the membrane. The combined 1D SDS/PAGE and membrane shaving approach has produced the greatest number of membrane proteins identified from E. faecalis to date. These protocols will aid future researchers investigating changes in the membrane proteome of E. faecalis by improving our understanding of how E. faecalis adapts and responds to its environment. PMID:27419061

  2. SDS-PAGE and IR spectroscopy to evaluate modifications in the viral protein profile induced by a cationic porphyrinic photosensitizer.

    PubMed

    Costa, Liliana; Esteves, Ana Cristina; Correia, António; Moreirinha, Catarina; Delgadillo, Ivonne; Cunha, Ângela; Neves, Maria G P S; Faustino, Maria A F; Almeida, Adelaide

    2014-12-01

    Reactive oxygen species can be responsible for microbial photodynamic inactivation due to its toxic effects, which include severe damage to proteins, lipids and nucleic acids. In this study, the photo-oxidative modifications of the proteins of a non-enveloped T4-like bacteriophage, induced by the cationic porphyrin 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide were evaluated. Two methods were used: sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and infrared spectroscopy. SDS-PAGE analysis showed that the phage protein profile was considerably altered after photodynamic treatment. Seven protein bands putatively corresponding to capsid and tail tube proteins were attenuated and two other were enhanced. Infrared spectroscopy confirmed the time-dependent alteration on the phage protein profile detected by SDS-PAGE, indicative of a response to oxidative damage. Infrared analysis showed to be a promising and rapid screening approach for the analysis of the modifications induced on viral proteins by photosensitization. In fact, one single infrared spectrum can highlight the changes induced to all viral molecular structures, overcoming the delays and complex protocols of the conventional methods, in a much simple and cost effective way. PMID:25241141

  3. Prestaining of glycoproteins in SDS-PAGE via 4H-[1]-Benzopyrano[4,3-b]thiophene-2-carboxylic acid hydrazide with weak influence on protein mobility.

    PubMed

    Zhu, Zhongxin; Zhou, Xuan; Wang, Yang; Yu, Qing; Zhu, Xinliang; Niu, Chao; Cong, Weitao; Jin, Litai

    2014-12-01

    A new fluorescent prestaining method for gel-separated glycoproteins in 1D and 2D SDS-PAGE was developed by using 4H-[1]-Benzopyrano[4,3-b]thiophene-2-carboxylic acid hydrazide (BH). The prestained gels were readily imaged after electrophoresis without any time-consuming steps needed for poststain. As low as 4-8 ng glycoproteins (transferrin, α1-acid glycoprotein) could be selectively detected, which is comparable to the most commonly used Pro-Q Emerald 488 glycoprotein stain. In addition, subsequent study of deglycosylation, glycoprotein affinity chromatography, and LC-MS/MS analysis were performed to confirm the specificity of the newly developed method. As a result, BH prestain provides a new choice for quick, sensitive, specific, economical, and MS compatible visualization of gel-separated glycoproteins. PMID:25229714

  4. Analysis of differentially expressed proteins in colorectal cancer using hydroxyapatite column and SDS-PAGE.

    PubMed

    Lim, Shi-Rou; Gooi, Boon-Hui; Singh, Manjit; Gam, Lay-Harn

    2011-11-01

    Limitation on two dimensional (2D) gel electrophoresis technique causes some proteins to be under presented, especially the extreme acidic, basic, or membrane proteins. To overcome the limitation of 2D electrophoresis, an analysis method was developed for identification of differentially expressed proteins in normal and cancerous colonic tissues using self-pack hydroxyapatite (HA) column. Normal and cancerous colon tissues were homogenized and proteins were extracted using sodium phosphate buffer at pH 6.8. Protein concentration was determined and the proteins were loaded unto the HA column. HA column reduced the complexity of proteins mixture by fractionating the proteins according to their ionic strength. Further protein separation was accomplished by a simple and cost effective sodium dodecyl sulfate-polyacrylamide gel electrophoresis method. The protein bands were subjected to in-gel digestion and protein analysis was performed using electrospray ionization (ESI) ion trap mass spectrometer. There were 17 upregulated proteins and seven downregulated proteins detected with significant differential expression. Some of these proteins were low abundant proteins or proteins with extreme pH that were usually under presented in 2D gel analysis. We have identified brain mitochondrial carrier protein 1, T-cell surface glycoprotein CD1a, SOSS complex subunit B2, and Protein Jade 1 which were previously not detected in 2D gel analysis method. PMID:21863284

  5. Investigation of relationships between barley stress peptides and beer gushing using SDS-PAGE and MS screening.

    PubMed

    Hégrová, Blanka; Farková, Marta; Macuchová, Simona; Havel, Josef; Preisler, Jan

    2009-12-01

    The relationship between gushing and antifungal peptides in barley and malt kernels was examined for five barley varieties produced in the Czech Republic with four conditions of infection and treatment. Proteome changes during pathogen-seed interaction were observed with SDS-PAGE and MALDI-TOF MS. These methods were applied as a fast screening for observing the relationship between gushing and peptides/proteins. It was found that the presence of basic peptides, presumably hordothionins and non-specific lipid transfer protein type 1, did not correlate with the degree of gushing for malt (/r/ in <0.07, 0.34>), (/r/ in <0.01, 0.49>), respectively, as detected by both methods. PMID:19950350

  6. A surprising effect of extraction conditions on the mobility of some plant virus coat proteins in SDS-PAGE.

    PubMed

    Hassan, H; Borkhardt, B; Albrechtsen, M

    1994-02-01

    The coat protein from purified particles of pea seedborne mosaic potyvirus (PSbMV) moves in SDS-PAGE with an apparent molecular weight (M(r)) of 36 kDa. However, extracts of PSbMV infected plants prepared with SDS or urea contain PSbMV immunoreactive proteins with apparent M(r) 39 kDa as well as 36 kDa. The low mobility form may be generated from the apparent M(r) 36 kDa form by incubating purified PSbMV particles with healthy plant sap in the presence of denaturing agents. A similar effect is observed with bean yellow mosaic potyvirus, but not with three viruses outside the potyvirus group. Experiments suggest that a soluble plant enzyme is responsible for the conversion, which apparently takes place only in vitro under denaturing conditions. This phenomenon may lead to erroneous conclusions about the M(r) of some viral coat proteins. However, the conversion can be prevented by heat treatment of the plant tissue prior to extraction. PMID:8188819

  7. SDS-PAGE/immunoblot detection of Abeta multimers in human cortical tissue homogenates using antigen-epitope retrieval.

    PubMed

    Rosen, Rebecca F; Tomidokoro, Yasushi; Ghiso, Jorge A; Walker, Lary C

    2010-01-01

    The anomalous folding and polymerization of the beta-amyloid (Abeta) peptide is thought to initiate the neurodegenerative cascade in Alzheimer's disease pathogenesis(1). Abeta is predominantly a 40- or 42-amino acid peptide that is prone to self-aggregation into beta-sheet-rich amyloid fibrils that are found in the cores of cerebral senile plaques in Alzheimer's disease. Increasing evidence suggests that low molecular weight, soluble Abeta multimers are more toxic than fibrillar Abeta amyloid(2). The identification and quantification of low- and high-molecular weight multimeric Abeta species in brain tissue is an essential objective in Alzheimer's disease research, and the methods employed also can be applied to the identification and characterization of toxic multimers in other proteopathies(3). Naturally occurring Abeta multimers can be detected by SDS-polyacrylamide gel electrophoresis followed by immunoblotting with Abeta-specific antibodies. However, the separation and detection of multimeric Abeta requires the use of highly concentrated cortical homogenates and antigen retrieval in small pore-size nitrocellulose membranes. Here we describe a technique for the preparation of clarified human cortical homogenates, separation of proteins by SDS-PAGE, and antigen-epitope retrieval/Western blotting with antibody 6E10 to the N-terminal region of the Abeta peptide. Using this protocol, we consistently detect Abeta monomers, dimers, trimers, tetramers, and higher molecular weight multimers in cortical tissue from humans with Alzheimer's pathology. PMID:20418805

  8. HPLC analysis of discrete haptoglobin isoform N-linked oligosaccharides following 2D-PAGE isolation.

    PubMed

    He, Zhicong; Aristoteli, Lina P; Kritharides, Leonard; Garner, Brett

    2006-05-01

    Glycosylation is a common but variable modification that regulates glycoprotein structure and function. We combined small format 2D-PAGE with HPLC to analyse discrete human haptoglobin isoform N-glycans. Seven major and several minor haptoglobin isoforms were detected by 2D-PAGE. N-Glycans released from Coomassie-stained gel spots using PNGase were labeled at their reducing termini with 2-aminobenzamide. HPLC analysis of selected major isoform N-glycans indicated that sialic acid composition determined their separation by isoelectric focussing. N-Glycans from two doublets of quantitatively minor isoforms were also analysed. Although separation of each pair of doublets was influenced by sialylation, individual spots within each doublet contained identical N-glycans. Thus, heterogeneity in minor haptoglobin isoforms was due to modifications distinct from N-glycan structure. These studies describe a simple method for analysing low abundance protein N-glycans and provide details of discrete haptoglobin isoform N-glycan structures which will be useful in proteomic analysis of human plasma samples. PMID:16546121

  9. Lab-on-a-chip and SDS-PAGE analysis of hemolymph protein profile from Rhipicephalus microplus (Acari: Ixodidae) infected with entomopathogenic nematode and fungus.

    PubMed

    Golo, Patrícia Silva; Dos Santos, Alessa Siqueira de Oliveira; Monteiro, Caio Marcio Oliveira; Perinotto, Wendell Marcelo de Souza; Quinelato, Simone; Camargo, Mariana Guedes; de Sá, Fillipe Araujo; Angelo, Isabele da Costa; Martins, Marta Fonseca; Prata, Marcia Cristina de Azevedo; Bittencourt, Vânia Rita Elias Pinheiro

    2016-09-01

    In the present study, lab-on-a-chip electrophoresis (LoaC) was suggested as an alternative method to the conventional polyacrylamide gel electrophoresis under denaturing conditions (SDS-PAGE) to analyze raw cell-free tick hemolymph. Rhipicephalus microplus females were exposed to the entomopathogenic fungus Metarhizium anisopliae senso latu IBCB 116 strain and/or to the entomopathogenic nematode Heterorhabditis indica LPP1 strain. Hemolymph from not exposed or exposed ticks was collected 16 and 24 h after exposure and analyze by SDS-PAGE or LoaC. SDS-PAGE yielded 15 bands and LoaC electrophoresis 17 bands. Despite the differences in the number of bands, when the hemolymph protein profiles of exposed or unexposed ticks were compared in the same method, no suppressing or additional bands were detected among the treatments regardless the method (i.e., SDS-PAGE or chip electrophoresis using the Protein 230 Kit®). The potential of LoaC electrophoresis to detect protein bands from tick hemolymph was considered more efficient in comparison to the detection obtained using the traditional SDS-PAGE method, especially when it comes to protein subunits heavier than 100 KDa. LoaC electrophoresis provided a very good reproducibility, and is much faster than the conventional SDS-PAGE method, which requires several hours for one analysis. Despite both methods can be used to analyze tick hemolymph composition, LoaC was considered more suitable for cell-free hemolymph protein separation and detection. LoaC hemolymph band percent data reported changes in key proteins (i.e., HeLp and vitellogenin) exceptionally important for tick embryogenesis. This study reported, for the first time, tick hemolymph protein profile using LoaC. PMID:27174026

  10. Rapid discovery of putative protein biomarkers of traumatic brain injury by SDS-PAGE-capillary liquid chromatography-tandem mass spectrometry.

    PubMed

    Haskins, William E; Kobeissy, Firas H; Wolper, Regina A; Ottens, Andrew K; Kitlen, Jason W; McClung, Scott H; O'Steen, Barbara E; Chow, Marjorie M; Pineda, Jose A; Denslow, Nancy D; Hayes, Ronald L; Wang, Kevin K W

    2005-06-01

    We report the rapid discovery of putative protein biomarkers of traumatic brain injury (TBI) by SDS-PAGE-capillary liquid chromatography-tandem mass spectrometry (SDS-PAGE-Capillary LC-MS(2)). Ipsilateral hippocampus (IH) samples were collected from naive rats and rats subjected to controlled cortical impact (a rodent model of TBI). Protein database searching with 15,558 uninterpreted MS(2) spectra, collected in 3 days via data-dependent capillary LC-MS(2) of pooled cyanine dye-labeled samples separated by SDS-PAGE, identified more than 306 unique proteins. Differential proteomic analysis revealed differences in protein sequence coverage for 170 mammalian proteins (57 in naive only, 74 in injured only, and 39 of 64 in both), suggesting these are putative biomarkers of TBI. Confidence in our results was obtained by the presence of several known biomarkers of TBI (including alphaII-spectrin, brain creatine kinase, and neuron-specific enolase) in our data set. These results show that SDS-PAGE prior to in vitro proteolysis and capillary LC-MS(2) is a promising strategy for the rapid discovery of putative protein biomarkers associated with a specific physiological state (i.e., TBI) without a priori knowledge of the molecules involved. PMID:15941373

  11. SDS-PAGE analysis of Aβ oligomers is disserving research into Alzheimer´s disease: appealing for ESI-IM-MS

    NASA Astrophysics Data System (ADS)

    Pujol-Pina, Rosa; Vilaprinyó-Pascual, Sílvia; Mazzucato, Roberta; Arcella, Annalisa; Vilaseca, Marta; Orozco, Modesto; Carulla, Natàlia

    2015-10-01

    The characterization of amyloid-beta peptide (Aβ) oligomer forms and structures is crucial to the advancement in the field of Alzheimer´s disease (AD). Here we report a critical evaluation of two methods used for this purpose, namely sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), extensively used in the field, and ion mobility coupled to electrospray ionization mass spectrometry (ESI-IM-MS), an emerging technique with great potential for oligomer characterization. To evaluate their performance, we first obtained pure cross-linked Aβ40 and Aβ42 oligomers of well-defined order. Analysis of these samples by SDS-PAGE revealed that SDS affects the oligomerization state of Aβ42 oligomers, thus providing flawed information on their order and distribution. In contrast, ESI-IM-MS provided accurate information, while also reported on the chemical nature and on the structure of the oligomers. Our findings have important implications as they challenge scientific paradigms in the AD field built upon SDS-PAGE characterization of Aβ oligomer samples.

  12. SDS-PAGE analysis of Aβ oligomers is disserving research into Alzheimer´s disease: appealing for ESI-IM-MS.

    PubMed

    Pujol-Pina, Rosa; Vilaprinyó-Pascual, Sílvia; Mazzucato, Roberta; Arcella, Annalisa; Vilaseca, Marta; Orozco, Modesto; Carulla, Natàlia

    2015-01-01

    The characterization of amyloid-beta peptide (Aβ) oligomer forms and structures is crucial to the advancement in the field of Alzheimer´s disease (AD). Here we report a critical evaluation of two methods used for this purpose, namely sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), extensively used in the field, and ion mobility coupled to electrospray ionization mass spectrometry (ESI-IM-MS), an emerging technique with great potential for oligomer characterization. To evaluate their performance, we first obtained pure cross-linked Aβ40 and Aβ42 oligomers of well-defined order. Analysis of these samples by SDS-PAGE revealed that SDS affects the oligomerization state of Aβ42 oligomers, thus providing flawed information on their order and distribution. In contrast, ESI-IM-MS provided accurate information, while also reported on the chemical nature and on the structure of the oligomers. Our findings have important implications as they challenge scientific paradigms in the AD field built upon SDS-PAGE characterization of Aβ oligomer samples. PMID:26450154

  13. SDS-PAGE analysis of Aβ oligomers is disserving research into Alzheimer´s disease: appealing for ESI-IM-MS

    PubMed Central

    Pujol-Pina, Rosa; Vilaprinyó-Pascual, Sílvia; Mazzucato, Roberta; Arcella, Annalisa; Vilaseca, Marta; Orozco, Modesto; Carulla, Natàlia

    2015-01-01

    The characterization of amyloid-beta peptide (Aβ) oligomer forms and structures is crucial to the advancement in the field of Alzheimer´s disease (AD). Here we report a critical evaluation of two methods used for this purpose, namely sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), extensively used in the field, and ion mobility coupled to electrospray ionization mass spectrometry (ESI-IM-MS), an emerging technique with great potential for oligomer characterization. To evaluate their performance, we first obtained pure cross-linked Aβ40 and Aβ42 oligomers of well-defined order. Analysis of these samples by SDS-PAGE revealed that SDS affects the oligomerization state of Aβ42 oligomers, thus providing flawed information on their order and distribution. In contrast, ESI-IM-MS provided accurate information, while also reported on the chemical nature and on the structure of the oligomers. Our findings have important implications as they challenge scientific paradigms in the AD field built upon SDS-PAGE characterization of Aβ oligomer samples. PMID:26450154

  14. Malignant transformation in a defined genetic background: proteome changes displayed by 2D-PAGE

    PubMed Central

    2010-01-01

    Background Cancer arises from normal cells through the stepwise accumulation of genetic alterations. Cancer development can be studied by direct genetic manipulation within experimental models of tumorigenesis. Thereby, confusion by the genetic heterogeneity of patients can be circumvented. Moreover, identification of the critical changes that convert a pre-malignant cell into a metastatic, therapy resistant tumor cell, however, is one necessary step to develop effective and selective anti-cancer drugs. Thus, for the current study a cell culture model for malignant transformation was used: Primary human fibroblasts of the BJ strain were sequentially transduced with retroviral vectors encoding the genes for hTERT (cell line BJ-T), simian virus 40 early region (SV40 ER, cell line BJ-TE) and H-Ras V12 (cell line BJ-TER). Results The stepwise malignant transformation of human fibroblasts was analyzed on the protein level by differential proteome analysis. We observed 39 regulated protein spots and therein identified 67 different proteins. The strongest change of spot patterns was detected due to integration of SV40 ER. Among the proteins being significantly regulated during the malignant transformation process well known proliferating cell nuclear antigen (PCNA) as well as the chaperones mitochondrial heat shock protein 75 kDa (TRAP-1) and heat shock protein HSP90 were identified. Moreover, we find out, that TRAP-1 is already up-regulated by means of SV40 ER expression instead of H-Ras V12. Furthermore Peroxiredoxin-6 (PRDX6), Annexin A2 (p36), Plasminogen activator inhibitor 2 (PAI-2) and Keratin type II cytoskeletal 7 (CK-7) were identified to be regulated. For some protein candidates we confirmed our 2D-PAGE results by Western Blot. Conclusion These findings give further hints for intriguing interactions between the p16-RB pathway, the mitochondrial chaperone network and the cytoskeleton. In summary, using a cell culture model for malignant transformation analyzed

  15. Human 2-D PAGE databases for proteome analysis in health and disease: http://biobase.dk/cgi-bin/celis.

    PubMed

    Celis, J E; Gromov, P; Ostergaard, M; Madsen, P; Honoré, B; Dejgaard, K; Olsen, E; Vorum, H; Kristensen, D B; Gromova, I; Haunsø, A; Van Damme, J; Puype, M; Vandekerckhove, J; Rasmussen, H H

    1996-12-01

    Human 2-D PAGE Databases established at the Danish Centre for Human Genome Research are now available on the World Wide Web (http://biobase.dk/cgi-bin/celis). The databanks, which offer a comprehensive approach to the analysis of the human proteome both in health and disease, contain data on known and unknown proteins recorded in various IEF and NEPHGE 2-D PAGE reference maps (non-cultured keratinocytes, non-cultured transitional cell carcinomas, MRC-5 fibroblasts and urine). One can display names and information on specific protein spots by clicking on the image of the gel representing the 2-D gel map in which one is interested. In addition, the database can be searched by protein name, keywords or organelle or cellular component. The entry files contain links to other databases such as Medline, Swiss-Prot, PIR, PDB, CySPID, OMIM, Methabolic pathways, etc. The on-line information is updated regularly. PMID:8977092

  16. Use of unsupervised and supervised artificial neural networks for the identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins.

    PubMed

    Piraino, P; Ricciardi, A; Salzano, G; Zotta, T; Parente, E

    2006-08-01

    Conventional multivariate statistical techniques (hierarchical cluster analysis, linear discriminant analysis) and unsupervised (Kohonen Self Organizing Map) and supervised (Bayesian network) artificial neural networks were compared for as tools for the classification and identification of 352 SDS-PAGE patterns of whole cell proteins of lactic acid bacteria belonging to 22 species of the genera Lactobacillus, Leuconostoc, Enterococcus, Lactococcus and Streptococcus including 47 reference strains. Electrophoretic data were pre-treated using the logistic weighting function described by Piraino et al. [Piraino, P., Ricciardi, A., Lanorte, M. T., Malkhazova, I., Parente, E., 2002. A new procedure for data reduction in electrophoretic fingerprints of whole-cell proteins. Biotechnol. Lett. 24, 1477-1482]. Hierarchical cluster analysis provided a satisfactory classification of the patterns but was unable to discriminate some species (Leuconostoc, Lb. sakei/Lb. curvatus, Lb. acidophilus/Lb. helveticus, Lb. plantarum/Lb. paraplantarum, Lc. lactis/Lc. raffinolactis). A 7x7 Kohonen self-organizing map (KSOM), trained with the patterns of the reference strains, provided a satisfactory classification of the patterns and was able to discriminate more species than hierarchical cluster analysis. The map was used in predictive mode to identify unknown strains and provided results which in 85.5% of cases matched the classification obtained by hierarchical cluster analysis. Two supervised tools, linear discriminant analysis and a 23:5:2 Bayesian network were proven to be highly effective in the discrimination of SDS-PAGE patterns of Lc. lactis from those of other species. We conclude that data reduction by logistic weighting coupled to traditional multivariate statistical analysis or artificial neural networks provide an effective tool for the classification and identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins. PMID:16480784

  17. Polymerization of SDS-PAGE gel by gamma irradiation and its use for characterization by electrophoresis of a protein [rapid communication

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Ho; Kim, Jin-Hee; Seo, Ji-Hyun; Lee, Ju-Woon; Lim, Sang-Yong; Lee, Ho-Joon; Byun, Myung-Woo

    2005-12-01

    An SDS-PAGE gel strip was polymerized using a gamma irradiation process and used for electrophoresis. The relative mobility (Rf) and resolution of marker proteins were determined. Polymerization was induced by gamma irradiation in an acrylamide and N'-methylene bisacrylamide mixture with and without the polymerization initiators, ammonium persulfate (APS) and N,N,N',N'-tetramethylethylenediamine (TEMED). The calibration curves of log 10 molecular weight of the protein versus the distance of the migration showed higher correlations in the gamma irradiated gel than in that of the APS-TEMED polymerized control. The Rf value of the protein was increased in the gel polymerized by gamma-irradiation.

  18. Determination of the bovine food allergen casein in white wines by quantitative indirect ELISA, SDS-PAGE, Western blot and immunostaining.

    PubMed

    Patrick, Weber; Hans, Steinhart; Angelika, Paschke

    2009-09-23

    This study describes the characterization of allergic bovine casein and caseinate fining agents by SDS-PAGE analysis and the development of a quantitative indirect ELISA for the detection of these substances in wines. The ELISA was applied to various experimental wines that were treated with different caseinate dosages and went through different processing steps and to a panel of commercial wines. Positive results were assured by SDS-PAGE, Western blot, and immunostaining. Comprehensive literature research was done to evaluate the demanded sensitivity of the ELISA. The results showed that alpha- and beta-caseins remain in some wines and are detectable. Estimated amounts were in the range or below an estimated no-observed adverse effect level (NOAEL) of 0.9 mg/L, but it was concluded that there is still an uncertainty about this NOAEL. Additional applied processing, referring to bentonite treatment and successive filtration, was determined to contribute to a significant decrease of casein residues in wines. PMID:19754170

  19. Comparative analysis of the human urinary proteome by 1D SDS-PAGE and chip-HPLC-MS/MS identification of the AACT putative urinary biomarker.

    PubMed

    Zhang, Yuan; Li, Yanyan; Qiu, Feng; Qiu, Zongyin

    2010-12-15

    Urine is one of the most attractive analyte used for clinical diagnosis. NSCLC (non-small cell lung carcinoma), which includes adenocarcinoma, squamous cell carcinoma and large-cell carcinoma, is a leading cause of cancer-related deaths. In the present study, urinary proteomes of normal individuals and NSCLC patients were compared using 1D SDS-PAGE. From the distinctly differentially expressed bands in SDS-PAGE gel, 40 proteins were identified by chip-HPLC-MS/MS, including five proteins relevant to NSCLC. One of the selected proteins, alpha-1-antichymotrypsin (AACT), was further validated in urine by western blot and in lung tissue by immunohistochemistry staining. Higher expression level of AACT in NSCLC patients was observed by western blot when compared with normal urine samples. Significantly, the NSCLC tumor tissue (18 out of 20 cases, 90%) showed a significantly higher expression level of AACT compared to adjacent non-tumor lung tissue (3 out of 20 cases, 15%). These results establish AACT as a potential biomarker for objective and non-invasive diagnosis of NSCLC in urine and the other four NSCLC-related proteins were also listed. PMID:21093387

  20. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat

    PubMed Central

    2010-01-01

    Background Low-molecular-weight glutenin subunits (LMW-GS) play a crucial role in determining end-use quality of common wheat by influencing the viscoelastic properties of dough. Four different methods - sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2-DE, IEF × SDS-PAGE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and polymerase chain reaction (PCR), were used to characterize the LMW-GS composition in 103 cultivars from 12 countries. Results At the Glu-A3 locus, all seven alleles could be reliably identified by 2-DE and PCR. However, the alleles Glu-A3e and Glu-A3d could not be routinely distinguished from Glu-A3f and Glu-A3g, respectively, based on SDS-PAGE, and the allele Glu-A3a could not be differentiated from Glu-A3c by MALDI-TOF-MS. At the Glu-B3 locus, alleles Glu-B3a, Glu-B3b, Glu-B3c, Glu-B3g, Glu-B3h and Glu-B3j could be clearly identified by all four methods, whereas Glu-B3ab, Glu-B3ac, Glu-B3ad could only be identified by the 2-DE method. At the Glu-D3 locus, allelic identification was problematic for the electrophoresis based methods and PCR. MALDI-TOF-MS has the potential to reliably identify the Glu-D3 alleles. Conclusions PCR is the simplest, most accurate, lowest cost, and therefore recommended method for identification of Glu-A3 and Glu-B3 alleles in breeding programs. A combination of methods was required to identify certain alleles, and would be especially useful when characterizing new alleles. A standard set of 30 cultivars for use in future studies was chosen to represent all LMW-GS allelic variants in the collection. Among them, Chinese Spring, Opata 85, Seri 82 and Pavon 76 were recommended as a core set for use in SDS-PAGE gels. Glu-D3c and Glu-D3e are the same allele. Two new alleles, namely, Glu-D3m in cultivar Darius, and Glu-D3n in Fengmai 27, were identified by 2-DE. Utilization of the suggested standard cultivar set, seed of

  1. Genetic variation of jointed goatgrass (Aegilops cylindrica Host.) from Iran using RAPD-PCR and SDS-PAGE of seed proteins.

    PubMed

    Farkhari, M; Naghavi, M R; Pyghambari, S A; Sabokdast

    2007-09-01

    Genetic variation of 28 populations of jointed goatgrass (Aegilops cylindrica Host.), collected from different parts of Iran, were evaluated using both RAPD-PCR and SDS-PAGE of seed proteins. The diversity within and between populations for the three-band High Molecular Weight (HMW) subunits of glutenin pattern were extremely low. Out of 15 screened primers of RAPD, 14 primers generated 133 reproducible fragments which among them 92 fragments were polymorphic (69%). Genetic similarity calculated from the RAPD data ranged from 0.64 to 0.98. A dendrogram was prepared on the basis of a similarity matrix using the UPGMA algorithm and separated the 28 populations into two groups. Confusion can happen between populations with the same origin as well as between populations of very diverse geographical origins. Our results show that compare to seed storage protein, RAPD is suitable for genetic diversity assessment in Ae. cylindrica populations. PMID:19090190

  2. [Urine protein analysis with the sodium-dodecyl-sulfate-polyacrylamide gel-electrophoresis (SDS-PAGE) in healthy cats and cats with kidney diseases].

    PubMed

    Meyer-Lindenberg, A; Wohlsein, P; Trautwein, G; Nolte, I

    1997-03-01

    In this investigation, the value of urine protein analysis by means of molecular-weight related sodium dodecyl-polyacryl gradient gel electrophoresis (SDS-PAGE) was examined with regard to its applicability and diagnostic significance in nephropathy in the cat. A total of 87 cats was included in the study, 30 of them that were clinically healthy served as the control group. The urine protein pattern of this group had, besides the band representing the market albumin, and additional broad band within the size of the marker transferrin. In some cases, weak bands were present within the range of the Tamm-Horsfall-protein and immunoglobulin G. Micromolecular protein bands were not demonstrable. The remaining 57 animals had a histologically proven nephropathy. Thirty-eight cats had elevated urea and/or creatinine values in the plasma (group 1), and 19 animals had values within the reference range (group 2). The urine protein pattern as evidenced by SDS-urine electrophoresis was altered in all cats with histologically proven nephropathy, and it is thus concluded that with this technique a nephropathy can be diagnosed very early and prior to changes of plasma urea and creatinine (group 2). Moreover, in most of the cases, the nephrological changes can be classified as glomerular or tubulo-interstitial (group 1 and group 2). However, it is not possible to draw exact conclusions concerning the underlying morphological changes, nor can the severity of the disease be correctly assessed. PMID:9123982

  3. Validation of Cis and Trans Modes in Multistep Phosphotransfer Signaling of Bacterial Tripartite Sensor Kinases by Using Phos-Tag SDS-PAGE

    PubMed Central

    Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Eguchi, Yoko; Koike, Tohru

    2016-01-01

    Tripartite sensor kinases (TSKs) have three phosphorylation sites on His, Asp, and His residues, which are conserved in a histidine kinase (HK) domain, a receiver domain, and a histidine-containing phosphotransmitter (HPt) domain, respectively. By means of a three-step phosphorelay, TSKs convey a phosphoryl group from the γ-phosphate group of ATP to the first His residue in the HK domain, then to the Asp residue in the receiver domain, and finally to the second His residue in the HPt domain. Although TSKs generally form homodimers, it was unknown whether the mode of phosphorylation in each step was intramolecular (cis) or intermolecular (trans). To examine this mode, we performed in vitro complementation analyses using Ala-substituted mutants of the ATP-binding region and three phosphorylation sites of recombinant ArcB, EvgS, and BarA TSKs derived from Escherichia coli. Phosphorylation profiles of these kinases, determined by using Phos-tag SDS-PAGE, showed that the sequential modes of the three-step phosphoryl-transfer reactions of ArcB, EvgS, and BarA are all different: cis-trans-trans, cis-cis-cis, and trans-trans-trans, respectively. The inclusion of a trans mode is consistent with the need to form a homodimer; the fact that all the steps for EvgS have cis modes is particularly interesting. Phos-tag SDS-PAGE therefore provides a simple method for identifying the unique and specific phosphotransfer mode for a given kinase, without taking complicated intracellular elements into consideration. PMID:26828204

  4. Comparative examination of adsorption of serum proteins on HSA- and PLGA-based nanoparticles using SDS-PAGE and LC-MS.

