Science.gov

Sample records for 2d street canyons

  1. Reduced order modelling of an unstructured mesh air pollution model and application in 2D/3D urban street canyons

    NASA Astrophysics Data System (ADS)

    Fang, F.; Zhang, T.; Pavlidis, D.; Pain, C. C.; Buchan, A. G.; Navon, I. M.

    2014-10-01

    A novel reduced order model (ROM) based on proper orthogonal decomposition (POD) has been developed for a finite-element (FE) adaptive mesh air pollution model. A quadratic expansion of the non-linear terms is employed to ensure the method remained efficient. This is the first time such an approach has been applied to air pollution LES turbulent simulation through three dimensional landscapes. The novelty of this work also includes POD's application within a FE-LES turbulence model that uses adaptive resolution. The accuracy of the reduced order model is assessed and validated for a range of 2D and 3D urban street canyon flow problems. By comparing the POD solutions against the fine detail solutions obtained from the full FE model it is shown that the accuracy is maintained, where fine details of the air flows are captured, whilst the computational requirements are reduced. In the examples presented below the size of the reduced order models is reduced by factors up to 2400 in comparison to the full FE model while the CPU time is reduced by up to 98% of that required by the full model.

  2. NO2 photolysis frequencies in street canyons

    NASA Astrophysics Data System (ADS)

    Koepke, P.; Garhammer, M.; Hess, M.; Roeth, E.-P.

    2010-08-01

    Photolysis frequencies for NO2 are modeled for the conditions in urban streets, which are taken into account as canyons with variable height and width. The effect of a street canyon is presented with absolute values and as a ratio RJ of the photolysis frequency within the street compared to that with free horizon. This allows further use of the existing photolysis parameterizations. Values are presented for variable solar elevation and azimuth angles, varying atmospheric conditions and different street properties. The NO2 photolysis frequency in a street depends strongly on the relative width of the street and its orientation towards the sun. Averaged over atmospheric conditions and street orientation, the NO2 photolysis frequency is reduced in comparison with the values for free horizon: to less than 20% for narrow skyscraper streets, to about 40% for typical urban streets, and only to about 80% for garden streets. A parameterization with the global solar irradiance is given for the averaged RJ values.

  3. NO2 photolysis frequencies in street canyons

    NASA Astrophysics Data System (ADS)

    Koepke, P.; Garhammer, M.; Hess, M.; Roeth, E.-P.

    2010-05-01

    Photolysis frequencies for NO2 are modeled for the conditions in urban streets, which are taken into account as canyons with variable height and width. The effect of a street canyon is presented with absolute values and as a ratio RJ of the photolysis frequency within the street against those with free horizon, which allows further use of the existing photolysis parameterizations. Values are presented for variable solar elevation and azimuth angles, varying atmospheric conditions and different street properties. The NO2 photolysis frequency in the street, averaged over atmospheric conditions and street orientation, is reduced to less than 20% for narrow streets, to about 40% for typical urban streets, and only to about 80% for garden streets, each with about ±5% uncertainty. A parameterization of RJ with the global solar irradiance is given for values that are averaged over the meteorological conditions and the street orientation.

  4. Air pollutant transport in a street canyon

    SciTech Connect

    Luke Chen; Hsu-Cheng Chang

    1996-12-31

    An air pollutant (CO) distribution in a typical street canyon is simulated to evaluate pedestrian exposure. In this study, we consider factors those may affect the pollutant distribution in a typical street canyon. The considered factors include aspect ratio of a street canyon, atmospheric stability, traffic load and turbulent buoyancy effect. A two-dimensional domain that includes suburban roughness and urban street canyon is considered. The factors such as atmospheric stability, traffic load and turbulent buoyancy are imposed through the associated boundary conditions. With numerical simulation, the critical aspect ration of a street canyon the includes two vortices and results in pollutant accumulation are found. The buoyant effect is found to raise the same pollutant concentration up to the position higher than the results come out from the case without buoyancy. The pedestrian exposure to the street air pollutant under various traffic loads and atmospheric stability are evaluated. This study conclude that the local building regulations that specify the building height/street width ratio will not cause significant pedestrian exposure to the street air pollution in most of traffic loads and atmospheric stability conditions.

  5. Modelling Aerosol Dispersion in Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Tay, B. K.; Jones, D. P.; Gallagher, M. W.; McFiggans, G. B.; Watkins, A. P.

    2009-04-01

    Flow patterns within an urban street canyon are influenced by various micrometeorological factors. It also represents an environment where pollutants such as aerosols accumulate to high levels due to high volumes of traffic. As adverse health effects are being attributed to exposure to aerosols, an investigation of the dispersion of aerosols within such environments is of growing importance. In particular, one is concerned with the vertical structure of the aerosol concentration, the ventilation characteristics of the street canyon and the influence of aerosol microphysical processes. Due to the inherent heterogeneity of the aerosol concentrations within the street canyon and the lack of spatial resolution of measurement campaigns, these issues are an on-going debate. Therefore, a modelling tool is required to represent aerosol dispersion patterns to provide insights to results of past measurement campaigns. Computational Fluid Dynamics (CFD) models are able to predict detailed airflow patterns within urban geometries. This capability may be further extended to include aerosol dispersion, by an Euler-Euler multiphase approach. To facilitate the investigation, a two-dimensional, multiphase CFD tool coupled with the k-epsilon turbulence model and with the capability of modelling mixed convection flow regimes arising from both wind driven flows and buoyancy effects from heated walls was developed. Assuming wind blowing perpendicularly to the canyon axis and treating aerosols as a passive scalar, an attempt will be made to assess the sensitivities of aerosol vertical structure and ventilation characteristics to the various flow conditions. Numerical studies were performed using an idealized 10m by 10m canyon to represent a regular canyon and 10m by 5m to represent a deep one. An aerosol emission source was assigned on the centerline of the canyon to represent exhaust emissions. The vertical structure of the aerosols would inform future directives regarding the

  6. On the pollutant removal, dispersion, and entrainment over two-dimensional idealized street canyons

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Ho; Wong, Colman C. C.

    2014-01-01

    Pollutant dispersion over urban areas is not that well understood, in particular at the street canyon scale. This study is therefore conceived to examine how urban morphology modifies the pollutant removal, dispersion, and entrainment over urban areas. An idealized computational domain consisting of 12 two-dimensional (2D) identical street canyons of unity aspect ratio is employed. The large-eddy simulation (LES) is used to calculate the turbulent flows and pollutant transport in the urban boundary layer (UBL). An area source of uniform pollutant concentration is applied on the ground of the first street canyon. A close examination on the roof-level turbulence reveals patches of low-speed air masses in the streamwise flows and narrow high-speed downdrafts in the shear layer. Different from the flows over a smooth surface, the turbulence intensities are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses quickly in the UBL over the buildings. Partitioning the vertical pollutant flux into its mean and turbulent components demystifies that the pollutant removal is mainly governed by turbulence. Whereas, mean wind carries pollutant into and out of a street canyon simultaneously. In addition to wind speed promotion, turbulent mixing is thus required to dilute the ground-level pollutants, which are then removed from the street canyon to the UBL. Atmospheric flows slow down rapidly after the leeward buildings, leading to updrafts carrying pollutants away from the street canyons (the basic pollutant removal mechanism).

  7. On the escape of pollutants from urban street canyons

    NASA Astrophysics Data System (ADS)

    Baik, Jong-Jin; Kim, Jae-Jin

    Pollutant transport from urban street canyons is numerically investigated using a two-dimensional flow and dispersion model. The ambient wind blows perpendicular to the street and passive pollutants are released at the street level. Results from the control experiment with a street aspect ratio of 1 show that at the roof level of the street canyon, the vertical turbulent flux of pollutants is upward everywhere and the vertical flux of pollutants by mean flow is upward or downward. The horizontally integrated vertical flux of pollutants by mean flow at the roof level of the street canyon is downward and its magnitude is much smaller than that by turbulent process. These results indicate that pollutants escape from the street canyon mainly by turbulent process and that the net effect of mean flow is to make some escaped pollutants reenter the street canyon. Further experiments with different inflow turbulence intensities, inflow wind speeds, and street aspect ratio confirm the findings from the control experiment. In the case of two isolated buildings, the horizontally integrated vertical flux of pollutants by mean flow is upward due to flow separation but the other main results are the same as those from the control experiment.

  8. Ventilation Processes in a Three-Dimensional Street Canyon

    NASA Astrophysics Data System (ADS)

    Nosek, Štěpán; Kukačka, Libor; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2016-05-01

    The ventilation processes in three different street canyons of variable roof geometry were investigated in a wind tunnel using a ground-level line source. All three street canyons were part of an urban-type array formed by courtyard-type buildings with pitched roofs. A constant roof height was used in the first case, while a variable roof height along the leeward or windward walls was simulated in the two other cases. All street-canyon models were exposed to a neutrally stratified flow with two approaching wind directions, perpendicular and oblique. The complexity of the flow and dispersion within the canyons of variable roof height was demonstrated for both wind directions. The relative pollutant removals and spatially-averaged concentrations within the canyons revealed that the model with constant roof height has higher re-emissions than models with variable roof heights. The nomenclature for the ventilation processes according to quadrant analysis of the pollutant flux was introduced. The venting of polluted air (positive fluctuations of both concentration and velocity) from the canyon increased when the wind direction changed from perpendicular to oblique, irrespective of the studied canyon model. Strong correlations (>0.5) between coherent structures and ventilation processes were found at roof level, irrespective of the canyon model and wind direction. This supports the idea that sweep and ejection events of momentum bring clean air in and detrain the polluted air from the street canyon, respectively.

  9. Urban street canyons: Coupling dynamics, chemistry and within-canyon chemical processing of emissions

    NASA Astrophysics Data System (ADS)

    Bright, Vivien Bianca; Bloss, William James; Cai, Xiaoming

    2013-04-01

    Street canyons, formed by rows of buildings in urban environments, are associated with high levels of atmospheric pollutants emitted primarily from vehicles, and substantial human exposure. The street canyon forms a semi-enclosed environment, within which emissions may be entrained in a re-circulatory system; chemical processing of emitted compounds alters the composition of the air vented to the overlying boundary layer, compared with the primary emissions. As the prevailing atmospheric chemistry is highly non-linear, and the canyon mixing and predominant chemical reaction timescales are comparable, the combined impacts of dynamics and chemistry must be considered to quantify these effects. Here we report a model study of the coupled impacts of dynamical and chemical processing upon the atmospheric composition in a street canyon environment, to assess the impacts upon air pollutant levels within the canyon, and to quantify the extent to which within-canyon chemical processing alters the composition of canyon outflow, in comparison to the primary emissions within the canyon. A new model for the simulation of street canyon atmospheric chemical processing has been developed, by integrating an existing Large-Eddy Simulation (LES) dynamical model of canyon atmospheric motion with a detailed chemical reaction mechanism, a Reduced Chemical Scheme (RCS) comprising 51 chemical species and 136 reactions, based upon a subset of the Master Chemical Mechanism (MCM). The combined LES-RCS model is used to investigate the combined effects of mixing and chemical processing upon air quality within an idealised street canyon. The effect of the combination of dynamical (segregation) and chemical effects is determined by comparing the outputs of the full LES-RCS canyon model with those obtained when representing the canyon as a zero-dimensional box model (i.e. assuming mixing is complete and instantaneous). The LES-RCS approach predicts lower (canyon-averaged) levels of NOx, OH and HO

  10. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments

    NASA Astrophysics Data System (ADS)

    Coutts, Andrew M.; White, Emma C.; Tapper, Nigel J.; Beringer, Jason; Livesley, Stephen J.

    2016-04-01

    Urban street trees provide many environmental, social, and economic benefits for our cities. This research explored the role of street trees in Melbourne, Australia, in cooling the urban microclimate and improving human thermal comfort (HTC). Three east-west (E-W) oriented streets were studied in two contrasting street canyon forms (deep and shallow) and between contrasting tree canopy covers (high and low). These streets were instrumented with multiple microclimate monitoring stations to continuously measure air temperature, humidity, solar radiation, wind speed and mean radiant temperature so as to calculate the Universal Thermal Climate Index (UTCI) from May 2011 to June 2013, focusing on summertime conditions and heat events. Street trees supported average daytime cooling during heat events in the shallow canyon by around 0.2 to 0.6 °C and up to 0.9 °C during mid-morning (9:00-10:00). Maximum daytime cooling reached 1.5 °C in the shallow canyon. The influence of street tree canopies in the deep canyon was masked by the shading effect of the tall buildings. Trees were very effective at reducing daytime UTCI in summer largely through a reduction in mean radiant temperature from shade, lowering thermal stress from very strong (UTCI > 38 °C) down to strong (UTCI > 32 °C). The influence of street trees on canyon air temperature and HTC was highly localized and variable, depending on tree cover, geometry, and prevailing meteorological conditions. The cooling benefit of street tree canopies increases as street canyon geometry shallows and broadens. This should be recognized in the strategic placement, density of planting, and species selection of street trees.

  11. On the Aerodynamic Characteristics over Idealized Two-Dimensional Urban Street Canyon Models

    NASA Astrophysics Data System (ADS)

    Leung, K. K.; Liu, C. H.

    2012-04-01

    There are numerous anthropogenic pollutant sources in the atmospheric boundary layer (ABL) nowadays, which mainly attributed to human activities in urban areas. Hence, how urban morphology affects the heat and mass transfer in built environment is a popular research problem in the urban climate community. However, our understanding of street-level transport processes is rather limited. Laboratory experiments often serve as complementary solutions to modeling results. Although there are laboratory results available for the mass transfer over idealized urban roughness, the transport processes are not examined in details. In this paper, we attempt to demystify the pollutant removal mechanism from urban areas to the urban ABL. Laboratory measurements, which were conducted in the wind tunnel in Mechanical Engineering, The University of Hong Kong, and computational fluid dynamics (CFD) is used concurrently. The spatial air pollutant transport from the street region to the urban ABL was represented by means of water evaporation method from the soaked filter paper applied on the surfaces of the building facades and ground surface. Street canyon models of building-height-to-street-width (aspect) ratios in the range of 0.125 to 2 are carried out. The local mass transfer velocity along the street canyons was measured and archived a good comparison with the outside literature. Besides, both the laboratory and CFD results show that the pollutant removal from 2D street canyons increases with decreasing ARs. It arrives a local maximum then decreases thereafter. In the comparison between laboratory and CFD results, the difference in the size of the street canyon models, also known as scaling effects, is needed to be considered. Therefore, despite of representing the transfer behavior by the local pollutant exchange rate, scaled local/overall pollutant removal coefficient is proposed for a comparison of pollutant removal performance in a more reasonable manner. Such effect is found

  12. Do urban canyons influence street level grass pollen concentrations?

    PubMed

    Peel, Robert George; Kennedy, Roy; Smith, Matt; Hertel, Ole

    2014-08-01

    In epidemiological studies, outdoor exposure to pollen is typically estimated using rooftop monitoring station data, whilst exposure overwhelmingly occurs at street level. In this study the relationship between street level and roof level grass pollen concentrations was investigated for city centre street canyon environments in Aarhus, Denmark, and London, UK, during the grass pollen seasons of 2010 and 2011 respectively. For the period mid-day to late evening, street level concentrations in both cities tended to be lower than roof-level concentrations, though this difference was found to be statistically significant only in London. The ratio of street/roof level concentrations was compared with temperature, relative humidity, wind speed and direction, and solar radiation. Results indicated that the concentration ratio responds to wind direction with respect to relative canyon orientation and local source distribution. In the London study, an increase in relative humidity was linked to a significant decrease in street/roof level concentration ratio, and a possible causative mechanism involving moisture mediated pollen grain buoyancy is proposed. Relationships with the other weather variables were not found to be significant in either location. These results suggest a tendency for monitoring station data to overestimate exposure in the canyon environment.

  13. On the Air Pollutant Removal Mechanism from Two-Dimensional Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Liu, C.; Cheng, W.; Chung, T. N.; Wong, C.

    2010-12-01

    Urban development influences the micro-climate, and heat and mass transport in urban atmospheric boundary layer (UABL). The flow, energy transfer, and pollutant transport in urban areas closely affect the daily lives of urban inhabitants. Because the large length scales and uncontrollable atmospheric turbulence impose technical difficulties on field measurement collection, computer models are alternative solutions used instead to shade some light on the problems. In this paper, we employ the computational fluid dynamics (CFD) techniques to elucidate the transport process of atmospheric constituents in UABL. Our CFD model, differs from the conventional approaches, explicitly resolve the built structures instead of using empirical parameterizations handling the bottom UABL. Moreover, it probes the spatial behaviors of flow quantities in a transient manner that facilitates our fundamental understanding of individual spatio-temporal scales to the atmospheric turbulent transport processes. As an pilot trial, idealized two-dimensional (2D) street canyons, which are the basic unit constructing a city, are employed as urban structures in our CFD. The more sophisticated large-eddy simulation (LES) is used as the turbulence model instead of the conventional Reynolds-average Navier-Stokes (RANS) approach. It calculates explicitly the large significant energy-carrying scales and models only the small isotropic turbulence that unveil the detailed transport processes in a transient manner. It is found that flow reattachment and separation promotes and suppresses, respectively, the local heat and mass removal at the ground level. Right over the buildings, sweeps and ejections are the major turbulence events governing the removal from street level through the strong roof-level shear layer to the urban canopy layer (UCL) aloft. Obviously, buildings and streets, in the form of urban roughness elements, tremendously modify the heat and mass transfer in the UCL. Hence, the

  14. Street Canyon Atmospheric Composition: Coupling Dynamics and Chemistry

    NASA Astrophysics Data System (ADS)

    Bright, V.; Bloss, W. J.; Cai, X.

    2010-12-01

    Atmospheric composition within the urban environment, particularly within street canyons (formed by a road running between two rows of buildings), has a direct effect on the air quality of an environment in which a large majority of people live and work. The composition of air within a street canyon is determined by the composition of background air mixed in from above, advection of air into and out of the canyon, vehicle exhaust and other emissions from within the street, together with the mixing and chemical processing of pollutants within the canyon. This occurs on a timescale of a few seconds to minutes and as a result, within-canyon atmospheric processes can have a significant effect on atmospheric composition on such timescales. This paper outlines a modelling study of street canyon atmospheric composition, integrating the combined effects of emissions, dynamics and chemistry. This work builds upon an existing dynamical model of canyon atmospheric motion (Large Eddy Simulation (LES) model) by adding a detailed chemical reaction scheme. Previous studies have considered basic NOx-O3 cycles with only a small number of chemical reactions included. Initially, a zero-dimensional box model was used to develop and assess the accuracy of a suitable reduced chemical scheme to be included within the LES. The reduced chemical scheme, based upon a subset of the Master Chemical Mechanism (MCM), includes 51 chemical species and 136 reactions. Vehicle emissions taken from the UK National Atmospheric Emissions Inventory (NAEI) were subsequently added to the box model. These elements were then combined with the canyon dynamics simulated by the Large Eddy Simulation (LES) model. Results demonstrate that the enhanced model is a suitable tool to be used to further investigate the combined effects of mixing and chemical processing upon air quality within the street canyon. Subsequently, a number of key questions relating to urban atmospheric composition are addressed using the

  15. Scale Modelling of Sound Propagation in a City Street Canyon

    NASA Astrophysics Data System (ADS)

    Horoshenkov, V. K.; Hothersall, C. D.; Mercy, E. S.

    1999-06-01

    coustic scale modelling is used to study sound propagation in a city street canyon. The acoustic performance of several noise abatement schemes is investigated at various receiver heights for noise fields produced by different categories of vehicles travelling in the two lanes. The results are discussed in terms of the attenuation rate predicted along the canyon and the insertion loss. It is shown that although the effects produced by complex noise abatement schemes are significant they cannot be predicted by simple addition of the effects from the individual components of the schemes.

  16. Hydrodynamical Approach to Vehicular Flow in the Urban Street Canyon

    NASA Astrophysics Data System (ADS)

    Duras, Maciej M.

    2001-06-01

    The vehicular flow in the urban street canyon is considered. The classical field description is used in the modelling of the vehicular movement and of gaseous mixture in generic urban street canyon. The dynamical variables include vehicular densities, velocities, and emissivities: of pollutants, heat and exhaust gases, as well as standard mixture components' variables: densities, velocities, temperature, pressures. The local balances' equations predict the dynamics of the complex system. The automatic control of the vehicular flow is attained by the sets of coordinated traffic lights. The automatic control is aimed at minimization of traffic ecological costs by the application of variational calculus (Lagrange's and Bolz's problems). The theoretical description is accompanied by numerical examples of computer fluid dynamics based on real traffic data.

  17. A simple model for calculating air pollution within street canyons

    NASA Astrophysics Data System (ADS)

    Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.

    2014-04-01

    This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.

  18. Air pollution dispersion within urban street canyons

    NASA Astrophysics Data System (ADS)

    Taseiko, Olga V.; Mikhailuta, Sergey V.; Pitt, Anne; Lezhenin, Anatoly A.; Zakharov, Yuri V.

    A semi-empirical mathematical model, Urban Street Model (USM), is proposed to efficiently estimate the dispersion of vehicular air pollution in cities. This model describes urban building arrangements by combining building density, building heights and the permeability of building arrangements relative to wind flow. To estimate the level of air pollution in the city of Krasnoyarsk (in Eastern Siberia), the spatial distribution of pollutant concentrations off roadways is calculated using Markov's processes in USM. The USM-predicted numerical results were compared with field measurements and with results obtained from other frequently used models, CALINE-4 and OSPM. USM consistently yielded the best results. OSPM usually overestimated pollutant concentration values. CALINE-4 consistently underestimated these values. For OSPM, the maximum differences were 160% and for CALINE-4 about 400%. Permeability and building density are necessary parameters for accurately modeling urban air pollution and influencing regulatory requirements for building planning.

  19. Thermal bioclimate in idealized urban street canyons in Campinas, Brazil

    NASA Astrophysics Data System (ADS)

    Abreu-Harbich, Loyde V.; Labaki, Lucila C.; Matzarakis, Andreas

    2014-01-01

    Among several urban design parameters, the height-to-width ratio (H/W) and orientation are important parameters strongly affecting thermal conditions in cities. This paper quantifies changes in thermal comfort due to typical urban canyon configurations in Campinas, Brazil, and presents urban guidelines concerning H/W ratios and green spaces to adapt urban climate change. The study focuses on thermal comfort issues of humans in urban areas and performs evaluation in terms of physiologically equivalent temperature (PET), based on long-term data. Meteorological data of air temperature, relative humidity, wind speed and solar radiation over a 7-year period (2003-2010) were used. A 3D street canyon model was designed with RayMan Pro software to simulate the influence of urban configuration on urban thermal climate. The following configurations and setups were used. The model canyon was 500 m in length, with widths 9, 21, and 44 m. Its height varied in steps of 2.5 m, from 5 to 40 m. The canyon could be rotated in steps of 15°. The results show that urban design parameters such as width, height, and orientation modify thermal conditions within street canyons. A northeast-southwest orientation can reduce PET during daytime more than other scenarios. Forestry management and green areas are recommended to promote shade on pedestrian areas and on façades, and to improve bioclimate thermal stress, in particular for H/W ratio less than 0.5. The method and results can be applied by architects and urban planners interested in developing responsive guidelines for urban climate issues.

  20. Aerodynamic effects of trees on pollutant concentration in street canyons.

    PubMed

    Buccolieri, Riccardo; Gromke, Christof; Di Sabatino, Silvana; Ruck, Bodo

    2009-09-15

    This paper deals with aerodynamic effects of avenue-like tree planting on flow and traffic-originated pollutant dispersion in urban street canyons by means of wind tunnel experiments and numerical simulations. Several parameters affecting pedestrian level concentration are investigated, namely plant morphology, positioning and arrangement. We extend our previous work in this novel aspect of research to new configurations which comprise tree planting of different crown porosity and stand density, planted in two rows within a canyon of street width to building height ratio W/H=2 with perpendicular approaching wind. Sulfur hexafluoride was used as tracer gas to model the traffic emissions. Complementary to wind tunnel experiments, 3D numerical simulations were performed with the Computational Fluid Dynamics (CFD) code FLUENT using a Reynolds Stress turbulence closure for flow and the advection-diffusion method for concentration calculations. In the presence of trees, both measurements and simulations showed considerable larger pollutant concentrations near the leeward wall and slightly lower concentrations near the windward wall in comparison with the tree-less case. Tree stand density and crown porosity were found to be of minor importance in affecting pollutant concentration. On the other hand, the analysis indicated that W/H is a more crucial parameter. The larger the value of W/H the smaller is the effect of trees on pedestrian level concentration regardless of tree morphology and arrangement. A preliminary analysis of approaching flow velocities showed that at low wind speed the effect of trees on concentrations is worst than at higher speed. The investigations carried out in this work allowed us to set up an appropriate CFD modelling methodology for the study of the aerodynamic effects of tree planting in street canyons. The results obtained can be used by city planners for the design of tree planting in the urban environment with regard to air quality issues.

  1. Evaluation of the RIO-IFDM-street canyon model chain

    NASA Astrophysics Data System (ADS)

    Lefebvre, W.; Van Poppel, M.; Maiheu, B.; Janssen, S.; Dons, E.

    2013-10-01

    Integration of all relevant spatial scales in concentration modeling is important for assessing the European limit values for NO2. The local NO2-concentrations are influenced by the regional background, the local emissions and the street canyon effects. Therefore, it is important to consistently combine all these contributions in the model setup which is used for such an assessment. In this paper, we present the results of an integrated model chain, consisting of an advanced measurement interpolation model, a bi-Gaussian plume model and a canyon model to simulate the street-level concentrations over the city of Antwerp, Belgium. The results of this model chain are evaluated against independent weekly averaged NO2 measurements at 49 locations in the city of Antwerp, during both a late autumn and a late spring week. It is shown that the model performed well, explaining between 62% and 87% of the spatial variance, with a RMSE between 5 and 6 μg m-1 and small biases. In addition to this overall validation, the performance of different components in the model chain is shown, in order to provide information on the importance of the different constituents.

  2. Computed tomography of air pollutants in street canyons

    NASA Astrophysics Data System (ADS)

    O'Driscoll, Stephen; Murphy, John G.; Smith, Niall J.

    2003-03-01

    We present the results of preliminary research investigating the generation of two-dimensional pollutant gas concentration maps of street canyons. This research uses computed tomography (CT) to reconstruct the spatial distribution of gas concentrations from path-integral data obtained using differential optical absorption spectroscopy (DOAS). This work represents a novel application of these two techniques and is aimed at the validation of theoretical gas distribution models in selected urban settings. The derived results are based on model data and investigate the viability of constrained geometry sensing networks and the accuracy of current computed tomography algorithms. We also present results on the use of an evolutionary algorithm applied to pollutant reconstruction in an open area as part of initial investigations into its applicability to street canyon pollutant reconstruction. Future work will include the reconstruction of gas distributions in a real urban setting with the long-term goal of a system that is capable of performing this task in near real-time allowing the visualisation of short to medium time scale spatial dynamics.

  3. Large eddy simulation of turbulent flow and of pollutant transport in a street canyon

    NASA Astrophysics Data System (ADS)

    Starchenko, Alexander V.; Danilkin, Evgeniy A.

    2015-11-01

    The work presents a non-steady three-dimensional eddy resolving model intended for the simulation of non-isothermal turbulent separation flows in street canyons. For a subgrid-scale turbulence parameterization, the Smagorinsky gradient model is used. The calculation results demonstrate the effects of pollutant source location, street canyon size, basic stream rate and wall temperature difference on air pollution in the canyon.

  4. Thermally Driven Flow in a Mock Street Canyon

    NASA Astrophysics Data System (ADS)

    Dallman, Ann; Magnusson, Sigurdur; Norford, Leslie; Fernando, Harindra J. S.; Entekhabi, Dara; Britter, Rex; Pan, Shanshan

    2012-11-01

    Under conditions of low synoptic winds and high solar radiation, non-uniform heating of building walls and the ground in an urban street canyon induces thermally-driven airflow. These effects have mainly been studied using wind-tunnel experiments and numerical models, but only a few field-scale experiments have been performed. However, this is an important topic of interest because of its implications for air quality and emergency response planning. A field experiment was carried out in collaboration between the Singapore-MIT Alliance for Research and Technology (SMART) and the University of Notre Dame. The study was conducted on the campus of Nanyang Technical University in Singapore, and consisted of an `idealized' building canyon constructed with two rows of shipping containers aligned in the North-South direction. The site was carefully instrumented with sonic anemometers (for wind speed and direction and virtual temperature), weather stations (wind speed and direction, temperature, relative humidity, pressure, and rain fall), and thermocouples (surface temperature of buildings). Measurements were recorded for 9 days, which included periods of sunshine and high convective activity that created thermal circulation between the buildings. Using a fog machine, flow visualization was carried out to observe circulation patterns. An overview of the experiment and the results will be presented.

  5. Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Britter, Rex; Norford, Leslie K.

    2016-11-01

    This study employs a validated large-eddy simulation (LES) code with high tempo-spatial resolution to investigate the effect of a stably stratified roughness sublayer (RSL) on scalar transport within an urban street canyon. The major effect of stable stratification on the flow and turbulence inside the street canyon is that the flow slows down in both streamwise and vertical directions, a stagnant area near the street level emerges, and the vertical transport of momentum is weakened. Consequently, the transfer of heat between the street canyon and overlying atmosphere also gets weaker. The pollutant emitted from the street level 'pools' within the lower street canyon, and more pollutant accumulates within the street canyon with increasing stability. Under stable stratification, the dominant mechanism for pollutant transport within the street canyon has changed from ejections (flow carries high-concentration pollutant upward) to unorganized motions (flow carries high-concentration pollutant downward), which is responsible for the much lower dispersion efficiency under stable stratifications.

  6. Diurnal variation of NOx and ozone exchange between a street canyon and the overlying air

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-Hwan; Baik, Jong-Jin

    2014-04-01

    The diurnal variation of NOx and O3 exchange between a street canyon and the overlying air in two dimensions is investigated to understand reactive pollutant removal and entrainment across the roof level of the street canyon. The computational fluid dynamics (CFD) model used in this study is a Reynolds-averaged Navier-Stokes equations (RANS) model and includes the urban surface and radiation processes and the comprehensive chemical processes. The CFD model is used for the one-day simulation in which the easterly ambient wind blows perpendicular to the north-south oriented street canyon with a canyon aspect ratio of 1. In the morning when the surface temperature of the downwind building wall is higher than that of the upwind building wall, two counter-rotating vortices appear in the street canyon (flow regime II). In the afternoon when the surface temperature of the upwind building wall is higher than that of the downwind building wall, an intensified primary vortex appears in the street canyon (flow regime I). The NOx and O3 exchange is generally active in the region close to the building wall with the higher temperature regardless of flow regime. The NOx and O3 exchange by turbulent flow is dominant in flow regime II, whereas the NOx and O3 exchange by mean flow becomes comparable to that by turbulent flow in a certain period of flow regime I. The NOx and O3 exchange velocities are similar to each other in the early morning, whereas these are significantly different from each other around noon and in the afternoon. This behavior indicates that the exchange velocity is dependent on flow regime. In addition, the diurnal variability of O3 exchange velocity is found to be dependent on photochemistry rather than dry deposition in the street canyon. This study suggests that photochemistry as well as flow in a street canyon is needed to be taken into account when exchange velocities for reactive pollutants are estimated.

  7. A benchmark for numerical scheme validation of airborne particle exposure in street canyons.

    PubMed

    Marini, S; Buonanno, G; Stabile, L; Avino, P

    2015-02-01

    Measurements of particle concentrations and distributions in terms of number, surface area, and mass were performed simultaneously at eight sampling points within a symmetric street canyon of an Italian city. The aim was to obtain a useful benchmark for validation of wind tunnel experiments and numerical schemes: to this purpose, the influence of wind directions and speeds was considered. Particle number concentrations (PNCs) were higher on the leeward side than the windward side of the street canyon due to the wind vortex effect. Different vertical PNC profiles were observed between the two canyon sides depending on the wind direction and speed at roof level. A decrease in particle concentrations was observed with increasing rooftop wind speed, except for the coarse fraction indicating a possible particle resuspension due to the traffic and wind motion. This study confirms that particle concentration fields in urban street canyons are strongly influenced by traffic emissions and meteorological parameters, especially wind direction and speed.

  8. Variability of CO2 concentrations and fluxes in and above an urban street canyon

    NASA Astrophysics Data System (ADS)

    Lietzke, Björn; Vogt, Roland

    2013-08-01

    The variability of CO2 concentrations and fluxes in dense urban environments is high due to the inherent heterogeneity of these complex areas and their spatio-temporally variable anthropogenic sources. With a focus on micro- to local-scale CO2-exchange processes, measurements were conducted in a street canyon in the city of Basel, Switzerland in 2010. CO2 fluxes were sampled at the top of the canyon (19 m) and at 39 m while vertical CO2 concentration profiles were measured in the center and at a wall of the canyon. CO2 concentration distributions in the street canyon and exchange processes with the layers above show, apart from expected general diurnal patterns due mixing layer heights, a strong dependence on wind direction relative to the canyon. As a consequence of the resulting corkscrew-like canyon vortex, accumulation of CO2 inside the canyon is modulated with distinct distribution patterns. The evaluation of diurnal traffic data provides good explanations for the vertical and horizontal differences in CO2-distribution inside the canyon. Diurnal flux characteristics at the top of the canyon can almost solely be explained with traffic density expressed by the strong linear dependence. Even the diurnal course of the flux at 39 m shows a remarkable relationship to traffic density for east wind conditions while, for west wind situations, a change toward source areas with lower emissions leads to a reduced flux.

  9. Large-eddy simulation of street canyons and urban microclimate using Uintah:MPMICE

    NASA Astrophysics Data System (ADS)

    Nemati Hayati, A.; Stoll, R., II; Harman, T.; Pardyjak, E.

    2014-12-01

    Urban microclimate plays an important role in urban water use, energy use, pollutant transport, and the general comfort and well-being of urban inhabitants. The microclimate interacts locally with urban morphology, water levels, properties of urban surfaces, and vegetation cover all of which contribute significantly to the strong spatial variability observed in urban areas. Considerable parts of urban open spaces take the form of street canyons. These urban street canyons play a remarkable role in creating urban microclimates. Within street canyons themselves, a wide variety of phenomena contribute to complex flow patterns. These include various flow structures such as wake fields, circulation zones, isolated roughness flow, wake interference and skimming flows. In addition, heat fluxes from the buildings and the surrounding area enhance the complexity of the flow field inside the canyon. Here, we introduce Uintah:MPMICE for the simulation of fluid structure interactions in urban flows. Uintah:MPMICE has been developed in a massively parallel computational infrastructure, uses material points to represent buildings, and the large-eddy simulation (LES) technique to represent momentum and scalar transport. To validate Uintah:MPMICE, simulations of typical street canyons are compared against published wind tunnel particle imaging velocimetry (PIV) data for the cases of step-up and step-down street canyons. Our findings show promising results in capturing major flow features, namely wake fields, recirculation zones, wake interference, vortex structures, and flow separation in street canyons. LES results demonstrate the ability of the simulations to predict flow topology details such as secondary circulation zones and wall-originating elevated shear layers in step-up and step-down cases, respectively. Furthermore, mean flow and variance statistics indicate sensitivity to inlet boundary conditions; upstream turbulence generation method, in particular, has a significant

  10. Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Ruck, Bodo

    2012-07-01

    This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/ H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.

  11. Influence of photochemical processes on traffic-related airborne pollutants in urban street canyon

    NASA Astrophysics Data System (ADS)

    Střižík, Michal; Zelinger, Zdeněk; Kubát, Pavel; Civiš, Svatopluk; Bestová, Iva; Nevrlý, Václav; Kadeřábek, Petr; Čadil, Jan; Berger, Pavel; Černý, Alexandr; Engst, Pavel

    2016-09-01

    The urban street canyon of Legerova Street is part of the north-south trunk road that passes through the centre of Prague and remains an unresolved environmental issue for the capital of the Czech Republic. As many as one hundred thousand cars move through this region per day, and mortality has increased as a result of dust, NOx and other exhaust pollutants. The spatial distribution of pollutants (i.e., NO2, NO, and O3) during a day was measured by combined DIAL/SODAR techniques and spot analyzers that were appropriately located near the bottom of the street canyon. The measurements were performed under different meteorological conditions (autumn versus summer period). A purely physical approach does not provide a true description of reality due to photochemical processes that take place in the street canyon atmosphere. Sunlight in the summer triggers the production of ozone and thereby influences the concentration of NO2. The formation of an inverse non-diffuse vertical concentration distribution of NO2 in the morning hours was found to be related to the direct emission of O3 in the street and its background concentration. Rapid changes of NO2 concentrations were observed over time and in the vertical profile. An approach using a photochemical reactor to describe processes in a street canyon atmosphere was developed and verified as a useful tool for prediction purposes.

  12. Study of traffic-related pollutant removal from street canyon with trees: dispersion and deposition perspective.

    PubMed

    Morakinyo, Tobi Eniolu; Lam, Yun Fat

    2016-11-01

    Numerical experiments involving street canyons of varying aspect ratio with traffic-induced pollutants (PM2.5) and implanted trees of varying aspect ratio, leaf area index, leaf area density distribution, trunk height, tree-covered area, and tree planting pattern under different wind conditions were conducted using a computational fluid dynamics (CFD) model, ENVI-met. Various aspects of dispersion and deposition were investigated, which include the influence of various tree configurations and wind condition on dispersion within the street canyon, pollutant mass at the free stream layer and street canyon, and comparison between mass removal by surface (leaf) deposition and mass enhancement due to the presence of trees. Results revealed that concentration level was enhanced especially within pedestrian level in street canyons with trees relative to their tree-free counterparts. Additionally, we found a dependence of the magnitude of concentration increase (within pedestrian level) and decrease (above pedestrian level) due to tree configuration and wind condition. Furthermore, we realized that only ∼0.1-3 % of PM2.5 was dispersed to the free stream layer while a larger percentage (∼97 %) remained in the canyon, regardless of its aspect ratio, prevailing wind condition, and either tree-free or with tree (of various configuration). Lastly, results indicate that pollutant removal due to deposition on leaf surfaces is potentially sufficient to counterbalance the enhancement of PM2.5 by such trees under some tree planting scenarios and wind conditions.