    PubMed

    Gossmann, R; Fahrländer, E; Hummel, M; Mulac, D; Brockmeyer, J; Langer, K

    2015-06-01

    The behavior of nanosized drug carrier systems under cell culture conditions and therefore also the destiny in the body are highly influenced by the protein corona, which is formed upon entering a biological environment. Some of the adsorbed proteins, named opsonins, lead to a shortened plasma circulation half-life of the nanoparticles. Others are attributed to promote the transport of nanoparticles into other compartments of the body, just to mention two examples. Hence, detailed knowledge concerning the composition of the protein corona is of great importance. The aim of this work was to investigate the influence of the nanoparticle starting material and the surface modification on the composition of the adsorbed serum proteins in a cell culture environment. Therefore, positively charged nanoparticles based on the biodegradable polymer poly(dl-lactide-co-glycolide) (PLGA) stabilized with didodecyldimethylammonium bromide (DMAB) and negatively charged nanoparticles based on human serum albumin (HSA) were prepared and modified with hydrophilic polymers. By incubating the nanoparticles with fetal bovine serum (FBS) the adsorption of serum proteins on the colloidal system was investigated. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) a semi-quantitative analysis of the protein corona was performed and after enzymatic in-solution-digestion the adsorbed proteins were identified using high resolution LC-MS. Our study accentuates the influence of the core material, surface charge, and surface modification on the amount and nature of the adsorbed proteins. The combination of SDS-PAGE and LC-MS turns out to be a simple and reliable method to investigate the protein corona of nanoparticles. PMID:25813886

  5. Studying the Stability of S-Layer Protein of Lactobacillus Acidophilus ATCC 4356 in Simulated Gastrointestinal Fluids Using SDS-PAGE and Circular Dichroism

    PubMed Central

    Eslami, Neda; Kermanshahi, Rouha Kasra; Erfan, Mohammad

    2013-01-01

    Crystalline arrays of proteinaceous subunits forming surface layers (S-layers) are now recognized as one of the most common outermost cell envelope components of prokaryotic organisms. The surface layer protein of Lactobacillus acidophilus ATCC4356 is composed of a single species of protein of apparent molecular weight of 43-46 KDa. Considering the Lactobacillus acidophilus ATCC4356 having the S-layer is stable in harsh gastrointestinal (GI) conditions, a protective role against destructive GI factors which has been proposed for these nanostructures. It opens interesting perspectives in the using and development of this S-layer as a protective coat for oral administration of unstable drug nanocarriers. To achieve this goal, it is necessary to study the in-vitro stability of the S-layers in the simulated gastrointestinal fluids (SGIF). This study was planned to evaluate the in-vitro stability of the extracted S-layer protein of Lactobacillus acidophilus ATCC4356 in SGIF using it as a protective coat in oral drug delivery. Sodium dodecyl sulfate gel electrophoresis (SDS-PAGE) and circular dichroism (CD) spectroscopy were used to study the stability of the S-layer protein incubated in SGIF. Both the SDS-PAGE and CD spectra results showed that Lactobacillus acidophilus ATCC4356 S-layer protein is stable in simulated gastric fluid (SGF) with pH = 2 up to 5 min. It is stable in SGF pH = 3.2 and above it, with and without pepsin. It is also stable in all the simulated intestinal fluids. This S-layer is also stable in all of the simulated intestinal fluids. PMID:24250671

  6. A Phos-tag SDS-PAGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1.

    PubMed

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Kubota, Yuji; Takekawa, Mutsuhiro; Koike, Tohru

    2016-07-01

    MEK1, an essential component of the mitogen-activated protein kinase (MAPK) pathway, is phosphorylated during activation of the pathway; 12 phosphorylation sites have been identified in human MEK1 by MS-based phosphoproteomic methods. By using Phos-tag SDS-PAGE, we found that multiple variants of MEK1 with different phosphorylation states are constitutively present in typical human cells. The Phos-tag-based strategy, which makes effective use of existing information on the location of phosphorylation sites, permits quantitative time-course profiling of MEK1 phosphospecies in their respective phosphorylation states. By subsequent immunoblotting with an anti-HaloTag antibody, we analyzed a HaloTag-fused MEK1 protein and 12 potential phosphorylation-site-directed mutants of the protein transiently expressed in HEK 293 cells. This strategy revealed that MEK1 is constitutively and mainly phosphorylated at the Thr-292, Ser-298, Thr-386, and Thr-388 residues in vivo, and that combinations of phosphorylations at these four residues produce at least six phosphorylated variants of MEK1. Like the levels of phosphorylation of the Ser-218 and Ser-222 residues by RAF1, which have been well studied, the phosphorylation statuses of Thr-292, Ser-298, Thr-386, and Thr-388 residues vary widely during activation and deactivation of the MAPK pathway. Furthermore, we demonstrated inhibitor-specific profiling of MEK1 phosphospecies by using three MEK inhibitors: TAK-733, PD98059, and U0126. PMID:27169363

  7. Mapping and Identification of the Urine Proteome of Prostate Cancer Patients by 2D PAGE/MS

    PubMed Central

    Kiprijanovska, Sanja; Stavridis, Sotir; Stankov, Oliver; Komina, Selim; Petrusevska, Gordana; Polenakovic, Momir; Davalieva, Katarina

    2014-01-01

    Proteome analysis of the urine has shown that urine contains disease-specific information for a variety of urogenital system disorders, including prostate cancer (PCa). The aim of this study was to determine the protein components of urine from PCa patients. Urine from 8 patients with clinically and histologically confirmed PCa was analyzed by conventional 2D PAGE. The MS identification of the most prominent 125 spots from the urine map revealed 45 distinct proteins. According to Gene Ontology, the identified proteins are involved in a variety of biological processes, majority of them are secreted (71%), and half of them are enzymes or transporters. Comparison with the normal urine proteome revealed 11 proteins distinctive for PCa. Using Ingenuity Pathways Analysis, we have found 3 proteins (E3 ubiquitin-protein ligase rififylin, tumor protein D52, and thymidine phosphorylase) associated with cellular growth and proliferation (p = 8.35 × 10−4 − 3.41 × 10−2). The top network of functional associations between 11 proteins was Cell Death and Survival, Cell-To-Cell Signaling and Interaction, and System Development and Function (p = 10−30). In summary, we have created an initial proteomic map of PCa patient's urine. The results from this study provide some leads to understand the molecular bases of prostate cancer. PMID:25215235

  8. SDS-PAGE Analysis of the Outer Membrane Proteins of Uropathogenic Escherichia coli Isolated from Patients in Different Wards of Nemazee Hospital, Shiraz, Iran

    PubMed Central

    Dehghani, Behzad; Mottamedifar, Mohammad; Khoshkharam-Roodmajani, Hossein; Hassanzadeh, Amir; Zomorrodian, Kamyar; Rahimi, Amir

    2016-01-01

    Background: Outer membrane proteins (OMPs) constitute the main structure and about half of the cell wall of Gram-negative bacteria. The OMPs of Escherichia coli (E. coli) play an important role in its drug resistance. Previous studies have shown that the OMPs of E. coli enhance its pathogenic effects by helping the bacterium to evade the immune defense and promote its adsorption to host cells. We sought to compare E. coli isolates collected from different hospital wards and to perform a primary investigation of the association between the serotypes and profiles of their OMPs. We also aimed to detect the diversity of the E. coli isolates from the hospitalized patients. Methods: A total of 115 isolates of E. coli were collected from patients hospitalized in Nemazee Hospital, Shiraz, Iran. After biochemical and serological tests, OMPs were extracted by using glass beads and N-Lauroylsarcosine sodium. OMP typing was done by 10% SDS-PAGE and Coomassie brilliant blue staining. In terms of the number of protein bands, OMP-I was detected with 2 bands, OMP-α with 3 bands, and OMP-β with1 band. Results: Of the 115 isolates, 103 were OMP-I and 12 were OMP-α; none of the isolates belonged to OMP-β. Our statistical analyses showed a relationship between OMP patterns and other factors, including hospital wards and source of samples. Serotyping showed that the majority of the isolates were O128. Conclusion: Our results demonstrated some similarities between the OMP band patterns of the analyzed groups of E. coli. Of all the OMPs in the isolates from the hospitalized and outpatient department patients, OmpA and OmpC were the most prevalent proteins in the outer membrane of the studied uropathogenic E. coli. PMID:27582589

  9. Comparison the effect of three commercial enzymes for enzymatic hydrolysis of two substrates (rice bran protein concentrate and soy-been protein) with SDS-PAGE.

    PubMed

    Ahmadifard, Nasrollah; Murueta, Julio Humberto Cordova; Abedian-Kenari, Abdolmohammad; Motamedzadegan, Ali; Jamali, Hadi

    2016-02-01

    In this research enzymatic hydrolysis of rice bran protein concentrate (RBPC) and soybean Protein (SBP) as control were studied with 3 commercial enzymes (Alcalase®, Papain and acommercial 3-enzyme cocktail containing of 1.6 mg ml(-1) Trypsin, 3.1 mg ml(-1) Chymotrypsin, 1.3 mg ml(-1)Aminopeptidase (SIGMA P7500) and 7.95 mg ml(-1)pronase type XIV (SIGMA P5147) by the pH stat method. The hydrolysis was carried out at temperature of 28 C, 60 min and pH 8.00. Results were showed that RBPC, and SBP had higher Degree hydrolysis (DH %) with Alcalase® enzyme. Alcalase®had stronger capability for hydrolysis compared to the other tested enzymes. After 60 minute of hydrolysis time, the DH% of Alcalase® for RBPC and SBP was 12.69 and 12.50 %, respectively. In contrast, papain enzyme was showed lowest DH% in three substrates that 1.56 and 1.24 % were for SBP and RBPC, respectively.The hydrolysis of the protein fraction performed the three enzymes on the two substrates was followed in SDS-PAGE. RBPC and SBP showed almost complete digestion with Alcalase® enzyme after 60 minutes. 3-enzyme cocktail enzyme hydrolyzed better the RBPC than the SBP. Papain enzyme had less effect on the two substrates than other 2 enzymes. It was found that Alcalase® has highest capability for hydrolysis compared to other enzyme preparations. The high value protein hydrolysates prepared by Alcalase® can be used as value added ingredients in many food formulations. They are also suitable for a broad range of industrial food applications and also for cosmetic and personal care products. PMID:27162408

  10. Determination of optimal protein quantity required to identify abundant and less abundant soybean seed proteins by 2D-PAGE and MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimizing the amounts of proteins required to separate and characterize both abundant and less abundant proteins by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is critical for conducting proteomic research. In this study, we tested five different levels of soybean seed proteins (7...

  11. Generating high peak capacity 2-D maps of complex proteomes using PMMA microchip electrophoresis.

    PubMed

    Osiri, John K; Shadpour, Hamed; Park, Sunjung; Snowden, Brandy C; Chen, Zhi-Yuan; Soper, Steven A

    2008-12-01

    A high peak capacity 2-D protein separation system combining SDS micro-CGE (SDS micro-CGE) with microchip MEKC (micro-MEKC) using a PMMA microfluidic is reported. The utility of the 2-D microchip was demonstrated by generating a 2-D map from a complex biological sample containing a large number of constituent proteins using fetal calf serum (FCS) as the model system. The proteins were labeled with a thiol-reactive AlexaFluor 633 fluorophore (excitation/emission: 633/652 nm) to allow for ultra-sensitive on-chip detection using LIF following the 2-D separation. The high-resolution separation of the proteins was accomplished based on their size in the SDS micro-CGE dimension and their interaction with micelles in the micro-MEKC dimension. A comprehensive 2-D SDS micro-CGE x micro-MEKC separation of the FCS proteins was completed in less than <30 min using this 2-D microchip format, which consisted of 60 mm and 50 mm effective separation lengths for the first and second separation dimensions, respectively. Results obtained from the microchip separation were compared with protein maps acquired using conventional 2-D IEF and SDS-PAGE of a similar FCS sample. The microchip 2-D separation was found to be approximately 60x faster and yielded an average peak capacity of 2600 (+/- 149), nearly three times larger than that obtained using conventional IEF/SDS-PAGE. PMID:19130578

  12. Identification of a low digestibility δ-Conglutin in yellow lupin (Lupinus luteus L.) seed meal for atlantic salmon (Salmo salar L.) by coupling 2D-PAGE and mass spectrometry.

    PubMed

    Ogura, Takahiro; Hernández, Adrián; Aizawa, Tomoko; Ogihara, Jun; Sunairi, Michio; Alcaino, Javier; Salvo-Garrido, Haroldo; Maureira-Butler, Iván J

    2013-01-01

    The need of quality protein in the aquaculture sector has forced the incorporation of alternative plant proteins into feeding diets. However, most plant proteins show lower digestibility levels than fish meal proteins, especially in carnivorous fishes. Manipulation of protein content by plant breeding can improve the digestibility rate of plant proteins in fish, but the identification of low digestibility proteins is essential. A reduction of low digestibility proteins will not only increase feed efficiency, but also reduce water pollution. Little is known about specific digestible protein profiles and/or molecular identification of more bioavailable plant proteins in fish diets. In this study, we identified low digestibility L. luteus seed proteins using Atlantic salmon (Salmo salar) crude digestive enzymes in an in vitro assay. Low digestibility proteins were identified by comparing SDS-PAGE banding profiles of digested and non-digested lupin seed proteins. Gel image analysis detected a major 12 kDa protein band in both lupin meal and protein isolate digested products. The 12 kDa was confirmed by 2D-PAGE gels and the extracted protein was analyzed with an ion trap mass spectrometer in tandem mass mode. The MS/MS data showed that the 12 kDa low digestibility protein was a large chain δconglutin, a common seed storage protein of yellow lupin. Comparison of the protein band profiles between lupin meal and protein isolates showed that the isolatation process did not affect the low digestibility of the 12 kDa protein. PMID:24278278

  13. Identification of a Low Digestibility δ-Conglutin in Yellow Lupin (Lupinus luteus L.) Seed Meal for Atlantic Salmon (Salmo salar L.) by Coupling 2D-PAGE and Mass Spectrometry

    PubMed Central

    Ogura, Takahiro; Hernández, Adrián; Aizawa, Tomoko; Ogihara, Jun; Sunairi, Michio; Alcaino, Javier; Salvo-Garrido, Haroldo; Maureira-Butler, Iván J.

    2013-01-01

    The need of quality protein in the aquaculture sector has forced the incorporation of alternative plant proteins into feeding diets. However, most plant proteins show lower digestibility levels than fish meal proteins, especially in carnivorous fishes. Manipulation of protein content by plant breeding can improve the digestibility rate of plant proteins in fish, but the identification of low digestibility proteins is essential. A reduction of low digestibility proteins will not only increase feed efficiency, but also reduce water pollution. Little is known about specific digestible protein profiles and/or molecular identification of more bioavailable plant proteins in fish diets. In this study, we identified low digestibility L. luteus seed proteins using Atlantic salmon (Salmo salar) crude digestive enzymes in an in vitro assay. Low digestibility proteins were identified by comparing SDS-PAGE banding profiles of digested and non-digested lupin seed proteins. Gel image analysis detected a major 12 kDa protein band in both lupin meal and protein isolate digested products. The 12 kDa was confirmed by 2D-PAGE gels and the extracted protein was analyzed with an ion trap mass spectrometer in tandem mass mode. The MS/MS data showed that the 12 kDa low digestibility protein was a large chain δconglutin, a common seed storage protein of yellow lupin. Comparison of the protein band profiles between lupin meal and protein isolates showed that the isolatation process did not affect the low digestibility of the 12 kDa protein. PMID:24278278

  14. Molecular weight abnormalities of the CTCF transcription factor: CTCF migrates aberrantly in SDS-PAGE and the size of the expressed protein is affected by the UTRs and sequences within the coding region of the CTCF gene.

    PubMed Central

    Klenova, E M; Nicolas, R H; U, S; Carne, A F; Lee, R E; Lobanenkov, V V; Goodwin, G H

    1997-01-01

    CTCF belongs to the Zn finger transcription factors family and binds to the promoter region of c-myc. CTCF is highly conserved between species, ubiquitous and localised in nuclei. The endogenous CTCF migrates as a 130 kDa (CTCF-130) protein on SDS-PAGE, however, the open reading frame (ORF) of the CTCF cDNA encodes only a 82 kDa protein (CTCF-82). In the present study we investigate this phenomenon and show with mass-spectra analysis that this occurs due to aberrant mobility of the CTCF protein. Another paradox is that our original cDNA, composed of the ORF and 3'-untranslated region (3'-UTR), produces a protein with the apparent molecular weight of 70 kDa (CTCF-70). This paradox has been found to be an effect of the UTRs and sequences within the coding region of the CTCF gene resulting in C-terminal truncation of CTCF-130. The potential attenuator has been identified and point-mutated. This restored the electrophoretic mobility of the CTCF protein to 130 kDa. CTCF-70, the aberrantly migrating CTCF N-terminus per se, is also detected in some cell types and therefore may have some biological implications. In particular, CTCF-70 interferes with CTCF-130 normal function, enhancing transactivation induced by CTCF-130 in COS6 cells. The mechanism of CTCF-70 action and other possible functions of CTCF-70 are discussed. PMID:9016583

  15. CTAB-PAGE.

    PubMed

    Simpson, Richard J

    2010-04-01

    Although SDS-PAGE is the method of choice for most denaturing gel electrophoresis procedures, the anionic detergent SDS still presents some drawbacks. For example, SDS forms crystals at low temperatures and, in some cases, causes proteins to aggregate or precipitate. In addition, some proteins are not well-resolved in SDS gels or may migrate anomalously. In these situations, the use of a cationic detergent for PAGE offers an alternative approach. The system described in this protocol uses the cationic detergent cetyltrimethyl ammonium bromide (CTAB) and includes a stacking gel based on the zwitterion arginine (used as a stacking agent) and tricine (N-tris[hydroxymethyl]-methylglycine) used as a counterion and buffer. Some proteins separated on the CTAB electrophoresis system retain their native enzymatic activity, provided the samples are prepared without boiling and without the addition of a reducing agent. PMID:20360366

  16. Soybean Cyst Nematode SDS-PAGE Protein Characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) represent one of the most serious threats to the stability of soybean crops in the United States. Initially discovered in North Carolina in the 1950s, it has spread rapidly through the Midwest generating an estimated $1 billion in failed crop...

  17. Sampled data spectroscopy (SDS): A new technology for radiation instrumentation

    SciTech Connect

    Odell, D.M.C.

    1992-01-01

    A new instrumentation architecture for radiation spectroscopy is in the early stages of development at Savannah River. Based upon the same digital sampling techniques used in sonar and radar, sampled data spectroscopy (SDS) has produced Na(I)/PMT spectra with resolution comparable to conventional PHA systems. This work has laid the foundation for extending SDS techniques to solid state detector applications as well. Two-dimensional SDS processes raw, unintegrated detector output pulses to produce both energy and shape information that is used to construct a conventional energy spectrum. System advantages include zero electronic deadtime to support very high count rates, elimination of pulse pile-up peaks, high noise immunity, and digital system stability and reliability. Small size and low power requirements make 2-D SDS anideal technology for portable instrumentation and remote monitoring applications. Applications of potential interest at Savannah River include on-the-spot spill analysis, real-time waste stream monitoring, and personnel and area monitoring below background levels. A three-dimensional sampled data architecture is also being developed. Relying on image analysis and enhancement techniques, 3-D SDS identifies spectral peaks without determining the energy of any individual detector pulses. These techniques also open up a new avenue of exploration for reducing or removing Compton effects from the spectra of single detector systems. The intended application for this technique is waste characterization where lower energy isotopes are often obscured by the Compton scattering from dominant isotopes such as Csl37.

  18. Sampled data spectroscopy (SDS): A new technology for radiation instrumentation

    SciTech Connect

    Odell, D.M.C.

    1992-12-31

    A new instrumentation architecture for radiation spectroscopy is in the early stages of development at Savannah River. Based upon the same digital sampling techniques used in sonar and radar, sampled data spectroscopy (SDS) has produced Na(I)/PMT spectra with resolution comparable to conventional PHA systems. This work has laid the foundation for extending SDS techniques to solid state detector applications as well. Two-dimensional SDS processes raw, unintegrated detector output pulses to produce both energy and shape information that is used to construct a conventional energy spectrum. System advantages include zero electronic deadtime to support very high count rates, elimination of pulse pile-up peaks, high noise immunity, and digital system stability and reliability. Small size and low power requirements make 2-D SDS anideal technology for portable instrumentation and remote monitoring applications. Applications of potential interest at Savannah River include on-the-spot spill analysis, real-time waste stream monitoring, and personnel and area monitoring below background levels. A three-dimensional sampled data architecture is also being developed. Relying on image analysis and enhancement techniques, 3-D SDS identifies spectral peaks without determining the energy of any individual detector pulses. These techniques also open up a new avenue of exploration for reducing or removing Compton effects from the spectra of single detector systems. The intended application for this technique is waste characterization where lower energy isotopes are often obscured by the Compton scattering from dominant isotopes such as Csl37.

  19. SDS: A Framework for Scientific Data Services

    SciTech Connect

    Dong, Bin; Byna, Surendra; Wu, Kesheng

    2013-10-31

    Large-scale scientific applications typically write their data to parallel file systems with organizations designed to achieve fast write speeds. Analysis tasks frequently read the data in a pattern that is different from the write pattern, and therefore experience poor I/O performance. In this paper, we introduce a prototype framework for bridging the performance gap between write and read stages of data access from parallel file systems. We call this framework Scientific Data Services, or SDS for short. This initial implementation of SDS focuses on reorganizing previously written files into data layouts that benefit read patterns, and transparently directs read calls to the reorganized data. SDS follows a client-server architecture. The SDS Server manages partial or full replicas of reorganized datasets and serves SDS Clients' requests for data. The current version of the SDS client library supports HDF5 programming interface for reading data. The client library intercepts HDF5 calls and transparently redirects them to the reorganized data. The SDS client library also provides a querying interface for reading part of the data based on user-specified selective criteria. We describe the design and implementation of the SDS client-server architecture, and evaluate the response time of the SDS Server and the performance benefits of SDS.

  20. How Old Is the New SDS?

    ERIC Educational Resources Information Center

    Isserman, Maurice

    2007-01-01

    Students for a Democratic Society (SDS) was the principal campus radical organization of the 1960s. When SDS first took form in 1960-62 under the leadership of Al Haber and Tom Hayden, it was a small organization of a few hundred members. By the time the author joined the Reed College chapter as a freshman in 1968, SDS had grown into a very large…

  1. Web Page Design.

    ERIC Educational Resources Information Center

    Lindsay, Lorin

    Designing a web home page involves many decisions that affect how the page will look, the kind of technology required to use the page, the links the page will provide, and kinds of patrons who can use the page. The theme of information literacy needs to be built into every web page; users need to be taught the skills of sorting and applying…

  2. Structural studies of pravastatin and simvastatin and their complexes with SDS micelles by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Rakhmatullin, I. Z.; Galiullina, L. F.; Klochkova, E. A.; Latfullin, I. A.; Aganov, A. V.; Klochkov, V. V.

    2016-02-01

    Conformational features of pravastatin and simvastatin molecules in solution and in their complexes with sodium dodecyl sulfate micelles (SDS) were studied by 2D NOESY NMR spectroscopy. On the basis of the nuclear magnetic resonance experiments it was established that pravastatin and simvastatin can form molecular complex with SDS micelles which were considered as the model of cell membrane. In addition, interatomic distances for studied compounds were calculated based on 2D NOESY NMR experiments. It was shown that pravastatin interacts only with a surface of model membrane. However, in contrast to pravastatin, simvastatin penetrates into the inner part of SDS micelles. Observed distinctions in the mechanisms of interaction of pravastatin and simvastatin with models of cell membranes could explain the differences in their pharmacological properties.

  3. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  4. A novel sodium bis(2-ethylhexyl) sulfosuccinate-PAGE system suitable for the separation of small peptides.

    PubMed

    Lu, Xuemei; Yao, Yao; Zhang, Weican

    2007-09-01

    A novel sodium bis(2-ethylhexyl) sulfosuccinate-PAGE (AOT-PAGE) system which delivers high resolution and sensitivity for small peptides with molecular masses of 0.8-17 kDa is described. Small peptides migrate more slowly and are less prone to leakage than in conventional SDS-PAGE, thus allowing for the in-gel detection with CBB R 250 of 0.5 mug of peptide. The system is also compatible with electroblotting, activity staining in renatured gels, and the peptide analysis by MALDI-MS. AOT-PAGE is simpler, more rapid, and cheaper than the generally adopted Tricine-SDS-PAGE method. PMID:17854120

  5. SDS-resistant aggregation of membrane proteins: application to the purification of the vesicular monoamine transporter.

    PubMed Central

    Sagné, C; Isambert, M F; Henry, J P; Gasnier, B

    1996-01-01

    The vesicular monoamine transporter, which catalyses a H+/ monoamine antiport in monoaminergic vesicle membrane, is a very hydrophobic intrinsic membrane protein. After solubilization, this protein was found to have a high tendency to aggregate, as shown by SDS/PAGE, especially when samples were boiled in the classical Laemmli buffer before electrophoresis. This behavior was analysed in some detail. The aggregation was promoted by high temperatures, organic solvents and acidic pH, suggesting that it resulted from the unfolding of structure remaining in SDS. The aggregates were very stable and could be dissociated only by suspension in anhydrous trifluoroacetic acid. This SDS-resistant aggregation behaviour was shared by very few intrinsic proteins of the chromaffin granule membrane. Consequently, a purification procedure was based on this property. A detergent extract of chromaffin granule membranes enriched in monoamine transporter was heated and the aggregates were isolated by size-exclusion HPLC in SDS. The aggregates, containing the transporter, were dissociated in the presence of trifluoroacetic acid and analysed on the same HPLC column. This strategy might be of general interest for the purification of membrane proteins that exhibit SDS-resistant aggregation. PMID:8670158

  6. Mesh2d

    SciTech Connect

    Greg Flach, Frank Smith

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.

  7. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  8. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  9. FDA Kids' Home Page

    MedlinePlus

    ... Stay Healthy! Kids & Teens CVM Kid's Page National Agricultural Library Kids and Teens page - ? - Spotlight Pill Bottle ... For Government For Press Combination Products Advisory Committees Science & Research Regulatory Information Safety Emergency Preparedness International Programs ...

  10. An SDS-PAGE Examination of Protein Quaternary Structure and Disulfide Bonding for a Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Powers, Jennifer L.; Andrews, Carla S.; St. Antoine, Caroline C.; Jain, Swapan S.; Bevilacqua, Vicky L. H.

    2005-01-01

    Electrophoresis is a valuable tool for biochemists, yet this technique is often not included in biochemistry laboratory curricula owing to time constraints or lack of equipment. Protein structure is also a topic of interest in many disciplines, yet most undergraduate lab experiments focus only on primary structure. In this experiment, students use…

  11. Teaching the Structure of Immunoglobulins by Molecular Visualization and SDS-PAGE Analysis

    ERIC Educational Resources Information Center

    Rižner, Tea Lanišnik

    2014-01-01

    This laboratory class combines molecular visualization and laboratory experimentation to teach the structure of the immunoglobulins (Ig). In the first part of the class, the three-dimensional structures of the human IgG and IgM molecules available through the RCSB PDB database are visualized using freely available software. In the second part, IgG…

  12. Advanced negative detection method comparable to silver stain for SDS-PAGE separated proteins detection.

    PubMed

    Wang, Xu; Hwang, Sun-Young; Cong, Wei-Tao; Jin, Li-Tai; Choi, Jung-Kap

    2016-10-01

    In order to achieve an easy, rapid and sensitive protocol to detect proteins in polyacrylamide gel, an advanced negative detection method comparable to silver stain is described. When a gel was incubated with Phloxine B and followed by the development in acidic solution, the zones where forming protein-dye complex were selectively transparent, unlike opaque gel background. Within 50 min after electrophoresis, down to 0.1-0.4 ng of gel-separated proteins (similar with silver stain) could be observed, without labor-intensive and time-consuming procedure. Comparing with the most common negative stain method, Imidazole-zinc stain, Phloxine B stain has been shown higher sensitivity and distinct contrast between the transparent protein bands/spots and opaque background than those; furthermore, it is no longer necessary to concern about retention time of observation. This technique may provide a sensitive and practical choice for proteomics researches. PMID:27430933

  13. Quantifying the kinetic stability of hyperstable proteins via time-dependent SDS trapping.

    PubMed

    Xia, Ke; Zhang, Songjie; Bathrick, Brendan; Liu, Shuangqi; Garcia, Yeidaliz; Colón, Wilfredo

    2012-01-10

    Globular proteins are usually in equilibrium with unfolded conformations, whereas kinetically stable proteins (KSPs) are conformationally trapped by their high unfolding transition state energy. Kinetic stability (KS) could allow proteins to maintain their activity under harsh conditions, increase a protein's half-life, or protect against misfolding-aggregation. Here we show the development of a simple method for quantifying a protein's KS that involves incubating a protein in SDS at high temperature as a function of time, running the unheated samples on SDS-PAGE, and quantifying the bands to determine the time-dependent loss of a protein's SDS resistance. Six diverse proteins, including two monomer, two dimers, and two tetramers, were studied by this method, and the kinetics of the loss of SDS resistance correlated linearly with their unfolding rate determined by circular dichroism. These results imply that the mechanism by which SDS denatures proteins involves conformational trapping, with a trapping rate that is determined and limited by the rate of protein unfolding. We applied the SDS trapping of proteins (S-TraP) method to superoxide dismutase (SOD) and transthyretin (TTR), which are highly KSPs with native unfolding rates that are difficult to measure by conventional spectroscopic methods. A combination of S-TraP experiments between 75 and 90 °C combined with Eyring plot analysis yielded an unfolding half-life of 70 ± 37 and 18 ± 6 days at 37 °C for SOD and TTR, respectively. The S-TraP method shown here is extremely accessible, sample-efficient, cost-effective, compatible with impure or complex samples, and will be useful for exploring the biological and pathological roles of kinetic stability. PMID:22106876

  14. Spectrofluorimetric determination of second critical micellar concentration of SDS and SDS/Brij 30 systems.

    PubMed

    Romani, Ana Paula; Machado, Antonio Eduardo da Hora; Hioka, Noboru; Severino, Divinomar; Baptista, Mauricio S; Codognoto, Lúcia; Rodrigues, Maira R; de Oliveira, Hueder Paulo Moisés

    2009-03-01

    Potentially useful stead-state fluorimetric technique was used to determine the critical micellar concentrations (CMC(1) and CMC(2)) for two micellar media, one formed by SDS and the other by SDS/Brij 30. A comparative study based on conductimetric and surfacial tension measurements suggests that the CMC(1) estimated by the fluorimetric method is lower than the value estimated by these other techniques. Equivalent values were observed for SDS micelles without Brij 30 neutral co-surfactant. The use of acridine orange as fluorescent probe permitted to determine both CMC(1) and CMC(2). Based on it an explanation on aspects of micelle formation mechanism is presented, particularly based on a spherical and a rod like structures. PMID:18815872

  15. Wetlands and Web Pages.

    ERIC Educational Resources Information Center

    Tisone-Bartels, Dede

    1998-01-01

    Argues that the preservation of areas like the Shoreline Park (California) wetlands depends on educating students about the value of natural resources. Describes the creation of a Web page on the wetlands for third-grade students by seventh-grade art and ecology students. Outlines the technical process of developing a Web page. (DSK)

  16. Unfolding of β-Sheet Proteins in SDS

    PubMed Central

    Nielsen, Mette M.; Andersen, Kell K.; Westh, Peter; Otzen, Daniel E.

    2007-01-01

    β-Sheet proteins are particularly resistant to denaturation by sodium dodecyl sulfate (SDS). Here we compare unfolding of two β-sandwich proteins TNfn3 and TII27 in SDS. The two proteins show different surface electrostatic potential. Correspondingly, TII27 unfolds below the critical micelle concentration via the formation of hemimicelles on the protein surface, whereas TNfn3 only unfolds around the critical micelle concentration. Isothermal titration calorimetry confirms that unfolding of TII27 sets in at lower SDS concentrations, although the total number of bound SDS molecules is similar at the end of unfolding. In mixed micelles with the nonionic detergent dodecyl maltoside, where the concentration of monomeric SDS is insignificant, the behavior of the two proteins converges. TII27 unfolds more slowly than TNfn3 in SDS and follows a two-mode behavior. Additionally TNfn3 shows inhibition of SDS unfolding at intermediate SDS concentrations. Mutagenic analysis suggests that the overall unfolding mechanism is similar to that observed in denaturant for both proteins. Our data confirm the kinetic robustness of β-sheet proteins toward SDS. We suggest this is related to the inability of SDS to induce significant amounts of α-helix structure in these proteins as part of the denaturation process, forcing the protein to denature by global rather than local unfolding. PMID:17351005

  17. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  18. Protein complexes in bacterial and yeast mitochondrial membranes differ in their sensitivity towards dissociation by SDS.

    PubMed

    Gubbens, Jacob; Slijper, Monique; de Kruijff, Ben; de Kroon, Anton I P M

    2008-12-01

    Previously, a 2D gel electrophoresis approach was developed for the Escherichia coli inner membrane, which detects membrane protein complexes that are stable in sodium dodecyl sulfate (SDS) at room temperature, and dissociate under the influence of trifluoroethanol [R. E. Spelbrink et al., J. Biol. Chem. 280 (2005), 28742-8]. Here, the method was applied to the evolutionarily related mitochondrial inner membrane that was isolated from the yeast Saccharomyces cerevisiae. Surprisingly, only very few proteins were found to be dissociated by trifluoroethanol of which Lpd1p, a component of multiple protein complexes localized in the mitochondrial matrix, is the most prominent. Usage of either milder or more stringent conditions did not yield any additional proteins that were released by fluorinated alcohols. This strongly suggests that membrane protein complexes in yeast are less stable in SDS solution than their E. coli counterparts, which might be due to the overall reduced hydrophobicity of mitochondrial transmembrane proteins. PMID:18817900

  19. Temperature Effect on the Nanostructure of SDS Micelles in Water

    PubMed Central

    Hammouda, Boualem

    2013-01-01

    Sodium dodecyl sulfate (SDS) surfactants form micelles when dissolved in water. These are formed of a hydrocarbon core and hydrophilic ionic surface. The small-angle neutron scattering (SANS) technique was used with deuterated water (D2O) in order to characterize the micelle structure. Micelles were found to be slightly compressed (oblate ellipsoids) and their sizes shrink with increasing temperature. Fits of SANS data to the Mean Spherical Approximation (MSA) model yielded a calculated micelle volume fraction which was lower than the SDS surfactant (sample mixing) volume fraction; this suggests that part of the SDS molecules do not participate in micelle formation and remain homogeneously mixed in the solvent. A set of material balance equations allowed the estimation of the SDS fraction in the micelles. This fraction was found to be high (close to one) except for samples around 1 % SDS fraction. The micelle aggregation number was found to decrease with increasing temperature and/or decreasing SDS fraction. PMID:26401428

  20. Isolation and characterization of an SDS-degrading Klebsiella oxytoca.

    PubMed

    Shukor, M Y; Husin, W S W; Rahman, M F A; Shamaan, N A; Syed, M A

    2009-01-01

    Sodium dodecyl sulfate (SDS) is one of the main components in the detergent and cosmetic industries. Its bioremediation by suitable microorganism has begun to receive greater attention as the amount of SDS usage increases to a point where treatment plants would not be able to cope with the increasing amount of SDS in wastewater. The purpose of this work was to isolate local SDS-degrading bacteria. Screening was carried out by the conventional enrichment-culture technique. Six SDS-degrading bacteria were isolated. Of these isolates, isolate S14 showed the highest degradation of SDS with 90% degradation after three days of incubation. Isolate S14 was tentatively identified as Klebsiella oxytoca strain DRY14 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. SDS degradation by the bacterium was optimum at 37 degrees 0. Ammonium sulphate; at 2.0 g l(-1), was found to be the best nitrogen source for the growth of strain DRY14. Maximum growth on SDS was observed at pH 7.25. The strain exhibited optimum growth at SDS concentration of 2.0 g l(-1) and was completely inhibited at 10 g l(-1) SDS. At the tolerable initial concentration of 2.0 g l(-1), almost 80% of 2.0 g l(-1) SDS was degraded after 4 days of incubation concomitant with increase in cellular growth. The K(m(app) and V(max(app)) values calculated for the alkylsulfatase from this bacterium were 0.1 mM SDS and 1.07 micromol min(-1) mg(-1) protein, respectively. PMID:20112874

  1. Consensus brain-derived protein, extraction protocol for the study of human and murine brain proteome using both 2D-DIGE and mini 2DE immunoblotting.

    PubMed

    Fernandez-Gomez, Francisco-Jose; Jumeau, Fanny; Derisbourg, Maxime; Burnouf, Sylvie; Tran, Hélène; Eddarkaoui, Sabiha; Obriot, Hélène; Dutoit-Lefevre, Virginie; Deramecourt, Vincent; Mitchell, Valérie; Lefranc, Didier; Hamdane, Malika; Blum, David; Buée, Luc; Buée-Scherrer, Valérie; Sergeant, Nicolas

    2014-01-01

    Two-dimensional gel electrophoresis (2DE) is a powerful tool to uncover proteome modifications potentially related to different physiological or pathological conditions. Basically, this technique is based on the separation of proteins according to their isoelectric point in a first step, and secondly according to their molecular weights by SDS polyacrylamide gel electrophoresis (SDS-PAGE). In this report an optimized sample preparation protocol for little amount of human post-mortem and mouse brain tissue is described. This method enables to perform both two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mini 2DE immunoblotting. The combination of these approaches allows one to not only find new proteins and/or protein modifications in their expression thanks to its compatibility with mass spectrometry detection, but also a new insight into markers validation. Thus, mini-2DE coupled to western blotting permits to identify and validate post-translational modifications, proteins catabolism and provides a qualitative comparison among different conditions and/or treatments. Herein, we provide a method to study components of protein aggregates found in AD and Lewy body dementia such as the amyloid-beta peptide and the alpha-synuclein. Our method can thus be adapted for the analysis of the proteome and insoluble proteins extract from human brain tissue and mice models too. In parallel, it may provide useful information for the study of molecular and cellular pathways involved in neurodegenerative diseases as well as potential novel biomarkers and therapeutic targets. PMID:24747743

  2. A rendering approach for stereoscopic web pages

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlong; Wang, Wenmin; Wang, Ronggang; Chen, Qinshui

    2014-03-01

    Web technology provides a relatively easy way to generate contents for us to recognize the world, and with the development of stereoscopic display technology, the stereoscopic devices will become much more popular. The combination of web technology and stereoscopic display technology will bring revolutionary visual effect. The Stereoscopic 3D (S3D) web pages, in which text, image and video may have different depth, can be displayed on stereoscopic display devices. This paper presents the approach about how to render two viewing S3D web pages including text, images, widgets: first, an algorithm should be developed in order to display stereoscopic elements like text, widgets by using 2D graphic library; second, a method should be presented to render stereoscopic web page based on current framework of the browser; third, a rough solution is invented to fix the problem that comes out in the method.

  3. Further characterization of filarial antigens by SDS polyacrylamide gel electrophoresis

    PubMed Central

    Dissanayake, S.; Galahitiyawa, S. C.; Ismail, M. M.

    1983-01-01

    SDS (sodium dodecyl sulfate)-polyacrylamide gel electrophoresis of an antigen isolated from sera of Wuchereria bancrofti-infected patients and Setaria digitata antigen SD2-4 is reported. Both antigens showed carbohydrate (glycoprotein) staining. The W. bancrofti antigen had an apparent relative molecular mass of 35 000 while the S. digitata antigen SD2-4 migrated at the marker dye position on SDS-polyacrylamide gel electrophoresis. SDS treatment of these antigens did not abolish the precipitation reaction with antibody. In the case of W. bancrofti antigen, SDS treatment probably exposed hitherto hidden antigen epitopes. PMID:6354508

  4. Making Pages That Move.

    ERIC Educational Resources Information Center

    Gepner, Ivan

    2001-01-01

    Explains the mechanism of producing dynamic computer pages which is based on three technologies: (1) the document object model; (2) cascading stylesheets; and (3) javascript. Discusses the applications of these techniques in genetics and developmental biology. (YDS)

  5. ACSM Fit Society Page

    MedlinePlus

    ... Physical Activity Marketplace Health & Physical Activity Reference Database Public Information Newsletters ACSM Blog ACSM Blog Search By ... Activity Marketplace Health & Physical Activity Reference Database Home Public Information Newsletters Fit Society Page ACSM Fit Society ® ...

  6. Page turning system

    NASA Technical Reports Server (NTRS)

    Kerley, James J. (Inventor); Eklund, Wayne D. (Inventor)

    1992-01-01

    A device for holding reading materials for use by readers without arm mobility is presented. The device is adapted to hold the reading materials in position for reading with the pages displayed to enable turning by use of a rubber tipped stick that is held in the mouth and has a pair of rectangular frames. The frames are for holding and positioning the reading materials opened in reading posture with the pages displayed at a substantially unobstructed sighting position for reading. The pair of rectangular frames are connected to one another by a hinge so the angle between the frames may be varied thereby varying the inclination of the reading material. A pair of bent spring mounted wires for holding opposing pages of the reading material open for reading without substantial visual interference of the pages is mounted to the base. The wires are also adjustable to the thickness of the reading material and have a variable friction adjustment. This enables the force of the wires against the pages to be varied and permits the reader to manipulate the pages with the stick.

  7. Protein structures in SDS micelle-protein complexes.

    PubMed Central

    Parker, W; Song, P S

    1992-01-01

    Sodium dodecyl sulfate (SDS) is used more often than any other detergent as an excellent denaturing or "unfolding" detergent. However, formation of ordered structure (alpha-helix or beta-sheet) in certain peptides is known to be induced by interaction with SDS micelles. The SDS-induced structures formed by these peptides are amphiphilic, having both a hydrophobic and a hydrophilic face. Previous work in this area has revealed that SDS induces helical folding in a wide variety of non-helical proteins. Here, we describe the interaction of several structurally unrelated proteins with SDS micelles and the correlation of these structures to helical amphiphilic regions present in the primary sequence. It is likely that the ability of native nonordered protein structures to form induced amphiphilic ordered structures is rather common. PMID:1600087

  8. Comparison of Self-Scoring Error Rate for SDS (Self Directed Search) (1970) and the Revised SDS (1977).

    ERIC Educational Resources Information Center

    Price, Gary E.; And Others

    A comparison of Self-Scoring Error Rate for Self Directed Search (SDS) and the revised SDS is presented. The subjects were college freshmen and sophomores who participated in career planning as a part of their orientation program, and a career workshop. Subjects, N=190 on first study and N=84 on second study, were then randomly assigned to the SDS…

  9. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  10. Handley Page metal construction

    NASA Technical Reports Server (NTRS)

    1929-01-01

    In this report Handley Page construction techniques are shown such as: solid-drawn tubular duralumin spars are used in the stabilizer; plain channel sections are used extensively for minor components; and the manner of assembling them into a stabilizer compression strut is shown.

  11. Integrated SDS removal and protein digestion by hollow fiber membrane based device for SDS-assisted proteome analysis.

    PubMed

    Xia, Simin; Yuan, Huiming; Chen, Yuanbo; Liang, Zheng; Zhang, Lihua; Zhang, Yukui

    2015-08-15

    In this work, a novel integrated sample preparation device for SDS-assisted proteome analysis was developed, by which proteins dissolved in 4% (w/v) SDS were first diluted by 50% methanol, and then SDS was online removed by a hollow fiber membrane interface (HFMI) with 50mM ammonium bicarbonate (pH 8.0) as an exchange buffer, finally digested by an immobilized enzyme reactor (IMER). To evaluate the performance of such an integrated device, bovine serum albumin dissolved in 4% (w/v) SDS as a model sample was analyzed; it could be found that similar to that obtained by direct analysis of BSA digests without SDS (the sequence coverage of 60.3±1.0%, n=3), with HFMI as an interface for SDS removal, BSA was identified with the sequence coverage of 61.0±1.0% (n=3). However, without SDS removal by HFMI, BSA could not be digested by the IMER and none peptides could be detected. In addition, such an integrated sample preparation device was also applied for the analysis of SDS extracted proteins from rat brain, compared to those obtained by filter-aided sample preparation (FASP), not only the identified protein group and unique peptide number were increased by 12% and 39% respectively, but also the sample pretreatment time was shortened from 24h to 4h. All these results demonstrated that such an integrated sample preparation device would provide an alternative tool for SDS assisted proteome analysis. PMID:25966408

  12. Bootstrapping structured page segmentation

    NASA Astrophysics Data System (ADS)

    Ma, Huanfeng; Doermann, David S.

    2003-01-01

    In this paper, we present an approach to the bootstrap learning of a page segmentation model. The idea evolves from attempts to segment dictionaries that often have a consistent page structure, and is extended to the segmentation of more general structured documents. In cases of highly regular structure, the layout can be learned from examples of only a few pages. The system is first trained using a small number of samples, and a larger test set is processed based on the training result. After making corrections to a selected subset of the test set, these corrected samples are combined with the original training samples to generate bootstrap samples. The newly created samples are used to retrain the system, refine the learned features and resegment the test samples. This procedure is applied iteratively until the learned parameters are stable. Using this approach, we do not need to initially provide a large set of training samples. We have applied this segmentation to many structured documents such as dictionaries, phone books, spoken language transcripts, and obtained satisfying segmentation performance.

  13. Stacking up 2D materials

    NASA Astrophysics Data System (ADS)

    Mayor, Louise

    2016-05-01

    Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.

  14. Extraction of up to 95% of wheat (Triticum aestivum) flour protein using warm sodium dodecyl sulfate (SDS) without reduction or sonication.

    PubMed

    DuPont, Frances M; Samoil, Vitalie; Chan, Ronald

    2008-08-27

    Extraction of glutenin polymers without sonication is an essential prerequisite for accurate determination of their composition and molecular size distribution. Sequential fractionation of wheat flour with 0.1 M KCl and 0.25% sodium dodecyl sulfate (SDS) at 21 degrees C and 2% SDS at 60 degrees C extracted up to 95% of total protein. We propose that 2% SDS at 60 degrees C disrupts hydrogen bonds in glutenin and gliadin aggregates, reduces hydrophobic interactions, and facilitates solubilization. Analysis by size-exclusion high-performance liquid chromatography (SE-HPLC), reverse-phase (RP)-HPLC, and SDS-polyacrylamide gel electrophoresis (PAGE) revealed that partitioning of gliadins and glutenins among the extracts differed for two flours with good baking quality (Butte 86 and Jagger) and one with poor baking quality (Chinese Spring). More gliadin was associated with the 0.25% SDS extract for Chinese Spring, whereas more gliadin was associated with the 2% SDS extract for Butte 86 and Jagger. Unextractable glutenin polymer was only 4-5% of total protein for Butte 86 and Chinese Spring and 14% for Jagger. PMID:18616274

  15. Multiplex PageRank.

    PubMed

    Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra

    2013-01-01

    Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation. PMID:24205186

  16. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  17. Nanoimprint lithography: 2D or not 2D? A review

    NASA Astrophysics Data System (ADS)

    Schift, Helmut

    2015-11-01

    Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.

  18. Best kept secrets ... Source Data Systems, Inc. (SDS).

    PubMed

    Andrew, W F

    1991-03-01

    The SDS/MEDNET system is a cost-effective option for small- to medium-size hospitals (up to 400 beds). The parameter-driven system lets users control operations with only occasional SDS assistance. A full application set, available for modular selection to reduce upfront costs while facilitating steady growth and protecting client investment, is adaptable to multi-facility environments. The industry-standard, Intel-based multi-user processors, network communications and protocols assure high efficiency, low-cost solutions independent of any one hardware vendor. Sustained growth in both client base and product offerings point to a high level of responsiveness and healthcare industry commitment. Corporate emphasis on user involvement and open systems integration assures clients of leading-edge capabilities. SDS/MEDNET will be a strong contender in selected marketing environments. PMID:10120787

  19. 8. Photocopy of printed page (original Page 30 of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of printed page (original Page 30 of the Souvenir Program 1867-1967 Ridgely Centennial) Photographer unknown. Circa 1967. VIEW NORTHEAST, SOUTHWEST FRONT Ridgely's centennial was celebrated in 1967 and included in the souvenir brochure was page 30. This view shows the subject building with the 1950 modifications to provide for automotive traffic. It was a print of a current photograph. - 510 Central Avenue (Commercial Building), Ridgely, Caroline County, MD

  20. 2D-PAGE protein analysis of dinoflagellate Alexandrium minutum based on three different temperatures

    NASA Astrophysics Data System (ADS)

    Latib, Norhidayu Abdul; Norshaha, Safida Anira; Usup, Gires; Yusof, Nurul Yuziana Mohd

    2015-09-01

    Harmful algae bloom or red tide seems to be considered as threat to ecosystem, especially to human consumption because of the production of neurotoxin by dinoflagellates species such as Alexandrium minutum which can lead to paralytic shellfish poisoning. The aim of this study is to determine the most suitable method for protein extraction of A. minutum followed by determination of differential protein expression of A. minutum on three different temperatures (15°C, 26°C and 31.5°C). After the optimization, the protein extract was subjected to two-dimensional polyacrylamide gel electrophoresis (2-DE) to compare the intensity and distribution of the protein spots. Based on quantitative and qualitative protein assessment, use of Trizol reagent is the most suitable method to extract protein from A. minutum. 2-DE analysis of the samples results in different distribution and intensity of the protein spots were compared between 15°C, 26°C and 31.5°C.

  1. ALTERNATIVE WORKFLOWS TO REPLACE 2D-PAGE FOR THE CONSTRUCTION OF PLANT PROTEOME MAPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-throughput separations are intrinsic to the subsequent detection and analysis of peptides and proteins by mass spectrometry. Combined, efficient separation and detection methods lead to the analysis of thousands of proteins within a sample, cell or tissue and contribute to the eventual constru...

  2. X-Y plotter adapter developed for SDS-930 computer

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.

    1968-01-01

    Graphical Display Adapter provides a real time display for digital computerized experiments. This display uses a memory oscilloscope which records a single trace until erased. It is a small hardware unit which interfaces with the J-box feature of the SDS-930 computer to either an X-Y plotter or a memory oscilloscope.

  3. Purification and biochemical properties of SDS-stable low molecular weight alkaline serine protease from Citrullus colocynthis.

    PubMed

    Khan, Muhammad Bashir; Khan, Hidayatullah; Shah, Muhammad Usman; Khan, Sanaullah

    2016-01-01

    A low molecular weight serine protease from seeds of Citrullus colocynthis was purified to electrophoretic homogeneity with high level of catalytic efficiency (22,945 M(-1) S(-1)). The enzyme was a monomer with molecular mass of 25 kDa estimated by SDS-PAGE. The enzyme was highly active over a pH range of 6.5-9.0 and temperature range of 20-80 °C, with maximum activity at pH 7.5 and at 50 °C. The K(m) and K(cat) were 73 μg/mL and 67/s, respectively. The enzyme was strongly inhibited by PMSF, moderately by soybean trypsin inhibitor, indicating that the enzyme was a serine protease. The enzyme retained 86 and 73% of its activity in the presence of urea and DTT, respectively, and its activity was slightly enhanced in the presence of anionic detergent (SDS). Thus, the enzyme is a novel SDS-stable protease with high catalytic efficiency over wide ranges of pH and temperature which is commercially promising for various industrial applications. PMID:26942486

  4. Writing a Library Home Page.

    ERIC Educational Resources Information Center

    Matsco, Sandra; Campbell, Sharon

    1996-01-01

    Describes how Rochester Hills Public Library (Michigan) planned and implemented their award-winning World Wide Web home page. They evaluated other library sites, clarified goals and audience, used a shared network for communication, and organized the page based on library and community information and Internet resources. Also, provides guidelines…

  5. Reese Sorenson's Individual Professional Page

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese; Nixon, David (Technical Monitor)

    1998-01-01

    The subject document is a World Wide Web (WWW) page entitled, "Reese Sorenson's Individual Professional Page." Its can be accessed at "http://george.arc.nasa.gov/sorenson/personal/index.html". The purpose of this page is to make the reader aware of me, who I am, and what I do. It lists my work assignments, my computer experience, my place in the NASA hierarchy, publications by me, awards received by me, my education, and how to contact me. Writing this page was a learning experience, pursuant to an element in my Job Description which calls for me to be able to use the latest computers. This web page contains very little technical information, none of which is classified or sensitive.

  6. Developing Best Practices for Scientific Data Stewardship? (SDS)

    NASA Astrophysics Data System (ADS)

    Kihn, E.; Redmon, R.

    2008-12-01

    Science Data Stewardship (SDS) is the art of 'maintaining the science integrity and long term utility of scientific records' and ' the actions which maximize the return on investment for archived scientific data'. This paper will present a series of best practices developed under the Electronic Geophysical Year (eGY) for SDS. These practices include areas such as: Storage and Preservation, Ease of Use, Interoperability, Quality Information and Metadata, Data Availability, User Presentation, Attribution and Accountability, and Electronic Data Preservation These practice are of use for anyone concerned with the long term stewardship and preservation of electronic records. This set of practices is currently being extended by the CODATA working group on the eGY. http://www.sciencedatastewardship.org

  7. Shwachman-Diamond syndrome (SDS) in a preterm neonate.

    PubMed

    Saito-Benz, Maria; Miller, Helen Elizabeth; Berry, Mary Judith

    2015-12-01

    A preterm neonate at 29-week gestational age was born with intrauterine growth restriction, severe pancytopaenia and gross skeletal dysplasia. Antenatal screening bloods, TORCH/parvovirus tests and karyotype were unremarkable. Postnatally, he had normal microarray comparative genomic hybridization and serum B12/folate levels, and human immunodeficiency virus and cytomegalovirus polymerase chain reaction and antoimmune screening were negative. Targeted gene testing for Shwachman-Diamond syndrome (SDS) revealed the pathognomic mutation (c.183_184delTAinsCT). His postnatal clinical course was complicated by: (i) Ventilator dependency because of a combination of a pathologically compliant chest wall and preterm-associated chronic lung disease. (ii) Progressive bone marrow failure, resulting in transfusion dependence and profound neutropenia associated with recurrent sepsis. (iii) Gastrointestinal failure and TPN dependency. (iv) Poor postnatal growth with weight/length/head circumference all <3rd centile. (v) Prognostication was complicated by the lack of published literature on the presentation of SDS in a preterm infant. However, because of inexorable progression of multiorgan failure, intensive care was withdrawn on day 54 of life. SDS is a rare autosomal recessive disorder characterised by haematological abnormalities, skeletal dysplasia and exocrine pancreatic dysfunction. Neonatal presentation is thought to be extremely rare. However, with the availability of genetic testing, it has now become clear that because of overlap in clinical presentation, term-born infants with skeletal dysplasia and severe respiratory distress may initially be misdiagnosed as asphyxiating thoracic dystrophy. This case report highlights the complexities of preterm birth complicating clinical manifestations of SDS. PMID:26081292

  8. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  9. Code AI Personal Web Pages

    NASA Technical Reports Server (NTRS)

    Garcia, Joseph A.; Smith, Charles A. (Technical Monitor)

    1998-01-01

    The document consists of a publicly available web site (george.arc.nasa.gov) for Joseph A. Garcia's personal web pages in the AI division. Only general information will be posted and no technical material. All the information is unclassified.

  10. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  11. The Faculty Web Page: Contrivance or Continuation?

    ERIC Educational Resources Information Center

    Lennex, Lesia

    2007-01-01

    In an age of Internet education, what does it mean for a tenure/tenure-track faculty to have a web page? How many professors have web pages? If they have a page, what does it look like? Do they really need a web page at all? Many universities have faculty web pages. What do those collective pages look like? In what way do they represent the…

  12. Blue native polyacrylamide gel electrophoresis (BN-PAGE) for analysis of multiprotein complexes from cellular lysates.

    PubMed

    Fiala, Gina J; Schamel, Wolfgang W A; Blumenthal, Britta

    2011-01-01

    Multiprotein complexes (MPCs) play a crucial role in cell signalling, since most proteins can be found in functional or regulatory complexes with other proteins (Sali, Glaeser et al. 2003). Thus, the study of protein-protein interaction networks requires the detailed characterization of MPCs to gain an integrative understanding of protein function and regulation. For identification and analysis, MPCs must be separated under native conditions. In this video, we describe the analysis of MPCs by blue native polyacrylamide gel electrophoresis (BN-PAGE). BN-PAGE is a technique that allows separation of MPCs in a native conformation with a higher resolution than offered by gel filtration or sucrose density ultracentrifugation, and is therefore useful to determine MPC size, composition, and relative abundance (Schägger and von Jagow 1991); (Schägger, Cramer et al. 1994). By this method, proteins are separated according to their hydrodynamic size and shape in a polyacrylamide matrix. Here, we demonstrate the analysis of MPCs of total cellular lysates, pointing out that lysate dialysis is the crucial step to make BN-PAGE applicable to these biological samples. Using a combination of first dimension BN- and second dimension SDS-PAGE, we show that MPCs separated by BN-PAGE can be further subdivided into their individual constituents by SDS-PAGE. Visualization of the MPC components upon gel separation is performed by standard immunoblotting. As an example for MPC analysis by BN-PAGE, we chose the well-characterized eukaryotic 19S, 20S, and 26S proteasomes. PMID:21403626

  13. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  14. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  15. A novel SDS-stable dimer of a heterogeneous nuclear ribonucleoprotein at presynaptic terminals of squid neurons.

    PubMed

    Lico, D T P; Lopes, G S; Brusco, J; Rosa, J C; Gould, R M; De Giorgis, J A; Larson, R E

    2015-08-01

    The presence of mRNAs in synaptic terminals and their regulated translation are important factors in neuronal communication and plasticity. Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes are involved in the translocation, stability, and subcellular localization of mRNA and the regulation of its translation. Defects in these processes and mutations in components of the hnRNP complexes have been related to the formation of cytoplasmic inclusion bodies and neurodegenerative diseases. Despite much data on mRNA localization and evidence for protein synthesis, as well as the presence of translation machinery, in axons and presynaptic terminals, the identity of RNA-binding proteins involved in RNA transport and function in presynaptic regions is lacking. We previously characterized a strongly basic RNA-binding protein (p65), member of the hnRNPA/B subfamily, in squid presynaptic terminals. Intriguingly, in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), p65 migrated as a 65-kDa protein, whereas members of the hnRNPA/B family typically have molecular masses ranging from 35 to 42kDa. In this report we present further biochemical and molecular characterization that shows endogenous p65 to be an SDS-stable dimer composed of ∼37-kDa hnRNPA/B-like subunits. We cloned and expressed a recombinant protein corresponding to squid hnRNPA/B-like protein and showed its propensity to aggregate and form SDS-stable dimers in vitro. Our data suggest that this unique hnRNPA/B-like protein co-localizes with synaptic vesicle protein 2 and RNA-binding protein ELAV and thus may serve as a link between local mRNA processing and presynaptic function and regulation. PMID:26012490

  16. Learning through Web Page Design.

    ERIC Educational Resources Information Center

    Peel, Deborah

    2001-01-01

    Describes and evaluates the use of Web page design in an undergraduate course in the United Kingdom on town planning. Highlights include incorporating information and communication technologies into higher education; and a theoretical framework for the use of educational technology. (LRW)

  17. Design of Educational Web Pages

    ERIC Educational Resources Information Center

    Galan, Jose Gomez; Blanco, Soledad Mateos

    2004-01-01

    The methodological characteristics of teaching in primary and secondary education make it necessary to revise the pedagogical and instructive lines with which to introduce the new Information and Communication Technologies into the school context. The construction of Web pages that can be used to improve student learning is, therefore, fundamental…

  18. Light field morphing using 2D features.

    PubMed

    Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung

    2005-01-01

    We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126

  19. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  20. Inertial solvation in femtosecond 2D spectra

    NASA Astrophysics Data System (ADS)

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  1. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  2. Error-correcting codes for page-oriented optical memories

    NASA Astrophysics Data System (ADS)

    Hutton, John F.; Betzos, George A.; Schaffer, Maureen E.; Mitkas, Pericles A.

    1996-11-01

    Parallel optical memories have been proposed to meet high speed, high capacity storage requirements for input/output intensive computer applications. This technology offers the capability for storage and retrieval of optical data in 2D pages resulting in high capacity and high throughput. CUrrent raw bit error rates of experimental systems fall significantly short of the minimum industry requirement of 10-12 for binary data. Thus, error control techniques for 2D data are necessary in order for such memories to be commercially feasible. In this paper, we discuss several error control schemes suitable for page- oriented data and specifically applicable to page-oriented optical memories. To better interface between the memory and the electronic host computer, we propose 'smart' photo- detector array devices in which the input is optical but the output is electronic. These arrays receive the optical signal form the memory and covert it to electronic data. Utilizing the speed of VLSI technology, the arrays perform fast parallel decoding and data correction, thereby providing an efficient optoelectronic interface between the memory and the electronic computer.

  3. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin

    SciTech Connect

    Liu, Renyu Bu, Weiming; Xi, Jin; Mortazavi, Shirin R.; Cheung-Lau, Jasmina C.; Dmochowski, Ivan J.; Loll, Patrick J.

    2012-05-01

    Using X-ray crystallography and isothermal titration calorimetry, we show that sodium dodecyl sulfate (SDS) binds specifically to a pre-formed internal cavity in horse-spleen apoferritin. Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin–SDS complex was determined at a resolution of 1.9 Å and revealed that the SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein–SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins.

  4. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  5. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  6. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  7. 2D electronic materials for army applications

    NASA Astrophysics Data System (ADS)

    O'Regan, Terrance; Perconti, Philip

    2015-05-01

    The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.

  8. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  9. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  10. NMR structure of the Arctic mutation of the Alzheimer's Aβ(1-40) peptide docked to SDS micelles

    NASA Astrophysics Data System (ADS)

    Usachev, K. S.; Filippov, A. V.; Khairutdinov, B. I.; Antzutkin, O. N.; Klochkov, V. V.

    2014-11-01

    The “Arctic” point mutation of the Alzheimer's amyloid β-peptide is a rare mutation leading to an early onset of Alzheimer's disease. The peptide may interact with neuronal membranes, where it can provide its toxic effects. We used 2D NMR spectroscopy to investigate the conformation of the “Arctic” mutant of Aβ1-40 Alzheimer's amyloid peptide in sodium dodecyl sulfate micelle solutions, which are the type of amphiphilic structures mimicking some properties of biomembranes. The study showed that the Arctic mutant of Aβ1-40 interacts with the surface of SDS micelles mainly through the Leu17-Asn27 310-helical region, while the Ile31-Val40 region is buried in the hydrophobic interior of the micelle. In contrast, wild-type Aβ1-40 interacts with SDS micelles through the Lys16-Asp23 α-helical region and Gly29-Met35. Both the Arctic mutant and the wild-type Aβ1-40 peptides interactions with SDS micelles are hydrophobic in nature. Aβ peptides are thought to be capable of forming pores in biomembranes that can cause changes in neuronal and endothelial cell membrane permeability. It has also been shown that Aβ peptides containing the “Arctic” mutation are more neurotoxic and aggregate more readily than the wild-type Aβ peptides at physiological conditions. Here, we propose that the extension of the helical structure of Leu17-Asn27 and a high aliphaticity (neutrality) of the C-terminal region in the Arctic Aβ peptides are consistent with the idea that formation of ion-permeable pores by Aβ oligomers may be one of prevailing mechanisms of a larger neuronal toxicity of the Arctic Aβ compared to the wild-type Aβ peptides, independent of oxidative damage and lipid peroxidation.

  11. Extended 2D generalized dilaton gravity theories

    NASA Astrophysics Data System (ADS)

    de Mello, R. O.

    2008-09-01

    We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.

  12. Market study: Tactile paging system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market survey was conducted regarding the commercialization potential and key market factors relevant to a tactile paging system for deaf-blind people. The purpose of the tactile paging system is to communicate to the deaf-blind people in an institutional environment. The system consists of a main console and individual satellite wrist units. The console emits three signals by telemetry to the wrist com (receiving unit) which will measure approximately 2 x 4 x 3/4 inches and will be fastened to the wrist by a strap. The three vibration signals are fire alarm, time period indication, and a third signal which will alert the wearer of the wrist com to the fact that the pin on the top of the wrist is emitting a morse coded message. The Morse code message can be felt and recognized with the finger.

  13. Evaluation of SDS depletion using an affinity spin column and IMS-MS detection

    SciTech Connect

    Hengel, Shawna M.; Floyd, Erica A.; Baker, Erin Shammel; Zhao, Rui; Wu, Si; Pasa-Tolic, Ljiljana

    2012-11-01

    While the use of detergents is necessary for a variety of protein isolation preparation protocols, often prior to mass spectral (MS) analysis, they are not compatible with MS analysis due to ion suppression and adduct formation. This manuscript describes optimization of detergent removal, using commercially available SDS depletion spin columns containing an affinity resin, providing for both increased protein recovery and thorough SDS removal. Ion mobility spectrometry coupled with mass spectrometry (IMS-MS) allowed for a concurrent analysis of both analyte and detergent. In the case of both proteins and peptides, higher detergent concentrations than previously reported provided an increase of sample recovery; however there was a limit as SDS was detected by IMS-MS at higher levels of SDS indicating incomplete detergent depletion. The results also suggest optimal conditions for SDS removal are dependent on the sample concentration. Overall, this study provides a useful guide for proteomic studies where SDS is required for efficient sample preparation.

  14. In re LePage.

    PubMed

    2001-01-01

    Court Decision: 18 Pacific Reporter, 3d Series 1177; 2001 Mar 8 (date of decision). The Supreme Court of Wyoming held that the state Department of Health was not authorized to inquire about the sincerity of a mother's religious beliefs when determining whether her daughter was exempt from a public school immunization requirement. Susan LePage submitted a request to the Department of Health seeking to exempt her daughter from receiving the hepatitis B vaccination. The Department of Health inquired into the sincerity of LePage's religious beliefs against vaccination and determined that her objections were of a personal or philosophical nature and not on religious grounds. The Department of Health denied LePage's request. The Supreme Court of Wyoming held that state law requires the Department of Health to grant an exemption upon the submission of a written objection and does not allow the Department of Health to make an inquiry into the sincerity of the requestor's religious beliefs. The court balanced a valid state interest in protecting schoolchildren from disease with the relatively low number of requests for exemption and its confidence in parents to make decisions in the best interest of their children's physical and spiritual health. Since there was no justification within the statute to allow a religious inquiry, the court held that the Department of Health had exceeded its authority with LePage. Furthermore, state law did not require a religious waiver to exempt a child from this particular vaccine. The lower court's holding was reversed. PMID:16479706

  15. Planetary Photojournal Home Page Graphic

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image is an unannotated version of the Planetary Photojournal Home Page graphic. This digital collage contains a highly stylized rendition of our solar system and points beyond. As this graphic was intended to be used as a navigation aid in searching for data within the Photojournal, certain artistic embellishments have been added (color, location, etc.). Several data sets from various planetary and astronomy missions were combined to create this image.

  16. Photojournal Home Page Graphic 2007

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image is an unannotated version of the Photojournal Home Page graphic released in October 2007. This digital collage contains a highly stylized rendition of our solar system and points beyond. As this graphic was intended to be used as a navigation aid in searching for data within the Photojournal, certain artistic embellishments have been added (color, location, etc.). Several data sets from various planetary and astronomy missions were combined to create this image.

  17. Data page reconstruction method based on two-dimensional soft output Viterbi algorithm with self reference for holographic data storage

    NASA Astrophysics Data System (ADS)

    Koo, Keunhwi; Kim, Soo-Yong; Jeong, Jae Jin; Kim, Sang Woo

    2014-09-01

    This study introduces a two-dimensional (2D) partial response maximum likelihood (PRML) method to reconstruct a degraded data page having 2D inter-symbol interference for holographic data storage. The proposed 2D PRML method consists of 2D partial response (PR) target, 2D equalizer using least mean square algorithm, and 2D soft output Viterbi algorithm (SOVA) having just two one-dimensional (1D) SOVAs in horizontal and vertical directions. To accurately organize a trellis diagram of the 1D SOVA in structural accordance with the 2D PR target, this study proposes the self-reference process for the extrinsic information in the 1D SOVA. Finally, simulation results show that the proposed method has bit error rate performance similar to that of modified 2D SOVA having four 1D SOVAs despite the relatively low computational complexity. Moreover, parallel processing is possible in the two 1D SOVAs through the self-reference process.

  18. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  19. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  20. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  1. 2D microwave imaging reflectometer electronics

    NASA Astrophysics Data System (ADS)

    Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  2. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

  3. 2D-Crystal-Based Functional Inks.

    PubMed

    Bonaccorso, Francesco; Bartolotta, Antonino; Coleman, Jonathan N; Backes, Claudia

    2016-08-01

    The possibility to produce and process graphene, related 2D crystals, and heterostructures in the liquid phase makes them promising materials for an ever-growing class of applications as composite materials, sensors, in flexible optoelectronics, and energy storage and conversion. In particular, the ability to formulate functional inks with on-demand rheological and morphological properties, i.e., lateral size and thickness of the dispersed 2D crystals, is a step forward toward the development of industrial-scale, reliable, inexpensive printing/coating processes, a boost for the full exploitation of such nanomaterials. Here, the exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices. PMID:27273554

  4. The 2D lingual appliance system.

    PubMed

    Cacciafesta, Vittorio

    2013-09-01

    The two-dimensional (2D) lingual bracket system represents a valuable treatment option for adult patients seeking a completely invisible orthodontic appliance. The ease of direct or simplified indirect bonding of 2D lingual brackets in combination with low friction mechanics makes it possible to achieve a good functional and aesthetic occlusion, even in the presence of a severe malocclusion. The use of a self-ligating bracket significantly reduces chair-side time for the orthodontist, and the low-profile bracket design greatly improves patient comfort. PMID:24005953

  5. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  6. Measurement of 2D birefringence distribution

    NASA Astrophysics Data System (ADS)

    Noguchi, Masato; Ishikawa, Tsuyoshi; Ohno, Masahiro; Tachihara, Satoru

    1992-10-01

    A new measuring method of 2-D birefringence distribution has been developed. It has not been an easy job to get a birefringence distribution in an optical element with conventional ellipsometry because of its lack of scanning means. Finding an analogy between the rotating analyzer method in ellipsometry and the phase-shifting method in recently developed digital interferometry, we have applied the phase-shifting algorithm to ellipsometry, and have developed a new method that makes the measurement of 2-D birefringence distribution easy and possible. The system contains few moving parts, assuring reliability, and measures a large area of a sample at one time, making the measuring time very short.

  7. Interstellar Initiative Web Page Design

    NASA Technical Reports Server (NTRS)

    Mehta, Alkesh

    1999-01-01

    This summer at NASA/MSFC, I have contributed to two projects: Interstellar Initiative Web Page Design and Lenz's Law Relative Motion Demonstration. In the Web Design Project, I worked on an Outline. The Web Design Outline was developed to provide a foundation for a Hierarchy Tree Structure. The Outline would help design a Website information base for future and near-term missions. The Website would give in-depth information on Propulsion Systems and Interstellar Travel. The Lenz's Law Relative Motion Demonstrator is discussed in this volume by Russell Lee.

  8. Use of CE-SDS gel for characterization of monoclonal antibody hinge region clipping due to copper and high pH stress.

    PubMed

    Rustandi, Richard R; Wang, Yang

    2011-11-01

    CE-SDS gel technique has been used extensively in the field of monoclonal antibody (mAb) as a tool for product purity, stability, and characterization. It offers many advantages over the traditional labor-intensive SDS-PAGE slab gel technology with respect to speed and resolution. Monoclonal antibodies are known to cleave in the hinge region due to extreme pH, high temperature and in the presence of metals, especially copper. This cleavage will impact the shelf lifetime of mAb product hence its quality. CESDS gel method using Beckman PA800 with UV detection is used to characterize the effects of copper and other metals such as iron and zinc on mAb clipping. In addition, mAb integrity under high temperature and high pH stress conditions was also evaluated and the results clearly show that CE-SDS gel can distinguish clipping due to copper versus heat and/or high pH. The data presented illustrate the power of this simple CESDS gel technique in supporting the development of mAb from product quality and stability to the final product characterization. PMID:22145164

  9. 12 CFR 1010.105 - Cover page.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 8 2014-01-01 2014-01-01 false Cover page. 1010.105 Section 1010.105 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION LAND REGISTRATION (REGULATION J) Reporting Requirements § 1010.105 Cover page. The cover page of the Property Report shall be prepared in accordance with...

  10. 16 CFR 436.3 - Cover page.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cover page. 436.3 Section 436.3 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES DISCLOSURE REQUIREMENTS AND PROHIBITIONS CONCERNING FRANCHISING Contents of a Disclosure Document § 436.3 Cover page. Begin the disclosure document with a cover page, in the order and form...

  11. Parallel stitching of 2D materials

    DOE PAGESBeta

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  12. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-01

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits. PMID:26813882

  13. Baby universes in 2d quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar

    1993-06-01

    We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.

  14. Fluorescence based assessment of SDS induced hydrophobic collapse in globular proteins

    NASA Astrophysics Data System (ADS)

    Manjunath, S.; Makani, Venkata Krishna Kanth; Satyamoorthy, Kapaettu; Rao, Bola Sadashiva Satish; Bhat, Gopalkrishna; Kanth, Akriti Baby; Mahato, Krishna Kishore

    2016-03-01

    The molecular mechanism of interaction between SDS and proteins is not clearly understood so far. According to the current knowledge SDS is known to interact with the hydrophobic regions of the proteins. Tryptophan and tyrosine are hydrophobic and hydrophilic aromatic amino acids respectively, which are also known for their intrinsic fluorescence nature in proteins. By observing the autofluorescence of both these hydrophobic and hydrophilic amino acids upon SDS treatment, information about SDS-protein interactions could be obtained. In the present study we have recorded the autofluorescence spectra of five globular proteins [Bovine serum albumin (BSA), Human serum albumin (HSA), Ribonuclease A (RNase A), Lysozyme and Trypsin] by the sequential excitation from 260nm to 295nm at every 5nm intervals. The results obtained clearly indicated BSA and HSA undergone hydrophobic collapse around their tryptophan moieties due to the increased folding of their secondary and tertiary structures upon SDS treatment. Trypsin on the other hand showed complete unfolding upon treatment with SDS. Lysozyme and RNase A did not show any difference in their autofluorescence upon SDS treatment may be due to the stability and fluorophores composition in them. The above results obtained with specific UV excitations clearly shown the tertiary folding and ensembles of the secondary and tertiary structures upon SDS treatment is governed by their stability and bonds stabilizing the proteins.