  13. Influence of roadside hedgerows on air quality in urban street canyons

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Jamarkattel, Nabaraj; Ruck, Bodo

    2016-08-01

    Understanding pollutant dispersion in the urban environment is an important aspect of providing solutions to reduce personal exposure to vehicle emissions. To this end, the dispersion of gaseous traffic pollutants in urban street canyons with roadside hedges was investigated. The study was performed in an atmospheric boundary layer wind tunnel using a reduced-scale (M = 1:150) canyon model with a street-width-to-building-height ratio of W/H = 2 and a street-length-to-building-height ratio of L/H = 10. Various hedge configurations of differing height, permeability and longitudinal segmentation (continuous over street length L or discontinuous with clearings) were investigated. Two arrangements were examined: (i) two eccentric hedgerows sidewise of the main traffic lanes and (ii) one central hedgerow between the main traffic lanes. In addition, selected configurations of low boundary walls, i.e. solid barriers, were examined. For a perpendicular approach wind and in the presence of continuous hedgerows, improvements in air quality in the center area of the street canyon were found in comparison to the hedge-free reference scenario. The pollutant reductions were greater for the central hedge arrangements than for the sidewise arrangements. Area-averaged reductions between 46 and 61% were observed at pedestrian head height level on the leeward side in front of the building for the centrally arranged hedges and between 18 and 39% for the two hedges arranged sidewise. Corresponding area-averaged reductions ranging from 39 to 55% and from 1 to 20% were found at the bottom of the building facades on the leeward side. Improvements were also found in the areas at the lateral canyon ends next to the crossings for the central hedge arrangements. For the sidewise arrangements, increases in traffic pollutants were generally observed. However, since the concentrations in the end areas were considerably lower compared to those in the center area, an overall improvement remained

  14. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China.

    PubMed

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-02-14

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  15. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-02-01

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  16. A study of sound absorption by street canyon boundaries and asphalt rubber concrete pavement

    NASA Astrophysics Data System (ADS)

    Drysdale, Graeme Robert

    A sound field model, based on a classical diffusion equation, is extended to account for sound absorption in a diffusion parameter used to model sound energy in a narrow street canyon. The model accounts for a single sound absorption coefficient, separate accommodation coefficients and a combination of separate absorption and accommodation coefficients from parallel canyon walls. The new expressions are compared to the original formula through numerical simulations to reveal the effect of absorption on sound diffusion. The newly established analytical formulae demonstrate satisfactory agreement with their predecessor under perfect reflection. As well, the influence of the extended diffusion parameter on normalized sound pressure levels in a narrow street canyon is in agreement with experimental data. The diffusion parameters are used to model sound energy density in a street canyon as a function of the sound absorption coefficient of the street canyon walls. The acoustic and material properties of conventional and asphalt rubber concrete (ARC) pavement are also studied to assess how the crumb rubber content influences sound absorption in street canyons. The porosity and absolute permeability of compacted specimens of asphalt rubber concrete are measured and compared to their normal and random incidence sound absorption coefficients as a function of crumb rubber content in the modified binder. Nonlinear trends are found between the sound absorption coefficients, porosity and absolute permeability of the compacted specimens and the percentage of crumb rubber in the modified binders. The cross-sectional areas of the air voids on the surfaces of the compacted specimens are measured using digital image processing techniques and a linear relationship is obtained between the average void area and crumb rubber content. The measured material properties are used to construct an empirical formula relating the average porosity, normal incidence noise reduction coefficients and

  17. Establishing a link between vehicular PM sources and PM measurements in urban street canyons.

    PubMed

    Eisner, Alfred D; Richmond-Bryant, Jennifer; Wiener, Russell W; Hahn, Intaek; Drake-Richman, Zora E; Ellenson, William D

    2009-12-01

    The Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study, conducted in Brooklyn, NY, USA, in 2005, was designed with multiple goals in mind, two of which were contaminant source characterization and street canyon transport and dispersion monitoring. In the portion of the study described here, synchronized wind velocity and azimuth as well as particulate matter (PM) concentrations at multiple locations along 33rd Street were used to determine the feasibility of using traffic emissions in a complex urban topography as a sole tracer for studying urban contaminant transport. We demonstrate in this paper that it is possible to link downwind concentrations of contaminants in an urban street canyon to the vehicular traffic cycle using Eigen-frequency analysis. In addition, multivariable circular histograms are used to establish directional frequency maxima for wind velocity and contaminant concentration.

  18. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    PubMed

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  19. An Improved Three-Dimensional Simulation of the Diurnally Varying Street-Canyon Flow

    NASA Astrophysics Data System (ADS)

    Yaghoobian, Neda; Kleissl, Jan; Paw U, Kyaw Tha

    2014-07-01

    The impact of diurnal variations of the heat fluxes from building and ground surfaces on the fluid flow and air temperature distribution in street canyons is numerically investigated using the PArallelized Large-eddy Simulation Model (PALM). Simulations are performed for a 3 by 5 array of buildings with canyon aspect ratio of one for two clear summer days that differ in atmospheric instability. A detailed building energy model with a three-dimensional raster-type geometry—Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES)—provides urban surface heat fluxes as thermal boundary conditions for PALM. In vertical cross-sections at the centre of the spanwise canyon the mechanical forcing and the horizontal streamwise thermal forcing at roof level outweigh the thermal forces from the heated surfaces inside the canyon in defining the general flow pattern throughout the day. This results in a dominant canyon vortex with a persistent speed, centered at a constant height. Compared to neutral simulations, non-uniform heating of the urban canyon surfaces significantly modifies the pressure field and turbulence statistics in street canyons. Strong horizontal pressure gradients were detected in streamwise and spanwise canyons throughout the day, and which motivate larger turbulent velocity fluctuations in the horizontal directions rather than in the vertical direction. Canyon-averaged turbulent kinetic energy in all non-neutral simulations exhibits a diurnal cycle following the insolation on the ground in both spanwise and streamwise canyons, and it is larger when the canopy bottom surface is paved with darker materials and the ground surface temperature is higher as a result. Compared to uniformly distributed thermal forcing on urban surfaces, the present analysis shows that realistic non-uniform thermal forcing can result in complex local airflow patterns, as evident, for example, from the location of the vortices in horizontal planes in the

  20. Combining Wind-Tunnel and Field Measurements of Street-Canyon Flow via Stochastic Estimation

    NASA Astrophysics Data System (ADS)

    Perret, Laurent; Blackman, Karin; Savory, Eric

    2016-12-01

    We demonstrate how application of the stochastic estimation method can be employed to combine spatially well-resolved wind-tunnel particle image velocimetry measurements with instantaneous velocity signals from a limited number of sensors (six sonic anemometers located within the canyon in the present case) to predict full-scale flow dynamics in an entire street-canyon cross-section. The investigated configuration corresponds to a street-canyon flow in a neutrally stratified atmospheric boundary layer with the oncoming flow being perpendicular to the main canyon axis. Data were obtained during both full-scale and 1:200-scale wind-tunnel experiments. The performance of the proposed method is investigated using both wind-tunnel data and signals from five sonic anemometers to predict the velocity from the sixth one. In particular, based on analysis of the influence of the high-frequency velocity fluctuations on the quality of the reconstruction, it is shown that stochastic estimation is able to correctly reproduce the large-scale temporal features of the flow with the present set-up. The full dataset is then used to spatially extrapolate the instantaneous flow measured by the six sonic anemometers and perform detailed analysis of instantaneous flow features. The main features of the flow, such as the presence of the shear layer that develops over the canyon and the intermittent ejection and penetration events across the canyon opening, are well predicted by stochastic estimation. In addition, thanks to the high spatial resolution made possible by the technique, the intermittency of the main vortical structure existing within the canyon is demonstrated, as well as its meandering motion in the canyon cross-section. It is also shown that the canyon flow, particularly its spanwise component, is affected by large-scale fluctuations of low temporal frequency along the canyon axis. Finally, the proposed techniques based on wind-tunnel data can prove useful for a priori

  1. Characterization of traffic-related PM concentration distribution and fluctuation patterns in near-highway urban residential street canyons.

    PubMed

    Hahn, Intaek; Brixey, Laurie A; Wiener, Russell W; Henkle, Stacy W; Baldauf, Richard

    2009-12-01

    Analyses of outdoor traffic-related particulate matter (PM) concentration distribution and fluctuation patterns in urban street canyons within a microscale distance of less than 500 m from a highway source are presented as part of the results from the Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study. Various patterns of spatial and temporal changes in the street canyon PM concentrations were investigated using time-series data of real-time PM concentrations measured during multiple monitoring periods. Concurrent time-series data of local street canyon wind conditions and wind data from the John F. Kennedy (JFK) International Airport National Weather Service (NWS) were used to characterize the effects of various wind conditions on the behavior of street canyon PM concentrations.Our results suggest that wind direction may strongly influence time-averaged mean PM concentration distribution patterns in near-highway urban street canyons. The rooftop-level wind speeds were found to be strongly correlated with the PM concentration fluctuation intensities in the middle sections of the street blocks. The ambient turbulence generated by shifting local wind directions (angles) showed a good correlation with the PM concentration fluctuation intensities along the entire distance of the first and second street blocks only when the wind angle standard deviations were larger than 30 degrees. Within-canyon turbulent shearing, caused by fluctuating local street canyon wind speeds, showed no correlation with PM concentration fluctuation intensities. The time-averaged mean PM concentration distribution along the longitudinal distances of the street blocks when wind direction was mostly constantly parallel to the street was found to be similar to the distribution pattern for the entire monitoring period when wind direction fluctuated wildly. Finally, we showed that two different PM concentration metrics-time-averaged mean

  2. Assessment of vehicular emission dispersion models applied in street canyons in Guangzhou, PRC

    SciTech Connect

    Chan, L.Y.; Hung, W.T.; Qin, Y.

    1995-05-01

    The applicability of four simple dispersion mathematical models, namely APRAC, GZE, CALINE4, and PWILG were assessed by comparing the predicted CO and NO{sub x} concentrations with the measured values in street canyons in Guangzhou. These simple models were comparatively accurate in predicting maximum ground concentration. The accuracy of CO prediction was much influenced by the assumption of vehicular composition. The uncertainty of emission sources other than vehicle emissions was an important error source in predicting NO{sub x} concentrations.

  3. Computational Fluid Dynamics Modelling of the Diurnal Variation of Flow in a Street Canyon

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-Hwan; Baik, Jong-Jin; Lee, Sang-Hyun; Ryu, Young-Hee

    2011-10-01

    Urban surface and radiation processes are incorporated into a computational fluid dynamics (CFD) model to investigate the diurnal variation of flow in a street canyon with an aspect ratio of 1. The developed CFD model predicts surface and substrate temperatures of the roof, walls, and road. One-day simulations are performed with various ambient wind speeds of 2, 3, 4, 5, and 6 ms-1, with the ambient wind perpendicular to the north-south oriented canyon. During the day, the largest maximum surface temperature for all surfaces is found at the road surface for an ambient wind speed of 3 ms-1 (56.0°C). Two flow regimes are identified by the vortex configuration in the street canyon. Flow regime I is characterized by a primary vortex. Flow regime II is characterized by two counter-rotating vortices, which appears in the presence of strong downwind building-wall heating. Air temperature is relatively low near the downwind building wall in flow regime I and inside the upper vortex in flow regime II. In flow regime II, the upper vortex expands with increasing ambient wind speed, thus enlarging the extent of cool air within the canyon. The canyon wind speed in flow regime II is proportional to the ambient wind speed, but that in flow regime I is not. For weak ambient winds, the dependency of surface sensible heat flux on the ambient wind speed is found to play an essential role in determining the relationship between canyon wind speed and ambient wind speed.

  4. Diurnal variation of on-road air pollution in an urban street canyon in Seoul

    NASA Astrophysics Data System (ADS)

    Ho, Woo, Sung; Lee, Seung-Bok; Kim, Kyung Hwan; Bae, Gwi-Nam; Sunwoo, Young; Ma, Young-Il; Han, Dokyoung; Song, Sanghoo

    2014-05-01

    Motor vehicles are a major source of CO, NOx and particulate matters. Especially, in the surroundings of high-raised buildings, so-called an urban street canyon, air pollution levels increase due to limited dispersion of vehicle emissions. In this study, a mobile laboratory was used to measure diurnal variation of on-road concentrations of air pollutants such as NOx, particle-bound polycyclic aromatic hydrocarbons, black carbon and particle number in the urban street canyon on the Teheran road with eight lanes in Seoul, Korea from 5th to 8th November 2013. Each traveling distance was about 3.3km. Traveling vehicle at the middle of the Teheran road was recorded by video camera, and then the car counting by vehicle types. On road measurements conducted for 3~6 hours per day. Hourly average of air pollutant concentration in morning rush hour more than two times higher than those at the daybreak. We will analyze the correlation between air pollution levels and traffic volume by vehicle types. We will discuss about spatial characteristics of on-road air pollution levels in the urban street canyon.

  5. Effects of Wall Heating on Flow Characteristics in a Street Canyon

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-Ming

    2012-03-01

    We develop a large-eddy simulation (LES) model based on a meteorological numerical model for a real scale street-canyon flow with rough building facets heated by a given temperature. The model is applied to a canyon with the aspect ratio of unity for two idealized heating scenarios: (1) the roof and the entire upstream wall are heated, named as `assisting cases', and (2) the roof and the entire downstream wall are heated, named as `opposing cases'. These facets were heated up to 15 K above the air temperature. A wall function for temperature is proposed for a rough facet with an assumption that the thermal roughness length, z 0T, is much smaller than the aerodynamic roughness length, z 0. It is demonstrated that the sensible heat flux and canyon-air temperature are significantly influenced by the near-facet process that is parametrized by z 0T as the primary factor; other processes such as in-canyon mixing and roof-level exchange are secondary. This new finding strongly suggests that it is vital to choose an appropriate value of z 0T in a numerical simulation of street-canyon flows with the facet-air exchange processes of heat or any scalar. The finding also raises an awareness of the demand for carefully designed laboratory or field experiments of quantifying z 0T values for various urban surfaces. For the opposing cases, an unsteady penetrating narrow updraft zone appears occasionally along the heated wall and this feature is consistent field observations. The unique result indicates the superior capability of LES. The results of this study can be used to guide the parametrization of turbulent processes inside the urban canopy layer.

  6. Effects of building aspect ratio, diurnal heating scenario, and wind speed on reactive pollutant dispersion in urban street canyons.

    PubMed

    Tong, Nelson Y O; Leung, Dennis Y C

    2012-01-01

    A photochemistry coupled computational fluid dynamics (CFD) based numerical model has been developed to model the reactive pollutant dispersion within urban street canyons, particularly integrating the interrelationship among diurnal heating scenario (solar radiation affections in nighttime, daytime, and sun-rise/set), wind speed, building aspect ratio (building-height-to-street-width), and dispersion of reactive gases, specifically nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3) such that a higher standard of air quality in metropolitan cities can be achieved. Validation has been done with both experimental and numerical results on flow and temperature fields in a street canyon with bottom heating, which justifies the accuracy of the current model. The model was applied to idealized street canyons of different aspect ratios from 0.5 to 8 with two different ambient wind speeds under different diurnal heating scenarios to estimate the influences of different aforementioned parameters on the chemical evolution of NO, NO2 and O3. Detailed analyses of vertical profiles of pollutant concentrations showed that different diurnal heating scenarios could substantially affect the reactive gases exchange between the street canyon and air aloft, followed by respective dispersion and reaction. Higher building aspect ratio and stronger ambient wind speed were revealed to be, in general, responsible for enhanced entrainment of O3 concentrations into the street canyons along windward walls under all diurnal heating scenarios. Comparatively, particular attention can be paid on the windward wall heating and nighttime uniform surface heating scenarios.

  7. The impact of traffic-flow patterns on air quality in urban street canyons.

    PubMed

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion.

  8. Simulation of wind-driven dispersion of fire pollutants in a street canyon using FDS.

    PubMed

    Pesic, Dusica J; Blagojevic, Milan Dj; Zivkovic, Nenad V

    2014-01-01

    Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316-323, 2009), Xie et al. (J Hydrodyn 21(1): 108-117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975-3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394-406, 2009; J Hazard Mater 192(3): 940-948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street

  9. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons

    NASA Astrophysics Data System (ADS)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-03-01

    The impacts of the diurnal variation of surface temperature on street canyon flow pattern and pollutant dispersion are investigated based on a two-dimensional street canyon model under different thermal stratifications. Uneven distributed street temperature conditions and a user-defined wall function representing the heat transfer between the air and the street canyon are integrated into the current numerical model. The prediction accuracy of this model is successfully validated against a published wind tunnel experiment. Then, a series of numerical simulations representing four time scenarios (Morning, Afternoon, Noon and Night) are performed at different Bulk Richardson number (Rb). The results demonstrate that uneven distributed street temperature conditions significantly alters street canyon flow structure and pollutant dispersion characteristics compared with conventional uniform street temperature assumption, especially for the morning event. Moreover, air flow patterns and pollutant dispersion are greatly influenced by diurnal variation of surface temperature under unstable stratification conditions. Furthermore, the residual pollutant in near-ground-zone decreases as Rb increases in noon, afternoon and night events under all studied stability conditions.

  10. Time-series analysis to study the impact of an intersection on dispersion along a street canyon.

    PubMed

    Richmond-Bryant, Jennifer; Eisner, Alfred D; Hahn, Intaek; Fortune, Christopher R; Drake-Richman, Zora E; Brixey, Laurie A; Talih, M; Wiener, Russell W; Ellenson, William D

    2009-12-01

    This paper presents data analysis from the Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study to assess the transport of ultrafine particulate matter (PM) across urban intersections. Experiments were performed in a street canyon perpendicular to a highway in Brooklyn, NY, USA. Real-time ultrafine PM samplers were positioned on either side of an intersection at multiple locations along a street to collect time-series number concentration data. Meteorology equipment was positioned within the street canyon and at an upstream background site to measure wind speed and direction. Time-series analysis was performed on the PM data to compute a transport velocity along the direction of the street for the cases where background winds were parallel and perpendicular to the street. The data were analyzed for sampler pairs located (1) on opposite sides of the intersection and (2) on the same block. The time-series analysis demonstrated along-street transport, including across the intersection when background winds were parallel to the street canyon and there was minimal transport and no communication across the intersection when background winds were perpendicular to the street canyon. Low but significant values of the cross-correlation function (CCF) underscore the turbulent nature of plume transport along the street canyon. The low correlations suggest that flow switching around corners or traffic-induced turbulence at the intersection may have aided dilution of the PM plume from the highway. This observation supports similar findings in the literature. Furthermore, the time-series analysis methodology applied in this study is introduced as a technique for studying spatiotemporal variation in the urban microscale environment.

  11. Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications.

    PubMed

    Mei, Shuo-Jun; Liu, Cheng-Wei; Liu, Di; Zhao, Fu-Yun; Wang, Han-Qing; Li, Xiao-Hong

    2016-09-15

    The pedestrian level pollutant transport in street canyons with multiple aspect ratios (H/W) is numerically investigated in the present work, regarding of various unstable thermal stratification scenarios and plain surrounding. Non-isothermal turbulent wind flow, temperature field and pollutant spread within and above the street canyons are solved by the realizable k-ε turbulence model along with the enhanced wall treatment. One-vortex flow regime is observed for shallow canyons with H/W=0.5, whereas multi-vortex flow regime is observed for deep canyons with H/W=2.0. Both one-vortex and multi-vortex regimes could be observed for the street canyons with H/W=1.0, where the secondary vortex could be initiated by the flow separation and intensified by unstable thermal stratification. Air exchange rate (AER) and pollutant retention time are adopted to respectively evaluate the street canyon ventilation and pollutant removal performance. A second-order polynomial functional relationship is established between AER and Richardson number (Ri). Similar functional relationship could be established between retention time and Ri, and it is only valid for canyons with one-vortex flow regime. In addition, retention time could be prolonged abruptly for canyons with multi-vortex flow regime. Very weak secondary vortex is presented at the ground level of deep canyons with mild stratification, where pollutants are highly accumulated. However, with the decrease of Ri, pollutant concentration adjacent to the ground reduces accordingly. Present research could be applied to guide the urban design and city planning for enhancing pedestrian environment.

  12. Fast response measurements of the dispersion of nanoparticles in a vehicle wake and a street canyon

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Robins, Alan; Britter, Rex

    2009-12-01

    The distributions of nanoparticles (below 300 nm in diameter) change rapidly after emission from the tail pipe of a moving vehicle due to the influence of transformation processes. Information on this time scale is important for modelling of nanoparticle dispersion but is unknown because the sampling frequencies of available instruments are unable to capture these rapid processes. In this study, a fast response differential mobility spectrometer (Cambustion Instruments DMS500), originally designed to measure particle number distributions (PNDs) and concentrations in engine exhaust emissions, was deployed to measure particles in the 5-1000 nm size range at a sampling frequency of 10 Hz. This article presents results of two separate studies; one, measurements along the roadside in a Cambridge (UK) street canyon and, two, measurements at a fixed position (20 cm above road level), centrally, in the wake of a single moving diesel-engined car. The aims of the first measurements were to test the suitability and recommend optimum operating conditions of the DMS500 for ambient measurements. The aim of the second study was to investigate the time scale over which competing influences of dilution and transformation processes (nucleation, condensation and coagulation) affect the PNDs in the wake of a moving car. Results suggested that the effect of transformation processes was nearly complete within about 1 s after emission due to rapid dilution in the vehicle wake. Furthermore, roadside measurements in a street canyon showed that the time for traffic emissions to reach the roadside in calm wind conditions was about 45 ± 6 s. These observations suggest the hypothesis that the effects of transformation processes are generally complete by the time particles are observed at roadside and the total particle numbers can then be assumed as conserved. A corollary of this hypothesis is that complex transformation processes can be ignored when modelling the behaviour of nanoparticles

  13. A Modelling Approach on Fine Particle Spatial Distribution for Street Canyons in Asian Residential Community

    NASA Astrophysics Data System (ADS)

    Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich

    2016-04-01

    Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"

  14. Passive control potentials of trees and on-street parked cars in reduction of air pollution exposure in urban street canyons.

    PubMed

    Abhijith, K V; Gokhale, Sharad

    2015-09-01

    This study investigates the passive-control-potentials of trees and on-street parked cars on pedestrian exposure to air pollutants in a street canyon using three-dimensional CFD. Since, according to some studies trees deteriorate air quality and cars parked roadside improve it, the combine as well as separate effects of trees and on-street parked cars have been examined. For this, different tree canopy layouts and parking configurations have been developed and pedestrian exposure for each has been analysed. The results showed, for example, tree crown with high porosity and low-stand density in combination with parallel or perpendicular car parking reduced the pedestrian exposure considerably.

  15. A numerical investigation of the impact of low boundary walls on pedestrian exposure to air pollutants in urban street canyons.

    PubMed

    McNabola, A; Broderick, B M; Gill, L W

    2009-01-01

    A previous investigation into methods of exposure reduction for the pedestrian in the urban commuter environment highlighted the impact of a low boundary wall on the dispersion of air pollutants from adjacent traffic sources. The impact of low boundary walls on the dispersion of air pollutants in street canyons has been brought forward in this investigation to examine them, in more generic terms, with a view to highlighting exposure reduction strategies for pedestrians. 3D Computational Fluid Dynamics (CFD) models were used to examine this effect for varying wind speeds and directions in different street canyon geometries. The results of this investigation show that a low boundary wall located at the central median of the street canyon creates a significant reduction in pedestrian exposure on the footpath. Reductions of up to 40% were found for perpendicular wind directions and up to 75% for parallel wind directions, relative to the same canyon with no wall. The magnitude of the exposure reduction was also found to vary according to street canyon geometry and wind speed.

  16. Numerical simulation of diurnally varying thermal environment in a street canyon under haze-fog conditions

    NASA Astrophysics Data System (ADS)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-10-01

    The impact of haze-fog on surface temperature, flow pattern, pollutant dispersion and pedestrian thermal comfort are investigated using computational fluid dynamics (CFD) approach based on a three-dimensional street canyon model under different haze-fog conditions. In this study, light extinction coefficient (Kex) is adopted to represent haze-fog pollution level. Numerical simulations are performed for different Kex values at four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST). The numerical results suggest that the surface temperature is strongly affected by the haze-fog condition. Surface heating induced by the solar radiation is enhanced by haze-fog, as higher surface temperature is observed under thicker haze-fog condition. Moreover, the temperature difference between sunlit and shadow surfaces is reduced, while that for the two shadow surfaces is slightly increased. Therefore, the surface temperature among street canyon facets becomes more evenly distributed under heavy haze-fog conditions. In addition, flow patterns are considerably altered by different haze-fog conditions, especially for the afternoon (1600 LST) case, in which thermal-driven flow has opposite direction as that of the wind-driven flow direction. Consequently, pollutants such as vehicular emissions will accumulate at pedestrian level, and pedestrian thermal comfort may lower under thicker haze-fog condition.

  17. Stochastic backscatter modelling for the prediction of pollutant removal from an urban street canyon: A large-eddy simulation

    NASA Astrophysics Data System (ADS)

    O'Neill, J. J.; Cai, X.-M.; Kinnersley, R.

    2016-10-01

    The large-eddy simulation (LES) approach has recently exhibited its appealing capability of capturing turbulent processes inside street canyons and the urban boundary layer aloft, and its potential for deriving the bulk parameters adopted in low-cost operational urban dispersion models. However, the thin roof-level shear layer may be under-resolved in most LES set-ups and thus sophisticated subgrid-scale (SGS) parameterisations may be required. In this paper, we consider the important case of pollutant removal from an urban street canyon of unit aspect ratio (i.e. building height equal to street width) with the external flow perpendicular to the street. We show that by employing a stochastic SGS model that explicitly accounts for backscatter (energy transfer from unresolved to resolved scales), the pollutant removal process is better simulated compared with the use of a simpler (fully dissipative) but widely-used SGS model. The backscatter induces additional mixing within the shear layer which acts to increase the rate of pollutant removal from the street canyon, giving better agreement with a recent wind-tunnel experiment. The exchange velocity, an important parameter in many operational models that determines the mass transfer between the urban canopy and the external flow, is predicted to be around 15% larger with the backscatter SGS model; consequently, the steady-state mean pollutant concentration within the street canyon is around 15% lower. A database of exchange velocities for various other urban configurations could be generated and used as improved input for operational street canyon models.

  18. The influence of vegetation on the horizontal and vertical distribution of pollutants in a street canyon.

    PubMed

    Salmond, J A; Williams, D E; Laing, G; Kingham, S; Dirks, K; Longley, I; Henshaw, G S

    2013-01-15

    Space constraints in cities mean that there are only limited opportunities for increasing tree density within existing urban fabric and it is unclear whether the net effect of increased vegetation in street canyons is beneficial or detrimental to urban air quality at local scales. This paper presents data from a field study undertaken in Auckland, New Zealand designed to determine the local impact of a deciduous tree canopy on the distribution of the oxides of nitrogen within a street canyon. The results showed that the presence of leaves on the trees had a marked impact on the transport of pollutants and led to a net accumulation of pollutants in the canyon below the tree tops. The incidence and magnitude of temporally localised spikes in pollutant concentration were reduced within the tree canopy itself. A significant difference in pollutant concentrations with height was not observed when leaves were absent. Analysis of the trends in concentration associated with different wind directions showed a smaller difference between windward and leeward sides when leaves were on the trees. A small relative increase in concentrations on the leeward side was observed during leaf-on relative to leaf-off conditions as predicted by previous modelling studies. However the expected reduction in concentrations on the windward side was not observed. The results suggest that the presence of leaves on the trees reduces the upwards transport of fresh vehicle emissions, increases the storage of pollutants within the canopy space and reduces the penetration of clean air downwards from aloft. Differences observed between NO and NO(2) concentrations could not be accounted for by dispersion processes alone, suggesting that there may also be some changes in the chemistry of the atmosphere associated with the presence of leaves on the trees.

  19. Particle number emissions of motor traffic derived from street canyon measurements in a Central European city

    NASA Astrophysics Data System (ADS)

    Klose, S.; Birmili, W.; Voigtländer, J.; Tuch, T.; Wehner, B.; Wiedensohler, A.; Ketzel, M.

    2009-02-01

    A biennial dataset of ambient particle number size distributions (diameter range 4-800 nm) collected in urban air in Leipzig, Germany, was analysed with respect to the influence of traffic emissions. Size distributions were sampled continuously in 2005 and 2006 inside a street canyon trafficked by ca. 10 000 motor vehicles per day, and at a background reference site distant at 1.5 km. Auto-correlation analysis showed that the impact of fresh traffic emissions could be seen most intensely below particle sizes of 60 nm. The traffic-induced concentration increment at roadside was estimated by subtracting the urban background values from the street canyon measurement. To describe the variable dispersion conditions inside the street canyon, micro-meteorological dilution factors were calculated using the Operational Street Pollution Model (OSPM), driven by above-roof wind speed and wind direction observations. The roadside increment concentrations, dilution factor, and real-time traffic counts were used to calculate vehicle emission factors (aerosol source rates) that are representative of the prevailing driving conditions, i.e. stop-and-go traffic including episodes of fluent traffic flow at speeds up to 40 km h-1. The size spectrum of traffic-derived particles was essentially bimodal - with mode diameters around 12 and 100 nm, while statistical analysis suggested that the emitted number concentration varied with time of day, wind direction, particle size and fleet properties. Significantly, the particle number emissions depended on ambient temperature, ranging between 4.8 (±1.8) and 7.8 (±2.9).1014 p. veh-1 km-1 in summer and winter, respectively. A separation of vehicle types according to vehicle length suggested that lorry-like vehicles emit about 80 times more particle number than passenger car-like vehicles. Using nitrogen oxide (NOx) measurements, specific total particle number emissions of 338 p. (pg NOx)-1 were inferred. The calculated traffic emission factors

  20. Exploratory User Study to Evaluate the Effect of Street Name Changes on Route Planning Using 2d Maps

    NASA Astrophysics Data System (ADS)

    Rautenbach, Victoria; Coetzee, Serena; Hankel, Melissa

    2016-06-01

    This paper presents the results of an exploratory user study using 2D maps to observe and analyse the effect of street name changes on prospective route planning. The study is part of a larger research initiative to understand the effect of street name changes on wayfinding. The common perception is that street name changes affect our ability to navigate an environment, but this has not yet been tested with an empirical user study. A combination of a survey, the thinking aloud method and eye tracking was used with a group of 20 participants, mainly geoinformatics students. A within-subject participant assignment was used. Independent variables were the street network (regular and irregular) and orientation cues (street names and landmarks) portrayed on a 2D map. Dependent variables recorded were the performance (were the participant able to plan a route between the origin and destination?); the accuracy (was the shortest path identified?); the time taken to complete a task; and fixation points with eye tracking. Overall, the results of this exploratory study suggest that street name changes impact the prospective route planning performance and process that individuals use with 2D maps. The results contribute to understanding how route planning changes when street names are changed on 2D maps. It also contributes to the design of future user studies. To generalise the findings, the study needs to be repeated with a larger group of participants.

  1. Vertical variations of particle number concentration and size distribution in a street canyon in Shanghai, China.

    PubMed

    Li, X L; Wang, J S; Tu, X D; Liu, W; Huang, Z

    2007-06-01

    Measurements of particle number size distribution in the range of 10-487 nm were made at four heights on one side of an asymmetric street canyon on Beijing East Road in Shanghai, China. The result showed that the number size distributions were bimodal or trimodal and lognormal in form. Within a certain height from 1.5 to 20 m, the particle size distributions significantly changed with increasing height. The particle number concentrations in the nucleation mode and in the Aitken mode significantly dropped, and the peaking diameter in the Aitken mode shifted to larger sizes. The variations of the particle number size distributions in the accumulation mode were less significant than those in the nucleation and Aitken modes. The particle number size distributions slightly changed with increasing height ranging from 20 to 38 m. The particle number concentrations in the street canyon showed a stronger association with the pre-existing particle concentrations and the intensity of the solar radiation when the traffic flow was stable. The particle number concentrations were observed higher in Test I than in Test II, probably because the small pre-existing particle concentrations and the intense solar radiation promoted the formation of new particles. The pollutant concentrations in the street canyon showed a stronger association with wind speed and direction. For example, the concentrations of total particle surface area, total particle volume, PM2.5 and CO were lower in Test I (high wind speed and step-up canyon) than in Test II (low wind speed and wind blowing parallel to the canyon). The equations for the normalized concentration curves of the total particle number, CO and PM2.5 in Test I and Test II were derived. A power functions was found to be a good estimator for predicting the concentrations of total particle number, CO and PM2.5 at different heights. The decay rates of PM2.5 and CO concentrations were lower in Test I than in Test II. However, the decay rate of the

  2. The performance evaluation of WinOSPM model for urban street canyons of Nantes in France.

    PubMed

    Gokhale, Sharad B; Rebours, Arnaud; Pavageau, Michel

    2005-01-01

    Air quality modelling is primarily the quantative approach. It is more difficult as it demands input data accuracy, uncertainties and the efficient methodologies to judge the extent of models accuracy. As a result, model validation has to be regarded as an integral part of the modelling process. Furthermore, models are often validated on a limited number of testcases therefore, appropriate evaluation procedure must be implemented to ensure these models will be applicable for various conditions. The study presented here was carried out to evaluate the WinOSPM (Preliminary version of windows based Operational Street Pollution Model) for air pollutants viz. CO, NO, NO2, NOx and C6H6 for three street canyons of Nantes (France) and for the three base years 1999, 2000, and 2001. Each street canyon selected for this study has typical and unidentical features. The rue de Strasbourg and Boulevard Victor Hugo have many building exceptions whereas rue Crébillon has not any. Application of the model above to the three street canyons revealed that WinOSPM could be used in the case when measurements are not available. This was justified from the results at rue Crébillon. The special interest was in the benzene modelled values as its content in fuel has been targeted to reduce to 1% for the years 2000 and onwards (from its 5% until the year 1999). The 50 to 70% reduction in the benzene concentrations is found for both the years i.e. in 2000 and 2001. This has further justified that air quality models are useful and interesting tools in optimising emission reduction strategies. Moreover, it is also the new pollutant added to the measurement campaign of Air Pays de la Loire (APL) for the city of Nantes. For benzene weekly averages are estimated from the hourly-modelled values for all the streets and compared with that of measurements. They are found in excellent agreement with each other's. For other pollutants annual means and percentiles were compared. The statistical analysis

  3. Modelling photochemical pollutants in a deep urban street canyon: Application of a coupled two-box model approximation

    NASA Astrophysics Data System (ADS)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2016-10-01

    Air pollution associated with road transport is a major environmental issue in urban areas. Buildings in urban areas are the artificial obstacles to atmospheric flow and cause reduced ventilation for street canyons. For a deep street canyon, there is evidence of the formation of multiple segregated vortices, which generate flow regimes such that pollutants exhibit a significant contrast between these vortices. This results in poor air ventilation conditions at pedestrian level, thereby leading to elevated pollutant levels and potential breaches of air quality limits. The hypothesis of a well-mixed deep street canyon in the practical one-box model approach is shown to be inappropriate. This study implements a simplified simulation of the canyon volume: a coupled two-box model with a reduced chemical scheme to represent the key photochemical processes with timescales similar to and smaller than the turbulent mixing timescale. The two-box model captures the significant pollutant contrast between the lower and upper parts of a deep street canyon, particularly for NO2. Core important parameters (i.e. heterogeneity coefficient, exchange velocity and box height ratio) in the two-box model approach were investigated through sensitivity tests. The two-box model results identify the emission regimes and the meteorological conditions under which NO2 in the lower canyon (i.e. the region of interest for the assessment of human health effects) is in breach of air quality standards. Higher NO2 levels were observed for the cases with higher heterogeneity coefficients (the two boxes are more segregated), with lower exchange velocities (worse ventilation conditions), or with smaller box height ratios (reduced dilution possibly due to secondary smaller eddies in the lower canyon). The performance of a one-box model using the same chemical scheme is also evaluated against the two-box model. The one-box model was found to systematically underestimate NO2 levels compared with those in

  4. Large-Eddy Simulation for the Mechanism of Pollutant Removal from a Two-Dimensional Street Canyon

    NASA Astrophysics Data System (ADS)

    Michioka, Takenobu; Sato, Ayumu; Takimoto, Hiroshi; Kanda, Manabu

    2011-02-01

    Large-eddy simulation (LES) is conducted to investigate the mechanism of pollutant removal from a two-dimensional street canyon with a building-height to street-width (aspect) ratio of 1. A pollutant is released as a ground-level line source at the centre of the canyon floor. The mean velocities, turbulent fluctuations, and mean pollutant concentration estimated by LES are in good agreement with those obtained by wind-tunnel experiments. Pollutant removal from the canyon is mainly determined by turbulent motions, except in the adjacent area to the windward wall. The turbulent motions are composed of small vortices and small-scale coherent structures of low-momentum fluid generated close to the plane of the roof. Although both small vortices and small-scale coherent structures affect pollutant removal, the pollutant is largely emitted from the canyon by ejection of low-momentum fluid when the small-scale coherent structures appear just above the canyon where the pollutant is retained. Large-scale coherent structures also develop above the canyon, but they do not always affect pollutant removal.

  5. Linking particle number concentration (PNC), meteorology and traffic variables in a UK street canyon

    NASA Astrophysics Data System (ADS)

    Price, Heather D.; Arthur, Robert; BéruBé, Kelly A.; Jones, Tim P.