  15. Structural and compositional changes in the salivary pellicle induced upon exposure to SDS and STP

    PubMed Central

    Ash, Anthony; Mulholland, Francis; Burnett, Gary R.; Wilde, Peter J.

    2014-01-01

    Sodium dodecyl sulphate (SDS) and sodium tripolyphosphate (STP) act to remove stained pellicle from dentition and loosen deposits on tooth surfaces that may become cariogenic over time. This study investigated how SDS and STP impact the salivary pellicle adsorbed onto hydroxyapatite and silica sensors using a dual polarisation interferometer and a quartz-crystal microbalance with dissipation. After the pellicle was exposed to SDS and STP the remaining pellicle, although weaker, due to the loss of material, became less dense but with a higher elastic component; suggesting that the viscous component of the pellicle was being removed. This would imply a structural transformation from a soft but dense structured pellicle, to a more diffuse pellicle. In addition, the majority of proteins displaced by both SDS and STP were identified as being acidic in nature; implying that the negatively charged groups of SDS and STP may be responsible for the displacement of the pellicle proteins observed. PMID:25397690

  16. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  17. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  18. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  19. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  20. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  1. Explicit 2-D Hydrodynamic FEM Program

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  2. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  3. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  4. 2dF mechanical engineering

    NASA Astrophysics Data System (ADS)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  5. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  6. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  7. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  8. TACO (2D AND 3D). Taco

    SciTech Connect

    Mason, W.E.

    1983-03-01

    A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.

  9. Tomosynthesis imaging with 2D scanning trajectories

    NASA Astrophysics Data System (ADS)

    Khare, Kedar; Claus, Bernhard E. H.; Eberhard, Jeffrey W.

    2011-03-01

    Tomosynthesis imaging in chest radiography provides volumetric information with the potential for improved diagnostic value when compared to the standard AP or LAT projections. In this paper we explore the image quality benefits of 2D scanning trajectories when coupled with advanced image reconstruction approaches. It is intuitively clear that 2D trajectories provide projection data that is more complete in terms of Radon space filling, when compared with conventional tomosynthesis using a linearly scanned source. Incorporating this additional information for obtaining improved image quality is, however, not a straightforward problem. The typical tomosynthesis reconstruction algorithms are based on direct inversion methods e.g. Filtered Backprojection (FBP) or iterative algorithms that are variants of the Algebraic Reconstruction Technique (ART). The FBP approach is fast and provides high frequency details in the image but at the same time introduces streaking artifacts degrading the image quality. The iterative methods can reduce the image artifacts by using image priors but suffer from a slow convergence rate, thereby producing images lacking high frequency details. In this paper we propose using a fast converging optimal gradient iterative scheme that has advantages of both the FBP and iterative methods in that it produces images with high frequency details while reducing the image artifacts. We show that using favorable 2D scanning trajectories along with the proposed reconstruction method has the advantage of providing improved depth information for structures such as the spine and potentially producing images with more isotropic resolution.

  10. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  11. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells. PMID:25602462

  12. Adsorption of SDS surfactant inside and around carbon nanotubes with DPD simulation

    NASA Astrophysics Data System (ADS)

    Vo, Minh; Papavassiliou, Dimitrios

    The inner diameter of a carbon nanotube (CNT) is generally from 1 to 20 nm, while its inner space could be filled by certain compounds. In our study, Dissipative Particle Dynamics (DPD) simulations were utilized to investigate the ability of sodium dodecyl sulfate (SDS) to adsorb inside a single-walled CNT. First of all, the DPD interaction parameters for SDS surfactants were validated by determining the CMC of surfactants from DPD calculation. The SDS micelle shape and size in water were also calculated. Water-CNT interactions were obtained from a prior study. When the SDS aqueous system reached equilibrium, an open-ended, hydrophobic CNT (a hollow cylinder in the simulation) was inserted into the solution. The diameter of the CNT varied from 1 to 5 nm. All simulations were run up to 2x106 time steps at room temperature. For the system of water and CNT, the radial and axial density profiles of water were computed and compared with published Molecular Dynamics results. In the presence of SDS, the distribution of water and SDS inside the CNT was found to be comparable to that in bulk solution after the system reached equilibrium. In addition, the diffusivity and residence time of water and SDS inside CNTs of different were calculated. This study would give insights into the dynamics and morphology of surfactants in nanoconfined structures.

  13. Automated SDS Depletion for Mass Spectrometry of Intact Membrane Proteins though Transmembrane Electrophoresis.

    PubMed

    Kachuk, Carolyn; Faulkner, Melissa; Liu, Fang; Doucette, Alan A

    2016-08-01

    Membrane proteins are underrepresented in proteome analysis platforms because of their hydrophobic character, contributing to decreased solubility. Sodium dodecyl sulfate is a favored denaturant in proteomic workflows, facilitating cell lysis and protein dissolution; however, SDS impedes MS detection and therefore must be removed prior to analysis. Although strategies exist for SDS removal, they provide low recovery, purity, or reproducibility. Here we present a simple automated device, termed transmembrane electrophoresis (TME), incorporating the principles of membrane filtration, but with an applied electric current to ensure near-complete (99.9%) removal of the surfactant, including protein-bound SDS. Intact proteins are recovered in solution phase in high yield (90-100%) within 1 h of operation. The strategy is applied to protein standards and proteome mixtures, including an enriched membrane fraction from E. coli, resulting in quality MS spectra free of SDS adducts. The TME platform is applicable to both bottom-up MS/MS as well as LC-ESI-MS analysis of intact proteins. SDS-depleted fractions reveal a similar number of protein identifications (285) compared wit a non-SDS control (280), being highly correlated in terms of protein spectral counts. This fully automated approach to SDS removal presents a viable tool for proteome sample processing ahead of MS analysis. Data are available via ProteomeXchange, identifier PXD003941. PMID:27376408

  14. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  15. Aqueous Microstructures of Pluronic L64/SDS System: NMR Self-Diffusion and Flow Behaviour

    NASA Astrophysics Data System (ADS)

    Coppola, L.; Youssry, M.; Nicotera, I.; Furia, E.

    2008-08-01

    The interaction between a self-assembling ethylene oxide-propylene oxide-ethylene oxide triblock copolymer (Pluronic L64) and an anionic surfactant, sodium dodecyl sulfate (SDS), was investigated by phase diagram determination, NMR self-diffusion and steady-shear rheology. Addition of SDS induces a breakdown of anisotropic liquid crystalline phases into isotropic solutions, which especially at higher concentrations are bicontinuous. At moderately high copolymer concentrations there is a transition from bicontinuous isotropic solutions to solutions of discrete micelles on addition of SDS.

  16. Mitigating DoS Attacks on the Paging Channel by Efficient Encoding in Page Messages

    NASA Astrophysics Data System (ADS)

    Cai, Liang; Maganis, Gabriel; Zang, Hui; Chen, Hao

    Paging is an important mechanism for network bandwidth efficiency and mobile terminal battery life. It has been widely adopted by mobile networks, such as cellular networks, WiMax, and Mobile IP. Due to certain mechanisms for achieving paging efficiency and the convergence of wireless voice and data networks, the paging channel is vulnerable to inexpensive DoS attacks. To mitigate these attacks, we propose to leverage the knowledge of the user population size, the slotted nature of the paging operation, and the quick paging mechanism to reduce the length of terminal identifiers. In the case of a CDMA2000 system, we can reduce each identifier from 34 bits down to 7 bits, effectively doubling the paging channel capacity. Moreover, our scheme incurs no paging latency, missed pages, or false pages. Using a simulator and data collected from a commercial cellular network, we demonstrate that our scheme doubles the cost for DoS attackers.

  17. Social Bookmarking Induced Active Page Ranking

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsubasa; Kitagawa, Hiroyuki; Watanabe, Keita

    Social bookmarking services have recently made it possible for us to register and share our own bookmarks on the web and are attracting attention. The services let us get structured data: (URL, Username, Timestamp, Tag Set). And these data represent user interest in web pages. The number of bookmarks is a barometer of web page value. Some web pages have many bookmarks, but most of those bookmarks may have been posted far in the past. Therefore, even if a web page has many bookmarks, their value is not guaranteed. If most of the bookmarks are very old, the page may be obsolete. In this paper, by focusing on the timestamp sequence of social bookmarkings on web pages, we model their activation levels representing current values. Further, we improve our previously proposed ranking method for web search by introducing the activation level concept. Finally, through experiments, we show effectiveness of the proposed ranking method.

  18. Realistic page-turning of electronic books

    NASA Astrophysics Data System (ADS)

    Fan, Chaoran; Li, Haisheng; Bai, Yannan

    2014-01-01

    The booming electronic books (e-books), as an extension to the paper book, are popular with readers. Recently, many efforts are put into the realistic page-turning simulation o f e-book to improve its reading experience. This paper presents a new 3D page-turning simulation approach, which employs piecewise time-dependent cylindrical surfaces to describe the turning page and constructs smooth transition method between time-dependent cylinders. The page-turning animation is produced by sequentially mapping the turning page into the cylinders with different radii and positions. Compared to the previous approaches, our method is able to imitate various effects efficiently and obtains more natural animation of turning page.

  19. Western Blotting using the Invitrogen NuPage Novex Bis Tris minigels.

    PubMed

    Penna, Aubin; Cahalan, Michael

    2007-01-01

    Western Blotting (or immunoblotting) is a standard laboratory procedure allowing investigators to verify the expression of a protein, determine the relative amount of the protein present in different samples, and analyze the results of co-immunoprecipitation experiments. In this method, a target protein is detected with a specific primary antibody in a given sample of tissue homogenate or extract. Protein separation according to molecular weight is achieved using denaturing SDS-PAGE. After transfer to a membrane, the target protein is probed with a specific primary antibody and detected by chemiluminescence. Since its first description, the western-blotting technique has undergone several improvements, including pre-cast gels and user-friendly equipment. In our laboratory, we have chosen to use the commercially available NuPAGE electrophoresis system from Invitrogen. It is an innovative neutral pH, discontinuous SDS-PAGE, pre-cast mini-gel system. This system presents several advantages over the traditional Laemmli technique including: i) a longer shelf life of the pre-cast gels ranging from 8 months to 1 year; ii) a broad separation range of molecular weights from 1 to 400 kDa depending of the type of gel used; and iii) greater versatility (range of acrylamide percentage, the type of gel, and the ionic composition of the running buffer). The procedure described in this video article utilizes the Bis-Tris discontinuous buffer system with 4-12% Bis-Tris gradient gels and MES running buffer, as an illustration of how to perform a western-blot using the Invitrogen NuPAGE electrophoresis system. In our laboratory, we have obtained good and reproducible results for various biochemical applications using this western-blotting method. PMID:18989435

  20. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  1. Interparticle Attraction in 2D Complex Plasmas

    NASA Astrophysics Data System (ADS)

    Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.

    2016-03-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  2. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  3. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  4. A scalable 2-D parallel sparse solver

    SciTech Connect

    Kothari, S.C.; Mitra, S.

    1995-12-01

    Scalability beyond a small number of processors, typically 32 or less, is known to be a problem for existing parallel general sparse (PGS) direct solvers. This paper presents a parallel general sparse PGS direct solver for general sparse linear systems on distributed memory machines. The algorithm is based on the well-known sequential sparse algorithm Y12M. To achieve efficient parallelization, a 2-D scattered decomposition of the sparse matrix is used. The proposed algorithm is more scalable than existing parallel sparse direct solvers. Its scalability is evaluated on a 256 processor nCUBE2s machine using Boeing/Harwell benchmark matrices.

  5. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  6. Evaluation of increased cesium loading on submerged demineralizer system (SDS) zeolite beds

    SciTech Connect

    Not Available

    1981-05-01

    A Submerged Demineralizer System (SDS) is being installed at the Three Mile Island Unit (TMI-2) Nuclear Power Station for decontamination of the Containment Building (CB) sump water and Reactor Coolant System (RCS) water. A Department of Energy (DOE) Task Force was assembled to evaluate the relative technical and financial benefits in storing, shipping, treating, and disposing of SDS zeolite liners, assuming that the liners will be loaded to a level higher than that (10,000 Ci/liner) originally planned by General Public Utilities (GPU). The DOE-SDS Task Force concludes that it is technically feasible to load the zeolite liners used in the SDS to levels up to 60,000 Ci of cesium per liner without additional preoperational testing. This would result in approximately ten such liners. The Task Force further concludes that these liners can be safely handled, stored, transported, and vitrified.

  7. Interfacial Surfactant Ordering in Thin Films of SDS-Encapsulated Single-Walled Carbon Nanotubes.

    PubMed

    Das, Sushanta K; Sengupta, Sanghamitra; Velarde, Luis

    2016-01-21

    The molecular self-assembly of surfactants on the surface of single-walled carbon nanotubes (SWCNT) is currently a common strategy for the tuning of nanotube properties and the stabilization of carbon nanotube dispersions. Here, we report direct measurements of the degree of interfacial ordering for sodium dodecyl sulfate (SDS) surfactants adsorbed on colloidal, single-chirality enriched, SWCNTs within a solid film and investigate the dependence of surface alkyl chain order on the surfactant concentration in the precursor solution. The degree of order for the SWCNT-bound SDS molecules, is probed by vibrational sum frequency generation (VSFG) spectroscopy. We find concrete evidence for the presence of highly ordered surface structures at sufficiently high SDS concentrations, attributed here to cylindrical-like micelle assemblies with the SWCNT at the core. As the SDS concentration decreases, the interfacial order is found to decrease as well, generating a more disordered or random adsorption of surfactants on the nanotube surfaces. PMID:26730991

  8. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  9. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  10. Photocurrent spectroscopy of 2D materials

    NASA Astrophysics Data System (ADS)

    Cobden, David

    Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.

  11. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  12. 2-D Modeling of the Variability of the Solar Interior for Climate Studies

    NASA Astrophysics Data System (ADS)

    Sofia, S.; Li, L. H.; Spada, F.; Ventura, P.

    2012-07-01

    To establish the possible influence of solar variability on climate, it is necessary to understand the luminosity changes induced by a variable dynamo magnetic field. To accomplish this, we have developed a 2D code of the structure and evolution of the solar interior (based on the 1D YREC code), that includes rotation, magnetic fields of arbitrary configuration, and turbulence, that can be run on very short time scales (down to 1 year), and that represents all global parameters (R, L, Teff) with a relative accuracy of 1 part per million, or better. This paper discusses the motivation for this work, the structure and the physical components of the code, and its application to interpret the results of the SODISM experiment on the PICARD satellite, and of the balloon-borne Solar Disk Sextant (SDS) experiment.

  13. Physicochemical perspectives (aggregation, structure and dynamics) of interaction between pluronic (L31) and surfactant (SDS).

    PubMed

    Prameela, G K S; Phani Kumar, B V N; Pan, A; Aswal, V K; Subramanian, J; Mandal, A B; Moulik, S P

    2015-11-11

    The influence of the water soluble non-ionic tri-block copolymer PEO-PPO-PEO [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] i.e., E2P16E2 (L31) on the microstructure and self-aggregation dynamics of the anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution was investigated using cloud point (CP), isothermal titration calorimetry (ITC), high resolution nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and small-angle neutron scattering (SANS) measurements. CP provided the thermodynamic information on the Gibbs free energy, enthalpy, entropy and heat capacity changes pertaining to the phase separation of the system at elevated temperature. The ITC and NMR self-diffusion measurements helped to understand the nature of the binding isotherms of SDS in the presence of L31 in terms of the formation of mixed aggregates and free SDS micelles in solution. EPR analysis provided the micro-viscosity of the spin probe 5-DSA in terms of rotational correlation time. The SANS study indicated the presence of prolate ellipsoidal mixed aggregates, whose size increased with the increasing addition of L31. At a large [L31], SANS also revealed the progressive decreasing size of the ellipsoidal mixed aggregates of SDS-L31 into nearly globular forms with the increasing SDS addition. Wrapping of the spherical SDS micelles by L31 was also corroborated from (13)C NMR and SANS measurements. PMID:26523917

  14. The Predictive Power of SIMION/SDS Simulation Software for Modeling Ion Mobility Spectrometry Instruments

    SciTech Connect

    Hanh Lai; Timothy R. McJunkin; Carla J. Miller; Jill R. Scott; Jose R. Almirall

    2008-09-01

    The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: 1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctly predict the ion drift times; 2) a drift gas composition study evaluates the accuracy in predicting the resolution; and 3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.

  15. The predictive power of SIMION/SDS simulation software for modeling ion mobility spectrometry instruments

    NASA Astrophysics Data System (ADS)

    Lai, Hanh; McJunkin, Timothy R.; Miller, Carla J.; Scott, Jill R.; Almirall, José R.

    2008-09-01

    The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOSFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene, 2,7-dinitrofluorene, and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: (1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctly predict the ion drift times; (2) a drift gas composition study evaluates the accuracy in predicting the resolution; (3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.

  16. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  17. Teacher Web Pages that Build Parent Partnerships.

    ERIC Educational Resources Information Center

    Johnson, Doug

    2000-01-01

    Discusses the importance of collaboration between teachers and parents to help support students and describes teacher-created Web pages that help simplify communication and planning. Explains Web page design that can include general class descriptions, unit outlines and timetables, unit and project information, and student progress reports. (LRW)

  18. Automated Title Page Cataloging: A Feasibility Study.

    ERIC Educational Resources Information Center

    Weibel, Stuart; And Others

    1989-01-01

    Describes the design of a prototype rule-based system for the automation of descriptive cataloging from title pages. The discussion covers the results of tests of the prototype, major impediments to automatic cataloging from title pages, and prospects for further progress. The rules implemented in the prototype are appended. (16 references)…

  19. Adding Sound and Video to Web Pages.

    ERIC Educational Resources Information Center

    Duval, Beverly K.; Main, Linda

    1997-01-01

    Explains how to incorporate sound and video into Web pages with special software and HTML tags. Topics include creating sound files; sound formats; video technology; video formats; referencing sound and video files in HTML pages; embedding sounds and videos; players, plug-ins, and viewers; sound and video files from the Web; and streaming. (LRW)

  20. Web Page Authoring Tools: Comparison and Trends.

    ERIC Educational Resources Information Center

    Craney, Linda

    Initially available from universities and individual enthusiasts, software tools to author World Wide Web pages are maturing into very feature-rich applications and are now offered by large corporations. These applications are enabling more companies to create and maintain pages themselves on the Web or on corporate Intranets. The market continues…

  1. Preventing radio-paging system tieup

    NASA Technical Reports Server (NTRS)

    Jasmin, J. P.

    1978-01-01

    Time-delay relay limits message time of emergency radio-paging system, thereby preventing inadvertent tieup. Relay is connected with telephone circuit and permits adjustable message time between 30 and 55 seconds. After that time interval, relay opens, making line free for another paging regardless of what previous caller did with his telephone.

  2. 40 CFR 1502.7 - Page limits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Page limits. 1502.7 Section 1502.7 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.7 Page limits. The text of final environmental impact statements (e.g., paragraphs (d) through (g) of §...

  3. An introduction to Turning the Pages.

    PubMed

    Kinally, Bridget; Stocking, Michael

    2007-06-01

    Turning the Pages, the award-winning interactive program developed by the British Library, provides access to unique medical resources held by the Wellcome Library, allowing visitors to 'turn' the pages virtually, zoom in on the high-quality digitized images and read (or listen to) notes explaining the beauty and significance of each text. PMID:17671916

  4. Minimal Guidelines for Authors of Web Pages.

    ERIC Educational Resources Information Center

    ADE Bulletin, 2002

    2002-01-01

    Presents guidelines that recommend the minimal reference information that should be provided on Web pages intended for use by students, teachers, and scholars in the modern languages. Suggests the inclusion of information about responsible parties, copyright declaration, privacy statements, and site information. Makes a note on Web page style. (SG)

  5. 40 CFR 1502.7 - Page limits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Page limits. 1502.7 Section 1502.7 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY ENVIRONMENTAL IMPACT STATEMENT § 1502.7 Page limits. The text of final environmental impact statements (e.g., paragraphs (d) through (g) of §...

  6. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  7. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  8. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  9. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  10. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  11. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  12. The mouse ruby-eye 2(d) (ru2(d) /Hps5(ru2-d) ) allele inhibits eumelanin but not pheomelanin synthesis.

    PubMed

    Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa

    2013-09-01

    The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. PMID:23672590

  13. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  14. Thermodynamic and structural investigation of the specific SDS binding of humicola insolens cutinase

    PubMed Central

    Kold, David; Dauter, Zbigniew; Laustsen, Anne K; Brzozowski, Andrzej M; Turkenburg, Johan P; Nielsen, Anders D; Koldsø, Heidi; Petersen, Evamaria; Schiøtt, Birgit; De Maria, Leonardo; Wilson, Keith S; Svendsen, Allan; Wimmer, Reinhard

    2014-01-01

    The interaction of lipolytic enzymes with anionic surfactants is of great interest with respect to industrially produced detergents. Here, we report the interaction of cutinase from the thermophilic fungus Humicola insolens with the anionic surfactant SDS, and show the enzyme specifically binds a single SDS molecule under nondenaturing concentrations. Protein interaction with SDS was investigated by NMR, ITC and molecular dynamics simulations. The NMR resonances of the protein were assigned, with large stretches of the protein molecule not showing any detectable resonances. SDS is shown to specifically interact with the loops surrounding the catalytic triad with medium affinity (Ka ≈ 105 M−1). The mode of binding is closely similar to that seen previously for binding of amphiphilic molecules and substrate analogues to cutinases, and hence SDS acts as a substrate mimic. In addition, the structure of the enzyme has been solved by X-ray crystallography in its apo form and after cocrystallization with diethyl p-nitrophenyl phosphate (DNPP) leading to a complex with monoethylphosphate (MEP) esterified to the catalytically active serine. The enzyme has the same fold as reported for other cutinases but, unexpectedly, esterification of the active site serine is accompanied by the ethylation of the active site histidine which flips out from its usual position in the triad. PMID:24832484

  15. Microstructure transformation of PDMS-E grafted gelatin polymers induced by SDS and SDBS.

    PubMed

    Xu, Jing; Li, Tian-Duo; Jiang, Qing-Wei; Qiao, Cong-De; Cheng, Jin-Yong

    2013-03-01

    Inorganic-organic hybrid materials with tunable chemical and physical properties were prepared from mono epoxy terminated polydimethylsiloxane (PDMS) macromonomer and gelatin for improving their flexibility and hydrophobicity. Sodium dodecyl sulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS) were used to enhance the compatibility of two polymers phases. Measurement of grafting density indicated that anionic surfactants played a crucial role in deciding the detailed microstructure of PDMS-E grafted gelatin (PGG) polymers in alkaline solution. The interaction between gelatin and SDS/SDBS was investigated by viscosity and SEM. Viscosity analysis showed a regular increase in SDS system and a steeper change in the case of SDBS. SEM micrographs displayed a series of structural transitions (spherical, spindle, irregular granular and spherical aggregates) with the increase of SDS concentration, but spindle and granular aggregates appeared alternately as varying SDBS concentrations. The results demonstrated that both the electrostatic and hydrophobic interactions between anionic surfactant and gelatin controlled the aggregate structure of gelatin-SDS/SDBS, which affected the compatibility between gelatin and PDMS. Thermal properties of PGG polymers had changed with the modification of polymer microstructure. The results above revealed that microstructure transformation of PGG polymers was determined by the compatibility of two polymers in anionic surfactant aqueous solution and the chemical nature of their monomers. PMID:23261558

  16. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  17. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  18. 2D Radiative Processes Near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Varnai, T.

    2012-01-01

    Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.

  19. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse. PMID:26988702

  20. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  1. Ion Transport in 2-D Graphene Nanochannels

    NASA Astrophysics Data System (ADS)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  2. Parallel map analysis on 2-D grids

    SciTech Connect

    Berry, M.; Comiskey, J.; Minser, K.

    1993-12-31

    In landscape ecology, computer modeling is used to assess habitat fragmentation and its ecological iMPLications. Specifically, maps (2-D grids) of habitat clusters must be analyzed to determine number, sizes and geometry of clusters. Models prior to this study relied upon sequential Fortran-77 programs which limited the sizes of maps and densities of clusters which could be analyzed. In this paper, we present more efficient computer models which can exploit recursion or parallelism. Significant improvements over the original Fortran-77 programs have been achieved using both recursive and nonrecursive C implementations on a variety of workstations such as the Sun Sparc 2, IBM RS/6000-350, and HP 9000-750. Parallel implementations on a 4096-processor MasPar MP-1 and a 32-processor CM-5 are also studied. Preliminary experiments suggest that speed improvements for the parallel model on the MasPar MP-1 (written in MPL) and on the CM-5 (written in C using CMMD) can be as much as 39 and 34 times faster, respectively, than the most efficient sequential C program on a Sun Sparc 2 for a 512 map. An important goal in this research effort is to produce a scalable map analysis algorithm for the identification and characterization of clusters for relatively large maps on massively-parallel computers.

  3. 2D Turbulence with Complicated Boundaries

    NASA Astrophysics Data System (ADS)

    Roullet, G.; McWilliams, J. C.

    2014-12-01

    We examine the consequences of lateral viscous boundary layers on the 2D turbulence that arises in domains with complicated boundaries (headlands, bays etc). The study is carried out numerically with LES. The numerics are carefully designed to ensure all global conservation laws, proper boundary conditions and a minimal range of dissipation scales. The turbulence dramatically differs from the classical bi-periodic case. Boundary layer separations lead to creation of many small vortices and act as a continuing energy source exciting the inverse cascade of energy throughout the domain. The detachments are very intermittent in time. In free decay, the final state depends on the effective numerical resolution: laminar with a single dominant vortex for low Re and turbulent with many vortices for large enough Re. After very long time, the turbulent end-state exhibits a striking tendency for the emergence of shielded vortices which then interact almost elastically. In the forced case, the boundary layers allow the turbulence to reach a statistical steady state without any artificial hypo-viscosity or other large-scale dissipation. Implications are discussed for the oceanic mesoscale and submesoscale turbulence.

  4. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  5. Competing coexisting phases in 2D water.

    PubMed

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  6. 2-D wavelet with position controlled resolution

    NASA Astrophysics Data System (ADS)

    Walczak, Andrzej; Puzio, Leszek

    2005-09-01

    Wavelet transformation localizes all irregularities in the scene. It is most effective in the case when intensities in the scene have no sharp details. It is the case often present in a medical imaging. To identify the shape one has to extract it from the scene as typical irregularity. When the scene does not contain sharp changes then common differential filters are not efficient tool for a shape extraction. The new 2-D wavelet for such task has been proposed. Described wavelet transform is axially symmetric and has varied scale in dependence on the distance from the centre of the wavelet symmetry. The analytical form of the wavelet has been presented as well as its application for details extraction in the scene. Most important feature of the wavelet transform is that it gives a multi-scale transformation, and if zoom is on the wavelet selectivity varies proportionally to the zoom step. As a result, the extracted shape does not change during zoom operation. What is more the wavelet selectivity can be fit to the local intensity gradient properly to obtain best extraction of the irregularities.

  7. Universal emergence of PageRank

    NASA Astrophysics Data System (ADS)

    Frahm, K. M.; Georgeot, B.; Shepelyansky, D. L.

    2011-11-01

    The PageRank algorithm enables us to rank the nodes of a network through a specific eigenvector of the Google matrix, using a damping parameter α ∈ ]0, 1[. Using extensive numerical simulations of large web networks, with a special accent on British University networks, we determine numerically and analytically the universal features of the PageRank vector at its emergence when α → 1. The whole network can be divided into a core part and a group of invariant subspaces. For α → 1, PageRank converges to a universal power-law distribution on the invariant subspaces whose size distribution also follows a universal power law. The convergence of PageRank at α → 1 is controlled by eigenvalues of the core part of the Google matrix, which are extremely close to unity, leading to large relaxation times as, for example, in spin glasses.

  8. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  9. Description Meta Tags in Public Home and Linked Pages.

    ERIC Educational Resources Information Center

    Craven, Timothy C.

    2001-01-01

    Random samples of 1,872 Web pages registered with Yahoo! And 1,638 pages reachable from Yahoo!-registered pages were analyzed for use of meta tags and specifically those containing descriptions. Results: 727 (38.8%) of the Yahoo!-registered pages and 442 (27%) of the other pages included descriptions in meta tages. Some descriptions greatly…

  10. AGU acts on NSF Page Charge Policy

    NASA Astrophysics Data System (ADS)

    Fast action by Headquarters alerted AGU members to a proposed change to the National Science Foundation's page charge policy that would weaken the ability of scientific societies to serve the scientific community.If adopted, NSF's new policy, announced in the Federal Register December 18, would remove the prohibition against allowing page charges to commercially produced journals. The proposal for the change was supposedly put forth to obtain a reaction from the scientific community.

  11. Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant

    SciTech Connect

    Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat; Wilkes, James O.

    2008-01-15

    Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, the bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)

  12. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  13. On 2D graphical representation of DNA sequence of nondegeneracy

    NASA Astrophysics Data System (ADS)

    Zhang, Yusen; Liao, Bo; Ding, Kequan

    2005-08-01

    Some two-dimensional (2D) graphical representations of DNA sequences have been given by Gates, Nandy, Leong and Mogenthaler, Randić, and Liao et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a nondegeneracy 2D graphical representation of DNA sequence, which is different from Randić's novel 2D representation and Liao's 2D representation. We also present the nondegeneracy forms corresponding to the representations of Gates, Nandy, Leong and Mogenthaler.

  14. Generates 2D Input for DYNA NIKE & TOPAZ

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  15. A Web Page Summarization for Mobile Phones

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takaaki; Nishikawa, Hitoshi; Imamura, Kenji; Kikui, Gen'ichiro; Okumur, Manabu

    Recently, web pages for mobile devices are widely spread on the Internet and a lot of people can access web pages through search engines by mobile devices as well as personal computers. A summary of a retrieved web page is important because the people judge whether or not the page would be relevant to their information need according to the summary. In particular, the summary must be not only compact but also grammatical and meaningful when the users retrieve information using a mobile phone with a small screen. Most search engines seem to produce a snippet based on the keyword-in-context (KWIC) method. However, this simple method could not generate a refined summary suitable for mobile phones because of low grammaticality and content overlap with the page title. We propose a more suitable method to generate a snippet for mobile devices using sentence extraction and sentence compression methods. First, sentences are biased based on whether they include the query terms from the users or words that are relevant to the queries, as well as whether they do not overlap with the page title based on maximal marginal relevance (MMR). Second, the selected sentences are compressed based on their phrase coverage, which is measured by the scores of words, and their phrase connection probability measured based on the language model, according to the dependency structure converted from the sentence. The experimental results reveal the proposed method outperformed the KWIC method in terms of relevance judgment, grammaticality, non-redundancy and content coverage.

  16. 2d PDE Linear Symmetric Matrix Solver

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  17. 2d PDE Linear Asymmetric Matrix Solver

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  18. Ultrasonic 2D matrix PVDF transducer

    NASA Astrophysics Data System (ADS)

    Ptchelintsev, A.; Maev, R. Gr.

    2000-05-01

    During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.

  19. Preparation of silica aerogels using CTAB/SDS as template and their efficient adsorption

    NASA Astrophysics Data System (ADS)

    Wa, Li; Fengyun, Li; Fanlu, Zhuo; Mengjing, Cao; Qiang, Cai; Jue, Huang; Weijun, Zhang; Mingwei, Mu

    2015-10-01

    Silica aerogels have been successfully synthesized using cationic cetyltrimethylammonium bromide (CTAB) and anionic sodium dodecyl sulfate (SDS) as template. This study provides a novel approach to synthesize silica aerogels. The molar ratio of surfactant mixture was CTAB/SDS = 1.00. The obtained silica aerogels exhibit very low apparent density (0.044 g cm-3) and high specific surface area (856 m2 g-1). Surfactant packing parameter theory is used to explain the possible formation mechanism of the silica aerogels using mixed surfactant template. In addition, the adsorption capacity of Rhodamine B on the as-synthesized silica aerogels is as higher as that on the commercial silica aerogels.

  20. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  1. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  2. Microfluidic device having an immobilized pH gradient and PAGE gels for protein separation and analysis

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Singh, Anup K.; Wang, Ying-Chih

    2012-12-11

    Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.

  3. Microfluidic device having an immobilized pH gradient and page gels for protein separation and analysis

    DOEpatents

    Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih

    2014-05-20

    Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.

  4. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  5. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  6. Microcalorimetric and SAXS determination of PEO-SDS interactions: the effect of cosolutes formed by ions.

    PubMed

    Barbosa, Aparecida Mageste; Santos, Igor José Boggione; Ferreira, Guilherme Max Dias; da Silva, Maria do Carmo Hespanhol; Teixeira, Alvaro Vianna Novaes de Carvalho; da Silva, Luis Henrique Mendes

    2010-09-23

    The effect of different ionic cosolutes (NaCl, Na(2)SO(4), Li(2)SO(4), NaSCN, Na(2)[Fe(CN)(5)NO], and Na(3)[Co(NO)(6)]) on the interaction between sodium dodecyl sulfate (SDS) and poly(ethylene oxide) (PEO) was examined by small-angle X-ray scattering (SAXS) and isothermal titration calorimetric techniques. The critical aggregation concentration values (cac), the saturation concentration (C(2)), the integral enthalpy change for aggregate formation (ΔH(agg)(int)) and the standard free energy change of micelle adsorption on the macromolecule chain (ΔΔG(agg)) were derived from the calorimetric titration curves. In the presence of 1.00 mmol L(-1) cosolute, no changes in the parameters were observed when compared with those obtained for SDS-PEO interactions in pure water. For NaCl, Na(2)SO(4), Li(2)SO(4), and NaSCN at 10.0 and 100 mmol L(-1), the cosolute presence lowered cac, increased C(2), and the PEO-SDS aggregate became more stable. In the presence of Na(2)[Fe(CN)(5)NO], the calorimetric titration curves changed drastically, showing a possible reduction in the PEO-SDS degree of interaction, possibility disrupting the formed nanostructure; however, the SAXS data confirmed, independent of the small energy observed, the presence of aggregates adsorbed on the polymer chain. PMID:20806942

  7. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Marcolongo, Juan P.; Mirenda, Martin

    2011-01-01

    An undergraduate laboratory experiment is presented that allows a thermodynamic characterization of micelle formation of sodium dodecyl sulfate (SDS) in aqueous solutions. The critical micelle concentration (CMC) and the degree of micelle ionization (alpha) are obtained at different temperatures by conductimetry. The molar standard free energy…

  8. A Modified SDS-Based DNA Extraction Method for High Quality Environmental DNA from Seafloor Environments

    PubMed Central

    Natarajan, Vengadesh Perumal; Zhang, Xinxu; Morono, Yuki; Inagaki, Fumio; Wang, Fengping

    2016-01-01

    Recovering high quality genomic DNA from environmental samples is a crucial primary step to understand the genetic, metabolic, and evolutionary characteristics of microbial communities through molecular ecological approaches. However, it is often challenging because of the difficulty of effective cell lysis without fragmenting the genomic DNA. This work aims to improve the previous SDS-based DNA extraction methods for high-biomass seafloor samples, such as pelagic sediments and metal sulfide chimney, to obtain high quality and high molecular weight of the genomic DNA applicable for the subsequent molecular ecological analyses. In this regard, we standardized a modified SDS-based DNA extraction method (M-SDS), and its performance was then compared to those extracted by a recently developed hot-alkaline DNA extraction method (HA) and a commercial DNA extraction kit. Consequently, the M-SDS method resulted in higher DNA yield and cell lysis efficiency, lower DNA shearing, and higher diversity scores than other two methods, providing a comprehensive DNA assemblage of the microbial community on the seafloor depositional environment. PMID:27446026

  9. Congruency between Occupational Daydreams and Self Directed Search (SDS) Scores among College Students

    ERIC Educational Resources Information Center

    Miller, Mark J.; Springer, Thomas P.; Tobacyk, Jerome; Wells, Don

    2004-01-01

    In this study, the relationship of expressed occupational daydreams and scores on the Self-Directed Search (SDS) were examined. Results were consistent with Holland's theory of careers. Implications for career counselors are discussed. Students were asked to provide specific biographical data (i. e., age, gender, race) and to write down their…

  10. Reversible transition between SDS@2β-CD microtubes and vesicles triggered by temperature.

    PubMed

    Zhou, Chengcheng; Cheng, Xinhao; Yan, Yun; Wang, Jide; Huang, Jianbin

    2014-04-01

    Switching between association and dissociation is the well-known strategy for constructing responsive materials based on the host-guest complexes of cyclodextrins (CDs). In this work, we report that temperature may also trigger self-assembly transition in the supramolecular system composed of sodium dodecyl sulfate (SDS) and β-cyclodextrin (β-CD) at a molar ratio of 1:2. We reported previously that, at this ratio, SDS and β-CD form a channel-type SDS@2β-CD supramolecular unit, which further self-assembles into non-amphiphilic vesicles and microtubes driven by hydrogen bonding. Here, we report that the vesicles and microtubes can be reversibly switched between each other upon decreasing and increasing temperature. Control experiments in heavy water suggest that water molecules play a dominating role in the hydrogen bonding between SDS@2β-CD supramolecular units at lower concentration and higher temperature. Under opposite conditions, the hydrogen bonding between CDs is dominating. Therefore, for the 5% system, we observed a vesicle to microtube transition with a decreasing temperature, whereas for the 10% system, we observed the reverse process. Both processes are reversible. This is not only an example of temperature-triggered responsiveness in non-amphiphilic self-assemblies but also a new mode of responsiveness for the host-guest inclusion systems based on CDs. This temperature-responsive process is anticipated to shed light on the design and development of novel advanced materials. PMID:24601651

  11. Soybean SDS in South Africa is caused by Fusarium brasiliense and a novel undescribed Fusarium sp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean sudden death syndrome (SDS) was detected in South Africa for the first time during pathogen surveys conducted in 2013-2014. The primary objective of this study was to characterize the 16 slow-growing Fusarium strains that were isolated from the roots of symptomatic plants. Molecular phylogen...

  12. A CRITICAL EXAMINATION OF THE SODIUM DODECYL SULFATE (SDS) SEDIMENTATION TEST FOR WHEAT MEALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sedimentation tests have long been used to characterize wheat flours and meals with the aim of predicting processing and end-product qualities. However, the use of the sodium dodecyl sulfate (SDS) sedimentation test AACC International Approved Method 56-70 for durum wheat has not been characterized...

  13. Using Two Different Self-Directed Search (SDS) Interpretive Materials: Implications for Career Assessment

    ERIC Educational Resources Information Center

    Dozier, V. Casey; Sampson, James P.; Reardon, Robert C.

    2013-01-01

    John Holland's Self-Directed Search (SDS) is a career assessment that consists of several booklets designed to be self-scored and self-administered. It simulates what a practitioner and an individual might do together in a career counseling session (e.g., review preferred activities and occupations; review competencies, abilities and possible…

  14. A Modified SDS-Based DNA Extraction Method for High Quality Environmental DNA from Seafloor Environments.

    PubMed

    Natarajan, Vengadesh Perumal; Zhang, Xinxu; Morono, Yuki; Inagaki, Fumio; Wang, Fengping

    2016-01-01

    Recovering high quality genomic DNA from environmental samples is a crucial primary step to understand the genetic, metabolic, and evolutionary characteristics of microbial communities through molecular ecological approaches. However, it is often challenging because of the difficulty of effective cell lysis without fragmenting the genomic DNA. This work aims to improve the previous SDS-based DNA extraction methods for high-biomass seafloor samples, such as pelagic sediments and metal sulfide chimney, to obtain high quality and high molecular weight of the genomic DNA applicable for the subsequent molecular ecological analyses. In this regard, we standardized a modified SDS-based DNA extraction method (M-SDS), and its performance was then compared to those extracted by a recently developed hot-alkaline DNA extraction method (HA) and a commercial DNA extraction kit. Consequently, the M-SDS method resulted in higher DNA yield and cell lysis efficiency, lower DNA shearing, and higher diversity scores than other two methods, providing a comprehensive DNA assemblage of the microbial community on the seafloor depositional environment. PMID:27446026

  15. Evaluation of a combinatorial approach to prion inactivation using an oxidizing agent, SDS, and proteinase K

    PubMed Central

    2013-01-01

    Background Prions demonstrate an unusual resistance to methods effective at inactivating conventional microorganisms. This has resulted in a very tangible and difficult infection control challenge to the medical and veterinary communities, as well as animal agriculture and related industries. Currently accepted practices of harsh chemical treatments such as prolonged exposure to sodium hydroxide or sodium hypochlorite, or autoclaving are not suitable in many situations. Less caustic and more readily applicable treatments to contaminated environments are therefore desirable. We recently demonstrated that exposure of the RML scrapie agent to a commercial product containing sodium percarbonate (SPC-P) with or without sodium dodecyl sulfate (SDS) rendered PrPSc sensitive to proteinase K (PK), but did not eliminate infectivity. The current study was designed to evaluate the efficacy of a combinatorial approach to inactivating prions by exposing RML-positive brain homogenate to SPC-P and SDS followed by PK. Treated samples were evaluated for PrPSc-immunoreactivity by western blot, and residual infectivity by mouse bioassay. Results Treatment of infected brain homogenate with SPC-P and SDS followed by PK exposure resulted in a 4–5 log10 reduction in infectivity when bioassayed in tga20 mice. Conclusions This study demonstrates that exposure of the RML scrapie agent to SPC-P and SDS followed by PK markedly reduces, but does not eliminate infectivity. The results of this study encourage further investigation into whether consecutive or concomitant exposure to sodium percarbonate, SDS, and a protease may serve as a viable and non-caustic option for prion inactivation. PMID:23886483

  16. The mediating role of facebook fan pages.

    PubMed

    Chih, Wen-Hai; Hsu, Li-Chun; Wang, Kai-Yu; Lin, Kuan-Yu

    2014-01-01

    Using the dual mediation hypothesis, this study investigates the role of interestingness (the power of attracting or holding one's attention) attitude towards the news, in the formation of Facebook Fan Page users' electronic word-of-mouth intentions. A total of 599 Facebook fan page users in Taiwan were recruited and structural equation modeling (SEM) was used to test the research hypotheses. The results show that both perceived news entertainment and informativeness positively influence interestingness attitude towards the news. Interestingness attitude towards the news subsequently influences hedonism and utilitarianism attitudes towards the Fan Page, which then influence eWOM intentions. Interestingness attitude towards the news plays a more important role than hedonism and utilitarianism attitudes in generating electronic word-of-mouth intentions. Based on the findings, the implications and future research suggestions are provided. PMID:24875695

  17. European user trial of paging by satellite

    NASA Technical Reports Server (NTRS)

    Fudge, R. E.; Fenton, C. J.

    1990-01-01

    British Telecom conceived the idea of adapting their existing paging service, together with the use of existing terrestrial pagers, to yield a one way data (i.e., paging) satellite service to mobiles. The user trial of paging by satellites was successful. It demonstrated that services could be provided over a wide geographical area to low priced terminals. Many lessons were learned in unexpected areas. These include the need for extensive liaison with all users involved, especially the drivers, to ensure they understood the potential benefits. There was a significant desire for a return acknowledgement channel or even a return data channel. Above all there is a need to ensure that the equipment can be taken across European borders and legitimately used in all European countries. The next step in a marketing assessment would be to consider the impact of two way data messaging such as INMARSAT-C.

  18. Differential CYP 2D6 Metabolism Alters Primaquine Pharmacokinetics

    PubMed Central

    Potter, Brittney M. J.; Xie, Lisa H.; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T.; Bandara Herath, H. M. T.; Dhammika Nanayakkara, N. P.; Tekwani, Babu L.; Walker, Larry A.; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.

    2015-01-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity. PMID:25645856

  19. 2D to 3D to 2D Dimensionality Crossovers in Thin BSCCO Films

    NASA Astrophysics Data System (ADS)

    Williams, Gary A.

    2003-03-01

    With increasing temperature the superfluid fraction in very thin BSCCO films undergoes a series of dimensionality crossovers. At low temperatures the strong anisotropy causes the thermal excitations to be 2D pancake-antipancake pairs in uncoupled layers. At higher temperatures where the c-axis correlation length becomes larger than a layer there is a crossover to 3D vortex loops. These are initially elliptical, but as the 3D Tc is approached they become more circular as the anisotropy scales away, as modeled by Shenoy and Chattopadhyay [1]. Close to Tc when the correlation length becomes comparable to the film thickness there is a further crossover to a 2D Kosterlitz-Thouless transition, with a drop of the superfluid fraction to zero at T_KT which can be of the order of 1 K below T_c. Good agreement with this model is found for experiments on thin BSCCO 2212 films [2]. 1. S. R. Shenoy and B. Chattopadhyay, Phys. Rev. B 51, 9129 (1995). 2. K. Osborn et al., cond-mat/0204417.

  20. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  1. SPAX - PAX with Super-Pages

    NASA Astrophysics Data System (ADS)

    Bößwetter, Daniel

    Much has been written about the pros and cons of column-orientation as a means to speed up read-mostly analytic workloads in relational databases. In this paper we try to dissect the primitive mechanisms of a database that help express the coherence of tuples and present a novel way of organizing relational data in order to exploit the advantages of both, the row-oriented and the column-oriented world. As we go, we break with yet another bad habit of databases, namely the equal granularity of reads and writes which leads us to the introduction of consecutive clusters of disk pages called super-pages.

  2. Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics

    PubMed Central

    Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan

    2015-01-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069

  3. A Geometric Boolean Library for 2D Objects

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  4. A Geometric Boolean Library for 2D Objects

    SciTech Connect

    McBride, Corey L.; Yarberry, Victor; Jorgensen, Craig

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various file formats, are also provided in the library.

  5. Using Database-Driven Web Pages for Your Courses.

    ERIC Educational Resources Information Center

    Sullivan, Peter

    1999-01-01

    Describes database-driven Web pages that dynamically display different information each time the page is accessed in response to the user's needs. Highlights include information management; online assignments; grade tracking; updating Web pages; creating database-driven Web pages; and examples of how they have been used for a high school physics…

  6. 24 CFR 1710.105 - Cover page.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Cover page. 1710.105 Section 1710.105 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND...

  7. Turning the Page with Preconference Workshops

    ERIC Educational Resources Information Center

    Knowledge Quest, 2011

    2011-01-01

    For those who are experiencing a lack of creative inspiration within their school library program but are ready to "turn a page" in their career or school library program, they may head to Minneapolis to attend one of the many great preconference workshops. This article presents and describes preconference workshops design to rid librarians of the…

  8. Reconfigurable Full-Page Braille Displays

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas

    1994-01-01

    Electrically actuated braille display cells of proposed type arrayed together to form full-page braille displays. Like other braille display cells, these provide changeable patterns of bumps driven by digitally recorded text stored on magnetic tapes or in solid-state electronic memories. Proposed cells contain electrorheological fluid. Viscosity of such fluid increases in strong electrostatic field.

  9. Thomas Jefferson, Page Design, and Desktop Publishing.

    ERIC Educational Resources Information Center

    Hartley, James

    1991-01-01

    Discussion of page design for desktop publishing focuses on the importance of functional issues as opposed to aesthetic issues, and criticizes a previous article that stressed aesthetic issues. Topics discussed include balance, consistency in text structure, and how differences in layout affect the clarity of "The Declaration of Independence."…

  10. Policy Analysis of the Greenhouse Effect (PAGE)

    EPA Science Inventory

    PAGE09 is a spreadsheet probabilistic model written in Microsoft Office Excel. The model calculates regional and global impacts of climate change, and social costs of different greenhouse gases. It also calculates the costs of abatement and adaptation. It is an Integrated Assessm...

  11. Adding Graphics to Your WWW Page.

    ERIC Educational Resources Information Center

    Descy, Don E.

    1995-01-01

    Explains how to retrieve graphics that are available on the World Wide Web and add them to a Web page using a word processor that can save documents in an ASCII (American Standard Code Information Interchange) text format and a new version of Netscape. A list of various, unrelated Internet resources is also included. (LRW)

  12. Women's Page Editors: Self-Perceived Status.

    ERIC Educational Resources Information Center

    Chang, Won; And Others

    The focal points of this study are the role perceptions and the environments of women's page editors from daily and weekly newspapers across the United States. In the role perception areas, equal rights, discrimination, and the role of women in journalism are examined. Salaries, education, college major and minor, and years in the profession are…

  13. Efficient Web Change Monitoring with Page Digest

    SciTech Connect

    Buttler, D J; Rocco, D; Liu, L

    2004-02-20

    The Internet and the World Wide Web have enabled a publishing explosion of useful online information, which has produced the unfortunate side effect of information overload: it is increasingly difficult for individuals to keep abreast of fresh information. In this paper we describe an approach for building a system for efficiently monitoring changes to Web documents. This paper has three main contributions. First, we present a coherent framework that captures different characteristics of Web documents. The system uses the Page Digest encoding to provide a comprehensive monitoring system for content, structure, and other interesting properties of Web documents. Second, the Page Digest encoding enables improved performance for individual page monitors through mechanisms such as short-circuit evaluation, linear time algorithms for document and structure similarity, and data size reduction. Finally, we develop a collection of sentinel grouping techniques based on the Page Digest encoding to reduce redundant processing in large-scale monitoring systems by grouping similar monitoring requests together. We examine how effective these techniques are over a wide range of parameters and have seen an order of magnitude speed up over existing Web-based information monitoring systems.

  14. 24 CFR 1710.105 - Cover page.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Cover page. 1710.105 Section 1710.105 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued... DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION Reporting Requirements §...

  15. 24 CFR 1710.105 - Cover page.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Cover page. 1710.105 Section 1710.105 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued... DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION Reporting Requirements §...

  16. What's Not Funny about the Funny Pages?

    ERIC Educational Resources Information Center

    Lum, Lydia

    2008-01-01

    As a kid, Darrin Bell devoured newspaper comic strips. So it was disappointing whenever editors refused years later to add his comic strip, "Candorville," to their funny pages as soon as they saw that his lead characters were minorities. The editors would say they already carried a so-called Black strip. It is difficult for cartoonists like Bell…

  17. AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode

    SciTech Connect

    Toomey, Aoife

    2005-01-06

    This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.

  18. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    NASA Astrophysics Data System (ADS)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  19. Functional characterization of CYP2D6 enhancer polymorphisms

    PubMed Central

    Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun

    2015-01-01

    CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333

  20. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  1. Variation of the Diameter of the Sun as Measured by the Solar Disk Sextant (SDS)

    NASA Astrophysics Data System (ADS)

    Girard, Terrence; Sofia, S.; Sofia, U. J.; Twigg, L. W.; Heaps, W.; Thuillier, G.

    2014-01-01

    The balloon-borne Solar Disk Sextant (SDS) experiment has measured the angular size of the Sun on seven occasions spanning the years 1992 to 2011. The solar half-diameter -- observed in a 100-nm wide passband centered at 615 nm -- is found to vary over that period by up to 200 mas, while the typical estimated uncertainty of each measure is 20 mas. The diameter variation is not in phase with the solar activity cycle; thus, the measured diameter variation cannot be explained as an observational artifact of surface activity. Other possible instrument-related explanations for the observed variation are considered and found unlikely, leading us to conclude that the variation is real. The SDS and its results are presented here, including the analysis procedure necessary to calibrate the instrument and allow comparison of diameter measures across decades.

  2. Variation of the diameter of the Sun as measured by the Solar Disk Sextant (SDS)

    NASA Astrophysics Data System (ADS)

    Sofia, S.; Girard, T. M.; Sofia, U. J.; Twigg, L.; Heaps, W.; Thuillier, G.

    2013-12-01

    The balloon-borne Solar Disk Sextant (SDS) experiment has measured the angular size of the Sun on seven occasions spanning the years 1992 to 2011. The solar half-diameter - observed in a 100 nm wide passband centred at 615 nm - is found to vary over that period by up to 200 mas, while the typical estimated uncertainty of each measure is 20 mas. The diameter variation is not in phase with the solar activity cycle; thus, the measured diameter variation cannot be explained as an observational artefact of surface activity. Other possible instrument-related explanations for the observed variation are considered but found unlikely, leading us to conclude that the variation is real. The SDS is described here in detail, as is the complete analysis procedure necessary to calibrate the instrument and allow comparison of diameter measures across decades.

  3. Enhanced removal of nickel(II) ions from aqueous solutions by SDS-functionalized graphene oxide

    PubMed Central

    Salihi, Elif Çalışkan; Wang, Jiabin; Coleman, Daniel J. L.; Šiller, Lidija

    2016-01-01

    ABSTRACT In this paper, a one-pot and easy-to-handle method at room temperature without additional chemicals for the modification of graphene oxide (GO) with surfactant is found. Removal of nickel (II) ions from aqueous solutions by GO and surfactant (sodium dodecyl sulphate) modified graphene oxide (SDS-GO) was studied spectrophotometrically at room temperature as a function of time, initial concentration and pH. Adsorption capacity of the adsorbent was increased dramatically (from 20.19 to 55.16 mg/g found by Langmuir model) due to the functionalization of the surface by SDS. The driving force of the adsorption of Ni(II) ions is electrostatic attraction and Ni(II) ions adsorbed on the GO surface chemically besides ion exchange. PMID:27365545

  4. Comparison of the unavailability using FT model and Markov model of SDS1

    SciTech Connect

    Cho, S.; Jiang, J.

    2006-07-01

    In Candu nuclear power plants, the unavailability of the shutdown system number 1 (SDS1) is not only a function of the component failure rate, but also the test interval, the test duration, and the channel configuration. In classical fault tree methods, the effect of the configuration change and the test duration is usually ignored. To analyze their effects on the unavailability, a dynamic fault tree model and a Markov process model of the shutdown system number 1 have been developed and quantified using the high neutron power trip channel data in this paper. It is shown that the Markov process model of the SDS1 trip channel provides the most conservative results, while the dynamic fault tree model offers the least conservative one. The unavailability decreases as the test frequency and the test duration increases in both models. (authors)

  5. Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    PubMed Central

    Li, Li; Molin, Soeren; Yang, Liang; Ndoni, Sokol

    2013-01-01

    Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS) was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h) and significantly reduce biofilm formation in long-term (1 week) by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability. PMID:23377015

  6. Relative free energy of binding between antimicrobial peptides and SDS or DPC micelles.

    PubMed

    Sayyed-Ahmad, Abdallah; Khandelia, Himanshu; Kaznessis, Yiannis N

    2009-09-01

    We present relative binding free energy calculations for six antimicrobial peptide-micelle systems, three peptides interacting with two types of micelles. The peptides are the scorpion derived antimicrobial peptide (AMP), IsCT and two of its analogues. The micelles are dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles. The interfacial electrostatic properties of DPC and SDS micelles are assumed to be similar to those of zwitterionic mammalian and anionic bacterial membrane interfaces, respectively. We test the hypothesis that the binding strength between peptides and the anionic micelle SDS can provide information on peptide antimicrobial activity, since it is widely accepted that AMPs function by binding to and disrupting the predominantly anionic lipid bilayer of the bacterial cytoplasmic membrane. We also test the hypothesis that the binding strength between peptides and the zwitterionic micelle DPC can provide information on peptide haemolytic activities, since it is accepted that they also bind to and disrupt the zwitterionic membrane of mammalian cells. Equilibrium structures of the peptides, micelles and peptide-micelle complexes are obtained from more than 300 ns of molecular dynamics simulations. A thermodynamic cycle is introduced to compute the binding free energy from electrostatic, non-electrostatic and entropic contributions. We find relative binding free energy strengths between peptides and SDS to correlate with the experimentally measured rankings for peptide antimicrobial activities, and relative free energy binding strengths between peptides and DPC to correlate with the observed rankings for peptide haemolytic toxicities. These findings point to the importance of peptide-membrane binding strength for antimicrobial activity and haemolytic activity. PMID:21113423

  7. An R-phycoerythrin stable in SDS solution at 37° C

    NASA Astrophysics Data System (ADS)

    Sun, Li; Wang, Shumei; Gong, Xieqin; Chen, Lixue

    2003-07-01

    The spectral properties and the subunit components of an R-phycoerythrin that was stable at 37°C in phosphate buffer (pH 7.0) with sodium dodecyl sulfate (SDS) were investigated. The R-phycoerythrin was obtained from the phycobilisome that was prepared from the marine red algae Polysiphonia urceolata by step-gradient sucrose centrifugation. By Sephadex G-150 column chromatography and polyacrylamide gel electrophoresis the R-phycoerythrin was prepared from the phycobilisome disassociatin that was incubated at 37íC for 6 hr in 0.05M phosphate buffer (pH 7.0) containing 5% (w/v) SDS, 2% (w/v) mercaptoethanol and 10% (v/v) glycerol. The absorption spectrum of the R-phycoerythrin in 0.05M phosphate buffer (pH 7.0) showed that it has three absorption peaks at 498 nm, 537 nm and 566 nm, respectively; and therefore, it belongs to three-peak R-phycoerythrin. At room temperature, its fluorescence emission spectrum showed that the emission peak occurs at 578nm. The component analysis by SDS-polyacrylamide gel electrophoresis showed that the R-phycoerythrin is composed of 17.8 KD, 21 KD and 31KD of three colored polypeptides. Linker peptides existed in the R-phycoerythrin may account for its stability in SDS Solution at 37°C. The stable feature, together with its high fluorescence emission efficiency, like most other phycobiliproteins, may let the obtained R-phycoerythrin be a promising agent of fluorescence label for diagnostic uses of various purposes.

  8. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  9. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  10. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  11. Unitary quantum lattice gas representation of 2D quantum turbulence

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Vahala, George; Vahala, Linda; Soe, Min

    2011-05-01

    Quantum vortex structures and energy cascades are examined for two dimensional quantum turbulence (2D QT) using a special unitary evolution algorithm. The qubit lattice gas (QLG) algorithm, is employed to simulate the weakly-coupled Bose-Einstein condensate (BEC) governed by the Gross-Pitaevskii (GP) equation. A parameter regime is uncovered in which, as in 3D QT, there is a very short Poincare recurrence time. This short recurrence time is destroyed as the nonlinear interaction energy is increased. Energy cascades for 2D QT are considered to examine whether 2D QT exhibits the inverse cascades of 2D classical turbulence. In the parameter regime considered, the spectra analysis reveals no such dual cascades---dual cascades being a hallmark of 2D classical turbulence.

  12. CYP2D6 polymorphism in patients with eating disorders.

    PubMed

    Peñas-Lledó, E M; Dorado, P; Agüera, Z; Gratacós, M; Estivill, X; Fernández-Aranda, F; Llerena, A

    2012-04-01

    CYP2D6 polymorphism is associated with variability in drug response, endogenous metabolism (that is, serotonin), personality, neurocognition and psychopathology. The relationship between CYP2D6 genetic polymorphism and the risk of eating disorders (ED) was analyzed in 267 patients with ED and in 285 controls. A difference in the CYP2D6 active allele distribution was found between these groups. Women carrying more than two active genes (ultrarapid metabolizers) (7.5 vs 4.6%) or two (67 vs 58.9%) active genes were more frequent among patients with ED, whereas those with one (20.6 vs 30.2%) or zero active genes (4.9 vs 6.3%) were more frequent among controls (P<0.05). Although further research is needed, present findings suggest an association between CYP2D6 and ED. CYP2D6 allele distribution in patients with ED seems related to increased enzyme activity. PMID:20877302

  13. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices. PMID:27471306

  14. Mixed layers of β-lactoglobulin and SDS at air-water interfaces with tunable intermolecular interactions.

    PubMed

    Engelhardt, Kathrin; Weichsel, Ulrike; Kraft, Elena; Segets, Doris; Peukert, Wolfgang; Braunschweig, Björn

    2014-04-17

    Mixtures of β-lactoglobulin (BLG) and sodium dodecyl sulfate (SDS) were studied at pH 3.8 and 6.7 under equilibrium conditions. At these pH conditions, BLG carries either a positive or a negative net charge, respectively, which enables tunable electrostatic interactions between anionic SDS surfactants and BLG proteins. For pH 3.8, vibrational sum-frequency generation (SFG) and ellipsometry indicate strong BLG-SDS complex formation at air-water interfaces that is caused by attractive electrostatic interactions. The latter complexes are already formed in the bulk solution which was confirmed by a thermodynamic study of BLG-SDS mixtures using isothermal titration calorimetry (ITC). For acidic conditions we determine from our ITC data an exothermal binding enthalpy of -40 kJ mol(-1). Increasing SDS/BLG molar ratios above 10 leads to a surface excess of SDS and thus to a charge reversal from a positive net charge with BLG as the dominating surface adsorbed species to a negatively charged layer with SDS as the dominating surface species. The latter is evidenced by a pronounced minimum in SFG intensities that is also accompanied by a phase change of O-H stretching bands due to a reorientation of H2O within the local electric field. This phase change which occurs at SDS/BLG molar ratio between 1 and 10 causes a polarity change in SFG intensities from BLG aromatic C-H stretching vibrations. Conclusions from SFG spectra are corroborated by ellipsometry which shows a dramatic increase in layer thicknesses at molar ratios where a charge reversal occurs. The formation of interfacial multilayers comprising SDS-BLG complexes is, thus, caused by cancellation of electrostatic interactions which leads to agglomeration at the interface. In contrast to pH 3.8, behavior of BLG-SDS mixtures at pH 6.7 is different due to repulsive electrostatic interactions between SDS and BLG which lead to a significantly reduced binding enthalpy of -17 kJ mol(-1). Finally, it has to be mentioned that

  15. Insights into Facebook Pages: an early adolescent health research study page targeted at parents.

    PubMed

    Amon, Krestina L; Paxton, Karen; Klineberg, Emily; Riley, Lisa; Hawke, Catherine; Steinbeck, Katharine

    2016-02-01

    Facebook has been used in health research, but there is a lack of literature regarding how Facebook may be used to recruit younger adolescents. A Facebook Page was created for an adolescent cohort study on the effects of puberty hormones on well-being and behaviour in early adolescence. Used as a communication tool with existing participants, it also aimed to alert potential participants to the study. The purpose of this paper is to provide a detailed description of the development of the study Facebook Page and present the fan response to the types of posts made on the Page using the Facebook-generated Insights data. Two types of posts were made on the study Facebook Page. The first type was study-related update posts and events. The second was relevant adolescent and family research and current news posts. Observations on the use of and response to the Page were made over 1 year across three phases (phase 1, very low Facebook use; phase 2, high Facebook use; phase 3, low Facebook use). Most Page fans were female (88.6%), with the largest group of fans aged between 35 and 44 years. Study-related update posts with photographs were the most popular. This paper provides a model on which other researchers could base Facebook communication and potential recruitment in the absence of established guidelines. PMID:25781667

  16. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648

  17. Effective intercalation of sodium dodecylsulfate (SDS) into hydrocalumite: Mechanism discussion via near-infrared and mid-infrared investigations

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Wang, Tianqi; Qian, Guangren; Wu, Daishe; Frost, Ray L.

    2015-10-01

    The intercalation of an anionic surfactant, sodium dodecylsulfate (SDS), into hydrocalumite (CaAl-LDH-Cl) was investigated in this study. To understand the intercalation behavior, X-ray diffraction (XRD), mid-infrared spectroscopy (MIR), near-infrared spectroscopy (NIR) and scanning electron microscopy (SEM) were undertaken. The near-infrared spectra indicated a special spectral range from 6000 to 5600 cm-1and prominent bands of CaAl-LDH-Cl intercalated with SDS around 8388 cm-1. This band was assigned to the second overtone of the first fundamental of Csbnd H stretching vibrations of SDS, and it could be used to determinate the result of CaAl-LDH-Cl modified by SDS. Moreover, the results revealed that different adsorption behaviors were observed at different (high and low) concentrations of SDS. When the SDS concentration was around 0.2 mol L-1, anion exchange intercalation occurred and the interlayer distance expanded to about 3.25 nm. When SDS concentration was 0.005 mol L-1, the surface adsorption of DS- was the major anion exchange event.

  18. Sds22/PP1 Links Epithelial Integrity and Tumor Suppression via Regulation of Myosin II and JNK Signaling

    PubMed Central

    Jiang, Yuwei; Scott, Kenneth L.; Kwak, Su-Jin; Chen, Rui; Mardon, Graeme

    2011-01-01

    Loss of epithelial integrity often correlates with the progression of malignant tumors. Sds22, a regulatory subunit of Protein Phosphatase 1 (PP1), has recently been linked to regulation of epithelial polarity in Drosophila. However, its role in tumorigenesis remains obscure. Here, using Drosophila imaginal tissue as an in vivo model system, we show that sds22 is a new potential tumor suppressor gene in Drosophila. Without sds22, cells lose epithelial architecture, and become invasive and tumorigenic when combined with Ras overexpression; conversely, sds22 overexpression can largely suppress tumorigenic growth of RasV12scrib−/ − mutant cells. Mechanistically, we show that sds22 prevents cell invasion and metastasis by inhibiting myosin II and JNK activity downstream of PP1. Loss of this inhibition causes cells to lose epithelial organization and promotes cell invasion. Finally, human Sds22 is focally deleted and down-regulated in multiple carcinomas, and this downregulation correlates with tumor progression, suggesting that sds22 inactivation may contribute to tumorigenesis and metastatic potential in human cancers via a similar mechanism. PMID:21399659

  19. Accurate Angle Estimator for High-Frame-Rate 2-D Vector Flow Imaging.

    PubMed

    Villagomez Hoyos, Carlos Armando; Stuart, Matthias Bo; Hansen, Kristoffer Lindskov; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt

    2016-06-01

    This paper presents a novel approach for estimating 2-D flow angles using a high-frame-rate ultrasound method. The angle estimator features high accuracy and low standard deviation (SD) over the full 360° range. The method is validated on Field II simulations and phantom measurements using the experimental ultrasound scanner SARUS and a flow rig before being tested in vivo. An 8-MHz linear array transducer is used with defocused beam emissions. In the simulations of a spinning disk phantom, a 360° uniform behavior on the angle estimation is observed with a median angle bias of 1.01° and a median angle SD of 1.8°. Similar results are obtained on a straight vessel for both simulations and measurements, where the obtained angle biases are below 1.5° with SDs around 1°. Estimated velocity magnitudes are also kept under 10% bias and 5% relative SD in both simulations and measurements. An in vivo measurement is performed on a carotid bifurcation of a healthy individual. A 3-s acquisition during three heart cycles is captured. A consistent and repetitive vortex is observed in the carotid bulb during systoles. PMID:27093598

  20. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  1. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  2. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  3. 2D constant-loss taper for mode conversion

    NASA Astrophysics Data System (ADS)

    Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.

    2015-03-01

    Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.

  4. Recent advances in 2D materials for photocatalysis

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-03-01

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  5. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  6. Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee

    2015-07-01

    Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.

  7. Arctic Research Mapping Application (ARMAP): 2D Maps and 3D Globes Support Arctic Science

    NASA Astrophysics Data System (ADS)

    Tweedie, C. E.; Cody, R. P.; Kassin, A.; Gaylord, A.; Manley, W. F.; Dover, M.; Score, R.

    2012-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. With ARMAP's 2D mapping application, 3D globes, and data services (http://armap.org), users can search for research projects by location, year, funding program, keyword, investigator, and discipline, among other variables. Key information about each project is displayed within the application with links to web pages that provide additional information. The ARMAP 2D mapping application has been significantly enhanced to include support for multiple projections, improved base maps, additional reference data layers, and optimization for better performance. The additional functionality of this tool will increase awareness of projects funded by numerous entities in the Arctic, enhance coordination for logistics support, help identify geographic gaps in research efforts and potentially foster more collaboration amongst researchers working in the region. Additionally, ARMAP can be used to demonstrate the effects of the International Polar Year (IPY) on funding of different research disciplines by the U.S. Government.

  8. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  9. 2. D Street facade and rear (east) blank wall of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. D Street facade and rear (east) blank wall of parking garage. Farther east is 408 8th Street (National Art And Frame Company). - PMI Parking Garage, 403-407 Ninth Street, Northwest, Washington, District of Columbia, DC

  10. Collective excitations in 2D hard-disc fluid.

    PubMed

    Huerta, Adrian; Bryk, Taras; Trokhymchuk, Andrij

    2015-07-01

    Collective dynamics of a two-dimensional (2D) hard-disc fluid was studied by molecular dynamics simulations in the range of packing fractions that covers states up to the freezing. Some striking features concerning collective excitations in this system were observed. In particular, the short-wavelength shear waves while being absent at low packing fractions were observed in the range of high packing fractions, just before the freezing transition in a 2D hard-disc fluid. In contrast, the so-called "positive sound dispersion" typically observed in dense Lennard-Jones-like fluids, was not detected for the 2D hard-disc fluid. The ratio of specific heats in the 2D hard-disc fluid shows a monotonic increase with density approaching the freezing, resembling in this way the similar behavior in the vicinity of the Widom line in the case of supercritical fluids. PMID:25595625

  11. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  12. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  13. From weakly to strongly interacting 2D Fermi gases

    NASA Astrophysics Data System (ADS)

    Dyke, Paul; Fenech, Kristian; Lingham, Marcus; Peppler, Tyson; Hoinka, Sascha; Vale, Chris

    2014-05-01

    We study ultracold 2D Fermi gases of 6Li formed in a highly oblate trapping potential. The potential is generated by a cylindrically focused, blue detuned TEM01 mode laser beam. Weak magnetic field curvature provides highly harmonic confinement in the radial direction and we can readily produce single clouds with an aspect ratio of 230. Our experiments investigate the dimensional crossover from 3D to 2D for a two component Fermi gas in the Bose-Einstein Condensate to Bardeen Cooper Schrieffer crossover. Observation of an elbow in measurements of the cloud width vs. atom number is consistent with populating only the lowest transverse harmonic oscillator state for weak attractive interactions. This measurement is extended to the strongly interacting region using the broad Feshbach resonance at 832 G. We also report our progress towards measurement of the 2D equation of state for an interacting 2D Fermi gas via in-situ absorption imaging.

  14. Chemical vapour deposition: Transition metal carbides go 2D

    NASA Astrophysics Data System (ADS)

    Gogotsi, Yury

    2015-11-01

    The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.

  15. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  16. Dominant 2D magnetic turbulence in the solar wind

    SciTech Connect

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1996-07-20

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevectors aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of mid-inertial range magnetic spectra in the solar wind. The first test is based upon a characteristic difference between reduced magnetic power spectra in the two different directions perpendicular to the mean field. Such a difference is expected for 2D geometry but not for slab geometry. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant ({approx}85% by energy) 2D component in solar wind magnetic turbulence.