    2014-10-01

    Ambient particle number concentration (PNC) has been linked with adverse health outcomes such as asthma, reduced lung function and cardiovascular disease. To investigate the relationship between PNC, meteorology and traffic we measured size segregated respirable particles in a busy commuter street in Swansea, UK for ten months using a Dekati Electrical Low Pressure Impactor (ELPI). The ELPI segregates particles into 12 size fractions between 7 nm and 10 μm. The median PNC for the sampling period was 31,545 cm- 3. For the ultrafine particles (7-93 nm), the highest PNC was found in winter (46,615 cm- 3; 15 minute average) and the lowest for that size fraction in summer (29,696 cm- 3). For the particles below 93 nm there was a trimodal distribution to weekdays (particularly Monday to Wednesday), with PNC peaks at 09:00, 16:00 and 23:00. Wind direction had a significant influence on PNC and differed between particles in the fine range (below 2.5 μm) and more coarse particles (up to 10 μm). For fine particles, winds parallel to the canyon were associated with higher PNCs which were attributed to the replenishment of traffic particles. For coarse particles, PNCs were higher from winds perpendicular to the canyon and this was linked to source distribution around the sampling site and the recirculation of pollutants within the canyon. During times when vehicle volumes were high and vehicles were exhibiting stop-start behaviour, if this was combined with low wind speeds, ultrafine PNC was highest. This effect was generally observed during the morning rush hour. Current mass-based legislation does not take into account exposure to the number of particles or the change in population exposure diurnally.

  6. CO2 absorption/emission and aerodynamic effects of trees on the concentrations in a street canyon in Guangzhou, China.

    PubMed

    Li, Jian-Feng; Zhan, Jie-Min; Li, Y S; Wai, Onyx W H

    2013-06-01

    In this paper, the effects of trees on CO2 concentrations in a street canyon in Guangzhou, China are examined by Computational Fluid Dynamics (CFD) simulations of the concentration distribution, taking into account both the CO2 absorption/emission and aerodynamic effects of trees. Simulation results show that, under a 2 m/s southerly prevailing wind condition, CO2 absorption by trees will reduce the CO2 concentration by around 2.5% in the daytime and at the same time the trees' resistance will increase the difference of CO2 concentrations in the street and at the inflow by 43%. As the traffic density increases to 50 vehicles/min, the effect of trees on the ambient CO2 concentration will change from positive to negative. At night, trees have a negative effect on the concentration in the street canyon mainly because of their resistance to airflow. When environmental wind changes, the effect of trees will be different.

  7. Joint PDF Modelling of Turbulent Flow and Dispersion in an Urban Street Canyon

    NASA Astrophysics Data System (ADS)

    Bakosi, J.; Franzese, P.; Boybeyi, Z.

    2009-05-01

    The joint probability density function (PDF) of turbulent velocity and concentration of a passive scalar in an urban street canyon is computed using a newly developed particle-in-cell Monte Carlo method. Compared to moment closures, the PDF methodology provides the full one-point one-time PDF of the underlying fields containing all higher moments and correlations. The small-scale mixing of the scalar released from a concentrated source at the street level is modelled by the interaction by exchange with the conditional mean (IECM) model, with a micro-mixing time scale designed for geometrically complex settings. The boundary layer along no-slip walls (building sides and tops) is fully resolved using an elliptic relaxation technique, which captures the high anisotropy and inhomogeneity of the Reynolds stress tensor in these regions. A less computationally intensive technique based on wall functions to represent the boundary layers and its effect on the solution are also explored. The calculated statistics are compared to experimental data and large-eddy simulation. The present work can be considered as the first example of computation of the full joint PDF of velocity and a transported passive scalar in an urban setting. The methodology proves successful in providing high level statistical information on the turbulence and pollutant concentration fields in complex urban scenarios.

  8. Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon

    NASA Astrophysics Data System (ADS)

    Rakowska, Agata; Wong, Ka Chun; Townsend, Thomas; Chan, Ka Lok; Westerdahl, Dane; Ng, Simon; Močnik, Griša; Drinovec, Luka; Ning, Zhi

    2014-12-01

    Vehicle emissions are identified as a major source of air pollution in metropolitan areas. Emission control programs in many cities have been implemented as part of larger scale transport policy interventions to control traffic pollutants and reduce public health risks. These interventions include provision of traffic-free and low emission zones and congestion charging. Various studies have investigated the impact of urban street configurations, such as street canyon in urban centers, on pollutants dispersion and roadside air quality. However, there are few investigations in the literature to study the impact of change of fleet composition and street canyon effects on the on-road pollutants concentrations and associated roadside pedestrian exposure to the pollutants. This study presents an experimental investigation on the traffic related gas and particle pollutants in and near major streets in one of the most developed business districts in Hong Kong, known as Central. Both street canyon and open roadway configurations were included in the study design. Mobile measurement techniques were deployed to monitor both on-road and roadside pollutants concentrations at different times of the day and on different days of a week. Multiple traffic counting points were also established to concurrently collect data on traffic volume and fleet composition on individual streets. Street canyon effects were evident with elevated on-road pollutants concentrations. Diesel vehicles were found to be associated with observed pollutant levels. Roadside black carbon concentrations were found to correlate with their on-road levels but with reduced concentrations. However, ultrafine particles showed very high concentrations in roadside environment with almost unity of roadside/on-road ratios possibly due to the accumulation of primary emissions and secondary PM formation. The results from the study provide useful information for the effective urban transport design and bus route

  9. Traffic contribution to air pollution in urban street canyons: Integrated application of the OSPM, moss biomonitoring and spectral analysis

    NASA Astrophysics Data System (ADS)

    Lazić, Lazar; Urošević, Mira Aničić; Mijić, Zoran; Vuković, Gordana; Ilić, Luka

    2016-09-01

    To investigate the air pollutant distribution within the ambient of urban street canyon, Operational Street Pollution Model (OSPM) was used to predict hourly content of NOX, NO, NO2, O3, CO, BNZ and PM10. The study was performed in five street canyons in Belgrade (Serbia) during 10-week summer period. The model receptors were located on each side of street canyons at 4 m, 8 m and 16 m height. To monitor airborne trace element content, the moss bag biomonitors were simultaneously exposed with the model receptors at two heights-4 m and 16 m. The results of both methods, modelling and biomonitoring, showed significantly decreasing trend of the air pollutants with height. The results indirectly demonstrate that biomonitoring, i.e., moss bag technique could be a valuable tool to verify model performance. In addition, spectral analysis was applied to investigate weekly variation of the daily background and modelled data set. Typical periodicities and weekend effect, caused by anthropogenic influences, have been identified.

  10. Numerical modeling of flows and pollutant dispersion within and above urban street canyons under unstable thermal stratification by large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Chan, Ming-Chung; Liu, Chun-Ho

    2013-04-01

    Recently, with the ever increasing urban areas in developing countries, the problem of air pollution due to vehicular exhaust arouses the concern of different groups of people. Understanding how different factors, such as urban morphology, meteorological conditions and human activities, affect the characteristics of street canyon ventilation, pollutant dispersion above urban areas and pollutant re-entrainment from the shear layer can help us improve air pollution control strategies. Among the factors mentioned above, thermal stratification is a significant one determining the pollutant transport behaviors in certain situation, e.g. when the urban surface is heated by strong solar radiation, which, however, is still not widely explored. The objective of this study is to gain an in-depth understanding of the effects of unstable thermal stratification on the flows and pollutant dispersion within and above urban street canyons through numerical modeling using large-eddy simulation (LES). In this study, LES equipped with one-equation subgrid-scale (SGS) model is employed to model the flows and pollutant dispersion within and above two-dimensional (2D) urban street canyons (flanked by idealized buildings, which are square solid bars in these models) under different intensities of unstable thermal stratifications. Three building-height-to-street-width (aspect) ratios, 0.5, 1 and 2, are included in this study as a representation of different building densities. The prevailing wind flow above the urban canopy is driven by background pressure gradient, which is perpendicular to the street axis, while the condition of unstable thermal stratification is induced by applying a higher uniform temperature on the no-slip urban surface. The relative importance between stratification and background wind is characterized by the Richardson number, with zero value as a neutral case and negative value as an unstable case. The buoyancy force is modeled by Boussinesq approximation and the

  11. Optimizing the use of on-street car parking system as a passive control of air pollution exposure in street canyons by large eddy simulation

    NASA Astrophysics Data System (ADS)

    Gallagher, J.; Gill, L. W.; McNabola, A.

    2011-03-01

    An investigation was carried out to establish the effectiveness of parked cars in urban street canyons as passive controls on pedestrian pollutant exposure. A numerical model of a generic street canyon was developed using a large eddy simulation (LES) model to compare personal exposure on the footpath with and without the presence of parked cars. Three configurations of car parking systems were investigated (parallel, perpendicular and 45° parking) in addition to the influence of wind speed, wind direction and car parking occupancy. A tracer gas (CO 2) was used as a representative pollutant from vehicular sources within the street canyon models. The results indicated that parked cars may act as a temporary baffle plate between traffic emissions and pedestrians on the footpath. Reductions in exposure of up to 35% and 49% were attained on the leeward and windward footpaths in perpendicular wind conditions, with parallel winds allowing up to 33% pollutant reduction on both footpaths for parallel parking. The perpendicular and 45° car parking configurations investigated proved less successful as passive controls on air pollution exposure and an increase in pollutant concentration occurred in some models. An investigation of parking space occupancy rates was carried out for parallel parked cars. The fraction of parked cars influenced the level of reduction of pollutants on the footpaths with steady reductions in perpendicular winds, yet reductions were only evident for occupancy rates greater than approximately 45% in parallel wind conditions. One negative impact associated with the parked cars study was the increase of pollutant levels on the roadway as the parked cars acted as a baffle wall, which trapped pollutants in the road. The paper underlines the potential of on-street car parking for reducing the personal exposure of pollutants by pedestrians and the optimum parking layout to achieve maximum health protection.

  12. Effects of differential wall heating in street canyons on dispersion and ventilation characteristics of a passive scalar

    NASA Astrophysics Data System (ADS)

    Cai, Xiaoming

    2012-05-01

    This paper presents the first large-eddy simulation (LES) study of transfer and dispersion of a scalar released from a rough urban facet, either the street surface, the upstream-wall, or the downstream-wall, under the thermo-dynamical conditions of either the upstream-wall or the downstream-wall, plus the roof, heated by solar radiation. The boundary condition of a constant value is adopted for the scalars on the rough urban facets and a wall function is proposed for the scalars. The LES results demonstrate that dispersion inside the street canyon possesses distinctive characteristics for two conditions: the assisting condition in which the thermal-driven flow has the same direction as that of the wind-driven vortex and the opposing condition in which the thermal-driven flow has the opposite direction as that of the wind-driven vortex. For the street-released scalar under the opposing condition, the concentration fluctuations relative to the mean concentration can reach 50% and in general they are much larger than those for the assisting cases which are in the range of 25-30%. The exchange velocity of a scalar between the street canyon air and the urban boundary layer (UBL), wCB(c), is one order of magnitude larger than the exchange velocity between a facet and the urban boundary layer, UBL, w0B(c), indicating quantitatively that the resistance to the transfer of a facet-released scalar is dominated by the near-facet processes. As the temperature difference between the wall and the UBL, ΔT, increases, the total resistance to street canyon ventilation becomes more dominated by the near-facet resistance. The assisting conditions are favourable to ventilating the scalars from both walls, whereas the opposing conditions are only favourable to the ventilation of the downstream-wall released scalar. In the range of ΔT tested in this study, the exchange velocity, wCB(c), linearly increases with ΔT and can be well parameterised. For the assisting cases, the advective

  13. Large eddy simulation of reactive pollutants in a deep urban street canyon: Coupling dynamics with O3-NOx-VOC chemistry.

    PubMed

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2017-02-12

    A large eddy simulation (LES) model coupled with O3-NOx-VOC chemistry is implemented to simulate the coupled effects of emissions, mixing and chemical pre-processing within an idealised deep (aspect ratio = 2) urban street canyon under a weak wind condition. Reactive pollutants exhibit significant spatial variations in the presence of two vertically aligned unsteady vortices formed in the canyon. Comparison of the LES results from two chemical schemes (simple NOx-O3 chemistry and a more comprehensive Reduced Chemical Scheme (RCS) chemical mechanism) shows that the concentrations of NO2 and Ox inside the street canyon are enhanced by approximately 30-40% via OH/HO2 chemistry. NO, NOx, O3, OH and HO2 are chemically consumed, while NO2 and Ox (total oxidant) are chemically produced within the canyon environment. Within-canyon pre-processing increases oxidant fluxes from the canyon to the overlying boundary layer, and this effect is greater for deeper street canyons (as found in many traditional European urban centres) than shallower (lower aspect ratio) streets. There is clear evidence of distinct behaviours for emitted chemical species and entrained chemical species, and positive (or negative) values of intensities of segregations are found between pairs of species with similar (or opposite) behaviour. The simplified two-box model underestimated NO and O3 levels, but overestimated NO2 levels for both the lower and upper canyon compared with the more realistic LES-chemistry model. This suggests that the segregation effect due to incomplete mixing reduces the chemical conversion rate of NO to NO2. This study reveals the impacts of nonlinear O3-NOx-VOC photochemical processes in the incomplete mixing environment and provides a better understanding of the pre-processing of emissions within canyons, prior to their release to the urban boundary layer, through the coupling of street canyon dynamics and chemistry.

  14. Fast calculations of the spectral diffuse-to-global ratios for approximating spectral irradiance at the street canyon level

    NASA Astrophysics Data System (ADS)

    Carrasco-Hernandez, Roberto; Smedley, Andrew R. D.; Webb, Ann R.

    2016-05-01

    Two radiative transfer models are presented that simplify calculations of street canyon spectral irradiances with minimum data input requirements, allowing better assessment of urban exposures than can be provided by standard unobstructed radiation measurements alone. Fast calculations improve the computational performance of radiation models, when numerous repetitions are required in time and location. The core of the models is the calculation of the spectral diffuse-to-global ratios (DGR) from an unobstructed global spectral measurement. The models are based on, and have been tested against, outcomes of the SMARTS2 algorithm (i.e. Simple Model of the Atmospheric Radiative Transfer of Sunshine). The modelled DGRs can then be used to partition global spectral irradiance values into their direct and diffuse components for different solar zenith angles. Finally, the effects of canyon obstructions can be evaluated independently on the direct and diffuse components, which are then recombined to give the total canyon irradiance. The first model allows ozone and aerosol inputs, while the second provides a further simplification, restricted to average ozone and aerosol contents but specifically designed for faster calculations. To assess the effect of obstructions and validate the calculations, a set of experiments with simulated obstructions (simulated canyons) were performed. The greatest source of uncertainty in the simplified calculations is in the treatment of diffuse radiation. The measurement-model agreement is therefore dependent on the region of the sky obscured and ranges from <5 % at all wavelengths to 20-40 % (wavelength dependent) when diffuse sky only is visible from the canyon.

  15. Pre-stack depth migration for improved imaging under seafloor canyons: 2D case study of Browse Basin, Australia*

    NASA Astrophysics Data System (ADS)

    Debenham, Helen 124Westlake, Shane

    2014-06-01

    In the Browse Basin, as in many areas of the world, complex seafloor topography can cause problems with seismic imaging. This is related to complex ray paths, and sharp lateral changes in velocity. This paper compares ways in which 2D Kirchhoff imaging can be improved below seafloor canyons, using both time and depth domain processing. In the time domain, to improve on standard pre-stack time migration (PSTM) we apply removable seafloor static time shifts in order to reduce the push down effect under seafloor canyons before migration. This allows for better event continuity in the seismic imaging. However this approach does not fully solve the problem, still giving sub-optimal imaging, leaving amplitude shadows and structural distortion. Only depth domain processing with a migration algorithm that honours the paths of the seismic energy as well as a detailed velocity model can provide improved imaging under these seafloor canyons, and give confidence in the structural components of the exploration targets in this area. We therefore performed depth velocity model building followed by pre-stack depth migration (PSDM), the result of which provided a step change improvement in the imaging, and provided new insights into the area.

  16. Numerical investigations of flow and passive pollutant exposure in high-rise deep street canyons with various street aspect ratios and viaduct settings.

    PubMed

    He, Lejian; Hang, Jian; Wang, Xuemei; Lin, Borong; Li, Xiaohui; Lan, Guangdong

    2017-04-15

    Vehicular pollutant exposure of residents and pedestrians in high-rise deep street canyons with viaducts and noise barriers requires special concerns because the ventilation capacity is weak and the literature reported inconsistent findings on flow patterns as aspect ratios (building height/street width, H/W) are larger than 2. By conducting computational fluid dynamics (CFD) simulations coupled with the intake fraction iF and the daily pollutant exposure Et, this paper investigates the impact of street aspect ratios, viaducts and noise barriers on the flow and vehicular passive pollutant exposure in full-scale street canyons (H/W=1-6, W=24m). iF represents the fraction of total emissions inhaled by a population (1ppm=10(-6)), while Et means the extent of human beings' contact with pollutants within one day. CFD methodologies of passive pollutant dispersion modeling are successfully validated by wind tunnel data in Meroney et al. (1996). As a novelty, the two-main-vortex pattern start appearing in full-scale street canyons as H/W changes from 4 to 5, however previous studies using wind-tunnel-scale models (H=6cm) reported two to five vortexes as H/W=2-5. This finding is validated by both smoke visualization in scale-model outdoor field experiments (H=1.2m, W=0.6m) and CFD simulations of Reynolds number independence. Cases with two main vortexes (H/W=5-6) experience much larger daily pollutant exposure (~10(3)-10(4)mg/m(3)/day) than those with single main vortex as H/W=1-4 (~10(1)-10(2)mg/m(3)/day). Moreover leeward-side pollutant exposures are much larger than windward-side as H/W=1-4 while oppositely as H/W=5-6. Assuming a general population density, the total iF is 485-803ppm as H/W=1, 2020-12051ppm as H/W=2-4, and 51112-794026ppm as H/W=5-6. With a single elevated pollutant source, cases with viaducts experience significantly smaller pollutant exposures than cases without viaducts. Road barriers slightly increase pollutant exposure in near-road buildings with H

  17. Modelling component evaporation and composition change of traffic-induced ultrafine particles during travel from street canyon to urban background.

    PubMed

    Nikolova, Irina; MacKenzie, A Rob; Cai, Xiaoming; Alam, Mohammed S; Harrison, Roy M

    2016-07-18

    We developed a model (CiTTy-Street-UFP) of traffic-related particle behaviour in a street canyon and in the nearby downwind urban background that accounts for aerosol dynamics and the variable vapour pressure of component organics. The model simulates the evolution and fate of traffic generated multicomponent ultrafine particles (UFP) composed of a non-volatile core and 17 Semi-Volatile Organic Compounds (SVOC, modelled as n-alkane proxies). A two-stage modelling approach is adopted: (1) a steady state simulation inside the street canyon is achieved, in which there exists a balance between traffic emissions, condensation/evaporation, deposition, coagulation and exchange with the air above roof-level; and (2) a continuing simulation of the above-roof air parcel advected to the nearby urban park during which evaporation is dominant. We evaluate the component evaporation and associated composition changes of multicomponent organic particles in realistic atmospheric conditions and compare our results with observations from London (UK) in a street canyon and an urban park. With plausible input conditions and parameter settings, the model can reproduce, with reasonable fidelity, size distributions in central London in 2007. The modelled nucleation-mode peak diameter, which is 23 nm in the steady-state street canyon, decreases to 9 nm in a travel time of just 120 s. All modelled SVOC in the sub-10 nm particle size range have evaporated leaving behind only non-volatile material, whereas modelled particle composition in the Aitken mode contains SVOC between C26H54 and C32H66. No data on particle composition are available in the study used for validation, or elsewhere. Measurements addressing in detail the size resolved composition of the traffic emitted UFP in the atmosphere are a high priority for future research. Such data would improve the representation of these particles in dispersion models and provide the data essential for model validation. Enhanced knowledge of the

  18. Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting

    NASA Astrophysics Data System (ADS)

    Moonen, P.; Gromke, C.; Dorer, V.

    2013-08-01

    The potential of a Large Eddy Simulation (LES) model to reliably predict near-field pollutant dispersion is assessed. To that extent, detailed time-resolved numerical simulations of coupled flow and dispersion are conducted for a street canyon with tree planting. Different crown porosities are considered. The model performance is assessed in several steps, ranging from a qualitative comparison to measured concentrations, over statistical data analysis by means of scatter plots and box plots, up to the calculation of objective validation metrics. The extensive validation effort highlights and quantifies notable features and shortcomings of the model, which would otherwise remain unnoticed. The model performance is found to be spatially non-uniform. Closer agreement with measurement data is achieved near the canyon ends than for the central part of the canyon, and typical model acceptance criteria are satisfied more easily for the leeward than for the windward canyon wall. This demonstrates the need for rigorous model evaluation. Only quality-assured models can be used with confidence to support assessment, planning and implementation of pollutant mitigation strategies.

  19. Modelling the dispersion and transport of reactive pollutants in a deep urban street canyon: using large-eddy simulation.

    PubMed

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2015-05-01

    This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment.

  20. The flow across a street canyon of variable width—Part 1: Kinematic description

    NASA Astrophysics Data System (ADS)

    Simoëns, Serge; Ayrault, Michel; Wallace, James M.

    Measurements have been made of the scalar dispersion of smoke released from a two-dimensional slot in the wall perpendicular to a boundary layer flow and located parallel to and midway between two square obstacles placed on the wall. The Reynolds number of the boundary layer at the slot location without the obstacles in place is Rθ≈980. Two optical systems with CCD cameras facing each other have been used to measure simultaneously the velocity and scalar concentration fields, respectively, with PIV and Mie scattering diffusion. In Part B of this paper the data will ultimately provide detailed information about the scalar fluxes for this environmentally relevant geometry. Here in Part A the results of the velocity field measurements in the streamwise plane will be reported for spacings between the obstacles of 1-10 obstacle heights. The mean flow measurements reveal the increasing complexity of the canyon flow with increasing obstacle spacing. A primary vortex, with negative spanwise vorticity, occurs within the canyon for all spacings and is driven by the flow above. The circulation region of this vortex extends above the level of the tops of the obstacles. For spacings of 2h and greater, a secondary vortex with positive vorticity appears in the upstream corner of the canyon, and a tertiary vortex with negative spanwise vorticity first appears in the downstream corner of the canyon for an opening of 6h. The spatial distribution of the level of turbulence within and around the canyon is indicated by the contours of two-dimensional turbulent kinetic energy, {1}/{2}(u2¯+v2¯). The region of elevated turbulence in the shear layer created by the upstream obstacle penetrates deeper into the canyon with increasing canyon opening. For all openings, the Reynolds shear stress is negative above the canyon. The vertical extent of the high negative stress region increases as the canyon opening increases, and it also penetrates well within the canyon. This region of negative

  1. Biomagnetic monitoring as a validation tool for local air quality models: a case study for an urban street canyon.

    PubMed

    Hofman, Jelle; Samson, Roeland

    2014-09-01

    Biomagnetic monitoring of tree leaf deposited particles has proven to be a good indicator of the ambient particulate concentration. The objective of this study is to apply this method to validate a local-scale air quality model (ENVI-met), using 96 tree crown sampling locations in a typical urban street canyon. To the best of our knowledge, the application of biomagnetic monitoring for the validation of pollutant dispersion modeling is hereby presented for the first time. Quantitative ENVI-met validation showed significant correlations between modeled and measured results throughout the entire in-leaf period. ENVI-met performed much better at the first half of the street canyon close to the ring road (r=0.58-0.79, RMSE=44-49%), compared to second part (r=0.58-0.64, RMSE=74-102%). The spatial model behavior was evaluated by testing effects of height, azimuthal position, tree position and distance from the main pollution source on the obtained model results and magnetic measurements. Our results demonstrate that biomagnetic monitoring seems to be a valuable method to evaluate the performance of air quality models. Due to the high spatial and temporal resolution of this technique, biomagnetic monitoring can be applied anywhere in the city (where urban green is present) to evaluate model performance at different spatial scales.

  2. Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon.

    PubMed

    Hu, L H; Xu, Y; Zhu, W; Wu, L; Tang, F; Lu, K H

    2011-09-15

    The dispersion of buoyancy driven smoke soot and carbon monoxide (CO) gas, which was ejected out from side building into an urban street canyon with aspect ratio of 1 was investigated by large eddy simulation (LES) under a perpendicular wind flow. Strong buoyancy effect, which has not been revealed before, on such pollution dispersion in the street canyon was studied. The buoyancy release rate was 5 MW. The wind speed concerned ranged from 1 to 7.5m/s. The characteristics of flow pattern, distribution of smoke soot and temperature, CO concentration were revealed by the LES simulation. Dimensionless Froude number (Fr) was firstly introduced here to characterize the pollutant dispersion with buoyancy effect counteracting the wind. It was found that the flow pattern can be well categorized into three regimes. A regular characteristic large vortex was shown for the CO concentration contour when the wind velocity was higher than the critical re-entrainment value. A new formula was theoretically developed to show quantitatively that the critical re-entrainment wind velocities, u(c), for buoyancy source at different floors, were proportional to -1/3 power of the characteristic height. LES simulation results agreed well with theoretical analysis. The critical Froude number was found to be constant of 0.7.

  3. Relationship between rooftop and on-road concentrations of traffic-related pollutants in a busy street canyon: Ambient wind effects.

    PubMed

    Kwak, Kyung-Hwan; Lee, Sang-Hyun; Seo, Jaemyeong Mango; Park, Seung-Bu; Baik, Jong-Jin

    2016-01-01

    Rooftop and on-road measurements of O3, NO2, NOx, and CO concentrations were conducted to investigate the relationship between rooftop and on-road concentrations in a busy and shallow street canyon with an aspect ratio of ∼0.3 in Seoul, Republic of Korea, from 15 April to 1 May 2014. The median road-to-roof concentration ratios, correlation coefficients between rooftop and on-road concentrations, and temporal variations of rooftop and on-road concentrations are analyzed according to the rooftop wind directions which are two cross-canyon and two along-canyon directions. The analysis results indicate that the relationship is strong when the rooftop is situated on the downwind side rather than on the upwind side. Relative to the cross-canyon wind directions, one of the along-canyon wind directions can more enhance the relationship. A conceptual framework is proposed to explain the effect of ambient wind direction on the relationship between rooftop and on-road concentrations in a street canyon.

  4. An open-terrain line source model coupled with street-canyon effects to forecast carbon monoxide at traffic roundabout.

    PubMed

    Pandian, Suresh; Gokhale, Sharad; Ghoshal, Aloke Kumar

    2011-02-15

    A double-lane four-arm roundabout, where traffic movement is continuous in opposite directions and at different speeds, produces a zone responsible for recirculation of emissions within a road section creating canyon-type effect. In this zone, an effect of thermally induced turbulence together with vehicle wake dominates over wind driven turbulence causing pollutant emission to flow within, resulting into more or less equal amount of pollutants upwind and downwind particularly during low winds. Beyond this region, however, the effect of winds becomes stronger, causing downwind movement of pollutants. Pollutant dispersion caused by such phenomenon cannot be described accurately by open-terrain line source model alone. This is demonstrated by estimating one-minute average carbon monoxide concentration by coupling an open-terrain line source model with a street canyon model which captures the combine effect to describe the dispersion at non-signalized roundabout. The results of the modeling matched well with the measurements compared with the line source model alone and the prediction error reduced by about 50%. The study further demonstrated this with traffic emissions calculated by field and semi-empirical methods.

  5. Numerical study of the impact of vegetation coverings on sound levels and time decays in a canyon street model.

    PubMed

    Guillaume, G; Gauvreau, B; L'Hermite, P

    2015-01-01

    Given a constantly increasing urban population, the mitigation of environmental impacts caused by urbanization has become a critical concern. Sprawling cities accelerate the phenomenon of soil sealing, whose impacts relative to climatology, water cycle and ecology are substantial. The "VegDUD" project, which provides the framework for the present paper, lays out a possible alternative for limiting these deleterious effects through focusing on the role of vegetation in promoting sustainable urban development. The study presented herein addresses the beneficial effect of greening building facades and rooftops in terms of both acoustic level and sound-decay time indicators at low frequency third-octave bands. This is carried out through numerical simulations in the time-domain of sound propagation in a canyon street of infinite length for various scenarios of surface vegetalization. Numerical predictions show a more significant effect in the upper part and outside the street, depending on the location of the vegetalized surfaces, frequency bands and number of reflections on the treated materials.

  6. The influence of street layouts and viaduct settings on daily carbon monoxide exposure and intake fraction in idealized urban canyons.

    PubMed

    Hang, Jian; Luo, Zhiwen; Wang, Xuemei; He, Lejian; Wang, Baomin; Zhu, Wei

    2017-01-01

    Environmental concerns have been raised on the adverse health effects of vehicle emissions in micro-scale traffic-crowded street canyons, especially for pedestrians and residents living in near-road buildings. Viaduct design is sometimes used to improve transportation efficiency but possibly affects urban airflow and the resultant exposure risk, which have been rarely investigated so far. The personal intake fraction (P_IF) is defined as the average fraction of total emissions that is inhaled by each person of a population (1 ppm = 1 × 10(-6)), and the daily carbon monoxide (CO) pollutant exposure (Et) is estimated by multiplying the average concentration of a specific micro-environment within one day. As a novelty, by considering time activity patterns and breathing rates in various micro-environments for three age groups, this paper introduces IF and Et into computational fluid dynamic (CFD) simulation to quantify the impacts of street layouts (street width/building height W/H = 1, 1.5, 2), source location, viaduct settings and noise barriers on the source-exposure correlation when realistic CO sources are defined. Narrower streets experience larger P_IF (1.51-5.21 ppm) and CO exposure, and leeward-side buildings always attain higher vehicular pollutant exposure than windward-side. Cases with a viaduct experience smaller P_IF (3.25-1.46 ppm) than cases without a viaduct (P_IF = 5.21-2.23 ppm) if the single ground-level CO source is elevated onto the viaduct. With two CO sources (both ground-level and viaduct-level), daily CO exposure rises 2.80-3.33 times but P_IF only change slightly. Noise barriers above a viaduct raise concentration between barriers, but slightly reduce vehicular exposure in near-road buildings. Because people spend most of their time indoors, vehicular pollutant exposure within near-road buildings can be 6-9 times that at pedestrian level. Although further studies are still required to provide practical guidelines, this paper

  7. Integrating a street-canyon model with a regional Gaussian dispersion model for improved characterisation of near-road air pollution

    NASA Astrophysics Data System (ADS)

    Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2017-03-01

    The development and use of dispersion models that simulate traffic-related air pollution in urban areas has risen significantly in support of air pollution exposure research. In order to accurately estimate population exposure, it is important to generate concentration surfaces that take into account near-road concentrations as well as the transport of pollutants throughout an urban region. In this paper, an integrated modelling chain was developed to simulate ambient Nitrogen Dioxide (NO2) in a dense urban neighbourhood while taking into account traffic emissions, the regional background, and the transport of pollutants within the urban canopy. For this purpose, we developed a hybrid configuration including 1) a street canyon model, which simulates pollutant transfer along streets and intersections, taking into account the geometry of buildings and other obstacles, and 2) a Gaussian puff model, which resolves the transport of contaminants at the top of the urban canopy and accounts for regional meteorology. Each dispersion model was validated against measured concentrations and compared against the hybrid configuration. Our results demonstrate that the hybrid approach significantly improves the output of each model on its own. An underestimation appears clearly for the Gaussian model and street-canyon model compared to observed data. This is due to ignoring the building effect by the Gaussian model and undermining the contribution of other roads by the canyon model. The hybrid approach reduced the RMSE (of observed vs. predicted concentrations) by 16%-25% compared to each model on its own, and increased FAC2 (fraction of predictions within a factor of two of the observations) by 10%-34%.

  8. Local and regional components of aerosol in a heavily trafficked street canyon in central London derived from PMF and cluster analysis of single-particle ATOFMS spectra.

    PubMed

    Giorio, Chiara; Tapparo, Andrea; Dall'Osto, Manuel; Beddows, David C S; Esser-Gietl, Johanna K; Healy, Robert M; Harrison, Roy M

    2015-03-17

    Positive matrix factorization (PMF) has been applied to single particle ATOFMS spectra collected on a six lane heavily trafficked road in central London (Marylebone Road), which well represents an urban street canyon. PMF analysis successfully extracted 11 factors from mass spectra of about 700,000 particles as a complement to information on particle types (from K-means cluster analysis). The factors were associated with specific sources and represent the contribution of different traffic related components (i.e., lubricating oils, fresh elemental carbon, organonitrogen and aromatic compounds), secondary aerosol locally produced (i.e., nitrate, oxidized organic aerosol and oxidized organonitrogen compounds), urban background together with regional transport (aged elemental carbon and ammonium) and fresh sea spray. An important result from this study is the evidence that rapid chemical processes occur in the street canyon with production of secondary particles from road traffic emissions. These locally generated particles, together with aging processes, dramatically affected aerosol composition producing internally mixed particles. These processes may become important with stagnant air conditions and in countries where gasoline vehicles are predominant and need to be considered when quantifying the impact of traffic emissions.

  9. Impacts of traffic composition and street-canyon geometry on on-road air quality in a high-rise building area

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-Hwan; Kim, Kyung Hwan; Lee, Seung-Bok; Woo, Sung Ho; Bae, Gwi-Nam; Sunwoo, Young; Baik, Jong-Jin

    2016-04-01

    Mobile measurements using a mobile laboratory and numerical simulations using a computational fluid dynamics (CFD) model were conducted over different time periods of multiple days in a high-rise building area, Seoul, Republic of Korea. Mobile measurement can provide actual on-road emission levels of air pollutants from vehicles as well as validation dataset of a CFD model. On the other hand, CFD modeling is required for the process analysis of mobile measurement data and the quantitative estimation of determining factors in complex phenomena. The target area is characterized as a busy street canyon elongated along a major road with hourly traffic volumes of approximately 4000 vehicles during working hours on weekdays. Nitrogen oxides (NOx), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (pPAH), and particle number (PN) concentrations were measured during 39 round trips of mobile laboratory. The associations of the measured NOx, BC, pPAH, and PN concentrations with the traffic volumes of individual compositions are analyzed by calculating the correlation coefficients (R2) based on linear regressions. It is found that SUV, truck, van, and bus are heavy emitters responsible for the on-road air pollution in the street canyon. Among the measured pollutants, the largest R2 is shown for pPAH. The measured NOx, BC, pPAH, and PN concentrations are unevenly distributed in the street canyon. The measured concentrations around an intersection are higher than those in between intersections, particularly for NOx and pPAH. The CFD modeling for different dispersion scenarios reveals that the intersection has counterbalancing roles in determining the on-road concentrations. The emission process acts to increase the on-road concentrations due to accelerating and idling vehicles, whereas the dispersion process acts to decrease the on-road concentrations due to lateral ventilations along the crossing street. It is needed to control the number of heavy emitters and

  10. A Novel Phospholipase A2 (D49) from the Venom of the Crotalus oreganus abyssus (North American Grand Canyon Rattlesnake)

    PubMed Central

    Martins, W.; Baldasso, P. A.; Honório, K. M.; Maltarollo, V. G.; Ribeiro, R. I. M. A.; Carvalho, B. M. A.; Soares, A. M.; Calderon, L. A.; Stábeli, R. G.; Caballol, M. A. O.; Acosta, G.; Oliveira, E.; Marangoni, S.; Albericio, F.; Da Silva, S. L.

    2014-01-01

    Currently, Crotalus viridis was divided into two species: Crotalus viridis and Crotalus oreganus. The current classification divides “the old” Crotalus viridis into two new and independent species: Crotalus viridis (subspecies: viridis and nuntius) and Crotalus oreganus (subspecies: abyssus, lutosus, concolor, oreganus, helleri, cerberus, and caliginis). The analysis of a product from cDNA (E6d), derived from the gland of a specie Crotalus viridis viridis, was found to produce an acid phospholipase A2. In this study we isolated and characterized a PLA2 (D49) from Crotalus oreganus abyssus venom. Our studies show that the PLA2 produced from the cDNA of Crotalus viridis viridis (named E6d) is exactly the same PLA2 primary sequence of amino acids isolated from the venom of Crotalus oreganus abyssus. Thus, the PLA2 from E6d cDNA is actually the same PLA2 presented in the venom of Crotalus oreganus abyssus and does not correspond to the venom from Crotalus viridis viridis. These facts highlight the importance of performing more studies on subspecies of Crotalus oreganus and Crotalus viridis, since the old classification may have led to mixed results or mistaken data. PMID:24707493

  11. A novel phospholipase A2 (D49) from the venom of the Crotalus oreganus abyssus (North American Grand canyon rattlesnake).

    PubMed

    Martins, W; Baldasso, P A; Honório, K M; Maltarollo, V G; Ribeiro, R I M A; Carvalho, B M A; Soares, A M; Calderon, L A; Stábeli, R G; Caballol, M A O; Acosta, G; Oliveira, E; Marangoni, S; Albericio, F; Da Silva, S L

    2014-01-01

    Currently, Crotalus viridis was divided into two species: Crotalus viridis and Crotalus oreganus. The current classification divides "the old" Crotalus viridis into two new and independent species: Crotalus viridis (subspecies: viridis and nuntius) and Crotalus oreganus (subspecies: abyssus, lutosus, concolor, oreganus, helleri, cerberus, and caliginis). The analysis of a product from cDNA (E6d), derived from the gland of a specie Crotalus viridis viridis, was found to produce an acid phospholipase A2. In this study we isolated and characterized a PLA2 (D49) from Crotalus oreganus abyssus venom. Our studies show that the PLA2 produced from the cDNA of Crotalus viridis viridis (named E6d) is exactly the same PLA2 primary sequence of amino acids isolated from the venom of Crotalus oreganus abyssus. Thus, the PLA2 from E6d cDNA is actually the same PLA2 presented in the venom of Crotalus oreganus abyssus and does not correspond to the venom from Crotalus viridis viridis. These facts highlight the importance of performing more studies on subspecies of Crotalus oreganus and Crotalus viridis, since the old classification may have led to mixed results or mistaken data.

  12. Personal exposure of street canyon intersection users to PM 2.5, ultrafine particle counts and carbon monoxide in Central London, UK

    NASA Astrophysics Data System (ADS)

    Kaur, S.; Nieuwenhuijsen, M.; Colvile, R.

    Short-term human exposure to PM 2.5, ultrafine particle counts (particle range: 0.02-1 μm) and carbon monoxide (CO) was investigated at and around a street canyon intersection in Central London, UK. During a four-week field campaign, groups of four volunteers collected samples at three timings (morning, lunch and afternoon), along two different routes (a heavily trafficked route and a backstreet route) via five modes of transport (walking, cycling, bus, car and taxi). PM 2.5 was sampled using high-flow gravimetric personal samplers, ultrafine particle counts were measured using TSI P-TRAKs and Langans were used to measure CO exposure. Three hundred and ninety-four samples were collected—197 PM 2.5, 86 ultrafine particle count and 111 CO. Arithmetic means of PM 2.5 personal exposure were 27.5, 33.5, 34.5, 38.0 and 41.5 μg m -3, ultrafine particle counts were 67 773, 93 968, 101 364, 99 736 and 87 545 pt cm -3 and CO levels were 0.9, 1.1, 0.8, 1.3 and 1.1 ppm for walking, cycling, bus, car and taxi respectively. On the heavily trafficked route, personal exposure was 35.3 μg m -3, 101142 pt cm -3 and 1.3 ppm, and on the backstreet route it was 31.8 μg m -3, 71628 pt cm -3 and 0.6 ppm for PM 2.5, ultrafine particle counts and CO, respectively. Personal exposure levels were high during the morning measurements for all three pollutants (34.6 μg m -3, 106 270 pt cm -3 and 1.5 ppm for PM 2.5, ultrafine particle counts and CO, respectively).There was a moderately strong correlation between personal exposure of ultrafine particle counts and CO ( r=0.7, N=67) but a weaker correlation between PM 2.5 and ultrafine particle counts ( r=0.5, N=83) and a low correlation between PM 2.5 and CO exposure ( r=0.2, N=105). The exposure assessment also revealed that the background and kerbside monitoring stations were not representative of the personal exposure of individuals to PM 2.5 and CO at and around a street canyon intersection.

  13. Assessment of Air Pollution Tolerance Index of some plants to develop vertical gardens near street canyons of a polluted tropical city.

    PubMed

    Pandey, Ashutosh Kumar; Pandey, Mayank; Tripathi, B D

    2016-12-01

    The aim of the present study was to examine Air Pollution Tolerance Index (APTI) of some climber plant species to develop vertical gardens in Varanasi city which has characteristics of tall building and narrow roads. This condition results in street canyon like structure and hinders the vertical dispersal of air pollutants. We have selected 24 climber plant species which are commonly found in of Varanasi city. Chosen plants can be easily grown either in planter boxes or directly in the ground, with a vertical support they can climb on walls to form green walls or vertical garden. Air Pollution Tolerance Index (APTI) of the selected plant species was calculated and plants with higher APTI are recommended for the development of Vertical garden. Highest APTI was noted for Ipomoea palmata (25.39) followed by Aristolochia elegans (23.28), Thunbergia grandiflora (23.14), Quisqualis indica (22.42), and Clerodendrum splendens (22.36). However, lowest APTI value (8.75) was recorded for the species Hemidesmus indicus. Moreover, the linear regression analysis has revealed a high positive correlation between APTI and ascorbic acid content (R(2)=0.8837) and positive correlation between APTI and Chlorophyll content (R(2)=0.6687). On the basis of higher APTI values (greater than 17), nine species of climber plants viz. I. palmata, T. grandiflora, C. splendens, A. elegans, Q. indica, Petria volubilis, Antigonon leptopus, Cryptolepis buchuanni and Tinospora cordifolia have been recommended to develop vertical greenery systems in a compact tropical city.

  14. A modeling investigation of the impact of street and building configurations on personal air pollutant exposure in isolated deep urban canyons.

    PubMed

    Ng, Wai-Yin; Chau, Chi-Kwan

    2014-01-15

    This study evaluated the effectiveness of different configurations for two building design elements, namely building permeability and setback, proposed for mitigating air pollutant exposure problems in isolated deep canyons by using an indirect exposure approach. The indirect approach predicted the exposures of three different population subgroups (i.e. pedestrians, shop vendors and residents) by multiplying the pollutant concentrations with the duration of exposure within a specific micro-environment. In this study, the pollutant concentrations for different configurations were predicted using a computational fluid dynamics model. The model was constructed based on the Reynolds-Averaged Navier-Stokes (RANS) equations with the standard k-ε turbulence model. Fifty-one canyon configurations with aspect ratios of 2, 4, 6 and different building permeability values (ratio of building spacing to the building façade length) or different types of building setback (recess of a high building from the road) were examined. The findings indicated that personal exposures of shop vendors were extremely high if they were present inside a canyon without any setback or separation between buildings and when the prevailing wind was perpendicular to the canyon axis. Building separation and building setbacks were effective in reducing personal air exposures in canyons with perpendicular wind, although their effectiveness varied with different configurations. Increasing the permeability value from 0 to 10% significantly lowered the personal exposures on the different population subgroups. Likewise, the personal exposures could also be reduced by the introduction of building setbacks despite their effects being strongly influenced by the aspect ratio of a canyon. Equivalent findings were observed if the reduction in the total development floor area (the total floor area permitted to be developed within a particular site area) was also considered. These findings were employed to

  15. Effect of the position of the visible sky in determining the sky view factor on micrometeorological and human thermal comfort conditions in urban street canyons

    NASA Astrophysics Data System (ADS)

    Qaid, Adeb; Lamit, Hasanuddin Bin; Ossen, Dilshan Remaz; Rasidi, Mohd Hisyam

    2017-01-01

    Poor daytime and night-time micrometeorological conditions are issues that influence the quality of environmental conditions and can undermine a comfortable human lifestyle. The sky view factor (SVF) is one of the essential physical parameters used to assess the micrometeorological conditions and thermal comfort levels within city streets. The position of the visible sky relative to the path of the sun, in the cardinal and ordinal directions, has not been widely discerned as a parameter that could have an impact on the micrometeorological conditions of urban streets. To investigate this parameter, different urban streets that have a similar SVF value but diverse positions of visible sky were proposed in different street directions intersecting with the path of the sun, namely N-S, NE-SW and NW-SE. The effects of daytime and night-time micrometeorological variables and human thermal comfort variables on the street were investigated by applying ENVI-met V3.1 Beta software. The results show that the position of the visible sky has a greater influence on the street's meteorological and human thermal comfort conditions than the SVF value. It has the ability to maximise or minimise the mean radiation temperature (Tmrt, °C) and the physiological equivalent temperature (PET, °C) at street level. However, the visible sky positioned to the zenith in a NE-SW or N-S street direction and to the SW of a NW-SE street direction achieves the best daytime micrometeorological and thermal comfort conditions. Alternatively, the visible sky positioned to the NE for a NW-SE street direction, to the NW and the zenith for a NE-SW street direction and to the zenith for a N-S street direction reduces the night-time air temperature (Ta, °C). Therefore, SVF and the position of the visible sky relative to the sun's trajectory, in the cardinal and ordinal directions, must be considered during urban street planning to better understand the resultant micrometeorological and human thermal

  16. A modelling exercise to examine variations of NOx concentrations on adjacent footpaths in a street canyon: The importance of accounting for wind conditions and fleet composition.

    PubMed

    Gallagher, J

    2016-04-15

    Personal measurement studies and modelling investigations are used to examine pollutant exposure for pedestrians in the urban environment: each presenting various strengths and weaknesses in relation to labour and equipment costs, a sufficient sampling period and the accuracy of results. This modelling exercise considers the potential benefits of modelling results over personal measurement studies and aims to demonstrate how variations in fleet composition affects exposure results (presented as mean concentrations along the centre of both footpaths) in different traffic scenarios. A model of Pearse Street in Dublin, Ireland was developed by combining a computational fluid dynamic (CFD) model and a semi-empirical equation to simulate pollutant dispersion in the street. Using local NOx concentrations, traffic and meteorological data from a two-week period in 2011, the model were validated and a good fit was presented. To explore the long-term variations in personal exposure due to variations in fleet composition, synthesised traffic data was used to compare short-term personal exposure data (over a two-week period) with the results for an extended one-year period. Personal exposure during the two-week period underestimated the one-year results by between 8% and 65% on adjacent footpaths. The findings demonstrate the potential for relative differences in pedestrian exposure to exist between the north and south footpaths due to changing wind conditions in both peak and off-peak traffic scenarios. This modelling approach may help overcome potential under- or over-estimations of concentrations in personal measurement studies on the footpaths. Further research aims to measure pollutant concentrations on adjacent footpaths in different traffic and wind conditions and to develop a simpler modelling system to identify pollutant hotspots on our city footpaths so that urban planners can implement improvement strategies to improve urban air quality.

  17. Hot Canyon

    ScienceCinema

    None

    2016-07-12

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  18. Hot Canyon

    SciTech Connect

    2012-01-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  19. [Street children].

    PubMed

    Roncević, Nevenka; Stojadinović, Aleksandra; Batrnek-Antonić, Daliborka

    2013-01-01

    According to UNICEF, street child is any child under the age of 18 for whom the street has become home and/or source of income and which is not adequately protected or supervised by adult, responsible person. It has been estimated that there are between 100 and 150 million street children worldwide. Life and work on the street have long term and far-reaching consequences for development and health of these children. By living and working in the street, these children face the highest level of risk. Street children more often suffer from the acute illness, injuries, infection, especially gastrointestinal, acute respiratory infections and sexually transmitted diseases, inadequate nutrition, mental disorders, and drug abuse. They are more often victims of abuse, sexual exploitation, trafficking; they have higher rate of adolescent pregnancy than their peers from poor families. Street children and youth have higher rates of hospitalization and longer hospital stay due to seriousness of illness and delayed health care. Street children/youth are reluctant to seek health care, and when they try, they face many barriers. Street children are invisible to the state and their number in Serbia is unknown. Recently, some non-governmental organizations from Belgrade, Novi Sad and Nis have recognized this problem and tried to offer some help to street children, by opening drop-in centers, but this is not enough. To solve this problem, an engagement of the state and the whole community is necessary, and primary responsibility lies in health, social and educational sector. The best interests of the child must serve as a basic guideline in all activities aimed at improving health, quality of life and rights of children involved in the life and work in the street.

  20. Directed urban canyons in megacities and its applications in meteorological modeling

    NASA Astrophysics Data System (ADS)

    Samsonov, Timofey; Konstantinov, Pavel; Varentsov, Mikhail

    2015-04-01

    Directed urban canyons study applies object-oriented analysis to extraction of urban canyons and introduces the concept of directed urban canyon which is then experimentally applied in urban meteorological modeling. Observation of current approach to description of urban canyon geometry is provided. Then a new theoretical approach to canyon delineation is presented that allows chaining the spaces between buildings into directed canyons that comprise three-level hierarchy. An original methodology based on triangular irregular network (TIN) is presented that allows extraction of regular and directed urban canyons from cartographic data, estimation of their geometric characteristics, including local and averaged height-width ratio, primary and secondary canyon directions. Obtained geometric properties of canyons are then applied in micro-scale temperature and wind modeling using URB-MOS model and estimation of possible wind accelerations along canyons. Extraction and analysis of directed canyons highly depends on the presence of linear street network. Thus, in the absence of this GIS layer, it should be reconstructed from another data sources. The future studies should give us an answer to the question, where the limits of directed canyons are and how they can be classified further in terms of the street longitudinal shape. For now all computations are performed in separate scripts and programs. We plan to develop comprehensive automation of described methods of urban canyon description in specialized software. The most perspective extension of proposed methodology seemes to be canyon -based analysis which is truely object-oriented. Various geometric properties of micro-, meso- and macro-scale canyons should be investigated and their applicability in urban climate modeling should be assesed. Object-oriented canyon analysis can also be applied in architectural studies, urban morphology, planning and various physical and social aspects that are concerned with human in

  1. Hydraulics of floods upstream of horseshoe canyons and waterfalls

    NASA Astrophysics Data System (ADS)

    Lapotre, Mathieu G. A.; Lamb, Michael P.

    2015-07-01

    Horseshoe waterfalls are ubiquitous in natural streams, bedrock canyons, and engineering structures. Nevertheless, water flow patterns upstream of horseshoe waterfalls are poorly known and likely differ from the better studied case of a one-dimensional linear step because of flow focusing into the horseshoe. This is a significant knowledge gap because the hydraulics at waterfalls controls sediment transport and bedrock incision, which can compromise the integrity of engineered structures and influence the evolution of river canyons on Earth and Mars. Here we develop new semiempirical theory for the spatial acceleration of water upstream of, and the cumulative discharge into, horseshoe canyons and waterfalls. To this end, we performed 110 numerical experiments by solving the 2-D depth-averaged shallow-water equations for a wide range of flood depths, widths and discharges, and canyon lengths, widths and bed gradients. We show that the upstream, normal flow Froude number is the dominant control on lateral flow focusing and acceleration into the canyon head and that focusing is limited when the flood width is small compared to a cross-stream backwater length scale. In addition, for sheet floods much wider than the canyon, flow focusing into the canyon head leads to reduced discharge (and drying in cases) across the canyon sidewalls, which is especially pronounced for canyons that are much longer than they are wide. Our results provide new expectations for morphodynamic feedbacks between floods and topography, and thus canyon formation.

  2. Flow Focusing as a Control on the Width of Canyons Formed by Outburst Floods

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G.; Lamb, M. P.; Halliday, C. K.

    2012-12-01

    Spectacular canyons exist on the surfaces of Earth and Mars that were carved by ancient outburst megafloods. These canyons often have steep headwalls and were eroded into jointed rock. This suggests that canyon formation is driven by upstream retreat of waterfalls through toppling failure. Discharge reconstructions remain difficult, however, because we do not understand quantitatively the links between canyon formation and canyon morphology. Here we propose that the width of canyon headwalls is set by the shear stress distribution around the rim of the canyon, which governs the propensity for toppling failure, and that this distribution is controlled by focusing of flood water into the canyon head. To test this hypothesis, we performed a series of numerical simulations of 2-D, depth-averaged, turbulent flow using the hydraulic numerical modeling suite ANUGA Hydro and mapped the shear stresses along the rim of canyons of various geometries. The numerical simulations were designed to explore three dimensionless variables: the aspect ratio of the canyon (length normalized by width), the canyon width relative to the normal flow depth, and the Froude number. Preliminary results show that flow focusing at the head of a canyon can lead to heightened shear stresses there compared to the sides of the canyon. Flow focusing is most efficient for subcritical flows with large canyon aspect ratios, suggesting that canyons grow in all directions until they reach a critical length which depends on the Froude number only. Canyons longer than this critical length maintain a uniform width during canyon formation. Earth-analog canyons, where flood depths were constrained from previous paleo-hydraulic studies, show good agreement with our numerical predictions, suggesting that flow focusing may set the width of canyons during megafloods. Model results allow a link between process and form that will enable us to constrain better flood discharges on Earth and Mars, where other robust

  3. Subinertial canyon resonance

    NASA Astrophysics Data System (ADS)

    Clarke, Allan J.; Van Gorder, Stephen

    2016-04-01

    Near the bottom of a narrow canyon currents that oscillate back and forth along the bottom slope hx in a stratified ocean of buoyancy frequency N do so with a natural internal gravitational frequency Nhx. From May 2012 to May 2013 Acoustic Doppler Current Profiler measurements were made at 715 m depth in the deep narrow part of the DeSoto Canyon south of Pensacola, Florida, in water with 2π/Nhx ≈ 2.5 days. Above the canyon the flow follows the large-scale isobaths, but beneath the canyon rim the current oscillates along the canyon axis with 2-3 day periodicity, and is much stronger than and uncorrelated with the overlying flow. A simple theoretical model explains the resonant response. Published observations from the Hudson and Gully canyons suggest that the strong subinertial current oscillations observed in these canyons occur close to the relevant local frequency Nhx, consistent with the proposed simple model physics.

  4. N. River Street, east side of street at Sound End ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    N. River Street, east side of street at Sound End - River Street Historic District, Bounded by West Saint James Street, West Santa Clara Street, Pleasant Street, & Guadalupe River, San Jose, Santa Clara County, CA

  5. Turning Main Street into a Green Street

    EPA Pesticide Factsheets

    With EPA assistance, a small community near Pittsburgh is turning its main street into a green street to control stormwater runoff that has caused flooding, sewer backups and combined sewer overflows.

  6. Hydraulic Implications of Different Megaflood Canyon Incision Models

    NASA Astrophysics Data System (ADS)

    Larsen, I. J.; Lamb, M. P.

    2015-12-01

    Deeply incised canyons are some of the most dramatic features of landscapes carved by megafloods. The geometry of these canyons may reveal information regarding flood magnitudes during the last ice age on Earth and the volume of water flowing on early Mars. Canyons on both planets have been alternatively modeled as 'channels', where the modern topography was completely inundated with water to the elevation of the canyon rims, or as 'valleys' that were progressively incised by lesser discharges. Here we combine numerical flood simulations and sediment transport mechanics to explore the hydraulic implications that result from modeling the canyons as 'channels' versus 'valleys'. Over 300 floods were simulated for Moses Coulee, a 60 km-long canyon in the Channeled Scablands of eastern Washington, USA, using a 2D, depth-averaged hydraulic model. We simulated floods with discharges ranging from 0.1 million m3 s-1 to 6 million m3 s-1 using both the modern landscape as a topographic boundary condition and synthetic topographies that restored the canyon floor to different elevations as guided by strath terraces. For each simulation we tracked whether shear stresses on the terrace treads exceeded thresholds for sliding of basalt columns. Simulations using the modern topography indicate shear stresses were sufficiently high to erode the terraces at discharges lower than bankfull, and surprisingly, shear stresses decrease with increasing discharge at some sites due to backwater dynamics, which constrains canyon formation to moderate discharges. Simulations performed on the synthetic topography suggest the canyon could have been incised progressively by floods smaller than those required to fill the canyon to bankfull stage. These results suggest the canyons can be viewed as valleys that incised progressively, as opposed to channels filled with water, which has implications for placing bounds on paleoflood hydraulic reconstruction on Earth and Mars.

  7. 626628 North Eutaw Street (Commercial Building), 626628 North Eutaw Street ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    626-628 North Eutaw Street (Commercial Building), 626-628 North Eutaw Street & 400-412 Druid Hill Avenue on a block bounded by North Eutaw Street, George Street, Jaspar Street, & Druid Hill Avenue, Baltimore, Independent City, MD

  8. Evaluation of impacts of trees on PM2.5 dispersion in urban streets

    NASA Astrophysics Data System (ADS)

    Jin, Sijia; Guo, Jiankang; Wheeler, Stephen; Kan, Liyan; Che, Shengquan

    2014-12-01

    Reducing airborne particulate matter (PM), especially PM2.5 (PM with aerodynamic diameters of 2.5 μm or less), in urban street canyons is critical to the health of central city population. Tree-planting in urban street canyons is a double-edged sword, providing landscape benefits while inevitably resulting in PM2.5 concentrating at street level, thus showing negative environmental effects. Thereby, it is necessary to quantify the impact of trees on PM2.5 dispersion and obtain the optimum structure of street trees for minimizing the PM2.5 concentration in street canyons. However, most of the previous findings in this field were derived from wind tunnel or numerical simulation rather than on-site measuring data. In this study, a seasonal investigation was performed in six typical street canyons in the residential area of central Shanghai, which has been suffering from haze pollution while having large numbers of green streets. We monitored and measured PM2.5 concentrations at five heights, structural parameters of street trees and weather. For tree-free street canyons, declining PM2.5 concentrations were found with increasing height. However, in presence of trees the reduction rate of PM2.5 concentrations was less pronounced, and for some cases, the concentrations even increased at the top of street canyons, indicating tree canopies are trapping PM2.5. To quantify the decrease of PM2.5 reduction rate, we developed the attenuation coefficient of PM2.5 (PMAC). The wind speed was significantly lower in street canyons with trees than in tree-free ones. A mixed-effects model indicated that canopy density (CD), leaf area index (LAI), rate of change of wind speed were the most significant predictors influencing PMAC. Further regression analysis showed that in order to balance both environmental and landscape benefits of green streets, the optimum range of CD and LAI was 50%-60% and 1.5-2.0 respectively. We concluded by suggesting an optimized tree-planting pattern and

  9. Modelling Pollutant Dispersion in a Street Network

    NASA Astrophysics Data System (ADS)

    Salem, N. Ben; Garbero, V.; Salizzoni, P.; Lamaison, G.; Soulhac, L.

    2015-04-01

    This study constitutes a further step in the analysis of the performances of a street network model to simulate atmospheric pollutant dispersion in urban areas. The model, named SIRANE, is based on the decomposition of the urban atmosphere into two sub-domains: the urban boundary layer, whose dynamics is assumed to be well established, and the urban canopy, represented as a series of interconnected boxes. Parametric laws govern the mass exchanges between the boxes under the assumption that the pollutant dispersion within the canopy can be fully simulated by modelling three main bulk transfer phenomena: channelling along street axes, transfers at street intersections, and vertical exchange between street canyons and the overlying atmosphere. Here, we aim to evaluate the reliability of the parametrizations adopted to simulate these phenomena, by focusing on their possible dependence on the external wind direction. To this end, we test the model against concentration measurements within an idealized urban district whose geometrical layout closely matches the street network represented in SIRANE. The analysis is performed for an urban array with a fixed geometry and a varying wind incidence angle. The results show that the model provides generally good results with the reference parametrizations adopted in SIRANE and that its performances are quite robust for a wide range of the model parameters. This proves the reliability of the street network approach in simulating pollutant dispersion in densely built city districts. The results also show that the model performances may be improved by considering a dependence of the wind fluctuations at street intersections and of the vertical exchange velocity on the direction of the incident wind. This opens the way for further investigations to clarify the dependence of these parameters on wind direction and street aspect ratios.

  10. Oak Canyon Action Memo

    EPA Pesticide Factsheets

    This memorandum requests approval for a time-critical removal action at the 27 residential properties that compose the Oak Canyon Site located in the Village of Paguate, Pueblo of Laguna, near Cibola County, New Mexico.

  11. Hydraulics of outburst floods spilling over a steep-walled canyon: Implications for paleo-discharges on Mars

    NASA Astrophysics Data System (ADS)

    Lapotre, Mathieu; Lamb, Michael

    2013-04-01

    Canyons carved by outburst floods are common landforms on Earth and Mars. These canyons are generally found in fractured basalts and jointed sedimentary rocks. Flood-carved canyons commonly have steep headwalls and a roughly constant width, and are often thought to have formed from upstream headwall propagation due to waterfall erosion. Because morphology is readily available from satellite imagery, these canyons offer a unique opportunity to quantify the discharge of rare, catastrophic paleo-floods on Earth and Mars. However, mechanistic relationships that relate canyon size to flood discharge have yet to be developed. We propose that the width of a canyon headwall in fractured rock is set by the spatial distribution of erosion around the rim of the canyon, which is controlled by the distribution of shear stresses induced by the overflowing water as it is focused into the canyon head. We test this hypothesis by performing a series of numerical simulations of flood-water focusing using ANUGA Hydro, a 2D-depth averaged, fully turbulent, hydraulic numerical modeling suite allowing for Froude-number transitions. The numerical simulations were designed to explore five dimensionless variables: the aspect ratio of the canyon (length normalized by width), the canyon width to flood-water width ratio, the canyon width to normal-flow depth ratio, the Froude number, and the topographic gradient upstream of the canyon. Preliminary results show that flow focusing leads to increased shear stresses at the canyon head compared to the sides of the canyon for subcritical floods and higher canyon aspect ratios. This suggests that proto-canyons start growing from a topographic defect in all directions until they reach a critical length for the side walls to dry. Once this critical length is attained, canyons focus most of the flood waters into their heads, and propagate upstream only, maintaining roughly constant widths. Preliminary results suggest that canyon width may be used to

  12. Flow in bedrock canyons.

    PubMed

    Venditti, Jeremy G; Rennie, Colin D; Bomhof, James; Bradley, Ryan W; Little, Malcolm; Church, Michael

    2014-09-25

    Bedrock erosion in rivers sets the pace of landscape evolution, influences the evolution of orogens and determines the size, shape and relief of mountains. A variety of models link fluid flow and sediment transport processes to bedrock incision in canyons. The model components that represent sediment transport processes are increasingly well developed. In contrast, the model components being used to represent fluid flow are largely untested because there are no observations of the flow structure in bedrock canyons. Here we present a 524-kilometre, continuous centreline, acoustic Doppler current profiler survey of the Fraser Canyon in western Canada, which includes 42 individual bedrock canyons. Our observations of three-dimensional flow structure reveal that, as water enters the canyons, a high-velocity core follows the bed surface, causing a velocity inversion (high velocities near the bed and low velocities at the surface). The plunging water then upwells along the canyon walls, resulting in counter-rotating, along-stream coherent flow structures that diverge near the bed. The resulting flow structure promotes deep scour in the bedrock channel floor and undercutting of the canyon walls. This provides a mechanism for channel widening and ensures that the base of the walls is swept clear of the debris that is often deposited there, keeping the walls nearly vertical. These observations reveal that the flow structure in bedrock canyons is more complex than assumed in the models presently used. Fluid flow models that capture the essence of the three-dimensional flow field, using simple phenomenological rules that are computationally tractable, are required to capture the dynamic coupling between flow, bedrock erosion and solid-Earth dynamics.

  13. Street Drugs and Pregnancy

    MedlinePlus

    ... premature birth Zika virus and pregnancy Folic acid Medicine safety and pregnancy Birth defects prevention Learn how ... Is it safe? > Street drugs and pregnancy Street drugs and pregnancy E-mail to a friend Please ...

  14. 18. VIEW OF A CANYON IN THE CLEANUP PHASE. CANYONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF A CANYON IN THE CLEANUP PHASE. CANYONS WERE PROCESSING ROOMS USED TO HOUSE PLUTONIUM HANDLING OPERATIONS THAT WERE NOT CONTAINED WITHIN GLOVE BOXES. CANYONS WERE DESIGNED TO BECOME CONTAMINATED. (5/10/88) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  15. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  16. UV Radiation in an Urban Canyon in Southeast Queensland

    NASA Astrophysics Data System (ADS)

    McKinley, A. R.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    Ultraviolet radiation (UV) has the possibility to both harm and to benefit human beings when unprotected exposure occurs. After receiving small amounts of UV our bodies begin to synthesise vitamin D, which is essential for maintaining healthy bones, however excessive UV exposure can result in a variety of damaging outcomes ranging from sunburn to skin cancer and cataracts. For this reason it is very important to understand the different environments in which people encounter UV so as to better prepare the public to make smart and healthy sun exposure decisions. Each day more and more people are moving into large cities around the world and spending their time inside the urban canyon, however UV measurements are generally taken at scientific stations in open areas or on top of tall buildings, meaning that at times the environmental characteristics measured may not accurately represent those found at street-level in these highly urbanized areas. Urban canyons are home to both very tall buildings and tropospheric air pollution, each of which reduces the amount of UV reaching street-level. This study measured the varying difference between UV measurements taken at street-level and at a standard UV monitoring site on top of a building outside of the urban canyon. Investigation was conducted in the central business district (CBD) of Brisbane, Australia, which models the CBDs of large cities around the world in that it boasts a great number of tall buildings, including many skyscrapers. Data was collected under clear sky conditions at five different street-level sites in the CBD (on either side of two streets running perpendicular to one another (four sites) and in a public square) and then compared to that obtained on the same day at the Queensland University of Technology's Australian Sun and Health Research Laboratory (ASHRL), which is located 2.5 kilometres outside Brisbane's CBD. Minimum erythemal dose (MED) data was collected at each location and it was found that

  17. Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations.

    PubMed

    Wania, Annett; Bruse, Michael; Blond, Nadège; Weber, Christiane

    2012-02-01

    Urban vegetation can be viewed as compensation to the environmental drawbacks of urbanisation. However, its ecosystem function is not well-known and, for urban planning, vegetation is mainly considered as an element of urban design. This article argues that planning practice needs to re-examine the impact of vegetation cover in the urban fabric given our evaluation of vegetation's effects on air quality, including the dispersion of traffic-induced particles at street level. Using the three-dimensional microclimate model ENVI-met®, we evaluate these effects regarding the height-to-width ratio of streets flanked by buildings and the vertical and horizontal density of street vegetation. Our results reveal vegetation's effect on particle dispersion through its influence on street ventilation. In general, vegetation was found to reduce wind speed, causing inhibition of canyon ventilation and, consequently, an increase in particle concentrations. Vegetation was also found to reduce wind speed at crown-height and to disrupt the flow field in close vicinity to the canopy. With increasing height-to-width ratio of street canyons, wind speed reduction increases and the disturbance of the flow impacts across a canyon's entire width. We also found that the effect is more pronounced in configurations with poor ventilation, such as the low wind speed, perpendicular inflow direction, and in deep canyons cases.

  18. Multi-scale modeling of urban air pollution: development of a Street-in-Grid model

    NASA Astrophysics Data System (ADS)

    Kim, Youngseob; Wu, You; Seigneur, Christian; Roustan, Yelva

    2016-04-01

    A new multi-scale model of urban air pollution is presented. This model combines a chemical-transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport at spatial scales greater than 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is based on the general formulation of the SIRANE model and consists of two main components: a street-canyon component and a street-intersection component. The street-canyon component calculates the mass transfer velocity at the top of the street canyon (roof top) and the mean wind velocity within the street canyon. The estimation of the mass transfer velocity depends on the intensity of the standard deviation of the vertical velocity at roof top. The effect of various formulations of this mass transfer velocity on the pollutant transport at roof-top level is examined. The street-intersection component calculates the mass transfer from a given street to other streets across the intersection. These mass transfer rates among the streets are calculated using the mean wind velocity calculated for each street and are balanced so that the total incoming flow rate is equal to the total outgoing flow rate from the intersection including the flow between the intersection and the overlying atmosphere at roof top. In the default option, the Leighton photostationary cycle among ozone (O3) and nitrogen oxides (NO and NO2) is used to represent the chemical reactions within the street network. However, the influence of volatile organic compounds (VOC) on the pollutant concentrations increases when the nitrogen oxides (NOx) concentrations are low. To account for the possible VOC influence on street-canyon chemistry, the CB05 chemical kinetic mechanism, which includes 35 VOC model species, is implemented in this street-network model. A sensitivity study is conducted to assess the uncertainties associated with the use of

  19. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  20. A decision support tool for evaluating the air quality and wind comfort induced by different opening configurations for buildings in canyons.

    PubMed

    Fan, M; Chau, C K; Chan, E H W; Jia, J

    2017-01-01

    This study formulated a new index for evaluating both the air quality and wind comfort induced by building openings at the pedestrian level of street canyons. The air pollutant concentrations and wind velocities induced by building openings were predicted by a series of CFD simulations using ANSYS Fluent software based on standard k-ɛ model. The types of opening configurations investigated inside isolated and non-isolated canyons included separations, voids and permeable elements. It was found that openings with permeability values of 10% were adequate for improving the air quality and wind comfort conditions for pedestrians after considering the reduction in development floor areas. Openings were effective in improving the air quality in isolated canyons and different types of opening configurations were suggested for different street aspect ratios. On the contrary, openings were not always found effective for non-isolated canyons if there were pollutant sources in adjacent street canyons. As such, it would also be recommended introducing openings to adjacent canyons along with openings to the target canyons. The formulated index can help city planners and building designers to strike an optimal balance between air quality and wind comfort for pedestrians when designing and planning buildings inside urban streets and thus promoting urban environmental sustainability.

  1. Flushing submarine canyons.

    PubMed

    Canals, Miquel; Puig, Pere; de Madron, Xavier Durrieu; Heussner, Serge; Palanques, Albert; Fabres, Joan

    2006-11-16

    The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean(1). During high sea-level stands, such as at present, these canyons still experience occasional sediment gravity flows(2-5), which are usually thought to be triggered by sediment failure or river flooding. Here we present observations from a submarine canyon on the Gulf of Lions margin, in the northwest Mediterranean Sea, that demonstrate that these flows can also be triggered by dense shelf water cascading (DSWC)-a type of current that is driven solely by seawater density contrast. Our results show that DSWC can transport large amounts of water and sediment, reshape submarine canyon floors and rapidly affect the deep-sea environment. This cascading is seasonal, resulting from the formation of dense water by cooling and/or evaporation, and occurs on both high- and low-latitude continental margins(6-8). DSWC may therefore transport large amounts of sediment and organic matter to the deep ocean. Furthermore, changes in the frequency and intensity of DSWC driven by future climate change may have a significant impact on the supply of organic matter to deep-sea ecosystems and on the amount of carbon stored on continental margins and in ocean basins.

  2. HENRY STREET SCHOOL, 1300 BLOCK BULL STREET, DETAIL OF NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HENRY STREET SCHOOL, 1300 BLOCK BULL STREET, DETAIL OF NORTH ELEVATION - Savannah Victorian Historic District, Bounded by Gwinnett, East Broad, West Broad Street & Anderson Lane, Savannah, Chatham County, GA

  3. Urban Street Gang Enforcement.

    ERIC Educational Resources Information Center

    Institute for Law and Justice, Inc., Alexandria, VA.

    Strategies to enhance prosecution of gang-related crimes are presented, with a focus on enforcement and prosecution targeting urban street gangs. The model programs introduced offer strategies largely based on the practical experiences of agencies that participated in a demonstration program, the Urban Street Gang Drug Trafficking Enforcement…

  4. Widening Sesame Street.

    ERIC Educational Resources Information Center

    Beck, T. Kay

    1979-01-01

    Traces the developmental history of Sesame Street from the initial efforts to obtain funding and set goals to present day importation of programs to other countries. It is recommended that Sesame Street producers incorporate Piagetian theories on cognitive development in order to realize learning gains. (Author)

  5. The Whittard Canyon - A case study of submarine canyon processes

    NASA Astrophysics Data System (ADS)

    Amaro, T.; Huvenne, V. A. I.; Allcock, A. L.; Aslam, T.; Davies, J. S.; Danovaro, R.; De Stigter, H. C.; Duineveld, G. C. A.; Gambi, C.; Gooday, A. J.; Gunton, L. M.; Hall, R.; Howell, K. L.; Ingels, J.; Kiriakoulakis, K.; Kershaw, C. E.; Lavaleye, M. S. S.; Robert, K.; Stewart, H.; Van Rooij, D.; White, M.; Wilson, A. M.

    2016-08-01

    Submarine canyons are large geomorphological features that incise continental shelves and slopes around the world. They are often suggested to be biodiversity and biomass hotspots, although there is no consensus about this in the literature. Nevertheless, many canyons do host diverse faunal communities but owing to our lack of understanding of the processes shaping and driving this diversity, appropriate management strategies have yet to be developed. Here, we integrate all the current knowledge of one single system, the Whittard Canyon (Celtic Margin, NE Atlantic), including the latest research on its geology, sedimentology, geomorphology, oceanography, ecology, and biodiversity in order to address this issue. The Whittard Canyon is an active system in terms of sediment transport. The net suspended sediment transport is mainly up-canyon causing sedimentary overflow in some upper canyon areas. Occasionally sediment gravity flow events do occur, some possibly the result of anthropogenic activity. However, the role of these intermittent gravity flows in transferring labile organic matter to the deeper regions of the canyon appears to be limited. More likely, any labile organic matter flushed downslope in this way becomes strongly diluted with bulk material and is therefore of little food value for benthic fauna. Instead, the fresh organic matter found in the Whittard Channel mainly arrives through vertical deposition and lateral transport of phytoplankton blooms that occur in the area during spring and summer. The response of the Whittard Canyon fauna to these processes is different in different groups. Foraminiferal abundances are higher in the upper parts of the canyon and on the slope than in the lower canyon. Meiofaunal abundances in the upper and middle part of the canyon are higher than on adjacent slopes, but lower in the deepest part. Mega- and macrofauna abundances are higher in the canyon compared with the adjacent slope and are higher in the eastern than

  6. New York Canyon Stimulation

    SciTech Connect

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "No Go" decision and initiate project termination in April 2012.

  7. Canyon in DCS Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released July 26, 2004 This image shows two representations of the same infra-red image covering a portion of Ganges Chasma. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    The northern canyon at the top of this image is dominated by a bright red/magenta area consisting primarly basaltic materials on the floor of the canyon and atmospheric dust. Within that area, there are patches of purple, on the walls and in the landslides, that may be due to an olivine rich mineral layer. In the middle of the image, the green on the mesa between the two canyons is from a layer of dust. The patchy blue areas in the southern canyon are likely due to water ice clouds.

    Image information: IR instrument. Latitude -6.6, Longitude 316 East (44 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics

  8. A Double-Canyon Radiation Scheme for Multi-Layer Urban Canopy Models

    NASA Astrophysics Data System (ADS)

    Schubert, Sebastian; Grossman-Clarke, Susanne; Martilli, Alberto

    2012-12-01

    We develop a double-canyon radiation scheme (DCEP) for urban canopy models embedded in mesoscale numerical models based on the Building Effect Parametrization (BEP). The new scheme calculates the incoming and outgoing longwave and shortwave radiation for roof, wall and ground surfaces for an urban street canyon characterized by its street and building width, canyon length, and the building height distribution. The scheme introduces the radiative interaction of two neighbouring urban canyons allowing the full inclusion of roofs into the radiation exchange both inside the canyon and with the sky. In contrast to BEP, we also treat direct and diffuse shortwave radiation from the sky independently, thus allowing calculation of the effective parameters representing the urban diffuse and direct shortwave radiation budget inside the mesoscale model. Furthermore, we close the energy balance of incoming longwave and diffuse shortwave radiation from the sky, so that the new scheme is physically more consistent than the BEP scheme. Sensitivity tests show that these modifications are important for urban regions with a large variety of building heights. The evaluation against data from the Basel Urban Boundary Layer Experiment indicates a good performance of the DCEP when coupled with the regional weather and climate model COSMO-CLM.