  17. Efficient framework for deformable 2D-3D registration

    NASA Astrophysics Data System (ADS)

    Fluck, Oliver; Aharon, Shmuel; Khamene, Ali

    2008-03-01

    Using 2D-3D registration it is possible to extract the body transformation between the coordinate systems of X-ray and volumetric CT images. Our initial motivation is the improvement of accuracy of external beam radiation therapy, an effective method for treating cancer, where CT data play a central role in radiation treatment planning. Rigid body transformation is used to compute the correct patient setup. The drawback of such approaches is that the rigidity assumption on the imaged object is not valid for most of the patient cases, mainly due to respiratory motion. In the present work, we address this limitation by proposing a flexible framework for deformable 2D-3D registration consisting of a learning phase incorporating 4D CT data sets and hardware accelerated free form DRR generation, 2D motion computation, and 2D-3D back projection.

  18. Practicing IEF-PAGE of EPO: the impact of detergents and sample application methods on analytical performance in doping control.

    PubMed

    Reichel, Christian

    2010-01-01

    Electrophoretic techniques, namely isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) are key techniques used for confirming the doping-related abuse of recombinant erythropoietins and analogs. IEF-PAGE is performed on horizontal slab-gels with samples applied to the surface of the gel. Different sample application techniques can be employed, but application pieces and applicator strips are most frequently used. However, defective application pieces cause lane streaking during IEF of erythropoietin (EPO), which is especially pronounced in the acidic region of the gel. The effect is due to an incompatibility of the substance used for enhancing the wettability of the cellulose-based commercial product and is batch-dependent. A detailed mass spectrometric study was performed, which revealed that defective sample application pieces (bought between 2007 and 2010) contained a complex mixture of alcohol ethoxylates, alcohol ethoxysulfates, and alkyl sulfates (e.g. SDS). Anionic detergents, like the sulfates contained in these application pieces, are in general incompatible with IEF. Alternative application techniques proved partly useful. While homemade pieces made of blotting paper are a good alternative, the usage of applicator strips or shims is hampered by the risk of leaking wells, which lead to laterally diffused samples. Casting IEF-gels with wells appears to be the best solution, since sustained release of retained proteins from the application pieces can be avoided. Edge effects do not occur if wells are correctly filled with the samples. The evaluation of EPO-profiles with defects is prohibited by the technical document on EPO-analytics (TD2009EPO) of the World Anti-Doping Agency (WADA). PMID:21204292

  19. Computational Design of 2D materials for Energy Applications

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    2015-03-01

    Since the successful synthesis of graphene, tremendous efforts have been devoted to two-dimensional monolayers such as boron nitride (BN), silicene and MoS2. These 2D materials exhibit a large variety of physical and chemical properties with unprecedented applications. Here we report our recent studies of computational design of 2D materials for fuel cell applications which include hydrogen storage, CO2 capture, CO conversion and O2 reduction.

  20. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  1. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  2. Organic Memory Devices: 2D Mica Crystal as Electret in Organic Field-Effect Transistors for Multistate Memory (Adv. Mater. 19/2016).

    PubMed

    Zhang, Xiaotao; He, Yudong; Li, Rongjin; Dong, Huanli; Hu, Wenping

    2016-05-01

    R. Li, H. Dong, and co-workers describe the exfoliation of cheap and abundant minerals, such as mica, into nanometer-thick 2D crystals with atomically flat surfaces. As described on page 3755, the application of the 2D electret in organic field-effect transistors is well-suited for flexible nonvolatile memory devices. Stored information can be retrieved even after power cycling. Moreover, the devices can be used as full-function transistors with a low-resistance and a high-resistance state. PMID:27167032

  3. 46. Photograph of a published page. 'OPERATIONS IN INCORPORATION BUILDINGS: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Photograph of a published page. 'OPERATIONS IN INCORPORATION BUILDINGS: HOLSTON DEFENSE CORPORATION. 'HOLSTON ARMY AMMUNITION PLANT.' Page 17. (no date). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  4. 45. Photograph of a published page. OPERATIONS IN 'H' OR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Photograph of a published page. OPERATIONS IN 'H' OR DEWATERING BUILDING: HOLSTON DEFENSE CORPORATION. 'HOLSTON ARMY AMMUNITION PLANT.' Page 16. (no date). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  5. SDS, a structural disruption score for assessment of missense variant deleteriousness

    PubMed Central

    Preeprem, Thanawadee; Gibson, Greg

    2014-01-01

    We have developed a novel structure-based evaluation for missense variants that explicitly models protein structure and amino acid properties to predict the likelihood that a variant disrupts protein function. A structural disruption score (SDS) is introduced as a measure to depict the likelihood that a case variant is functional. The score is constructed using characteristics that distinguish between causal and neutral variants within a group of proteins. The SDS score is correlated with standard sequence-based deleteriousness, but shows promise for improving discrimination between neutral and causal variants at less conserved sites. The prediction was performed on 3-dimentional structures of 57 gene products whose homozygous SNPs were identified as case-exclusive variants in an exome sequencing study of epilepsy disorders. We contrasted the candidate epilepsy variants with scores for likely benign variants found in the EVS database, and for positive control variants in the same genes that are suspected to promote a range of diseases. To derive a characteristic profile of damaging SNPs, we transformed continuous scores into categorical variables based on the score distribution of each measurement, collected from all possible SNPs in this protein set, where extreme measures were assumed to be deleterious. A second epilepsy dataset was used to replicate the findings. Causal variants tend to receive higher sequence-based deleterious scores, induce larger physico-chemical changes between amino acid pairs, locate in protein domains, buried sites or on conserved protein surface clusters, and cause protein destabilization, relative to negative controls. These measures were agglomerated for each variant. A list of nine high-priority putative functional variants for epilepsy was generated. Our newly developed SDS protocol facilitates SNP prioritization for experimental validation. PMID:24795746

  6. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  7. An experimental study of thermal performance of GN and MWCNTs-based aqueous nanofluids with surfactants SDS and SDBS

    NASA Astrophysics Data System (ADS)

    Mahmudul Haque, A. K. M.; Lee, Tae-Jin; Jeong, Hyo-Min; Chung, Han-Shik

    2015-09-01

    High thermal conductivity enhancement of nanofluid is a promising topic for the recent research fields. And in this regard, GN and MWCNTs based nanofluids with their outstanding properties are examined vastly. Beside this, SDBS and SDS have been concerned for composing better nanofluids. This paper tries to suggest not a solution but a solution approach and deduce a new conclusion by testing thermal conductivity and heat transfer coefficient enhancement ratio of nanofluids with surfactants SDS and SDBS.

  8. World Wide Web Pages--Tools for Teaching and Learning.

    ERIC Educational Resources Information Center

    Beasley, Sarah; Kent, Jean

    Created to help educators incorporate World Wide Web pages into teaching and learning, this collection of Web pages presents resources, materials, and techniques for using the Web. The first page focuses on tools for teaching and learning via the Web, providing pointers to sites containing the following: (1) course materials for both distance and…

  9. 47 CFR 22.503 - Paging geographic area authorizations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Paging geographic area authorizations. 22.503 Section 22.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service § 22.503 Paging geographic area authorizations. The FCC considers applications for...

  10. Young Children's Interpretations of Page Breaks in Contemporary Picture Storybooks

    ERIC Educational Resources Information Center

    Sipe, Lawrence R.; Brightman, Anne E.

    2009-01-01

    This article reports on a study of the responses of a second-grade class to the page breaks in contemporary picturebooks. In a picturebook, the text and accompanying illustrations are divided into a series of facing pages called openings, and the divisions between the openings are called page breaks or turns. Unlike a novel, in which the page…

  11. Required Discussion Web Pages in Psychology Courses and Student Outcomes

    ERIC Educational Resources Information Center

    Pettijohn, Terry F., II; Pettijohn, Terry F.

    2007-01-01

    We conducted 2 studies that investigated student outcomes when using discussion Web pages in psychology classes. In Study 1, we assigned 213 students enrolled in Introduction to Psychology courses to either a mandatory or an optional Web page discussion condition. Students used the discussion Web page significantly more often and performed…

  12. Digital Ethnography: Library Web Page Redesign among Digital Natives

    ERIC Educational Resources Information Center

    Klare, Diane; Hobbs, Kendall

    2011-01-01

    Presented with an opportunity to improve Wesleyan University's dated library home page, a team of librarians employed ethnographic techniques to explore how its users interacted with Wesleyan's current library home page and web pages in general. Based on the data that emerged, a group of library staff and members of the campus' information…

  13. Fc-fragment removal allows the EPO-Fc fusion protein to be detected in blood samples by IEF-PAGE.

    PubMed

    Postnikov, Pavel; Krotov, Grigory; Mesonzhnik, Natalia; Efimova, Yulia; Rodchenkov, Grigory

    2015-01-01

    EPO-Fc proteins have been under investigation as a potential drug for treating anaemia and have shown larger half-life values than other erythropoiesis-stimulating agents (ESAs). Sodium dodecyl sulfate/sodium N-lauroylsarcosinate polyacrylamide gel electrophoresis (SDS/SAR-PAGE) methods and subsequent immunoblotting are used for routine anti-doping analysis. This paper reports that EPO-Fc fusion proteins can be detected in serum samples by isoelectric focusing-polyacrylamide gel electrophoresis (IEF-PAGE) in carrier ampholyte-based gels with a pH 2-6 gradient after removing the Fc part via site-specific IdeS protease cleavage. The IdeS-digested EPO-Fc protein yields three fragments: two Fc fragments and one dimeric EPO-hinge fragment. After IEF-PAGE was followed by double Western blotting with chemiluminescent detection, the dimeric EPO-hinge fragment showed a unique isoelectric pattern, which differed from those of any other currently known analogue of EPO. We observed that the removal of the Fc fragment from EPO-Fc reduced the apparent molecular weight of entire fusion protein and increased its electrophoretic mobility. As a result, the band for the EPO-hinge fragment was located in a region between the rEPO and NESP standards, at which lower amounts of serum proteins are present. Simple and selective protocols for determining the EPO-Fc protein in human serum were developed to extend the methodological anti-doping arsenal. This protocol has been characterized. The limit of detection (LOD) of the IEF-PAGE method was 20 pg, and that of SDS/SAR-PAGE was 15 pg. PMID:26695487

  14. Facebook's personal page modelling and simulation

    NASA Astrophysics Data System (ADS)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    In this paper we will try to define the utility of Facebook's Personal Page marketing method. This tool that Facebook provides, is modelled and simulated using iThink in the context of a Facebook marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following model has been developed for a social media marketing agent/company, Facebook platform oriented and tested in real circumstances. This model is finalized through a number of revisions and iterators of the design, development, simulation, testing and evaluation processes. The validity and usefulness of this Facebook marketing model for the day-to-day decision making are authenticated by the management of the company organization. Facebook's Personal Page method can be adjusted, depending on the situation, in order to maximize the total profit of the company which is to bring new customers, keep the interest of the old customers and deliver traffic to its website.

  15. NRC PAGE. Sequential Analysis Materials Balance

    SciTech Connect

    Picard, R.

    1992-01-13

    NRCPAGE is used in safeguards applications to detect a recurring loss of special nuclear material by frequent evaluation (sequential analysis) of accountability data. Standard sequential testing procedures are traditionally based on sequences of independent and normally distributed measurements. This same approach can be applied to materials balance (MB) data. Here, the term materials balance has a meaning similar to inventory difference and represents a materials loss indicator localized in time and space. However, distinct MBs cannot be reasonably treated as statistically independent and may not always be reasonably treated as normally distributed. Furthermore, the covariance structure associated with a given MB sequence is not known and must be estimated. Nonindependence is treated by converting the MB sequence to the innovation sequence, sometimes called the ITMUF sequence or the sequence of MUF residuals, which are statistically independent and amenable to sequential test procedures. A one-sided page`s test, effective for a wide range of recurring loss scenarios, is applied to the standardized innovation sequence. The program can be easily modified to suit particular needs; the models for the assumption of multivariate normality for MBs when computing the innovation sequence or the test procedure can be changed as can the input/output format, dimensioning, local error checking, and simulation work. Input files can be sequentially constructed using local text editors to update existing files. Output files can be read by graphics, report writer, or other stand-alone utility routines.

  16. Regenerative Potential of Low-Concentration SDS-Decellularized Porcine Aortic Valved Conduits In Vivo

    PubMed Central

    Paniagua Gutierrez, José Rodolfo; Berry, Helen; Korossis, Sotirios; Mirsadraee, Saeed; Lopes, Sergio Veiga; da Costa, Francisco; Kearney, John; Watterson, Kevin; Fisher, John

    2015-01-01

    The aims of this study were to determine the functional biocompatibility of low-concentration SDS-decellularized porcine aortic roots in vivo. A previously developed process was modified for 9- and 15-mm-diameter aortic roots to facilitate implantation into the porcine abdominal aorta (n=3) and juvenile sheep right ventricular outflow tract (n=7), respectively. Native allogeneic aortic roots were used as controls. Acellular porcine roots explanted from pigs at weeks were largely repopulated with stromal cells of appropriate phenotype, and there was evidence that macrophages were involved in the regenerative process. Native allogeneic roots were subject to a classic allograft rejection response. Acellular porcine roots explanted from sheep at 6 months showed evidence of appropriate cellular repopulation, again with evidence of a role for macrophages in the regenerative process. There was some degree of calcification of two of the explanted acellular roots, likely due to incomplete removal of DNA before implantation. Native allogeneic ovine roots were subject to a classic allograft rejection response involving T cells, which resulted in overtly calcified and damaged tissues. The study highlighted (1) the importance of removal of DNA from acellular porcine valved roots to avoid calcification and (2) a role for macrophages in the regeneration of low-concentration SDS-decellularized aortic roots, as has been reported for other acellular biological extracellular matrix scaffolds. PMID:25156153

  17. Regenerative potential of low-concentration SDS-decellularized porcine aortic valved conduits in vivo.

    PubMed

    Paniagua Gutierrez, José Rodolfo; Berry, Helen; Korossis, Sotirios; Mirsadraee, Saeed; Lopes, Sergio Veiga; da Costa, Francisco; Kearney, John; Watterson, Kevin; Fisher, John; Ingham, Eileen

    2015-01-01

    The aims of this study were to determine the functional biocompatibility of low-concentration SDS-decellularized porcine aortic roots in vivo. A previously developed process was modified for 9- and 15-mm-diameter aortic roots to facilitate implantation into the porcine abdominal aorta (n=3) and juvenile sheep right ventricular outflow tract (n=7), respectively. Native allogeneic aortic roots were used as controls. Acellular porcine roots explanted from pigs at weeks were largely repopulated with stromal cells of appropriate phenotype, and there was evidence that macrophages were involved in the regenerative process. Native allogeneic roots were subject to a classic allograft rejection response. Acellular porcine roots explanted from sheep at 6 months showed evidence of appropriate cellular repopulation, again with evidence of a role for macrophages in the regenerative process. There was some degree of calcification of two of the explanted acellular roots, likely due to incomplete removal of DNA before implantation. Native allogeneic ovine roots were subject to a classic allograft rejection response involving T cells, which resulted in overtly calcified and damaged tissues. The study highlighted (1) the importance of removal of DNA from acellular porcine valved roots to avoid calcification and (2) a role for macrophages in the regeneration of low-concentration SDS-decellularized aortic roots, as has been reported for other acellular biological extracellular matrix scaffolds. PMID:25156153

  18. The Khatri Sikh Diabetes Study (SDS): study design, methodology, sample collection, and initial results.

    PubMed

    Sanghera, Dharambir K; Bhatti, Jaswinder S; Bhatti, Gurjit K; Ralhan, Sarju K; Wander, Gurpreet S; Singh, Jai Rup; Bunker, Clareann H; Weeks, Daniel E; Kamboh, M Ilyas; Ferrell, Robert E

    2006-02-01

    Non-insulin-dependent diabetes mellitus, or type 2 diabetes (T2DM), has become a major public health problem in India. The high prevalence, relatively young age of onset, and strong familial aggregation of T2DM in some Indian communities remains to be explained. Many of the traditional risk factors established for European populations do not appear to be present in Asian Indians. Phase I of the Sikh Diabetes Study (SDS) was launched to build the population resources required to initiate a large-scale genetic epidemiological study of diabetes in an Asian Indian population. The SDS is focused on the Khatri Sikh population of North India. In all, 1,892 subjects were enrolled to participate in the family-based study; 1,623 of these subjects belong to 324 families, each of which has at least 2 siblings affected with T2DM. The sample included 1,288 individuals affected with T2DM (siblings, parents, or relatives) and 335 unaffected siblings, parents, or relatives. The remaining 269 subjects were unrelated nondiabetic control subjects, including unaffected spouses of probands or siblings. This primarily nonvegetarian, nonsmoking endogamous caste group has presented an unusual clinical picture of uneven distribution of adiposity and a high rate of T2DM with secondary complications. Such well-characterized population isolates may offer unique advantages in mapping genes for common complex diseases. PMID:16900881

  19. Women's Pages or People's Pages: The Production of News for Women in the "Washington Post" in the 1950s.

    ERIC Educational Resources Information Center

    Yang, Mei-ling

    1996-01-01

    Examines the women's pages of the "Washington Post" in the 1950s that were edited by Marie Sauer. States that the newspaper turned down Sauer's request in 1952 to change from traditional women's pages to a unisex "lifestyle" section. Analyzes how women's pages were shaped by factors such as advertising, professional values, and gender beliefs. (PA)

  20. Readers, Authors, and Page Structure: A Discussion of Four Questions Arising from a Content Analysis of Web Pages.

    ERIC Educational Resources Information Center

    Haas, Stephanie W.; Grams, Erika S.

    2000-01-01

    Discusses research describing Web page and link classification systems resulting from a content analysis of over 75 Web pages. Topics include the decision-making processes of Web page authors and readers; syntactic analysis of labeled and isolated anchors; expansion and resource links; and where links lead. (Author/LRW)

  1. Combining high-throughput MALDI-TOF mass spectrometry and isoelectric focusing gel electrophoresis for virtual 2D gel-based proteomics.

    PubMed

    Lohnes, Karen; Quebbemann, Neil R; Liu, Kate; Kobzeff, Fred; Loo, Joseph A; Ogorzalek Loo, Rachel R

    2016-07-15

    The virtual two-dimensional gel electrophoresis/mass spectrometry (virtual 2D gel/MS) technology combines the premier, high-resolution capabilities of 2D gel electrophoresis with the sensitivity and high mass accuracy of mass spectrometry (MS). Intact proteins separated by isoelectric focusing (IEF) gel electrophoresis are imaged from immobilized pH gradient (IPG) polyacrylamide gels (the first dimension of classic 2D-PAGE) by matrix-assisted laser desorption/ionization (MALDI) MS. Obtaining accurate intact masses from sub-picomole-level proteins embedded in 2D-PAGE gels or in IPG strips is desirable to elucidate how the protein of one spot identified as protein 'A' on a 2D gel differs from the protein of another spot identified as the same protein, whenever tryptic peptide maps fail to resolve the issue. This task, however, has been extremely challenging. Virtual 2D gel/MS provides access to these intact masses. Modifications to our matrix deposition procedure improve the reliability with which IPG gels can be prepared; the new procedure is described. Development of this MALDI MS imaging (MSI) method for high-throughput MS with integrated 'top-down' MS to elucidate protein isoforms from complex biological samples is described and it is demonstrated that a 4-cm IPG gel segment can now be imaged in approximately 5min. Gel-wide chemical and enzymatic methods with further interrogation by MALDI MS/MS provide identifications, sequence-related information, and post-translational/transcriptional modification information. The MSI-based virtual 2D gel/MS platform may potentially link the benefits of 'top-down' and 'bottom-up' proteomics. PMID:26826592

  2. Growth and Characterization of Silicon at the 2D Limit

    NASA Astrophysics Data System (ADS)

    Mannix, Andrew; Kiraly, Brian; Hersam, Mark; Guisinger, Nathan

    2015-03-01

    Because bulk silicon has dominated the development of microelectronics over the past 50 years, the recent interest in two-dimensional (2D) materials (e.g., graphene, MoS2, phosphorene, etc.) naturally raises questions regarding the growth and properties of silicon at the 2D limit. Utilizing atomic-scale, ultra-high vacuum (UHV) scanning tunneling microscopy (STM), we have investigated the 2D limits of silicon growth on Ag(111). In agreement with previous reports of sp2-bonded silicene phases, we observe the temperature-dependent evolution of ordered 2D phases. However, we attribute these to apparent Ag-Si surface alloys. At sufficiently high silicon coverage, we observe the precipitation of crystalline, sp3-bonded Si(111) domains. These domains are capped with a √3 honeycomb phase that is indistinguishable from the silver-induced √3 honeycomb-chained-trimer reconstruction on bulk Si(111). Further ex-situcharacterization with Raman spectroscopy, atomic force microscopy, cross-sectional transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy reveals that these sheets are ultrathin sheets of bulk-like, (111) oriented, sp3 silicon. Even at the 2D limit, scanning tunneling spectroscopy shows that these silicon nanosheets exhibit semiconducting electronic characteristics.

  3. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268

  4. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  5. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  6. Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Giraudeau, Patrick; Frydman, Lucio

    2014-06-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.

  7. Phosphorene: A New High-Mobility 2D Semiconductor

    NASA Astrophysics Data System (ADS)

    Liu, Han; Neal, Adam; Zhu, Zhen; Tomanek, David; Ye, Peide

    2014-03-01

    The rise of 2D crystals has opened various possibilities for future electrical and optical applications. MoS2 n-type transistors are showing great potential in ultra-scaled and low-power electronics. Here, we introduce phosphorene, a name we coined for 2D few-layer black phosphorus, a new 2D material with layered structure. We perform ab initio band structure calculations and show that the fundamental band gap depends sensitively on the number of layers. We observe transport behavior, which shows a mobility variation in the 2D plane. High on-current of 194 mA/mm, high hole mobility up to 286 cm2/V .s and on/off ratio up to 104 was achieved with phosphorene transistors at room temperature. Schottky barrier height at the metal/phosphorene interface was also measured as a function of temperature. We demonstrate a CMOS inverter with combination to MoS2 NMOS transistors, which shows great potential for semiconducting 2D crystals in future electronic, optoelectronic and flexible electronic devices.

  8. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  9. 2D materials for photon conversion and nanophotonics

    NASA Astrophysics Data System (ADS)

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  10. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  11. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  12. Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings

    PubMed Central

    Rosenberger, Manuel; Eisenbeil, Waltraud; Schmauss, Bernhard; Hellmann, Ralf

    2015-01-01

    We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG) fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain. PMID:25686313

  13. Simultaneous 2D strain sensing using polymer planar Bragg gratings.

    PubMed

    Rosenberger, Manuel; Eisenbeil, Waltraud; Schmauss, Bernhard; Hellmann, Ralf

    2015-01-01

    We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG) fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain. PMID:25686313

  14. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  15. 2D bifurcations and Newtonian properties of memristive Chua's circuits

    NASA Astrophysics Data System (ADS)

    Marszalek, W.; Podhaisky, H.

    2016-01-01

    Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.

  16. Microscale 2D separation systems for proteomic analysis

    PubMed Central

    Xu, Xin; Liu, Ke; Fan, Z. Hugh

    2012-01-01

    Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786

  17. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy. PMID:19884075

  18. Design of the LRP airfoil series using 2D CFD

    NASA Astrophysics Data System (ADS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas

    2014-06-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.

  19. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  20. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  1. Radiative heat transfer in 2D Dirac materials

    DOE PAGESBeta

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  2. Nomenclature for human CYP2D6 alleles.

    PubMed

    Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M

    1996-06-01

    To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658

  3. The 2D large deformation analysis using Daubechies wavelet

    NASA Astrophysics Data System (ADS)

    Liu, Yanan; Qin, Fei; Liu, Yinghua; Cen, Zhangzhi

    2010-01-01

    In this paper, Daubechies (DB) wavelet is used for solution of 2D large deformation problems. Because the DB wavelet scaling functions are directly used as basis function, no meshes are needed in function approximation. Using the DB wavelet, the solution formulations based on total Lagrangian approach for two-dimensional large deformation problems are established. Due to the lack of Kroneker delta properties in wavelet scaling functions, Lagrange multipliers are used for imposition of boundary condition. Numerical examples of 2D large deformation problems illustrate that this method is effective and stable.

  4. Optical imaging systems analyzed with a 2D template.

    PubMed

    Haim, Harel; Konforti, Naim; Marom, Emanuel

    2012-05-10

    Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates. PMID:22614498

  5. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  6. CH2D+, the Search for the Holy Grail

    NASA Astrophysics Data System (ADS)

    Roueff, Evelyne; Gerin, Maryvonne; Lis, Dariusz C.; Wootten, Alwyn; Marcelino, Nuria; Cernicharo, Jose; Tercero, Belen

    2013-10-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of Kelvin, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+, and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  7. EM 2dV1.0.F

    2012-01-05

    Code is for a layered electric medium with 2d structure. Includes air-earth interface at node z=2.. The electric ex and ez fields are calculated on edges of elemental grid and magnetic field hy is calculated on the face of the elemental grid. The code allows for a layered earth with 2d structures. Solutions of coupled first order Maxwell's equations are solved in the two dimensional environment using a finite- difference scheme on a staggered spationamore » and temporal grid.« less

  8. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  9. On 2D bisection method for double eigenvalue problems

    SciTech Connect

    Ji, X.

    1996-06-01

    The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.

  10. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  11. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  12. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR. PMID:27448174

  13. Identification and characterization of the 2D6 and Mr 23,000 antigens on the plasma membrane of rat spermatozoa.

    PubMed Central

    Jones, R; Brown, C R

    1987-01-01

    Previous investigations [Jones, Brown, von Glos & Gaunt (1985) Exp. Cell Res. 156, 31-44] have demonstrated the appearance of a new antigenic determinant (recognized by monoclonal antibody 2D6) on the plasma membrane of rat spermatozoa during post-testicular maturation in the epididymis. Identification of the 2D6 antigen on Western blots from one-dimensional SDS/polyacrylamide gels revealed that it co-migrated with a membrane protein (designated Mr 23,000 antigen) present on testicular and immature germ cells, suggesting that one antigen might be a modified version of the other. In the present work, however, we demonstrate that, although they have similar Mr and are present in soluble and membrane-bound forms, the 2D6 and Mr 23,000 antigens are biochemically and immunologically distinct molecules. The properties of the antigens are described and compared. The Mr 23,000 antigen is present on both testicular and cauda epididymidal spermatozoa, has a pI of 6.1, contains no detectable carbohydrate, is not tissue-specific and is degraded by V8 protease. By contrast, the 2D6 antigen is glycosylated, has a broad pI from 4.5 to 6.1, is tissue- and species-specific and is resistant to digestion with V8 protease. Its role in sperm-egg recognition is discussed. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2439064

  14. Theory for spiralling ions for 2D FT-ICR and comparison with precessing magnetization vectors in 2D NMR.

    PubMed

    Sehgal, Akansha Ashvani; Pelupessy, Philippe; Rolando, Christian; Bodenhausen, Geoffrey

    2016-04-01

    Two-dimensional (2D) Fourier transform ion cyclotron resonance (FT-ICR) offers an approach to mass spectrometry (MS) that pursuits similar objectives as MS/MS experiments. While the latter must focus on one ion species at a time, 2D FT ICR can examine all possible correlations due to ion fragmentation in a single experiment: correlations between precursors, charged and neutral fragments. We revisited the original 2D FT-ICR experiment that has hitherto fallen short of stimulating significant analytical applications, probably because it is technically demanding. These shortcomings can now be overcome by improved FT-ICR instrumentation and computer hard- and software. We seek to achieve a better understanding of the intricacies of the behavior of ions during a basic two-dimensional ICR sequence comprising three simple monochromatic pulses. Through simulations based on Lorentzian equations, we have mapped the ion trajectories for different pulse durations and phases. PMID:26974979

  15. Smart Document System (SDS) used in managing DOE order`s with electronic Engineering Procedures

    SciTech Connect

    Graham, R.; Robbins, D.

    1993-12-01

    The Microsoft (MS) Windows product is widely available for PC`s. There exists many thousands of them at Sandia. All of the MS applications in Windows have a Help file. This help file informs the user ``how to`` use and run that application. It is an ``on-line`` manual. The ``Help Compiler`` was obtained from Microsoft. Use of this compiler enables one to insert text in a form the MS ``Help Engine`` recognizes. This means all of the features of the Help file: Hypertext (hot links), browsing, searching, indexing, bookmarks, annotation, are available for your text. This turns a document into a ``Smart Document.`` The use of this Smart Document System (SDS) for Engineering Procedures (EPs) is described.

  16. CD and 31P NMR studies of tachykinin and MSH neuropeptides in SDS and DPC micelles

    NASA Astrophysics Data System (ADS)

    Schneider, Sydney C.; Brown, Taylor C.; Gonzalez, Javier D.; Levonyak, Nicholas S.; Rush, Lydia A.; Cremeens, Matthew E.

    2016-02-01

    Secondary structural characteristics of substance P (SP), neurokinin A (NKA), neurokinin B (NKB), α-melanocyte stimulating hormone peptide (α-MSH), γ1-MSH, γ2-MSH, and melittin were evaluated with circular dichroism in phosphite buffer, DPC micelles, and SDS micelles. CD spectral properties of γ1-MSH and γ2-MSH as well as 31P NMR of DPC micelles with all the peptides are reported for the first time. Although, a trend in the neuropeptide/micelle CD data appears to show increased α-helix content for the tachykinin peptides (SP, NKA, NKB) and increased β-sheet content for the MSH peptides (α-MSH, γ1-MSH, γ2-MSH) with increasing peptide charge, the lack of perturbed 31P NMR signals for all neuropeptides could suggest that the reported antimicrobial activity of SP and α-MSH might not be related to a membrane disruption mode of action.

  17. Binding isotherms of sodium dodecyl sulfate to protein polypeptides with special reference to SDS-polyacylamide gel electrophoresis.

    PubMed

    Takagi, T; Tsujii, K; Shirahama, K

    1975-05-01

    To clarify the mode of interaction between sodium dodecyl sulfate (SDS) and protein polypeptides with special reference to SDS-polyacrylamide gel electrophoresis, the binding of SDS to several protein polypeptides was investigated by the equilibrium dialysis technique. Each of the binding isotherms was characterized by the presence of two phases: an initial gradual increase in the amount of binding to 0.3-0.6 g/g (first phase) and a subsequent steep increase to 1.2-1.5 g/g (second phase). The binding was completed at a concentration of SDS below the critical micelle concentration. Throughout the first and second phases, the isotherms obtained were different for each kind of protein. On the basis of experiments with bovine serum albumin and ribonuclease (EC 3.1.4.22], the isotherms were profoundly affected by the method used for modification of the sulfhydryl groups. The claim of Reynolds and Tanford (Proc. Natl, Acad. Sci. U.S., 66, 1002 (1970)) that the isotherms are virtually identical for many kinds of proteins was not supported by the present data. Changes in the gross and local conformations were examined with reference to the isotherms by measurements of CD spectrum, free boundary electrophoresis, and gel filtration. The results obtained were collectively interpreted based on the model of SDS-protein polypeptide complexes proposed by the present authors (J. Biochem., 75, 309 (1974)). PMID:1158859

  18. Temperature dependency of double material gate oxide (DMGO) symmetric dual-k spacer (SDS) wavy FinFET

    NASA Astrophysics Data System (ADS)

    Pradhan, K. P.; Priyanka; Sahu, P. K.

    2016-01-01

    Symmetric Dual-k Spacer (SDS) Trigate Wavy FinFET is a novel hybrid device that combines three significant and advanced technologies i.e., ultra-thin-body (UTB), FinFET, and symmetric spacer engineering on a single silicon on insulator (SOI) platform. This innovative architecture promises to enhance the device performance as compared to conventional FinFET without increasing the chip area. For the first time, we have incorporated two different dielectric materials (SiO2, and HfO2) as gate oxide to analyze the effect on various performance metrics of SDS wavy FinFET. This work evaluates the response of double material gate oxide (DMGO) on parameters like mobility, on current (Ion), transconductance (gm), transconductance generation factor (TGF), total gate capacitance (Cgg), and cutoff frequency (fT) in SDS wavy FinFET. This work also reveals the presence of biasing point i.e., zero temperature coefficient (ZTC) bias point. The ZTC bias point is that point where the device parameters become independent of temperature. The impact of operating temperature (T) on above said various performances are also subjected to extensive analysis. This further validates the reliability of DMGO-SDS FinFET and its application opportunities involved in modeling analog/RF circuits for a broad range of temperature applications. From extensive 3-D device simulation, we have determined that the inclusion of DMGO in SDS wavy FinFET is superior in performance.

  19. Sds22 participates in Glc7 mediated Rad53 dephosphorylation in MMS-induced DNA damage in Candida albicans.

    PubMed

    Yao, Guangyin; Wan, Junhua; Mu, Chunhua; Liu, Qizheng; Wang, Yue; Sang, Jianli

    2016-08-01

    The protein kinase Rad53 and its orthologs play a fundamental role in regulating the DNA damage checkpoint in eukaryotes. Rad53 is activated by phosphorylation in response to DNA damage and deactivated by dephosphorylation after the damage is repaired. However, the phosphatases involved in Rad53 deactivation are not entirely understood. In this study, by investigating the consequences of overexpressing SDS22, a gene encoding a regulatory subunit of the PP1 phosphatase Glc7, in the human fungal pathogen Candida albicans, we discovered that Sds22 plays an important role in Rad53 dephosphorylation and thus the deactivation of the DNA damage checkpoint. Sds22 cellular levels increase when cells are exposed to DNA damaging agents and decrease after removing the genotoxins. Depletion of Glc7 has similar phenotypes. We provide evidence that Sds2 acts through inhibitory physical association with Glc7. Our findings provide novel insights into the mechanisms for the control of DNA damage checkpoint. Furthermore, SDS22 overexpression reduces C. albicans virulence in a mouse model of systemic infection, suggesting potential targets for developing antifungal drugs. PMID:27328280

  20. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  1. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  2. Creation of a scalar potential in 2D dilaton gravity

    SciTech Connect

    Behrndt, K.

    1994-09-01

    The authors investigate quantum corrections of the 2-d dilaton gravity near the singularity. Their motivation comes from a s-wave reduced cosmological solution which is classically singular in the scalar fields (dilaton and moduli). As a result they find, that the singularity disappears and a dilaton/moduli potential is created.

  3. NKG2D ligands mediate immunosurveillance of senescent cells

    PubMed Central

    Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-01-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  4. Discrepant Results in a 2-D Marble Collision

    ERIC Educational Resources Information Center

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  5. Validation and testing of the VAM2D computer code

    SciTech Connect

    Kool, J.B.; Wu, Y.S. )

    1991-10-01

    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.

  6. On Regularity Criteria for the 2D Generalized MHD System

    NASA Astrophysics Data System (ADS)

    Jiang, Zaihong; Wang, Yanan; Zhou, Yong

    2016-06-01

    This paper deals with the problem of regularity criteria for the 2D generalized MHD system with fractional dissipative terms {-Λ^{2α}u} for the velocity field and {-Λ^{2β}b} for the magnetic field respectively. Various regularity criteria are established to guarantee smoothness of solutions. It turns out that our regularity criteria imply previous global existence results naturally.

  7. Dispersionless 2D Toda hierarchy, Hurwitz numbers and Riemann theorem

    NASA Astrophysics Data System (ADS)

    Natanzon, Sergey M.