  9. 18. THIRD STREET FROM ITS INTERSECTION WITH F STREET, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. THIRD STREET FROM ITS INTERSECTION WITH F STREET, LOOKING NORTH, For the purpose of clarity and simplicity, directions relate to the nearly north-south orientation of the Naval Supply Center, and not to true north. The alignment of streets and buildings in the NSC are roughly related to magnetic north, and are thus about 10 degrees clockwise from true north. WITH BUILDINGS 222 AND 221 ON LEFT. - Oakland Naval Supply Center, Maritime Street at Seventh Street, Oakland, Alameda County, CA

  10. 7. Historic photograph reproduction: 'Warren Street from State Street' ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic photograph reproduction: 'Warren Street from State Street' ca. 1893. Courtesy of Trenton Free Public Library. The tall, narrow building in the middle of the photo is 10 North Warren Street. Signs saying 'Saddlery,' 'Carriage,' and 'Hardware' on the building indicate that the photo was taken during the tenancy of Claffery & Slack (1888-1914). - 10 North Warren Street (Commercial Building), 10 North Warren Street, Trenton, Mercer County, NJ

  11. The Street and Its Image.

    ERIC Educational Resources Information Center

    Lucchini, Riccardo

    1996-01-01

    Studied development of identity as street children in Montevideo, Uruguay. Found that children without income-generating activity lack self-definition as street children but recognize the street as a place of apprenticeship, knowing they can return to institutions or to parents. Working children view the street as a workplace and meeting place,…

  12. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  13. Vale Commercial Historic District, A Street between Holland & Longfellow ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Vale Commercial Historic District, A Street between Holland & Longfellow Streets, north side of B Street between Holland & Main Streets, Main Street South from A Street through B Street, & Stone House at 283 Main Street South, Vale, Malheur County, OR

  14. Measuring Longwave Radiative Flux Divergence in an Urban Canyon

    NASA Astrophysics Data System (ADS)

    Soux, A.; Oke, T. R.; Nunez, M.; Wilson, M.

    2003-12-01

    There has been very little measurement of longwave radiation divergence since the urban studies of Fuggle, Oke and Nunez in the mid 1970's or the rural work of Funk in the early 1960's. Although radiative divergence has been widely ignored for sometime there is the belief that it may play an important role in balancing nocturnal energy budgets in a range of environments. For example, in urban environments surface temperature relates well to the energy balance whereas air temperature does not, even in non-turbulent conditions. This is probably due at least in part to the effects of longwave divergence. To help answer issues related to longwave divergence a new dual-channel infrared radiometer (DCIR) has been developed. The DCIR, as the name implies, measures the directional infrared radiation in two wavebands and can, through differencing of the signals and further signal processing, give a direct measurement of longwave radiative flux divergence. The DCIR was deployed for the first time as part of a larger study (BUBBLE) of the urban boundary layer of Basel, Switzerland. The objective is to further study the thermal regime of a city at the canyon scale. To this end, a street canyon was carefully selected, in the city of Basel. The canyon surface and air volume were instrumented, including turbulent and conductive fluxes, and standard meteorological variables in addition to radiation. A unique data set was obtained to allow the complete energy balance of the canyon system to be evaluated without the need to resort to using residuals to quantify the magnitude of the longwave radiative flux divergence. Measured values of longwave flux-divergence are converted to cooling rates to compare with measured air temperature cooling. Preliminary results show that at the onset of canyon air-volume cooling, measured cooling rates are slightly lower than radiative cooling rates. The differences are less than 0.5° C. This contrasts sharply with previously measured above roof

  15. Canyon waste dump case study

    SciTech Connect

    Land, M.D.; Brothers, R.R. ); McGinn, C.W. )

    1991-01-01

    This data packet contains the Canyonville Canyon Waste Dump results of the various physical environmental sampling. Core samples were taken from the on site waste material. Vertical grab samples were made from these borings. The waste samples were screened fro volatile organic compounds (VOC) and logged for lithology. Soil samples were also tested for VOC. Composite sediment samples were taken using a coring device known as a clam gun. No surface water was available for testing from the intermittent Canyon Wash. The hydrogeology of the Canyon Waste Dump was inferred from lithologic logs and hydraulic data from the five monitoring wells located along the canyon floor. Groundwater was monitored through five wells. The soil vapor and air screening techniques used were adaptations of the EPA ERT and NIOSH methodologies. 4 figs., 9 tabs.

  16. 1. West Street & High Street Bridges. Westerly, Washington Co., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West Street & High Street Bridges. Westerly, Washington Co., RI. sec. 4215, mp 141.67/.77. - Northeast Railroad Corridor, Amtrak route between CT & MA state lines, Providence, Providence County, RI

  17. VIEW LOOKING DOWN DUNCAN STREET FROM AYRES STREET, WITH FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING DOWN DUNCAN STREET FROM AYRES STREET, WITH FACILITY 712 ON RIGHT AND FACILITY 713 ON LEFT (CENTRAL-ENTRY SINGLE FAMILY HOUSING TYPE). VIEW FACING NORTHWEST. - Schofield Barracks Military Reservation, Wilikina Drive & Kunia Road, Wahiawa, Honolulu County, HI

  18. Anatomy of La Jolla Canyon

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Caress, D. W.; Ussler, W.; Lundsten, E.; McGann, M. L.; Conrad, J. E.; Edwards, B. D.; Covault, J. A.

    2010-12-01

    High-resolution multibeam bathymetry (vertical precision of 0.15 m and horizontal resolution of 1.0 m) and chirp sub-bottom profiler data collected with an autonomous underwater vehicle (AUV) reveal the fine-scale morphology of La Jolla Canyon, offshore southern California. The AUV was pre-programmed to fly three missions within the canyon while maintaining an altitude of 50 m above bottom in water depths between 365 and 980 m. Sparker seismic reflection profiles define the overall geometry of the canyon and its host sediments. A remotely operated vehicle (ROV) was used to ground truth the AUV surveys by collecting video observations, 25 vibracores ≤1.5 m long and 38 horizontal push cores from outcrops on the canyon walls. These tools outline the shape and near sub-bottom character of the canyon and thus provide insight into the processes that generated the present canyon geomorphology. La Jolla Canyon is ~1.5 km across and contains a smaller-scale sinuous axial channel that varies in width from <50 m to >300 m. The total relief on the canyon walls is ~90 m and most of the elevation changes occur along a few steep faces that separate intervening terraces. Fine scale features include <1 m high steps on the surface of the major terraces and the existence of crescent shaped bedforms within the axial channel. Also notable are the numerous slide scars on the canyon flanks and within its axial channel. The sharpness of the textures seen in the multibeam images and ROV observations suggest the canyon is active and sediment failures play an important role in generating the canyon’s present morphology. Vibracores show that the floor of the axial channel is typically covered with >1 m of medium- to fine-grained sand. While collecting vibracores within the axial channel, the sand within a radius of ~2 m were observed to flow down slope, apparently after becoming fluidized. The ease with which failure can be induced on the relatively gentle slopes (~1.4°) within the

  19. Saving Mango Street

    ERIC Educational Resources Information Center

    Van Winkle, Katie

    2012-01-01

    The author first learned about cultural diversity and racial justice in Mr. Sanderson's middle school English class. They read a book called "The House on Mango Street" by Sandra Cisneros and learned about a different culture, but also about a community with striking similarities to their own. The main character in the novel, Esperanza,…

  20. Benjamin Franklin Street Academy.

    ERIC Educational Resources Information Center

    Wohl, Seth F.

    In this evaluation report of the sixth year of operation of the Benjamin Franklin-Urban League Street Academy in New York City, it is recommended that the program be continued for the seventh year despite the poorer than expected student gains in all studied components and the sporadic student attendance pattern and high dropout rate. Students…

  1. Street Corner Writing.

    ERIC Educational Resources Information Center

    Holiday, D. Alexander

    The language of Black America is rich and diverse in its utterance, whether through music (Jazz, Blues, Soul, Gospel, and Rap), through street corner "shuckin''n jivin'," or through writing. This language is used as a means of survival, of getting from one day to the next. Blacks have developed a system of taking the fewest words and…

  2. 1 Main Street, Mars

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Located outside StenniSphere, the visitor center at John C. Stennis Space Center, 1 Main Street Mars is a model of how a habitat on Mars might look. Complete with thermometers, scales and clocks set to Martian equivalents, this exhibit shows how very different life on Mars can be.

  3. Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah

    SciTech Connect

    Cashion, W.B.; Kilburn, J.E.; Barton, H.N.; Kelley, K.D.; Kulik, D.M. ); McDonnell, J.R. )

    1990-09-01

    This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences of uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas.

  4. North of Wood Street Monitoring

    EPA Pesticide Factsheets

    Located at the far northern end of the upper harbor is the North of Wood Street study area. This area extends for about a quarter of a mile north of the Wood Street Bridge between New Bedford and Acushnet, Massachusetts.

  5. Canyon Floor Deposits

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03598 Canyon Floor Deposits

    The layered and wind eroded deposits seen in this VIS image occur on the floor of Chandor Chasma.

    Image information: VIS instrument. Latitude 5.2S, Longitude 283.4E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. School StreetMonroe Street Neighborhood, Bounded on north by Quincy & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    School Street-Monroe Street Neighborhood, Bounded on north by Quincy & Monroe Streets, on south by Jefferson Street, on west by Hope Avenue, & on east by Parker Avenue & site of Canal Street, Passaic, Passaic County, NJ

  7. 65 FR 62750 - Glen Canyon Adaptive Management Work Group and Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-10-19

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group and Glen Canyon Technical Work Group... organized and includes a federal advisory committee (the Glen Canyon Adaptive Management Work Group, or AMWG), a technical work group (the Glen Canyon Technical Work Group, or TWG), a monitoring and...

  8. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  9. 78 FR 48670 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE. ACTION... Secretary) approves the Fiscal Year (FY) 2014 Base Charge and Rates for Boulder Canyon Project (BCP... Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits on the Colorado River along...

  10. 77 FR 48151 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE. ACTION... Secretary) approves the Fiscal Year (FY) 2013 Base Charge and Rates for Boulder Canyon Project (BCP... Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits on the Colorado River along...

  11. "Internal Waves" Advancing along Submarine Canyons.

    PubMed

    Shepard, F P; Marshall, N F; McLoughlin, P A

    1974-01-18

    Patterns of alternating up- and downcanyon currents have been traced along the axes of submarine canyons off California. The patterns arrive later at stations nearer the heads of coastal canyons. Where a canyon heads between two islands, the patterns advance down the axis. The propagation speeds of these patterns were estimated as 25 to 88 centimeters per second. Internal waves are the probable explanation.

  12. Currents in monterey submarine canyon

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.A.

    2009-01-01

    Flow fields of mean, subtidal, and tidal frequencies between 250 and 3300 m water depths in Monterey Submarine Canyon are examined using current measurements obtained in three yearlong field experiments. Spatial variations in flow fields are mainly controlled by the topography (shape and width) of the canyon. The mean currents flow upcanyon in the offshore reaches (>1000 m) and downcanyon in the shallow reaches (100-m amplitude isotherm oscillations and associated high-speed rectilinear currents. The 15-day spring-neap cycle and a ???3-day??? band are the two prominent frequencies in subtidal flow field. Neither of them seems directly correlated with the spring-neap cycle of the sea level.

  13. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  14. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  15. Why SRS Matters - H Canyon

    SciTech Connect

    Hunt, Paul; Lewczyk, Mike; Swain, Mike

    2015-02-17

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features H Canyon's mission and operations.

  16. Thomas Moran: "The Grand Canyon."

    ERIC Educational Resources Information Center

    Brubaker, Ann

    1986-01-01

    Presents a lesson plan for introducing students in grades four through six to Thomas Moran's painting, "The Grand Canyon." The goal of the lesson is to illustrate the importance of the American West as a subject for artists in the nineteenth century. (JDH)

  17. Why SRS Matters - H Canyon

    ScienceCinema

    Hunt, Paul; Lewczyk, Mike; Swain, Mike

    2016-07-12

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features H Canyon's mission and operations.

  18. Geomorphic process fingerprints in submarine canyons

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  19. Mineral resources of the Coal Canyon, Spruce Canyon, and Flume Canyon Wilderness Study Areas, Grand county, Utah

    SciTech Connect

    Dickerson, R.P.; Gaccetta, J.D.; Kulik, D.M.; Kreidler, T.J.

    1990-01-01

    This paper reports on the Coal Canyon, Spruce Canyon, and Flume Canyon Wilderness Study Areas in the Book and Roan Cliffs in Grand Country, Utah, approximately 12 miles west of the Colorado state line. The wilderness study areas consist of a series of deep, stair-step-sided canyons and high ridges eroded into the flatlying sedimentary rocks of the Book Cliffs. Demonstrated coal reserves totaling 22,060,800 short tons and demonstrated subeconomic coal resources totaling 39,180,000 short tons are in the Coal Canyon Wilderness Study Area. Also, inferred subeconomic coal resources totaling 143,954,000 short tons are within the Coal Canyon Wilderness Study Area. No known deposits of industrial minerals are in any of the study area. All three of the wilderness study areas have a high resource potential for undiscovered deposits of coal and for undiscovered oil and gas.

  20. Sesame Street: Socialization by Surrogate.

    ERIC Educational Resources Information Center

    Felsenthal, Norman A.

    This paper reviews some of the controversy surrounding "Sesame Street's" treatment of the socialization progress of preschool television viewers. Examined in detail are those portions of "Sesame Street" programs which contribute to children's learning of socially acceptable attitudes and behaviors. Some comparisons are made…

  1. Smart Growth Streets and Emergency Response

    EPA Pesticide Factsheets

    This page describes how street networks and street design affect emergency response and links to resources for designing streets that work for emergency responders and communities' smart growth goals.

  2. Characterization of the thermal structure inside an urban canyon: field measurements and validation of a simple model

    NASA Astrophysics Data System (ADS)

    Giovannini, Lorenzo; Zardi, Dino; de Franceschi, Massimiliano

    2013-04-01

    The results of measurement campaigns are analyzed to investigate the thermal structure in an urban canyon, and to validate a simplified model simulating the air and surface temperatures from surface energy budgets. Starting from measurements at roof-top level, the model provides time series of air and surface temperatures, as well as surface fluxes. Two campaigns were carried out in summer 2007 and in winter 2008/09 in a street of the city of Trento (Italy). Temperature sensors were placed at various levels near the walls flanking the canyon and on a traffic light in the street center. Furthermore, the atmosphere above the mean roof-top level was monitored by a weather station on top of a tower located nearby. Air temperatures near the walls, being strongly influenced by direct solar radiation, display considerable contrasts between the opposite sides of the canyon. On the other hand, when solar radiation is weak or absent, the temperature field remains rather homogeneous.Moreover, air temperature inside the canyon is generally higher than above roof level, with larger differences during summertime. Air temperatures from the above street measurements are well simulated by the model in both seasons. Furthermore, the modeled surface temperatures are tested against a dataset of wall surface temperatures from the Advanced Tools for Rational Energy Use Towards Sustainability-Photocatalytic Innovative Coverings Applications for Depollution (ATREUS-PICADA) experiment, and a very good agreement is found. Results suggest that themodel is a reliable and convenient tool for simplified assessment of climatic conditions occurring in urban canyons under various weather situations.

  3. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  4. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  5. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  6. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  7. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  8. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  9. Sedimentary regime of deep submarine canyons around Fylla Banke, northeastern Labrador Sea

    NASA Astrophysics Data System (ADS)

    Paulsen, Dorthe; Kuijpers, Antoon; Seidenkrantz, Marit-Solveig; Nielsen, Tove

    2014-05-01

    transport is held up against earlier studies from the Davis Strait area, where 2D seismic profiles were carried out several places of the west coast of Greenland. These studies are from a contourite drift complex at the Davis Strait and north of Labrador Sea. A further possible process operating in maintaining active sediment transport through the canyon may be the cascading of dense winter water formed on the West Greenland shelf.

  10. Measurements of net radiation, ground heat flux and surface temperature in an urban canyon

    SciTech Connect

    Gouveia, F J; Leach, M J; Shinn, J H

    2003-11-06

    The Joint Urban 2003 (JU2003) field study was conducted in Oklahoma City in July 2003 to collect data to increase our knowledge of dispersion in urban areas. Air motions in and around urban areas are very complicated due to the influence of urban structures on both mechanical and thermal forcing. During JU2003, meteorological instruments were deployed at various locations throughout the urban area to characterize the processes that influence dispersion. Some of the instruments were deployed to characterize urban phenomena, such as boundary layer development. In addition, particular sites were chosen for more concentrated measurements to investigate physical processes in more detail. One such site was an urban street canyon on Park Avenue between Broadway and Robinson Avenues in downtown Oklahoma City. The urban canyon study was designed to examine the processes that control dispersion within, into and out of the urban canyon. Several towers were deployed in the Park Avenue block, with multiple levels on each tower for observing the wind using sonic anemometers. Infrared thermometers, net radiometers and ground heat flux plates were deployed on two of the towers midway in the canyon to study the thermodynamic effects and to estimate the surface energy balance. We present results from the surface energy balance observations.

  11. Health and street/ homeless youth.

    PubMed

    Kelly, Katharine; Caputo, Tullio

    2007-09-01

    This article reviews the Canadian literature on health issues for homeless/street youth couched in terms of the broad determinants of health. A description of the target population is presented, followed by a discussion of the health risks associated with living in marginal and precarious situations ;on the street'. In particular, the potential consequences of engaging in the risky and often dangerous activities (e.g. substance abuse and high-risk sex) associated with the street lifestyle are discussed. Key conclusions drawn from the relevant literature are taken into consideration in a final section that includes a discussion of the policy implications of this work.

  12. Research Furthers Conservation of Grand Canyon Sandbars

    USGS Publications Warehouse

    Melis, Theodore S.; Topping, David J.; Rubin, David M.; Wright, Scott A.

    2007-01-01

    Grand Canyon National Park lies approximately 25 km (15 mi) down-river from Glen Canyon Dam, which was built on the Colorado River just south of the Arizona-Utah border in Glen Canyon National Recreation Area. Before the dam began to regulate the Colorado River in 1963, the river carried such large quantities of red sediment, for which the Southwest is famous, that the Spanish named the river the Rio Colorado, or 'red river'. Today, the Colorado River usually runs clear below Glen Canyon Dam because the dam nearly eliminates the main-channel sand supply. The daily and seasonal flows of the river were also altered by the dam. These changes have disrupted the sedimentary processes that create and maintain Grand Canyon sandbars. Throughout Grand Canyon, sandbars create habitat for native plants and animals, supply camping beaches for river runners and hikers, and provide sediment needed to protect archaeological resources from weathering and erosion. Maintenance of sandbars in the Colorado River ecosystem, the river corridor that stretches from the dam to the western boundary of Grand Canyon National Park, is a goal of the Glen Canyon Dam Adaptive Management Program. The program is a federally authorized initiative to ensure that the mandates of the Grand Canyon Protection Act of 1992 are met through advances in information and resource management. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center has responsibility for scientific monitoring and research efforts for the program. Extensive research and monitoring during the past decade have resulted in the identification of possible alternatives for operating Glen Canyon Dam that hold new potential for the conservation of sand resources.

  13. Green Streets Help Baltimore, Others

    EPA Pesticide Factsheets

    Fifteen Green Streets, Green Towns, Green Jobs (G3) grants for will support projects in three states, including the conversion of hard surfaces to green space at Sarah’s Hope, a homeless shelter in a troubled Baltimore neighborhood.

  14. Sesame Street: Magic or Malevolence?

    ERIC Educational Resources Information Center

    Ratliff, Anne R.; Ratliff, Richard G.

    1972-01-01

    Despite its unusual potential, both educational and social, it seems that Sesame Street may be exposing children to unnecessary aggression...(which) often goes unpunished and, occasionally, is actively rewarded." (Author)

  15. Twenty Years on Sesame Street.

    ERIC Educational Resources Information Center

    Lystad, Mary

    1989-01-01

    Describes the history and production of the TV program Sesame Street and its educational contribution to society. Also discusses the affective and cognitive goals and teaching methodology of the program. (RJC)

  16. ACCELERATED PILOT PROJECT FOR U CANYON DEMOLITION

    SciTech Connect

    KEHLER KL

    2011-01-13

    At the U.S. Department of Energy's Hanford Site in southeast Washington State, CH2M HILL Plateau Remediation Company (CH2M HILL) is underway on a first-of-a-kind project with the decommissioning and demolition of the U Canyon. Following the U.S. Environmental Protection Agency's Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Record of Decision for the final remediation of the canyon, CH2M HILL is combining old and new technology and techniques to prepare U Canyon for demolition. The selected remedial action called first for consolidating and grouting equipment currently in the canyon into lower levels of the plant (openings called cells), after which the cell galleries, hot pipe trench, ventilation tunnel, drains and other voids below the operating deck and crane-way deck levels will be filled with approximately 20,000 cubic yards of grout and the canyon roof and walls demolished down to the approximate level of the canyon deck. The remaining canyon structure will then be buried beneath an engineered barrier designed to control potential contaminant migration for a 500-year life. Methods and lessons learned from this project will set the stage for the future demolition of Hanford's four other canyon-type processing facilities.

  17. 78 FR 7775 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE. ACTION... Boulder Canyon Project (BCP) electric service base charge and rates. The current base charge and rates...) of the Reclamation Project Act of 1939 (43 U.S.C. 485h(c)); and other acts that specifically apply...

  18. 76 FR 56430 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE. ACTION... Fiscal Year (FY) 2012 Base Charge and Rates (Rates) for Boulder Canyon Project (BCP) electric service... Project Act (45 Stat. 1057, December 21, 1928), sits on the Colorado River along the Arizona and...

  19. 77 FR 2533 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE. ACTION... Boulder Canyon Project (BCP) electric service base charge and rates. The current base charge and rates... subsequent laws, particularly section 9(c) of the Reclamation Project Act of 1939 (43 U.S.C. 485h(c));...

  20. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.

  1. Grand Canyon Monitoring and Research Center

    USGS Publications Warehouse

    Hamill, John F.

    2009-01-01

    The Grand Canyon of the Colorado River, one of the world's most spectacular gorges, is a premier U.S. National Park and a World Heritage Site. The canyon supports a diverse array of distinctive plants and animals and contains cultural resources significant to the region's Native Americans. About 15 miles upstream of Grand Canyon National Park sits Glen Canyon Dam, completed in 1963, which created Lake Powell. The dam provides hydroelectric power for 200 wholesale customers in six western States, but it has also altered the Colorado River's flow, temperature, and sediment-carrying capacity. Over time this has resulted in beach erosion, invasion and expansion of nonnative species, and losses of native fish. Public concern about the effects of Glen Canyon Dam operations prompted the passage of the Grand Canyon Protection Act of 1992, which directs the Secretary of the Interior to operate the dam 'to protect, mitigate adverse impacts to, and improve values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established...' This legislation also required the creation of a long-term monitoring and research program to provide information that could inform decisions related to dam operations and protection of downstream resources.

  2. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.

  3. Perspective view of Wilcox Building (7 North E Street), with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of Wilcox Building (7 North E Street), with Eli Cafe (7 North E Street), the Palace Saloon (11 North E Street), and Fetsche's (15 North E Street) to left of frame, view looking north on E Street - Lakeview Downtown Historic District, E, F & G Streets between Second Street North & First Street South, Lakeview, Lake County, OR

  4. H-Canyon Recovery Crawler

    SciTech Connect

    Kriikku, E. M.; Hera, K. R.; Marzolf, A. D.; Phillips, M. H.

    2015-08-01

    The Nuclear Material Disposition Project group asked the Savannah River National Lab (SRNL) Research and Development Engineering (R&DE) department to help procure, test, and deploy a remote crawler to recover the 2014 Inspection Crawler (IC) that tipped over in the H-Canyon Air Exhaust Tunnel. R&DE wrote a Procurement Specification for a Recovery Crawler (RC) and SRNS Procurement Department awarded the contract to Power Equipment Manufacturing Inc. (PEM). The PEM RC was based on their standard sewer inspection crawler with custom arms and forks added to the front. The arms and forks would be used to upright the 2014 Inspection Crawler. PEM delivered the RC and associated cable reel, 2014 Inspection Crawler mockup, and manuals in late April 2015. R&DE and the team tested the crawler in May of 2015 and made modifications based on test results and Savannah River Site (SRS) requirements. R&DE delivered the RC to H-Area at the end of May. The team deployed the RC on June 9, 10, and 11, 2015 in the H-Canyon Air Exhaust Tunnel. The RC struggled with some obstacles in the tunnel, but eventually made it to the IC. The team spent approximately five hours working to upright the IC and eventually got it on its wheels. The IC travelled approximately 20 feet and struggled to drive over debris on the air tunnel floor. Unfortunately the IC tripped over trying to pass this obstacle. The team decided to leave the IC in this location and inspect the tunnel with the RC. The RC passed the IC and inspected the tunnel as it travelled toward H-Canyon. The team turned the RC around when it was about 20 feet from the H-Canyon crossover tunnel. From that point, the team drove the RC past the manway towards the new sand filter and stopped approximately 20 feet from the new sand filter. The team removed the RC from the tunnel, decontaminated the RC, and stored it the manway building, 294-2H. The RC deployment confirmed the IC was not in a condition to perform useful tunnel inspections and

  5. Environmental assessment overview, Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 3 figs.

  6. Geology and biology of Oceanographer submarine canyon.

    USGS Publications Warehouse

    Valentine, P.C.; Uzmann, J.R.; Cooper, R.A.

    1980-01-01

    Santonian beds more than 100 m thick are the oldest rocks collected from the canyon. Quaternary silty clay veneers the canyon walls in many places and is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100-1300 m) inhabited by the crabs Geryon and Cancer. Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis. Shelf sediments are transported from Georges Bank over the E rim and in the Canyon by the SW drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis.- from Authors

  7. An experimental approach to submarine canyon evolution

    NASA Astrophysics Data System (ADS)

    Lai, Steven Y. J.; Gerber, Thomas P.; Amblas, David

    2016-03-01

    We present results from a sandbox experiment designed to investigate how sediment gravity flows form and shape submarine canyons. In the experiment, unconfined saline gravity flows were released onto an inclined sand bed bounded on the downstream end by a movable floor that was used to increase relief during the experiment. In areas unaffected by the flows, we observed featureless, angle-of-repose submarine slopes formed by retrogressive breaching processes. In contrast, areas influenced by gravity flows cascading across the shelf break were deeply incised by submarine canyons with well-developed channel networks. Normalized canyon long profiles extracted from successive high-resolution digital elevation models collapse to a single profile when referenced to the migrating shelf-slope break, indicating self-similar growth in the relief defined by the canyon and intercanyon profiles. Although our experimental approach is simple, the resulting canyon morphology and behavior appear similar in several important respects to that observed in the field.

  8. 40. August, 1970 VIEW OF UNION STREET WITH ELISHA GREEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. August, 1970 VIEW OF UNION STREET WITH ELISHA GREEN HOUSE (9 UNION STREET) AT LEFT - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  9. The Smokey Hollow Community, Informal boundaries by street name: North ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    The Smokey Hollow Community, Informal boundaries by street name: North to South: East Jefferson Street to East Van Buren Street. West to East: South Gadsden Street to Marvin Street., Tallahassee, Leon County, FL

  10. 16. August, 1970 #31 ORANGE STREET & GENERAL VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. August, 1970 #31 ORANGE STREET & GENERAL VIEW OF WEST SIDE OF STREET - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  11. 11. August, 1970 ORANGE STREET SIDEWALK IN FRONT OF LEVI ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. August, 1970 ORANGE STREET SIDEWALK IN FRONT OF LEVI STARBUCK HOUSE (MASS-912), 14 ORANGE STREET - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  12. North elevation, looking southeast. Market Street runs parallel to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North elevation, looking southeast. Market Street runs parallel to the tracks; 63rd street is perpendicular to them. - Market Street Elevated Railway, 63rd Street Station, Intersection of Market & Sixty-third Streets, Philadelphia, Philadelphia County, PA

  13. Prehistoric deforestation at Chaco Canyon?

    PubMed

    Wills, W H; Drake, Brandon L; Dorshow, Wetherbee B

    2014-08-12

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical "collapse" associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860-1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world.

  14. Prehistoric deforestation at Chaco Canyon?

    PubMed Central

    Wills, W. H.; Drake, Brandon L.; Dorshow, Wetherbee B.

    2014-01-01

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical “collapse” associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860–1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world. PMID:25071220

  15. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument...

  16. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument...

  17. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument...

  18. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument...

  19. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument...

  20. Vehicular pollution modeling using the operational street pollution model (OSPM) for Chembur, Mumbai (India).

    PubMed

    Kumar, Awkash; Ketzel, Matthias; Patil, Rashmi S; Dikshit, Anil Kumar; Hertel, Ole

    2016-06-01

    Megacities in India such as Mumbai and Delhi are among the most polluted places in the world. In the present study, the widely used operational street pollution model (OSPM) is applied for assessing pollutant loads in the street canyons of Chembur, a suburban area just outside Mumbai city. Chembur is both industrialized and highly congested with vehicles. There are six major street canyons in this area, for which modeling has been carried out for NOx and particulate matter (PM). The vehicle emission factors for Indian cities have been developed by Automotive Research Association of India (ARAI) for PM, not specifically for PM10 or PM2.5. The model has been applied for 4 days of winter season and for the whole year to see the difference of effect of meteorology. The urban background concentrations have been obtained from an air quality monitoring station. Results have been compared with measured concentrations from the routine monitoring performed in Mumbai. NOx emissions originate mainly from vehicles which are ground-level sources and are emitting close to where people live. Therefore, those emissions are highly relevant. The modeled NOx concentration compared satisfactorily with observed data. However, this was not the case for PM, most likely because the emission inventory did not contain emission terms due to resuspended particulate matter.

  1. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  2. Flow dynamics around downwelling submarine canyons

    NASA Astrophysics Data System (ADS)

    Spurgin, J. M.; Allen, S. E.

    2014-10-01

    Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean) was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively) and their impacts on flow dynamics. A new non-dimensional parameter (χ) was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m). Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate), as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

  3. Flow dynamics around downwelling submarine canyons

    NASA Astrophysics Data System (ADS)

    Spurgin, J. M.; Allen, S. E.

    2014-05-01

    Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (Northwest Mediterranean) was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby number and Burger number were used to determine the significance of Coriolis acceleration and stratification (respectively) and their impacts on flow dynamics. A new non-dimensional parameter (χ) was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10 day model period, however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. Offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m). Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate) as well as stronger vorticity within the canyon. Results from previous studies were explained within this new dynamic framework.

  4. 64 FR 25905 - Glen Canyon Dam Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-05-13

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG) AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meetings. SUMMARY: The Glen Canyon Technical Work Group was formed as an official subcommittee of the Glen Canyon...

  5. 65 FR 9296 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-02-24

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work... ``Glen Canyon Dam Adaptive Management Work Group,'' a technical work group, a monitoring and research... meeting. The Glen Canyon Technical Work Group (TWG) will conduct one public meeting as follows: March...

  6. Mars Science Laboratory at Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 2, 2003

    NASA's Mars Science Laboratory travels near a canyon on Mars in this artist's concept. The mission is under development for launch in 2009 and a precision landing on Mars in 2010.

    Once on the ground, the Mars Science Laboratory would analyze dozens of samples scooped up from the soil and cored from rocks as it explores with greater range than any previous Mars rover. It would investigate the past or present ability of Mars to support life. NASA is considering nuclear energy for powering the rover to give it a long operating lifespan.

    NASA's Jet Propulsion Laboratory, Pasadena, Calif., is managing development of the Mars Smart Laboratory for the NASA Office of Space Science, Washington, D.C.

  7. CLOSER VIEW ALONG TENTH STREET MALL LOOKING TO FORRESTAL BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSER VIEW ALONG TENTH STREET MALL LOOKING TO FORRESTAL BUILDING - Southwest Washington, Urban Renewal Area, Bounded by Independence Avenue, Washington Avenue, South Capitol Street, Canal Street, P Street, Maine Avenue & Washington Channel, Fourteenth Street, D Street, & Twelfth Street, Washington, District of Columbia, DC

  8. VIEW OF WATERSIDE MALL SHOPPING CENTER (M STREET SIDE) DESIGNED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF WATERSIDE MALL SHOPPING CENTER (M STREET SIDE) DESIGNED BY CHLOETHIEL WOODARD SMITH & ASSOCIATES AND BUILT IN 1972 - Southwest Washington, Urban Renewal Area, Bounded by Independence Avenue, Washington Avenue, South Capitol Street, Canal Street, P Street, Maine Avenue & Washington Channel, Fourteenth Street, D Street, & Twelfth Street, Washington, District of Columbia, DC

  9. Satellites See Smoke from Fourmile Canyon Fire

    NASA Video Gallery

    On the morning of September 6, 2010, a wildfire known as the Fourmile Canyon Fire broke out just west of Boulder, Colorado. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terr...

  10. Wintertime meteorology of the Grand Canyon region

    SciTech Connect

    Whiteman, C.D.

    1992-09-01

    The Grand Canyon region of the American Southwest is an interesting region meteorologically, but because of its isolated location, the lack of major population centers in the region, and the high cost of meteorological field experiments, it has historically received little observational attention. In recent years, however, attention has been directed to episodes of visibility degradation in many of the US National parks, and two recent field studies focused on this visibility problem have greatly increased the meteorological data available for the Grand Canyon region. The most recent and comprehensive of these studies is the Navajo Generating Station Winter Visibility Study of 1989--90. This study investigated the sources of visibility degradation in Grand Canyon National Park and the meteorological mechanisms leading to low visibility episodes. In this paper we present analyses of this rich data set to gain a better understanding of the key wintertime meteorological features of the Grand Canyon region.

  11. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  12. Flow Structure in a Bedrock Canyon (Invited)

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Rennie, C. D.; Church, M. A.; Bomhof, J.; Lin, M.

    2013-12-01

    Bedrock canyon incision is widely recognized as setting the pace of landscape evolution. A variety of models link flow and sediment transport processes to the bedrock canyon incision rate. The model components that represent sediment transport processes are quite well developed in some models. In contrast, the model components that represent fluid flow remain rudimentary. Part of the reason is that there have been relatively few observations of flow structure in a bedrock canyon. Here, we present observations of flow obtained using an array of three acoustic Doppler current profilers during a 524 km long continuous centerline traverse of the Fraser River, British Columbia, Canada as it passes through a series of bedrock canyons. Through this portion of the river, the channel alternates between gravel-bedded reaches that are deeply incised into semi-consolidated glacial deposits and solid bedrock-bound reaches. We present observations of flow through 41 bedrock bound reaches of the river, derived from our centerline traverses and more detailed three-dimensional mapping of the flow structure in 2 canyons. Our observations suggest that flow in the most well-defined canyons (deep, laterally constrained, completely bedrock bound) is far more complex than that in a simple prismatic channel. As flow enters the canyon, a high velocity core plunges from the surface to the bed, causing a velocity inversion (high velocities at the bed and low velocities at the surface). This plunging flow then upwells along the canyon wall, resulting in a three-dimensional flow with counter-rotating, along-stream eddies that diverge near the bed. We observe centerline ridges along the canyon floors that result from the divergence and large-scale surface boils caused by the upwelling. This flow structure causes deep scour in the bedrock channel floor, and ensures the base of the canyon walls are swept of debris that otherwise may be deposited due to lower shear stresses abutting the walls. The

  13. Gravity currents down canyons: effects of rotation

    NASA Astrophysics Data System (ADS)

    Berntsen, Jarle; Darelius, Elin; Avlesen, Helge

    2016-10-01

    The flow of dense water in a V-shaped laboratory-scale canyon is investigated by using a non-hydrostatic numerical ocean model with focus on the effects of rotation. By using a high-resolution model, a more detailed analysis of plumes investigated in the laboratory (Deep-Sea Res I 55:1021-1034 2008) for laminar flow is facilitated. The inflow rates are also increased to investigate plume structure for higher Reynolds numbers. With rotation, the plumes will lean to the side of the canyon, and there will be cross-canyon geostrophic currents and Ekman transports. In the present study, it is found that the cross-canyon velocities are approximately 5 % of the down-canyon velocities over the main body of the plume for the rotational case. With rotation, the flow of dense water through the body of the plume and into the plume head is reduced. The plume head becomes less developed, and the speed of advance of the head is reduced. Fluid parcels near the top of the plume will to a larger extent be left behind the faster flowing dense core of the plume in a rotating system. Near the top of the plume, the cross-canyon velocities change direction. Inside the plume, the cross-flow is up the side of the canyon, and above the interface to the ambient there is a compensating cross-flow down the side of the canyon. This means that parcels of fluid around the interface become separated. Parcels of fluid around the interface with small down-canyon velocity components and relative large cross-canyon components will follow a long helix-like path down the canyon. It is found that the entrainment coefficients often are larger in the rotational experiments than in corresponding experiments without rotation. The effects of rotation and higher inflow rates on the areal patterns of entrainment velocities are demonstrated. In particular, there are bands of higher entrainment velocities along the lateral edges of the plumes in the rotational cases.

  14. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.

  15. Different Views of the Grand Canyon

    NASA Astrophysics Data System (ADS)

    Elders, Wilfred A.