    2016-01-01

    We describe all formal symmetric solutions of dispersionless 2D Toda hierarchy. This classification we use for solving of two classical problems: 1) The calculation of conformal mapping of an arbitrary simply connected domain to the standard disk; 2) Calculation of 2- Hurwitz numbers of genus 0.

  8. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  9. RADMC: A 2-D Continuum Radiative Transfer Tool

    NASA Astrophysics Data System (ADS)

    Dullemond, C. P.

    2011-08-01

    RADMC is a 2-D Monte-Carlo code for dust continuum radiative transfer circumstellar disks and envelopes. It is based on the method of Bjorkman & Wood (ApJ 2001, 554, 615), but with several modifications to produce smoother results with fewer photon packages.

  10. Kinematics of segregating granular mixtures in quasi-2D heaps

    NASA Astrophysics Data System (ADS)

    Fan, Yi; Umbanhowar, Paul; Ottino, Julio; Lueptow, Richard

    2012-11-01

    Segregation of granular mixtures of different sized particles in heap flow appears in a variety of contexts. Our recent experiments showed that when bi-disperse mixtures of different sized spherical particles fill a quasi-two dimensional (2D) silo, three different final heap configurations - stratified, segregated, and mixed - occur, depending on either 2D flow rate or heap rise velocity. However, since it is difficult to measure the kinematic details of the segregating granular mixtures in heap flow experimentally, the underlying mechanisms for how 2D flow rate or heap rise velocity influences final particle configurations have not been well understood. In this work, we use the discrete element method (DEM) to simulate heap flow of bi-disperse mixtures in experimental scale quasi-2D heaps. The final particle distributions in the simulations agree quantitatively with experiments. We measure several key kinematic properties of the segregating granular mixtures including the local flow rate, velocity, and flowing layer thickness. We correlate the characteristics of these kinematic properties with the local particle distributions of the mixtures. This provides new insights for understanding the mechanisms of segregation and stratification in heap flow including the linear decrease in flow rate and maximum velocity down the heap as well as the relatively constant flowing layer thickness along the length of the heap. Funded by Dow Chemical Co.

  11. On the phase diagram of 2d Lorentzian Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Anagnostopoulos, K. N.; Loll, R.

    The phase diagram of 2d Lorentzian quantum gravity (LQG) coupled to conformal matter is studied. A phase transition is observed at c = c crit ( {1}/{2} < c crit < 4) which can be thought of as the analogue of the c = 1 barrier of Euclidean quantum gravity (EQG). The non-trivial properties of the quantum geometry are discussed.

  12. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  13. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  14. NKG2D ligands mediate immunosurveillance of senescent cells.

    PubMed

    Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-02-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  15. Microrheology and characteristic lengths in wormlike micelles made of a zwitterionic surfactant and SDS in brine.

    PubMed

    Sarmiento-Gomez, Erick; Lopez-Diaz, David; Castillo, Rolando

    2010-09-30

    We study the Brownian motion of probe particles embedded in a wormlike micellar fluid made of a zwitterionic surfactant N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (TDPS), sodium dodecyl sulfate (SDS), and salty water to get structural and dynamical information of the micellar network. The motion of the probe particles was tracked with diffusing wave spectroscopy, and the mean square displacement as a function of time for the particles was obtained. This allowed us to obtain the long-time diffusion coefficient for microspheres moving in the micellar network and the cage size where each particle is harmonically bound at short times in that network. The bulk mechanical susceptibility of the fluid determines the response of the probe particles excited by the thermal stochastic forces. As a consequence, the mean square displacement curves allowed us to calculate the elastic (storage) and the viscous (loss) moduli as a function of the frequency. From these curves, spanning a wide frequency range, we estimated the characteristic lengths as the mesh size, the entanglement length, the persistence length, and the contour length for micellar solutions of different zwitterionic surfactant concentration, surfactant ratio ([SDS]/[TDPS]), salt concentration, and temperature. Mesh size, entanglement length, and persistence length are almost insensitive to the change of these variables. In contrast, the contour length changes in an important way. The contour length becomes shorter as the temperature increases, and it presents a peak at a surfactant ratio of ∼0.50-0.55. When salt is added to the solution, the contour length presents a peak at a salt concentration of ∼0.225 M, and in some solutions, this length can reach values of ∼12 μm. Scission energies help us to understand why the contour length first increases and then decreases when salt is added. PMID:20825212

  16. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  17. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  18. Resonances of piezoelectric plate with embedded 2D electron system

    NASA Astrophysics Data System (ADS)

    Suslov, A. V.

    2009-02-01

    A thin GaAs/AlGaAs plate was studied by the resonant ultrasound spectroscopy (RUS) in the temperature range 0.3-10 K and in magnetic fields of up to 18 T. The resonance frequencies and linewidths were measured. Quantum oscillations of both these values were observed and were associated with the quantum Hall effect occurred in the 2D electron system. For an analysis the sample was treated as a dielectric piezoelectric plate covered on one side by a film with a field dependent conductivity. Screening of the strain-driven electric field was changed due to the variation of the electron relaxation time in the vicinity of the metal-dielectric transitions caused by the magnetic field in the 2D system. The dielectric film does not affect properties of GaAs and thus the resonance frequencies are defined only by the elastic, piezoelectric and dielectric constants of GaAs. A metallic 2D sheet effectively screens the parallel electric field, so the ultrasound wave velocities and resonance frequencies decrease when the sheet conductivity increases. Oscillations of the resonance linewidth reflect the influence of the 2D system on the ultrasound attenuation, which is proportional to the linewidth. A metallic film as well as a dielectric one does not affect this attenuation but at some finite nonzero value of the conductivity the linewidth approaches a maximum. In high magnetic field each oscillation of the conductivity produces one oscillation of a resonance frequency and two linewidth peaks. The observed phenomena can be described by the relaxation type equations and the resonant ultrasound spectroscopy opens another opportunity for contactless studies on 2D electron systems.

  19. The physics of 2D microfluidic droplet ensembles

    NASA Astrophysics Data System (ADS)

    Beatus, Tsevi; Bar-Ziv, Roy H.; Tlusty, Tsvi

    2012-07-01

    We review non-equilibrium many-body phenomena in ensembles of 2D microfluidic droplets. The system comprises of continuous two-phase flow with disc-shaped droplets driven in a channel, at low Reynolds number of 10-4-10-3. The basic physics is that of an effective potential flow, governed by the 2D Laplace equation, with multiple, static and dynamic, boundaries of the droplets and the walls. The motion of the droplets induces dipolar flow fields, which mediate 1/r2 hydrodynamic interaction between the droplets. Summation of these long-range 2D forces over droplet ensembles converges, in contrast to the divergence of the hydrodynamic forces in 3D. In analogy to electrostatics, the strong effect of boundaries on the equations of motion is calculated by means of image dipoles. We first consider the dynamics of droplets flowing in a 1D crystal, which exhibits unique phonon-like excitations, and a variety of nonlinear instabilities-all stemming from the hydrodynamic interactions. Narrowing the channel results in hydrodynamic screening of the dipolar interactions, which changes salient features of the phonon spectra. Shifting from a 1D ordered crystal to 2D disordered ensemble, the hydrodynamic interactions induce collective density waves and shocks, which are superposed on single-droplet randomized motion and dynamic clustering. These collective modes originate from density-velocity coupling, whose outcome is a 1D Burgers equation. The rich observational phenomenology and the tractable theory render 2D droplet ensembles a suitable table-top system for studying non-equilibrium many-body physics with long-range interactions.

  20. 2d-LCA - an alternative to x-wires

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  1. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575

  2. Calibrating page sized Gafchromic EBT3 films

    SciTech Connect

    Crijns, W.; Maes, F.; Heide, U. A. van der; Van den Heuvel, F.

    2013-01-15

    Purpose: The purpose is the development of a novel calibration method for dosimetry with Gafchromic EBT3 films. The method should be applicable for pretreatment verification of volumetric modulated arc, and intensity modulated radiotherapy. Because the exposed area on film can be large for such treatments, lateral scan errors must be taken into account. The correction for the lateral scan effect is obtained from the calibration data itself. Methods: In this work, the film measurements were modeled using their relative scan values (Transmittance, T). Inside the transmittance domain a linear combination and a parabolic lateral scan correction described the observed transmittance values. The linear combination model, combined a monomer transmittance state (T{sub 0}) and a polymer transmittance state (T{sub {infinity}}) of the film. The dose domain was associated with the observed effects in the transmittance domain through a rational calibration function. On the calibration film only simple static fields were applied and page sized films were used for calibration and measurements (treatment verification). Four different calibration setups were considered and compared with respect to dose estimation accuracy. The first (I) used a calibration table from 32 regions of interest (ROIs) spread on 4 calibration films, the second (II) used 16 ROIs spread on 2 calibration films, the third (III), and fourth (IV) used 8 ROIs spread on a single calibration film. The calibration tables of the setups I, II, and IV contained eight dose levels delivered to different positions on the films, while for setup III only four dose levels were applied. Validation was performed by irradiating film strips with known doses at two different time points over the course of a week. Accuracy of the dose response and the lateral effect correction was estimated using the dose difference and the root mean squared error (RMSE), respectively. Results: A calibration based on two films was the optimal

  3. Adsorption of phenol molecules by sodium dodecyl sulfate (SDS) surfactants deposited on solid surfaces: A computer simulation study.

    PubMed

    Peredo-Mancilla, Deneb; Dominguez, Hector

    2016-04-01

    Adsorption studies of phenol molecules on a sodium dodecyl sulfate (SDS) micelle were investigated by molecular dynamics simulations. Simulations were carried out in bulk and on three distinct solid surfaces, silicon dioxide, titanium dioxide and graphite. It was observed that different surfactant micellar shapes were formed on the surfaces. For the silicon dioxide and titanium dioxide surfaces the surfactants were adsorbed by their headgroups whereas for the graphite surface they were adsorbed mainly by their tail groups. It was found that the amount of phenol adsorbed on the SDS micelle was altered by the surfactant shape deposited on the solid surface. However, the best phenol adsorption was obtained by the surfactant modified silicon dioxide surface. Moreover, in all cases, from structural investigations, it was determined that the phenol molecules were located inside the surfactant micelle with their hydroxyl groups close to the SDS headgroups. PMID:26973047

  4. Structural Mechanism of SDS-induced Enzyme Activity of Scorpion Hemocyanin Revealed by Electron Cryo-Microscopy

    PubMed Central

    Cong, Yao; Zhang, Qinfen; Woolford, David; Schweikardt, Thorsten; Khant, Htet; Dougherty, Matthew; Ludtke, Steven J; Chiu, Wah; Decker, Heinz

    2009-01-01

    SUMMARY Phenoloxidases (POs) occur in all organisms and are involved in skin and hair coloring in mammals, and initiating melanisation in wound healing. Mutation or overexpression of PO can cause albinism or melanoma, respectively. SDS can convert inactive PO and the oxygen carrier hemocyanin (Hc) into enzymatically active PO. Here we present single particle cryo-EM maps at subnanometer resolution and pseudo atomic models of the 24-oligomeric Hc from scorpion Pandinus imperator in resting and SDS activated states. Our structural analyses lead to a plausible mechanism of Hc enzyme PO activation: upon SDS activation the intrinsically flexible Hc domain I twists away from domains II and III in each subunit, exposing the entrance to the active site; this movement is stabilized by enhanced inter-hexamer and inter-dodecamer interactions, particularly in the central linker subunits. This mechanism could be applicable to other type 3 copper proteins since the active site is highly conserved. PMID:19446530

  5. Investigation of the Corrosion Inhibition of CTAB and SDS on Carbon Steel Using an Experimental Design Strategy

    NASA Astrophysics Data System (ADS)

    Arjmand, Farzin; Wang, Jiamei; Zhang, Lefu

    2016-03-01

    The corrosion inhibition performance of sodium dodecyl sulfate (SDS) and cetyltrimethyl ammonium bromide (CTAB) on carbon steel was investigated in sodium chloride solutions. Using an experimental design strategy pH, chloride concentration, SDS/CTAB concentrations, and temperature were optimized by conducting only 30 experiments. The optimum value of each factor was obtained from the designed matrix of the experiments based on the lowest log I corr value calculated for each experimental condition. The 3D surface plots of the electrochemical response (log I corr) against each factor were constructed. The optimum conditions in which the lowest log I corr can be achieved were found as follows: pH 12, [Cl-] ≈ 1 M, [SDS] ≈ 200 ppm, [CTAB] ≈ 20 ppm, and T ≈ 10 °C.

  6. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508

  7. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  8. Perceptual metrics and visualization tools for evaluation of page uniformity

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh Q.; Jessome, Renee; Astling, Steve; Maggard, Eric; Nelson, Terry; Shaw, Mark; Allebach, Jan P.

    2014-01-01

    Uniformity is one of the issues of most critical concern for laser electrophotographic (EP) printers. Typically, full coverage constant-tint test pages are printed to assess uniformity. Exemplary nonuniformity defects include mottle, grain, pinholes, and "finger prints". It is a real challenge to make an overall Print Quality (PQ) assessment due to the large coverage of a letter-size, constant-tint printed test page and the variety of possible nonuniformity defects. In this paper, we propose a novel method that uses a block-based technique to analyze the page both visually and metrically. We use a grid of 150 pixels × 150 pixels ( ¼ inch × ¼ inch at 600-dpi resolution) square blocks throughout the scanned page. For each block, we examine two aspects: behavior of its pixels within the block (metrics of graininess) and behavior of the blocks within the printed page (metrics of nonuniformity). Both ΔE (CIE 1976) and the L* lightness channel are employed. For an input scanned page, we create eight visual outputs, each displaying a different aspect of nonuniformity. To apply machine learning, we train scanned pages of different 100% solid colors separately with the support vector machine (SVM) algorithm. We use two metrics as features for the SVM: average dispersion of page lightness and standard deviation in dispersion of page lightness. Our results show that we can predict, with 83% to 90% accuracy, the assignment by a print quality expert of one of two grades of uniformity in the print.

  9. 2-D linear motion system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology

  10. The NPOESS Preparatory Project Science Data Segment (SDS) Data Depository and Distribution Element (SD3E) System Architecture

    NASA Technical Reports Server (NTRS)

    Ho, Evelyn L.; Schweiss, Robert J.

    2008-01-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) Science Data Segment (SDS) will make daily data requests for approximately six terabytes of NPP science products for each of its six environmental assessment elements from the operational data providers. As a result, issues associated with duplicate data requests, data transfers of large volumes of diverse products, and data transfer failures raised concerns with respect to the network traffic and bandwidth consumption. The NPP SDS Data Depository and Distribution Element (SD3E) was developed to provide a mechanism for efficient data exchange, alleviate duplicate network traffic, and reduce operational costs.

  11. A molecular dynamics study of local pressures and interfacial tensions of SDS micelles and dodecane droplets in water.

    PubMed

    Kitabata, Masahiro; Fujimoto, Kazushi; Yoshii, Noriyuki; Okazaki, Susumu

    2016-06-14

    To obtain the radial (normal) and lateral (transverse) components of the local pressure tensor, PN(R) and PT(R), respectively, and the interfacial tension of micelles, molecular dynamics (MD) calculations were performed for spherical sodium dodecyl sulfate (SDS) micelles. The local pressure tensor was calculated as a function of radial distance R using the Irving-Kirkwood formula. Similar MD calculations were also carried out for an n-dodecane droplet in water to compare the differences in the local pressure and interfacial tension values with those of the micelles. The calculated interfacial tensions were 20 ± 5 and 44 ± 10 mN/m for the SDS micelles and dodecane droplets, respectively. The excess free energies due to the interfacial tension were 340 and 1331 kJ/mol for the SDS micelle and dodecane droplet, respectively. The micelles are stabilized by 991 kJ/mol by covering their hydrophobic cores with hydrophilic groups. The dodecane droplet has a large interfacial tension caused by the zero or positive values of PN(R) - PT(R) at all values of R. In contrast, the small interfacial tension in the SDS micelles comes from the negative PN(R) - PT(R) values over a wide range of R. The pressure difference between the inside and outside of the oil droplet and its interfacial tension well satisfies the Laplace equation. However, the hydrophobic core of the SDS micelle is quite different from the liquid alkane, and the SDS micelles do not follow Laplace's picture. Decomposing the interfacial tension into contributions from various interactions, it is found that those between charged and polar groups dominate the interfacial tension of the SDS micelles. The positive electrostatic potential (1.3 V) on the micelle surface and the negative potential (-0.15 V) on the oil droplet contribute to the interfacial tensions by 19 and 0.5 mN/m, respectively. Thus, the interfacial tension of the SDS micelles is produced by electrostatic interactions, in contrast to the dodecane

  12. Primordial SdS universe from a 5D vacuum: scalar field fluctuations on Schwarzschild and Hubble horizons

    SciTech Connect

    Aguilar, José Edgar Madriz; Bellini, Mauricio E-mail: mbellini@mdp.edu.ar

    2010-11-01

    We study scalar field fluctuations of the inflaton field in an early inflationary universe on an effective 4D Schwarzschild-de Sitter (SdS) metric, which is obtained after make a planar coordinate transformation on a 5D Ricci-flat Schwarzschild-de Sitter (SdS) static metric. We obtain the important result that the spectrum of fluctuations at zeroth order is independent of the scalar field mass M on Schwarzschild scales, while on cosmological scales it exhibits a mass dependence. However, in the first-order expansion, the spectrum depends of the inflaton mass and the amplitude is linear with the Black-Hole (BH) mass m.

  13. A molecular dynamics study of local pressures and interfacial tensions of SDS micelles and dodecane droplets in water

    NASA Astrophysics Data System (ADS)

    Kitabata, Masahiro; Fujimoto, Kazushi; Yoshii, Noriyuki; Okazaki, Susumu

    2016-06-01

    To obtain the radial (normal) and lateral (transverse) components of the local pressure tensor, PN(R) and PT(R), respectively, and the interfacial tension of micelles, molecular dynamics (MD) calculations were performed for spherical sodium dodecyl sulfate (SDS) micelles. The local pressure tensor was calculated as a function of radial distance R using the Irving-Kirkwood formula. Similar MD calculations were also carried out for an n-dodecane droplet in water to compare the differences in the local pressure and interfacial tension values with those of the micelles. The calculated interfacial tensions were 20 ± 5 and 44 ± 10 mN/m for the SDS micelles and dodecane droplets, respectively. The excess free energies due to the interfacial tension were 340 and 1331 kJ/mol for the SDS micelle and dodecane droplet, respectively. The micelles are stabilized by 991 kJ/mol by covering their hydrophobic cores with hydrophilic groups. The dodecane droplet has a large interfacial tension caused by the zero or positive values of PN(R) - PT(R) at all values of R. In contrast, the small interfacial tension in the SDS micelles comes from the negative PN(R) - PT(R) values over a wide range of R. The pressure difference between the inside and outside of the oil droplet and its interfacial tension well satisfies the Laplace equation. However, the hydrophobic core of the SDS micelle is quite different from the liquid alkane, and the SDS micelles do not follow Laplace's picture. Decomposing the interfacial tension into contributions from various interactions, it is found that those between charged and polar groups dominate the interfacial tension of the SDS micelles. The positive electrostatic potential (1.3 V) on the micelle surface and the negative potential (-0.15 V) on the oil droplet contribute to the interfacial tensions by 19 and 0.5 mN/m, respectively. Thus, the interfacial tension of the SDS micelles is produced by electrostatic interactions, in contrast to the dodecane

  14. MPEG-4-based 2D facial animation for mobile devices

    NASA Astrophysics Data System (ADS)

    Riegel, Thomas B.

    2005-03-01

    The enormous spread of mobile computing devices (e.g. PDA, cellular phone, palmtop, etc.) emphasizes scalable applications, since users like to run their favorite programs on the terminal they operate at that moment. Therefore appliances are of interest, which can be adapted to the hardware realities without loosing a lot of their functionalities. A good example for this is "Facial Animation," which offers an interesting way to achieve such "scalability." By employing MPEG-4, which provides an own profile for facial animation, a solution for low power terminals including mobile phones is demonstrated. From the generic 3D MPEG-4 face a specific 2D head model is derived, which consists primarily of a portrait image superposed by a suited warping mesh and adapted 2D animation rules. Thus the animation process of MPEG-4 need not be changed and standard compliant facial animation parameters can be used to displace the vertices of the mesh and warp the underlying image accordingly.

  15. In search of a 2-dB coding gain

    NASA Technical Reports Server (NTRS)

    Yuen, J. H.; Vo, Q. D.

    1985-01-01

    A recent code search found a (15,1/5), a (14,1/6), and a (15,1/6) convolutional code which, when concatenated with a 10-bit (1023,959) Reed-Solomon (RS) code, achieves a bit-error rate (BER) of 0.000001 at a bit signal-to-noise ratio (SNR) of 0.50 dB, 0.47 dB and 0.42 B, respectively. All of these three codes outperform the Voyager communication system, our baseline, which achieves a BER of 10.000001 at bit SNR of 2.53 db, by more than 2 dB. The 2 dB coding improvement goal was exceeded.

  16. Critical Dynamics in Quenched 2D Atomic Gases

    NASA Astrophysics Data System (ADS)

    Larcher, F.; Dalfovo, F.; Proukakis, N. P.

    2016-05-01

    Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.

  17. Graphical representations of DNA as 2-D map

    NASA Astrophysics Data System (ADS)

    Randić, Milan

    2004-03-01

    We describe a modification of the compact representation of DNA sequences which transforms the sequence into a 2-D diagram in which the 'spots' have integer coordinates. As a result the accompanying numerical characterization of DNA is quite simple and straightforward. This is an important advantage, particularly when considering DNA sequences having thousands of nucleic bases. The approach starts with the compact representation of DNA based on zigzag spiral template used for placing 'spots' associated with binary codes of the nucleic acids and subsequent suppression of the underlying zigzag curve. As a result, a 2-D map is formed in which all 'spots' have integer coordinates. By using only distances between spots having the same x or the same y coordinate one can construct a 'map profile' using integer arithmetic. The approach is illustrated on DNA sequences of the first exon of human β-globin.

  18. Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, M.

    2016-05-01

    In this study, phase angle (inverse tangent of the ratio of the horizontal to vertical gradients of magnetic anomalies) profile over two-dimensional tabular bodies has been subjected to detailed analysis for determining the source parameters. Distances between certain characteristic positions on this phase curve are related to the parameters of two-dimensional tabular magnetic sources. In this paper, I have derived the mathematical expressions for these relations. It has been demonstrated here that for locating the origin of the 2D tabular source, knowledge on the type of the model (contact, sheet, dyke, and fault) is not necessary. A procedure is evolved to determine the location, depth, width and magnetization angle of the 2D sources from the mathematical expressions. The method is tested on real field data. The effect of the overlapping bodies is also discussed with two synthetic examples. The interpretation technique is developed for contact, sheet, dike and inclined fault bodies.

  19. Semiregular solid texturing from 2D image exemplars.

    PubMed

    Du, Song-Pei; Hu, Shi-Min; Martin, Ralph R

    2013-03-01

    Solid textures, comprising 3D particles embedded in a matrix in a regular or semiregular pattern, are common in natural and man-made materials, such as brickwork, stone walls, plant cells in a leaf, etc. We present a novel technique for synthesizing such textures, starting from 2D image exemplars which provide cross-sections of the desired volume texture. The shapes and colors of typical particles embedded in the structure are estimated from their 2D cross-sections. Particle positions in the texture images are also used to guide spatial placement of the 3D particles during synthesis of the 3D texture. Our experiments demonstrate that our algorithm can produce higher quality structures than previous approaches; they are both compatible with the input images, and have a plausible 3D nature. PMID:22614330

  20. FPCAS2D user's guide, version 1.0

    NASA Astrophysics Data System (ADS)

    Bakhle, Milind A.

    1994-12-01

    The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.

  1. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  2. 2D FEM Heat Transfer & E&M Field Code

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  3. 2D ice from first principles: structures and phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Schusteritsch, Georg; Pickard, Chris J.; Salzmann, Christoph G.; Michaelides, Angelos

    Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression the pentagonal structure becomes the most stable and persists up to ca. 2 GPa at which point square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. We also find a double layer AA stacked square ice phase, which clarifies the difference between experimental observations and earlier force field simulations. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and width.

  4. 2-D and 3-D computations of curved accelerator magnets

    SciTech Connect

    Turner, L.R.

    1991-01-01

    In order to save computer memory, a long accelerator magnet may be computed by treating the long central region and the end regions separately. The dipole magnets for the injector synchrotron of the Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), employ magnet iron consisting of parallel laminations, stacked with a uniform radius of curvature of 33.379 m. Laplace's equation for the magnetic scalar potential has a different form for a straight magnet (x-y coordinates), a magnet with surfaces curved about a common center (r-{theta} coordinates), and a magnet with parallel laminations like the APS injector dipole. Yet pseudo 2-D computations for the three geometries give basically identical results, even for a much more strongly curved magnet. Hence 2-D (x-y) computations of the central region and 3-D computations of the end regions can be combined to determine the overall magnetic behavior of the magnets. 1 ref., 6 figs.

  5. 2D FEM Heat Transfer & E&M Field Code

    SciTech Connect

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  6. MasterChem: cooking 2D-polymers.

    PubMed

    Rodríguez-San-Miguel, D; Amo-Ochoa, P; Zamora, F

    2016-03-18

    2D-polymers are still dominated by graphene and closely related materials such as boron nitride, transition metal sulphides and oxides. However, the rational combination of molecules with suitable design is already showing the high potential of chemistry in this new research field. The aim of this feature article is to illustrate, and provide some perspectives, the current state-of-the-art in the field of synthetic 2D-polymers showing different alternatives to prepare this novel type of polymers based on the rational use of chemistry. This review comprises a brief revision of the essential concepts, the strategies of preparation following the two general approaches, bottom-up and top-down, and a revision of the promising seminal properties showed by some of these nanomaterials. PMID:26790817

  7. Controlling avalanche criticality in 2D nano arrays

    NASA Astrophysics Data System (ADS)

    Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.

    2013-05-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  8. A 2D MEMS stage for optical applications

    NASA Astrophysics Data System (ADS)

    Ataman, Caglar; Petremand, Yves; Noell, Wilfried; Ürey, Hakan; Epitaux, Marc; de Rooij, Nico F.

    2006-04-01

    A 2D MEMS platform for a microlens scanner application is reported. The platform is fabricated on an SOI wafer with 50 μm thick device layer. Entire device is defined with a single etching step on the same layer. Through four S-shaped beams, the device is capable of producing nonlinear 2D motion from linear 1D translation of two pairs of comb actuator sets. The device has a clear aperture of 2mm by 2mm, which is hallowed from the backside for micro-optics assembly. In this paper, a numerical device model and its validation via experimental characterization results are presented. Integration of the micro-optical components with the stage is also discussed. Additionally, a new driving scheme to minimize the settling time of the device in DC operation is explored.

  9. A Better 2-D Mechanical Energy Conservation Experiment

    NASA Astrophysics Data System (ADS)

    Paesler, Michael

    2012-02-01

    A variety of simple classical mechanics energy conservation experiments are used in teaching laboratories. Typical one-dimensional (1-D) setups may involve falling balls or oscillating springs. Many of these can be quite satisfying in that students can confirm—within a few percent—that mechanical energy is conserved. Students generally have little trouble identifying discrepancies such as the loss of a few percent of the gravitational potential energy due to air friction encountered by a falling ball. Two-dimensional (2-D) systems can require more sophisticated analysis for higher level laboratories, but such systems often incorporate complicating components that can make the exercise academically incomplete and experimentally less accurate. The following describes a simple 2-D energy conservation experiment based on the popular "Newton's Cradle" toy that allows students to account for nearly all of the mechanical energy in the system in an academically complete analysis.

  10. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Mak, Kin Fai; Shan, Jie

    2016-04-01

    Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.

  11. Thermal conductivity measurements in a 2D Yukawa system

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Ivlev, A.; Zhdanov, S.; Morfill, G.; Goree, J.; Piel, A.

    2007-03-01

    Thermal conductivity was measured for a 2D Yukawa system. First, we formed a monolayer suspension of microspheres in a plasma, i.e., a dusty plasma, which is like a colloidal suspension, but with an extremely low volume fraction and a partially-ionized rarefied gas instead of solvent. In the absence of manipulation, the suspension forms a 2D triangular lattice. To melt this lattice and form a liquid, we used a laser-heating method. Two focused laser beams were moved rapidly around in the monolayer. The kinetic temperature of the particles increased with the laser power applied, and above a threshold a melting transition occurred. We used digital video microscopy for direct imaging and particle tracking. The spatial profiles of the particle kinetic temperature were calculated. Using the heat transport equation with an additional term to account for the energy dissipation due to the gas drag, we analyzed the temperature distribution to derive the thermal conductivity.

  12. Fully automated 2D-3D registration and verification.

    PubMed

    Varnavas, Andreas; Carrell, Tom; Penney, Graeme

    2015-12-01

    Clinical application of 2D-3D registration technology often requires a significant amount of human interaction during initialisation and result verification. This is one of the main barriers to more widespread clinical use of this technology. We propose novel techniques for automated initial pose estimation of the 3D data and verification of the registration result, and show how these techniques can be combined to enable fully automated 2D-3D registration, particularly in the case of a vertebra based system. The initialisation method is based on preoperative computation of 2D templates over a wide range of 3D poses. These templates are used to apply the Generalised Hough Transform to the intraoperative 2D image and the sought 3D pose is selected with the combined use of the generated accumulator arrays and a Gradient Difference Similarity Measure. On the verification side, two algorithms are proposed: one using normalised features based on the similarity value and the other based on the pose agreement between multiple vertebra based registrations. The proposed methods are employed here for CT to fluoroscopy registration and are trained and tested with data from 31 clinical procedures with 417 low dose, i.e. low quality, high noise interventional fluoroscopy images. When similarity value based verification is used, the fully automated system achieves a 95.73% correct registration rate, whereas a no registration result is produced for the remaining 4.27% of cases (i.e. incorrect registration rate is 0%). The system also automatically detects input images outside its operating range. PMID:26387052

  13. A discrete simulation of 2-D fluid flow on TERASYS

    SciTech Connect

    Mullins, P.G.; Krolak, P.D.

    1995-12-01

    A discrete simulation of two-dimensional (2-D) fluid flow, on a recently designed novel architecture called TERASYS is presented. The simulation uses a cellular automaton approach, implemented in a new language called data-parallel bit C (dbC). A performance comparison between our implementation on TERASYS and an implementation on the Connection Machine is discussed. We comment briefly on the suitability of the TERASYS system for modeling fluid flow using cellular automata.

  14. An inverse design method for 2D airfoil

    NASA Astrophysics Data System (ADS)

    Liang, Zhi-Yong; Cui, Peng; Zhang, Gen-Bao

    2010-03-01

    The computational method for aerodynamic design of aircraft is applied more universally than before, in which the design of an airfoil is a hot problem. The forward problem is discussed by most relative papers, but inverse method is more useful in practical designs. In this paper, the inverse design of 2D airfoil was investigated. A finite element method based on the variational principle was used for carrying out. Through the simulation, it was shown that the method was fit for the design.

  15. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  16. Report of the 1988 2-D Intercomparison Workshop, chapter 3

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar

    1989-01-01

    Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.

  17. Statistical analysis of quiet stance sway in 2-D

    PubMed Central

    DiZio, Paul; Lackner, James R.

    2014-01-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909–912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model’s ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior–posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760

  18. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  19. 2D imaging of functional structures in perfused pig heart

    NASA Astrophysics Data System (ADS)

    Kessler, Manfred D.; Cristea, Paul D.; Hiller, Michael; Trinks, Tobias

    2002-06-01

    In 2000 by 2D-imaging we were able for the first time to visualize in subcellular space functional structures of myocardium. For these experiments we used hemoglobin-free perfused pig hearts in our lab. Step by step we learned to understand the meaning of subcellular structures. Principally, the experiment revealed that in subcellular space very fast changes of light scattering can occur. Furthermore, coefficients of different parameters were determined on the basis of multicomponent system theory.

  20. Multicolor symbology for remotely scannable 2D barcodes

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, Alexander D.; Sullivan, Timothy M.

    2008-03-01

    There has been much recent interest in mobile systems for augmented reality. However, existing visual tagging solutions are not robust at the low resolutions typical of current camera phones or at the low solid angles needed for "across-the-room" reality augmentation. In this paper, we propose a new 2D barcode symbology that uses multiple colors in order to address these challenges. We present preliminary results, showing the detection of example barcodes in this scheme over a range of angles.

  1. 2 1/2 -D compressible reconnection model

    NASA Astrophysics Data System (ADS)

    Skender, M.; Vršnak, B.

    The exact solution of the jump conditions on the RD/SMS discontinuity system in a two-and-half-dimensional (2 1/2 -D) symmetrical reconnection model enables one to analyse the outflowing jet characteristics in dependence on the inflow velocity, and to follow changes in transition to the two-dimensional model. Implications arising from the exact solution and its relevance for solar flares are discussed.

  2. CBEAM. 2-D: a two-dimensional beam field code

    SciTech Connect

    Dreyer, K.A.

    1985-05-01

    CBEAM.2-D is a two-dimensional solution of Maxwell's equations for the case of an electron beam propagating through an air medium. Solutions are performed in the beam-retarded time frame. Conductivity is calculated self-consistently with field equations, allowing sophisticated dependence of plasma parameters to be handled. A unique feature of the code is that it is implemented on an IBM PC microcomputer in the BASIC language. Consequently, it should be available to a wide audience.

  3. Universal Fabrication of 2D Electron Systems in Functional Oxides.

    PubMed

    Rödel, Tobias Chris; Fortuna, Franck; Sengupta, Shamashis; Frantzeskakis, Emmanouil; Fèvre, Patrick Le; Bertran, François; Mercey, Bernard; Matzen, Sylvia; Agnus, Guillaume; Maroutian, Thomas; Lecoeur, Philippe; Santander-Syro, Andrés Felipe

    2016-03-01

    2D electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO3 -based heterostructures, are hampered by the need for growing complex oxide overlayers thicker than 2 nm using evolved techniques. It is demonstrated that thermal deposition of a monolayer of an elementary reducing agent suffices to create 2DESs in numerous oxides. PMID:26753522

  4. Statistical analysis of quiet stance sway in 2-D.

    PubMed

    Bakshi, Avijit; DiZio, Paul; Lackner, James R

    2014-04-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909-912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model's ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior-posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760

  5. Valley and electric photocurrents in 2D silicon and graphene

    SciTech Connect

    Tarasenko, S. A.; Ivchenko, E. L.; Olbrich, P.; Ganichev, S. D.

    2013-12-04

    We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

  6. Baby universes and fractal structure of 2d gravity

    NASA Astrophysics Data System (ADS)

    Thorleifsson, Gudmar

    1994-04-01

    We extract the string susceptibility exponent γstr by measuring the distribution of baby universes on surfaces in the case of various matter fields coupled to discrete 2d quantum gravity. For c <= 1 the results are in good agreement with the KPZ-formula, if logarithmic corrections are taken into account for c = 1. For c > 1 it is not as clear how to extract γstr but universality with respect to c is observed in the fractal structure.