    Each year the spectacular scenery of the Grand Canyon of Arizona awes its more than 4,000,000 visitors. Just as its enormous scale dwarfs our human sense of space, its geology also dwarfs our human sense of time. Perhaps here, more than anywhere else on the planet, we can experience a sense of ``Deep Time.'' The colorful rocks exposed in the vertical walls of the canyon display a span of 1.8 billion years of Earth's history [Beus and Morales, 2003]. But wait! There is a different view! According to Vail [2003], this time span is only 6,000 years and the Grand Canyon and its rocks are a record of the Biblical 6 days of creation and Noah's flood. During a visit to Grand Canyon, in August 2003, I learned that Vail's book, Grand Canyon: A Different View, is being sold within the National Park. The author and compiler of Grand Canyon: A Different View is a Colorado River guide who is well acquainted with the Grand Canyon at river level. He has produced a book with an attractive layout and beautiful photographs. The book is remarkable because it has 23 co-authors, all male, who comprise a veritable ``Who's Who'' in creationism. For example, Henry Morris and John Whitcomb, the authors of the seminal young Earth creationist text, The Genesis Flood [Whitcomb and Morris, 1961], each contribute a brief introduction. Each chapter of Grand Canyon: A Different View begins with an overview by Vail, followed by brief comments by several contributors that ``have been peer reviewed to ensure a consistent and Biblical perspective.'' This perspective is strict Biblical literalism.

  16. Genetics of Sesame Street Characters.

    ERIC Educational Resources Information Center

    Raye, Susan

    2001-01-01

    Teaches genetics and inheritance using the characters from Sesame Street. Asks students to create a gene map of their favorite character and determine those genes passing to the next generation. Includes a genetics activity sheet and genetic information on the characters. (YDS)

  17. The Great Learning Street Debate

    ERIC Educational Resources Information Center

    Nair, Prakash

    2005-01-01

    Nair discusses the "Learning Street," a now-frequent concept of modern school planning and design in terms of the multiple modalities of learning that today's schools must nurture. The author lists 18, including: (1) Independent study; (2) Peer tutoring; (3) Team collaborative work in small and mid-sized groups; (4) One-on-one learning with the…

  18. Street Rhymes around the World.

    ERIC Educational Resources Information Center

    Yolen, Jane, Ed.

    Based on the idea that although children of every nation speak different languages the language of play is international, this collection of 32 street rhymes from 17 nations and republics offers each rhyme in its native language (Portuguese, Tamil, Hebrew, Japanese, Russian, Chinese, Spanish, Greek, German, Bantu (Mambwe), Danish, Cheyenne,…

  19. Youth and the City Streets.

    ERIC Educational Resources Information Center

    Husby, Lynn; Brendtro, Larry

    1992-01-01

    This "Voices of Pioneers" section of the journal highlights the work of Jane Addams, who founded the settlement house movement in America with the establishment of Hull House in Chicago in 1899. Presents excerpts from Addams' book "The Spirit of Youth and the City Streets (1909)" to illustrate her views on guns, stealing,…

  20. A Ride Down Mango Street.

    ERIC Educational Resources Information Center

    O'Malley, Thomas F.

    1997-01-01

    Describes the powerful connections an English teacher and his students made with Sandra Cisneros'"The House on Mango Street." Discusses how the book invites the reader to experience racism, shares the mainstream of the American experience, and deals with growing up. Notes that the book had a powerful impact on students' writing and their desire to…

  1. Who Is on Our Streets?

    ERIC Educational Resources Information Center

    Johnson, Brian A.

    1983-01-01

    By conducting a pedestrian survey, secondary or college level students answer the question "What is the best location for a new business requiring maximum pedestrian traffic?" They collect data on the number and types of people on streets in a commercial area of a city. (RM)

  2. Wary Eyes Monitoring Wall Street

    ERIC Educational Resources Information Center

    Jacobson, Linda

    2008-01-01

    School business officials kept a close watch on the financial markets this week--and on district investment portfolios and teacher-retirement funds--as stock prices gyrated and once-sound institutions got government bailouts or crumbled into bankruptcy. While financial observers said it was too soon to predict how Wall Street's upheaval might…

  3. Analysis of thermal field within an urban canyon with variable thermophysical characteristics of the building's walls

    NASA Astrophysics Data System (ADS)

    De Lieto Vollaro, A.; Galli, G.; Vallati, A.; Romagnoli, R.

    2015-11-01

    In a typical urban configuration, a microclimatic analysis has been carried out. Using a CFD method, a N-S oriented urban street canyon, with a given H/W ratio, has been examined. The standard k-ε turbulence model has been used to simulate a three-dimensional flow field and to calculate the thermo-fluid dynamics parameters that characterize the street canyon. In this study has been analyzed the thermal flow field when the walls of the building change the properties of solar radiation absorption, in particular for α=0.2 and α=0.8. Solar radiation considered is that of 21/07 in Milan in two different hours: at 11:00 a.m. and at 02:00 p.m. The study shows the importance of the thermophysical properties of a wall, in the development of the thermal field and flow field. This is a very important topic, in terms of improvement of wellbeing and the quality of the air within the cities, through the choice of materials and colors of the facades of buildings.

  4. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  5. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  6. LEDs for Street Lighting—Here Today

    SciTech Connect

    2013-11-29

    Fact sheet that provides a brief overview of the viability of LED street lighting in municipalities and highlights case studies of two cities—Los Angeles and Seattle—that have invested in LED street lighting.

  7. THE INFLUENCE OF A TALL BUILDING ON STREET-CANYON FLOW IN AN URBAN NEIGHBORHOOD

    EPA Science Inventory

    This study presents a velocity comparison between meteorological wind tunnel results and results from the Quick Urban & Industrial Complex model (QUIC, version 3.9) for a simplified urban area, representing a regular array of city blocks composed of row houses in Brooklyn, New Yo...

  8. THE IMPACT OF BUILDING TOPOGRAPHY ON AEROSOL DISPERSION IN AN URBAN STREET CANYON

    EPA Science Inventory

    This extended abstract describes numerical simulations of the flow through a building array which includes an isolated tall tower. The work seeks to explore the impact of a single tall building on the circulation and channeling of aerosolized traffic emissions within a series of...

  9. In-Street Wind Direction Variability in the Vicinity of a Busy Intersection in Central London

    NASA Astrophysics Data System (ADS)

    Balogun, Ahmed A.; Tomlin, Alison S.; Wood, Curtis R.; Barlow, Janet F.; Belcher, Stephen E.; Smalley, Robert J.; Lingard, Justin J. N.; Arnold, Sam J.; Dobre, Adrian; Robins, Alan G.; Martin, Damien; Shallcross, Dudley E.

    2010-09-01

    We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk ) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction ( θ ref ) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique roof-top flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15- min mean θ ref of 5°-10°) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges.

  10. Who Wants to Live on Sesame Street?

    ERIC Educational Resources Information Center

    Springle, Herbert A.

    Two studies of the effects of "Sesame Street" are presented. In the first case, the study tested two hypotheses: (1) "Sesame Street" can prepare poverty children for first grade; and (2) "Sesame Street" can narrow the achievement gap between the poor and the middle-class child. Twenty-four pairs of poverty children…

  11. VIEW NORTHEASTELMER STREET CENTERBUILDING 102ELMER STREET ROPE SHOP (1917) RIGHTBUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW NORTHEAST-ELMER STREET CENTER-BUILDING 102-ELMER STREET ROPE SHOP (1917) RIGHT-BUILDING 101-CLARK STREET ROPE SHOP (1917) - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  12. FACING SOUNT AT JEFFERSON STREET AND 16TH STREET. NORTH AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACING SOUNT AT JEFFERSON STREET AND 16TH STREET. NORTH AND WEST BACKSIDES OF JOHN BREUNER AND COMPANY BUILDING IN CENTER (BACKGROUND), SURROUNDING STRUCTURES ON CLAY, JEFFERSON AND 15TH STREETS AT LEFT, RIGHT, AND FOREGROUND - John Breuner & Company Building, 1515 Clay Street, Oakland, Alameda County, CA

  13. 75. SACRED HEART SCHOOL, 1324 ELLIS STREET SOUTH (REAR ELEVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. SACRED HEART SCHOOL, 1324 ELLIS STREET SOUTH (REAR ELEVATION FROM GREENE STREET 56/61A - Greene Street Historic District, Greene Street, Gordon Highway to Augusta Canal Bridge, Augusta, Richmond County, GA

  14. 1. Oblique view of 215 Division Street, looking southwest, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Oblique view of 215 Division Street, looking southwest, showing front (east) facade and north side, 213 Division Street is visible at left and 217 Division Street appears at right - 215 Division Street (House), Rome, Floyd County, GA

  15. 2. ENVIRONMENT, FROM EAST, SHOWING BOSTON STREET BRIDGE CARRYING BOSTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ENVIRONMENT, FROM EAST, SHOWING BOSTON STREET BRIDGE CARRYING BOSTON STREET OVER HARRIS CREEK SEWER - Boston Street Bridge, Spanning Harris Creek Sewer at Boston Street, Baltimore, Independent City, MD

  16. 1. ENVIRONMENT, FROM SOUTH, SHOWING BOSTON STREET BRIDGE CARRYING BOSTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ENVIRONMENT, FROM SOUTH, SHOWING BOSTON STREET BRIDGE CARRYING BOSTON STREET OVER HARRIS CREEK SEWER OUTLET AT NORTHWEST BRANCH OF PATAPSCO RIVER (BALTIMORE HARBOR) - Boston Street Bridge, Spanning Harris Creek Sewer at Boston Street, Baltimore, Independent City, MD

  17. 3. ENVIRONMENT, FROM WEST, SHOWING BOSTON STREET BRIDGE CARRYING BOSTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ENVIRONMENT, FROM WEST, SHOWING BOSTON STREET BRIDGE CARRYING BOSTON STREET OVER HARRIS CREEK SEWER, WITH PORTION OF AMERICAN CAN COMPANY COMPLEX - Boston Street Bridge, Spanning Harris Creek Sewer at Boston Street, Baltimore, Independent City, MD

  18. 1. VIEW SOUTHWARD FROM SOUTHWEST CORNER FRONT AND ARCH STREETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SOUTHWARD FROM SOUTHWEST CORNER FRONT AND ARCH STREETS (2. N. Front Street starts at left) - North Front Street Area Study, 2-66 North Front Street (Commercial Buildings), Philadelphia, Philadelphia County, PA

  19. 1. Ninth Street (west) facade. Adjacent on the north is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Ninth Street (west) facade. Adjacent on the north is the 9th Street facade of 816 E Street. Both buildings were originally one property. - Riley Building, Rendezvous Adult Magazines & Films, 437 Ninth Street, Northwest, Washington, District of Columbia, DC

  20. Perspective view of Polar Bear Restaurant, 25 G Street, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of Polar Bear Restaurant, 25 G Street, view looking northeast - Lakeview Downtown Historic District, E, F & G Streets between Second Street North & First Street South, Lakeview, Lake County, OR

  1. 7. August, 1970 9 ORANGE STREET, ADJACENT TO UNITARIAN CHURCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. August, 1970 9 ORANGE STREET, ADJACENT TO UNITARIAN CHURCH (NOT IN STUDY AREA) - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  2. 2. August, 1970 VIEW LOOKING SOUTH ON ORANGE STREET FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. August, 1970 VIEW LOOKING SOUTH ON ORANGE STREET FROM TOP OF UNITARIAN CHURCH - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  3. 6. September, 1968 LOOKING WEST ON ORANGE STREET, UNITARIAN CHURCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. September, 1968 LOOKING WEST ON ORANGE STREET, UNITARIAN CHURCH AT LEFT - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  4. 24. August, 1970 STONE ALLEY, LOOKING TOWARD ORANGE STREET FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. August, 1970 STONE ALLEY, LOOKING TOWARD ORANGE STREET FROM HALF-WAY POINT - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  5. 22. August, 1970 STONE ALLEY, VIEW TO ORANGE STREET FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. August, 1970 STONE ALLEY, VIEW TO ORANGE STREET FROM GARDNER HOUSES - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  6. 10. August, 1970 EAST SIDE OF ORANGE STREET LOOKING NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. August, 1970 EAST SIDE OF ORANGE STREET LOOKING NORTH FOM IN FRONT OF THE LEVI STARBUCK HOUSE - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  7. West view; Street Car Waiting House, east elevation North ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West view; Street Car Waiting House, east elevation - North Philadelphia Station, Street Car Waiting House, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA

  8. Detail; Street Car Waiting House, support for exterior light fixture ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail; Street Car Waiting House, support for exterior light fixture - North Philadelphia Station, Street Car Waiting House, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA

  9. Interior view; Street Car Waiting House North Philadelphia Station, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view; Street Car Waiting House - North Philadelphia Station, Street Car Waiting House, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA

  10. Detail; Street Car Waiting House window, north wall North ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail; Street Car Waiting House window, north wall - North Philadelphia Station, Street Car Waiting House, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA

  11. North view; Street Car Waiting House, south (front) elevation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North view; Street Car Waiting House, south (front) elevation - North Philadelphia Station, Street Car Waiting House, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA

  12. South (main) and east elevations, looking northwest Market Street is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South (main) and east elevations, looking northwest Market Street is in foreground. - Market Street Elevated Railway, 69th Street Terminal, Market & Sixty-ninth Streets, Philadelphia, Philadelphia County, PA

  13. High-Resolution Acoustic Imaging in the Agadir-Canyon Region, NW-Africa: Morphology, Processes and Geohazards

    NASA Astrophysics Data System (ADS)

    Krastel, S.; Wynn, R. B.; Feldens, P.; Unverricht, D.; Huehnerbach, V.; Stevenson, C.; Glogowski, S.; Schuerer, A.

    2014-12-01

    Agadir Canyon is one of the largest submarine canyons in the World, supplying giant submarine sediment gravity flows to the Agadir Basin and the wider Moroccan Turbidite System. While the Moroccan Turbidite System is extremely well investigated, almost no data from the source region, i.e. the Agadir Canyon, are available. Understanding why some submarine landslides remain as coherent blocks of sediment throughout their passage downslope, while others mix and disintegrate almost immediately after initial failure, is a major scientific challenge, which was addressed in the Agadir Canyon source region during Cruise MSM32. We collected ~ 1500 km of high-resolution seismic 2D-lines in combination with a dense net of hydroacoustic data. About 1000 km2 of sea floor were imaged during three deployments of TOBI (deep-towed sidescan sonar operated by the National Oceanography Centre Southampton). A total of 186 m of gravity cores and several giant box cores were recovered at more than 50 stations. The new data show that Agadir canyon is the source area of the world's largest submarine sediment flow, which occurred about 60,000 years ago. Up to 160 km3 of sediment was transported to the deep ocean in a single catastrophic event. For the first time, sediment flows of this scale have been tracked along their entire flow pathway. A major landslide area was identified south of Agadir Canyon. Landslide material enters Agadir canyon in about 2500 m water depth; the material is transported as debrite for at least another 200 km down the canyon. Initial data suggest that the last major slide from this source entered Agadir canyon at least 130,000 years ago. A large field of living deep-water corals was imaged north of Agadir canyon. To our knowledge, these are the first living cold water corals recovered off the coast of Morocco (except for the Gulf of Cadiz). They represent an important link between the known cold-water coral provinces off Mauritania and in the Gulf of Cádiz.

  14. Mineral resources of the Fish Creek Canyon, Road Canyon, and Mule Canyon Wilderness Study Areas, San Juan County, Utah

    SciTech Connect

    Bove, D.J.; Shawe, D.R.; Lee, G.K.; Hanna, W.F. ); Jeske, R.E. )

    1989-01-01

    This book reports the Fish Creek Canyon (UT-060-204), Road Canyon(UT-060-201), and Mule Canyon (UT-060-205B) Wilderness Study Areas, which comprise 40,160 acres, 52,420 acres, and 5,990 acres, respectively, studied for their mineral endowment. A search of federal, state, and county records showed no current or previous mining-claim activity. No mineral resources were identified during field examination of the study areas. Sandstone and sand and gravel have no unique qualities but could have limited local use for road metal or other construction purposes. However, similar materials are abundant outside the study areas. The three study areas have moderate resource potential for undiscovered oil and gas and low resource potential for undiscovered metals, including uranium and thorium, coal, and geothermal energy.

  15. Grand Canyon Humpback Chub Population Improving

    USGS Publications Warehouse

    Andersen, Matthew E.

    2007-01-01

    The humpback chub (Gila cypha) is a long-lived, freshwater fish found only in the Colorado River Basin. Physical adaptations-large adult body size, large predorsal hump, and small eyes-appear to have helped humpback chub evolve in the historically turbulent Colorado River. A variety of factors, including habitat alterations and the introduction of nonnative fishes, likely prompted the decline of native Colorado River fishes. Declining numbers propelled the humpback chub onto the Federal list of endangered species in 1967, and the species is today protected under the Endangered Species Act of 1973. Only six populations of humpback chub are currently known to exist, five in the Colorado River Basin above Lees Ferry, Ariz., and one in Grand Canyon, Ariz. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center oversees monitoring and research activities for the Grand Canyon population under the auspices of the Glen Canyon Dam Adaptive Management Program (GCDAMP). Analysis of data collected through 2006 suggests that the number of adult (age 4+ years) humpback chub in Grand Canyon increased to approximately 6,000 fish in 2006, following an approximate 40-50 percent decline between 1989 and 2001. Increasing numbers of adult fish appear to be the result of steadily increasing numbers of juvenile fish reaching adulthood beginning in the mid- to late-1990s and continuing through at least 2002.

  16. Origin of Florida Canyon and the role of spring sapping on the formation of submarine box canyons

    USGS Publications Warehouse

    Paull, Charles K.; Spiess, Fred N.; Curray, Joseph R.; Twichell, David C.

    1990-01-01

    Florida Canyon, one of a series of major submarine canyons on the southwestern edge of the Florida Platform, was surveyed using GLORIA, SeaBeam, and Deep-Tow technologies, and it was directly observed during three DSRV Alvin dives. Florida Canyon exhibits two distinct morphologies: a broad V-shaped upper canyon and a deeply entrenched, flat-floored, U-shaped lower canyon. The flat- floored lower canyon extends 20 km into the Florida Platform from the abyssal Gulf. The lower canyon ends abruptly at an ∼3 km in diameter semicircular headwall that rises 750 m with a >60° slope angle to the foot of the upper canyon. The sides of the lower canyon are less steep than its headwall and are characterized by straight faces that occur along preferred orientations and indicate a strong joint control. The upper canyon is characterized by a gently sloping, straight V-shaped central valley cut into a broad terrace. The flat floor of the upper canyon continues as terraces along the upper walls of the lower canyon. On the flanks of the upper canyon, there are five >50-m-deep, >0.5-km-wide, closed sink-hole-like depressions which indicate subsurface dissolution within the platform. The origin of the lower canyon is difficult to explain with traditional models of submarine canyon formation by external physical processes. The movement of ground water, probably with high salinities and reduced compounds along regional joints, may have focused the corrosive force of submarine spring sapping at the head of the lower canyon to produce the canyon's present shape.

  17. Venting of Heat and Carbon Dioxide from Urban Canyons at Night.

    NASA Astrophysics Data System (ADS)

    Salmond, J. A.; Oke, T. R.; Grimmond, C. S. B.; Roberts, S.; Offerle, B.

    2005-08-01

    Turbulent fluxes of carbon dioxide and sensible heat were observed in the surface layer of the weakly convective nocturnal boundary layer over the center of the city of Marseille, France, during the Expérience sur Sites pour Contraindre les Modèles de Pollution Atmosphérique et de Transport d'Emission (ESCOMPTE) field experiment in the summer of 2001. The data reveal intermittent events or bursts in the time series of carbon dioxide (CO2) concentration and air temperature that are superimposed upon the background values. These features relate to intermittent structures in the fluxes of CO2 and sensible heat. In Marseille, CO2 is primarily emitted into the atmosphere at street level from vehicle exhausts. In a similar way, nocturnal sensible heat fluxes are most likely to originate in the deep street canyons that are warmer than adjacent roof surfaces. Wavelet analysis is used to examine the hypothesis that CO2 concentrations can be used as a tracer to identify characteristics of the venting of pollutants and heat from street canyons into the above-roof nocturnal urban boundary layer. Wavelet analysis is shown to be effective in the identification and analysis of significant events and coherent structures within the turbulent time series. Late in the evening, there is a strong correlation between the burst structures observed in the air temperature and CO2 time series. Evidence suggests that the localized increases of temperature and CO2 observed above roof level in the urban boundary layer (UBL) are related to intermittent venting of sensible heat from the warmer urban canopy layer (UCL). However, later in the night, local advection of CO2 in the UBL, combined with reduced traffic emissions in the UCL, limit the value of CO2 as a tracer of convective plumes in the UBL.

  18. 43. and Design, Grand Canyon National Park, dated August 23, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. and Design, Grand Canyon National Park, dated August 23, 1934, and September 17, 1934 (original located at Federal Records Center, Denver, Colorado, #113/3084-set of 2) SEWAGE PLANT ADDITION. - Water Reclamation Plant, Grand Canyon, Coconino County, AZ

  19. Long view from canyon edge, east of the overlook, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Long view from canyon edge, east of the overlook, showing guard rails, fencing, stairs and masonry; view to north - Mather Point Overlook, South Entrance Road, Grand Canyon Village, Coconino County, AZ

  20. 10. August, 1971. GV W FROM PROVO CANYON. AT PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. August, 1971. GV W FROM PROVO CANYON. AT PRESSURE HOUSE SHOWING POWER STATION AT BOTTOM OF PHOTO. - Telluride Power Company, Olmsted Hydroelectric Plant, mouth of Provo River Canyon West of U.S. Route 189, Orem, Utah County, UT

  1. Contemporary sediment-transport processes in submarine canyons.

    PubMed

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  2. Deciphering Outburst Flood Discharges from the Morphology of Hesperian Canyons

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G. A.; Lamb, M. P.; Williams, R. M.

    2014-07-01

    We model the hydraulics of outburst floods over canyon escarpments. We show that canyons only maintain a constant width under a certain hydraulic regime. We combine the hydraulic model to an erosion law to constrain paleodischarges at Echus Chasma.

  3. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  4. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  5. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  6. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  7. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  8. Entropy and order in urban street networks

    PubMed Central

    Gudmundsson, Agust; Mohajeri, Nahid

    2013-01-01

    Many complex networks erase parts of their geometry as they develop, so that their evolution is difficult to quantify and trace. Here we introduce entropy measures for quantifying the complexity of street orientations and length variations within planar networks and apply them to the street networks of 41 British cities, whose geometric evolution over centuries can be explored. The results show that the street networks of the old central parts of the cities have lower orientation/length entropies - the streets are more tightly ordered and form denser networks - than the outer and more recent parts. Entropy and street length increase, because of spreading, with distance from the network centre. Tracing the 400-year evolution of one network indicates growth through densification (streets are added within the existing network) and expansion (streets are added at the margin of the network) and a gradual increase in entropy over time. PMID:24281305

  9. Perspective view of IOOF Building (5 North F Street), retail ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of IOOF Building (5 North F Street), retail store (11 North F Street), and general merchandise (15 North F Street), all historic-contributing features of the district - Lakeview Downtown Historic District, E, F & G Streets between Second Street North & First Street South, Lakeview, Lake County, OR

  10. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  11. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  12. Submarine origin for the Neoproterozoic Wonoka canyons, South Australia

    NASA Astrophysics Data System (ADS)

    Giddings, J. A.; Wallace, M. W.; Haines, P. W.; Mornane, K.

    2010-01-01

    An examination of the deeply incised Ediacaran Wonoka canyons in the Adelaide Geosyncline (most recently interpreted as subaerial valleys) demonstrates their submarine origin, and confirms them as some of the best examples of ancient outcropping submarine canyons in the world. The entire canyon-fill succession is interpreted to be of deep-water (below wave base) origin, consisting of calcareous shale and siltstone together with a variety of mass-flow deposits including turbidites, grain flows and debris flows. The canyon fill lacks definitive shallow-water structures (e.g. mud cracks, fenestral fabrics or wave ripples) at all stratigraphic levels. Canyon-lining carbonate crusts that have previously been interpreted as non-marine calcretes or tufas (and used to suggest a non-marine origin for the canyons) are argued to be of deep-water, marine, microbial origin. Extremely negative carbon isotope values from the canyon-fill and canyon-lining crusts have a primary marine origin. Previously interpreted deepening upward trends in the canyon fill (used as evidence of a subaerial erosion episode followed by drowning) are suggested to be fining upward trends, caused by the transition from canyon cutting to canyon filling, with the majority of the fill being of deep-water slope origin. The basal conglomeratic canyon-fill sediments represent the last vestiges of the high-energy, deep-water, canyon-erosion environment in which the incisions formed. A deep-water origin for the canyons is consistent with all previous stratigraphic observations of the Wonoka canyons, including the conspicuous lack of regional unconformities in the lower Wonoka Formation, and their emanation from the deep-water facies of the Wonoka Formation. A submarine canyon origin also removes the need for extreme (~ 1 km) relative sea level fluctuation and associated problems (i.e. an enclosed basin with Messinian-style evaporative drawdown or thermal uplift above a migrating mantle plume) required by the

  13. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  14. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  15. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  16. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  17. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  18. 77 FR 9265 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... Federal advisory committee, the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and...

  19. 78 FR 21415 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group..., the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and...

  20. 77 FR 43117 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... Federal advisory committee, the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and...

  1. 77 FR 22801 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Management Work Group (AMWG) makes recommendations to the Secretary of the Interior concerning Glen Canyon... AMP includes a Federal advisory committee, the AMWG, a technical work group, a Grand Canyon...

  2. 63 FR 13071 - Glen Canyon Technical Work Group; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    1998-03-17

    ... Bureau of Reclamation Glen Canyon Technical Work Group; Public Meetings SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG) on September 10, 1997. The TWG members were named by the members of the AMWG and...

  3. 64 FR 10487 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-03-04

    ... Bureau of Reclamation Glen Canyon Technical Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meetings. SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG). The TWG members were named by members...

  4. 63 FR 46467 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1998-09-01

    ... Bureau of Reclamation Glen Canyon Technical Work Group AGENCY: Bureau of Reclamation, Interior. ] ACTION: Notice of public meetings. SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG) on September 10, 1997. The TWG...

  5. 62 FR 49526 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-09-22

    ... Bureau of Reclamation Glen Canyon Technical Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meetings. SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG) on September 10, 1997. The TWG...

  6. 79 FR 24748 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2014-05-01

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group..., the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and...

  7. 80 FR 21261 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2015-04-17

    ....05940913.7000000] Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group (AMWG... committee, the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and...

  8. 62 FR 66385 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-12-18

    ... Bureau of Reclamation Glen Canyon Technical Work Group AGENCY: Bureau of Reclamation, DOI. ACTION: Notice of public meetings. SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG) on September 10, 1997. The TWG...

  9. 62 FR 63383 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-11-28

    ... Bureau of Reclamation Glen Canyon Technical Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Amended Notice of Public Meeting. SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG) on September 10, 1997....

  10. 62 FR 66385 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-12-18

    ... Bureau of Reclamation Glen Canyon Technical Work Group AGENCY: Bureau of Reclamation, DOI. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG) on September 10, 1997. The TWG...

  11. 5. DARK CANYON SIPHON Photographic copy of historic photo, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DARK CANYON SIPHON - Photographic copy of historic photo, November 11, 1906 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'LOWER END OF DARK CANYON SIPHON CONSTRUCTION' - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  12. 27 CFR 9.217 - Happy Canyon of Santa Barbara.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Happy Canyon of Santa... Areas § 9.217 Happy Canyon of Santa Barbara. (a) Name. The name of the viticultural area described in this section is “Happy Canyon of Santa Barbara”. For purposes of part 4 of this chapter, “Happy...

  13. Surface Composition Differences in Martian Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    (Released 29 May 2002) Color differences in this daytime infrared image taken by the camera on NASA's Mars Odyssey spacecraft represent differences in the mineral composition of the rocks, sediments and dust on the surface. The image shows a portion of a canyon named Candor Chasma within the great Valles Marineris system of canyons, at approximately 5 degrees south latitude, 285 degrees east (75 degrees west) longitude. The area shown is approximately 30 by 175 kilometers (19 by 110 miles). The image combines exposures taken by Odyssey's thermal emission imaging system at three different wavelengths of infrared light: 6.3 microns, 7.4 microns and 8.7 microns.

  14. 64 FR 54639 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-10-07

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work... Management Work Group, a technical work group, a monitoring and research center, and independent review... to act upon. DATES AND LOCATION: The Glen Canyon Adaptive Management Work Group will conduct two...

  15. 65 FR 70735 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon; Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-11-27

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon; Technical Work... has been organized and includes a federal advisory committee (the AMWG), a technical work group (the... AND LOCATION: The Glen Canyon Technical Work Group will conduct the following public meetings:...

  16. 65 FR 69787 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-11-20

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG); Correction AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of Public Meetings... Group (AMWG) and Glen Canyon Technical Work Group (TWG). The document contained incorrect dates....

  17. 65 FR 48731 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-08-09

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work... Management Work Group,'' a technical work group, a monitoring and research center, and independent review... Canyon Adaptive Management Work Group will conduct a public meeting: Phoenix, Arizona--January...

  18. 65 FR 15173 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-03-21

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG) AGENCY: Bureau of Reclamation, Interior. ACTION: Notice; correction. SUMMARY: The Bureau of... an upcoming public meeting of the Glen Canyon Dam Adaptive Management Work Group. The meeting...

  19. 64 FR 61122 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-11-09

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG); Correction AGENCY: Bureau of Reclamation, Interior. ACTION: Notice; correction. SUMMARY..., concerning the announcement of an upcoming public meeting of the Glen Canyon Technical Work Group....

  20. 65 FR 79122 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-12-18

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work... has been organized and includes a federal advisory committee (the AMWG), a technical work group (the... and Location: The Glen Canyon Technical Work Group will conduct the following public meetings:...

  1. 63 FR 69304 - Glen Canyon Dam Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    1998-12-16

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG) AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meetings. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group will conduct an open public meeting to...

  2. Let's Bet on Sediments! Hudson Canyon Cruise--Grades 9-12. Focus: Sediments of Hudson Canyon.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    These activities are designed to teach about the sediments of Hudson Canyon. Students investigate and analyze the patterns of sedimentation in the Hudson Canyon, observe how heavier particles sink faster than finer particles, and learn that submarine landslides are avalanches of sediment in deep ocean canyons. The activity provides learning…

  3. Morphology of Neptune Node Sites, Barkley Canyon, Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Lundsten, E. M.; Anderson, K.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Riedel, M.

    2014-12-01

    High-resolution multibeam bathymetry and chirp seismic reflection profiles collected with MBARI's mapping autonomous underwater vehicle reveal the fine-scale morphology and shallow seafloor structure of the flanks and floor of Barkley Canyon on the Cascadia continental margin off British Columbia. The surveys characterize the environment surrounding three nodes on the Neptune Canada cabled observatory located within the canyon. The canyon floor between 960 and 1020 m water depth lacks channeling and contains ≥ 24 m of acoustically uniform sediment fill, which is ponded between the canyon's steep sidewalls. The fill overlies a strong reflector that outlines an earlier, now buried, canyon floor channel system. Debris flow tongues contain meter scale blocks sticking-up through the fill. Apparently the present geomorphology surrounding the Canyon Axis node in 985 m is attributable to local debris flows, rather than organized down canyon processes. In the survey area the canyon sidewalls extend ~300 m up and in places the slope of the canyons sides exceed 40°. Both the Hydrate node in 870 m water depths and the Mid-Canyon node at 890 m are located on a headland that forms intermediate depth terraces on the canyon's western flank. While the seafloor immediately surrounding the Mid-canyon node is smooth, the Hydrate node is marked by 10 circular mounds up to 2 m high and 10 m in diameter, presumable associated with hydrate formation. Although wedges of sediment drape occur in places on the canyon sides, the chirp profiles show no detectible sediment drape at either node site and suggest these nodes are situated on older, presumably pre-Quaternary strata. The lack of reflectors in the chirp profiles indicates most of the canyon's sidewalls are largely sediment-bare. Lineations in the bathymetry mark the exposed edges of truncated beds. Rough, apparently fresh textures, within slide scarps show the importance of erosion on the development of the canyon flanks.

  4. Restoring Detroit's Street Lighting System

    SciTech Connect

    Kinzey, Bruce R.

    2015-10-21

    The City of Detroit is undertaking a comprehensive restoration of its street lighting system that includes transitioning the existing high-pressure sodium (HPS) sources to light-emitting diode (LED). Detroit’s well-publicized financial troubles over the last several years have added many hurdles and constraints to this process. Strategies to overcome these issues have largely been successful, but have also brought some mixed results. This document provides an objective review of the circumstances surrounding the system restoration, the processes undertaken and decisions made, and the results so far.

  5. Source contributions to PM2.5 and PM10 at an urban background and a street location

    NASA Astrophysics Data System (ADS)

    Keuken, M. P.; Moerman, M.; Voogt, M.; Blom, M.; Weijers, E. P.; Röckmann, T.; Dusek, U.

    2013-06-01

    The contribution of regional, urban and traffic sources to PM2.5 and PM10 in an urban area was investigated in this study. The chemical composition of PM2.5 and PM10 was measured over a year at a street location and up- and down-wind of the city of Rotterdam, the Netherlands. The 14C content in EC and OC concentrations was also determined, to distinguish the contribution from "modern" carbon (e.g., biogenic emissions, biomass burning and wildfires) and fossil fuel combustion. It was concluded that the urban background of PM2.5 and PM10 is dominated by the regional background, and that primary and secondary PM emission by urban sources contribute less than 15%. The 14C analysis revealed that 70% of OC originates from modern carbon and 30% from fossil fuel combustion. The corresponding percentages for EC are, respectively 17% and 83%. It is concluded that in particular the urban population living in street canyons with intense road traffic has potential health risks. This is due to exposure to elevated concentrations of a factor two for EC from exhaust emissions in PM2.5 and a factor 2-3 for heavy metals from brake and tyre wear, and re-suspended road dust in PM10. It follows that local air quality management may focus on local measures to street canyons with intense road traffic.

  6. Geohydrology of White Rock Canyon of the Rio Grande from Otowi to Frijoles Canyon

    SciTech Connect

    Purtymun, W.D.; Peters, R.J.; Owens, J.W.

    1980-12-01

    Twenty-seven springs discharge from the Totavi Lentil and Tesuque Formation in White Rock Canyon. Water generally acquires its chemical characteristics from rock units that comprise the spring aquifer. Twenty-two of the springs are separated into three groups of similar aquifer-related chemical quality. The five remaining springs make up a fourth group with a chemical quality that differs due to localized conditions in the aquifer. Localized conditions may be related to recharge or discharge in or near basalt intrusion or through faults. Streams from Pajarito, Ancho, and Frijoles Canyons discharge into the Rio Grande in White Rock Canyon. The base flow in the streams is from springs. Sanitary effluent in Mortandad Canyon from the treatment plant at White Rock also reaches the Rio Grande.

  7. Ranking current and prospective NO2 pollution mitigation strategies: An environmental and economic modelling investigation in Oxford Street, London.

    PubMed

    Jeanjean, A P R; Gallagher, J; Monks, P S; Leigh, R J

    2017-03-21

    Air pollution continues to be a problem in the urban environment. A range of different pollutant mitigation strategies that promote dispersion and deposition exist, but there is little evidence with respect to their comparative performance from both an environmental and economic perspective. This paper focuses on examining different NO2 mitigation strategies such as trees, buildings facades coated with photocatalytic paint and solid barriers in Oxford Street in London. The case study findings will support ranking the environmental and economic impacts of these different strategies to improve personal exposure conditions on the footpath and on the road in a real urban street canyon. CFD simulations of airflow and NO2 dispersion in Oxford Street in London were undertaken using the OpenFOAM software platform with the k-ε model, taking into account local prevailing wind conditions. Trees are shown to be the most cost-effective strategy, with a small reduction in NO2 concentrations of up to 0.7% on the road. However, solid barriers with and without the application of photocatalytic paint and an innovative material (20 times more expensive than trees) can improve air quality on the footpaths more substantially, up to 7.4%, yet this has a significant detrimental impact on NO2 concentrations (≤23.8%) on the road. Photocatalytic paint on building surfaces presented a minimal environmental reductions (1.2%) and economic (>100 times more expensive than trees) mitigation strategy. The findings recognised the differences between footpath and road concentrations occurred and that a focused examination of three pollution hotspots can provide more cost effective pollution mitigation. This study considers how a number of pollutant mitigation measures can be applied in a single street canyon and demonstrates the strengths and weaknesses of these strategies from economic and environmental perspectives. Further research is required to extrapolate the findings presented here to

  8. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  9. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  10. Orthotropic Piezoelectricity in 2D Nanocellulose.

    PubMed

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  11. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  12. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  13. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  14. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    PubMed

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  15. 2D Distributed Sensing Via TDR

    DTIC Science & Technology

    2007-11-02

    plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC

  16. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  17. 2. SAN FRANCISCO STREET PROFILES: Photocopy of engraving, c. 1880, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SAN FRANCISCO STREET PROFILES: Photocopy of engraving, c. 1880, showing street profiles of two San Francisco cable railroads. Figure 10 illustrates the mainline of the Sutter Street Railroad on Sutter Street, while Figure 11 shows the route of the Presidio & Ferries Railroad along Union Street. Note the lack of significant grades along the Sutter Street route. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  18. 1. SAN FRANCISCO STREET PROFILES: Photocopy of engraving, c. 1880, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SAN FRANCISCO STREET PROFILES: Photocopy of engraving, c. 1880, showing street profiles of three San Francisco cable lines. Figure 7, at bottom of engraving, is the profile of Hallidie's Clay Street Hill Railroad. Figures 8 and 9 show the grades for the California Street Cable Railroad and the Geary Street Park & Ocean Railroad respectively. Note the lack of significant grades along Geary Street. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  19. Grand Canyon, Lake Powell, and Lake Mead

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A snowfall in the American West provides contrast to the landscape's muted earth tones and indicates changes in topography and elevation across (clockwise from top left) Nevada, Utah, Colorado, New Mexico, Arizona, and California. In Utah, the southern ranges of the Wasatch Mountains are covered in snow, and the Colorado River etches a dark ribbon across the red rock of the Colorado Plateau. In the center of the image is the reservoir created by the Glen Canyon Dam. To the east are the gray-colored slopes of Navaho Mountain, and to the southeast, dusted with snow is the region called Black Mesa. Southwest of Glen Canyon, the Colorado enters the Grand Canyon, which cuts westward through Arizona. At a deep bend in the river, the higher elevations of the Keibab Plateau have held onto snow. At the end of the Grand Canyon lies another large reservoir, Lake Mead, which is formed by the Hoover Dam. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  20. 76 FR 8359 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ...) is proposing an adjustment to the Boulder Canyon Project (BCP) electric service base charge and rates. The current base charge and rates expire September 30, 2011, under Rate Schedule BCP-F8. The current... jmurray@wapa.gov . SUPPLEMENTARY INFORMATION: The proposed base charge and rates for BCP electric...

  1. Map Your Way to the Grand Canyon

    ERIC Educational Resources Information Center

    Yoder, Holly

    2005-01-01

    In the introductory assignment, each randomly assigned group spends about 10 to 15 minutes at each station. The author incorporates as much sensory stimulation in the activity as possible. At the first station, students view a PowerPoint show from a geology class the author participated in at the Grand Canyon. At station two, students look at a…

  2. The Colorado River in the Grand Canyon.

    ERIC Educational Resources Information Center

    Speece, Susan

    1991-01-01

    An assessment of the water quality of the Colorado River in the Grand Canyon was made, using the following parameters: dissolved oxygen, water temperature, hydrogen ion concentration, total dissolved solids, turbidity, and ammonium/nitrogen levels. These parameters were used to provide some clue as to the "wellness" and stability of the…

  3. North Atlantic slope and canyon study. Volume 1. Executive summary

    SciTech Connect

    Butman, B.

    1986-12-01

    A field program to investigate the currents and sediment transport along the outershelf and upper slope along the southern flank of Georges Bank was conducted between 1980 and 1984. A major part of the field experiment was conducted in Lydonia Canyon, a large submarine canyon which cuts northward about 20 km into the continental shelf from the shelfbreak. A smaller experiment was conducted in Oceanographer Canyon to compare the currents in these two major canyons. The long-term current observations made in Lydonia and Oceanographer Canyons show that the current regime in these topographic features differs from the adjacent slope, and between canyons. Sediments near the head (depths shallower than about 600 m) in both Lydonia and Oceanographer are frequently resuspended. This frequent resuspension may allow the sediments to strip pollutants from the water column. Currents in Oceanographer Canyon are stronger and the sediments coarser than in Lydonia at comparable depths.

  4. A typology of street patterns

    PubMed Central

    Louf, Rémi; Barthelemy, Marc

    2014-01-01

    We propose a quantitative method to classify cities according to their street pattern. We use the conditional probability distribution of shape factor of blocks with a given area and define what could constitute the ‘fingerprint’ of a city. Using a simple hierarchical clustering method, these fingerprints can then serve as a basis for a typology of cities. We apply this method to a set of 131 cities in the world, and at an intermediate level of the dendrogram, we observe four large families of cities characterized by different abundances of blocks of a certain area and shape. At a lower level of the classification, we find that most European cities and American cities in our sample fall in their own sub-category, highlighting quantitatively the differences between the typical layouts of cities in both regions. We also show with the example of New York and its different boroughs, that the fingerprint of a city can be seen as the sum of the ones characterizing the different neighbourhoods inside a city. This method provides a quantitative comparison of urban street patterns, which could be helpful for a better understanding of the causes and mechanisms behind their distinct shapes. PMID:25297318

  5. A typology of street patterns.

    PubMed

    Louf, Rémi; Barthelemy, Marc

    2014-12-06

    We propose a quantitative method to classify cities according to their street pattern. We use the conditional probability distribution of shape factor of blocks with a given area and define what could constitute the 'fingerprint' of a city. Using a simple hierarchical clustering method, these fingerprints can then serve as a basis for a typology of cities. We apply this method to a set of 131 cities in the world, and at an intermediate level of the dendrogram, we observe four large families of cities characterized by different abundances of blocks of a certain area and shape. At a lower level of the classification, we find that most European cities and American cities in our sample fall in their own sub-category, highlighting quantitatively the differences between the typical layouts of cities in both regions. We also show with the example of New York and its different boroughs, that the fingerprint of a city can be seen as the sum of the ones characterizing the different neighbourhoods inside a city. This method provides a quantitative comparison of urban street patterns, which could be helpful for a better understanding of the causes and mechanisms behind their distinct shapes.

  6. Physical properties and processes in the Perth Canyon, Western Australia: Links to water column production and seasonal pygmy blue whale abundance

    NASA Astrophysics Data System (ADS)

    Rennie, S.; Hanson, C. E.; McCauley, R. D.; Pattiaratchi, C.; Burton, C.; Bannister, J.; Jenner, C.; Jenner, M.-N.

    2009-04-01

    The oceanography of the Perth Canyon, off southwestern Australia, was examined through two major field excursions in austral spring/summer 2003/2004 combined with previous results from field analysis and numerical simulations. Water properties were used to identify water masses and vertical displacement. The field cruises and numerical simulation indicated unique circulation features of the Leeuwin Current and Undercurrent within the canyon associated with the topographic features. The input of nutrients to the euphotic zone occurred sporadically as the Leeuwin Current generally suppressed upwelling, although the Perth Canyon had increased nutrient concentrations within its rims. The distribution of chlorophyll in the surface layers indicated high spatial variability, with a prevalent deep chlorophyll (and phytoplankton biomass) maximum at ~ 80 m. Depth-integrated primary production within the study region ranged from 360 to 760 mg C m - 2 d - 1 , which was on average 2.5 times higher than rates measured in continental shelf and offshore waters north of the canyon. Aggregations of krill and other acoustic backscatter targets were concentrated near the head of the canyon at a range of depths, which may have been promoted by the circulation. The findings here are consistent with seasonal variations in wind and insolation, along with variations in the Leeuwin Current, influencing the seasonal changes and mesoscale features within the region, while the canyon promotes localised upwelling, and enhances both pelagic production and physical aggregation of plankton to attract the whales. Canyon processes must be combined with outside factors to allow upwelled nutrients to reach the photic zone. It is concluded that a combination of factors, rather than one factor alone, contributes favourably to the appearance of feeding blue whales in the Perth Canyon during the summer.

  7. The Dangeard and Explorer canyons, South Western Approaches UK: Geology, sedimentology and newly discovered cold-water coral mini-mounds

    NASA Astrophysics Data System (ADS)

    Stewart, Heather A.; Davies, Jaime S.; Guinan, Janine; Howell, Kerry L.

    2014-06-01

    The Celtic Margin is a complex area in terms of sedimentary dynamics and evolution, with a number of submarine canyons dissecting the continental slope and outer continental shelf. The complex terrain and diverse range of sea-bed sediments play a part in submarine canyons being described as areas of high habitat heterogeneity. This study has concentrated on the heads of two canyons: Dangeard (also known as Dangaard) and Explorer (first named here) located in UK territorial waters, in water depths between 138 and 1165 m. Multibeam echosounder, 2D reflection seismic and photographic ground-truthing data have been combined to map the sea-bed geomorphology, sedimentary features and canyon megafauna of these canyons. In addition, two previously unknown provinces of cold-water coral (CWC) mini-mounds were discovered on the interfluves of the Dangeard and Explorer canyons. The study area comprises a dendritic network of gullies feeding into the canyon thalwegs. Amphitheatre rims, where slope angles are commonly in excess of 20°, occur along the margins and heads of both canyons and are interpreted as drainage basins indicative of retrogressive mass-wasting in a shelfward direction. The CWC mini-mounds occur in water depths between 250 m and 410 m, with more than 400 mounds identified. They are up to 3 m in height and 50-150 m in diameter with no sub-surface expression, suggesting these mounds are, in geological terms, relatively young and possibly Holocene in age. Biological analyses revealed that the mounds form a habitat for ophiuroids and Munida associated with Lophelia pertusa coral rubble, suggesting these mini-mounds are not present-day living features.

  8. Anatomy of La Jolla submarine canyon system; offshore southern California

    USGS Publications Warehouse

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (< 10 cm) turbidites, they are inferred to be part of a veneer of recent sediment covering pre-canyon host sediments that underpin the terraces. The combined use of state of the art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  9. Creationism in the Grand Canyon, Texas Textbooks

    NASA Astrophysics Data System (ADS)

    Folger, Peter

    2004-01-01

    AGU President Bob Dickinson, together with presidents of six other scientific societies, have written to Joseph Alston, Superintendent of Grand Canyon National Park, pointing out that a creationist book, The Grand Canyon: A Different View, is being sold in bookstores within the borders of the park as a scientific explanation about Grand Canyon geologic history. President Dickinson's 16 December letter urges that Alston clearly separate The Grand Canyon: A Different View from books and materials that discuss the legitimate scientific understanding of the origin of the Grand Canyon. The letter warns the Park Service against giving the impression that it approves of the anti-science movement known as young-Earth creationism, or that it endorses the advancement of religious tenets disguised as science. The text of the letter is on AGU's Web site http://www.agu.org/sci_soc/policy/sci_pol.html. Also, this fall, AGU sent an alert to Texas members about efforts by intelligent design creationists aimed at weakening the teaching of biological evolution in textbooks used in Texas schools. The alert pointed scientists to a letter, drafted by AGU, together with the American Institute of Physics, the American Physical Society, the Optical Society of America, and the American Astronomical Society, that urged the Texas State Board of Education to adopt textbooks that presented only accepted, peer-reviewed science and pedagogical expertise. Over 550 scientists in Texas added their names to the letter (http://www.agu.org/sci_soc/policy/texas_textbooks.pdf ), sent to the Board of Education on 1 November prior to their vote to adopt a slate of new science textbooks. The Board voted 11-5 in favor of keeping the textbooks free of changes advocated by groups supporting intelligent design creationism.

  10. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  11. The basics of 2D DIGE.

    PubMed

    Beckett, Phil

    2012-01-01

    The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).

  12. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  13. 54. View looking west along Monroe Street across First Street/Dayton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. View looking west along Monroe Street across First Street/Dayton Avenue and covered Dundee Canal prism - Dundee Canal Industrial Historic District, Beginning at George Street in Passaic & extending north along Dundee Canal approximately 1.2 miles to Canal headgates opposite East Clifton Avenue in Clifton, Passaic, Passaic County, NJ

  14. Relationships between the Sociodemographic and Family Characteristics, Street Life Experiences and the Hopelessness of Street Children

    ERIC Educational Resources Information Center

    Duyan, Veli

    2005-01-01

    Throughout its history, street children have been a major concern of Turkish society and have lately been uppermost on social workers agenda. This study examines the relationships between sociodemographic and family characteristics, family relations, street life experiences and the hopelessness of street children. The study focuses on a population…

  15. Personal and Familial Properties of Street Children--"Street Children: The Forgotten or Not Remembered Ones"

    ERIC Educational Resources Information Center

    Özbas, Mehmet

    2015-01-01

    With this research it is aimed to determine the personal traits of Street Children depending on them and also the socio-economic variables of Street Children resulting from their families. For this main aim in the research process, it is provided to have communication directly with the parents of Street Children using one-to-one and face-to-face…

  16. Who Are "Street Children?" A Hierarchy of Street Use and Appropriate Responses.

    ERIC Educational Resources Information Center

    Williams, Christopher

    1993-01-01

    This paper considers opposing viewpoints on usefulness of the classification of "street children" in an international context and proposes a working compromise based on a hierarchy of street use, from minimal to total dependency on the streets. Different types of education/welfare intervention are needed at these different levels. (DB)

  17. Adolescent Hopefulness in Tanzania: Street Youth, Former Street Youth, and School Youth

    ERIC Educational Resources Information Center

    Nalkur, Priya G.

    2009-01-01

    This study compares hope in street youth, former street youth, and school youth (aged 12-18) in Tanzania. Responding to Snyder's hope theory, the author argues that not only personal agency but also the stability of living context (street, shelter, home) shapes hopefulness. Employing qualitative and quantitative analyses, the author presents a…

  18. Exposure to hazardous volatile organic compounds, PM 10 and CO while walking along streets in urban Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Zhao, Lirong; Wang, Xinming; He, Qiusheng; Wang, Hao; Sheng, Guoying; Chan, L. Y.; Fu, Jiamo; Blake, D. R.

    Toxic air pollutants in street canyons are important issues concerning public health especially in some large Asian cities like Guangzhou. In 1998 <18% of Guangzhou citizens used public transportation modes, with a majority commuting on foot (42%) or by bicycle (22%). Of the pedestrians, 57% were either senior citizens or students. In the present study, we measured toxic air pollutants while walking along urban streets in Guangzhou to evaluate pedestrian exposure. Volatile organic compounds (VOCs) were collected with sorbent tubes, and PM 10 and CO were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM 10 (with an average of 303 μg m -3 for all samples) and some toxic VOCs (for example, benzene) was relatively high. Monocyclic aromatic hydrocarbons were found to be the most abundant VOCs, and 71% of the samples had benzene levels higher than 30 μg m -3. Benzene, PM 10 and CO in walk-only streets were significantly lower ( p<0.05) than in traffic streets, and the differences in exposure levels between new urban streets and old urban streets were highly significant ( p<0.01). Pedestrian exposure to toxic VOCs and PM 10 was higher than those reported in other public transportation modes (bus and subway). The good correlations between BTEX, PM 10 and CO in the streets indicated that automotive emission might be their major source. Our study also showed that the risk to pedestrians due to air pollution was misinterpreted by the reported air quality index based on measurement of SO 2, NO x and PM 10 in the government monitoring stations. An urban roadside monitoring station might be needed by air quality monitoring networks in large Asian cities like Guangzhou, in order to survey exposure to air toxics in urban roadside microenvironments.

  19. SOUTH SIDE OF SECOND STREET, LOOKING WESTSOUTHWEST FROM NORTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH SIDE OF SECOND STREET, LOOKING WEST-SOUTHWEST FROM NORTH SIDE OF SECOND STREET NEAR INTERSECTION OF DOWELL AND SECOND STREETS - Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of Second Street, between Dedrick Drive and Liberty Bay and one building west of Dedrick Drive and south of Second Street, Keyport, Kitsap County, WA

  20. 12. July, 1970 EAST SIDE OF ORANGE STREET LOOKING SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. July, 1970 EAST SIDE OF ORANGE STREET LOOKING SOUTH FROM GARDEN (FORMER SITE OF COL. BRAYTON HOUSE) OF #16 TO #18, #20 AND #22 ORANGE STREET - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  1. 5. NORTH SIDE OF SUPERSTRUCTURE, FACING SOUTH ON MARKET STREET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. NORTH SIDE OF SUPERSTRUCTURE, FACING SOUTH ON MARKET STREET BETWEEN 44TH AND 45TH STREETS. DETAIL OF BARREL VAULTS ON UNDERSIDE OF SUPERSTRUCTURE. - Market Street Elevated Railway, Market Street between Sixty-ninth & Forty-sixth Streets, Philadelphia, Philadelphia County, PA

  2. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  3. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  4. Researching Street Children: Methodological and Ethical Issues.

    ERIC Educational Resources Information Center

    Hutz, Claudio S.; And Others

    This paper describes the ethical and methodological problems associated with studying prosocial moral reasoning of street children and children of low and high SES living with their families, and problems associated with studying sexual attitudes and behavior of street children and their knowledge of sexually transmitted diseases, especially AIDS.…

  5. Psychological Characteristics of South African Street Children.

    ERIC Educational Resources Information Center

    le Roux, Johann; Smith, Cheryl Sylvia

    1998-01-01

    Attempts to identify the psychological characteristics that predispose certain children to run away and to survive, often for long periods, on the streets of South Africa. Examines vulnerability and resilience as well as social conditions that mediate the psychological predisposition to become a street child. (Author/GCP)

  6. Summary Street: Interactive Computer Support for Writing

    ERIC Educational Resources Information Center

    Wade-Stein, David; Kintsch, Eileen

    2004-01-01

    Summary Street is educational software based on latent semantic analysis (LSA), a computer method for representing the content of texts. The classroom trial described here demonstrates the power of LSA to support an educational goal by providing automatic feedback on the content of students' summaries. Summary Street provides this feedback in an…

  7. STREET SURFACE STORAGE FOR CSO CONTROL

    EPA Science Inventory

    This paper presents a discussion of the use of on-street storage as an effective means to control stormwater runoff. It focuses on the success achieved by using street storage in two communities in Illinois and includes a description and evaluation of how this technology elimina...

  8. Street Photography from the Subject's Viewpoint.

    ERIC Educational Resources Information Center

    Nottingham, Emily

    To investigate the reaction of the public to being photographed on the street, a study was devised whereby seven photojournalists approached people on the street, photographed them, and requested identification for a questionnaire follow up. Of 102 people approached, 87% cooperated fully with the photographers and 81% of that group returned the…

  9. Trauma among Street-Involved Youth

    ERIC Educational Resources Information Center

    Bender, Kimberly A.; Thompson, Sanna J.; Ferguson, Kristin M.; Yoder, Jamie R.; Kern, Leah

    2014-01-01

    Previous research documents that street-involved youth experience rates of trauma and posttraumatic stress disorder (PTSD) that are significantly higher than their housed counterparts. Trauma and PTSD are of particular concern for homeless youth as they can negatively affect youths' ability to function adaptively and to transition off the streets.…

  10. The Impact of Sesame Street on Readiness

    ERIC Educational Resources Information Center

    Minton, Judith Haber

    1975-01-01

    Investigates the effects of the first season of Sesame Street (1970) on readiness in kindergarten children. Evidence indicates that the scores of children from an advantaged community were significantly higher on the alphabet subtest after exposure to Sesame Street, but that scores of children from the Head Start Program did not differ…

  11. Who Wants to Live on Sesame Street?

    ERIC Educational Resources Information Center

    Sprigle, Herbert A.

    1972-01-01

    The findings of the two-year study of Sesame Street graduates, the findings of the adult-child communication patterns of the program, the examination and evaluation of the philosophy, adult behavior and attitudes toward learning and children fail to identify any redeeming features of Sesame Street as an educational program. (Author)

  12. Lava Flows in the Grand Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Over vast expanses of time, natural processes like floods and volcanoes deposit layers of rock on the Earth's surface. To delve down through layers of rock is to explore our planet's history. Sometimes rock layers are exposed through human activity, such as drilling or excavation. Other times, rivers carve through the rock. One of the best, and most well-known, examples of a river exposing ancient rocks is Colorado River in Arizona's Grand Canyon. What fewer people know is that the Grand Canyon also has a history of relatively recent (on geologic time scales) volcanism. The evidence--hardened lava--spills down the canyon walls all the way to the river. On June 22, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the Grand Canyon, near 36.2 degrees north latitude and 113.2 degrees west longitude. ASTER detects light visible to human eyes as well as 'invisible' infrared light. Because different minerals reflect different portions of the light spectrum, ASTER can see varying mineral compositions of the rocks it observes, as well as detecting vegetation. In this three-dimensional visualization, lava fields appear brownish gray, darker than the layers of limestone, sandstone and other rock in the canyon. Vegetation appears green, and sparsely vegetated areas appear mustard. Water in the Colorado River is blue-purple. Geologists estimate that between 1.8 million and 400,000 years ago, lava flows actually dammed the Colorado River more than a dozen times. Some of the lava dams were as high as 600 meters (about 1,969 feet), forming immense reservoirs. Over time, enough water and sediment built up to push the river flow over the tops of these dams and eventually erode them away. Today, remnants of these lava dams remain throughout the area, along with the much older rock layers they cover. Among the most well known examples of these 'frozen' lava cascades is Lava Falls, which spills down to the

  13. 3D View of Grand Canyon, Arizona

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Grand Canyon is one of North America's most spectacular geologic features. Carved primarily by the Colorado River over the past six million years, the canyon sports vertical drops of 5,000 feet and spans a 445-kilometer-long stretch of Arizona desert. The strata along the steep walls of the canyon form a record of geologic time from the Paleozoic Era (250 million years ago) to the Precambrian (1.7 billion years ago).

    The above view was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard the Terra spacecraft. Visible and near infrared data were combined to form an image that simulates the natural colors of water and vegetation. Rock colors, however, are not accurate. The image data were combined with elevation data to produce this perspective view, with no vertical exaggeration, looking from above the South Rim up Bright Angel Canyon towards the North Rim. The light lines on the plateau at lower right are the roads around the Canyon View Information Plaza. The Bright Angel Trail, which reaches the Colorado in 11.3 kilometers, can be seen dropping into the canyon over Plateau Point at bottom center. The blue and black areas on the North Rim indicate a forest fire that was smoldering as the data were acquired on May 12, 2000.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land

  14. Cleaning up the Streets of Denver

    SciTech Connect

    Stegen, R.L.; Wood, T.R.; Hackett, J.R.; Sogue, A.

    2006-07-01

    Between 1913 and 1924, several Denver area facilities extracted radium from carnotite ore mined from the Paradox basin region of Colorado. Tailings or abandoned ores from these facilities were apparently incorporated into asphalt used to pave approximately 7.2 kilometers (4.5 miles) of streets in Denver. A majority of the streets are located in residential areas. The radionuclides are bound within the asphalt matrix and pose minimal risk unless they are disturbed. The City and County of Denver (CCoD) is responsible for controlling repairs and maintenance on these impacted streets. Since 2002, the CCoD has embarked on a significant capital improvement project to remove the impacted asphalt for secure disposal followed by street reconstruction. To date, Parsons has removed approximately 55 percent of the impacted asphalt. This paper discusses the history of the Denver Radium Streets and summarizes on-going project efforts. (authors)

  15. Compatible embedding for 2D shape animation.

    PubMed

    Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi

    2009-01-01

    We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.

  16. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  17. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  18. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  19. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  20. Quasiparticle interference in unconventional 2D systems

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  1. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  2. 2D Metals by Repeated Size Reduction.

    PubMed

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  3. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  4. Influence of topographic complexity on solar insolation estimates for the Colorado River, Grand Canyon, AZ

    USGS Publications Warehouse

    Yard, M.D.; Bennett, G.E.; Mietz, S.N.; Coggins, L.G.; Stevens, L.E.; Hueftle, S.; Blinn, D.W.

    2005-01-01

    Rugged topography along the Colorado River in Glen and Grand Canyons, exemplifies features common to canyon-bound streams and rivers of the arid southwest. Physical relief influences regulated river systems, especially those that are altered, and have become partially reliant on aquatic primary production. We measured and modeled instantaneous solar flux in a topographically complex environment to determine where differences in daily, seasonal and annual solar insolation occurred in this river system. At a system-wide scale, topographic complexity generates a spatial and temporal mosaic of varying solar insolation. This solar variation is a predictable consequence of channel orientation, geomorphology, elevation angles and viewshed. Modeled estimates for clear conditions corresponded closely with observed measurements for both instantaneous photosynthetic photon flux density (PPFD: ??mol m-2 s-1) and daily insolation levels (relative error 2.3%, CI ??0.45, S.D. 0.3, n = 29,813). Mean annual daily insolation levels system-wide were estimated to be 36 mol m-2 d -1 (17.5 S.D.), and seasonally varied on average from 13.4-57.4 mol m-2 d-1, for winter and summer, respectively. In comparison to identical areas lacking topographic effect (idealized plane), mean daily insolation levels were reduced by 22% during summer, and as much as 53% during winter. Depending on outlying topography, canyon bound regions having east-west (EW) orientations had higher seasonal variation, averaging from 8.1 to 61.4 mol m-2 d-1, for winter and summer, respectively. For EW orientations, 70% of mid-channel sites were obscured from direct incidence during part of the year; and of these sites, average diffuse light conditions persisted for 19.3% of the year (70.5 days), and extended upwards to 194 days. This predictive model has provided an initial quantitative step to estimate and determine the importance of autotrophic production for this ecosystem, as well as a broader application for other

  5. Heterogeneity and lithotype distribution in ancient deep-sea canyons: Point Lobos deep-sea canyon as a reservoir analogue

    NASA Astrophysics Data System (ADS)

    Cronin, Bryan T.; Kidd, Robert B.

    1998-01-01

    An evolution and history of filling is proposed for an exceptionally exposed ancient deep-sea canyon on a Paleocene oblique-slip tectonic margin which, on a number of scales, reveals, successive phases of canyon activity. The quantitative methods adopted for this study make it of direct use to modellers as an example of reservoir heterogeneity in an ancient canyon fill, where facies distribution from boreholes can be scaled up to reconstruct the reservoir, using the methods outlined in this paper. The Point Lobos submarine canyon, near Carmel in California, provides a complete cross-section of an ancient canyon, with a fill which displays a whole range of channel morphologies, and laterally extensive coverage of the internal architecture of associated conglomerate packages and related debris flows. This paper presents quantitative documentation of the canyon-fill sediments and canyon-wide fill packages, on scales which vary from bed-to-bed analysis, reflecting processes in operation during individual events, to canyon-wide analysis, reflecting the overall evolution of the canyon. The northern and southern canyon margins are both exposed, and the Paleocene fill onlaps the subvertical canyon wall. The canyon was incised into Cretaceous granodiorite. The fill comprises five thick sequences which correspond to five successive phases of sediment deposition within the canyon. Each sequence typically consists of resedimented conglomerates that are stacked and channelised, with a vertical architecture which resembles that of subaerial braided stream deposits. These are overlain by channelised turbidite sandstones, interbedded with intraformational conglomerates and mud-chip breccias. These in turn are overlain by mudstones and shales, which are commonly slumped and disturbed. Published classification schemes that show the range of deep-water facies were found insufficient to describe the Point Lobos canyon fill. Methods were developed for recording the lithologic

  6. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  7. Irreversibility-inversions in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  8. Morphology, sedimentary features and evolution of a large palaeo submarine canyon in Qiongdongnan basin, Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Xiangquan; Fairweather, Luke; Wu, Shiguo; Ren, Jianye; Zhang, Hongjie; Quan, Xiayun; Jiang, Tao; Zhang, Cheng; Su, Ming; He, Yunlong; Wang, Dawei

    2013-01-01

    The large Miocene-aged palaeo canyon that extents through the Qiongdongnan basin (QDNB) and Yinggehai basin (YGHB) of Northern South China Sea has been of considerable interest both economically and scientifically over the past decade. Stemmed from this, significant research has been employed into understanding the mechanism for its existence, incision, and sedimentary fill, yet debate remains. In the first case the canyon itself is actually quite anomalous. Alone from the size (over 570 km in length and more than 8 km in width (Yuan et al., 2009)), which is considerably more than most ancient deep-water channels (REFS), the canyon's sedimentary fill is also distinctly different. Some explanations have been given to explain the canyon's origin and existence, these include increased sediment supply from the Red River which is genetically linked to uplift of the Tibetan Plateau, lowstand turbidite and mass-transport activity, reactivation and dextral displacement of the Red River Fault zone inducing erosive gravity-flows, regional tilt of the QDNB and YGHB, paleo-seafloor morphology and seal-level fluctuations. With the application of new data obtained from interpretations of a large number of 2D seismic profiles, core and well log data, and tectonic and sedimentary analysis this contribution aims to: (1) Present models to explain the Canyon's sedimentary fill and basin plain deposits, which provided significant understanding of processes pre-, syn- and post-incision and; (2) review the plausibility and likelihood of each of the controlling mechanisms, hoping to shed light on this controversial aspect. We conclude that the final erosive event that shaped the canyon is dated at 5.5 Ma. The Canyon's unusual fill is a product of variation in the interaction between turbidity currents and MTD that blocked the canyon's axis, and the reduction in gravity flow energy through time; and therefore the complete succession represents one major erosive and cut event at 5.5 Ma and

  9. Surprise and opportunity for learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    USGS Publications Warehouse

    Melis, Theodore S.; Walters, Carl; Korman, Josh

    2015-01-01

    With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

  10. 78. VIEW OF NORTH SIDE OF GREENE STREET LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. VIEW OF NORTH SIDE OF GREENE STREET LOOKING WEST FROM SIDEWALK IN FRONT OF SACRED HEART CHURCH - Greene Street Historic District, Greene Street, Gordon Highway to Augusta Canal Bridge, Augusta, Richmond County, GA

  11. 79. VIEW OF NORTH SIDE OF GREENE STREET LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. VIEW OF NORTH SIDE OF GREENE STREET LOOKING EAST FROM SIDEWALK IN FRONT OF SACRED HEART CHURCH - Greene Street Historic District, Greene Street, Gordon Highway to Augusta Canal Bridge, Augusta, Richmond County, GA

  12. 3. Oblique view of 215 Division Street, looking southeast, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Oblique view of 215 Division Street, looking southeast, showing rear (west) facade and north side, Fairbanks Company appears at left and 215 Division Street is visible at right - 215 Division Street (House), Rome, Floyd County, GA

  13. 2. Oblique view of 215 Division Street, looking northeast, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Oblique view of 215 Division Street, looking northeast, showing rear (west) facade and south side, 217 Division Street is visible at left and Fairbanks Company appears at right - 215 Division Street (House), Rome, Floyd County, GA

  14. 3. Oblique view of 213 Division Street, looking northeast, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Oblique view of 213 Division Street, looking northeast, showing rear (west) facade and south side, 215 Division Street is visible at left and Fairbanks Company appears at right - 213 Division Street (House), Rome, Floyd County, GA

  15. 9. KING STREET (FRONT) ELEVATIONS OF KONGENSGADE 59 (see 'Kongensgade ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. KING STREET (FRONT) ELEVATIONS OF KONGENSGADE 59 (see 'Kongensgade 59,' HABS No. VI-118) AND TOLDBODEN OLD CUSTOM HOUSE (SCALEHOUSE) - King Street Area Study, King Street, Christiansted, St. Croix, VI

  16. 8. The entire south face of the Broad Street bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. The entire south face of the Broad Street bridge as seen from the flood levy in front of Central High School. - Broad Street Bridge, Spanning Scioto River at U.S. Route 40 (Broad Street), Columbus, Franklin County, OH

  17. 110. WEST CHESTNUT STREET PAPTIST CHURCH AT 1725 WEST CHESTNUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    110. WEST CHESTNUT STREET PAPTIST CHURCH AT 1725 WEST CHESTNUT STREET, WEST SIDE - Russell Neighborhood, Bounded by Congress & Esquire Alley, Fifteenth & Twenty-first Streets, Louisville, Jefferson County, KY

  18. 7. DETAIL OF SOUTHEAST SIDE OF FOURTH STREET VIADUCT SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF SOUTHEAST SIDE OF FOURTH STREET VIADUCT SHOWING ORNAMENTAL LIGHTING AND STAIRS AT MISSION STREET OVERCROSSING. LOOKING NORTHEAST. - Fourth Street Viaduct, Spanning Los Angeles River, Los Angeles, Los Angeles County, CA

  19. 6. MAIN ENTRANCE, LOOKING SOUTH FROM SYCAMORE STREET; CORNER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. MAIN ENTRANCE, LOOKING SOUTH FROM SYCAMORE STREET; CORNER OF BUILDING 88 IS VISIBLE AT RIGHT, BUILDING 93 IS AT CENTER, BUILDING 145 AT LEFT - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  20. Contextual view of Building 250 along C Street, view facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of Building 250 along C Street, view facing southwest - U.S. Marine Corps Base Hawaii, Kaneohe Bay, Warehouse 250, Aviation Storehouse, C Street between Fifth & Sixth Streets, Kaneohe, Honolulu County, HI

  1. 200 MAIN STREET, SALT LAKE CITY, UT. VIEW LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    200 MAIN STREET, SALT LAKE CITY, UT. VIEW LOOKING EAST OF "MAIN' STREET. REPHOTOGRAPH OF HISTORIC SHIPLER PHOTO # 18273, UTAH STATE HISTORICAL SOCIETY COLLECTION. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  2. 6. SECTION THROUGH DRONNINGENSGADE (STREET) PORTION OF MAIN BUILDING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SECTION THROUGH DRONNINGENSGADE (STREET) PORTION OF MAIN BUILDING AND ELEVATION OF RAADETSGADE (STREET) PORTION OF MAIN BUILDING - Dronningensgade 32 (House), 32 Queen Street, Charlotte Amalie, St. Thomas, VI

  3. 12. Intersection of Pierce and Spring streets, looking south from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Intersection of Pierce and Spring streets, looking south from the east side of Pierce Street. - East Greenwich, Roughly bounded by Division, Water, London, & Peirce Streets, East Greenwich, Kent County, RI

  4. 16. Pierce Street, looking southwest from the northeast corner of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Pierce Street, looking southwest from the northeast corner of Courthouse Lane and Pierce Street. - East Greenwich, Roughly bounded by Division, Water, London, & Peirce Streets, East Greenwich, Kent County, RI

  5. NORTHERN END OF VIADUCT WHERE IT ENTERS BATTERY STREET TUNNEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERN END OF VIADUCT WHERE IT ENTERS BATTERY STREET TUNNEL. LAKE UNION VISIBLE IN BACKGROUND. TUNNEL PROCEEDS IN CUT AND COVER FASHION DIRECTLY BENEATH BATTERY STREET. - Alaskan Way Viaduct and Battery Street Tunnel, Seattle, King County, WA

  6. 839 & 903 E. WALNUT STREET VIEW FROM NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    839 & 903 E. WALNUT STREET - VIEW FROM NORTH WITH EAST FRONT OF 838 E. WALNUT STREET IN FOREGROUND - Walnut-Dollison Historic District, South Dollison, East Elm, East Cherry & East Walnut Streets, Springfield, Greene County, MO

  7. 6. View of west elevation of Armory Street Pump House. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of west elevation of Armory Street Pump House. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  8. 5. Detail view northeast of facade of Armory Street Pump ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Detail view northeast of facade of Armory Street Pump House. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  9. 19. Recorders and gages in Armory Street Pump House. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Recorders and gages in Armory Street Pump House. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  10. 11. Enclosure between old and new sections of Armory Street ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Enclosure between old and new sections of Armory Street Pump House. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  11. 7. View northwest of smoke stack on Armory Street Pump ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View northwest of smoke stack on Armory Street Pump House. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  12. 14. View of original machine shop area in Armory Street ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View of original machine shop area in Armory Street Pump House. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  13. 3. View north of south facade of Armory Street Pump ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View north of south facade of Armory Street Pump House. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  14. 4. Perspective view northeast of Armory Street Pump House. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Perspective view northeast of Armory Street Pump House. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  15. 1. ENVIRONMENT, FROM WEST, SHOWING FIFTH STREET VIADUCT IN ITS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ENVIRONMENT, FROM WEST, SHOWING FIFTH STREET VIADUCT IN ITS IMMEDIATE SETTING, CROSSING BACON'S QUARTER BRANCH VALLEY IN RICHMOND, VIRGINIA - Fifth Street Viaduct, Spanning Bacon's Quarter Branch Valley on Fifth Street, Richmond, Independent City, VA

  16. 5. Interior, third floor rear of 10 East State Street ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Interior, third floor rear of 10 East State Street showing original surviving 6/6 sash window and moldings. - 8-10 East State Street (Commercial Building), 8-10 East State Street, Trenton, Mercer County, NJ

  17. 1. VIEW NORTHWEST, EAST (REAR) ELEVATION OF 305 CHURCH STREET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTHWEST, EAST (REAR) ELEVATION OF 305 CHURCH STREET WITH 313 and 317 CHURCH STREET IN BACKGROUND - Putnam Manufacturing Company Workers' Houses, 305 Church Street (House), Putnam, Windham County, CT

  18. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  19. The marine soundscape of the Perth Canyon

    NASA Astrophysics Data System (ADS)

    Erbe, Christine; Verma, Arti; McCauley, Robert; Gavrilov, Alexander; Parnum, Iain

    2015-09-01

    The Perth Canyon is a submarine canyon off Rottnest Island in Western Australia. It is rich in biodiversity in general, and important as a feeding and resting ground for great whales on migration. Australia's Integrated Marine Observing System (IMOS) has moorings in the Perth Canyon monitoring its acoustical, physical and biological oceanography. Data from these moorings, as well as weather data from a near-by Bureau of Meteorology weather station on Rottnest Island and ship traffic data from the Australian Maritime Safety Authority were correlated to characterise and quantify the marine soundscape between 5 and 3000 Hz, consisting of its geophony, biophony and anthrophony. Overall, biological sources are a strong contributor to the soundscape at the IMOS site, with whales dominating seasonally at low (15-100 Hz) and mid frequencies (200-400 Hz), and fish or invertebrate choruses dominating at high frequencies (1800-2500 Hz) at night time throughout the year. Ships contribute significantly to the 8-100 Hz band at all times of the day, all year round, albeit for a few hours at a time only. Wind-dependent noise is significant at 200-3000 Hz; winter rains are audible underwater at 2000-3000 Hz. We discuss how passive acoustic data can be used as a proxy for ocean weather. Passive acoustics is an efficient way of monitoring animal visitation times and relative densities, and potential anthropogenic influences.

  20. 4. View to northwest from within Castro Creek Canyon, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View to northwest from within Castro Creek Canyon, looking up at 'Antique' Building (HABS-CA-2611-C) at left and center, 'Champagne' Building (HABS-CA-2611-D) at right behind redwood trees. View gives indication of steepness of canyon, siting of these two buildings at canyon's edge. - Deetjen's Big Sur Inn, East Side of State Highway 1, Big Sur, Monterey County, CA

  1. SW06 Data Analysis and Slope/Canyon Experiment Planning

    DTIC Science & Technology

    2013-09-30

    Abbot, Y.-J. Yang and S. Jan, “Experimental and numerical studies of sound propagation over a submarine canyon northeast of Taiwan,” accepted...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. SW06 Data Analysis and Slope/ Canyon Experiment Planning...i.e. the slope/ canyon region. (Dates for experiments are approximate.) OBJECTIVES Our primary objectives this year were: 1) to finish

  2. SW06 Data Analysis and Slope/Canyon Experiment Planning

    DTIC Science & Technology

    2012-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. SW06 Data Analysis and Slope/ Canyon Experiment Planning...i.e. the slope/ canyon region. OBJECTIVES Our primary objectives this year were: 1) to finish publishing our SW06 results in a JASA Special...of 2012 to IEEE JOE for a Special Issue, and 3) begin 2014 (bottom acoustics) and 2016 (shelfbreak, slope and canyon ) experimental planning, both on

  3. Greening of the Grand Canyon -- developing a sustainable design for the Grand Canyon National Park

    SciTech Connect

    Gordon, H.T.