  7. WMO SDS-WAS NAMEE Regional Center: Towards continuous evaluation of dust models in Northern Africa

    NASA Astrophysics Data System (ADS)

    Basart, Sara; García-Castillo, Gerardo; Cuevas, Emilio; Terradellas, Enric

    2016-04-01

    One of the most important activities of the Regional Center for Northern Africa, Middle East and Europe of the World Meteorological Organization's Sand and Dust Storm Warning Advisory and Assessment System (WMO SDS-WAS, http://sds-was.aemet.es) is the dust model intercomparison and forecast evaluation, which is deemed an indispensable service to the users and an invaluable tool to assess model skills. Currently, the Regional Center collects daily dust forecasts from models run by nine partners (BSC, ECMWF, NASA, NCEP, SEEVCCC, EMA, CNR-ISAC, NOA and UK Met Office). A multi-model ensemble has also been set up in an effort to provide added-value products to the users. The first problem to address the dust model evaluation is the scarcity of suitable routine observations near the Sahara, the world's largest source of mineral dust. The present contribution presents preliminary results of dust model evaluation using new observational datasets. The current routine evaluation of dust predictions is focused on total-column dust optical depth (DOD) and uses remote-sensing retrievals from sun-photometric (AERONET) and satellite (MODIS) measurements. However, most users of dust forecasts are interested in the concentration near the surface (in the air we breathe) rather than in the total column content. Therefore, evaluation of the predicted surface concentration is also necessary. In this context, the initiative of the African Monsoon Interdisciplinary Analysis (AMMA) International Program to establish permanent measuring stations in the Sahel is extremely important. Tapered Element Oscillating Microbalance (TEOM) monitors continuously record PM10 in M'Bour (Senegal); Cinzana (Mali) and Banizoumbou (Niger). This surface model evaluation is complemented with the PM10 observation from the Air Quality Control and Monitoring Network (AQCMN) of the Canary Islands (Spain). The region, located in the sub-tropical Eastern Atlantic (roughly 100 km west of the Moroccan coast), is

  8. An Intercomparison of 2-D Models Within a Common Framework

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations

  9. Resolving 2D Amorphous Materials with Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim

    Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.

  10. Hunting down magnetic monopoles in 2D topological insulators?

    NASA Astrophysics Data System (ADS)

    He, Xugang; Cmpmsd At Bnl Team

    Contrary to the existence of electric charge, magnetic monopole does not exist in nature. It is thus extraordinary to find that magnetic monopoles can be pictured conceptually in topological insulators. For 2D topological insulators, the topological invariant corresponds to the total flux of an effective magnetic field (the Berry curvature) over the reciprocal space. Upon wrapping the 2D reciprocal space into a compact manifold as a torus, the non-zero total flux can be considered to originate from magnetic monopoles with quantized charge. We will first illustrate the intrinsic difficulty via extending a 2D problem to a 3D reciprocal space, and then demonstrate that analytical continuation to the complex momentum space offers a natural solution in which 1) the magnetic monopoles emerge naturally in pairs each forming a string above and below the real axis possessing opposite charge, and 2) the total charge below the real axis gives exactly the topological invariant. In essence, the robustness of the topology is mapped to the robustness of the total charge in the lower complex plan, a mapping intriguing even mathematically. Finally, we will illustrate the evolution across the topological phase transition, providing a natural description of the metallic nature in the phase boundary, and offering a clear explanation why a change of global topology can be induced via a local change in reciprocal space. Work supported by US DOE BES DE-AC02-98CH10886.

  11. F-theory and 2d (0, 2) theories

    NASA Astrophysics Data System (ADS)

    Schäfer-Nameki, Sakura; Weigand, Timo

    2016-05-01

    F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.

  12. Design Application Translates 2-D Graphics to 3-D Surfaces

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  13. Role of defects in frictional properties of 2-D materials

    NASA Astrophysics Data System (ADS)

    Kavalur, Aditya; Kim, Woo Kyun

    Graphene and other 2-D materials have provided a promising prospect to improve the tribological properties of small length scale devices such as MEMS/NEMS due to their low friction coefficient and excellent wear resistance. Several recent research efforts have been devoted to unveiling the physical origin of the superior tribological properties of these 2-D materials from both experimental and theoretical standpoints, however, many of them still remain far from clearly understood. Recently, it was shown that lamellar materials do not conform to the predictions of the Prandtl-Tomlinson model due to additional friction mechanisms of delamination and visco-elastic ploughing. These mechanisms are critical as they explain the low and negative coefficients of friction observed in recent AFM experiments. However, thus far, most simulation and theoretical studies about these novel friction mechanisms have focused on only pristine graphene whereas real graphene sheets prepared by CVD and other conventional techniques possess various forms of defects such as vacancies and non-hexagonal rings. In this study we examine the role of these defects in frictional properties of 2-D materials in relation to delamination and visco-elastic ploughing.

  14. 2D luminescence imaging of pH in vivo

    PubMed Central

    Schreml, Stephan; Meier, Robert J.; Wolfbeis, Otto S.; Landthaler, Michael; Szeimies, Rolf-Markus; Babilas, Philipp

    2011-01-01

    Luminescence imaging of biological parameters is an emerging field in biomedical sciences. Tools to study 2D pH distribution are needed to gain new insights into complex disease processes, such as wound healing and tumor metabolism. In recent years, luminescence-based methods for pH measurement have been developed. However, for in vivo applications, especially for studies on humans, biocompatibility and reliability under varying conditions have to be ensured. Here, we present a referenced luminescent sensor for 2D high-resolution imaging of pH in vivo. The ratiometric sensing scheme is based on time-domain luminescence imaging of FITC and ruthenium(II)tris-(4,7-diphenyl-1,10-phenanthroline). To create a biocompatible 2D sensor, these dyes were bound to or incorporated into microparticles (aminocellulose and polyacrylonitrile), and particles were immobilized in polyurethane hydrogel on transparent foils. We show sensor precision and validity by conducting in vitro and in vivo experiments, and we show the versatility in imaging pH during physiological and chronic cutaneous wound healing in humans. Implementation of this technique may open vistas in wound healing, tumor biology, and other biomedical fields. PMID:21262842

  15. A 2-D ECE Imaging Diagnostic for TEXTOR

    NASA Astrophysics Data System (ADS)

    Wang, J.; Deng, B. H.; Domier, C. W.; Luhmann, H. Lu, Jr.

    2002-11-01

    A true 2-D extension to the UC Davis ECE Imaging (ECEI) concept is under development for installation on the TEXTOR tokamak in 2003. This combines the use of linear arrays with multichannel conventional wideband heterodyne ECE radiometers to provide a true 2-D imaging system. This is in contrast to current 1-D ECEI systems in which 2-D images are obtained through the use of multiple plasma discharges (varying the scanned emission frequency each discharge). Here, each array element of the 20 channel mixer array measures plasma emission at 16 simultaneous frequencies to form a 16x20 image of the plasma electron temperature Te. Correlation techniques can then be applied to any pair of the 320 image elements to study both radial and poloidal characteristics of turbulent Te fluctuations. The system relies strongly on the development of low cost, wideband (2-18 GHz) IF detection electronics for use in both ECE Imaging as well as conventional heterodyne ECE radiometry. System details, with a strong focus on the wideband IF electronics development, will be presented. *Supported by U.S. DoE Contracts DE-FG03-95ER54295 and DE-FG03-99ER54531.

  16. Dopamine D2/D3 receptor availability and venturesomeness.

    PubMed

    Bernow, Nina; Yakushev, Igor; Landvogt, Christian; Buchholz, Hans-Georg; Smolka, Michael N; Bartenstein, Peter; Lieb, Klaus; Gründer, Gerhard; Vernaleken, Ingo; Schreckenberger, Mathias; Fehr, Christoph

    2011-08-30

    The construct of impulsivity is considered as a major trait of personality. There is growing evidence that the mesolimbic dopamine system plays an important role in the modulation of impulsivity and venturesomeness, the two key components within the impulsivity-construct. The aim of the present study was to explore an association between trait impulsivity measured with self-assessment and the dopaminergic neurotransmission as measured by positron emission tomography (PET) in a cohort of healthy male subjects. In vivo D2/D3 receptor availability was determined with [(18)F]fallypride PET in 18 non-smoking healthy subjects. The character trait impulsivity was measured using the Impulsiveness-Venturesomeness-Empathy questionnaire (I7). Image processing and statistical analysis was performed on a voxel-by-voxel basis using statistical parametric mapping (SPM) software. The I7 subscale venturesomeness correlated positively with the D2/D3 receptor availability within the left temporal cortex and the thalamus. Measures on the I7 subscale impulsiveness and empathy did not correlate with the D2/D3 receptor availability in any brain region investigated. Our results suggest the involvement of extrastriatal dopaminergic neurotransmission in venturesomeness, a component of impulsivity. PMID:21689908

  17. Characterization of Porous Medium Properties Using 2D NMR

    NASA Astrophysics Data System (ADS)

    Sun, Boqin; Dunn, Keh-Jim

    2003-03-01

    We have successfully applied the concept of 2D NMR to the characterization of properties of fluid-saturated porous medium. Using a two-windowed modified CPMG pulse sequence, we were able to explore the magnetic internal filed gradient distribution within the pore space of a fluid-saturated porous medium due to magnetic susceptibility contrast between the solid matrix and pore fluid. Similar scheme is used to identify and quantify different types of pore fluids, such as oil, water, and gas, based on the contrast in their diffusion coefficients. The magic angle spinning technique (MAS) can also be applied in the 2D NMR framework for delineating the chemical shift spectra of the pore fluids in a porous medium at different T1 or T2 relaxation times. The results can be displayed in a two-dimensional plot, with one axis being the T1 or T2 relaxation times, the other axis being the internal field gradient, diffusion coefficient, or chemical shift, and the third axis being the proton population. Our preliminary laboratory work indicates that the 2D NMR approach can be a powerful tool for the characterization of properties of fluid-saturated porous medium, such as fluid typing, oil viscosity determination, surface wettability, etc.

  18. Broadband THz Spectroscopy of 2D Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Tripathi, Shivendra; Huang, Mengchen; Hsu, Jen-Feng; D'Urso, Brian; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides (TMDC) have attracted intense research interest in the past decade. Their unique electronic and optical properties offer the promise of novel optoelectronic applications in the terahertz regime. Recently, generation and detection of broadband terahertz (10 THz bandwidth) emission from 10-nm-scale LaAlO3/SrTiO3 nanostructures created by conductive atomic force microscope (c-AFM) lithography has been demonstrated . This unprecedented control of THz emission at 10 nm length scales creates a pathway toward hybrid THz functionality in 2D-material/LaAlO3/SrTiO3 heterostructures. Here we report initial efforts in THz spectroscopy of 2D nanoscale materials with resolution comparable to the dimensions of the nanowire (10 nm). Systems under investigation include graphene, single-layer molybdenum disulfide (MoS2), and tungsten diselenide (WSe2) nanoflakes. 1. Y. Ma, et al., Nano Lett. 13, 2884 (2013). We gratefully acknowledge financial support from the following agencies and grants: AFOSR (FA9550-12-1-0268 (JL, PRI), FA9550-12-1-0342 (CBE)), ONR (N00014-13-1-0806 (JL, CBE), N00014-15-1-2847 (JL)), NSF DMR-1124131 (JL, CBE) and DMR-1234096 (CBE).

  19. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2015-12-09

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  20. Simulation of Ion Motion in FAIMS through Combined Use of SIMION and Modified SDS

    SciTech Connect

    Prasad, Satendra; Tang, Keqi; Manura, David; Papanastasiou, Dimitris; Smith, Richard D.

    2009-11-01

    Over the years, the use of Field Asymmetric Ion Mobility Spectrometry (FAIMS) has grown with applications spanning from explosives detection to separation of complex biological mixtures. Although, the principles of ion separation in FAIMS is understood and comprehensively characterized, little effort has been made in developing commercially available computational tools that can simulate ion motion in FAIMS. Such a tool could be of great value for refining theory, optimizing the performance of the instrument for specific applications, and in modeling the fringe-fields caused by rf decay at the entrance and exit of FAIMS which can significantly affect ion transmission. An algorithm using SIMIONTM as its core structure was developed in this study to realistically compute ion trajectory at different ratios of electric field to buffer gas number density (E/N). The E/N can vary from a few Td to ~80 Td in FAIMS as created by an asymmetric square waveform. The Statistical Diffusion Simulation (SDS) model was further incorporated in the algorithm to simulate the ion diffusion in the FAIMS gap. The algorithm was validated using a FAIMS analyzer model similar to the Sionex Corporation model SVAC in terms of its dimensions and geometry. Hydroxyproline and Leucine ions with similar reduced mobility Ko (2.17 and 2.18 cm2.V-1.s-1, respectively) were used as model ions to test the new algorithm and demonstrate the effects of gas flow and waveform (voltage pulse amplitude and frequency) on peak shape and ion current transmission. Simulation results from three ion types: O2-(H2O)3, (A type), (C3H6O)2H+ (B type), and (C12H24O)2H+ (C type) were then compared with the experimental data (available in the literature). The SIMION-SDS-Field Dependent Mobility Calculation (FDMC) algorithm provided good agreement with experimental measurements of the ion peak position in FAIMS compensation voltage (CV) spectrum, peak width, and the ion transmission over a broad range of E/N.

  1. WMO Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS): Research Implementation Status

    NASA Astrophysics Data System (ADS)

    Nickovic, Slobodan; Barrie, Leonard

    2010-05-01

    Assessment System (SDS-WAS) in order to improve the capabilities of countries affected by dust to reduce risks associated with airborne sand and dust. This project is in response to the desire of more than 40 WMO member countries to improve capabilities for more reliable sand and dust storm forecasts. The project has strong crosscutting features: it relies on real-time delivery of products; it integrates research communities (modelling, observation groups, and effects) and communities of practice (e.g. medical, aeronautical, agricultural users). There are two already established SDS-WAS nodes (Asian and North-Africa-Europe-Middle East) that coordinate implementation of the project objectives at regional levels. This presentation will review current status and future steps in the project implementation.

  2. Evaluation of the Submerged Demineralizer System (SDS) flowsheet for decontamination of high-activity-level water at the Three Mile Island Unit 2 Nuclear Power Station

    SciTech Connect

    Campbell, D. O.; Collins, E. D.; King, L. J.; Knauer, J. B.

    1980-07-01

    This report discusses the Submerged Demineralizer System (SDS) flowsheet for decontamination of the high-activity-level water at the Three Mile Island Unit 2 Nuclear Power Station was evaluated at Oak Ridge National Laboratory in a study that included filtration tests, ion exchange column tests, and ion exchange distribution tests. The contaminated waters, the SDS flowsheet, and the experiments made are described. The experimental results were used to predict the SDS performance and to indicate potential improvements.

  3. Simulation of 2D Fields of Raindrop Size Distributions

    NASA Astrophysics Data System (ADS)

    Berne, A.; Schleiss, M.; Uijlenhoet, R.

    2008-12-01

    The raindrop size distribution (DSD hereafter) is of primary importance for quantitative applications of weather radar measurements. The radar reflectivity~Z (directly measured by radar) is related to the power backscattered by the ensemble of hydrometeors within the radar sampling volume. However, the rain rate~R (the flux of water to the surface) is the variable of interest for many applications (hydrology, weather forecasting, air traffic for example). Usually, radar reflectivity is converted into rain rate using a power law such as Z=aRb. The coefficients a and b of the Z-R relationship depend on the DSD. The variability of the DSD in space and time has to be taken into account to improve radar rain rate estimates. Therefore, the ability to generate a large number of 2D fields of DSD which are statistically homogeneous provides a very useful simulation framework that nicely complements experimental approaches based on DSD data, in order to investigate radar beam propagation through rain as well as radar retrieval techniques. The proposed approach is based on geostatistics for structural analysis and stochastic simulation. First, the DSD is assumed to follow a gamma distribution. Hence a 2D field of DSDs can be adequately described as a 2D field of a multivariate random function consisting of the three DSD parameters. Such fields are simulated by combining a Gaussian anamorphosis and a multivariate Gaussian random field simulation algorithm. Using the (cross-)variogram models fitted on data guaranties that the spatial structure of the simulated fields is consistent with the observed one. To assess its validity, the proposed method is applied to data collected during intense Mediterranean rainfall. As only time series are available, Taylor's hypothesis is assumed to convert time series in 1D range profile. Moreover, DSD fields are assumed to be isotropic so that the 1D structure can be used to simulate 2D fields. A large number of 2D fields of DSD parameters are

  4. 2D-PAGE analysis of the soluble proteins of the tropical liver fluke, Fasciola gigantica and biliary amphistome, Gigantocotyle explanatum, concurrently infecting Bubalus bubalis.

    PubMed

    Khan, Yasir A; Khan, Mohd Abdul Hannan; Abidi, S M A

    2016-09-01

    The digenetic trematodes, Fasciola gigantica and Gigantocotyle explanatum, belonging to the family Fasciolidae and Paramphistomidae respectively, have been often found to concurrently infect the liver of Indian water buffalo Bubalus bubalis, causing serious pathological damage to the vital organ, incurring huge economic losses. In the present study the soluble gene products of both F. gigantica and G. explanatum were analyzed by 2 dimensional polyacrylamide gel electrophoresis. The soluble proteomic profile revealed considerable similarity as well as differences in the size, distribution pattern, total number, the isoelectric point (pI) and molecular weight (Mr) of the resolved polypeptide spots. The maximum number of polypeptide spots with a molecular weight range of >10 to 160 kDa were recorded with a pI range of 7-9 followed by pI range of 5-7, 9-10 and 3-5 in both the parasites. However, considerable variation was recorded in the Mr of the polypeptides belonging to each pI range. The genetic heterogeneity could be an obvious contributing factor for such differences but some polypeptides appeared to be conserved in the two species. The molecular similarities and the habitat preference by these worms may be a consequence of microenvironmental cues that guide these flukes to reach their habitat through different routes and establish a successful host-parasite relationship. PMID:27605808

  5. Web Pages for Your Classroom: The Easy Way!

    ERIC Educational Resources Information Center

    McCorkle, Sandra K.

    This book provides the classroom teacher or librarian with templates and instructions for creating Web pages for use with middle school or high school students. The pages can then be used for doing research projects or other types of projects that familiarize students with the power, flexibility, and usefulness of the Web. Part I, Technology in…

  6. 47 CFR 95.27 - Paging receiver description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Paging receiver description. 95.27 Section 95.27 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.27 Paging receiver description. A...

  7. 47 CFR 95.27 - Paging receiver description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Paging receiver description. 95.27 Section 95.27 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.27 Paging receiver description. A...

  8. Paging and Scrolling: Cognitive Styles in Learning from Hypermedia

    ERIC Educational Resources Information Center

    Eyuboglu, Filiz; Orhan, Feza

    2011-01-01

    This study investigates the navigational patterns and learning achievement of university students with different cognitive styles, on hypermedia learning environments using paging or scrolling. The global-local subscales of Sternberg's Thinking Styles Inventory, two hypermedia, one using paging, the other using scrolling, a multiple choice…

  9. The Library as Information Provider: The Home Page.

    ERIC Educational Resources Information Center

    Clyde, Laurel A.

    1996-01-01

    Discusses ways in which libraries are using the World Wide Web to provide information via a home page, based on information from a survey in Iceland as well as a larger study that conducted content analyses of home pages of public and school libraries in 13 countries. (Author/LRW)

  10. JavaScript: Convenient Interactivity for the Class Web Page.

    ERIC Educational Resources Information Center

    Gray, Patricia

    This paper shows how JavaScript can be used within HTML pages to add interactive review sessions and quizzes incorporating graphics and sound files. JavaScript has the advantage of providing basic interactive functions without the use of separate software applications and players. Because it can be part of a standard HTML page, it is…

  11. Instructional Opportunities of a Subject-Oriented (Law) Web Page.

    ERIC Educational Resources Information Center

    Lehner, John A.; Jacobson, Trudi E.

    1997-01-01

    Describes the State University of New York at Albany law Web page that was designed to help teach students and others, as well as to provide access to selected law resources. Benefits of this instructional subject-specific Web page are its user-friendliness, its flexibility, its ability to provide a cognitive structure and to promote critical…

  12. Evaluating Information Quality: Hidden Biases on the Children's Web Pages

    ERIC Educational Resources Information Center

    Kurubacak, Gulsun

    2006-01-01

    As global digital communication continues to flourish, the Children's Web pages become more critical for children to realize not only the surface but also breadth and deeper meanings in presenting these milieus. These pages not only are very diverse and complex but also enable intense communication across social, cultural and political…

  13. An Analysis of Academic Library Web Pages for Faculty

    ERIC Educational Resources Information Center

    Gardner, Susan J.; Juricek, John Eric; Xu, F. Grace

    2008-01-01

    Web sites are increasingly used by academic libraries to promote key services and collections to teaching faculty. This study analyzes the content, location, language, and technological features of fifty-four academic library Web pages designed especially for faculty to expose patterns in the development of these pages.

  14. Dynamic Web Pages: Performance Impact on Web Servers.

    ERIC Educational Resources Information Center

    Kothari, Bhupesh; Claypool, Mark

    2001-01-01

    Discussion of Web servers and requests for dynamic pages focuses on experimentally measuring and analyzing the performance of the three dynamic Web page generation technologies: CGI, FastCGI, and Servlets. Develops a multivariate linear regression model and predicts Web server performance under some typical dynamic requests. (Author/LRW)

  15. Toward a User-Centered Academic Library Home Page

    ERIC Educational Resources Information Center

    McHale, Nina

    2008-01-01

    In the past decade, academic libraries have struggled with the design of an effective library home page. Since librarians' mental models of information architecture differ from those of their patrons, usability assessments are necessary in designing a user-centered home page. This study details a usability sequence of card sort and paper and…

  16. Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Mitsionis, Anastasios I.; Vaimakis, Tiverios C.

    2012-09-01

    Critical micelle concentration (CMC) of two anionic surfactants in methanol was estimated using conductometry, viscometry and pyrene fluorescence spectroscopy methods. The surfactants used, were sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol-OT, AOT) and sodium dodecyl sulfate (SDS) dispersed in pure methanol. The CMC determination was evaluated in room temperature. The results have shown nearly similar concentrations.

  17. Caseoperoxidase, mixed β-casein-SDS-hemin-imidazole complex: a nano artificial enzyme.

    PubMed

    Moosavi-Movahedi, Zainab; Gharibi, Hussein; Hadi-Alijanvand, Hamid; Akbarzadeh, Mohammad; Esmaili, Mansoore; Atri, Maliheh S; Sefidbakht, Yahya; Bohlooli, Mousa; Nazari, Khodadad; Javadian, Soheila; Hong, Jun; Saboury, Ali A; Sheibani, Nader; Moosavi-Movahedi, Ali A

    2015-01-01

    A novel peroxidase-like artificial enzyme, named "caseoperoxidase", was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme-imidazole-β-casein-SDS exhibited high activity growth and k(cat) performance toward the native horseradish peroxidase demonstrated by the steady state kinetics using UV-vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein) was selected as an appropriate apo-protein for the heme active site because of its innate flexibility and exalted hydrophobicity. This selection was confirmed by homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation and provided a suitable protective role for the heme active-site. Additional experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme. PMID:25562503

  18. Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS)

    PubMed Central

    Widom, Julia R.; Johnson, Neil P.; von Hippel, Peter H.; Marcus, Andrew H.

    2013-01-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) – a fluorescence-detected variation of 2D electronic spectroscopy – to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes. PMID:24223491

  19. Cloning and characterization of a novel human phosphatidic acid phosphatase type 2, PAP2d, with two different transcripts PAP2d_v1 and PAP2d_v2.

    PubMed

    Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin

    2005-04-01

    This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney. PMID:16010976

  20. Optimizing TLB entries for mixed page size storage in contiguous memory

    DOEpatents

    Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Kriegel, Jon K.; Ohmacht, Martin; Steinmacher-Burow, Burkhard

    2013-04-30

    A system and method for accessing memory are provided. The system comprises a lookup buffer for storing one or more page table entries, wherein each of the one or more page table entries comprises at least a virtual page number and a physical page number; a logic circuit for receiving a virtual address from said processor, said logic circuit for matching the virtual address to the virtual page number in one of the page table entries to select the physical page number in the same page table entry, said page table entry having one or more bits set to exclude a memory range from a page.

  1. Comments on Hudesman and Page's reply to Fudin's comments on Hudesman, Page and Rautianen's subliminal psychodynamic activation experiment.

    PubMed

    Fudin, R

    1993-06-01

    Hudesman and Page's contention that Gustafson and Källmén's 1991 results indicate that subsequent subliminal psychodynamic activation experiments do not require the controls suggested by Fudin in 1986 is questioned. The rationale for Fudin's 1993 comment concerning the limited generalizability of Hudesman, et al.'s (1992) results, a comment Hudesman and Page contended is unfounded, is discussed. PMID:8321599

  2. 2D Seismic Reflection Data across Central Illinois

    SciTech Connect

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made

  3. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin “wrapping”, i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  4. 2D to 3D conversion implemented in different hardware

    NASA Astrophysics Data System (ADS)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  5. Progress in 2D photonic crystal Fano resonance photonics

    NASA Astrophysics Data System (ADS)

    Zhou, Weidong; Zhao, Deyin; Shuai, Yi-Chen; Yang, Hongjun; Chuwongin, Santhad; Chadha, Arvinder; Seo, Jung-Hun; Wang, Ken X.; Liu, Victor; Ma, Zhenqiang; Fan, Shanhui

    2014-01-01

    In contrast to a conventional symmetric Lorentzian resonance, Fano resonance is predominantly used to describe asymmetric-shaped resonances, which arise from the constructive and destructive interference of discrete resonance states with broadband continuum states. This phenomenon and the underlying mechanisms, being common and ubiquitous in many realms of physical sciences, can be found in a wide variety of nanophotonic structures and quantum systems, such as quantum dots, photonic crystals, plasmonics, and metamaterials. The asymmetric and steep dispersion of the Fano resonance profile promises applications for a wide range of photonic devices, such as optical filters, switches, sensors, broadband reflectors, lasers, detectors, slow-light and non-linear devices, etc. With advances in nanotechnology, impressive progress has been made in the emerging field of nanophotonic structures. One of the most attractive nanophotonic structures for integrated photonics is the two-dimensional photonic crystal slab (2D PCS), which can be integrated into a wide range of photonic devices. The objective of this manuscript is to provide an in depth review of the progress made in the general area of Fano resonance photonics, focusing on the photonic devices based on 2D PCS structures. General discussions are provided on the origins and characteristics of Fano resonances in 2D PCSs. A nanomembrane transfer printing fabrication technique is also reviewed, which is critical for the heterogeneous integrated Fano resonance photonics. The majority of the remaining sections review progress made on various photonic devices and structures, such as high quality factor filters, membrane reflectors, membrane lasers, detectors and sensors, as well as structures and phenomena related to Fano resonance slow light effect, nonlinearity, and optical forces in coupled PCSs. It is expected that further advances in the field will lead to more significant advances towards 3D integrated photonics, flat

  6. 3D track initiation in clutter using 2D measurements

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Kirubarajan, Thiagalingam; Bar-Shalom, Yaakov

    2001-11-01

    In this paper we present an algorithm for initiating 3-D tracks using range and azimuth (bearing) measurements from a 2-D radar on a moving platform. The work is motivated by the need to track possibly low-flying targets, e.g., cruise missiles, using reports from an aircraft-based surveillance radar. Previous work on this problem considered simple linear motion in a flat earth coordinate frame. Our research extends this to a more realistic scenario where the earth"s curvature is also considered. The target is assumed to be moving along a great circle at a constant altitude. After the necessary coordinate transformations, the measurements are nonlinear functions of the target state and the observability of target altitude is severely limited. The observability, quantified by the Cramer-Rao Lower Bound (CRLB), is very sensitive to the sensor-to-target geometry. The paper presents a Maximum Likelihood (ML) estimator for estimating the target motion parameters in the Earth Centered Earth Fixed coordinate frame from 2-D range and angle measurements. In order to handle the possibility of false measurements and missed detections, which was not considered in, we use the Probabilistic Data Association (PDA) algorithm to weight the detections in a frame. The PDA-based modified global likelihood is optimized using a numerical search. The accuracies obtained by the resulting ML-PDA estimator are quantified using the CRLB for different sensor-target configurations. It is shown that the proposed estimator is efficient, that is, it meets the CRLB. Of particular interest is the achievable accuracy for estimating the target altitude, which is not observed directly by the 2-D radar, but can be only inferred from the range and bearing observations.

  7. 2D induced gravity from the canonically gauged WZNW system

    NASA Astrophysics Data System (ADS)

    Blagojević, M.; Popović, D. S.; Sazdović, B.

    1999-02-01

    Starting from the Kac-Moody structure of the WZNW model for SL(2,R) and using the general canonical formalism, we formulate a gauge theory invariant under local SL(2,R)×SL(2,R) and diffeomorphisms. This theory represents a gauge extension of the WZNW system, defined by a difference of two simple WZNW actions. By performing a partial gauge fixing and integrating out some dynamical variables, we prove that the resulting effective theory coincides with the induced gravity in 2D. The geometric properties of the induced gravity are obtained out of the gauge properties of the WZNW system with the help of the Dirac brackets formalism.

  8. Recent update of the RPLUS2D/3D codes

    NASA Technical Reports Server (NTRS)

    Tsai, Y.-L. Peter

    1991-01-01

    The development of the RPLUS2D/3D codes is summarized. These codes utilize LU algorithms to solve chemical non-equilibrium flows in a body-fitted coordinate system. The motivation behind the development of these codes is the need to numerically predict chemical non-equilibrium flows for the National AeroSpace Plane Program. Recent improvements include vectorization method, blocking algorithms for geometric flexibility, out-of-core storage for large-size problems, and an LU-SW/UP combination for CPU-time efficiency and solution quality.

  9. Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.

    2009-01-01

    VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.

  10. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  11. 2D/3D Synthetic Vision Navigation Display

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.

    2008-01-01

    Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.

  12. Efficient 2d full waveform inversion using Fortran coarray

    NASA Astrophysics Data System (ADS)

    Ryu, Donghyun; Kim, ahreum; Ha, Wansoo

    2016-04-01

    We developed a time-domain seismic inversion program using the coarray feature of the Fortran 2008 standard to parallelize the algorithm. We converted a 2d acoustic parallel full waveform inversion program with Message Passing Interface (MPI) to a coarray program and examined performance of the two inversion programs. The results show that the speed of the waveform inversion program using the coarray is slightly faster than that of the MPI version. The standard coarray lacks features for collective communication; however, it can be improved in following standards since it is introduced recently. The parallel algorithm can be applied for 3D seismic data processing.

  13. Unitary matrix models and 2D quantum gravity

    SciTech Connect

    Dalley, S. . Joseph Henry Labs.); Johnson, C.V.; Morris, T.R. . Dept. of Physics); Watterstam, A. )

    1992-09-21

    In this paper the KdV and modified KdV integrable hierarchies are shown to be different descriptions of the same 2D gravitational system - open-closed string theory. Non-perturbative solutions of the multicritical unitary matrix models map to non-singular solutions of the renormalization group equation for the string susceptibility, [P, Q] = Q. The authors also demonstrate that the large-N solutions of unitary matrix integrals in external fields, studied by Gross and Newman, equal the non-singular pure closed-string solutions of [[bar P], Q] = Q.

  14. 2-D scalable optical controlled phased-array antenna system

    NASA Astrophysics Data System (ADS)

    Chen, Maggie Yihong; Howley, Brie; Wang, Xiaolong; Basile, Panoutsopoulos; Chen, Ray T.

    2006-02-01

    A novel optoelectronically-controlled wideband 2-D phased-array antenna system is demonstrated. The inclusion of WDM devices makes a highly scalable system structure. Only (M+N) delay lines are required to control a M×N array. The optical true-time delay lines are combination of polymer waveguides and optical switches, using a single polymeric platform and are monolithically integrated on a single substrate. The 16 time delays generated by the device are measured to range from 0 to 175 ps in 11.6 ps. Far-field patterns at different steering angles in X-band are measured.

  15. Ring Correlations in Two-Dimensional (2D) Random Networks

    NASA Astrophysics Data System (ADS)

    Sadjadi, Mahdi; Thorpe, M. F.

    Amorphous materials can be characterized by their ring structure. Recently, two experimental groups imaged bilayers of vitreous silica at atomic resolution which provides a direct access to the ring structure of a 2D glass. It has been shown that experimental samples have various ring statistics, obey Aboav-Weaire law and have a distinct area law. In this work, we study correlations between rings as a function of their size and topological separation. We show that correlation is medium-range and vanishes when the separation is about three rings apart. We also present a generalization of the Aboav-Weaire law.

  16. Breakdown of wave diffusion in 2D due to loops.

    PubMed

    Haney, Matthew; Snieder, Roel

    2003-08-29

    The validity of the diffusion approximation for the intensity of multiply scattered waves is tested with numerical simulations in a strongly scattering 2D medium of finite extent. We show that the diffusion equation underestimates the intensity and attribute this to both the neglect of recurrent scattering paths and interference within diffusion theory. We present a theory to quantify this discrepancy based on counting all possible scattering paths between point scatterers. Interference phenomena, due to loop paths, are incorporated in a way similar to coherent backscattering. PMID:14525183

  17. Anomalous Hall Effect in a 2D Rashba Ferromagnet.

    PubMed

    Ado, I A; Dmitriev, I A; Ostrovsky, P M; Titov, M

    2016-07-22

    Skew scattering on rare impurity configurations is shown to dominate the anomalous Hall effect in a 2D Rashba ferromagnet. The mechanism originates in scattering on rare impurity pairs separated by distances of the order of the Fermi wavelength. The corresponding theoretical description goes beyond the conventional noncrossing approximation. The mechanism provides the only contribution to the anomalous Hall conductivity in the most relevant metallic regime and strongly modifies previously obtained results for lower energies in the leading order with respect to impurity strength. PMID:27494487

  18. Ultrathin 2D Metal-Organic Framework Nanosheets.

    PubMed

    Zhao, Meiting; Wang, Yixian; Ma, Qinglang; Huang, Ying; Zhang, Xiao; Ping, Jianfeng; Zhang, Zhicheng; Lu, Qipeng; Yu, Yifu; Xu, Huan; Zhao, Yanli; Zhang, Hua

    2015-12-01

    A facile surfactant-assisted bottom-up synthetic method to prepare a series of freestanding ultrathin 2D M-TCPP (M = Zn, Cu, Cd or Co, TCPP = tetrakis(4-carboxyphenyl)porphyrin) nanosheets with a thickness of sub-10 nm is developed. As a proof-of-concept application, some of them are successfully used as new platforms for DNA detection. The Cu-TCPP nanosheet-based sensor shows excellent fluorescent sensing performance and is used for the simultaneous detection of multiple DNA targets. PMID:26468970

  19. Finite Element Analysis of 2-D Elastic Contacts Involving FGMs

    NASA Astrophysics Data System (ADS)

    Abhilash, M. N.; Murthy, H.

    2014-05-01

    The response of elastic indenters in contact with Functionally Graded Material (FGM) coated homogeneous elastic half space has been presented in the current paper. Finite element analysis has been used due to its ability to handle complex geometry, material, and boundary conditions. Indenters of different typical surface profiles have been considered and the problem has been idealized as a two-dimensional (2D) plane strain problem considering only normal loads. Initially, indenters were considered to be rigid and the results were validated with the solutions presented in the literature. The analysis has then been extended to the case of elastic indenters on FGM-coated half spaces and the results are discussed.

  20. Topology-Preserving Rigid Transformation of 2D Digital Images.

    PubMed

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping. PMID:26270925