    1995-11-01

    The Grand Canyon National Park (GCNP) is faced with increasing visitor demand that is threatening the natural and cultural resources of one of the most popular recreation sites in the United States. The National Park Service (NPS) developed a draft General Management Plan (GMP), which provides management objectives and visions for the entire park, with alternative plans for the park`s developed areas. With the GMP as a starting point, a Grand Canyon Sustainable Design Workshop was conducted to make the Grand Canyon National Park more environmentally and economically sustainable. The workshop, which used the Environmental Design Charrette process, addressed integrated environmental solutions and their implementation in three primary areas: Integrated Information, Visitor Experience, and Resource Efficiency. This paper describes the Environmental Design Charrette process and the efforts of the Resource Efficiency group.

  4. Interior view, main entry lobby on Fourteenth Street United ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, main entry lobby on Fourteenth Street - United States Department of Commerce, Bounded by Fourteenth, Fifteenth, and E streets and Constitution Avenue, Washington, District of Columbia, DC

  5. 8. STATION 'L' FROM SOUTHEAST DIVISION STREET LOOKING NORTHWEST, LINCOLN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. STATION 'L' FROM SOUTHEAST DIVISION STREET LOOKING NORTHWEST, LINCOLN SUBSTATION IN FOREGROUND - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  6. 1. General view of Second Avenue from Church Street looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. General view of Second Avenue from Church Street looking toward Broadway - Second Avenue North, Commercial District, Second Avenue North between Broadway & Church Streets, Nashville, Davidson County, TN

  7. 6. SOUTHEAST ABUTMENT AT CALVERT STREET, SHOWING LEON HERMANT ALLEGORICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SOUTHEAST ABUTMENT AT CALVERT STREET, SHOWING LEON HERMANT ALLEGORICAL RELIEF OF TRANSPORTATION BY AUTOMOBILE - Calvert Street Bridge, Spanning Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  8. 342. BAPTIZED PENTECOSTAL CHURCH AT 1606 WEST CHESTNUT STREET, EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    342. BAPTIZED PENTECOSTAL CHURCH AT 1606 WEST CHESTNUT STREET, EAST SIDE - Russell Neighborhood, Bounded by Congress & Esquire Alley, Fifteenth & Twenty-first Streets, Louisville, Jefferson County, KY

  9. Internal Wave Scattering in Idealized and Realistic Continental Slope Canyons

    NASA Astrophysics Data System (ADS)

    Nazarian, Robert; Legg, Sonya

    2016-11-01

    When internal waves interact with topography, such as continental slopes, they can deposit their energy to local dissipation and mixing. Submarine canyons comprise about ten percent of global continental slopes, and can enhance the local dissipation of internal wave energy, yet parameterizations of canyon mixing processes are currently missing from ocean models. As a first step in developing such parameterizations, a parameter space study of M2 tidal-frequency, low-mode internal waves interacting with idealized canyon topographies was conducted. A two-pronged approach was employed in which a suite of MITgcm simulations was compared with a novel, analytical ray tracing scheme. The most noticeable result was that, as the ratio of the canyon mouth width to canyon length decreased, there was a marked increase in the relative energy loss. This energy loss also increased as the canyon sidewall steepness increased. Processes leading to this increased energy loss include increased energy focusing, increasing vertical wavenumber via multiple reflections for non-vertical sidewalls and the presence of arrested lee waves for vertical sidewalls. To test the robustness of these results, we model the energy lost from remotely-generated M2 internal tides in three realistic canyons with very different geometries: Veatch, La Jolla and Eel Canyons, comparing results with both idealized simulations and microstructure data taken from these locations. We also discuss how current parameterizations of tidally-driven diapycnal mixing can be extended to include the effects of continental slope canyons. NOAA Award NA08OAR4320752.

  10. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  11. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  12. Codon Constraints on Closed 2D Shapes,

    DTIC Science & Technology

    2014-09-26

    19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure

  13. Wall street comes to Washington.

    PubMed

    2004-08-01

    While health care cost trends likely will continue slowing through the end of 2004, the longer-term outlook for a sustained slowdown in underlying costs and private health insurance premiums largely depends on the strength of the economy, according to market and health policy experts at the Center for Studying Health System Change's (HSC) ninth annual Wall Street roundtable. Even as cost growth slows, insurers are practicing pricing discipline to keep premium trends ahead of cost trends to maintain profitability. Employers will continue to shift costs to workers through higher deductibles, copayments and coinsurance, but an improving economy could temper this trend as labor markets tighten. Employers remain skeptical of new health insurance products, including tiered-provider networks and consumer-driven health plans. Although growth in hospital use has slowed, the industry remains in the throes of a building boom. Increased payments to managed care plans could reinvigorate private plan participation in Medicare, but concerns about the federal budget deficit could prompt Congress to roll back rate increases.

  14. Ascension Submarine Canyon, California - Evolution of a multi-head canyon system along a strike-slip continental margin

    USGS Publications Warehouse

    Nagel, D.K.; Mullins, H.T.; Greene, H. Gary

    1986-01-01

    Ascension Submarine Canyon, which lies along the strike-slip (transform) dominated continental margin of central California, consists of two discrete northwestern heads and six less well defined southeastern heads. These eight heads coalesce to form a single submarine canyon near the 2700 m isobath. Detailed seismic stratigraphic data correlated with 19 rock dredge hauls from the walls of the canyon system, suggest that at least one of the two northwestern heads was initially eroded during a Pliocene lowstand of sea level ???3.8 m.y. B.P. Paleogeographic reconstructions indicate that at this time, northwestern Ascension Canyon formed the distal channel of nearby Monterey Canyon and has subsequently been offset by right-lateral, strike-slip faulting along the San Gregorio fault zone. Some of the six southwestern heads of Ascension Canyon may also have been initially eroded as the distal portions of Monterey Canyon during late Pliocene-early Pleistocene sea-level lowstands (???2.8 and 1.75 m.y. B.P.) and subsequently truncated and offset to the northwest. There have also been a minimum of two canyon-cutting episodes within the past 750,000 years, after the entire Ascension Canyon system migrated to the northwest past Monterey Canyon. We attribute these late Pleistocene erosional events to relative lowstands of sea level 750,000 and 18,000 yrs B.P. The late Pleistocene and Holocene evolution of the six southeastern heads also appears to have been controlled by structural uplift of the Ascension-Monterey basement high at the southeastern terminus of the Outer Santa Cruz Basin. We believe that uplift of this basement high sufficiently oversteepened submarine slopes to induce gravitational instability and generate mass movements that resulted in the erosion of the canyon heads. Most significantly, though, our results and interpretations support previous proposals that submarine canyons along strike-slip continental margins can originate by tectonic trunction and lateral

  15. Remarks on thermalization in 2D CFT

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  16. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  17. [Modeling the vehicle pollution in the urban streets before and during the Beijing Olympic Games traffic control period].

    PubMed

    Wang, Ting; Xie, Shao-dong

    2010-03-01

    In order to investigate the vehicle pollution situation in the streets in Beijing and the abatement during the Olympic Games, the OSPM model was applied to calculate the concentrations of PM10, CO, NO2 and O3 inside the urban streets of Beijing before and during the Olympic traffic controlling period in July, 2008. The modeled concentrations before the traffic control are 146 micog/m3, 3.83 mg/m3, 114.4 microg/m3 and 4.71 x 10(-1), while after the traffic control are 112 microg/m3, 3.16 mg/m3, 102.4 microg/m3 and 5.31 x 10(-9) , with the reduction rates of 23.4%, 20.5%, 10.5% and -12.5%, respectively. The research on these concentration changes and the daily variations of the pollutants reveals: the concentration of PM10 is most influenced by the traffic control; the concentration of CO presents the most similar daily variation with the traffic flow; the reduction of NO2 concentration is limited, indicating the influence of other factors other than the traffic emission; the concentration of O3 increases after the traffic control, which means the traffic management measures can not abate the O3 pollution in the street. Furthermore, the comparison between the calculation results in different types of street canyons reveals that the fleet composition and street geometry impact the concentration changes. In a word, the vehicle pollution inside the streets of Beijing before the traffic control is relatively serious, as the concentrations of PM10, CO and NO2, all approach or exceed the Grade II National Air Quality Standard; the traffic control measures take effect in reducing the primary pollutants, but the secondary pollutants may increase after the traffic control.

  18. Cesar Chavez Street Headwaters Pilot LID Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Cesar Chavez Street LID Pilot Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  19. Who Wants to Live on Sesame Street?

    ERIC Educational Resources Information Center

    Sprigle, Herbert A.

    1972-01-01

    Author describes several studies which show that Sesame Street does not prepare poverty children for first grade and does not narrow the achievement gap that now exists between the poor and the middle-class child. (Author/CB)

  20. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  1. Compression approach of street networks considering the structural and functional features of streets

    NASA Astrophysics Data System (ADS)

    Liu, Gang; He, Jing; Zhang, Xiping

    2015-10-01

    The compression of networks is an important aspect of complex networks and spatial generalization. Previous studies show that the dual graph for street-street relationships more accurately reflects the morphological features of street networks than the traditional methods. In this study, a dual graph for street-street relationship is constructed based on complex networks theory. We introduce the concept of m-order neighbors and take into account the factors of the node’s degree, closeness centrality, betweenness centrality, and distance within the dual graph. We also consider the importance contributions of the node itself and its 1- to m-order neighbors and define the evaluation model of node importance. We then propose a street compression process based on the evaluation of node importance for dual graph by considering the structural and functional features of streets. The degree distribution and topological similarity index are introduced to evaluate the level of maintaining the global structure and topological characteristics of the road network and to validate the efficiency of the proposed method. A real urban road network is used for the experiments. Results show that the proposed approach can be used in selecting important streets that can retain the global structural properties and topological connectivity of the street network.

  2. Transition to turbulence: 2D directed percolation

    NASA Astrophysics Data System (ADS)

    Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight

    2016-11-01

    The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.

  3. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  4. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.

  5. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  6. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  7. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  8. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  9. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  10. 76 FR 24516 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group...-575) of 1992. The AMP includes a Federal advisory committee, the AMWG, a technical work group (TWG),...

  11. 75 FR 34476 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Interior (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide recommendations to the...

  12. 78 FR 7810 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group.... L. 102-575) of 1992. The AMP includes a Federal advisory committee, the AMWG, a technical work...

  13. 64 FR 6116 - Glen Canyon Technical work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-02-08

    ... work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Adaptive Management Work Group (AMWG) on September 10, 1997. The TWG members were named by the members of the AMWG...

  14. 79 FR 3873 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2014-01-23

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group...-575) of 1992. The GCDAMP includes a Federal advisory committee, the AMWG, a technical work group...

  15. 71 FR 44042 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-08-03

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and provide recommendations to the Secretary...

  16. 62 FR 66384 - Glen Canyon Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-12-18

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group AGENCY: Bureau of Reclamation, DOI. ACTION: Notice of public meeting. ] SUMMARY: The Glen Canyon Adaptive Management Work Group (AMWG) will... Work Group (1999 program, management objectives, approach to beach/habitat building flow...

  17. 73 FR 45070 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2008-08-01

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Interior (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide recommendations to the...

  18. 64 FR 47517 - Glen Canyon Technical Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-08-31

    ... No: 99-22653] DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Technical Work Group... Technical Work Group (TWG) was formed as an official subcommittee of the Glen Canyon Dam Adaptive Management Work Group (AMWG). The TWG members were named by members of the AMWG and provide advice and...

  19. Bridge 223, view looking east up Rock Creek Canyon at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge 22-3, view looking east up Rock Creek Canyon at Milepost 22.82. The line passes through tunnel 4 onto Bridge 22-3 and heads eastward up Rock Creek Canyon out onto the Camas Prairie - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  20. Bottom-trawling along submarine canyons impacts deep sedimentary regimes.

    PubMed

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-02-24

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons' morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20(th) century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities.

  1. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.4 Grand Canyon National Park. (a)...

  2. 10. VIEW OF BRUSH ALONG KINGS CANYON ROAD WHICH WILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF BRUSH ALONG KINGS CANYON ROAD WHICH WILL BE REMOVED FOR 10 FEET ON THE RIGHT SIDE OF THE ROADWAY FOR A DISTANCE OF 50 FEET. LOCATED AT MILEPOST 1.45, FACING NORTH 100 EAST (10ø). - Kings Canyon Road, Carson City, Carson City, NV

  3. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protection of the ecological and environmental values of the area. (i) The Superintendent of Grand Canyon National Park shall issue a permit upon a determination that the person leading, guiding, or conducting a... there is a bona fide sharing of actual expenses. (4) All human waste will be taken out of the Canyon...

  4. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protection of the ecological and environmental values of the area. (i) The Superintendent of Grand Canyon National Park shall issue a permit upon a determination that the person leading, guiding, or conducting a... there is a bona fide sharing of actual expenses. (4) All human waste will be taken out of the Canyon...

  5. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protection of the ecological and environmental values of the area. (i) The Superintendent of Grand Canyon National Park shall issue a permit upon a determination that the person leading, guiding, or conducting a... there is a bona fide sharing of actual expenses. (4) All human waste will be taken out of the Canyon...

  6. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protection of the ecological and environmental values of the area. (i) The Superintendent of Grand Canyon National Park shall issue a permit upon a determination that the person leading, guiding, or conducting a... there is a bona fide sharing of actual expenses. (4) All human waste will be taken out of the Canyon...

  7. Academy of the Canyons Report, Fall 2000-Spring 2002.

    ERIC Educational Resources Information Center

    Meuschke, Daylene M.; Dixon, P. Scott; Gribbons, Barry C.

    Summarizes findings from an evaluation of the Academy of the Canyons, a "middle college high school" which operates on the College of the Canyons (California) campus and is open to 11th and 12th grade students whose needs are not being met by the large comprehensive high schools. This evaluation, prepared as a component of the Academy's…

  8. 4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. NOTE ROAD CUT ON CANYON WALL. LOOKING NNE. GIS: N-37 56 30.3 / 119 13 44.8 - Tioga Road, Between Crane Flat & Tioga Pass, Yosemite Village, Mariposa County, CA

  9. Examination of Samples of Bell Canyon Test 1-FF Grout.

    DTIC Science & Technology

    1981-05-01

    Portland cement grout identified as BCT-1-FF (Bell Canyon Test 1-FF) was used in borehole plugging experiments in the Bell Canyon Tests in Hole AEC-7...BCT-1-FF grout mixture contained added sulfate, it formed more ettringite as judged by X-ray diffraction than comparable portland cement mixtures without added sulfate. (Author)

  10. 18. View of north side of East Ward Street at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View of north side of East Ward Street at the intersection with North Dart Street, facing northwest. - Gaskin Avenue Neighborhood, Bounded by Dart Street to east, CSX Railroad to south, Pearl & Madison Avenues to west, & Wilson & Gordon Streets to north, Douglas, Coffee County, GA

  11. 7. MAIN STREET LOOKING NORTH FROM INTERSECTION OF WEST THIRD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. MAIN STREET LOOKING NORTH FROM INTERSECTION OF WEST THIRD STREET. THE 1932 POST OFFICE IS ON THE LEFT. SANDSTONE FROM INDIANA AND BRICK WERE USED FOR THE EXTERIOR WALLS, WHILE WASTE BRICK FROM THE SMELTER WAS USED FOR THE INTERIOR FOUNDATION AND BASEMENT WALLS - Anaconda Historic District, Park & Commercial Streets, Main Street vicinity, Anaconda, Deer Lodge County, MT

  12. BILLBOARD EXPRESSING LOCAL HUMOR CONCERNING FLOOD DAMAGE TO WALNUT STREET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BILLBOARD EXPRESSING LOCAL HUMOR CONCERNING FLOOD DAMAGE TO WALNUT STREET BRIDGE, I-83 SOUTHBOUND, LOOKING WEST. BILLBOARD EXPRESSING LOCAL HUMOR CONCERNING FLOOD DAMAGE TO WALNUT STREET BRIDGE, I-83 SOUTHBOUND, LOOKING WEST. - Walnut Street Bridge, Spanning Susquehanna River at Walnut Street (State Route 3034), Harrisburg, Dauphin County, PA

  13. 3. HYDE STREET HILL: View to north looking down the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. HYDE STREET HILL: View to north looking down the Hyde Street hill from Lombard Street. The steepest hill on the present cable railway system, this grade exceeds 20%. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  14. SOUTH SIDE OF SECOND STREET, LOOKING EASTSOUTHEAST FROM NORTHWEST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH SIDE OF SECOND STREET, LOOKING EAST-SOUTHEAST FROM NORTHWEST CORNER OF DEDRICK DRIVE AND SECOND STREET - Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of Second Street, between Dedrick Drive and Liberty Bay and one building west of Dedrick Drive and south of Second Street, Keyport, Kitsap County, WA

  15. SECOND STREET, LOOKING WEST AT INDUSTRIAL DISTRICT FROM THE EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECOND STREET, LOOKING WEST AT INDUSTRIAL DISTRICT FROM THE EAST END OF SECOND STREET NEAR WATER - Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of Second Street, between Dedrick Drive and Liberty Bay and one building west of Dedrick Drive and south of Second Street, Keyport, Kitsap County, WA

  16. SECOND STREET, LOOKING EAST AT INDUSTRIAL DISTRICT FROM WEST OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECOND STREET, LOOKING EAST AT INDUSTRIAL DISTRICT FROM WEST OF INTERSECTION OF DEDRICK DRIVE AND SECOND STREET - Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of Second Street, between Dedrick Drive and Liberty Bay and one building west of Dedrick Drive and south of Second Street, Keyport, Kitsap County, WA

  17. SOUTH SIDE OF SECOND STREET, LOOKING WESTSOUTHWEST FROM EAST END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH SIDE OF SECOND STREET, LOOKING WEST-SOUTHWEST FROM EAST END OF SECOND STREET NEAR BUILDING 825 - Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of Second Street, between Dedrick Drive and Liberty Bay and one building west of Dedrick Drive and south of Second Street, Keyport, Kitsap County, WA

  18. NORTH SIDE OF SECOND STREET, LOOKING WESTSOUTHWEST FROM EAST END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH SIDE OF SECOND STREET, LOOKING WEST-SOUTHWEST FROM EAST END OF SECOND STREET NEAR BUILDING 98 - Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of Second Street, between Dedrick Drive and Liberty Bay and one building west of Dedrick Drive and south of Second Street, Keyport, Kitsap County, WA

  19. NORTH SIDE OF SECOND STREET, LOOKING EASTNORTHEAST FROM SOUTHEAST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH SIDE OF SECOND STREET, LOOKING EAST-NORTHEAST FROM SOUTHEAST CORNER OF INTERSECTION OF DOWELL AND SECOND STREETS - Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of Second Street, between Dedrick Drive and Liberty Bay and one building west of Dedrick Drive and south of Second Street, Keyport, Kitsap County, WA

  20. NORTH SIDE OF SECOND STREET, LOOKING EASTNORTHEAST FROM SOUTHWEST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH SIDE OF SECOND STREET, LOOKING EAST-NORTHEAST FROM SOUTHWEST CORNER OF DEDRICK DRIVE AND SECOND STREET - Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of Second Street, between Dedrick Drive and Liberty Bay and one building west of Dedrick Drive and south of Second Street, Keyport, Kitsap County, WA

  1. SOUTH SIDE OF SECOND STREET, LOOKING WESTSOUTHWEST FROM NORTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH SIDE OF SECOND STREET, LOOKING WEST-SOUTHWEST FROM NORTH SIDE OF SECOND STREET NEAR BUILDING 489 - Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of Second Street, between Dedrick Drive and Liberty Bay and one building west of Dedrick Drive and south of Second Street, Keyport, Kitsap County, WA

  2. 13. PRATT STREET BULKHEAD: SECTIONS 2, 3, 4, 5, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. PRATT STREET BULKHEAD: SECTIONS 2, 3, 4, 5, AND 6, DRAWER 10, PLAN NO. 1, 1 IN. = 15 FT. AND 1/2 IN. = 1 FT., APRIL 25, 1906, DRAWING SHOWS DESIGN FOR PRATT STREET BULKHEAD BETWEEN PIERS - Baltimore Inner Harbor, Pier 5, South of Pratt Street between Market Place & Concord Street, Baltimore, Independent City, MD

  3. Perspective view over the Grand Canyon, Arizona

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This simulated true color perspective view over the Grand Canyon was created from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired on May 12, 2000. The Grand Canyon Village is in the lower foreground; the Bright Angel Trail crosses the Tonto Platform, before dropping down to the Colorado Village and then to the Phantom Ranch (green area across the river). Bright Angel Canyon and the North Rim dominate the view. At the top center of the image the dark blue area with light blue haze is an active forest fire.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 5 km in foreground to 40 km Location: 36.3 degrees north latitude, 112 degrees west longitude Orientation: North-northeast at top Original Data Resolution: ASTER 15 meters Dates Acquired: May 12, 2000

  4. Big Canyon Creek Ecological Restoration Strategy.

    SciTech Connect

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  5. River resource management in the Grand Canyon

    SciTech Connect

    1996-07-01

    The objective of GCES was to identify and predict the effects of variations in operating strategies on the riverine environment below Glen Canyon Dam within the physical and legal constraints under which the dam must operate. Critical elements for the development of GCES and other such projects include a list of resources directly or indirectly affected by management, a list of management options, and an ecosystem framework showing the causal connections among system components, potential management strategies that include humans as integral parts of the environment.

  6. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-04-24

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  7. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer

    Vanderhoff, Alex

    2013-08-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  8. 20140430_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-05-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  9. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-07-15

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  10. North Atlantic slope and canyon study. Volume 2. Final report

    SciTech Connect

    Butman, B.

    1986-12-01

    A field program to investigate the currents and sediment transport along the outershelf and upper slope along the southern flank of Georges Bank was conducted between 1980 and 1984. A major part of the field experiment was conducted in Lydonia Canyon, a large submarine canyon which cuts northward about 20 km into the continental shelf from the shelfbreak. A smaller experiment was conducted in Oceanographer Canyon to compare the currents in these two major canyons. Long-term current observations were made at 20 locations in or adjacent to Lydonia Canyon, and at 9 stations on the continental slope. Detailed semi-synoptic hydrographic observations were made on 9 cruises. The currents associated with Gulf Stream warm core rings (WCR's) strongly affect the flow along the outer shelf and upper slope; eastward currents in excess of 75cm/s were associated with WCR's.

  11. Pleistocene entrenched valley/canyon systems, Gulf of Mexico

    SciTech Connect

    Steffens, G.S.

    1986-09-01

    The Mississippi Submarine Canyon is the seaward extension of the late Wisconsin entrenched alluvial valley. Geophysical and geologic data provide evidence for the continuity of the Mississippi entrenched valley, the Timbalier channel, and the submarine canyon. The Mississippi entrenched valley/canyon system is one of several systems recognized in the Pleistocene section of offshore Louisiana. Most of these systems were produced by the ancestral Mississippi River. They typically exhibit a three-gradient profile with their maximum erosional relief at the preexisting shelf margin. The canyons extend onto the pre-existing shelf for 20 to 50 mi, with erosion commonly exceeding 1000 ft. All of these systems delivered large quantities of sediment to the Pleistocene slope and abyssal plain. The fan deposits are the products of sediment passing through and being removed from the entrenched valley/canyon systems.

  12. Internal tide convergence and mixing in a submarine canyon

    NASA Astrophysics Data System (ADS)

    Waterhouse, Amy

    2016-11-01

    Observations from Eel Canyon, located on the north coast of California, show that elevated turbulence in the full water column arises from the convergence of remotely-generated internal wave energy. The incoming semidiurnal and bottom-trapped diurnal internal tides generate complex interference patterns. The semidiurnal internal tide sets up a partly standing wave within the canyon due to reflection at the canyon head, dissipating all of its energy within the canyon. Dissipation in the near-bottom is associated with the diurnal trapped tide, while midwater isopycnal shear and strain is associated with the semidiurnal tide. Dissipation is elevated up to 600 m off the bottom, in contrast to observations over flat continental shelf where dissipation occurs closer to the topography. Slope canyons are sinks for internal wave energy and may have important influences on the global distribution of tidally-driven mixing.

  13. The Black Canyon of the Gunnison: Today and Yesterday

    USGS Publications Warehouse

    Hansen, Wallace R.

    1965-01-01

    Since the early visit of Captain John William Gunnison in the middle of the last century, the Black Canyon of the Gunnison has stirred mixed apprehension and wonder in the hearts of its viewers. It ranks high among the more awesome gorges of North America. Many great western canyons are as well remembered for their brightly colored walls as for their airy depths. Not so the Black Canyon. Though it is assuredly not black, the dark-gray tones of its walls and the hazy shadows of its gloomy depths join together to make its name well deserved. Its name conveys an impression, not a picture. After the first emotional impact of the canyon, the same questions come to the minds of most reflective viewers and in about the following order: How deep is the Black Canyon, how wide, how does it compare with other canyons, what are the rocks, how did it form, and how long did it take? Several western canyons exceed the Black Canyon in overall size. Some are longer; some are deeper; some are narrower; and a few have walls as steep. But no other canyon in North American combines the depth, narrowness, sheerness, and somber countenance of the Black Canyon. In many places the Black Canyon is as deep as it is wide. Between The Narrows and Chasm View in the Black Canyon of the Gunnison National Monument (fig. 15) it is much deeper than wide. Average depth in the monument is about 2,000 feet, ranging from a maximum of about 2,700 feet, north of Warner Point (which also is the greatest depth anywhere in the canyon), to a minimum of about 1,750 feet at The Narrows. The stretch of canyon between Pulpit Rock and Chasm View, including The Narrows, though the shallowest in the monument, is also the narrowest, has some of the steepest walls, and is, therefore, among the most impressive segments of the canyon (fig. 3). Profiles of several well-known western canyons are shown in figure 1. Deepest of these by far is Hells Canyon of the Snake, on the Idaho-Oregon border. Clearly, it dwarfs the

  14. 66 FR 8980 - Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2001-02-05

    ... Bureau of Reclamation Glen Canyon Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work... has been organized and includes a federal advisory committee (the AMWG), a technical work group (the...: The Adaptive Management Work Group will conduct the following public meetings: Phoenix,...

  15. 66 FR 34240 - Glen Canyon Dam Adaptive Management Work Group (AMWG), and Glen Canyon Technical Work Group (TWG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2001-06-27

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG), and Glen Canyon Technical Work Group (TWG); Cancellation of Meetings AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of... Work Group Meeting Scheduled for July 17-18, 2001, in Phoenix, Arizona, in order to complete work...

  16. 63 FR 70421 - Glen Canyon Dam Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    1998-12-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG) and Glen Canyon Technical Work Group (TWG) AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of Public Meetings;...

  17. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  18. 1. EXTERIOR VIEW OF 500 HINES STREET LOOKING SOUTHWEST. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW OF 500 HINES STREET LOOKING SOUTHWEST. THIS DWELLING WAS WORKER HOUSING FOR THE LaGRANGE COTTON MILL (1888-89), LATER KNOWN AS CALUMET MILL. THE SIZE OF THIS HOUSE INDICATES THAT IT WAS PROBABLY USED BY A MILL MANAGER OR OVERSEER. NOTE 502 HINES STREET TO THE LEFT, A MIRROR-IMAGE OF 500 HINES STREET. - 500 Hines Street (House), 500 Hines Street, La Grange, Troup County, GA

  19. GENERAL VIEW FROM CENTER OF DIAMOND STREET LOOKING WEST TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW FROM CENTER OF DIAMOND STREET LOOKING WEST TOWARDS THIRTY-SECOND STREET. AN AUGUST 30, 1886 ISSUE OF THE PHILADELPHIA REAL ESTATE RECORD AND BUILDERS’ GUIDE RECORDED THAT REAL ESTATE AGENT F. A. FLOOD KEPT HIS OFFICES AT 3118 DIAMOND STREET, INDICATING THAT THE ROW OF ATTACHED DWELLINGS ON THE SOUTH SIDE OF THE BLOCK HAD BEEN CONSTRUCTED BY THAT TIME. - 3100 Block Diamond Street (Houses), North & south sides between Thirty-first & Thirty-second Streets, Philadelphia, Philadelphia County, PA

  20. Brazil: a clinic for street kids.

    PubMed

    Adams, I K

    1993-01-01

    Physicians at the Federal University of Minas Gerais, Brazil, in 1989 teamed up with the Archdiocese Street Youth Ministry to finance Clinica Ammor, the Street Kids' Clinic of Belo Horizonte. Belo Horizonte is the third largest city in Brazil, with a population of 3.5 million. Although the clinic was established to study risk behavior for HIV, a far greater need was found for medical care and education of which HIV is only a small part. A doctor and a nurse offer drop-in care to children and adolescents who live on the street. More than 600 children came for an average of four visits during the first three years ranging in age from the newborn to over 20 years. 80% of clients, however, have been aged 12-18; 75% are male. The staff encourages complete check-ups, including HIV testing, as part of an ongoing program to develop body and health awareness. Medication and laboratory examinations are provided to the extent that available resources permit. When appropriate, clients are referred to various specialized medical facilities in the city. Sex and drug education focus upon the prevention of HIV infection and other sexually transmitted diseases. Special attention is given to street girls and their babies. The clinic since March 1991 has participated in the Integrated Plan for Attention to Street Youth in Belo Horizonte, a group of 17 governmental and nongovernmental organizations which work with street youth in the city. The clinic would like to add a social worker, a part-time pediatrician, and a part-time gynecologist-obstetrician. Funding is needed to continue and expand services. The author stresses that successful AIDS prevention must be linked to projects concerned with the reality and reasons for the marginalization of street children and promote changes at that level. Intimate staff-client interaction at the clinic conveys to the youths a message of commitment, respect, and self value.

  1. Surface Composition Differences in Martian Canyon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Color differences in this daytime infrared image taken by the camera on NASA's Mars Odyssey spacecraft represent differences in the mineral composition of the rocks, sediments and dust on the surface.

    The image shows a portion of a canyon named Candor Chasma within the great Valles Marineris system of canyons, at approximately 5 degrees south latitude, 285 degrees east (75 degrees west) longitude. The area shown is approximately 30 by 175 kilometers (19 by 110 miles).

    The image combines exposures taken by Odyssey's thermal emission imaging system at three different wavelengths of infrared light: 6.3 microns, 7.4 microns and 8.7 microns.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The thermal emission imaging system was provided by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and JPL. JPL is a division of the California Institute of Technology in Pasadena.

  2. Persistence Measures for 2d Soap Froth

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Ruskin, H. J.; Zhu, B.

    Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.

  3. SEM signal emulation for 2D patterns

    NASA Astrophysics Data System (ADS)

    Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya

    2016-03-01

    The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.

  4. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  5. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  6. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  7. Gang violence and the street smart nurse.

    PubMed

    McNamara, D

    1994-01-01

    Gangs are a serious, growing, and costly problem across the nation. The CHN is at increased risk for incidental harm as the result of escalating street gang violence. To ensure personal safety, the CHN must be street smart about youth gangs. This involves learning about the gang mindset, detecting risk in the environment, and maintaining a defensive posture. Because they closely interact with high-risk families and youths, CHNs are in a pivotal position to intervene successfully in the family and community problem of youth street gangs. It is intended that this article will heighten awareness of the seriousness of the gang problem. It is further intended to stimulate interest in nursing research in these areas: (a) personal street-safety strategies, (b) street-safety guidelines for community nursing agencies, (c) stress reduction approaches for the CHN, and (d) gang intervention strategies at the family and community levels of practice. CHNs must seek opportunity in their role to make a difference in the national problem of youth gang violence, for it is a community tragedy that is not going to go away.

  8. 78 FR 40381 - Establishment of Class E Airspace; Grand Canyon, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... Canyon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Grand..., at the Grand Canyon VOR/DME navigation aid, Grand Canyon, AZ, to accommodate IFR aircraft under... within the scope of that authority as it establishes controlled airspace at the Grand Canyon...

  9. 78 FR 25404 - Proposed Establishment of Class E Airspace; Grand Canyon, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... Range/Distance Measuring Equipment (VOR/DME) navigation aid, Grand Canyon, AZ, to facilitate vectoring... route domestic airspace extending upward from 1,200 feet above the surface at the Grand Canyon VOR/DME... airspace at the Grand Canyon VOR/DME, Grand Canyon, AZ. This proposal will be subject to an...

  10. 2D discrete Fourier transform on sliding windows.

    PubMed

    Park, Chun-Su

    2015-03-01

    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

  11. Bottom-trawling along submarine canyons impacts deep sedimentary regimes

    PubMed Central

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-01-01

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons’ morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities. PMID:28233856

  12. Bottom-trawling along submarine canyons impacts deep sedimentary regimes

    NASA Astrophysics Data System (ADS)

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-02-01

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons’ morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities.

  13. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1989-03-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  14. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1988-08-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  15. Street youth and the AIDS pandemic.

    PubMed

    Luna, G C; Rotheram-Borus, M J

    1992-01-01

    Children responsible for their own survival exist in all countries. Despite social and cultural differences between street youth in developing countries versus homeless youth in developed countries, the predictors and correlates of homelessness are similar among youth. The AIDS pandemic is inextricably linked to homelessness and is a particularly devastating threat to the welfare of the world's disenfranchised youth, as they are continually forced into multiple HIV-related high risk situations and behaviors. Specific recommendations regarding clinical care, prevention programs, research, and the implications for policy and legislative action are discussed in relation to reducing the incidences and impact of HIV. For the world's populations of street children the issue of globally providing AIDS education and prevention within the context of health care services is emphasized, particularly by the promotion and training of physicians and other health professionals in street-based care.

  16. Inner gorge-slot canyon system produced by repeated stream incision (eastern Alps): Significance for development of bedrock canyons

    NASA Astrophysics Data System (ADS)

    Sanders, Diethard; Wischounig, Lukas; Gruber, Alfred; Ostermann, Marc

    2014-06-01

    Many inner bedrock gorges of the Alps show abrupt downstream changes in gorge width, as well as channel type and gradient, as a result of epigenetic incision of slot canyons. Many slot canyons also are associated with older gorge reaches filled with Quaternary deposits. The age of slot canyons and inner bedrock gorges, however, commonly is difficult to constrain. For the inner-bedrock gorge system of the Steinberger Ache catchment (eastern Alps), active slot canyons as well as older, abandoned gorge reaches filled with upper Würmian proglacial deposits record three phases of gorge development and slot-canyon incision. A 234U/230Th age of cement of 29.7 ± 1.8 ka in fluvial conglomerates onlapping the flank of an inner gorge fits with late Würmian valley-bottom aggradation shortly before pleniglacial conditions; in addition, the age indicates that at least the corresponding canyon reach must be older. During advance of ice streams in the buildup of the Last Glacial Maximum (LGM), the catchment was blocked, and a proglacial lake formed. Bedrock gorges submerged in that lake were filled with fluviolacustrine deposits. During the LGM, the entire catchment was overridden by ice. During post-glacial reincision, streams largely found again their preexisting inner bedrock canyons. In some areas, however, the former stream course was 'missed', and a slot canyon formed. The distribution of Pleistocene deposits, the patterns of canyon incision, and the mentioned U/Th cementation age, however, together record a further discrete phase of base-level rise and stream incision well before the LGM. The present course of Steinberger Ache and its tributaries is a patchwork of (1) slot canyons incised during post-glacial incision; (2) vestiges of slot canyons cut upon an earlier (middle to late Würmian?) cycle of base-level rise and fall; (3) reactivated reaches up to ~ 200 m in width of inner bedrock gorge that are watershed at present, and more than at least ~ 30 ka in age; and (4

  17. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  18. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  19. NIKE2D96. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Raboin, P.; Engelmann, B.; Halquist, J.O.

    1992-01-24

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  20. Physiographic rim of the Grand Canyon, Arizona: a digital database

    USGS Publications Warehouse

    Billingsley, George H.; Hampton, Haydee M.

    1999-01-01

    This Open-File report is a digital physiographic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The report does include, however, PostScript and PDF format plot files, each containing an image of the map. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled "For Those Who Don't Use Digital Geologic Map Databases" below. This physiographic map of the Grand Canyon is modified from previous versions by Billingsley and Hendricks (1989), and Billingsley and others (1997). The boundary is drawn approximately along the topographic rim of the Grand Canyon and its tributary canyons between Lees Ferry and Lake Mead (shown in red). Several isolated small mesas, buttes, and plateaus are within this area, which overall encompasses about 2,600 square miles. The Grand Canyon lies within the southwestern part of the Colorado Plateaus of northern Arizona between Lees Ferry, Colorado River Mile 0, and Lake Mead, Colorado River Mile 277. The Colorado River is the corridor for raft trips through the Grand Canyon. Limestone rocks of the Kaibab Formation form most of the north and south rims of the Grand Canyon, and a few volcanic rocks form the north rim of parts of the Uinkaret and Shivwits Plateaus. Limestones of the Redwall Limestone and lower Supai Group form the rim of the Hualapai Plateau area, and Limestones of Devonian and Cambrian age form the boundary rim near the mouth of Grand Canyon at the Lake Mead. The natural physiographic boundary of the Grand Canyon is roughly the area a visitor would first view any part of the Grand Canyon and its tributaries.